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Abstract

In this thesis, we have investigated two aspects towards improving the performance of distributed stor-
age systems. In one direction, we present techniques and algorithms to reduce request latency of distributed
storage services that are deployed geographically. In another direction, we propose and design elasticity
controllers to maintain predictable/stable performance of distributed storage systems under dynamic work-
loads and platform uncertainties.

On the research path towards the first direction, we have proposed a lease-based data consistency algo-
rithm that allows a distributed storage system to serve read-dominant workload efficiently in a global scale.
Essentially, leases are used to assert the correctness/freshness of data within a time interval. The leasing
algorithm allows replicas with valid leases to serve read requests locally. As a result, most of the read
requests are served with little latency. Furthermore, leases’ time-based assertion guarantees the liveness
of the consistency algorithm even in the presence of failures. Then, we have investigated the efficiency
of quorum-based data consistency algorithms when deployed globally. We have proposed MeteorShower
framework, which is based on replicated logs and loosely synchronized clocks, to augment quorum-based
data consistency algorithms. In core, MeteorShower allows the algorithms to maintain data consistency
using slightly old replica values provided in the replicated logs. As a result, the quorum-based data con-
sistency algorithms no longer need to query for updates from remote replicas, which significantly reduces
request latency. Based on similar insights, we build a transaction framework, Catenae, for geo-distributed
data stores. It employs replicated logs to distribute transactions and aggregate the execution results. Trans-
actions are distributed in order to accomplish a speculative execution phase, which is coordinated using a
transaction chain algorithm. The algorithm orders transactions based on their execution speed with respect
to each data partition, which maximizes the concurrency and determinism of transaction executions. As a
result, most of the execution results on replicas in different data centers are consistent when examined in a
validation phase. This allows Catenae to commit a serializable read-write transaction experiencing only a
single inter-DC RTT delay in most of the cases.

Following the second research path, we examine and control the factors that cause performance degra-
dation when scaling a distributed storage system. First, we have proposed BwMan, which is a model-based
network bandwidth manager. It alleviates performance degradation caused by data migration activities
when scaling a distributed storage system. It is achieved by dynamically throttling the network bandwidth
allocated to these activities. As a result, the performance of the storage system is more predictable/stable,
i.e., satisfying latency-based service level objective (SLO), even in the presence of data migration. As a
step forward, we have systematically modeled the impact of data migrations. Using this model, we have
built an elasticity controller, namely, ProRenaTa, which combines proactive and reactive controls to achieve
better control accuracy. With the help of workload prediction and the data migration model, ProRenaTa is
able to calculate the best possible scaling plan to resize a distributed storage system under the constraint
of achieving scaling deadlines, reducing latency SLO violations and minimizing VM provisioning cost. As
a result, ProRenaTa yields much higher resource utilization and less latency SLO violations comparing to
state-of-the-art approaches while provisioning a distributed storage system. Based on ProRenaTa, we have
built an elasticity controller named Hubbub-scale, which adopts a control model that generalizes the data
migration overhead to the impact of performance interference caused by multi-tenancy in the Cloud.

Keywords: Geo-distributed Storage Systems; Data Replication; Data Consistency; Transaction; Elastic
Computing; Elasticity Controllers; Service Latency; Service Level Objective; Performance Interference



Sammanfattning

I denna avhandling har vi undersökt två aspekter att förbättra prestanda för distribuerade lagringssy-
stem. I ett spår, presenterar vi metoder och algoritmer för att minska latensen vid begäran av distribuerade
lagringstjänster som distribueras geografiskt. I ett annat spår föreslår vi och designar kontrollmekanismer
för elasticitet ansvariga för att upprätthålla förutsägbara/stabila prestanda hos distribuerade lagringssystem
under dynamisk arbetsbelastning och osäkerheter hos plattformen.

Inom forskningen för att realisera det första spåret, har vi föreslagit en lease-baserad datakonsistensal-
goritm som tillåter ett distribuerat lagringssystem att effektivt hantera läsningsdominerad arbetsbelastning
i global skala. Väsentligen används “leasing” för att garantera riktigheten/aktualiteten hos data inom ett
tidsintervall. Leasingalgoritmen tillåter repliker med giltiga “avtal” (leases) att betjäna läsförfrågningar lo-
kalt. Som ett resultat av detta, betjänas de flesta av de lästa förfrågningarna med liten latens. Dessutom
garanterar den tidsbaserade naturen av leasingpåståendena liveness hos konsistensalgoritmen även i när-
varo av misslyckanden. Sedan har vi undersökt effektiviteten av kvorumbaserade datakonsistensalgoritmer
när de används globalt. Vi har föreslagit ramverket MeteorShower, som är baserat på replikerade loggar och
löst synkroniserade klockor, för att förstärka kvorumbaserade datakonsistensalgoritmer. Väsentligen tillåter
MeteorShower algoritmerna att upprätthålla överensstämmelse mellan uppgifter genom att använda något
äldre replikerade värden i de replikerade loggarna. Som ett resultat av detta behöver datakonsistensalgo-
ritmerna inte längre fråga efter uppdateringar från avlägsna repliker, vilket avsevärt minskar latensen hos
begärandena. Baserat på liknande insikter, bygger vi ett transaktionsramverk, Catenae, för geo-distribuerade
datalager. Den använder replikerade loggar för att distribuera transaktioner och aggregera resultaten. Trans-
aktioner fördelas i syfte att åstadkomma en spekulativ genomförandefas, som samordnas med hjälp av en
algoritm baserad på transaktionskedjor. Algoritmen beställer transaktioner baserat på deras hastighet i för-
hållande till varje datapartition, vilket maximerar samtidigheten och determinismen hos transaktionerna.
Som ett resultat är de flesta av exekveringsresultaten på kopior i olika datacenter förenliga när de undersöks
i en valideringsfas. Detta gör det möjligt för Catenae att genomföra en läs- och skrivtransaktion inom ett
enda fördröjningssteg mellan DC RTT i de flesta fall.

Inom det andra forskningsspåret, undersöker vi och kontrollerar de faktorer som orsakar prestanda-
försämring vid skalning av ett distribuerat lagringssystem. Först har vi föreslagit BwMan, som är en mo-
dellbaserad manager av nätverksbandbredd. Denna lindrar prestandaförsämringen som orsakas av data-
migreringsaktiviteter vid skalningen av ett distribuerat lagringssystem genom att dynamiskt begränsa den
bandbredd som tilldelas denna verksamhet. Som ett resultat blir prestanda hos lagringssystemet mycket
mer förutsägbar/stabil, dvs systemet uppfyller latensbaserade servicenivåmål (SLO), även i närvaro av da-
tamigrering. Som ett steg framåt, har vi systematiskt modellerat effekterna av datamigreringar. Med hjälp
av denna modell, har vi byggt en styrenhet för elasticitet, nämligen ProRenaTa, som kombinerar proaktiva
och reaktiva kontrollmekanismer för att uppnå bättre noggrannhet i kontrollen. Med hjälp av förutsägelser
av arbetsbelastningen och datamigreringsmodellen kan ProRenaTa beräkna bästa möjliga skalningsplan för
att ändra storlek på ett distribuerat lagringssystem under begränsningen att uppnå tidsfrister för skalningen,
minska brott mot SLO-latenser och minimera kostnaden för tillhandahållande av VM. Som ett resultat, ger
ProRenaTa ett mycket högre resursutnyttjande och mindre brott mot SLO-latenser jämfört med state-of-the-
art-metoder samtidigt som ett distribuerat lagringssystem tillhandahålls. Baserat på ProRenaTa har vi byggt
styrenheter för elasticitet, vilka använder styrmodeller som generaliserar overheaden för datamigrering för
effekterna av prestandastörningar som orsakas av “multi-tenancy” i molnet.



Résumé
Dans cette thèse, nous avons étudié deux approches pour améliorer la performance des systèmes de sto-

ckage distribués. Premièrement, nous présentons des techniques et des algorithmes pour réduire la latence
des requêtes à des services de stockage géo-distribués. Deuxièmement, nous avons conçu des contrôleurs
d’élasticité pour maintenir des performances prévisibles et stables des systèmes de stockage distribués sou-
mis à des charges de travail dynamiques et aux incertitudes de plate-forme.

Selon le premier axe de cette recherche, nous avons proposé un algorithme de cohérence des données
basé sur des bails (contrats limités dans le temps) qui permet à un système de stockage distribué de four-
nir efficacement une charge de travail principalement en lecture à une échelle globale. Essentiellement, les
bails sont utilisés pour faire valoir la justesse et la fraîcheur des données pendant un intervalle de temps.
L’algorithme permet à des répliques avec des bails valides de répondre à des requêtes locales de lecture.
Par conséquent, la plupart des demandes de lecture sont servies avec peu de latence. En outre, la durée des
bails garantit la vivacité de l’algorithme de cohérence, même en présence de défaillances. Ensuite, nous
avons étudié l’efficacité des algorithmes de cohérence des données basés sur des quorums - lorsqu’ils sont
déployés à l’échelle globale. Nous avons proposé le système MeteorShower, qui est basé sur des journaux
répliqués et des horloges faiblement synchronisées, pour améliorer les algorithmes de cohérence des don-
nées basés sur des quorums. Fondamentalement, MeteorShower permet aux algorithmes de maintenir la
cohérence des données en utilisant des valeurs de répliques légèrement anciennes fournies par les journaux
répliqués. En conséquence, les algorithmes de cohérence des données basés sur des quorums n’ont plus be-
soin de demander les mises à jour à partir de répliques à distance, ce qui réduit considérablement la latence
des requêtes. Basé sur des idées semblables, nous avons construit un système transactionnel, Catenae, pour
les systèmes de stockage géo-distribués. Il emploie des journaux répliqués pour distribuer les transactions
et agréger les résultats d’exécution. Les transactions sont distribuées afin de réaliser une phase d’exécution
spéculative, qui est coordonnée à l’aide d’un algorithme de chaîne de transaction. L’algorithme ordonne
les transactions en fonction de leur vitesse d’exécution par rapport à chaque partition de données, ce qui
maximise la simultanéité et le déterminisme des exécutions de transaction. Par conséquent, la plupart des
résultats d’exécution des répliques dans les différents centres de données sont cohérents lorsqu’ils sont exa-
minés lors d’une phase de validation. Cela permet à Catenae d’exécuter une transaction de lecture-écriture
avec dans la plupart des cas un seul délai aller-retour inter-DC.

En ce qui concerne la deuxième voie de recherche, nous avons examiné et contrôlé les facteurs qui
causent une dégradation des performances lors du redimensionnement d’un système de stockage distribué.
Premièrement, nous avons proposé BwMan, qui est un gestionnaire de bande passante de réseau basé sur des
modèles. Il atténue la dégradation des performances causée par les activités de migration de données lors du
redimensionnement d’un système de stockage distribué par régulation dynamiquement de la bande passante
allouée à ces activités. Ainsi, les performances du système de stockage sont beaucoup plus prévisibles et
stables, c’est-à-dire qu’elles répondent à un objectif de qualité de service basé sur la latence, même en
présence de migration des données. Ensuite, nous avons modélisé de manière systématique l’impact des
migrations de données. En utilisant ce modèle, nous avons construit un contrôleur d’élasticité, ProRenaTa,
qui combine des contrôles proactifs et réactifs pour obtenir une meilleure précision de contrôle. Grâce à la
prévision de la charge de travail et au modèle de migration de données, ProRenaTa est capable de calculer
le meilleur plan possible afin de redimensionner un système de stockage distribué sous la contrainte de
respect des délais, en réduisant les violations de l’objectif de qualité de service basé sur la latence et en
minimisant les coûts de création de machines virtuelles. Par conséquent, ProRenaTa conduit à une bien
meilleure utilisation des ressources et à moins de violations en qualité de service basé sur la latence, en
comparaison avec les approches constituant actuellement à l’état de l’art en matière de fourniture d’un
système de stockage distribué. Sur la base de ProRenaTa, nous avons construit des contrôleurs d’élasticité,
qui adoptent des modèles de contrôle qui généralisent le surcoût de migration de données à l’impact de
l’interférence de la performance causée par la colocation dans le Cloud.
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Chapter 1

Introduction

With the growing popularity of Internet-based services, more powerful back-end storage
systems are needed to match ever increasing workloads in terms of concurrency, intensity,
and locality. When designing a high performance storage system, a number of important
properties, including scalability, availability, consistency guaranties, partition tolerance and
elasticity, need to be considered.

Scalability is one of the core aspects of a high performance storage solution. Central-
ized storage solutions are no longer able to support large-scale web applications because
of high levels of concurrency and intensity. Under this scenario, distributed storage so-
lutions, which are designed with greater scalability, are proposed. A distributed storage
solution provides a unified storage service by aggregating and managing a large number of
storage instances. A scalable distributed storage system can, in theory, aggregate an unlim-
ited number of storage instances, therefore providing unlimited storage capacity. Given no
bottlenecks among these storage instances, a larger workload can be served.

Availability is another desired property for a storage system. Availability means that
data stored in the system is safe and always (or most of the time) available to its clients.
Replication is usually implemented in a distributed storage system to guarantee data avail-
ability in the presence of server or network failures. Specifically, several copies of the
same data are preserved in the system at different servers, racks, or data centers. Thus, in
the case of server or network failures, data can still be served to clients from functioning
and accessible servers that have copies of the data.

Maintaining multiple copies of the same data brings the challenge of data consistency.
Based on application requirements and usage scenarios, a storage solution is expected to
provide some level of consistency guarantees. For example, strong consistency ensures that
all the data copies act synchronously like one single copy and it is desired because of its
predictability. Other consistency models, such as eventual consistency, allow data copies
to diverge within a short period of time. In the general case, stricter consistency models
necessitate more overhead for a system.

Multiple data replicas in multiple servers also need to survive network partitions.
Network partitions block communication between data copies. In this scenario, either in-
consistent results or no results can be returned to clients. The availability, consistency

1



CHAPTER 1. INTRODUCTION

and partition tolerance together make up the three essential aspects in a distributed storage
system known as the CAP theorem [1, 2]. The theorem states that only two of the three
properties can be achieved in one system.

Elasticity describes a property of a storage system, which is able to scale up/down
according to the incoming workload to maintain a desired quality of service (QoS). The
elasticity of a storage system is usually achieved with the help of an autonomic elasticity
controller, which monitors several metrics that reflect the realtime status of the managed
system and issues corresponding scaling operations to maintain a desired QoS.

1.1 In the Cloud
In this thesis, we study the performance of distributed storage systems that are hosted in
public/private Cloud platforms. Cloud computing not only shifts the paradigm that compa-
nies used to host their Internet-based businesses, but also provides end users with a brand
new way of accessing services and data. A Cloud is the integration of data center hard-
ware and software that provides "X as a service (XaaS)"; where X can be infrastructure,
hardware, platform, or software. In this thesis, I assume that a Cloud supports infrastruc-
ture as a service (IaaS), where Cloud resources are provided to consumers in the form of
physical, or more often virtual machines (VMs). Cloud computing provides the possibility
for companies to host their services without operating their own data center. Moreover, the
pay-as-you-go business model allows companies to use Cloud resources on a short-term
basis as needed. On the one hand, companies benefit from letting resources go when they
are no longer needed. On the other hand, companies are able to request more resources
anytime from the Cloud platform when their businesses grow without planning ahead for
provisioning.

Geo-distribution

Another advantage of using Cloud services is their wide geographical coverage. For the
moment, dominant Cloud providers, such as Amazon Web Services, Google Cloud Plat-
forms, Microsoft Azure, and IBM Bluemix, allow users to host their services in data centers
across multiple continents. It facilitates companies to start their business on a global scale,
which enables them to provide services closer to their clients, thus reducing service latency.
However, maintaining services across multiple data centers also brings new challenges. In
this thesis, we will investigate some of them.

1.2 Research Objectives
The objective of the thesis is to optimize service latency/throughput of distributed storage
systems that are hosted in a Cloud environment. From a high-level view, there are two
main factors that significantly impact the service latency of a distributed storage system,
assuming a static execution environment and available resources: (a) the efficiency of the
storage solution itself and (b) the dynamic workload that needs to be handled by the system.
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Naturally, a less efficient storage solution slows down the processing of requests, whereas
an intensive workload might saturate the system and cause performance degradation. Thus,
in order to achieve a low latency/high throughput distributed storage solution, we define
two main goals:

1. to improve the efficiency of distributed storage algorithms, and

2. to enable storage systems adapt to workload changes

Our vision towards the first goal is to make storage systems deployed in a larger scale,
so that requests can be served by servers that are close to clients. This will significantly
reduce request latency, especially the portion of high latency requests, if clients are dis-
tributed across a large geographical area. However, when the system is deployed across a
large geographical area, the communication overhead within the system dramatically in-
creases. This increased overhead significantly influences service latency when requests
need to access several data replicas, which are separated by large physical distances. And
this is usually the case when a system maintains strong consistency guarantees, e.g., se-
quential consistency. We specify our optimizations in this scenario with the objective of
reducing replica communication overhead under the requirements of sequential data con-
sistency while not compromising a system’s scalability and availability.

The core challenge to achieve the second goal is introduced by the complexity of work-
load patterns, which can be dynamic in intensity, concurrency, and locality. We propose
smart middleware, i.e., elasticity controllers, to effectively and efficiently provision re-
sources allocated to a distributed storage system. The resource allocation considers the
workload characteristics when optimizing to low service latency and reduced provisioning
cost. Specifically, an increase in the workload typically results in an increase in the allo-
cated resources to maintain the low service latency. On the other hand, a decrease in the
workload leads to the removal of surplus resources to save the provisioning cost. Due to
the characteristics of a distributed storage service, the addition and removal of resources is
non-trivial. This is because storage services are stateful, which means that data needs to
be allocated to newly added resources before they can serve requests and data needs to be
migrated before resources can be safely removed from the system. Thus, we focus our re-
search on the data migration challenge while designing an efficient and effective elasticity
controller for a distributed storage system.

1.3 Research Methodology and Road Path
In this section, we describe the methods and road paths that I followed during my PhD
studies.

1.3.1 Design of Efficient Storage Solutions

The methodology
The work on this matter does not follow analytical, mathematical optimization methods,
but is rather based on an empirical approach. I approach the problem by first studying tech-
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niques/algorithms used in the design of distributed storage solutions. This process provides
me the knowledge base for inventing new algorithms to improve the efficiency of storage
solutions. After understanding the state of the art solutions, I start investigating the usage
scenarios of distributed storage solutions. The efficiency of a storage solution varies on
different usage scenarios. I focus on analyzing solutions’ efficiency with respect to the op-
erating overhead when deployed in different usage scenarios. This overhead usually differs
because of different system architectures, implementations and algorithms. My research
focuses on designing efficient storage solutions for a newly emerged usage scenario, i.e.,
providing services in a global scale. To accomplish my research, I first investigate the
causes of inefficiency when applying current storage solutions to this usage scenario. After
examining a sufficient number of leading storage solutions, I choose the most suitable sys-
tem architecture for my usage case. I tailor algorithms by avoiding the known performance
bottlenecks. Finally, I evaluate my design and implementation by comparing it with sev-
eral leading storage solutions. I use request latency as the performance measure and also
discuss computational complexity of the algorithm, when applicable.

The road path

By understanding the state-of-the-art approaches in the design of distributed storage sys-
tems [3, 4, 5, 6] and the current trends in Cloud computing, I have identified a gap between
efficient storage system designs and an emerging usage scenario, i.e., geo-distribution.
Specifically, there is insufficient research on achieving low latency when a distributed stor-
age system is deployed in a large geographical area. I have conducted my research by first
designing and implementing a globally-distributed and consistent key-value store, which
is named GlobLease. It organizes multiple distributed hash tables (DHTs) to store the
replicated data and namespace, which allows different DHTs to be placed in different lo-
cations. Specifically, data lookups and accesses are processed with respect to the locality
of DHT deployments, which improves request latency. Moreover, GlobLease uses leases
to maintain data consistency among replicas. It enables GlobLease to provide fast and
consistent read accesses with reduced replica communications. Write accesses are also
optimized by migrating the master copy of data to the locations where most of the writes
take place. With the experience of GlobLease, I have continued my research with dom-
inant open-source storage solutions, which have large user groups. Thus, more people
could benefit from the research results. Specifically, I have designed and implemented a
middleware called MeteorShower on top of Cassandra [3], which minimizes the latency
overhead to maintain data consistency when data are replicated in multiple data centers.
MeteorShower employs a novel message propagation mechanism, which allows data repli-
cas to converge faster. As a result, it significantly reduces request latency. Furthermore,
the technique applied in MeteorShower does not compromise the existing fault tolerance
guarantees provided by the underlying storage solution, i.e., Cassandra. To leverage more
usage scenarios, I have implemented a similar message propagation mechanism to achieve
low latency serializable transactions across a large geographical area. In this matter, I have
proposed, Catenae, which is a framework that provides transaction support for Cassandra
when data is replicated across multiple data centers. It leverages similar message propaga-
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tion principles proposed in MeteorShower for interactions among transactions. Moreover,
Catenae employs and extends a transaction chain concurrency control algorithm to spec-
ulatively execute transactions in each data center to maximize the execution concurrency.
As a result, Catenae significantly reduces transaction execution latency and abort rates.

1.3.2 Design of an Elasticity Controller

The methodology
The work on the elasticity controller also follows an empirical approach. My approach is
based on first understanding the environmental and system elements/parameters that are in-
fluential to the effectiveness and accuracy of an elasticity controller, which directly affects
the service latency of the controlled systems. Then, I study the technologies that are used
in building performance models and the frameworks that are applied in implementing the
controller. The results of the studies allow me to discover the unconsidered elements/pa-
rameters that influence the effectiveness and accuracy of an elasticity controller. I exper-
imentally verify my assumptions on the performance degradation of elasticity controllers
when the elements/parameters are not considered. Once I have confirmed the space for
improving the effectiveness and accuracy of elasticity controllers, I innovate by designing
new performance models that consider those environmental and system elements/parame-
ters. After implementing my controller using the novel performance model, I evaluate it by
comparing it to the original implementation. For the evaluation, I deploy my system in real
platforms and test it with real-world workload, where possible. I use service latency and
resource utilization as performance measures.

The road path
Studies on distributed storage systems have shown that data needs to be allocated/de-
allocated to storage nodes before they start serving client requests. It mainly causes two
challenges when scaling a distributed storage system. First, migrating data consumes sys-
tem resources in terms of network bandwidth, CPU time, and disk I/Os. This means that
scaling up/down a storage system will hurt the performance of the system during the data
migration phase. On the other hand, migrating data consumes time, which means that a
scaling decision cannot have immediate effect on the current system status. There is a
delay before new resources start alleviating system loads. For the first challenge, I have
conducted my research towards regulating the resources that are used for data migration
when the system resizes. Specifically, I have designed and implemented a bandwidth arbi-
trator named BwMan, which regulates the bandwidth allocation among client requests and
data migration load. It throttles the bandwidth consumed by data migration when it starts
affecting the QoS. BwMan guarantees that the system operates with a predictable request
latency and throughput. For the second challenge, I have proposed a novel data migra-
tion performance model, which can analytically calculate the time that is needed to scale a
distributed storage system under the current workload. A workload prediction module is in-
tegrated to facilitate the resizing of the system with the data migration performance model.
These techniques are implemented in an elasticity controller called ProRenaTa. With the
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successful experience of ProRenaTa, I have continued my research in the generalization
of data migration overhead. It is generalized to include interference from the platforms
hosting the storage system. Using a similar modeling technique, I have broadened the
research to consider the performance interference caused by co-runners sharing the same
platform when scaling storage systems. The elasticity controller, namely Hubbub-scale, is
implemented to scale distributed storage systems in a multi-tenant environment.

1.4 Contributions

This thesis presents techniques that optimize the service latency of distributed storage sys-
tems. On one hand, it focuses on designing efficient storage solutions to be deployed
geographically. On the other hand, it presents research about the design of elasticity con-
trollers in order to achieve predictable performance of distributed storage systems under
dynamic workloads. In the following paragraphs, I present my contributions that address
research problems in these two domains. All of the works included in this thesis are written
as research papers, and most of them have been published in international peer-reviewed
publications. I was the main contributor of all the works/research papers included in this
thesis. I was the initiator and the main contributor in coming up with the research ideas and
formalizing them. I motivated and approaches the research challenges from unique angles.
I implemented all the parts of the mentioned research works. I was also the main conductor
in evaluating all the research works proposed.

Efficient Storage Solutions

GlobLease. I address the problem of high read request latency when a distributed storage
system serves requests from multiple data centers while data consistency is preserved. I
approach the problem from the idea of cache coherency. Essentially, I have adapted the
idea of leasing resources to maintain data consistency. Then, I have implemented the idea
of leasing data in GlobLease, which is a globally-distributed and consistent key-value store.
It differs from the state of the art works and contributes in three ways. First, my system is
organized as multiple distributed hash tables storing replicated data and namespace, which
allows different DHTs to be placed in different locations. Specifically, I have implemented
several optimizations in the routing of requests. Firstly, data lookups and accesses are pro-
cessed with respect to the locality of DHT deployments, which gives priority to data located
in the same data center. Second, I have applied leases to maintain data consistency among
replicas. Leases enable a data replica to be read consistently within a specific time bound.
It allows GlobLease to provide fast and consistent read accesses without inter-replica com-
munication. I have also optimized writes in GlobLease by migrating the master copy of the
data to the locations where most of the writes take place. Third, I have designed GlobLease
to be highly adaptable to different workload patterns. Specifically, fine-grained elasticity is
achieved in GlobLease using key-based multi-level lease management. It allows GlobLease
to precisely and efficiently handle spiky and skewed read workloads. These three aspects
of GlobLease enable it to have predictable performance in a geographical setup. As a re-
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sult, GlobLease reduces more than 50% of high latency requests that contribute to the tail
latency.

MeteorShower. I reduce the request latency of distributed storage systems which rely
on majority quorum based data consistency algorithms. First, I have identified that pulling
updates from replicas causes high latency. I propose that replicas actively exchange their
updates using periodic status messages, which halves the delay of receiving the updates.
Based on this insight, I allow each replica to maintain a cache of other replicas. The cached
values are updated with the periodic status messages from other replicas. With the slightly
stale caches of replicas, I try to reason about the data consistency levels based on different
applications of the cached values. Taking sequential consistency as an example, I have
proved that we are able to achieve this data consistency with significantly less delays using
the cached values. Another advantage of my algorithm is that it does not compromise any
existing properties of the system, for example, fault tolerance, since it is incremental to the
existing algorithm. To validate my algorithm, I have implemented it with Cassandra in a
system called MeteorShower. The performance of MeteorShower is compared against Cas-
sandra. I have confirmed that my algorithm is able to out-performance traditional majority
quorum operations significantly in the context of geo-distributed storage systems.

Catenae. I have designed and implemented Catenae, which provides low latency
transactions when data are replicated and stored in different data centers. I approach the
idea from using periodic replicated epoch messages among replicas to distribute trans-
actions and aggregate transaction results. My idea is instead of pulling transactions and
transaction results from replicas, Catenae uses periodic epoch messages to push the pay-
load to all replicas. This approach halves the delay for replicas to acknowledge the updates
from the other replicas. As a result, the commit latencies of transactions are reduced. Fur-
thermore, in order to boost the transaction execution concurrency, I have employed and
extended a transaction chain algorithm [7]. With the information from epoch messages, the
transaction chain algorithm is able to speculatively execute transactions upon replicas with
maximized concurrency and determinism of transaction ordering. I have experimentally
proved that following my algorithm most of the speculative executions will produce valid
results. Inconsistent results from speculative executions can be amended through a voting
process among data centers (breaking ties using data center ids).

Evaluations have shown that my system, Catenae, is able to commit a transaction with
half a RTT to a single RTT in most of the cases. Evaluations with the TPC-C benchmark
show that Catenae significantly outperforms Paxos Commit [8] over 2-Phase Lock [9] and
Optimistic Concurrency Control [10]. My system achieves more than twice the throughput
of the other two approaches with 50% less commit latency.

Elasticity on Storage Systems

BwMan. I address the issue of performance degradation of a distributed storage system
when it conducts data migration because of resizing activities. I have identified that there
are mainly two types of workloads in a distributed storage system: user-centric workloads
and system-centric workloads. A user-centric workload is the load that is created by client
requests. Workloads that are caused by data migration, which can be initiated because of

7



CHAPTER 1. INTRODUCTION

load rebalancing, failure recovery, or system resizing (scaling up/down), are called system-
centric workloads. Obviously, both workloads are network bandwidth intensive. I demon-
strate that without explicitly managing the network bandwidth resources among these two
different workloads leads to unpredictable performance of the system.

I have designed and implemented BwMan, a network bandwidth manager for dis-
tributed storage systems. BwMan dynamically arbitrates bandwidth allocations to dif-
ferent services within a virtual machine. Dedicated bandwidth allocation to user-centric
workloads guarantees the predictable performance of the storage system. Without hurting
user-centric performance, dynamic bandwidth allocation to system-centric workloads al-
lows system maintenance tasks to finish as fast as possible. Evaluations demonstrate that
the performance of the storage system under the provisioning of BwMan appears to be
more than twice as predictable and stable as its counterpart without BwMan during system
resizing.

ProRenaTa. I have identified that data migration in distributed storage systems not
only consumes resources, but also delays the service of the newly added resources. Then, I
have designed and implemented ProRenaTa, which is an elasticity controller that addressed
the above issue while scaling a distributed storage system.

Experimentally, I demonstrate that there are limitations, caused by data migration,
while relying solely on proactive or reactive tuning to auto-scale a distributed storage sys-
tem. Specifically, a reactive controller can scale the system with good accuracy since scal-
ing is based on observed workload characteristics. However, a major disadvantage of this
approach is that the system reacts to workload changes only after it is observed. As a result,
performance degradation is observed in the initial phase of scaling because of data/state mi-
gration in order to add/remove resources. Proactive controllers, on the other hand, are able
to prepare resources in advance and avoid performance degradation. However, the perfor-
mance of the proactive controller largely depends on the accuracy of workload prediction,
which varies for different workload patterns. Worse, in some cases workload patterns are
not even predictable. Thus, proper methods need to be designed and applied to deal with
the inaccuracies of workload prediction, which directly influences the accuracy of scaling
that in turn impacts system performance.

I have also identified that, in essence, proactive and reactive approaches complement
each other. A proactive approach provides an estimation of future workloads giving a con-
troller enough time to prepare and react to the changes but having the problem of prediction
inaccuracy. A reactive approach brings an accurate reaction based on current state of the
system but without leaving enough time for the controller to execute scaling decisions. So,
I have designed ProRenaTa, which is an elasticity controller that combines both proactive
and reactive insights. I have built a data migration model to quantify the overhead to fin-
ish a scale-in or scale-out plan in a distributed system, which is not explicitly considered
or modelled in the state of the art works. The data migration model is able to guarantee
stable/predictable performance while scaling the system. By consulting the data migra-
tion model, the ProRenaTa scheduler is able to arbitrate the resources that are allocated
to system resizing without sacrificing system performance. Experimental results indicate
that ProRenaTa outperforms state of the art approaches by guaranteeing a higher level of
performance commitments while also maintaining efficient resource utilization.
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1.5 Research Limitations

There are certain limitations in the application of research results from this thesis.
The storage solutions that we have proposed in this thesis, i,e,. GlobLease, Meteor-

Shower and Catenae, will out-performance the state-of-the-art approaches only when they
are deployed in multiple data centers. And the replicas of data items need to be hosted
in different data centers, which means that each data center maintains and replicates a full
storage namespace.

With respect to each individual system, GlobLease sacrifices a small portion of the low
latency read requests to reduce a large portion of extremely high latency write requests. It
is not designed to completely remove high latency requests, which limits its application to
latency sensitive use cases. Furthermore, GlobLease does not tolerate network partitions.
We tradeoff the tolerance of network partitions for data availability and consistency. Thus,
in the presence of network partitions, some of GlobLease servers might not be able to
serve requests in order to preserve data consistency. Another limitation of GlobLease is
its tolerance to server failure. Slave server failures will significantly influence the write
performance of GlobLease depending on the length of leases since writes can only proceed
when all leases are updated or expired. Master server failures influence the performance of
both reads and writes, which need to wait for a Paxos election for the new master.

MeteorShower behaves better than GlobLease in the presence of server failures since
it adopts majority quorums instead of master-slave paradigm. Essentially, there is no over-
head when a minority of replicas fail. However, MeteorShower, like all the storage systems
relying on majority quorums, does not tolerate the failure of a majority of servers. Since
MeteorShower extensively utilizes the network resources among servers, its performance
depends on the network connectivity of those servers. It is observed in our evaluations
that we have a significantly shorter tail in latency when MeteorShower uses a intra-DC
network than a inter-DC network. The effect is more prominent under a more intensive
workload. Thus, MeteorShower is not suitable for platforms where the performance of
network is limited. Lastly, the data consistency algorithm in MeteorShower relies on the
physical clocks of all the servers. The correctness of MeteorShower depends on the as-
sumption of bounded clocks, which means the clock of each server can be represented by
the real-time clock within a bounded error. Thus, significant drifts in clocks interfere with
the correctness and performance of MeteorShower.

Similar to MeteorShower, Catenae also extensively exploits network bandwidth avail-
able to servers. Thus, the same limitation applies to Catenae as well. Furthermore, the per-
formance of Catenae depends on the predictability of transaction execution time on each
data partition. Thus, when most of the transactions have the same processing time on most
of the data partitions, Catenae will not perform better than the state-of-the-art approaches.
Also, the rollback operations in Catenae may trigger cascading aborts. It significantly de-
grades the performance of Catenae under a highly skewed workload. Another possible
limitation of Catenae is its application scenario. Essentially, Catenae can only process
transactions that are chainable. It means that data items that are accessed by a transaction
should be known before its execution. And the accesses of these data items should follow
a deterministic order. Thus, Catenae cannot execute any type of transactions.
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There are also limitations when applying the controllers proposed in this thesis. Specif-
ically, BwMan manages network bandwidth uniformly in each storage server. It relies on
the mechanisms in the storage system to balance the workload in each storage server. Thus,
the coarse grained management of BwMan is not applicable to systems where workloads
are not well-balanced among servers. Furthermore, BwMan does not scale the bandwidth
allocated to a storage service horizontally. It conducts the scaling vertically, which means
that BwMan only manages the network bandwidth within a single host to individual ser-
vices. BwMan is not able to scale a distribute storage system when the bandwidth is not
sufficient. In addition, the empirical model of BwMan is trained offline, which makes it
impossible to adapt to changes of the execution environment that are not considered in the
model.

With respect to ProRenaTa, it integrates both proactive and reactive controllers. How-
ever, the accuracy of workload prediction plays an essential role in the performance of
ProRenaTa. Specifically, a poorly predicted workload causes possibly wrong actions from
the proactive controller. As a result, severe SLO violations happen. In other words, ProRe-
naTa is not able to perform effectively without an accurate model for predicting the work-
load. Furthermore, ProRenaTa sets up a provisioning margin for data migration during the
scaling of a distributed storage system. The margin is used to guarantee a specific scaling
speed of the system. But, it leads to an extra provisioning cost. Thus, it is not recommended
to provision a storage system that does not scale frequently or does not need to migrate a
significant amount of data during scaling. In addition, the control models in ProRenaTa
are trained offline, which makes them vulnerable to unmonitored execution environment
changes. Besides, the data migration model and the bandwidth actuator, namely BwMan,
assume a well-balanced workload on each storage server. The imbalance of workload on
each server will influence the performance of ProRenaTa.

1.6 Research Ethics

The research conducted in this thesis does not have any human participants involved. Thus,
it is exempted from the discussions of most of the ethic issues. The possible ethic concerns
of my research are the applications of the proposed storage systems and the privacy of the
data stored. However, it is the users responsibility to guarantee that my storage solutions are
not used for storing and serving illegal contents. Furthermore, the studies on the security
and privacy of the stored data are orthogonal to the research presented in this thesis.

On the other hand, the research results from this thesis can be applied to reduce the
consumption of energy. Specifically, the application of elastic provisioning in a storage
system improves the utilization of the underlying resources, which are fundamentally com-
puters. Essentially, redundant computer resources are removed from the system when the
incoming workload drops. And the removed computers can be shut down to save energy.
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4. N. Rameshan, Y. Liu, L. Navarro and V. Vlassov, Augmenting Elasticity Controllers
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1.8 Thesis Organization
The rest of this thesis is organized as follows. Chapter 2 gives the necessary background
and describes the systems used in this research work. Chapter 3 provides an overview of
related techniques in achieving high performance geo-distributed storage systems hosted
in the Cloud. Chapter 4 focuses on improving the efficiency of distributed storage systems
deployed across a large geographical area. Chapter 5 discusses using elasticity controllers
to guarantee predictable performance of distributed storage systems under dynamic work-
loads. Chapter 6 contains conclusions and future work.
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Chapter 2

Background

Hosting services in the Cloud is becoming more and more popular because of a set of de-
sired properties provided by the platform, that include a low setup cost, unlimited capacity,
professional maintenance and elastic provisioning. Services that are elastically provisioned
in the Cloud are able to use platform resources on demand, thus saving hosting costs by
appropriate provisioning. Specifically, instances are spawned when they are needed for
handling an increasing workload, and removed when the workload drops. Enabling elastic
provisioning saves the cost of hosting services in the Cloud, since users only pay for the
resources that are used to serve their workload.

In general, Cloud services can be coarsely characterized in two categories: state-based
and stateless. Examples of stateless services include front-end proxies and static web
servers. Distributed storage service is a stateful service, where state/data needs to be prop-
erly maintained. In this thesis, we focus on the self-management and performance aspect
of a distributed storage system deployed in the Cloud. Specifically, we examine techniques
in order to design a distributed storage system that can operate efficiently in a Cloud envi-
ronment [11, 12]. Also, we investigate approaches that support a distributed storage system
to perform well in a Cloud environment by achieving a set of desired properties including
elasticity, availability, and performance guarantees.

In the rest of this chapter, we present the concepts and techniques used in this thesis.

• Cloud, a visualized environment to effectively and economically host services;

• Elastic computing, a cost-efficient technique to host services in the Cloud;

• Distributed storage systems, storage systems that are organized in a decentralized
fashion

2.1 Cloud Computing
"Cloud Computing refers to both the applications delivered as services over the Internet and
the hardware and systems software in the data centers that provide those services [13]." A
Cloud is the integration of data center hardware and software that provides "X as a service
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Figure 2.1 – The Roles of Cloud Provider, Cloud Consumer, and End User in Cloud
Computing

(XaaS)" to clients; where X can be infrastructure, hardware, platform, and software. These
services in the Cloud are made available in pay-as-you-go manner to users. The advantages
of Cloud computing to Cloud providers, consumers, and end users are well understood.
Cloud providers make profits in renting out the resources, providing services based on their
infrastructures to Cloud consumers. Cloud consumers, on the other hand, greatly enjoy
the simplified software and hardware maintenance and the pay-as-you-go pricing model to
start their business. Also, Cloud computing makes a illusion to Cloud consumers that the
resources in the Cloud are unlimited and available whenever requested without building or
provisioning their own data centers. End users are able to access the services provided in
the Cloud anytime and anywhere with great convenience. Figure 2.1 demonstrates the roles
of Cloud provider, Cloud consumer, and end user in Cloud computing.

Based on the insights in [13], there are three innovations in Cloud computing:

1. The illusion of infinite computing resources available on demand, thereby eliminat-
ing the need for Cloud consumers to plan far ahead for provisioning;

2. The elimination of an up-front commitment by Cloud consumers, thereby allowing
companies to start small and increase hardware resources only when there is an in-
crease in their needs;

3. The ability to pay for use of computing resources on a short-term basis as needed
(e.g., processors by the hour and storage by the day) and release them when they are
no longer needed.
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Figure 2.2 – (a) traditional provisioning of services; (b) elastic provisioning of services;
(c) compliance of latency-based service level objective

2.1.1 Service Level Agreement

Service Level Agreements (SLA) define the quality of service that is expected from the ser-
vice provider. SLAs are usually negotiated and agreed between Cloud service providers and
Cloud service consumers. An SLA can define the availability aspect and/or performance
aspect of a service, such as service up-time, service percentile latency, etc. A violation of
SLA affects both the service provider and the consumer. When the service provider is un-
able to uphold the agreed level of the service, penalties are paid to the consumers. From the
consumers perspective, an SLA violation can result in degraded service to their clients and
consequently lead to loss in profits. Hence, the SLA commitment is essential to the profit of
both Cloud service providers and consumers. In practice, an SLA is divided into multiple
Service Level Objectives (SLOs). Each SLO focuses on the guarantee of one aspect of the
service quality, e.g., service up time or service latency.

2.2 Elastic Computing
Cloud computing provides unlimited resources on demand, which facilitates the application
of elastic computing [14]. Essentially, elastic computing means that a service is elastically
provisioned according to its needs. Figure 2.2 illustrates the process of traditional and
elastic provisioning of a service under a diurnal workload pattern. Specifically, Figure 2.2
(a) shows that a service is constantly provisioned with the amount of resources according
to its peak load in order to achieve a specific level of QoS all the time. It is obvious that this
traditional service provisioning approach wastes a significant amount of resources when
the workload decreases from its peak level. On the other hand, Figure 2.2 (b) presents the
elastic provisioning approach where the amount of the provisioned resources follows the
changes in the workload. It is intuitive that elastic provisioning saves a significant amount
of resources comparing to the traditional approach.

Both traditional and elastic provisioning approach aim to guarantee a specific level of
quality of service or a service level objective (SLO). For example, Figure 2.2 (c) shows
a commitment of a latency-based SLO most of the times. The goal of a well-designed
provisioning strategy is to prevent SLO violations with the minimum amount of provisioned
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resources, achieving the minimum provisioning cost. In order to maintain an SLO and
reduce the provisioning cost, the correct amount of resources needs to be provisioned.
Insufficient provisioning of resources, with respect to the workload, leads to an increase in
the request latency and violates the SLO. However, over-provisioning of resources causes
inefficiency in utilizing the resources and results in a higher provisioning cost.

In sum, elasticity is a property of a system, which allows the system to adjust itself in
order to offer satisfactory service with minimum resources (reduced cost) in the presence of
workload changes. Typically, an elastic system is able to add or remove service instances
(with proper configurations) according to increasing or decreasing workloads in order to
meet the SLOs, if any. To support elasticity, a system needs to be scalable, which means
that its capability to serve workload is proportional to the number of service instances
deployed in the system. Then, the hosting platform needs to be scalable, i.e., having enough
resources to allocate whenever requested. The unlimited amount of resources on demand
in Cloud is a perfect suit for elastic computing.

Elasticity of a system is usually achieved with elasticity controllers. A core requirement
of an elasticity controller is that it should be able to help saving the provisioning cost of
an application without sacrificing its performance. In order to achieve this requirement, an
elasticity controller should satisfy the following properties:

1. Accurate resource allocation that minimizes the provisioning cost and SLO viola-
tions.

2. Swift adaptation to workload changes without causing resource oscillation.

3. Efficient use of resources under SLO requirement during scaling. Specifically, when
scaling up, it is preferable to add instances at the very last possible moment. In
contrast, during scaling down, it is better to remove instances as soon as they are not
needed anymore. The timings are challenging to control.

In addition, the services hosted in the Cloud can be categorized into two categories:
stateless and stateful. Dynamic provisioning of stateless services is relatively easy since
less/no overhead is needed to prepare a Cloud VM before it can serve workloads, i.e.,
adding or removing Cloud VMs affects the performance of the service immediately. On the
other hand, scaling a stateful service requires states to be properly transferred/configured
from/to VMs. Specifically, when scaling up a stateful system (adding VMs), a VM is
not able to function until proper states are transferred to it. When scaling down a stateful
system (removing VMs), a VM cannot be safely removed from the system until its states are
arranged to be handled/preserved by other VMs. Furthermore, this scaling overhead creates
additional workload for the other VMs in the system and can result in the degradation of
system performance if the scaling activities are not properly handled. Thus, it is challenging
to scale a stateful system. We have identified an additional requirement, which needs to be
added when designing an elasticity controller for stateful services.

4. Be aware of the scaling overhead, including the consumption of system resources
and time, and prevent it from causing SLO violations.
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2.2.1 Auto-scaling Techniques

There are different techniques that can be applied to implement an elasticity controller. Typ-
ical methods are threshold-based rules, reinforcement learning or Q-learning (RL), queuing
theory, control theory and time series analysis. We have used reinforcement learning, con-
trol theory and time series analysis to develop elasticity controllers described in Chapter 5
of this thesis.

Threshold-based Rules

The representative systems that use threshold-based rules to scale a service are Amazon
Cloud Watch [15] and RightScale [16]. This approach defines a set of thresholds or rules
in advance. Violating the thresholds or rules will trigger the action of scaling.

Reinforcement Learning or Q-learning (RL)

Reinforcement learning is usually used to understand the application behaviors by building
empirical models. The empirical models are built by learning through direct interaction
between monitored metrics and control metrics. After sufficient training, the empirical
models are able to be consulted and referred to when making system scaling decisions.
The accuracy of the scaling decisions largely depends on the consulted value from the
model. The accuracy of the model depends on the metrics and the selected model, as
well as the amount of data trained to derive the model. For example, [17] presents an
elasticity controller that integrates several empirical models and switches among them to
obtain better performance predictions. The elasticity controller built in [18] uses analytical
modeling and machine-learning. They argued that by combining both approaches, it results
in better controller accuracy.

Queuing Theory

Queuing theory can be also applied to the design of an elasticity controller. It makes ref-
erence to the mathematical study of waiting lines, or queues. For example, [19] uses the
queueing theory to model a Cloud service and estimates the incoming load. It builds proac-
tive controllers based on the assumption of a queueing model with metrics including the
arrival rate, the inter-arrival time, the average number of requests in the queue. It presents
an elasticity controller that incorporates a reactive controller for scale up and proactive
controllers for scale down.

Control Theory

Elasticity controllers built using control theory to scale systems are mainly reactive feed-
back controllers, but there are also some proactive approximations such as Model Predictive
Control (MPC), or even combining a control system with a predictive model. Control sys-
tems are be broadly categorized into three types: open-loop, feedback and feed-forward.
Open-loop controllers use the current state of the system and its model to estimate the
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Figure 2.3 – Block Diagram of a Feedback Control System

coming input. They do not monitor (use feedback signals) to determine whether the sys-
tem output has met the desired goal. In contrast, feedback controllers use the output of the
system as a signal to correct any errors from the desired value. Feed-forward controllers
anticipate errors that might occur in the output before they actually happen. The anticipated
behavior of the system is estimated based on a model. Since, there might exist deviations in
the anticipated system behavior and the reality, feedback controllers are usually combined
to correct prediction errors.

Figure 2.3 illustrates the basic structure of a feedback controller. It usually operates
in a MAPE-K (Monitor, Analysis, Plan, Execute, Knowledge) fashion. Briefly, the system
monitors the feedback signal of a selected metric as the input. It analyzes the input signal
using methods implemented in the controller. The methods can be broadly placed into four
categories: fixed gain control, adaptive control, reconfiguring control and model predictive
control. After the controller has analyzed the input (feedback) signal, it plans the scaling
actions and sends them to actuators. The actuators are the methods/APIs to resize the target
system. After resizing, another round of feedback signal is input to the controller.

Time Series Analysis

A time-series is a sequence of data points, measured typically at successive time instants
spaced at uniform time intervals. The purpose of applying time series analysis in auto-
scaling problem is to provide a predicted value of an interested input metric, such as the
CPU utilization or the workload intensity, in order to facilitate the decision making of
an elasticity controller. It is easier to scale a system if the incoming workload is known
beforehand. Prior knowledge of workload allows the controller to have enough time and
resources to handle reconfiguration overhead of the system.

2.3 Distributed Storage System
A distributed storage system provides an unified storage service by aggregating and man-
aging a large number of storage nodes. A scalable distributed storage system can, in the-
ory, aggregate unlimited number of storage nodes, therefore providing unlimited storage
capacity. Distributed storage solutions include relational databases, NoSQL databases, dis-
tributed file systems, array storages, and key-value stores. The rest of this section provides
background on the three main aspects of a distributed storage system, namely, organiz-

18



2.3. DISTRIBUTED STORAGE SYSTEM

Figure 2.4 – Storage Structure of Yahoo! PNUTS

ing structure (in Section 2.3.1), data replication (in Section 2.3.2) and data consistency (in
Section 2.3.3).

2.3.1 Structures of Distributed Storage Systems

A distributed storage system is organized using either a hierarchical or symmetric structure.

Hierarchical Structure

A hierarchical distributed storage system is constructed with multiple components respon-
sible for different functionalities. For example, special components can be designed to
maintain storage namespace, request routing or the actual storage. Recent representative
systems organized in hierarchical structures are Google File System [20], Hadoop File
System [21], Google Spanner [4] and Yahoo! PNUTS [5]. An example is given in Fig-
ure 2.4, which shows the storage structure of Yahoo! PNUTS. It uses tablet controller to
maintain the storage namespace, router components to route requests to responsible tablet
controllers, message brokers to asynchronously deliver messages among different storage
regions and storage units to store data.

Symmetric Structure

A symmetrically structured distributed storage system can also be understood as a peer to
peer (P2P) storage system. It is a storage system that does not need centralized control
and the algorithm running at each node is equivalent in functionality. A distributed storage
system organized in this way has robust self-organizing capability since the P2P topology
changes whenever nodes join or leave the system. This structure also enables scalability
of the system since all nodes function the same way and are organized in a decentralized
fashion, i.e., there is no potential bottleneck. Availability is achieved by having data redun-
dancies in multiple peer servers in the system.

An efficient resource location algorithm in the P2P overlay is essential to the perfor-
mance of a distributed storage system built with P2P structure. One core requirement of
such algorithm is the capability to adapt to frequent topology changes. Some systems use

19



CHAPTER 2. BACKGROUND

Figure 2.5 – Distributed Hash Table with Virtual Nodes

a centralized namespace service for searching resources, which is proved to be a bottle-
neck. An elegant solution to this issue is using a distributed hash table (DHT). It uses the
hashes of object names to locate the objects. Different routing strategies and heuristics are
proposed to improve the routing efficiency.

Distributed Hash Table

Distributed Hash Table (DHT) is widely used in the design of distributed storage sys-
tems [6, 3, 12]. DHT is a structured peer to peer overlay that can be used for namespace
partitioning and request routing. DHT partitions the namespace by assigning each node
participating in the system a unique ID. According to the assigned ID, a node is able to
find its predecessor (first ID before it) or successor (first ID after it) in the DHT. Each node
maintains the data that falls into the range between its ID and its predecessor’s ID. As an
improvement, nodes are allowed to hold multiple IDs, i.e., maintaining data in multiple
hashed namespace ranges. These virtual ranges are also called virtual nodes in literature.
Applying virtual nodes in a distributed hash table brings a set of advantages including dis-
tributing data transfer load evenly among other nodes when a node joins/leaves the overlay
and allowing heterogeneous nodes to host different number of virtual nodes, i.e., handling
different loads, according to their capacities. Figure 2.5 presents a DHT namespace dis-
tributed among four nodes with virtual nodes enabled.

Request routing in a DHT is handled by forwarding requests through predecessor links,
successor links or finger links. Finger links are established among nodes based on some
criteria/heuristics for efficient routing [22, 23]. Algorithms are designed to update those
links and stabilize the overlay when nodes join and leave. Load balancing among nodes is
also possible by applying techniques, such as virtual nodes, in a DHT.
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2.3.2 Data Replication

Data replication is usually employed in a distributed storage system to provide higher data
availability and system scalability. In general approaches, data are replicated in different
disks, physical servers, racks, or even data centers. In the presence of data loss or corrup-
tion caused by server failures, network failures, or even power outage of the whole data
center, the data can be recovered from other correct replicas. It allows the storage system
to continuously serve data to its clients. The system scalability is also improved by using
replication techniques. Concurrent clients are able to access the same data at the same
time without bottlenecks by having multiple replicas of the data properly managed and dis-
tributed. However, data consistency needs to be properly handled as a side effect of data
replication and will be briefly introduced in Section 2.3.3.

Replication for Availability

A replicated system is designed to provide services with high availability. Multiple copies
of the same data are maintained in the system in order to survive server failures. Through
well-designed replication protocol, data loss can be recovered through redundant copies.

Replication for Scalability

Replication is not only used to achieve high availability, but also to make a system more
scalable, i.e., to improve ability of the system to meet increasing performance demands
in order to provide acceptable level of response time. Imagine a situation, when a system
operates under extremely high workload that goes beyond the system’s capability to handle
it. In such situation, either system performance degrades significantly or the system be-
comes unavailable. There are two general solutions for such scenario: scaling out without
replication or scaling out with replication. For scaling out without replication, data served
on a single server are partitioned and distributed among multiple servers, each responsible
for a part of data. In this way, the system as a whole is capable to handle larger workloads.
However, this solution requires expertise on service logic, based on which, data partitioning
and distribution need to be performed in order to achieve scalability. Consequently, after
scaling out, the system might become more complex to manage. Nevertheless, since only
one copy of data is scattered among servers, data availability and robustness are not guaran-
teed. On the other hand, scaling out with replication copies data from one server to multiple
servers. By adding servers and replicating data, system is capable to scale horizontally and
handle more requests.

Geo-replication

In general, accessing the data in close proximity means less latencies. This motivates many
companies or institutes to have their data/service globally replicated and distributed by us-
ing globally distributed storage systems, for example [4, 12]. New challenges appear when
designing and operating a globally distributed storage system. One of the most essential
issues is the communication overhead among the servers located in different data centers.
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In this case, the communication latency is usually higher and the link capacity is usually
lower.

2.3.3 Data Consistency

Data replication also brings new challenges for system designers including the challenge
of data consistency that requires the system to tackle with the possible divergence of repli-
cated data. Various consistency models are proposed based on different usage scenarios
and application requirements. Typical data consistency models include atomic, sequential,
causal, FIFO, bounded staleness, monotonic reads, read my writes, and etc. In this thesis,
we focus on the application of sequential data consistency model. There are two general
approaches to maintain data consistency among replicas: master-based and quorum-based.

Master-based consistency

A master based consistency protocol defines that, within a replication group, there is a
master replica of the object and the other replicas are slaves. Usually, it is designed that
the master replica is always up-to-date while the slave replicas can be a bit outdated. The
common approach is that the master replica serialize all write operations while the slave
replicas are capable of serving parallel read operations.

Quorum-based consistency

A replication group/quorum involves all the nodes that maintain replicas of the same data
object. The number of replicas of a data object is the replication degree and the quorum size
(N). Assume that read and write operations of a data object are propagated to all the replicas
in the quorum. Let us define R and W responses are needed from all the replicas to complete
a read or write operation. Various consistency levels can be achieved by configuring the
value or R and W. For example, in Cassandra [3], different data consistency models can be
implemented by specifying different values of R and W, which denote the acknowledges
required to return a read or write operation. For example, in order to achieve sequential
consistency, the minimum requirement is that R+W > N .

2.3.4 Paxos

Paxos, the de-facto distributed consensus protocol that can handle N
2 −1 node failures for a

system that has N nodes. It is widely used for achieving consensus in distributed systems.

Consensus

Generally, there are two requirements for a consensus protocol: safety and liveness. Safety
states the correctness of the protocol: only a value that has been proposed can be chosen,
only a single value is chosen and a process never learns a value unless it actually has been
chosen. Liveness says that the protocol eventually behaves as we expected: some proposed
value is eventually chosen and if a value is chosen, a process will eventually learn it.
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Proposer Acceptor

Send  { Prepare, n } 

Highest sequence <- n
n’ <- Highest accepted

Send { Ack, n’ }

v <- Value of highest n’ or Free pickup
Upon majority: Send { Accept, <n, v> } 

Upon n == highest sequence: 
Send { Accepted, n }

Upon majority: Send { Decide, v }

Figure 2.6 – Paxos Algorithm

Paxos protocol usually makes the following assumptions: there is a set of nodes that can
propose values, any node can crash and recover, node has access to the stable storage, the
messages are passed among nodes asynchronously, and messages can be lost or duplicated
but never corrupted. A naive approach to achieve consensus is to assign a single accepter
node who will choose the first value it receives from other proposals. This is an easy
solution to implement but it has drawbacks such as single point of failure and high load on
the single acceptor.

Paxos algorithm

In Paxos (Fig 2.6), there are three roles: proposers, acceptors, and learners. The consensus
procedure starts with a proposer picking up a unique sequence (say n), and sends a prepare
message to all acceptors. Whenever an acceptor receives a prepare message with the unique
sequence n, it promises not to accept proposals with sequence number smaller than n. This
is the first phase of Paxos. It proposes the value and gets the promises that the proposed
value is the one being agreed. It is called the propose phase.

The second phase starts when the proposer receives the promises from the majority of
the acceptors. The proposer picks up a value v which has the highest proposal number in the
received promises and issues accept message for the sequence n and value v to all acceptors.
Note that if there is no such value existing yet, the proposer could freely pick up a new
value. Whenever an acceptor receives the accept message, it sends back accepted response
if it has not responded to any proposals whose sequence is bigger than n. Otherwise, it will
send a reject to the proposer. When the proposer receives the responses from a majority of
the acceptors, it decides the consensus value v and broadcasts the decision to all learners.
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Otherwise, the protocol aborts and restarts. The second phase of Paxos is about to write the
highest proposed value to all nodes, which we call it the commit phase.

Paxos algorithm could guarantee that the consensus proceeds even if a minority of
nodes fails, which is a perfect solution for the crash-recover failure model. However, with
the basic Paxos protocol, liveness might not be achieved since multiple proposer could
lead to endless proposals, e.g., proposers compete with each other by proposing a bigger
sequence number. A unique leader solves the problem by guaranteeing that a proposal is
proposed at a time.

2.3.5 Transactions

Transaction concept was derived from contract law: when a contract is signed, it needs the
joint signature to make a deal [24]. In database systems, transactions are abstractions of
procedures that the operations are guaranteed by the database to be with all done or nothing
done in the presence of failures.

Atomicity, consistency, isolation and durability are four properties of modern transac-
tion systems:

• Atomicity specifies all or nothing property of a transaction. The successful execution
of a transaction will guarantee that all actions of the transaction will be executed. Or
if the transaction is aborted, the system would behave as if the transaction was never
happened.

• Consistency specifies that the database is moved from one consistent state to another
with respect to the constraint of the database.

• Isolation describes that the intermediate results among concurrent transactions are
not observable.

• Durability specifies that once a transaction is committed, the result is permanent and
can be seen by all other transactions.

Concurrent transactions

Transactions in a database system should be executed as if they were happened sequentially.
There are several isolation levels defined correspond to different concurrency levels:

• Read uncommitted is the lowest isolation level. With read uncommitted isolation,
one transaction could see another transaction’s uncommitted result. However, a
transaction might be aborted when its uncommitted data is read, which is known
as ’dirty read’.

• Read committed level avoids ’dirty read’ since it does not allow a transaction to read
uncommitted data from another transaction. It, however, could have ’non-repeatable
read’ exists. Since read committed isolation does not guarantee that the value should
not be updated by another transaction prior to the read transaction commits.
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• Repeatable read isolation level avoids ’non-repeatable read’ as the read lock is held
until the read transaction is committed, so that the value could not be updated by
another transaction unless the read transaction is committed. However, repeatable
read does not guarantee the result set is static with the same selection criteria. A
transaction read twice with the same criteria might get different result sets. This is
known as ’phantom reads’.

• Serializable isolation level guarantees that all interleaved transactions in the system
have the equivalent execution results as they are executed in serial.

Distributed transactions

Transactions in distributed systems are far more complicated than transactions in a tra-
ditional database system. The atomicity property will not be guaranteed if two or more
servers can not reach a joint decision. Two phase commit is the most commonly used com-
mit protocol in distributed transactions, which helps to achieve all or nothing property in
distributed transaction systems. Typical concurrency handling for distributed transaction
includes pessimistic locking and optimistic concurrency control, which have different pros
and cons. And they will be discussed in this section.

Two phase commit

There are two phases in two phase commit protocol: proposal phase and commit phase.
There is a transaction manager in the system that gathers and broadcasts the commit de-
cisions. There are also resource managers who propose transaction commits and decide
whether the received commit decisions from the transaction manager should be committed
or aborted.

In proposal phase, a resource manager, which could also be a transaction manager,
proposes a value to commit to the transaction manager. Upon receiving the proposal, the
transaction manger broadcasts the proposal to all the resource managers and waits for their
replies. The resource managers reply the transaction manager with prepared or not pre-
pared. When the transaction manager has received prepared messages from all of the re-
source managers, the protocol proceeds to the commit phase. The transaction manager
broadcasts the commit message to all resource managers. Then, all the resource managers
commit and move to the committed stage.

Normally, 3N − 1 messages, where N is the number of resource managers, need to
be exchanged for a successful execution of the two phase commit protocol. Specifically,
a proposal message is sent from one of the resource managers to the transaction manager.
Then, the transaction manager sendsN−1 preparation messages to the resource managers.
N − 1 replies are received from the resource managers. Lastly, the transaction manager
sends the commit message to the N resource managers. The number of messages can be
reduced to 3N − 3 when one of the resource managers acts as the transaction manager.

The protocol aborts when the transaction manager does not receive all the replies from
the resource managers. This can be caused by several reasons. For example, the transaction
manager can fail, one or more resource managers can fail or messages in the network can
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be delayed or lost. When the transaction manager fails, the resource managers which have
replied the prepared message are not able to know whether the transaction is committed
or aborted. In such case, two phase commit is a blocking protocol. Some other protocols,
such as three phase commit[25], solved the blocking in two phase commit.

Concurrency in distributed transactions

Two phase locking

Two phase locking (2PL) utilizes locks to guaranteed the serializability of transactions.
There are two types of locks: write-lock and read-lock. The former is associated to re-
sources before performing write on them and the latter is associated to resources before
performing read on them. A write lock could block a resource being read or written by
other transactions until the lock is released. While a read lock could block a resource being
written but will not block a concurrent read from other transactions.

2PL also involves two phases: the expanding phase and the shrinking phase. In the
expanding phase, locks are acquired and no locks are released. In the shrinking phase,
Locks are released and no locks are acquired. There are also some variants of 2PL. Strict
two phase locking states that transactions should be strictly applied with 2PL, and will not
release write locks until it is committed. On another hand, read locks could be released in
the shrinking phase before the transaction commits. Strong strict 2PL will not release both
write and read locks until the transaction commits. Dead lock is an issue with 2PL and
needs to be carefully handled.

Optimistic concurrency control

Optimistic concurrency control (OCC) handles the concurrency in distributed transactions
from another perspective. In OCC, transactions proceed without locking on resources.
Before committing, a transaction validates whether there are other transactions that have
modified the resources it has read/written. If so, the transaction rolls back.

In order to efficiently implement the validation phase before transactions commit, times-
tamps and vector clocks are adopted to record the versions of resources. The nature of OCC
provides an improvement on throughput of concurrent transactions when conflicts are not
frequent. With the increasing number of conflicts, the abort rate in OCC increases and the
system throughput decreases dramatically.

2.3.6 Use Case Storage Systems

OpenStack Swift
OpenStack Swift is a distributed object storage system, which is part of OpenStack Cloud
Software [26]. It consists of several different components, providing functionalities such as
highly available and scalable storage, lookup service, and failure recovery. Specifically, the
highly available storage service is achieved by data replication in multiple storage servers.
Its scalability is provided with the aggregated storage from multiple storage servers. The
lookup service is performed through a Swift component called proxy server. Proxy servers
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are the only access entries for the storage service. The main responsibility of a proxy
server is to process the mapping of the names of the requested files to their locations in the
storage servers, similar to the functionality of NameNodes in GFS [20] and HDFS [21]. The
namespace mapping is provided in a static file called the Ring file. Thus, the proxy server
itself is stateless, which ensures the scalability of the entry points in Swift. The Ring file
is distributed and stored on all storage and proxy servers. When a client accesses a Swift
cluster, the proxy server checks the Ring file, loaded in its memory, and forwards client
requests to the responsible storage servers. The high availability and failure recovery are
achieved by processes called the replicators, which run on each storage server. Replicators
use the Linux rsync utility to push data from a local storage server to other storage servers,
which should maintain the same replicated data based on the mapping information provided
in the Ring file. By doing so, the under-replicated data are recovered.

Cassandra
Cassandra [3] is open sourced under Apache licence. It is a distributed storage system
which is highly available and scalable. It stores column-structured data records and pro-
vides the following key features:

• Distributed and decentralized architecture: Cassandra is organized in a peer-to-
peer fashion. Specifically, each node performs the same functionality in a Cassandra
cluster. However, each node manages a different namespace, which is decided by
the hash function in the DHT. Comparing to Master-slave, the design of Cassandra
avoids single point of failure and maximizes its scalability.

• Horizontal scalability: The peer to peer structure enables Cassandra to scale lin-
early. The consistent hashing implemented in Cassandra allows it to swiftly and ef-
ficiently locate a queried data record. Virtual node techniques are applied to balance
the load on each Cassandra node.

• Tunable data consistency level: Cassandra provides tunable data consistency op-
tions, which is realized through using different combinations of read/write APIs.
These APIs use ALL, EACH_QUORUM, QUORUM, LOCAL_QUORUM, ONE, TWO,
THREE, LOCAL_ONE, ANY, SERIAL, LOCAL_SERIAL to describe read/write calls.
For example, the ALL option means the Cassandra reads/writes all the replicas before
returning to clients. The explanation of each read/write option can be easily found
on Apache Cassandra website.

• An SQL like query tools - CQL: the common access interface in Cassandra is
exposed using Cassandra Query Language (CQL). CQL is similar to SQL in its se-
mantics. For example, a query to get a record whose id equals to 100 results the same
statement in both of CQL and SQL (SELECT * FROM USER_TABLE WHERE ID=
100). It reduces the learning curve for developers to use CQLs and get started with
Cassandra.
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Related Works

3.1 Distributed Storage Systems
The goal of the thesis is to improve the performance of geo-distributed storage systems,
specifically the service latency. We investigate storage systems that store data in a repli-
cated fashion. Data replication guarantees high availability of data and increases system
throughput when replicas can be used to serve clients concurrently. However, replicas need
to be synchronized to provide a certain level of data consistency, e.g., sequential consis-
tency. In general, the overhead to synchronize replicated data can significantly increase the
service latency. It is even worse when the communication costs among replicas increase,
which is expected when replicas are deployed globally. We contribute in the design and im-
plementation of replica synchronization mechanisms that minimize replica communication
overhead while achieving sequential data consistency. As a result, the service latency of
geo-replicated storage systems is improved. We first discuss our related works in general
under the topic of data replication and data consistency. Then, we present the related works
and compare them with the systems designed in this thesis, i.e., GlobLease, MeteorShower,
and Catenae.

3.1.1 Data Replication and Data Consistency
Many successful distributed storage systems have been built by cutting-edge IT companies
recently, including Google’s Spanner [4], Facebook’s Cassandra [3], Microsoft’s Azure
storage [27], Linkedin’a Voldemort [28], Yahoo!’s PNUTS [5], Hadoop File System [21]
and Amazon’s Dynamo [6]. In these systems, data are stored in a replicated fashion. Data
replication not only provides the systems with higher availability, but also improves the
performance of the systems by allowing replicas to serve requests concurrently.

With the expanding of their businesses to a global scale, these large enterprises start to
deploy their storage services across a large geographical area. On one hand, this approach
improves the availability of the services with the tolerance of even data center failures. On
the other hand, it allows data to be served close to its clients, who are located all over the
world. Practically, it is realized by replicating data in multiple data centers to obtain a
wider geographical coverage. For example, Google Spanner [4] is one of the representative
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systems designed for serving data geographically. It serves requests with low latency when
the requests can be returned locally. There are also techniques built upon data replication,
which are used to improve service latency [29, 30], especially tail latency [31], since the
fastest response from any replica can be returned to clients.

However, maintaining data consistency among replicas is challenging, especially when
replicas are deployed across such a large area, where communications involve significant
delays. There is a large body of work on designing distributed storage systems with dif-
ferent consistency models. In general, a stronger data consistency model associates with
a larger replica synchronization overhead. The weakest data consistency model is even-
tual consistency, where it allows replicas to be inconsistently stored in the system. The
only guarantee is that the replicas will converge eventually and the convergence time is not
bounded. Typical systems that implement this consistency model are Cassandra [3], Dy-
namo [6], MongoDB [32], and Riak [33]. Another widely studied data consistency model
is casual consistency, which has a stronger semantics than eventual consistency. It ensures
that casually related operations are guaranteed to be executed in a total order in all repli-
cas [34, 35, 36]. Stronger than causal consistency, there is sequential consistency. It guar-
antees that all operations appear to have the same total order on all replicas [37, 38, 12, 39].
There are also works [12, 6, 3, 34, 35] that tradeoff system performance with data con-
sistency guarantees according to different usage scenarios. Under the scenario of geo-
replication, there are works [40, 41, 4, 12, 42] that optimize the efficiency of using cross
data center communication while keeping data consistent.

3.1.2 Related Works for GlobLease

Distributed Hash Tables
DHTs have been widely used in many storage systems because of their P2P paradigm,
which enables reliable routing and replication in the presence of node failures. Selected
studies of DHTs are presented in Chord [22], Pastry [43], Symphony [23]. The most com-
mon replication schema implemented on top of DHTs are successor-lists, multiple hash
functions or leaf-sets. Besides, ID-replication [44, 45] and symmetric replication [46] are
also discussed in literature.

GlobLease takes advantage of DHT’s reliable routing and self-organizing structure. It
is different from the existing approaches in two aspects. First, we have implemented our
own replication schema across multiple DHT overlays, which aims at fine-grained replica
placement in the scenario of geographical replication. Our replication schema is similar
to [44] but differs from it in the granularity of replica management and the routing across
replication groups. Second, when GlobLease is deployed in a global scale, request rout-
ing is prioritized by judiciously selecting links with low latency according to the system
deployment.

Lease-based Consistency
There are many applications of leases in distributed systems. Leases are first proposed to
deal with distributed cache consistency issues in [47]. The performance of lease-based con-

30



3.1. DISTRIBUTED STORAGE SYSTEMS

sistency is improved in [48]. Furthermore, leases are also used to improve the performance
of classic Paxos algorithm [49]. In addition, they are also studied to be applied in preserv-
ing ACID properties in transactions [50, 51, 52]. In sum, leases are used to guarantee the
correctness of a resource in a time interval. Since leases are time-bounded assertions of
resources, they facilitate the handling of failures, which is desired in a distributed environ-
ment.

In GlobLease, we explore the usage of leases in maintaining data consistency in a geo-
replicated key-value store. GlobLease tradeoffs a small portion of low latency read requests
to reduce a large portion of high latency write requests under a read dominant workload.
Comparing to master-based data consistency algorithm, GlobLease provides a higher level
of fault tolerance.

Asynchronous Data Propagation
GlobLease employs an asynchronous data propagation layer to achieve robustness and scal-
ability while reducing the communication overhead of synchronizing the replicas across
multiple geographical areas. Similar approach can be found in the message broker of Ya-
hoo! Pnuts [5]. Master-slave replication is the canonical paradigm [53, 54]. GlobLease
extends the master-slave paradigm with the per key mastership granularity. This allows
GlobLease to migrate the master of the keys close to their most written places in order to
reduce most of the write latencies.

A typical asynchronous update approach can be found in Dynamo [6] with epidemic
replication. It allows updates to be committed in any replicas with any orders. The diver-
gence of the replicas will be eventually reconciled using a vector clock system. However,
irreconcilable updates and roll backs may happen in this replication mechanism, which
exposes high logic complexity for the upper applications.

3.1.3 Related Works for MeteorShower

Global Time
Having a global knowledge of time helps to reduce the synchronization among replicas
since operations can be naturally ordered based on global timestamps. However, synchro-
nizing time in distributed systems is extremely challenging [55], which leads us to the
application of loosely synchronized clocks, e.g., NTP [56]. Loosely synchronized clocks
are applied in many recent works to build distributed storage systems that achieve different
consistency models from casual consistency [36, 57, 58] to linearizability [4]. Specifi-
cally, GentleRain [36] uses loosely synchronized timestamp to causally order operations,
which eliminates the need for dependency check messages. Clock-SI [57] exploits loosely
synchronized clocks to provide timestamps for snapshots and commits in partitioned data
stores. Spanner [4] employs bounded clocks to execute transactions with reduced delays
while maintaining the ACID property.

MeteorShower assumes a bounded loosely synchronized time on each server. It exploits
the loosely synchronized time in a different manner. Specifically, a total order of write re-
quests is produced using the loosely synchronized timestamp from each server. Then, read
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requests are judiciously served by choosing slightly stale values but satisfying the sequen-
tial consistency constraint. It is novel and different from the state of the art approaches by
exploiting slightly stale values in the global time-line. Essentially, we use bounded loosely
synchronized time to push the boundary of serving read requests while preserving data
consistency.

Replicated Log
Replicated logs are first proposed by G.T.Wuu et al. [59] to achieve data availability and
consistency in an unreliable network. The concept of replicated log is still widely adopted
in the design of modern distributed storage systems [38, 42, 3] or algorithms [60, 61]. For
example, Megastore [38] applies replicated log to ensure that a replica can participate in a
write quorum even as it recovers from previous outages. Helios [42] uses replicated log to
perceive the status of remote nodes, based on which transactions are scheduled efficiently.
Chubby [60] can be implemented using replicated logs as its message passing layer.

MeteorShower employs replicated logs for the similar reason: perceiving the status of
remote replicas. However, MeteorShower exploits the information contained in the repli-
cated logs differently. The information captured in the logs are the updates of replicas in
remote MeteorShower servers. MeteorShower uses this information to construct a slight
stale history of replicas stored in remote servers marked with loosely synchronized times-
tamp. Then, MeteorShower is able to judiciously serve requests with slightly stale values
while preserving sequential data consistency, which significantly improves request latency.

Catenae also employs replicated logs in its backend. The logs are used for two pur-
poses: transaction distribution and transaction validation. The transaction distribution pay-
load is exploited similarly to MeteorShower. It provides an aggregated and consistent input
sequence of transactions received from all replicas, which facilitates the execution of trans-
actions. On the other hand, the transaction validation payload is used to reach a consensus
on the transaction execution results among data centers. It is similar to the usage scenario
in [60], where a consensus is reached among replicas (processes).

3.1.4 Related Works for Catenae

Geo-distributed Transactions
Previously, transactions are supported by traditional database systems and usually data is
not replicated. To support transactions in a large scale on top of a storage system where data
is geographically replicated is challenging. There are geo-distributed transaction frame-
works that are built on replicated commit [40], paxos commit [41, 4], parallel snapshot iso-
lation [62], and deterministic total ordering based on prior analysis of transactions [63, 64].

Catenae supports serializable transactions for geo-distributed data stores. It differs from
the existing approaches in two ways. First, it extends transaction chains [7] to achieve de-
terministic execution of transactions without prior analysis of transactions. This improves
transaction execution concurrency, removes bottleneck and single point of failure. Sec-
ond, a replicated log style protocol is designed and implemented to coordinate transaction
executions in multiple DCs with reduced RTT rounds to commit a transaction.
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Comparing to the original transaction chain algorithm proposed in [7], Catenae extends
the algorithm for replicated data stores. Specifically, Catenae allows multiple versions of
a record in chain servers to enable read-only transactions and support transaction catch
ups in case of replica divergence. The extended transaction chain algorithm manages the
concurrency among transactions in the same DC while an epoch boundary protocol, which
is based on loosely synchronized clocks, controls the execution of transactions among DCs.

3.2 Elasticity Controllers
Elasticity allows a system to scale up (out) and down (in) in order to offer predictable (sta-
ble) performance with reduced provisioned resources in the presence of changing work-
loads. Usually, elasticity is discussed under two perspectives, i.e., vertical elasticity and
horizontal elasticity. The former case scales a system within a host, i.e., a physical ma-
chine, by changing the allocated resources using a hypervisor [65, 66, 67]. On the other
hand, the latter method resizes a system by adding or removing VMs or physical ma-
chines [30, 68, 69, 70, 71]. In this work, we focus on the study of elasticity controllers
for horizontal scaling.

We first provide an overview of achieving elasticity, especially on storage systems, from
the perspective of industry and research. Then, we discuss the related techniques to build
an elasticity controller. Lastly, we compare the approaches presented in this thesis with the
state-of-the-art approaches in some specific aspects.

3.2.1 Overview of Practical Approaches

Most of the elasticity controllers available in public Cloud services and used nowadays
in production systems are policy based and rely on simple if-then threshold based triggers.
Examples of such systems include Amazon Auto Scaling [72], Rightscale [16], and Google
Compute Engine Autoscaling [73].

The wide adoption of this approach is mainly due to its simplicity in practice as it does
not require pre-training or expertise to get it up and running. Policy based approaches
are suitable for small-scale systems in which adding/removing a VM when a threshold is
reached (e.g., CPU utilization) is sufficient to maintain the desired SLO. For larger systems,
it might be non-trivial for users to set the thresholds and the correct number of VMs to
add/remove.

3.2.2 Overview of Research Approaches

Most of the advanced elasticity controllers, which go beyond a simple threshold based
triggers, require a model of the target system in order to be able to reason about the status of
the system and decide on control actions needed to improve the system. The research focus
in this domain is on developing advanced control/performance models or novel procedures
during control flows.

Researches in this realm can be broadly characterized as designing elasticity controller
for scaling stateless services [74, 75, 76, 19] and for scaling stateful services, such as dis-
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tributed storage systems [30, 70, 68, 18]. The major difference that distinguishes an elas-
ticity controller for scaling stateful services from its counterpart is the consideration of
state transfer overhead during scaling. It makes the design of such an elasticity controller
more challenging. Works in this area include ElastMan [70], SCADS Director [30], scal-
ing HDFS [68], ProRenata [69], and Hubbub-scale [71]. SCADS Director [30] is tailord
for a specific storage service with pre-requisites that are not common in storage systems,
which is fine-grained monitoring and migration of storage buckets. ElastMan [70], uses
two controllers in order to efficiently handle diurnal and spiky workloads, but it does not
consider the data migration overhead during scaling storage systems. Lim et al. [68] have
designed a controller to scale Hadoop Distributed File System (HDFS), which uses CPU
utilization as input metric. They have shown that CPU utilization highly correlates request
latency and it is easier for monitoring. Concerning data migration, they only rely on the
data migration API integrated in HDFS, which only manages the data migration speed in
a coarse-grained manner. ProRenaTa [69] minimizes the SLO violation during scaling by
combining both proactive and reactive control approaches but it requires a specific predic-
tion algorithm and the control model needs to be trained offline. Hubbub-Scale [71] and
Augment Scaling [77] argue that platform interference can mislead an elasticity controller
during its decision making, however, the interference measurement needs the access of
many low level metrics, e.g. cache counters, of the platform.

3.2.3 Overview of Control Techniques

Recent works on designing elasticity controllers can be also categorized by the control
techniques applied in the controllers. Typical methods used for auto-scaling are threshold-
based rules, reinforcement learning or Q-learning (RL), queuing theory, control theory and
time series analysis.

The representative systems that use threshold-based rules to scale a service are Amazon
Cloud Watch [15] and RightScale [16]. This approach defines a set of thresholds or rules in
advance. Violating the thresholds or rules to some extent will trigger the action of scaling.
Threshold-based rule is a typical implementation of reactive scaling.

Reinforcement learning is usually used to understand the application behaviors by
building empirical models. Simon et al. [17] presents an elasticity controller that integrates
several empirical models and switches among them to obtain better performance predic-
tions. The elasticity controller built in [18] uses analytical modeling and machine-learning.
They argued that by combining both approaches, it results in better controller accuracy.
Scads director [30] presents a performance model, which is obtained empirically, that cor-
relates the percentile request latency with the observed workload in terms of read/write
request intensity.

Ali-Eldin et al. [19] uses the queueing theory to model a Cloud service and estimate
the incoming load. It builds proactive controllers based on the assumption of a queueing
model. It presents an elasticity controller that incorporates a reactive controller for scale up
and proactive controllers for scale down.

Recent influential works that use control theory to achieve elasticity are [70, 68]. Elast-
Man [70] employs two control models to tackle with two different patterns in the workload.
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Specifically, a feed-forward module is designed to incorporate workload spikes while a
feedback module is implemented to process regular diurnal workload. Lim et al. [68] uses
CPU utilization as the monitored metrics in a classic feedback loop to achieve auto-scaling.

Recent approaches using time-series analysis to achieve auto-scaling are [78, 76, 74].
Predictions allow elasticity controllers to react to future workload changes in advance,
which leaves more time to reconfigure the provisioned systems. Specifically, Agile [76]
proves that it is accurate to use wavelets to provide a medium-term resource demand pre-
diction. Nilabja et al. [78] adapts second order ARMA for workload forecasting under
the World Cup 98 workload. CloudScale [74] presents on-line resource demand prediction
with prediction errors corrected.

3.2.4 Related Works for BwMan

Controlling Network Bandwidth

The dominant resource consumed by data migration process is the network bandwidth.
There are different approaches to allocate and control network bandwidth, including con-
trolling bandwidth at the network edges (e.g., of server interfaces); controlling bandwidth
allocations in the network (e.g., of particular network flows in switches) using the software
defined networking (SDN) approaches [79]; and a combination of both. A bandwidth man-
ager in the SDN layer can be used to control the bandwidth allocation on a per-flow basis
directly on the topology achieving the same goal as the BwMan controlling bandwidth at
the network edges. Extensive work and research has been done by the community in the
SDN field, such as SDN using the OpenFlow interface [80].

Recent works have investigated the correlation between performance and network band-
width allocated to an application. For example, a recent work of controlling the bandwidth
on the edge of the network is presented in EyeQ [81]. EyeQ is implemented using virtual
NICs to provide interfaces for clients to specify dedicated network bandwidth quotas to
each service in a shared Cloud environment. Another work of controlling bandwidth al-
location is presented in Seawall [82]. Seawall uses reconfigurable administrator-specified
policies to share network bandwidth among services and enforces the bandwidth allocation
by tunnelling traffic through congestion control, point to multi-points, edge to edge tun-
nels. A theoretical study of the challenges regarding network bandwidth arbitration in the
Cloud is presented in [83]. It has revealed the needs and obstacles in providing bandwidth
guarantees in a Cloud environment. Specifically, it has identified of a set of properties, in-
cluding min-guarantee, proportionality and high utilization, in order to pioneer the design
of bandwidth allocation policies in the Cloud.

In contrast, BwMan is a simpler yet effective solution. We let the controller itself
dynamically decide the bandwidth quotas allocated to each services through statistically
learnt models. These models correlate the desired service level objective (QoS) with the
minimum bandwidth requirement. Administrator-specified policies are only used for trade-
offs when the bandwidth quota is not enough to support all the services on the same host.
Dynamic bandwidth allocation allows BwMan to support the hosting of elastic services,
whose demand on the network bandwidth varies depending on the incoming workload.
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3.2.5 Related Works for ProRenaTa

Modelling Data Migration

Elasticity of storage systems requires data to be properly migrated while scaling up (out)
and down (in). The closest works that concern this specific issue are presented in [68, 30,
84, 85]. To be concise, Scads director [30] tries to minimize the data migration overhead
associated with the scaling by arranging data into small data bins. However, this only alle-
viates the SLO violations instead of eliminating them. In Lim’s work [68], a data migration
controller is designed. However, it only uses APIs limited to HDFS to coarsely arbitrate
between SLO violations and system scaling speed. FRAPPE [84, 85] alleviates service
interruption during system reconfigurations by speculatively executing requests.

ProRenaTa differs from the previous approaches in two aspects. First, ProRenaTa com-
bines both reactive or proactive scaling techniques. Reactive controller gives ProRenaTa
better scale accucacy while proactive controller provides ProRenaTa enough time to handle
the data migration. The complementary nature of both approaches provide ProRenaTa with
stricter SLO commitment and higher resource utilization. Second, to our best knowledge,
when scaling a storage system, the previous approaches do not explicitly model the cost
of data migration. Instead, ProRenaTa explicitly manages the scaling cost (data migration
overhead) and the scaling goal (deadline to scale). Specifically, it first calculates the data
that need to be migrated in order to accomplish a scaling decision. Then, based on the
monitoring of the spare capacity in the system, ProRenaTa determines the maximum data
migration speed without compromising the SLO. Thus, it knows the time to accomplish
a scaling decision under the current system status. And this information is judiciously
applied to schedule scaling activities to minimize the provisioning cost.

3.2.6 Related Works for Hubbub-scale

Performance Interference

DejaVu [86] relies on an online-clustering algorithm to adapt to load variations by com-
paring the performance of a production VM and a replica of it that runs in a sand-box to
detect interference and learns from previous allocations the number of machines for scal-
ing. A similar system, DeepDive [87], first relies on a warning system running in the VM
to conduct early interference analysis. When the system suspects that one or more VMs
are subjected to interference, it clones the VM on-demand and executes it in a sandboxed
environment to detect interference. If interference does exist, the most aggressive VM is
migrated on to another physical machine. Both these approaches require a sand boxed en-
vironment to detect interference as they do not consider the behaviour of the co-runners.
Stay-Away [88] is a dynamic reconfiguration technique that throttles batch application
proactively to minimize the impact of performance interference and guarantee QoS of la-
tency critical services.

Hubbub-scale models contention from the behaviour of the co-runners. Our solution
instead shows ways to quantify the interference-index and how this can be used to perform
reliable elastic scaling.
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Another class of work has also investigated providing QoS management for different
applications on multicore [89, 90, 91]. While demonstrating promising results, resource
partitioning typically requires changes to the hardware design, which is not feasible for
existing systems. Recent efforts [92, 93, 94] demonstrate that it is possible to accurately
predict the degradation caused by interference with prior analysis of workload. In [95]
the application is profiled statically to predict interference and identify safe co-locations
for VMs. It mainly focuses on predicting which applications can be co-run with a given
application without degrading its QoS beyond a certain threshold. The limitation of static
profiling introduces a lack of ability to adapt to changes in application dynamic behaviour.
Paragon [96] tries to overcome the problem of complete static profiling by profiling only
a part of the application and relies on a recommendation system, based on the knowledge
of previous execution, to identify the best placement for applications with respect to inter-
ference. Since only a part of the application is profiled, dynamic behaviours such as phase
changes and workload changes are not captured and can lead to a suboptimal schedule
resulting in performance degradation.

Hubbub-scale, in contrast, relies on quantifying contention in real time, allowing it to
adapt to workload and phase changes.
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Chapter 4

Achieving High Performance on
Geographically Distributed Storage
Systems

With the increasing popularity of Cloud computing, as an essential component of it, dis-
tributed storage systems have been extensively used as backend storages by most of the
cutting-edge IT companies, including Microsoft, Google, Amazon, Facebook, LinkedIn,
etc. The rising popularity of distributed storage systems is mainly because of their poten-
tials to achieve a set of desired properties, including high performance, data availability,
system scalability and elasticity. However, achieving these properties is not trivial. The
performance of a distributed storage system depends on many factors including load bal-
ancing, replica distribution, replica synchronization and caching. To achieve high data
availability without compromising data consistency and system performance, a set of al-
gorithms needs to be carefully designed, in order to efficiently synchronize data replicas.
The scalability of a distributed storage system is achieved through the proper design of the
system architecture and the coherent management of all the factors mentioned above. Some
of the state of the art systems achieving some of the above desire properties are presented
in [3, 6, 5, 4].

Usage Scenario

Performance of storage systems can be largely leveraged using data replication. Repli-
cation provides a system to handle workload simultaneously using multiple replicas, thus
achieving higher system throughput. Furthermore, the availability of data is increased when
maintaining multiple copies of data in the system. However, replication also brings a side-
effect, which is the maintenance of replica consistency. Consistency maintenance among
replicas imposes an extra communication overhead in the storage system that can cause the
degradation of the system performance and scalability. The overhead of maintaining data
consistency is even more obvious when the system is geo-replicated, where the communi-
cations among replicas experience relatively long latency.
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4.1 GlobLease

We approach the design of high performance geographically distributed storage system
with the handling of read dominant workload, which is one of the most common access
patterns in WEB 2.0 services. A read dominant workload has some characteristics. For
example, it is often the case that popular contents attract significant percentage of readers.
It causes skewness in access patterns. Moreover, the workload increase caused by the
popular contents is usually spiky and not long-lasting. A well-known incident was the
death of Michael Jackson, when his profile page attracted a vast amount of readers in a
short interval, causing a sudden spiky workload. Under the scenario of skewed and spiky
read dominant access pattern, we propose our geographically distributed storage solution,
namely, GlobLease. It is designed to be a consistent and elastic storage system under the
usage of read dominant workload. Specifically, it achieves low latency read accesses in a
global scale and efficient write accesses in one area with sequential consistency guarantees.

4.1.1 GlobLease at a glance

GlobLease assumes that data replicas are deployed in different data centers and the com-
munication among them involve significant latency. Read dominant workloads are initiated
from each data center while write workloads regarding specific data items are initiated in
one of the data centers. In other words, GlobLease targets the usage scenario where there
are multiple readers and a single writer for a specific data item.

Under this usage scenario, GlobLease implements sequential data consistency. It ex-
tends the paradigm of master-based replication, which is designed to efficiently handle read
dominant workload. In GlobLease, masters do not actively keep the replicated data up to
date, which significantly reduces the latency of writes comparing to the traditional master-
based approach. On the other hand, masters issue leases along with the updates to replicas
when they need to serve read requests. Leases give time-bounded rights to slave replicas to
handle reads. Considering the skewed pattern of read requests, GlobLease yields excellent
performance. Furthermore, the time-bounded assertion in lease provides a higher level of
fault tolerance comparing to the tradition master-based approach. Specifically, lease mech-
anism allows write requests to proceed after the expiration of the lease in a failed replica.
Evaluation of GlobLease in a multiple data center setup indicates that GlobLease tradeoff a
small portion of low latency read requests, as the leasing overhead, to reduce a large portion
of high latency write requests. As a result, GlobLease improves the average latency of read
and write requests while providing a higher level of fault tolerance.

The rest of this section presents the detailed design of GlobLease.

4.1.2 System Architecture of GlobLease

Background knowledge regarding DHTs, data availability, data consistency, and system
scalability of a distributed storage system can be obtained in Chapter 2 or research works [22,
97, 41].
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Figure 4.1 – GlobLease system structure having three replicated DHTs

GlobLease is constructed with a configurable number of replicated DHTs shown in
Fig. 4.1. Each DHT maintains a complete replication of the whole namespace and data.
Specifically, GlobLease forms up replication groups across the DHT rings, which scales
out the limitation of successor list replication [44]. Multiple replicated DHTs can be de-
ployed in different geographical regions in order to improve data access latency. Building
GlobLease with DHT-based overlay provides it with a set of desirable properties, includ-
ing self-organization, linear scalability, and efficient lookups. The self-organizing property
of DHTs allows GlobLease to efficiently and automatically handle node join, leave and
failure events using pre-defined algorithms in each node to stabilize the overlay [22, 23].
The peer-to-peer (P2P) paradigm of DHTs enables GlobLease to achieve linear scalability
by adding/removing nodes in the ring. One-hop routing can be implemented for efficient
lookups [6].

GlobLease Nodes

Each DHT Ring is given a unique ring ID shown as numbers in Fig. 4.1. Nodes illus-
trated in the figure are virtual nodes, which can be placed on physical servers with different
configurations. Each node participating in the DHTs is called a standard node, which is
assigned a node ID shown as letters in Fig. 4.1. Each node is responsible for a specific key
range starting from its predecessor’s ID to its own ID. The ranges can be further divided
online by adding new nodes. Nodes that replicate the same keys in different DHTs form
the replication group. For simple illustration, the nodes form the replication group shown
within the ellipse in Fig. 4.1 are responsible for the same key range. However, because
of possible failures, the nodes in each DHT ring may have different range configurations.
Nodes that stretch outside from the DHT rings in Fig. 4.1 are called affiliated nodes. They
are used for fine-grained management of replicas, which are explained in Section 4.1.4.
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GlobLease stores key-value pairs. The mappings and lookups of keys are handled by con-
sistent hashing of DHTs. The values associated with the keys are stored in the memory of
each node.

GlobLease Links
Basic Links: The basic links include three kinds of links. Links connecting a node’s prede-
cessor and successor within the same DHT are called local neighbour links shown as solid
lines in Fig. 4.1. Links that connect a node’s predecessors and successors across DHTs are
called cross-ring neighbour links shown as dashed lines. Links within a replication group
are called group links shown as dashed lines. Normally, routings of requests are conducted
with priority choosing local neighbour links. A desired deployment of GlobLease assumes
that different rings are placed in different locations. In such case, communications using
local neighbour links are much faster than using cross-ring neighbour links. Cross-ring
neighbour is selected for routing when there is failure in the next hop local neighbour.

The basic links are established when a standard node or a group of standard nodes join
GlobLease. The bootstrapping is similar to other DHTs [22, 23] except that GlobLease
needs to update cross-ring neighbour links and group links.

Routing Links: With basic links, GlobLease is able to conduct basic lookups and
routings by approaching the requested key hop by hop. In order to achieve efficient lookups,
we introduce the routing links, which are used to reduce the message routing hops to reach
the responsible node of the requested data. In contrast to basic links, routing links are
established gradually with the processing of requests. For example, when node A receives
a data request for the first time, which needs to be forwarded to node B, the request is routed
to node B hop by hop using basic links. When the request reaches node B, node A will get
an echo message regarding the routing information of node B including its responsible key
range and ip address. Finally, the routing information is kept in node A’s routing table
maintained in its memory. As a consequence, a direct routing link is established from node
A to node B, which can be used for the routings of future requests. In this way, all nodes
in the overlay will eventually be connected with one-hop routing. The number of routing
links maintained in each node is configurable depending on the node’s memory size. When
reaching the maximum number of routing links, the least recently used link is replaced.

4.1.3 Lease-based Consistency Protocol in GlobLease
In order to guarantee data consistency in replication groups across DHTs, a lease-based
consistency protocol is designed. Our lease-based consistency protocol implements se-
quential consistency model and is optimized for handling global read-dominant and re-
gional write-dominant workload.

Lease
A lease is an authorization token for serving read accesses within a time interval. A lease
is issued on a key basis. There are two essential properties in the lease implementation.
First is authorization, which means replicas of the data that have valid leases are able to
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serve read accesses. Second is the time bound, which allows a lease to expire when the
valid time period has passed. The time bound of lease is essential in handling possible
failures on servers storing slave replicas. Specifically, if an operation requires the update
or invalidation of leases on slave replicas, which cannot be completed due to failures, the
operation waits until those leases expire naturally.

Lease-based Consistency

We assign a master on a key basis in each replication group to coordinate the lease-based
consistency protocol among replicas. The lease-based protocol handles read and write
requests as follows. Read requests can be served by either the master or any non-masters
with valid leases of the requested key. Write requests have to be routed to and only handled
by the master of the key. To complete a write request, a master needs to guarantee that
leases associated with the written key are either invalid or properly updated together with
the data in all the replicas. The validity of leases are checked based on lease records,
which are created on masters whenever leases are issued to non-masters. The above process
ensures the serialization of write requests in masters and no stale data will be provided by
non-masters, which complies the sequential consistency guarantee.

Lease Maintenance

The maintenance of the lease protocol consists of two operations. One is lease renewals
from non-masters to masters. The other one is lease updates issued by masters to non-
masters. Both lease renewals and updates need cross-ring communications, which are as-
sociated with high latency in a global deployment of GlobLease. Thus, we try to minimize
both operations in the protocol design.

A lease renewal is triggered when a non-master receives a read request while not having
a valid lease of the requested key. The master creates a lease record and sends the renewed
lease with updated data to the non-master upon receiving a lease renewal request. The new
lease enables the non-master to serve future reads of the key in the leasing period.

Lease update of a key is issued by the master to its replication group when there is a
write to the key. We currently provide two approaches in GlobLease to proceed with lease
updates. The first approach is active update. In this approach, a master updates leases
along with the data of a specific key in its replication group whenever it receives a write
on that key. The write is returned when the majority of the nodes in the replication group
are updated. This majority should include all the non-masters that still hold valid leases of
the key. Write to the majority in a replication group guarantees the high availability of the
data. The other approach is passive update. It allows a master to reply to a write request
faster when a local write is completed. The updated data and leases are propagated to the
non-masters asynchronously. The local write is applicable only when there are no valid
leases of the written key in the replication group. In case of existing valid leases in the
replication group, the master follows the active update.

Active update provides the system with higher data availability, however, it results in
worse write performance because of cross-ring communication. Passive update provides
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the system with better write performance when the workload is write dominant. However,
data availability is compromised in this case. Both passive and active updates are imple-
mented with separate APIs in GlobLease. It can be tuned by applications encountering
different workload patterns or having different requirements.

Leasing Period

The length of a lease is configurable in our system design. At the moment, the length of
a lease is implemented with per node granularity. Further, it can be extended to per key
granularity. The flexibility of lease length allows GlobLease to efficiently handle work-
load with different access patterns. Specifically, read dominant workload works better with
longer leases (less overhead of lease renewals) and write dominant workload cooperates
better with shorter leases (less overhead of lease updates, especially when the passive up-
date mode is chosen).

Another essential issue of leasing is the synchronization of the leasing period on a
master and its replication group. Every update from the master should correctly check the
validity of all the leases on the non-masters according to the leasing records and update
them if necessary. This indicates that the leasing period recorded on the master should
be the same with or last longer than the corresponding leasing period on the non-masters.
Since it is extremely hard to synchronize the time in a distributed system [97], we ensure
that the record of the leasing periods on the master starts later than the leasing periods on
the non-masters. The leases on the non-masters start when the messages of issuing the
leases arrive. On the other hand, the records of the leases on the master start when the
acknowledgement messages of the successful starting of the leases on the non-masters are
received. With the assumption that the latency of message delivery in the network is much
more significant than the clock drifts in each participating nodes. The above algorithm
guarantees that the records of the leases on the master last longer than the leases on the
non-masters and assures the correctness of sequential data consistency guarantee.

Master Migration and Failure Recovery

Master migration is implemented based on a two-phase commit protocol. Master failure
is handled by using the replication group as a Paxos group [98] to elect a new master. In
order to keep the sequential consistency guarantee in our protocol, we need to ensure that
either no master or only one correct master of a key exists in GlobLease.

The two phase commit master migration algorithm works as follows. In the prepare
phase, the old master acts as the coordination node, which broadcasts new master proposal
message in the replication group. The process will only move forward when an agreement
is received from all the nodes from the replication group. In the commit phase, the old mas-
ter broadcasts the commit message to all the nodes and changes its own state to recognize
the new master. Notice that message loss or node failures may happen in this commit phase.
If non-master nodes in the replication group fail to commit to this message, the recognition
of correct mastership is further fixed through an echo message gradually triggered by write
requests. Specifically, if the mastership on a non-master node is not correctly changed, any
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message from this node sent to the old master will trigger an echo message, which contains
the information regarding the correct master. If the new master forwards a write to the old
master, it means that the new master fails to acknowledge its mastership. In this case, the
old master restarts the two phase master migration protocol.

Master failure recovery is implemented based on the assumption of fail stop model [99].
There are periodical heartbeat messages from the non-master nodes in the replication group
to check the status of the current master. If a master node cannot receive the majority of the
heartbeat message within a timeout interval, it will give up its mastership to guarantee our
previous assumption that there is no more than one master in the system. In the meantime,
any non-master node can propose a master election process in the replication group if it
cannot receive the response of the heartbeat messages from the master within sufficient
continuous period. The master election process follows the two-phase Paxos algorithm. A
non-master node in the replication group proposes its own ring ID as well as node ID as
values. Only non-master nodes that have passed the heartbeat timeout interval may propose
values and vote for the others. If the node that proposes a master election is able to collect a
majority of promises from other nodes, it runs the second phase to Paxos to change its status
to a master. We use node ids to break ties during the majority votes of the Paxos process.
Any non-master node that fails to recognize the new master will be guided through the echo
message described above.

Handling Read and Write Requests

With the lease consistency protocol, GlobLease is able to handle read and write requests
with respect to the requirement of sequential consistency model. Read requests can be
handled by the master of the key as well as the non-masters with valid leases. In contrast,
write requests will eventually be routed to the responsible masters. The first time write and
future updates of a key are handled differently by master nodes. Specifically, a new write is
always processed with the active update approach in order to create a record of the written
key on non-master nodes, which ensures the correctness in the lookup of the data when
clients contact the non-master nodes for read accesses. Conversely, updates of a key can
be handled either using the active or passive approach. In either case, a write or an update
on a non-master node associates with a lease, and the information regarding the lease is
maintained in the master node. The information of the lease is referred, when another
write arrives at the master node, to decide whether the lease is still valid. Algorithm 1 and
Algorithm 2 present the pseudo codes for processing read and write requests.

4.1.4 Scalability and Elasticity of GlobLease

The architecture of GlobLease enables its scalability in two forms. First, the scalable struc-
ture of DHTs allows GlobLease to achieve elasticity by adding or removing nodes to the
ring overlay. With this property, GlobLease can easily expand to a larger scale in order
to handle generally larger workload or scale down to save resources. However, this form
of scalability is associated with large overhead, including reconfiguration of multiple ring
overlays, division of the namespace, rebalancing of the data, and the churn of the rout-
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Algorithm 1 Pseudo Code for Read Request
Data: Payload of a read request, msg
Result: A value of the requested key is replied
if n.isResponsibleFor(msg.to) then

if n.isMaster(msg.key) then
value = n.getValue(msg.key)
n.returnValue(msg.src, value)

end
if n.isExpired(lease) then

n.forwardRequestToMaster(msg)
n.renewLeaseRequest(msg.key)

else
value = n.getValue(msg.key)
n.returnValue(msg.src, value)

end
else

nextHop = n.getNextHopOfReadRequest(msg.to)
n.forwardRequestToNextNode(nextHop)

end

ing table cached in each node’s memory. Furthermore, this approach is feasible when the
growing workload is long lasting and preferably in a uniform manner. Thus, when con-
fronting intensive and transient increase of workloads, especially when the access pattern
is skewed, this form of elasticity might not be enough. We have extended the system with
a fine-grained elasticity with the usage of affiliated nodes.

Affiliated Nodes

Affiliated nodes are used to leverage the elasticity of the system. Specifically, the ap-
plication of affiliated nodes allows configurable replication degrees for each key. This is
achieved by attaching affiliated nodes to any standard nodes, which are called host standard
nodes in this case. Then, a configurable subset of the keys served in the host standard node
can be replicated at attached affiliated nodes. The affiliated nodes attached to the same
host standard node can have different configurations on the set of the replicated keys. The
host standard node is responsible to issue and maintain leases of the keys replicated at each
affiliated node. The routing links to the affiliated nodes are established in other standard
nodes’ routing tables respect to a specific key after the first access forwarded by the host
standard node. If multiple affiliated nodes hold the same key, the host standard node for-
wards requests in a round-robin fashion. We do not distinguish the affiliated nodes at the
moment, since they are deployed in the same location as their host standard node. In the
future, we would like to enable the deployment of affiliated nodes in different locations to
serve small scale transient workloads.

Affiliated nodes are designed as lightweight processes that can join/leave system over-
lay by only interacting with a standard node. In addition, since only highly requested data
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Algorithm 2 Pseudo Code for Write Request
Data: Payload of a write request and write mode, msg, MODE
Result: An acknowledgement for the write request
// Check whether it is a key update with passive update mode.

if n.contains(msg.key) & MODE == PASSIVE then
leaseRec = n.getLeaseRecord(msg.key)
if leaseRec == ALLEXPIRE then

n.writeValue(msg.key, msg.value)
lazyUpdate(replicationGroup, msg)
return SUCCESS

end
else

lease = n.generatorLease()
for server ∈ replicationGroup do

checkResult = n.issueLease(server, msg.key, msg.value, lease)
end
while retries do

// ACKServer: server lists that have acknowledged the update.

// leaseExpired: server lists that do not have valid leases

ACKServer = getACKs(checkResult)
noACKServer = replicationGroup-ACKServer
leaseExpired = getLeaseExp(leaseRec)
if noACKServer ∈ leaseExpired &&
sizeOf(noACKServer) < sizeOf(replicationGroup)/2 then

lazyUpdate(noACKServer, msg)
n.writeValue(msg.key, msg.value)
for server ∈ ACKServer do

n.putLeaseRecord(server, msg.key, lease)
end
return SUCCESS;

else
for server ∈ noACKServer do

checkResult += n.issueLease(server, msg.key, msg.value, lease)
end
retries -= retries

end
end
return FAIL;

end
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items are replicated in affiliated nodes, the data migration overhead is negligible. Thus, the
addition and removal of affiliate nodes introduce very little overhead and can be completed
in seconds. In this way, GlobLease is also able to handle spiky and skewed workload in
a swift fashion. There is no theoretical limit on the number of the affiliated nodes in the
system, the only concern is the overhead to maintain data consistency on them.

Consistency Issues
In order to guarantee data consistency in affiliated nodes, a secondary lease is established
between an affiliated node and a host standard node. The secondary lease works in a similar
way as the lease protocol introduced in Section 4.1.3. An affiliated node holding a valid
lease of a specific key is able to serve the read requests of that key. The host standard
node is regarded as the master to the affiliated node and maintains the secondary lease. The
principle of issuing a secondary leases on an affiliated node is that it should be a sub-period
of a valid lease of a specific key holding on the host standard node. The invalidation of
a key’s lease on a host standard node involves the invalidation of all the valid secondary
leases of this key.

4.1.5 Evaluation of GlobLease
We evaluate the performance of GlobLease under different intensities of read/write work-
loads in comparison with Cassandra [3]. The evaluation of GlobLease goes through its
performance with different read/write ratios in workloads and different configurations of
lease lengths. The fine-grained elasticity of GlobLease is also evaluated through handling
spiky and skewed workloads.

Experiment Setup
We use Amazon Elastic Compute Cloud (EC2) to evaluate the performance of GlobLease.
The choice of Amazon EC2 allows us to deploy GlobLease in a global scale. We evaluate
GlobLease with four DHT rings deployed in the U.S. west (California), U.S. East, Ireland,
and Japan. Each DHT ring consists of 15 standard nodes and a configurable number of
affiliated nodes according to different experiments. We use the same Amazon EC2 instance
to deploy standard nodes and affiliated nodes. One standard or affiliated node is deployed
on one Amazon EC2 instance. The configuration of the nodes are described in Table 4.1.

As a baseline experiment, Cassandra is deployed using the same amount of EC2 in-
stances with the same instance type in each region as GlobLease. We configure read
and write quorums in Cassandra in favor of its performance. Specifically, for read domi-
nant workload, Cassandra reads from one replica and writes to all replicas (READ-ONE-
WRITE-ALL), which is essentially the same as traditional master-based approach. For
write dominant workload, Cassandra writes to one replica and reads from all replicas
(READ-ALL-WRITE-ONE). With this setup, Cassandra is able to achieve its best perfor-
mance since only one replica is needed to process a read or write request in read-dominant
or write-dominant workload. Note that Cassandra only achieves casual consistency us-
ing the naive implementation of READ-ONE-WRITE-ALL for a read-dominant workload,
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Table 4.1 – Node Setups

Specifications Nodes in GlobLease YCSB client
Instance
Type

m1.medium m1.xlarge

CPUs Intel Xeon 2.0 GHz Intel Xeon 2.0 GHz*4
Memory 3.75 GiB 15 GiB
OS Ubuntu Server 12.04.2 Ubuntu Server 12.04.2
Location U.S. West, U.S. East, Ireland,

Japan
U.S. West, U.S. East, Ireland,
Japan

Table 4.2 – Workload Parameters

Total clients 50
Request per client Maximum 500 (best effort)
Request rate 100 to 2500 requests per second (2 to 50 re-

quests/sec/client)
Read dominant workload 95% reads and 5% writes
Write dominant workload 5% reads and 95% writes
Read skewed workload Zipfian distribution with exponent factor set

to 4
Length of the lease 60 seconds
Size of the namespace 10000 keys
Size of the value 10 KB

which is less stringent than GlobLease. Even so, GlobLease outperforms Cassandra as
shown in our evaluations.

We have modified Yahoo! Cloud Serving Benchmark (YCSB) [100] to generate either
uniform random or skewed workloads to GlobLease and Cassandra. YCSB clients are
deployed in an environment described in Table 4.1 and parameters for generating workloads
are presented in Table 4.2.

Varying Load

Fig. 4.2 presents read performance of GlobLease with comparison to Cassandra under a
read dominant workload. The workloads are evenly distributed to all the locations ac-
cording to GlobLease and Cassandra deployments. The two line plots describe the av-
erage latency of GlobLease and Cassandra under different intensities of workloads. In
GlobLease, the average latency slightly decreases with the increase of workload intensity
because of the increasing usage efficiency of each lease. Specifically, each renewal of the
lease involves the interaction between master and non-master nodes, which introduces high
cross region communication latency. When the intensity of the read dominant workload
increases, within a leasing period, data with valid leases are more frequently accessed,
which results in a large portion of requests are served with low latency. This leads to the
decrease of the average latency in GlobLease. In Contrast, as the workload increases, the
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Figure 4.2 – Impact of varying intensity of read dominant workload on the request latency
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Figure 4.3 – Impact of varying intensity of write dominant workload on the request latency

contention for routing and the access to data on each node are increased, which causes the
slight increase of average latency in Cassandra.

The boxplot in Fig. 4.2 shows the read latency distribution of GlobLease (left box)
and Cassandra (right box). The outliers, which are high latency requests, are excluded
from the boxplot. These high latency requests constitute 5% to 10% of the total requests
in our evaluations. We discuss these outliers in Fig. 4.4 and Fig. 4.5. The boxes in the
boxplots are increasing slowly since the load on each node is increasing. The performance
of GlobLease is slightly better than Cassandra in terms of the latency of local operations
(operations that do not require cross region communication) shown in the boxplots and the
average latency shown in line plots. There are several techniques that contribute to the high
performance of GlobLease, including one-hop routing (lookup), effective load balancing
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Figure 4.4 – Latency distribution of GlobLease and Cassandra under two read dominant
workloads

(key range/mastership assignment) and efficient key-value data structure stored in memory.
For the evaluation of write dominant workload, we enable master migration in GlobLease.

We assume that a unique key is only written in one region and the master of the key is
assigned to the corresponding region. This assumption obeys the fact that users do not
frequently change their locations. With master migration, more requests can be processed
locally if the leases on the requested keys are expired and passive write mode is chosen.
For the moment, the master migration is not automated, it is achieved by calling the master
migration API from a script by analyzing the incoming workload (offline).

An evaluation using write-dominant workload on GlobLease and Cassandra is pre-
sented in Fig. 4.3. GlobLease achieves better performance in local write latency and overall
average latency than Cassandra. The results can be explained in the same way as the previ-
ous read experiment.

Fig. 4.4 shows the performance of GlobLease and Cassandra using two read dominant
workload (85% and 95%) in CDF plot. The CDF gives a more complete view of two sys-
tems’ performance including the cross region communications. Under 85% and 95% read
dominant workload, Cassandra experiences 15% and 5% cross region communications,
which are more than 500 ms latency. These cross region communications are triggered
by write operations because Cassandra is configured to read from one replica and write
to all replicas, which in favor of its performance under the read dominant workload. In
contrast, GlobLease pays around 5% to 15% overhead in maintaining leases (cross region
communication) in 95% and 85% read dominant workloads as shown in the figure. From
the CDF, around 1/3 of the cross region communication in GlobLease are around 100 ms,
another 1/3 are around 200 ms and the rest are, like Cassandra, around 500 ms. This is
because renewing/invalidating leases do not require all the replicas to participate. Respect
to the consistency algorithm in GlobLease, only master and non-masters with valid lease of
the requested key are involved. So master of a requested key in GlobLease might need to
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Figure 4.5 – High latency requests
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Figure 4.6 – Impact of varying read:write ratio on the leasing overhead

interact with 0 to 3 non-masters to process a write request. Latency connecting data centers
varies from 50 ms to 250 ms, which result in 100 ms to 500 ms round trip. In GlobLease,
write requests are processed with global communication latency ranging from 0 ms to 500
ms depending on the number of non-master replicas with valid leases. On the other hand,
Cassandra always needs to wait for the longest latency among servers in different data cen-
ters to process a write operation which requires the whole quorum to agree. As a result,
GlobLease outperforms Cassandra after 200 ms as shown in Fig. 4.4. Fig. 4.5 zooms in on
the high latency requests (above 300 ms) under three read dominant workloads (75%, 85%
and 95%). GlobLease significantly reduces (around 50%) high latency requests comparing
to Cassandra. This improvement is crucial to the applications that are sensitive to a large
portion of high latency requests.
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Figure 4.7 – Impact of varying read:write ratio on the average latency
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Figure 4.8 – Impact of varying lengths of leases on the average request latency

Lease Maintenance Overhead

In Fig. 4.6, we evaluate lease maintenance overhead in GlobLease. The increasing por-
tion of write requests impose more lease maintenance overhead on GlobLease since writes
trigger lease invalidations and cause future lease renewals. The y-axis in Fig. 4.6 shows
the extra lease maintenance messages comparing to Cassandra under throughput of 1000
request per second and 60 second leasing period. The overhead of lease maintenance is
bounded by the following formula:

WriteThroughput

ReadThroughput
+ NumberOfKeys

LeaseLength ∗ReadThroughput

The first part of the formula represents the overheads introduced by writes that inval-
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Figure 4.10 – Elasticity experiment of GlobLease

idate leases. The second part of the formula stands for the overheads for reads to renew
leases. Even though lease maintenance introduces some overhead, GlobLease can outper-
form Cassandra when latency between data centers vary. GlobLease benefits from smaller
latency among close data centers as shown in Fig. 4.4 and Fig. 4.5.

Varying Read/Write Ratio

In Fig. 4.7, we vary the read/write ratio of the workload. The workload intensity is fixed
to 1000 request per second for both GlobLease and Cassandra. As shown in Fig. 4.7,
GlobLease has larger average latency comparing to Cassandra when the write ratio is low.
This is because that GlobLease pays overhead to maintain leases as evaluated in Fig. 4.6.
However, GlobLease outperforms Cassandra when the write ratio grows. This is explained
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in Fig. 4.5 where GlobLease reduces the percentage of high latency requests significantly
comparing to Cassandra. The improvement on the high latency requests compensate the
overhead of lease maintenance leading better average latency in GlobLease.

Varying Lease Length

We vary the length of leases to examine its impact on access latency for read-dominant
and write-dominant workloads. The workload intensity is set to 1000 requests per second.
Fig. 4.8 shows that, with the increasing length of leases, average read latency improves
significantly since, in a valid leasing time, more read accesses can be completed locally.
In contrast, average write latency increases since more cross-region updates are needed if
there are valid leases in non-master nodes. Since the percentage of the mixture of reads
and writes in read and write dominant workload are the same (95%), with the increasing
length of the lease, they approximate the same steady value. Specifically, this steady value,
which is around 60s in our case, is also influenced by the throughput of the system and the
number of key entries.

Skewed Read Workload

In this experiment, we measure the performance of GlobLease under highly skewed read-
dominant workload, which is common in the application domain of social networks, wikis,
and news where most of the clients are readers and the popular contents attract most of the
clients. We have extended YCSB to generate highly skewed read workload following the
Zipfian distribution with the exponent factor of 4. Fig. 4.9 shows that, when GlobLease
has sufficient number of affiliated nodes (6 in this case), it can handle skewed workload by
coping the highly skewed keys in the affiliated nodes. The point in the top-left corner of the
plot shows the performance of the system without affiliated nodes, which is the case of a
system without fine-grain replica management. This scenario cannot expand to higher load
because of the limit of high latency and the number of clients.

Elasticity with Spiky and Skewed Workload

Fig. 4.10 shows GlobLease’s fine-grained elasticity under highly spiky and skewed work-
load, which follows a Zipfian distribution with the exponent factor of 4. The workload is
spread evenly in three geographical locations, where GlobLease is deployed. The intensity
of the workload changes from 400 req/s to 1800 req/s immediately at 50s point in the x-
axis. Based on the key ranks of the Zipfian distribution, the most popular 10% of keys are
arranged to be replicated in the affiliated nodes in three geographical locations. Based on
our observation, it takes only tens of milliseconds for an affiliated node to join the overlay
and several seconds to transfer the data to it. The system stabilizes with affiliated nodes
serving the read workloads in less than 10 sec. Fig. 4.10 shows that GlobLease is able to
handle highly spiky and skewed workload with stable request latency, using fine-grained
replica management in the affiliated nodes. For now, the process of workload monitoring,
key pattern recognition, and keys distribution in affiliated nodes are conducted with pre-
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programmed scripts. However, this can be automated using control theory and machine
learning as discussed in [70, 30, 68].

4.1.6 Summary and Discussions of GlobLease
Lease enables cache-style low latency read operations from multiple geographical loca-
tions. The expiration feature of lease enables non-blocking write operations even in the
scenario of non-master node failures. Failure of a master node are handled by a two-phase
election within the replication group. Even though all the failure cases are handled in
GlobLease, they are not tackled efficiently in case of frequent failures. In other words,
GlobLease works efficiently when there is no failures in the system. In the presence of
failures, a read request could be delayed up to 3 RTTs among all nodes. Specifically, 2
RTTs are used to elect a new master while another RTT is required to request a lease from
the new master. Similarly, a write request could suffer the same as the read request with
a delay up to 3 RTTs. Essentially, master nodes become the single point of failures that
significantly affect the performance of GlobLease in the presence of failures. This is a
well-known drawback of master-based replicated storage systems.

On the other hand, GlobLease is not symmetric in handling read and write workloads.
As a result, the benefit of GlobLease could be suppressed when there is a significant amount
of writes and they are uniformly distributed in all locations. It means that writes on a
specific key are not always initiated from the same geographical location. As a result,
migrations of master nodes no longer improve the performance of writes. Furthermore,
frequent writes invalidate/update leases within short intervals, leaving little time for leases
to serve read requests locally. Consequently, the performance of reads also suffer.

With the consideration of the above two aspects, we proceed our research on majority
quorum based distributed storage systems. Examples of such systems include Cassan-
dra [3], Voldemort [28], Dynamo [6], Riak [33] and ElasticSearch [101]. The handling
of requests does not involve the concept of masters, which eliminates the single point of
failure. Furthermore, reads and writes are usually accomplished with the involvement of all
the replicas. And, not all the responses of the replicas are needed to return a request. It pro-
vides more robustness in the presence of failures. Since these systems treat read and write
requests symmetrically, they are more suitable for handling a read/write mixed workload.

4.2 MeteorShower
A classic approach to handle read/write mixed workload in a distributed storage system
with consideration of data consistency and service availability starts with the concept of
majority quorum. A quorum consists of all the replicas of a data item. The total number
of replicas of a data item is also known as the replication degree (n). Let us assume that a
read request on data item X is served by r number of replicas and a write request on X is
served by w number of replicas, then the minimum requirement to achieve sequential data
consistency is r + w > n.

Typically, a read/write request is sent to all replicas in order to obtain a sufficient
amount of replies to satisfy the requirement. This approach yields adequate performance
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Figure 4.11 – Typical Quorum Operation

when replicas are relatively close to each other, e.g., in the same data center. However,
this is not the case in a geo-replicated storage system, where replicas are hosted in differ-
ent data centers for performance and availability purposes. Communications with highly
distributed replicas incur significant delays. Thus, using majority quorums to achieve se-
quential data consistency when replicas are deployed geographically leads to significant
increase in request latency.

4.2.1 The Insight

In this section, we investigate the cause and provide insights on high request latency while
using majority quorums in a geo-distributed data store.

The setup: We assume a replicated data store deployed in multiple data centers and
replicas are not hosted in the same data center. A data center hosts many storage instances,
which are responsible of hosting a specific part of the total namespace. A storage instance
manages various data items, which are replicated among different storage instances hosted
in different data centers. Client requests are received and returned by storage instances
from the closest data center.

A scenario: Figure 4.11 illustrates a scenario where the requested data item is repli-
cated in three data centers, i.e. DC1, DC2 and DC3. A client close to DC1 has issued a
read request, which has been received by one of the storage instances in DC1, which then
acts as a proxy for the request. Figure 4.11 illustrates a typical scenario of processing a
majority quorum read. It means that the read request can be returned when at least two
of the three replicas acknowledge. In our case, DC1 and DC3 are faster in returning the
read request. After receiving the replies from DC1 and DC3, the proxy returns the read re-
quest. We use this representative scenario to explain the causes and insights of high request
latency.

The cause: The essential cause for high request latency is the network delay on re-
questing item values from all replicas (e.g., Lreq in Figure 4.11) and replying the requests
(shown as Lrep in Figure 4.11). Essentially, Lreq is paid to ask all the replicas, involved
in a specific request, to report their current status. Lrep is paid to deliver the status of all
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Figure 4.12 – Typical Quorum Operation

replicas to the requester, i.e. the proxy.
The insight: Lrep is hard to remove since we would like to read an updated copy of data

and preserve data consistency. However, Lreq can be removed if all the replicas actively
exchange their status. In this case, the requester just needs to wait for status reports from
replicas. Figure 4.12 continues the above scenario with the removal of the request message
from the proxy to DC3 while adding periodic status messages from DC3 to the proxy. If
the proxy waits for the status message sent from DC3 at t3, the reply of the read request
would be the same as the previous scenario.

Research questions: Given Figure 4.12, we would raise the question that whether
the proxy can return the read request when receiving the status message sent from DC3
earlier than t3. What would happen if the read request is returned after receiving the status
message from DC3 sent at t3 −∆t, or t3 − 2 ∗∆t as shown in Figure 4.12? Are we still
preserving the same data consistency level as the previous algorithm? If so, what is the
constraint on the status messages for the proxy to return the request.

A promising result: If the proxy is able to preserve the same data consistency level by
analysing the status message from DC3 sent at t3 − 4 ∗ ∆, then the request is able to be
returned without any cross data center delays.

In the following section, we focus on solving the research question and explaining the
constraints to achieve the promising result.

4.2.2 Distributed Time and Data Consistency

System Model

We assume a system consisting of a set of storage instances connected via a communication
network. Messages in this communication network can be lost or delayed, but cannot be
corrupted. Each storage instance replicates a portion of the total data in the system. There
is an application process running at each storage instance. The application process has the
whole namespace mapping and addresses of replicas. The process is able to access the data
stored locally.
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Furthermore, each process has the access to its local physical clock. Formally, a clock
is a monotonically increasing function of real time [102]. We assume that the time drift of
all the clocks in all the servers are bounded to an error ε. It means that the clock difference
of any two instances’ clock times t1 and t2 is bounded to ε, i.e., |t1 − t2| ≤ ε.

To sum up, the application process at each instance is able to perform the following
operations:

• readRequest read(key, timestamp, source): the application process initiates a read
request on a data item;

• readLocal readLocal(key, timestamp, source): the application process performs
a local read on key;

• writeRequest write(key, value, timestamp, source): the application process initi-
ates a write request on a data item;

• writeLocal writeLocal(key, value, timestamp, source): the application process
updates the value of data item key to value locally if timestamp is larger than the
timestamp associated with the locally stored data item key;

• broadcastStatus: the application process broadcasts its local updates to application
processes that manage peer replicas periodically;

• updateStatus: the application process receives broadcasts from remote replicas and
updates its view on remote replicas;

• time: the application process is able to access its local clock.

Sequential Consistency

In order to discuss the research question presented in the previous section, we choose to
implement sequentil data consistency, which is a widely used data consistency model. We
provide the formal definition of sequential consistency (SC) based on the definition given
by Hagit Attiya et. al [103].

Definition 1. An execution δ is sequentially consistent if there exists a legal sequence γ of
operations such that γ is a permutation of ops(δ) and, for each process p, ops(δ)|p is equal
to γ|p.

Intuitively, SC preserves the real-time order of operations by the same client [104]. In
contrast, linearizability guarantees the real-time order for all operations. SC requires that
every operation takes effect at some point and occurs somewhere in the permutation γ. This
ensures that every write can be eventually observed by all clients. In other words, if v is
written to a register X , there cannot be an infinite number of subsequent read operations
from register X that returns a value written prior to v.
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Algorithm Description

We propose our read/write algorithm to minimize the latency of majority quorum reads
described above. Then, we prove its SC guarantee while solving the constraint for status
messages in order to be used for read requests. We refer this constraint as the staleness of
the status message θt.

Replicas exchange their updates using the algorithm illustrated in Figure 4.13. Essen-
tially, the algorithm has a sender function and a receiver function. The sender function
periodically broadcasts local updates packed in status messages to remote replicas. A sta-
tus message contains the updates of data items happened after the previous status message.
Each status message is associated with a timestamp when it is sent to remote replicas based
on the server’s local clock. The receiver function aggregates status messages and maintains
them in a component called statusMap. The aggregation of historical status messages
provide a slightly outdated caches of remote replicas with respect to local present. New
status messages on specific data items will wake up the corresponding read requests main-
tained in the readSubscriptionMap, which maintains local reads that are blocked because
of lacking up-to-date status messages.

When a proxy node receives a read request, it forwards the read request to the clos-
est application process that manages a replica of the requested data item as shown in Fig-
ure 4.15 (a). Then, a local read request is processed by the application process as illustrated
by the algorithm in Figure 4.14 (a). Specifically, a local read request does not initiate com-
munications among remote replicas. Instead, it checks the updates of remote replicas by
analyzing the status messages periodically reported from all replicas in the statusMap. A
read request is returned when it can obtain a consensus value of the requested data item
from a majority of replicas’ status messages with staleness bounded by θt. Otherwise, it is
kept in the readSubscriptionMap. This process can be regarded as a query to a majority
of replicas. In case there are multiple updates of a requested item in a status message that
satisfies the above constraint, the newer update is returned. Another question is the upper
bound of θt, which means the maximum tolerance of the staleness of replica values while
preserving data consistency. We will investigate this issue when we prove the sequential
consistency of the algorithm.

A write request is initiated by an originator process/proxy sending a write to all the
replicas as illustrated in Figure 4.15 (b). The timestamp of the write is the local time
when the originator process/proxy invokes the request. The write request is returned when
the originator has received a majority of Ack from all the replicas. When an application
process receives the write from the proxy, it executes the request following the algorithm
described in Figure 4.14 (b). Specifically, it checks whether the timestamp in the request
is larger than the timestamp of the requested data item stored locally. If the result is positive,
an update on the data item is performed locally, a status message is registered and an Ack
is sent to the proxy. Otherwise, a Rej is sent to the proxy. In this way, all writes are ordered
deterministically based on the local invocation timestamps, breaking ties with node IDs.
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Data: broadcastStatus
Result: Broadcast updates to peer replicas periodically
while dispatchInterval do

foreach key ∈ namespace do
foreach replica ∈ replicaList[key] do

Send statusMessage[key] to replica
end

end
end
/* statusMessage[key] contains the updates of key in the current

dispatchInterval. */

/* In implementation, status messages are sent to replicas in an

aggregated manner. */

(a) Broadcast Local Updates/Status

Data: updateStatus[key][replica]
Result: Maintain a local version of remote replicas
Upon Receiving statusMessage[key][replica]

Add statusMessage[key][replica] to statusMap[key][replica]
/* statusMap[key] is used to keep track of updates of key from all peer

replicas. */

if key exists in readSubscriptionMap then
Awake the pending reads concerning key.

end

(b) Update Remote Replicas’ Status

Figure 4.13 – Status Messages
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Data: readLocal(key, timestamp, source)
Result: Return the value of key
validStatus = []
for status ∈ statusMap[key] do

if status.timestamp+ θt > timestamp then
validStatus.append(status)

end
/* θt is the maximum staleness of status messages in the consistency

model proved */

end
validStatus.append(localStatus) // add local status of key

if validStatus.size > replicaList[key].size
2 then

Find majority value in status ∈ validStatus
if the majority size > replicaList[key].size

2 then
return value

end
end
readSubscriptionMap[key].append(read(key, timestamp, source))

(a) Handle Read Requests - Server Side

Data: writeLocal(key, value, timestamp, source)
Result: Write to local storage
if timestamp > localStatus.timestap then

Perform write(key, value, timestamp) in local storage
statusMessage[key].append(write(key, value, timestamp, self))
/* add this write to statusMessage queue for broadcasting to peer

replicas. */

Return Ack
end
Return Rej

(b) Handle Write Requests - Server Side

Figure 4.14 – Server Side Read/Write Protocol
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Data: read(key, timestamp, source)
Result: Return the value of key to the caller
Send read(key, timestamp, self) to the nearest replica of key
while NotT imeout do

if Reply from the nearest replica then
Return value

end
end
Return Timeout

/* The result from the nearest replica already considers the updates

of remote replicas. */

(a) Handle Read Requests - Proxy Side

Data: write(key, value, timestamp, source)
Result: Majority write to the storage system
foreach replica ∈ replicaList[key] do

Send write(key, value, timestamp, self) to replica
end
while NotT imeout do

if number of Ack > replicaList[key].size
2 then

Return Success
end
if number of Rej > replicaList[key].size

2 then
Return Fail

end
end
Return Timeout

/* A majority write to all replicas to ensure data availability. */

(b) Handle Write Requests - Proxy Side

Figure 4.15 – Proxy Side Read/Write Protocol
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Proofs:
From the algorithm we provided, we prove that it satisfies sequential consistency under a
specific constraint of θt.

Lemma 1. For each admissible execution and every process p, p’s read operations reflect
all the values successfully applied by its previous write operations, all updates occur in the
same order at each process, and this order preserves the order of write operations on a
per-process basis.

Proof. Regarding process p. A write returns success only when a majority of replicas
accept the write proposed by p. And this indicates that the write timestamp proposed by p
is larger than the timestamp of the previous writes. Since any read is served by querying
a majority of replicas, a read originated by process p after the successful write will at
least reflect the value written (intersect with the write majority quorum) or a newer value
proposed by other processes in between the write and read from p. Regarding multiple
processes, write operations are applied based on the local invocation timestamps. Since
write operations are acknowledged by majority, any two writes proposed by p and q can
be deterministically ordered based on their timestamps, breaking ties with node identifiers.
Because of the monotonicity of physical clocks, this deterministic order is the same order at
each process, and this order preserves the order of write operations on a per-process basis.

When using status messages instead of querying a majority of replicas, we solve the
upper bound of θt, in order to preserve the above constraint. We would like to refer to the
concept of consistent cuts [97, 105]. Briefly, it is a view of events in a distributed system
that obeys a logical happen before order. In Figure 4.16, a read operation R of object
X follows a write operation W of object X with a delay of ∆r. We assume that ∆r is
close to zero. The read request R from DC1 observes a consistent view of object X if it
fetches the value ofX follows the consistent cutsC3 andC4, where objectX is applied and
consistent in all data centers/replicas. We regard the cut C2 legal as well since a majority
of the replicas is consistent at this point. However, the cut C1 is not acceptable since a
majority of the replicas of X have not applied the update by W yet. Given the causal order
that W happens before R, R should reflect the updates proposed by W . Thus, R is legal
when a majority of replicas are consistent after the updates of W . In order to calculate the
upper bound of θt, let us assume the latencies between P@DC1 and S1@DC1, S2@DC2,
and S3@DC3 are L1, L2, and L3 respectively. Imagine L1 < L3 < L2. When a write
request requires a majority of replicas to acknowledge, in order to guarantee this update is
observed when reading a majority of replicas at time T − θt, the upper bound of θt should
be less than L3, which is the median value of L1, L3, and L2. To extend the application
of θt, when a write request only requires the reply from one of the replicas, possibly the
closest one, the upper bound of θt is L1, which is the minimum value of L1, L3, and L2,
for a read "ALL" operation to observe the update. Similarly, if a write request needs to wait
for the acknowledgement from all the replicas, the upper bound of θt is L2, which is the
maximum value of L1, L3, and L2, for any replica to observe the update (read "ONE").

Lemma 2. For each admissible execution and every process p, p’s read operations cannot
reflect the updates applied by its following write operations.
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Figure 4.16 – Upper bound of the staleness of reads

Proof. For simplicity, we constraint θt to be a positive value for now, which means a
read originated by process p will never read any updates newer than its local present. Thus,
a read by process p at present T will never reflect any writes from p after local time T , since
the write cannot be applied before time T . In sum, a read R of object X happens before a
write W of object X cannot observe W ’s update on X when the R and W are originated
from the same process p.

Lemma 3. For each admissible execution, every process p, and all data items X and Y ,
if read R of object Y follows write W of object X in ops(δ)|p, then R’s read from p of Y
follows W ’s write from p of X .

Proof. Imagine that a read R
′

of object X happens the same time as R’s read of object
Y . Since R follows W in ops(δ)|p and according to Lemma 1, R

′
reflects the updated

value of X by W . It means that R
′

fetches a value of X from a majority of the replicas
with maximum staleness of θt from present. SinceR

′
happens the same time asR, p fetches

a Y value with a maximum staleness of θt from present. From Lemma 1, we know that the
maximum staleness θt guarantees that the updates of Y , if any, is already propagated at a
majority of the replicas. Thus, R’s read from p of Y follows W ’s write from p of X .

Theorem 1. The algorithm proposed provides sequentially consistent reads and writes
from multiple processes.

Proof. We follow the sequential consistency proof procedures provided in [103]. Fix
an admissible execution δ. Define the sequence of operations γ as follows. Order the
writes in δ with the timestamps associated with each write operations, breaking ties using
process ids. Then, we explain the places to insert reads. We start from the beginning of
δ. Read operations [Readp(X), Retp(X, v)] are inserted immediately after the latest of
(1) the previous operation for p (either read or write on any object), and (2) the write that
spawned the latest update of p regarding X preceding the generation of the Retp(X, v).

We must show ops(δ)|p = γ|p. Fix some process p. We show ops(δ)|p = γ|p in the
following four scenarios.
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1. The relative ordering of two reads in ops(δ)|p is the same in γ|p by the construction
rules of γ.

2. The relative ordering of two writes in ops(δ)|p is the same in γ|p given by the
ordering of write by monotonically increasing physical timestamps and Lemma 1.

3. Suppose a relative ordering of read R follows write W in ops(δ)|p. By definition of
γ, R comes after W in γ.

4. Suppose a relative ordering of read R precedes write W in ops(δ)|p. Suppose in
contradiction that R comes after W in γ. Then, in δ, there is some read R

′
and some write

W
′

such that (1) R
′

equals R or happens before R in δ; (2) W
′

equals W or happens after
W ; (3) W

′
’s update on object X is applied before R

′
ś read on object X , R

′
is able to

read W
′
’s update according to Lemma 1. However, in ops(δ), the relative ordering of R

precedes W , i.e., R is not able to read W ’s update according to Lemma 2. Thus, R
′

cannot
see W

′
’s update, a contradiction.

Summary of θt

The lower bound of θt is easy to calculate. Imagine that all the operations are ordered by
their invocation timestamps, breaking ties using node IDs. In this case, the value of θt is 0,
when all the operations use the present timestamp T .

On the other hand, the upper bound of θt depends on the latencies between the proxy
and storage servers as well as the read/write mode used, which can be write "ONE", "QUO-
RUM", or "ALL". We assume that the read/write modes are used correspondingly to
achieve sequential consistency, i.e., r + w > n as introduced in the beginning of Sec-
tion 4.2. Under this scenario, when writes only require one replica to acknowledge, the
upper bound of θt is the minimum latency between the proxy and storage servers. On
the other hand, when writes require all replicas to respond, the upper bound of θt is the
maximum latency between the proxy and storage servers. In the case of quorum writes, the
upper bound of θt is the median value of the latency between the proxy and storage servers.
The application of the upper bound of θt provides the best performance of read requests.

In practice, the clock time among servers are not perfectly synchronized. Under our
assumptions that the clock difference of any two servers’ clock times t1 and t2 is bounded
to ε, i.e., |t1 − t2| ≤ ε, the upper bound of θt shall not only concern the latency among
proxy and storage servers. The calculation should also consider the worst case clock drift
among servers, which is ε. Thus, the calculation of the upper bound of θt in all three cases
need to subtract ε.

4.2.3 Messages in MeteorShower

Using the algorithm described above, we propose MeteorShower. It improves request la-
tency for majority quorum based storage systems when they are deployed geographically.
The major insight is that instead of pulling the status of remote replicas, MeteorShower
enables replicas to report their status periodically through status messages. Then, Meteor-
Shower judiciously use the updates in the status messages to serve read requests.
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In the design, we have separated the delivery of the actual updates and their metadata.
This is because that an update is usually propagated immediately among replica servers
while the metadata can be buffered in intervals. The actual updates are propagated using
write notifications and the metadata are encapsulated in status messages.

Write notifications are used to propagate writes among storage servers. Specifically,
when a write is applied upon a storage server, a corresponding write notification regarding
the write is sent out to its replica servers. A write notification is constructed using the
following format:

WriteNotification = {Key, Update, Ts, V n}

It records the identification of the record (Key), the updated value of the record (Update),
the physical local timestamp of the update (Ts) and the version number of the record (V n).

Here is an intuition of write notification in Cassandra. When a write request is received
by one of the storage servers, i.e., the proxy/leader, it propagates the write to all the stor-
age servers that store the corresponding record. If it is a majority write, the proxy/leader
collects confirmations from a majority of the storage servers and returns to the client. The
propagation of writes is encapsulated as write notification in MeteorShower. It conveys
more information, such as timestamps and versions, in order to implement sequentially
consistent reads (as explained in Section 4.2.2).

A status message is an accumulation of write notifications initiated and received in
a MeteorShower server in an interval. The interval defines the frequency of exchanging
status messages and it is configurable. A status message records the writes applied on a
MeteorShower server using the following format.

StatusMessage = {Payload,MsgTs, Seq,Redundant}

A timestamp (MsgTs) is included when the status message is sent out. It is the times-
tamp that we use to identify the staleness of a status message from replicas. A status
message is sequenced (Seq) using a universal MeteorShower server ID as prefix. Thus,
the sequence number allows recipients to group and order status messages with respect to
senders. Redundant is a history of status messages in previous intervals. It is configurable,
i.e., the number of previous status messages to be included, to tolerate status message lost.
The Payload is the accumulation of write notifications but without the value of the record
to minimize the communication overhead.

payload =
∑
{key, ts, vn}

At the end of each interval, a status message is propagated to all MeteorShower peers.

4.2.4 Implementation of MeteorShower
MeteorShower is completely decentralized. It is a peer to peer middleware, which is de-
signed to be deployed on top of majority quorum based distributed storage systems. Me-
teorShwoer consists of six primary components as shown in Figure 4.17. They are status
message dispatcher, message receiver, status map, read subscription map and read/write
workers.
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Figure 4.17 – Interaction between components

Status Message Dispatcher

Status message dispatcher is the component that periodically sends out status messages
to MeteorShower peers. A write operation received and processed by the write worker
creates an entry in the status message poll. Entries are aggregated to construct a status
message when the dispatching interval is reached. A status message is sent out to all the
MeteorShower peers every interval even when there is no entry during an interval.

Message receiver

Message receiver is a component that receives and processes write notifications and status
messages. A write notification triggers the write worker to update the corresponding record
to the underlying storage. A status message is used to update the status map, which decides
whether a read request could be served. Both write notifications and status messages awake
pending reads in read subscription map.
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Status map
Status map keeps track of status messages sent from MeteorShower peers. It is used to
check whether a read request can be served with respect to the constraint of maximum
staleness described in Section 4.2.2.

Read subscription map
A read request cannot be served if the required write notification or status message are not
received. In this case, the read request is preserved in the read subscription map. The read
subscription map is iterated when receiving new status messages or write notifications.

Write worker
The first responsibility of a write worker is to persist record to the underlying storage if the
update has a timestamp larger than the local timestamp of the affected data item. Then, it
sends out write notifications to the MeteorShower peers to synchronize the update. In the
meantime, an entry is preserved in the status message dispatcher.

Read worker
This component is designed to handle read requests. Using status messages, a read worker
decides the version of writes to be returned for a read request w.r.t. the maximum staleness.
Then, the read worker finds the correct version or a newer version stored locally and returns
the request. The read request is kept in the read subscription map when the required status
messages or write notifications are not received.

4.2.5 Evaluation of MeteorShower
We evaluate the performance of MeteorShower on Google Cloud Platform(GCP). It enables
us to deploy MeteorShower in a real geo-distributed data center setting. We first present
the evaluation results of MeteorShower in a controlled environment, where we simulate
multiple "data centers" inside one data center. It enables us to manipulate latency among
different "data centers". Then, we evaluation MeteorShower with a real multiple data center
setup in GCP.

MeteorShower on Cassandra
We have integrated MeteorShower algorithm with Cassandra, which is a widely applied
distributed storage system. Specifically, we have integrated MeteorShower write worker,
reader worker and message receiver components in the corresponding functions in Cassan-
dra. Status message dispatcher, status map and read subscription map are implemented as
standalone components. During our evaluation, we bundle the deployment of Cassandra
and MeteorShower services together on the same VM. We adopt the proxy implementation
in Cassandra, where the first node that receives a request acts as the proxy and coordinates
the request.
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The Baseline

We compare the performance of MeteorShower with the performance of Cassandra us-
ing different read/write APIs. Specifically, read "QUORUM" and "ALL" APIs are used
as baseline for read requests while write "ONE" and "QUORUM" APIs are employed as
baseline for write requests. The choice of these sets of APIs takes into the consideration
of achieving sequential consistency. For example, the application of read "QUORUM"
("ALL") API together with write "QUORUM" ("ONE") API provides sequential consis-
tency in Cassandra.

The Choice of θt in MeteorShower

We have implemented the MeteorShower algorithm with the lower bound and upper bound
of θt, namely MeteorShower1 and MeteorShower2. The lower bound and upper bound
of θt are presented in Section 4.2.2. Specifically, in case of read "QUORUM" ("ALL")
operation in MeteorShower, it requires that the proxy server receives the status messages
from a majority (all) of the replicas with timestamp larger than T−θt. The write operations
in MeteorShower are essentially the same as they are in Cassandra.

NTP setup

To reduce the time skew among MeteorShower servers, NTP servers are setup on each
server. Briefly, NTP protocol does not modify system time arbitrarily. Time in each server
still ticks monotonically. NTP minimizes the time differences among servers by changing
the length of a time unit, e.g., the length of one second, in its provisioned server. We
configure NTP servers to first synchronize within a data center, since the communication
links observe less latency, which improves the accuracy of NTP protocol. Thus, there is
one coordinator NTP server in a data center. Then, we have chosen a middle point, where
observes the least latency to all the data centers, to host a global NTP coordinator. In this
way, NTP servers inside one data center periodically synchronize with the local coordinator
while local coordinators synchronize with the global coordinator.

NTP is used to guarantee the bound of time drifts (ε) among servers. Empirically, we
observe that NTP is able to keep the clock drifts of all servers within 1 ms most of the time.
To be on the safe side, we evaluate our system under the maximum drift ε = 2ms.

Workload Benchmark

We use Yahoo! Cloud Serving Benchmark (YCSB) [100] to generate workload to Meteor-
Shower. YCSB is an open source framework used to test the performance and scalability
of distributed databases. It is implemented in Java and has excellent extensibility, where
users can customize YCSB client interface to connect to their databases. YCSB provides a
configuration file, using which users are able to manipulate the generated workload pattern,
including read/write ratio, data record size, concurrent client thread number, and etc.
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Figure 4.18 – Cassandra read latency using different APIs under manipulated network
RTTs among DCs

Evaluation of MeteorShower

Evaluation in Controlled Environment

In this experiment, we evaluate the performance of MeteorShower1 and MeteorShower2
under different cross data center network latencies in comparison with the original Cassan-
dra baseline approach. Since latency cannot not be manipulated in a real multi-DC setup,
this experiment is conducted in a single data center with simulated multiple "data centers".
Specifically, communications of VMs in different simulated "data centers" are introduced
with a static latency. The latency is manipulated using NetEM tc commands [106].

For the cluster setup, we have initialized MeteorShower and Cassandra servers with the
medium instances in GCP, which has two virtual cores. We have setup the cluster with 9 in-
stances using 3 instances simulating a data center, which results in 3 data centers. We have
spawned another 3 medium instances hosting YCSB in each simulated "data center". Each
YCSB instance runs 24 client threads and connects to a local Cassandra/MeteorShower
server to generate workloads. The composition of the workload is 50% reads and 50%
updates.

Figure 4.18 and Figure 4.19 present the read and write latency of MeteorShower and
Cassandra under different simulated cross data center delays, which are shown in the x-axis.
We have run the workload with different combinations of read/write APIs in MeteorShower
and Cassandra. Specifically, the workload is run against Cassandra, MeteorShower1 and
MeteorShower2 with read QUORUM v.s. write Quorum and read ALL v.s. write ONE. We
use write QUORUM instead of write ONE in combination with read ALL in the evaluation
of MeteorShower2, which enables it to use the upper bound of θt. The latency of each
approach is aggregated from all the "data centers" and ploted as boxplot.

Figure 4.18 shows that the latency of read QUORUM and read ALL operations in Cas-
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Figure 4.19 – Cassandra write latency using different APIs under manipulated network
RTTs among DCs

sandra, MeteorShower1 and MeteorShower2 are similar. This is because that "data centers"
are equally distanced among each other, i.e., having the same network latency. Thus, wait-
ing for a majority of replies requires more or less the same time as waiting for all the replies.
As for Cassandra, the latency of its read operations increase with the increase of network
latency introduced among "data centers". The reason is that these operations need to ac-
tively request the updates from remote replicas before returning, which leads to a round
trip latency. On the other hand, MeteorShower1 only needs a single trip delay to complete
read QUORUM/ALL operations in this case. This is because that a read at time t can be
returned when it has received the status messages from a majority/all of the replicas with
timestamp t. These status messages require a single trip latency to travel to the originator
of the read plus the delay waiting for a status message dispatch interval of remote servers.
MeteorShower1 is not suitable to be deployed when the latency among data centers is less
than 50 ms since it has non-negligible overhead in sending and receiving status messages.
Despite the consumption of system resources, there is also a delay when waiting for a sta-
tus message, which is sent every 10 ms in our experiment. It is reflected in Figure 4.18
when the introduced network latency is 0. Furthermore, this message exchanging overhead
also causes a long tail in the latency of MeteorShower operations. Thus, MeteorShower
is not suitable for applications that require stringent percentile latency guarantees. As for
MeteorShower2, which is configured with the upper bound of θt. It can be easily calcu-
lated that the upper bound of θt is a single trip latency introduced minus ε. It essentially
allows read operations to return immediately since a read at time t only needs the status
messages from a majority/all of the replicas with timestamp t− θt. Ideally, the status mes-
sage with timestamp t − θt should arrive at any "data center" no later than t plus a status
message dispatch interval 10ms. Thus, the latency of read QUORUM/ALL operations in
MeteorShower2 remain stable in the presence of increasing network latency among "data
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Figure 4.20 – Multiple data center setup

centers".
The writes of MeteorShower1 and MeteorShower2 are the same. So, we only show

the writes of MeteorShower1 in Figure 4.19. Since we have not changed the writes in
MeteorShower comparing to the original implementation in Cassandra, the performance of
both approaches are similar. However, we do observed a slightly long tail of write latency
in MeteorShower, which is caused by the frequently exchanged status messages among
servers in different "data centers".

Evaluation with Multiple Data Centers

We move on to evaluate the performance of MeteorShower in a multiple data center setup
using GCP, which is shown in Figure 4.20. Specifically, we have used three data centers
located in Europe, the U.S. and Asia. The latency between data centers are presented in the
figure. To make it consistent, we have used the same instance type and configuration as the
previous experiment to setup the MeteorShower and Cassandra cluster as well as YCSB.
We focus our analysis on the latency of read requests, since the writes are essentially the
same in Cassandra and MeteorShower.

Figure 4.21 presents the aggregated read latency from the three data centers. As ex-
plained in the previous evaluation, the read requests of Cassandra experience a round trip
latency. However, read QUORUM operations experience the round trip latency from the
closer remote data center while read ALL operations need to wait for the replies from the
further remote data center. Similarly, read QUORUM/ALL operations in MeteorShower1
observe a single trip latency from the closer/further remote data center. MeteorShower2 per-
forms the best since it only requires status messages that is θt earlier than MeteorShower1.
And in this setup, the upper bound of θt is around 50ms−2ms for requests generated from
Europe and U.S. data centers and around 75ms− 2ms for requests originated in Asia.
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Figure 4.21 – Aggregated read latency from 3 data centers using different APIs

We present the fine-grained results of the evaluation in Figure 4.22 and Figure 4.23.
These two figures present the request latency from each data center. Specifically, Fig-
ure 4.22 shows the results grouped by different approaches while Figure 4.23 describes the
latency grouped by data centers. We focus our explanation on the impact of different delays
between data centers.

As we can see from Figure 4.22 and Figure 4.23, except of MeteorShower2, request la-
tency in Asia is higher than request latency in Europe and U.S.. This is because that the data
center in Asia experience high latency to both Europe and U.S. data centers, especially Eu-
rope. On the other hand, MeteorShower2 allows read QUORUM requests to return with the
same latency as the requests in Europe and U.S.. Specifically, MeteorShower2 will expect a
status message from U.S. data center instead of Europe, which is further. And a single trip
communication from U.S. to Asia costs around 75ms, which is compensated by a higher
upper bound of θt of requests originated in Asia. Thus, the read QUORUM requests per-
form the same in Asia as the requests in Europe and U.S. even though Asia has the worst
network connection. Similar conclusion can be drawn from the performance of read ALL,
where requests perform even better in Asia than in Europe. Because requests from both
data centers need to wait for status messages from the furthest data center. However, re-
quests originated from Asia has a larger upper bound of θt (75ms−2ms) than the requests
initiated from Europe (upper bound of θt equals 50ms − 2ms). So, the read ALL latency
of requests in Asia is less than the request latency in Europe. As for MeteorShower1, the
performance of read ALL requests in Europe are similar to the performance of read ALL
requests in Asia, since all requests need to pay for the highest latency and Asia data center
does not have the advantage of a larger upper bound in θt. Obviously, the requests from the
U.S. data center experience the least latency in all the cases. This is because that U.S. has
the best connection to the other two data centers.

In sum, MeteorShower1 needs a little more than single trip delay to return a read re-
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Figure 4.22 – Read latency from each data center using different APIs grouped by APIs
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Figure 4.23 – Read latency from each data center using different APIs grouped by DCs

quest, which is significantly faster than Cassandra in most of the requests. MeteorShower2
is even faster than MeteorShower1. It is able to return a read requests immediately in most
of the cases taken into account the reasonable overhead consumed to exchange status mes-
sages among data centers. Furthermore, MeteorShower2 has a big advantage that it allows
requests originated from a not well connected data center (Asia) to be returned with im-
proved latency. To some extent, the performance of MeteorShower2 is irrelevant to the
connectivity, in terms of latency, of a data center. Overall, the latency of MeteorShower
has a longer tail than Cassandra, which makes it not suitable for percentile latency sensitive
applications.
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4.2.6 Summary and Discussions of MeteorShower

MeteorShower presents a novel read write protocol for majority quorum-based storage sys-
tems. It allows replica quorums to function more efficiently when replicas are deployed
in multiple data centers. Essentially, MeteorShower exhausts the exploration of a global
timeline, constructed using loosely synchronized clocks, in order to judiciously serve read
requests under the requirement of sequential consistency. The algorithm allows Meteor-
Shower to serve a read request without cross data center communication delays in most of
the cases. As a result, MeteorShower achieves significantly less average and mean read la-
tency comparing to Cassandra majority quorum operations. It is also worth to mention that
MeteorShower keeps all the desirable properties of a majority quorum-based system, such
as fault tolerance, balanced load, etc. This is because that MeteorShower algorithm only
augments the existing majority quorum-based operations. However, MeteorShower does
observe some overhead. It scarifies the tail latency of requests because of the extensive
exchanging of messages among remote replicas, which saturates the network resources to
some extent.

4.3 Catenae
Serving requests with low latency while data are replicated and maintained consistently
across large geographical areas is challenging. With the proposal of GlobLease and Me-
teorShower in the previous sections, we are able to achieve efficient key value accesses
globally. In the section, we investigate mechanisms in order to support efficient transac-
tional accesses across multiple DCs.

The high latency communications among DCs causes significant communication over-
head to maintain ACID properties in transactions using traditional concurrency control al-
gorithms, such as two phase lock (2PL) [9] and optimistic concurrency control (OCC) [10].
On the other hand, maintaining data consistency among replicas in multiple DCs also in-
volves a large amount of cross DC communications.

In order to address these two challenges, we investigate the triggers of cross DC com-
munications. In essence, these communications are used for synchronizations in two sce-
narios. First, algorithm maintains the total ordering of different transactions with respect
to different data partitions. Second, algorithm tackles with the ordering of operations on
replicas for maintaining replica consistency.

The second cause is discussed in the previous sections. We investigate in details the
first cause. The goal is to reduce latency of achieving linearizable transactions in a geo-
distributed environment. The time spent from receiving a transaction until it is committed
and returned to the client defines the latency of a transaction. This process involves mes-
sage transmission delays among DCs and concurrency delays to reach a consensus on
a linearizable execution order of conflicting transactions in all DCs. When consensus is
reached in all DCs, a transaction is executed with execution delays.

The transmission delay depends on the locations and connectivity of DCs and usu-
ally cannot be optimized. Reducing the message exchanging rounds among DCs to reach
a consensus on the execution of transactions are studied in recent works [40, 41]. It is
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theoretically proved that the lower bound for two conflicting transactions to commit and
maintain serializability in two DCs is the RTT between them [42].

The concurrency delay is the time spent for a transaction to be allowed to commit
in all DCs. The concurrency delay is caused by conflicting transactions. Examples of the
concurrency delay can be the waiting time for locks in 2PL or the time spent to abort and
retry in OCC.

The execution delay is subjective to the specification of the hosting machines and the
efficiency of the underlying storage system while performing read and write requests.

Proposal

We propose a framework, Catenae, which provides serializable transactions on top of data
stores deployed in multiple DCs. It manages the concurrency among transactions and
maintains data consistency among replicas. Catenae executes transactions with low la-
tency by improving the transmission and concurrency delays. In order to reduce cross
DC synchronizations, Catenae leverages the insight of using speculative executions of
transactions in each DC, which expects a coherent total ordering of transactions in all DCs
and eliminates the need for synchronizing replicas.

However, achieving speculative executions of transactions with a deterministic order
on a global scale is not trivial. Static analysis of transactions before execution is able to
produce a deterministic ordering among transactions. Nevertheless, this approach has the
disadvantage of high static analysis overhead and potentially inefficient scheduling among
transactions. To be specific, a complete set of transactions needs to be analyzed and or-
dered at a single site in the system, which is a scalability bottleneck and a single point
of failure. Moreover, static ordering of transactions cannot guarantee efficient executions
of transactions w.r.t. concurrency. Because it is impossible to efficiently order conflicting
transactions when their access time on each data partition is unknown before execution.
Approaches, such as ordering transactions by comparing the receiving timestamps [42],
lead to inefficient execution of transactions for the same reason.

Many other works [64, 63] achieve this by analyzing transactions before execution and
giving priority to some transactions while aborting or suspending conflicting transactions,
in order to have only non-conflicting transactions to be executed in parallel on data repli-
cas. In essence, the concurrency control in those approaches is similar to two phase locking
(2PL), which increases the transaction execution time and limits the throughput. For ex-
ample, a transaction T1 arrives at t1 and writes on data partition a and b while another
transaction T2 arrives later at t2(t2 > t1) and writes on data partition b. T1 and T2 are
conflicting with each other and a total order needs to be preserve on all replicas of data
partition a and b in order to maintain serializability. Usually, a static analysis before the
execution is hard to know which transaction should have the priority to be executed first.
Typically, such priority is given based on the arrival time of transactions. Thus, T1 is or-
dered before T2. Assuming the time spent on writing each data partition is constant ∆t,
then, the execution time of T1 and T2 is 2 ∗ ∆t + ∆t = 3 ∗ ∆t. Obviously, this type of
concurrency controls can potentially block the concurrency of transaction executions.

Catenae pushes transaction execution concurrency to the limit by delaying the decision
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on transaction execution orders until they are conflicting a shared data partition. This allows
transactions to be ordered naturally by their execution speed rather than their arrival time.
Back to the example, assuming T2 arrives slightly behind T1, which gives t2− t1 < ∆t, T2
is able to access data partition b before T1 since T1 has not finished writing on data partition
a. When T1 has finished writing on a and continues to write on b at time t1+∆t, it observes
that T2 is in the middle of writing on b. Then, T1 is naturally ordered behind T2 and will
write on b until T2 finishes. The total execution time of T1 and T2 is ∆t+ t2 − t1 + ∆t =
2 ∗ ∆t + t2 − t1 < 3 ∗ ∆t. A formalization of this concurrency control is a transaction
chain concurrency control algorithm, which will be explained in details in Section 4.3.3.

The insight in Catenae is that the execution speed of transactions on each record is
unique and deterministic. Ideally, Catenae believes that given the same set of transactions
to multiple fully replicated DCs, the execution order of the conflicting transactions in these
DCs are likely to be the same using the transaction chain concurrency control. Experimen-
tal validations (Section 4.3) and evaluations (Section 4.3.4) of Catenae under a symmetric
cluster setup, i.e. the same VM instance type in multiple DCs on top of Google Cloud
Platform, shows that most of the conflicting transactions are ordered identically in all DCs.
Thus, Catenae first speculatively executes the same set of transactions in each DC. Then,
inconsistent executions will be corrected by a validation phase.

Validations of the insight

We validate the success rate of speculative executions of Catenae in three DCs of Google
Cloud Platform. Specifically, we have randomly generated 10000 records and replicated
them on 4 storage servers in each DC. These random records have different data size, which
leads to different processing times when reading or writing on the record. Then, we have
a coordinator in each DC that generates transactions with specific throughput to the 4 stor-
age servers in the same DC. We guarantee that coordinators generate the same transaction
sequence with Poisson arrivals. Each transaction will read/write 1 to 4 data records out of
10000 records. The distribution of the record accessed is configured to be uniform random,
zipfian with exponent 1 or zipfian with exponent 2. Figure 4.24 presents the evaluation of
running 100000 transactions in each DC. Those transactions are generated to the storage
servers with different rates, which are from 1000 to 11000 request per second as shown
on the x axis. Storage servers execute transactions using transaction chains concurrency
control algorithm. In short, the algorithm orders transactions based on the access order on
the first shared data record. A simple example of the algorithm is presented in the previ-
ous section and the detailed explanation of the algorithm will be discussed in Section 4.3.3
The execution dependencies of each transaction in each DC are compared. If the execution
dependency of a transaction is the same in all three DCs, it means a success in specula-
tive execution. Otherwise, the speculative execution is invalid. The y-axis in Figure 4.24
illustrates the success rate of speculative execution under 3 workload access patterns, i.e.,
uniform random, zipfian with exponent 1 and zipfian with exponent 2. The results indi-
cate that the transaction chain algorithm is able to allow transactions to be executed on
record replicas without coordination but still yields a very high (above 80%) result consis-
tency rate (success rate of speculative execution) when the access pattern of the workload
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Figure 4.24 – Success rate of speculative execution using transaction chain

is uniform. Even when the access pattern is zipfian with exponent 1, Catenae is able to
obtain a reasonable success rate (above 60%) on speculative execution using transaction
chains. However, the evaluation results also show that the speculative execution will fail
with extremely contended access pattern (zipfian with exponent 2).

4.3.1 The Catenae Framework

Transaction Client. Catenae has a transaction client library for receiving and pre-
processing transactions. Transaction clients are the entries of Catenae in each DC. They
pre-process transactions from standard query languages, such as SQL, and chop them to se-
quences of key-value read/write operations.Then, pre-processed transactions are forwarded
to coordinators for scheduled execution among DCs.

Coordinator. There is one coordinator in each DC, which is responsible for the spec-
ulative executions and validations of transactions among DCs. It is achieved through the
exchange of epoch messages among coordinators in different DCs in a fixed time interval.
We defer the explanation of epoch messages in Section 4.3.2 Coordinators are designed to
be stateless in each DC, thus Catenae can have multiple coordinators in one DC by parti-
tioning the responsible namespace range.

Secondary Coordinator. There is an optional secondary coordinator for each DC
that stands by the coordinator in that DC. Secondary coordinator receives duplicated epoch
messages from other coordinators. It becomes primary coordinator when the coordinator
fails.

Chain Servers. Transaction chain servers are hosted together with storage nodes of a
NOSQL data store. Transaction chain servers are responsible for traversing of a transaction
chain by passing through its forward and backward pass phase, during which, it maintains
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and resolves transaction dependencies and conflicts, record temporary copies of transaction
execution results, and issues corresponding NOSQL operations to the underlying storage
servers when the transaction commits. The transaction chain algorithm is explained in
Section 4.3.3

Transaction Resolver. There is a transaction resolver in each DC. It maintains im-
plicit dependencies to avoid cyclic dependency among transactions. It is queried by trans-
action chain servers when they suspect a formation of a circle during transaction execution.
Transaction resolvers perform a topology sorting among transactions with respect to the
existing explicit dependencies. Then, a circle-free implicit dependency is returned to the
chain server and stored in the transaction resolver for further queries until the involved
transactions have committed or aborted.

4.3.2 Epoch Boundary

Epoch boundary is a concept similar to logical clock proposed by Lamport, but using the
real time from the system. It separates continuous time into discrete time slices. The start
or end of a discrete time slice is a boundary. Time boundaries are used as synchronization
barriers among replicated servers deployed in different DCs. In Catenae, synchronizations
of the status of replicated servers are not triggered by events, such as a transaction is re-
ceived by one server or a consensus is needed to validate an execution result, but rather is
conducted periodically at each boundary. The advantage of actively synchronizing server
states among DCs is that it reduces the delay for a DC to realize the updates from other DCs.
Specifically, when a DC needs additional information to proceed an operation, for example,
to validate whether it holds the most recent data copy, it does not need to send a request
and wait for a response to/from another DC, but rather wait for the next epoch boundary.
It optimizes the communication latency among DCs from a RTT to a single trip plus the
delay of an epoch. Epoch boundaries are not suitable to be implemented in low latency
networks, such as intra DC networks, when inter-server latency is low. In this case, a RTT
is rather short comparing to an epoch. Furthermore, periodically sending and receiving
epoch messages also involves non-trivial overhead. However, this approach prevails when
servers need to communicate through high latency links, such as inter DC links, when an
epoch delay is negligible comparing to a single message trip. Specifically, the typical RTTs
among DCs are from 50ms to 400ms, which can be easily measured through [107]. In
contrast, the typical setup of the epoch interval is from 5ms to 30ms.

As shown in Figure 4.25, DC2 is able to aware an event happened at t in DC1 with
delay less than C + E. However, with active queries, DC2 will know the status of DC1
after a delay of 2 ∗ C, which is significantly larger than C + E.

In order to ease the maintenance of server membership and reduce the overhead of
sending epoch messages, there is one coordinator server in each DC to maintain epoch
boundaries. System time on each coordinator server is synchronized using NTP to mini-
mize time difference on coordinators. The length of the epochs is a globally configurable
parameter. Epochs are associated with monotonically increasing epoch IDs that is coherent
on each coordinator. At the end of each epoch, a synchronization boundary is placed with
the dispatching of status updates (payload) from/to all coordinators using epoch messages.
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Figure 4.25 – Epoch Messages among Data Centers

Transaction Distribution Payload

The first part of epoch payload relates to transaction distribution. Ideally, with the ap-
plication of epoch boundaries, each DC is able to acquire the transactions received from
other DCs with a single cross DC message delay plus an epoch. By knowing the complete
set of input transactions in an epoch, Catenae is able to speculatively execute transactions
using the TC algorithm (Section 4.3.3) and maximize the possibility to obtain a coherent
execution order of conflicting transactions in all DCs.

Transaction Validation Payload

The second part of epoch payload concerns about transaction validation. The speculative
executions need to be validated on the execution order of conflicting transactions in all
DCs since they could possibly be executed differently. Specifically, the execution order
of transactions could be different due to the heterogeneity of the execution environment,
platform as well as possible exceptions. Catenae leverages a light-weight static analysis
of input transactions to create different transactions sets. The transaction set with conflict-
ing transactions needs a validation phase to confirm their execution results. We defer the
explanation of the multiple DC transaction chain algorithm in Section 4.3.3.

Batching and Dispatching of Payloads

For transaction distribution payload, all coordinators batch transactions received in each
epoch. These transactions are associated with a local physical timestamp when it is received
by Catenae. For transaction validation payload, coordinator batches conflicting transactions
that have finished in each epoch along with their execution dependencies. The batched pay-
loads are sent among coordinators at the end of each epoch. Instead of simply exchanging
the payload of the current epoch, coordinators also attach the payload from the previous
two epochs. According to our experiments, the redundancy in epoch payloads effectively
handles message losses and delays during transmission among coordinators.

4.3.3 Multi-DC Transaction Chain

The life cycle of a transaction in Catenae includes received, scheduled, executed, finished,
and committed (returned). We present the multi-DC transaction chain algorithm with the
explanation of the life cycle of an transaction.
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Receive Transactions
Coordinators receive transactions from other coordinators in epochs. Due to the trans-
mission delays, transactions received in the current epoch are transactions sent by other
coordinators in a past epoch. For example, in Figure 4.25, transactions received by DC2
at ey are transactions sent from DC1 at ex. The epoch ID (EID) is used to identify an
epoch message. Coordinators continuously receive and keep track of epoch messages from
other DCs and aggregate them by EIDs. With the complete receipt of epoch messages from
all the coordinators concerning the same EID, the transactions in the epoch messages are
grouped together and moved to transaction schedule phase. Transactions in lower EIDs are
scheduled before transactions in higher EIDs. This allows Catenae to have a more con-
sistent execution of transactions in each DC. However, it also puts limitations on Catenae
when there are failures, which is discussed in Section 4.3.5.

Schedule Transactions
Transactions are chopped into a set of read and write operations by Catenae client library.
These operations are ordered monotonically for accessing concerned data partitions. Thus,
Catenae does not support a transaction that has cyclic access on data partitions. These
operations are then mapped to Catenae chain servers that are hosted with storage servers
that store the corresponding data partitions. Then, the transaction is sent to the chain server
that hosts the first accessed data partition.

Execute Transactions
Transaction execution in each DC is handled by a transaction chain (TC) concurrency con-
trol protocol. It allows concurrent transactions to commit freely in the natural arrive order
on the storage servers unless doing so will violate serializability. This property maximizes
the transaction execution concurrency by allowing transactions to execute based on their
execution speed and wait only if a faster transaction already occupied the resources on a
per-key granularity. This means that transaction execution is not based on a predefined
order given by the prior static analysis [64, 63] or the arrival order, but the access order at
a shared data partition where two transactions issue conflict operations. Since transactions
are executed in DCs individually, we explain the TC algorithm from the perspective inside
one DC. The algorithm needs to pass through two phases, i.e., forward pass and backward
pass.

Forward Pass. The forward pass does not conduct any read/write operations, but
rather leaves footprints of a transaction on accessed data partitions. These footprints are
used to identify conflicting transactions. It starts with the coordinator sending a transaction
to the first accessed chain server as specified in the chain. The chain server records the data
partitions that the transaction reads or writes, then the transaction is forwarded to the next
chain server specified in the chain until reaching the end of the transaction chain.

Backward Pass. When a transaction is on the last server of its transaction chain
during the forward pass, it starts the backward pass phase. The backward pass examines
whether other transactions that have left footprints and have pre-committed values on the

82



4.3. CATENAE

Figure 4.26 – An example execution of transactions under transaction chain concurrency
control

accessed data partition. If not, the transaction may read or pre-commit on the data parti-
tion. Otherwise, the pre-committed transactions are added as dependent transactions of the
current transaction. The following backward pass of the transaction needs to strictly obey
the dependency, i.e. ordering behind the dependent transactions. It summarizes as the first
execution rule. Specifically, for example, in Figure 4.26, T1 has conducted backward pass
and pre-committed a write on partition S5 : k5 before T5. So, T5 adds T1 as its dependent
transaction. Then, T5 backward passed to S1 : k1 before T1. T5 knows T1 will access
S1 : k1 because it has left a footprint on S1 : k1 during its forward pass. Thus, T5 needs to
wait for T1 on S1 : k1 even it arrives earlier in order to maintain linearizability on S1 : k1
and S5 : k5.

Execution Rule 1. A transaction depends on another transaction if it comes later to the
first shared partition in its backward pass. And the transaction is consistently ordered after
transactions that it depends on regarding all the shared partitions afterwards.

In addition to explicit dependencies added by Rule 1, a transaction also has to satisfy
a set of implicit dependencies. Implicit dependencies are added to a transaction to prevent
cyclic dependencies. For example, in Figure 4.26, according to Rule 1, T3 is ordered
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Figure 4.27 – Potential Cyclic Structure

after T4 when accessing S3 : k3. And T4 is ordered after T1 when accessing S2 : k2.
Transitive relation gives T3 should be ordered after T1, otherwise a cyclic dependency will
form. However, without any hints, T3 could be ordered before T1 when it arrives faster on
S1 : k1.

Implicit dependencies are added by a transaction resolver, which has a global view of
potentially conflicting transactions in all chain servers. Detecting complete cyclic behaviors
could be a NP-hard problem. Our resolver uses the pattern shown in Figure 4.27 to detect
potential cyclic behaviors, which is proved to be effective and efficient in detecting cyclic
dependency in transactions [108]. A topology sorting request is sent from a chain server to
the resolver, when the above pattern is captured. The resolver provides a serializable sorting
of the transactions that does not violate the observed constraints recorded in the transaction
dependency repository, where previous dependencies are stored. Then, the sorting result
is returned to the chain server and recorded in the transaction dependency repository for
future queries.

Continuing the above example in Figure 4.26, T4 knows that it is ordered before T3 on
S3 : k3. and when it knows that it is ordered after T1 on S2 : k2, the pattern in Figure 4.27
forms. So, S2 requests a topology sorting to the resolver. The resolver returns the only
serializable topology sorting T3 ordered after T1. When T3 passes to S1 : k1, the pattern
also forms because it has dependency with T4 and about to have dependency with T1.
So, S1 : k1 queries the resolver, which will return the already calculated constraint in its
repository, which is T3 ⇒ T1. So, T3 waits for T1 on S1 : k1.

When a transaction has acquired both the explicit and implicit dependencies on a chain
server, it attempts to read/write temporary values on the chain server, which comes as the
second execution rule.

Execution Rule 2. If all dependent transactions have already pre-committed or aborted
on the particular chain server, the current transaction is able to pre-commit. Otherwise,
the transaction needs to wait until the condition is satisfied.

Validate Transactions
Since Catenae speculatively executes transactions in all DCs using TC without synchro-
nization, some conflicting transactions can be executed in different orders. We made this
design choice to tradeoff Catenae’s percentile performance for its average performance. To
handle the outliers, when a transaction has pre-committed on all the chain servers through
its backward pass, the execution results of the transaction need to be validated.

Non-conflicting Transactions. If transactions access data partitions that are solely
accessed by themselves, there is no need for transaction validations since the commit or-
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ders among these transactions can be different in different DCs while serializability is still
preserved. These transactions are non-conflicting. A transaction that is not conflicting with
the others when the accessed data partitions are not accessed by other transactions until
the end of this transaction’s backward pass. A transaction can finish its backward pass at
different times in different DCs and this may cause inconsistent judgement on whether the
transaction is non-conflicting or conflicting. To solve this issue, a priority is given to the
DC where the transaction is initiated since it will be the DC that returns the execution re-
sult to the client. If this DC decides a transaction to be non-conflicting, then it will skip the
validation phase and return the results to the client directly. In this case, a dominant result
will be propagated to other DCs to commit the transaction.

Conflicting Transactions. Conflicting transactions need to reach a consensus among
DCs on their execution dependencies. The execution results and the execution dependen-
cies are part of the payload in the epoch messages as described in Section 4.3.2. Upon
receiving the majority execution results of a transaction from other coordinators, a second
phase of the Paxos algorithm [98] is executed independently on all coordinators. Specifi-
cally, when there are a majority of DCs that have executed the transaction with the same
dependency, then the transaction will be committed with this dependency. DCs that have
executed the transaction with this dependency prepare to commit the temporary read/write
operations from chain servers to their underlying storage servers. DCs that have performed
the transaction with other dependencies will need to perform a catch up procedure ex-
plained below.

Commit Conflicting Transactions

When a transaction is allowed to commit in a DC, it checks whether its dependent transac-
tions are committed or aborted. If all its dependent transactions are committed, the trans-
action is able to commit by choosing a commit timestamp from the intersect of decision
periods from all DCs. The decision period is a period of epochs when all DCs are expected
to received the execution result of a transaction. The lower bound of a decision period is
calculated using the current epoch of a DC plus an estimated message delay among all DCs.
The upper bound of the decision period is the lower bound plus an offset, which denotes
the maximum delay that can be tolerated during message transmission among DCs. The
decision period of a transaction from different DCs might be slightly different because of
the difference of the execution environment. We deterministically choose the maximum
epoch of the intersect of the decision periods from all DCs to tolerate possible delays on
the arrivals of the execution results from other DCs. Then, the transaction commit message
is sent to all the involved chain servers and, in the meantime, the transaction is returned to
the client. Chain servers that have received commit messages from the coordinator com-
mit the operations from the transaction to the underlying storage server and remove the
corresponding dependency.

If there are uncommitted dependent transactions the pre-committed transaction has to
wait until the dependent transactions are committed, caught up or aborted. In this case, the
commit epoch may increase beyond the decision period and is deterministically chosen to
be the next epoch of the last committed dependent transaction. If the dependent transactions
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need to catch up, the transaction will need to catch up as well, since it is executed with a
super-set dependency. If the dependent transactions are aborted, then the transaction is
able to commit if the transaction only write-dependent on the shared key, otherwise, the
transaction is aborted as well.

Transaction Catch Up. DCs that have executed a transaction with a different de-
pendency from the majority dependency need to catch up its execution. The catch up of
a transaction is executed when all its dependent transactions are committed, aborted or
caught up. The catch up procedure applies update operations in a transaction with the
majority voted timestamps to the underlying storage system.

Transaction Abort. Transactions can be aborted for various reasons. For example,
aborts are issued by Catenae when no majority can be reached on the execution results
from all DCs. Aborting a transaction removes its dependency and temporary updates on
the chain servers and the resolver.

Read Only Transactions

The advantage of a geographically distributed transactional storage system is its ability to
serve data close to its clients, which achieves low service latency. In order to achieve that,
it is essential to support transactions that can be executed and returned locally. Catenae
allows read only transactions to be executed locally while still maintaining ACID property.

Read only transactions are processed by reading the desired values concurrently from
the corresponding chain servers. Read only transactions can be returned when it is not
in the decision period of a transaction with uncommitted write on a read data partition.
Since all transactions with write operations are committed by choosing the largest possible
timestamp of the intersect of decision periods from all DCs, it is safe to read values from
the underlying storage servers before the lower bound of a decision period. If the read
only transaction has read a data partition during the decision period of an uncommitted
transaction that has uncommitted writes, it will retry after a short delay.

4.3.4 Evaluation of Catenae

The evaluation of Catenae is performed on Google Cloud Compute with three DCs. The
performance of Catenae is compared against Paxos commit [8] over Two-Phase Lock
(2PL) [9] and Paxos commit over Optimistic Concurrency Control (OCC) [10]. The eval-
uation of Catenae focuses on performance metrics including transaction commit latency,
execution concurrency (throughput) and commit rate. We measure the performance of
Catenae under different workload compositions and setups to explore its most suitable us-
age scenarios using a microbenchmark and standard TPC-C benchmark.

Implementation

Catenae is implemented with over 15000 lines of Java code. Chain servers and coordi-
nators are implemented as state machines. They employ JSON to serialize data and Netty
sockets to communicate among chain servers and coordinators.
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2PL and OCC implementation. Two-phase Lock is implemented by using Paxos
commit for managing data replication among DCs and two-phase lock inside DCs to avoid
conflicts. There is a coordinator in each DC to manage the lock table and synchronize data
replicas when transactions commit. During transaction execution, the coordinator acquires
locks and issues temporary writes of the involved data partitions to corresponding data
servers (first phase of Paxos commit). The coordinator is able to lock a data partition when
the majority of DCs are able to lock the data partition. During transaction commit, the
coordinator issues commit messages to other DCs. A transaction is committed when a
majority of DC commit (second phase of Paxos commit). Wound-wait mechanism [109] is
used to avoid deadlocks.

Optimistic concurrency control also cooperates with Paxos commit to manage data
replicas. There is a coordinator in each DC to validate the execution results and synchro-
nize data replicas when transactions commit. Transactions are distributed and executed in
all DCs with records on the versions of data partitions that have been read and written.
Temporary values are buffered on data servers. Temporary execution results with versions
of accessed partitions are voted and validated among coordinators (first phase of Paxos
commit). A transaction commits when a majority of DC commit (second phase of Paxos
commit). Our OCC implementation allows aborted transactions to retry one time before
returning aborts to clients.

Cluster Setup

Our evaluations are conducted using Google Cloud Compute Engine. Specifically, Catenae,
2PL and OCC systems are deployed in three DCs, i.e. europe-west1-b, us-central1-a and
asia-east1-a. Inside each DC, four Cassandra nodes are used as storage backend running on
Google n1-standard-2 instances, which have 2 vCPUs and 7.5 GB memory. Each DC has
an isolated Cassandra deployment since data replication is already handled. Catenae chain
server, 2PL server daemon and OCC server daemon are deployed on the same servers as
Cassandra nodes. Committed writes are propagated to Cassandra using the write-one inter-
face. A Google Cloud n1-standard-8 instance (8 vCPUs and 30 GB memory) is initiated in
each DC to serve as coordinator in all three systems. For Catenae, transaction resolver is
configured together with coordinator. A Google Cloud n1-standard-16 instance (16 vCPUs
and 60 GB memory) is spawned in each data to run the workload generator. The workload
generator propagates workload to services deployed in the same DC. Another n1-standard-
16 instance is spawned in each data to serve as frontend client server.

Configuration of Catenae. The epoch length in Catenae is configured as 10 ms, which
yields reasonable tradeoff between coordinator utilization and transaction synchronization
delays as later shown in Figure 4.29.

Microbenchmark

We implement a workload generator that is able to generate transactions with different
number of accessed partitions, different operation types (read/update/insert) and different
distribution (Uniform/Zipfian) of accessed partitions. Under different workload compo-
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Figure 4.28 – Performance results of Catenae, 2PL and OCC using microbenchmark

Figure 4.29 – Commit latency VS. varying epoch lengths using 75 clients/server under
uniform read-write workload

sitions, we evaluate the performance of Catenae and the results are compared with 2PL
and OCC. Then, an evaluation on the effect of varying epoch length in Catenae is also
presented.

Workloads. We evaluate with two types of transactional workloads, i.e. read-only
and read-write, with a namespace of 100000 records. Read workload is constructed with
transactions that only read on data partitions. Read-write workload is formed with transac-
tions that read, write or update data partitions. An update is translated to a read followed
by a write on the same data partition. Each transaction randomly embeds one to five data
partitions to be accessed. The access pattern of the involved data partitions can be uniform
or zipfian with the exponent equals to one.

Results. Figure 4.28 shows the evaluation results of Catenae, 2PL and OCC under
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Figure 4.30 – Performance results of Catenae, 2PL and OCC under TPC-C NewOrder and
OrderStatus workload

read-only and read-write transactional workloads with uniform and zipfian data access pat-
tern. We use commit latency, throughput and abort rate as performance metrics. The results
shown in Figure 4.28 are the aggregated values from three DCs.

The performance of Catenae, 2PL and OCC is comparable under uniform read-write
workload. Under this workload, all three approaches need to synchronize data replicas with
remote DCs but transactions are not likely to conflict with each other since the data access
pattern is uniform. Catenae outperforms 2PL and OCC because of the application of epoch
boundary protocol and the separation of conflicting and non-conflicting transaction sets.
They have enabled Catenae to commit non-conflicting read-write transactions with a little
more than a half RTT and commit conflicting read-write transactions with slightly more
than a single RTT.

The throughput of 2PL and OCC start to struggle and plateau with the increasing num-
ber of clients under zipfian read-write workload, where transactions are likely to conflict
with each other. As expected, OCC observes significant abort rate under this workload. On
the other hand, Catenae scales nearly linearly under both uniform and zipfian workload.
This is because of the efficient scheduling of concurrent transactions using the transaction
chain concurrency control. Specifically, transactions are not contended until they begin ac-
cessing a shared data partition concurrently. Only at this point, the execution dependencies
are established. Even so, transactions are allowed to proceed and commit given that the es-
tablished dependencies are preserved. In sum, the speculative execution using transaction
chains achieves very high success rate even under zipfian (with exponent=1) workload as
validated in Section 4.3 (Figure 4.24).

The performance of 2PL and OCC under read-only workload is similar to their perfor-
mance under uniform read-write workload since both workloads requires 2PL and OCC to
synchronize replicas in remote DCs. The only different is that there is no conflict while ex-
ecuting and committing transactions, which leads to a higher throughput and lower commit
latency in both approaches. In contrast, Catenae observes more than three times perfor-
mance gains in both latency and throughput since read-only transactions can be processed
locally in Catenae. It is enabled because the lower-bound of EID that a write-involved trans-
action is scheduled to be committed is known when it enters the validation phase, which
requires a proposal of a decision period (Section 4.3.3). Thus, it is safe to return a read-only
transaction locally when its timestamp is lower than the lower-bound of the decision period
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of a write-involved conflicting transaction. Otherwise, the read-only transaction is retried
after 50 ms.

Varying the Epoch Length. To further study the performance of Catenae, the varying
size of epoch length is evaluated. As shown in Figure 4.29, transaction commit latency
starts to increase steadily with epoch length more than 20 ms. This is because that trans-
actions will only be executed after they are propagated to all DCs. The longer the epoch
length, the more delay is imposed on transactions. However, too short epoch length leads
to frequent exchanging of epoch messages among coordinators, which introduces perfor-
mance bottleneck on the coordinators. Thus, there is a tradeoff between the length of an
epoch and the overhead imposed on coordinators. So, we choose 10 ms to be the epoch
length in Catenae in all the evaluations.

TPC-C

We implement TPC-C under the current specifications [110] with interfaces that propagate
workload to Catenae, 2PL and OCC. Two representative operations, i.e. NewOrder and
OrderStatus, are chosen to be evaluated.

Results. Figure 4.30 illustrates the evaluation results of Catenae, 2PL and OCC under
extremely stressed TPC-C workload. The results are aggregated from the three operating
DCs. Catenae is able to scale up from 25 clients/server to 100 clients/server under TPC-
C NewOrder workload, after which its performance stays stable. 2PL and OCC follow
similar scale up pattern. However, they only achieve roughly half of the throughput com-
paring to Catenae, which causes the doubling of latency. With more than 100 clients/server,
there is a drop of throughput in OCC and 2PL because of high contention. The abort rate
of 2PL increases when there are more conflicting transactions waiting for locks, since we
have set a timeout on waiting for locks. OCC suffers from constantly significant abort rates
under the NewOrder workload since there is extremely high read-write contention among
transactions. Catenae maintains very low abort rates by efficiently scheduling concurrent
transactions using transaction chain algorithm. It allows Catenae to achieve higher con-
currency, which leads to a higher throughput of transaction execution. Additionally, the
high success rate of speculative execution even under contended workload allows Catenae
to commit transactions with low latency as shown in Figure 4.24. Thus, the faster transac-
tions commit, the less contention is experienced in Catenae.

OrderStatus is a read-only transaction. Catenae judiciously processes read-only trans-
actions in local DCs when the accessed records are not about to be committed to an updated
value. This condition is always true when running a read-only workload against Catenae.
Thus, Catenae is able to commit read-only transactions locally, which significantly reduce
the commit latency and boosts the throughput. In contrast, 2PL needs to check and obtain
read locks across DCs while OCC requires to validate the read values across DCs. As a
result, Catenae achieves more than twice the throughput of 2PL and OCC with nearly 70%
less commit latency.
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4.3.5 Discussions

Speculative Execution

Catenae provides efficient transaction support on top of fully replicated data stores, such
as [3, 33, 12, 37, 6]. Since Catenae relies on a deterministic duration that a transaction
accesses a specific data partition on a specific chain server, it is desirable, but not manda-
tory, to deploy chain servers symmetrically, i.e., using the same VM flavor to host the same
namespace range, in all DCs. For performance predictability and cost control, it is com-
mon and reasonable to host the instances of a specific component of an application using
the same VM flavors in today’s Cloud platforms. Hosting the chain servers of Catenae
asymmetrically among DCs will increase the possibility to have an inconsistent transaction
execution dependencies during speculative executions among DCs. This will not influence
the correctness of Catenae but triggering the catch up procedure and delaying the transac-
tion commit to two RTTs, which is the same latency overhead comparing to the classic 2PL
over Paxos commit. We validated in Section 4.3, it is possible to achieve the same execution
dependency in most of transactions speculatively executed using TC concurrency control
in each DC. The consistent speculative execution allows transactions to be committed with
a single RTT.

Liveness among Data Centers

Catenae does not pre-order transactions before execution, they are allowed to compete and
concurrently execute at runtime. It maximizes the concurrency of transaction executions.
However, Catenae expects DCs to execute the same set of transactions received from the
epoch messages sent from all DCs, which leads to the most consistent transaction depen-
dencies during speculative execution. The consistent dependencies during speculative ex-
ecution allows Catenae to have extremely low commit latency, but comes with a tradeoff.
An outage of a DC could cause other DCs to block waiting for its epoch message, which
contains the transactions received in that DC. The blocking continues when the expected
epoch messages are eventually delivered. This is similar to blocking scenarios in 2PL,
that could be overcome by using state machine replication. Catenae applies a time-based
delay tolerance technique to ascertain the state of a failed DC. Large delay tolerance may
result in endless waiting for the epoch messages from a failed DC, that largely influences
the performance. Small delay tolerance may neglect the transactions happened in the "sus-
pected failed" DC and result in periodic high transaction abort rates in that DCs or a lot of
transaction catch up workload across DCs. Thus, this design choice tradeoffs the high pos-
sibility to have consistent dependency during speculative execution with the complication
of failure handling.

On the other hand, Catenae can be adapted to operate while receiving only majority
epoch messages. Specifically, upon receiving the majority epoch messages, Catenae pro-
ceeds to transaction scheduling and execution phase. The incomplete receipt of transactions
from DCs will lead to a higher possibility to have divergent transaction execution dependen-
cies. The inconsistent execution dependency will be corrected by the selection of majority
execution dependency during the validation phase with another RTT. Thus, the tradeoff
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allows Catenae to operate in a failure-prone environment but with a significant overhead
for catching up inconsistent transaction executions. The possibility of having inconsistent
transaction executions while scheduling transactions when receiving a majority of epoch
messages is evaluated in Section 4.3 and shown in Figure 4.24.

Liveness among Transactions
The transaction chain maintains serializability and liveness among transactions by ensuring
that the dependencies among transactions are acyclic. A dependency is added to a pair of
transaction by a chain server only when such dependency does not exist and will not gen-
erate cyclic dependency implicitly. Specifically, a chain server will not add a dependency
contradictory to the dependency already embedded in the transaction. Dependency gradu-
ally propagates among chain servers with the passing of transactions and transactions are
order linearly by chain servers with their observed dependency. Cyclic behavior can only
happen when chain servers do not have enough information regarding some concurrent
transactions, as shown in one example in Section 4.3.3. This kind of cyclic dependency is
prevented by transaction resolver, who adds implicit dependency to transactions. Implicit
dependencies are added when a superset of cyclic behaviors (as illustrated in Figure 4.27)
are detected.

4.3.6 Summary and Discussions of Catenae
We present Catenae, a geo-distributed transaction framework that provides serializability.
It leverages novel epoch boundary synchronization protocol among DCs to improve trans-
action commit latency and extends the transactions chain algorithm to efficiently schedule
and execute transactions in multiple DCs. We show that Catenae only needs one single
inter-DC communication delay to execute non-conflicting geo-distributed read/write trans-
actions and one RTT to execute potentially conflicting geo-distributed transactions most of
the time. The worst case commit latency of Catenae requires two RTTs. Catenae achieves
more than twice the throughput than 2PL and OCC with more than 50% less commit la-
tency under TPC-C workload.

However, there are certain limitations of Catenae. Similar to MeteorShower, Cate-
nae also extensively exploits network resources of each servers. It affects the percentile
execution latency of Catenae. Furthermore, the performance of Catenae depends on the
determinism in transaction execution time on each data partition. Thus, when most of the
transactions do not have unique processing time on data partitions, Catenae will not perform
better than the state-of-the-art approaches. Also, the rollback operations in Catenae may
trigger cascading aborts if the workload is highly skewed. Another possible limitation of
Catenae is its application scenario. Essentially, Catenae can only process transactions that
are chainable. It means that data items that are accessed by a transaction should be known
before its execution. And the accesses of these data items should follow a deterministic
order. Thus, Catenae cannot execute any types of transactions.
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Chapter 5

Achieving Predictable Performance on
Distributed Storage Systems with
Dynamic Workloads

5.1 Concepts and Assumptions

Predictable Performance

In this section, we study the performance of distributed storage systems. We focus our
study on using the request latency (average/percentile) of storage systems to define their
quality of service. Instead of improving the request latency of storage systems, as studied
in the previous section, we focus on providing predictable performance in this section.
When we refer to predictable performance, we mean that the request latency of a storage
system remains stable, as predicted, despite of the uncertainty of external factors, such as
fluctuation in incoming workloads or disturbance from background tasks. In the context
of Cloud computing, Service Level Agreements between Cloud providers and consumers
sometimes cover the concept of predictable performance. Specifically, there are multiple
Service Level Objectives specified in an SLA. In particular, we focus on latency based
SLOs. They require that the request latency, can be average latency or percentile latency,
should be maintained under a specific threshold. This is the SLO that we study in this
section.

The platform

We investigate the performance of distributed storage systems hosted in the Cloud. We
distinguish the notation of server and host in this context. When we refer to servers, we
mean a service of an application that runs on a virtual machine spawned from a Cloud
platform. A host, on the other hand, refers to a physical machine that hosts several virtual
machines.
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Figure 5.1 – Standard deviation of load on 20 servers running a 24 hours Wikipedia
workload trace. With larger number of virtual tokens assigned to each server, the standard

deviation of load among servers decreases

Load Balance among Storage Nodes

It is challenging to balance the load among storage nodes in a distributed storage system.
This is because that each client request can be only served by storage nodes that host the
requested data. The study of load balancing in distributed storage systems is not the focus
of this thesis. We have conducted a simple evaluation on testing the load distribution on
storage nodes when they are organized using a DHT (distributed hash table). We vary
the number of virtual tokens in each storage node. A virtual token allows a storage node
to store a specific portion of data mapped by the hash algorithm. We have simulated the
workload using a 24 hour Wikipedia access trace. We demonstrate in Figure 5.1 that with
a properly configured namespace and the size of virtual nodes, the Wikipedia workload
roughly imposes equal loads on each storage node. We conclude that with sufficient number
of virtual tokens, requests tend to be evenly distributed among storage nodes under diurnal
workload patterns similar to the Wikipedia workload. And a roughly balanced load on each
storage node is the scenario that we assumed for our proposed solutions in later sections.

5.2 BwMan

In order to achieve predictable performance in a distributed storage system, we demonstrate
the necessity of managing resources shared by services running on the same server or host.
Our first approach studies the impact of regulating network bandwidth shared by services
running on the same server considering that distributed storage services are bandwidth
intensive. Then, in later sections, we illustrate the effect of resource management among
services sharing the same physical host.

The sharing of network bandwidth can emerge among multiple applications on the same
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server or among services of one application. In essence, both cases can be solved using
similar bandwidth management approaches. The difference is the granularity in which
bandwidth allocation is conducted, for example, on the level of applications or service
threads. We decide to achieve the finest management granularity of network bandwidth,
i.e., level of service ports, since it can be easily adapted in any usage scenarios mentioned
above. Essentially, our approach is able to distinguish bandwidth allocations to different
ports used by different services within the same application.

We have identified that there are two kinds of workloads in a storage service. First,
the system handles dynamic workload generated by the clients, that we call user-centric
workload. Second, the system tackles with the workload related to system maintenance
including load rebalancing, data migration, failure recovery, and dynamic reconfiguration
(e.g., elasticity). We call this workload system-centric workload. Typically, system-centric
workload is triggered in the following situations. When the system scales out, the number
of servers and the total storage capacity are increased, which triggers data migration to
the newly added servers. Similarly, when the system scales in, data needs to be migrated
before the servers can be removed. In another situation, the system-centric workload is
triggered in response to server failures or data corruptions. In this case, the failure recovery
process replicates the under-replicated data or recover corrupted data. In sum, all system-
centric workloads trigger data migration, which consume system resources including net-
work bandwidth. The data migration workloads interfere with user-centric workloads and
cause performance degradation in serving client requests.

It is intuitive and validated in our later evaluations that both user-centric and system-
centric workloads are network bandwidth intensive. However, arbitrating the allocation
of bandwidth between these two workloads is non-trivial. On the one hand, insufficient
bandwidth allocation to user-centric workload might lead to performance degradation. On
the other hand, the system may fail when insufficient bandwidth is allocated to failure
recovery. Similarly, without sufficient bandwidth, the resizing of the system may take too
long to finish and miss the deadline of finishing the scaling operations [68].

We have designed a bandwidth controller named BwMan, which uses easily-computable
predictive models to foresee the performance under a given workload (user-centric or system-
centric) in correlation to bandwidth allocation. It judiciously allocates network bandwidth
to activities concerning user-centric and system-centric workloads. The user-centric perfor-
mance model defines correlation between the incoming workload and the allocated band-
width with respect to a performance metric. We choose to manage the request latency. The
system-centric model defines correlation between the data migration speed and the allo-
cated bandwidth. Data migration speed defines the recovery speed of data corruption or
server failure or the speed of carrying out system resizing operations.

5.2.1 Bandwidth Performance Models

The mathematical models in BwMan are regression models. The simplest case of such an
approach is a one variable approximation, but for more complex scenarios, the number of
features of the model can be extended to provide also higher order approximations.
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Figure 5.2 – Regression Model for System Throughput vs. Available Bandwidth

User-centric Workload versus Allocated Bandwidth
For user-centric workload, we measure the maximum throughput that can be achieved with
respect to a certain request latency requirement under a specific network bandwidth alloca-
tion. Thus, BwMan is able to use the model to arbitrate bandwidth to user-centric workload
when knowing the incoming workload. And this bandwidth allocation strategy satisfies a
certain request latency requirement. In other words, it satisfies a latency SLO. The model
can be built either off-line by conducting experiments on a rather wide (if not complete) op-
erational region; or on-line by measuring performance at runtime. In this work, we present
the model trained off-line for the OpenStack Swift store by varying the bandwidth alloca-
tion and measuring system throughput that allows average latency to be under 1s as shown
in Fig. 5.2.

System-centric Workload versus Allocated Bandwidth
The correlation between system-centric performance and the allocated bandwidth is mod-
eled in Figure 5.3. The model is trained off-line by varying the bandwidth allocation and
measuring data recovery speed. The predictive process is centrally conducted based on the
monitored data integrity of the whole system and bandwidth are allocated homogeneously
to all storage servers. For the moment, we do not consider the fine-grained monitoring of
data integrity on each storage node. We treat data integrity at the system level.

5.2.2 Architecture of BwMan
In this section, we describe the architecture of BwMan, which operates according to the
MAPE-K loop [111] (Fig. 5.4) passing the following phases:

• Monitor: monitor the incoming client workload and system-centric workload;

• Analyze: feed monitored data to the regression models;

• Plan: use the predictive regression model to plan bandwidth allocations. A tradeoff
has to be made when the total network bandwidth has been exhausted and cannot
satisfy all workloads. The tradeoff policy is specified in Section 5.2.2;

• Execute: allocate calculated bandwidth to service ports concerning each workload
according to the plan.

96



5.2. BWMAN

Figure 5.3 – Regression Model for Data Recovery Speed vs. Available Bandwidth
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Figure 5.4 – MAPE Control Loop of Bandwidth Manager

BwMan Control Flow

The flowchart of BwMan is shown in Fig. 5.5. BwMan monitors two signals, namely,
the user-centric workload and the system-centric workload. At given time intervals, the
gathered data from each storage node is averaged and fed to analysis modules. Then the
results of the analysis based on our regression models are passed to the planning phase to
decide actions with potential tradeoffs. The results from the planning phase are executed
by the actuators in the execution phase.

In details, for the Monitor phase, we have monitored two ports on each server, one for
servicing user-centric workload (M1) and the other for data migration (M2). The outputs of
this stage are passed to the Analysis phase represented by two calculation units, namely A1
and A2, that aggregate and calculate new bandwidth allocation according to the predictive
performance models (Section 5.2.1). During the planning phase, BwMan checks whether
bandwith allocations need to be updated comparing to the previous control period. In addi-
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tion, it checks whether the new bandwidth allocation plan violates the maximum bandwidth
available on the server. If this constraint is violated, then a tradeoff between user-centric
workload and system-centric workload needs to be made. Finally, during the Execution
phase, the actuators are employed to update bandwidth allocation to each service port.

Tradeoff Scenario

Since bandwidth is a finite resource on each server, so it might not be able to satisfy all
workloads. We describe a tradeoff scenario where the bandwidth is shared among user-
centric and system-centric workloads. For user-centric workload, a specific amount of
bandwidth needs to be allocated in order to meet a specific performance requirement, i.e.
request latency, under a specific workload. For system-centric workload, there might be
a recovery speed constraint for data corruption or server failure to maintain data integrity
of the system or a deadline to carry out a system resizing operation to meet an increasing
workload. Thus, system-centric workload also requires a specific amount of bandwidth
allocation for a certain data migration speed to satisfy the above activities. By arbitrating
bandwidth allocated to user-centric and system-centric workloads, we can enforce more
user-centric performance while penalizing system-centric operations or vice versa. The
tradeoff policy in BwMan can be configured either in preference of user-centric workload
or system-centric workload. As a result, the bandwidth requirement from one of these two
workloads will be satisfied first.

5.2.3 Evaluation of BwMan

The evaluation of BwMan is conducted on a virtualized platform, i.e., an OpenStack Cloud.
The underlying distributed storage system that BwMan manages is OpenStack Swift, which
is a widely used open source distributed object storage started from Rackspace [112]. We
confirm that, in Swift, bandwidth allocations for user-centric workload and system-centric
workload are not explicitly managed. We observe that data migration in the case of server
failure, data corruption or system resizing essentially use the same set of replicator pro-
cesses based on the "rsync" Linux utility. Thus, for simplicity, we trigger data migration in
Swift using a process that randomly corrupts data with a specified speed.
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Swift Setup

We have deployed a Swift cluster with 1 proxy server to 8 storage servers as recommended
in the OpenStack Swift documentation [113]. The proxy server is hosted on a VM with
four virtual cores (2.40GHz), 8GB RAM while the storage servers are hosted on VMs with
one virtual core (2.40GHz), 2GB RAM and 40GB disk size.

User-centric Workload Setup

We have modified the Yahoo! Cloud Service Benchmark (YCSB) [100] to be able to gen-
erate workloads for a Swift cluster. Specifically, our modification allows YCSB to issue
read, write, and delete operations to a Swift cluster with best effort or a specified steady
throughput. The steady throughput is generated in a queue-based fashion. If the request rate
cannot be served by the storage system, requests are queued for later executions. The Swift
cluster is populated using randomly generated files with predefined sizes. The file sizes in
our experiments are chosen based on one of the largest production Swift cluster configured
by Wikipedia [114] to store static images, texts, and links. YCSB generates requests with
file sizes of 100KB as like an average size in the Wikipedia scenario. YCSB is given 16
concurrent client threads and generates uniformly random read and write operations to the
Swift cluster.

Data Corruptor and Data Integrity Monitor

We have developed a script that uniformly at random chooses a storage node, in which
it corrupts a specific number of files within a defined period of time. This procedure is
repeated until the specified data corruption rate is reached. The process triggers Swift’s
failure recovery process and results in data migration in Swift.

We have customized the swift-dispersion tool in order to populate and monitor the
integrity of the whole data space. This customized tool also acts as data integrity monitor
in BwMan, which provides real-time metrics on the system’s data integrity.

The Actuator: Network Bandwidth Control

We apply NetEm’s tc tools [106] in the token buffer mode to control the inbound and out-
bound network bandwidth associated with the network interfaces and service ports. In this
way, we are able to manage the bandwidth quotas for different activities in the controlled
system. In our deployment, services run on different ports, and thus, we can apply different
network management policies to them.

Evaluation Scenarios

The evaluation of BwMan in OpenStack Swift has been conducted under two scenarios.
First, we evaluate the effectiveness of BwMan for the user-centric workload and system-
centric workload under the condition that there is enough bandwidth to handle both work-
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Figure 5.6 – System Throughput under Dynamic Bandwidth allocation using BwMan

Figure 5.7 – Request Latency under Dynamic Bandwidth allocation using BwMan

loads. These experiments demonstrate the ability of BwMan to manage bandwidth that
ensures user-centric and system-centric workloads with maximum fidelity.

Second, a policy-based decision making is performed by BwMan to tradeoff in the case
of insufficient network bandwidth to handle both user-centric and system-centric work-
loads. In our experiments, we give priority to the user-centric workload compared to the
system-centric workload. We show that BwMan is able to maintain a desired average re-
quest latency for the Swift cluster.

The First Scenario

Fig. 5.6 and Fig. 5.7 present the effectiveness of using BwMan in Swift to guarantee a cer-
tain latency objective (SLO) under dynamic workloads. The x-axis of both plots show the
experiment timeline, whereas the left y-axises correspond to workload intensity in Fig. 5.6
and request latency in Fig. 5.7. The right y-axis in Fig. 5.6 corresponds to allocated band-
width by BwMan.

In this experiment, the workload that we generated using YCSB is a mix of 80% read
requests and 20% write requests, that, in our view, represents a typical workload in a read-
dominant application. The blue line in Fig. 5.7 shows the desired request latency. The
achieved latencies in Fig. 5.7 demonstrate that BwMan is able to reconfigure bandwidth
allocation during runtime according to dynamic workloads and achieves the desired request
latency.

Fig. 5.8 presents the results of using BwMan to control bandwidth allocation in the
scenario of data recovery. The blue curve sums up the data integrity of the whole system
by examining 1% random sample of the whole data space. The control cycle activation
is illustrated as green dots. The red curve stands for the bandwidth allocation by BwMan
after each control cycle. The calculation of bandwidth allocation is based on an estimation
of data corruption rate. The data corruption rate is calculated by the amount of corrupted
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Figure 5.8 – Data Recovery under Dynamic Bandwidth allocation using BwMan

Figure 5.9 – User Workload Generated from YCSB

data over a control period. Then, the same recovery rate is mapped in Fig. 5.3 to obtain a
bandwidth allocation. In this case, we assume that the system will not fail since the data
recovery rate matches the data corruption rate.

The Second Scenario

In this scenario, we demonstrate that BwMan guarantees the latency SLO when the total
available bandwidth is not enough for both user-centric and system-centric workloads. The
tradeoff policy is set to be in favor of user-centric workload. Thus, bandwidth allocation to
data recovery may be compromised to ensure user-centric performance.

In order to simulate the tradeoff scenario, the workload generator is configured to gen-
erate 80 op/s, 90 op/s, and 100 op/s. The generator applies a queue-based model. The
requests that are not served are queued for later executions. The bandwidth is dynamically
allocated to meet the throughput under a specific latency SLO, i.e. 1s. The data corruptor is
configured to corrupt data randomly at a specific rate, which creates bandwidth contention
with the user workload.

Fig. 5.9 presents the workload generated by YCSB. Fig. 5.10 and Fig. 5.11 depict the
request latency observed with/without bandwidth arbitration using BwMan.

Fig. 5.10 shows that using BwMan, the achieved request latency mostly (with only
8.5% of violation) satisfies the desired latency specified as the SLO. This is because that
BwMan throttles bandwidth consumed by the data recovery process and guarantees the
bandwidth allocation to user-centric workload. In contrast, Fig. 5.11 shows that without
managing bandwidth between user-centric workload and system-centric workload, the de-
sired request latency cannot be maintained. Specifically, the results indicate that there are
about 37.1% latency SLO violations.

Table 5.1 summarizes the percentage of SLO violations within three given confidence
intervals (5%, 10%, and 15%) with or without bandwidth management, i.e., with or without
BwMan. The results demonstrate the benefits of BwMan in reducing the SLO violations
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Figure 5.10 – Request Latency Maintained with BwMan

Figure 5.11 – Request Latency Maintained without BwMan

Table 5.1 – Percentage of SLO Violations in Swift with/out BwMan

SLO confidence Percentage of SLO violation
interval With BwMan Without BwMan

5% 19.5% 43.2%
10% 13.6% 40.6%
15% 8.5% 37.1%

with at least a factor of 2 given a 5% interval and a factor of 4 given a 15% interval.

5.2.4 Summary and Discussions of BwMan
We present the design and evaluation of BwMan, a network bandwidth manager for ser-
vices running on the same server. It allocates bandwidth to each service based on pre-
dictive models, which are built using statistical machine learning. The predictive models
decide bandwidth quotas for each service with respect to specified service level objects and
policies. Evaluations have shown that BwMan can reduce SLO violations for user-centric
workload by a factor of two when system-centric workloads create bandwidth contention.

We show that BwMan is able to better guarantee the service level objective of user-
centric workloads. However, there are limitations when applying BwMan. First of all,
BwMan manages network bandwidth uniformly on each storage server. It relies on mecha-
nisms in a storage system to balance the workload for each server. Thus, the coarse grained
management of BwMan is not applicable to systems where workloads are not well-balanced
among servers. Furthermore, BwMan does not scale the bandwidth allocated to a storage
service horizontally. It conducts the scaling vertically, which means that BwMan only
manages the network bandwidth within a single server. In other words, BwMan is not able
to scale a distribute storage system when the bandwidth of storage servers are not suffi-
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cient. Last but not lease, we have observed that the bandwidth quota available to a VM in
a Cloud environment is not predictable. In other words, it is often not possible to know the
maximum amount of bandwidth can be exclusively used by a VM. As a result, in our eval-
uations, BwMan arbitrates bandwidth among services in a conservative way to ensure that
the assigned bandwidth are guaranteed for user-centric and system-centric workload. This
is also the major reason that our evaluations are conducted with small bandwidth quotas
and the system operates in an under-utilized operational region.

5.3 ProRenaTa
In the previous section, we have studied the impact of regulating network bandwidth be-
tween client-centric workload and system-centric workload, mostly data migration. It is
shown that client workload and data migration compete with network bandwidth of the
host. If network bandwidth is not regulated, the service quality of client requests will be
affected.

Considering the scenario of scaling out of a distributed storage system, on one hand,
a portion of dedicated network bandwidth need to be allocated to guarantee the service
quality of the continuous client requests. On the other hand, the system needs to scale out
to increase its capability to serve an increased workload in the near future. The near future
is the time that the workload is expected to increase, which is usually accomplished with
time-series prediction. Thus, the scaling activity has a deadline to finish, which is translated
to a constraint on the minimum data migration speed. So, it also needs a portion of network
bandwidth to finish the data migration with respect to the scaling deadline.

However, the amount of network bandwidth is finite in a system. Naturally, it is not
wise to have the system very much over-provisioned, since we need to pay every resource
that we adopted (under the scenario of Cloud computing). Thus, we consider not only the
service quality achieved, but also the overall resource utilization as another factor. Then,
the challenge is how to provision a distributed storage system efficiently (without too much
over-provisioning) and, how to arbitrate the limited bandwidth resources between client
workload and data migration to preserve system performance as well as the scaling dead-
line.

In this section, we present the analytical and empirical models to tackle the issue of
data migration while the storage system scales out/in. Our research answers the following
questions:

1. what is the role and effect of data migration during the scaling of a distributed storage
system;

2. how to prevent performance degradation when scaling out/in the system involves
data migration;

3. with limited amount of resources, what is the best time to start data migration in order
to finish a specific scaling command on time under the current status of the system
and the current/predicted workload;
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Figure 5.12 – Observation of SLO violations during scaling up. (a) denotes a simple
increasing workload pattern; (b) scales up the system using a proactive approach; (c)

scales up the system using a reactive approach

4. can we minimize the provisioning cost by increasing the resource utilization.

Observations

It is challenging to achieve elasticity in a distributed storage system with respect to a strict
service quality guarantee (SLO) [30]. There are two major reasons. One reason is that
scaling a storage system requires data migration, which introduces an additional overhead
to the system. The other reason is that the scaling is often associated with delays. To be
specific, adding or removing servers cannot be completed immediately because of the delay
caused by data migration.

We setup experiments to validate the above argument with a simple workload pattern
described in Figure 5.12 (a). The experiment is designed as simple as possible to demon-
strate the idea. Specifically, we assume a perfect prediction of the workload patterns in a
prediction based elasticity controller and a perfect monitor of the workload in a feedback
based elasticity controller. The elasticity controllers try to add storage instances to cope
with the workload increase in Figure 5.12 (a) to keep the low latency of requests defined
in SLOs. Figure 5.12 (b) and Figure 5.12 (c) present the latency outcome using naive pre-
diction and feedback based elasticity controller respectively. Several essential observations
can be formalized from the experiments.

It is not always the workload that causes SLO violations. Typically, a prediction
based elasticity control tries to bring up the capacity of the storage cluster before the actual
workload increase. In Figure 5.12 (b), a prediction based controller tries to add instances
at control period 8. We observe the SLO violation during this period because of the extra
overhead, i,e, data migration, imposed on the system when adding storage instances. The
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violation is caused by the data transfer process, which competes with client requests in
terms of servers’ CPUs, I/Os, and especially network bandwidths.

Another interesting observation can be seen from Figure 5.12 (c), which simulates the
scaling of the system using a feedback approach. It shows that scaling up after seeing a
workload peak (at control period 9) is too late. The SLO violation is observed because
the newly added instances cannot serve the increased workload immediately. Specifically,
proper portion of data needs to be copied to the newly added instances before they can serve
the workload. Worse, adding instances at the last moment will even aggravate the SLO
violation because of the scaling overhead like in the previous case. Thus, it is necessary to
scale the system before the workload changes.

A prediction based (proactive) elasticity controller is able to prepare the instances
in advance and avoid performance degradation/SLO violations if the scaling overhead
is properly handled. However, the accuracy of workload prediction largely depends on
application-specific access patterns. Even using Wikipedia workload [115] where the pat-
tern is very predictable, an certain amount of prediction errors are expected. Worse, in
some cases workload patterns are not even predictable. Thus, proper methods need to be
designed and applied to deal with the workload prediction inaccuracies, which directly in-
fluences the accuracy of scaling that in turn impacts SLO guarantees and the provisioning
costs.

The feedback based (reactive) approach, on the other hand, can scale the system with
a good accuracy since scaling is based on observed workload characteristics. However, a
major disadvantage of this approach is that the system reacts to workload changes only
after it is observed. As a result, SLO violations are observed in the initial phase of scaling
because of data migration overhead in order to add/remove instances in the system.

In essence, it is not hard to discover that proactive and reactive approach complement
each other. Proactive approach provides an estimation of future workloads giving a con-
troller enough time to prepare and react to the changes but having the problem of prediction
inaccuracy. Reactive approach brings an accurate reaction based on current state of the sys-
tem but without leaving enough time for the controller to execute scaling decisions.

Based on these observations, we propose an elasticity controller for distributed stor-
age systems named ProRenaTa, which combines proactive and reactive approaches with
explicit consideration of data migration overhead during scaling.

5.3.1 Performance Models in ProRenaTa

The performance model correlates the capacity of a storage server to handle a specific
amount of workload, in terms of read/write requests per second, under the requirement of
latency SLO. Different models can be built for different flavors of servers using the same
profiling method. Then, we use it to calculate the minimum number of servers that is
needed to meet the SLO requirements under a certain workload.

The simplest case in the model is demonstrated with the black solid curve shown in
Figure 5.13. It represents the scenario where there is no data migration activity in the sys-
tem. The workload is transformed to the request rate of read and write operations. Under
a specified latency SLO constraint, a server can be in 2 states: satisfy SLO (under the SLO

105



CHAPTER 5. ACHIEVING PREDICTABLE PERFORMANCE ON DISTRIBUTED STORAGE
SYSTEMS WITH DYNAMIC WORKLOADS

Figure 5.13 – Data migration model under throughput and SLO constraints

border in the figure) or violate SLO (beyond the SLO border in the figure). We would like
to have servers to be utilized just under the SLO border to have a high resource utilization
while guaranteeing the SLO requirements. The performance model takes a specific work-
load as input and outputs the minimum number of storage servers that is needed to handle
it under the SLO. It is calculated by finding the minimum number of servers that results in
the load on each server (Workload/NumberOfServers) closest to and under the SLO
border in Figure 5.13.

In the real experiment, we have setup a small margin for over-provisioning. It is used
to guarantee the service quality, but also leaves some spare capacity for data migration
during scaling up/down. This margin is set to 2 servers in our later experiment and it can
be configured differently case by case in order to tradeoff the scaling speed and the SLO
commitment with resource utilization.

When data migration comes to affect, the corresponding curves in Figure 5.13 represent
the maximum data migration speed that can be spared for scaling activities without com-
promising the SLO under the current workload. It is calculated by estimating an average
workload served by each server (Workload/NumberOfServers) under current work-
load and cluster setup. Then, the workload is mapped to a point in the performance model
shown in Figure 5.13. The closest border below this data point indicates the data migration
speed that can be offered without sacrificing the SLO. With the maximum data migration
speed obtained, the time to finish a scaling plan can be calculated.

The Analytical Model

We consider a distributed storage system that runs in a Cloud environment and uses ProRe-
naTa to achieve elasticity while respecting the latency SLO. The storage system is orga-
nized using DHT and virtual tokens are implemented. Using virtual tokens in a distributed
storage system provides it with the following properties: 1. The amount of data stored in
each physical server is proportional to its capability. 2. The amount of workload distributed
to each physical server is proportional to its capability. 3. If enough bandwidth is given,
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the data migration speed from/to a instance is proportional to its capability.
At time t, Let D be the amount of data stored in the storage system. We consider

that the amount of data is very large so that reads and writes in the storage system during
a small period do not significantly influence the data amount stored in the system. We
assume that, at time t, there are N storage instances. For simplicity, here we consider
that the storage instances are homogeneous. Let C represents the capability of each storage
instance. Specifically, the maximum read capacity in requests per second and write capacity
in requests per second is represented by α∗C and β ∗C respectively under the SLO latency
constraint. The value of α and β can be obtained empirically from a trained performance
model as shown in Figure 5.13.

Let L denotes the current workload in the system. Therefore, α
′ ∗ L are read requests

and β
′ ∗ L are write requests. Under the assumption of uniform workload distribution, the

read and write workload served by each physical server is α
′ ∗ L/N and β

′ ∗ L/N respec-
tively. We define function f to be our data migration model. It outputs the maximum data
migration rate that can be obtained under the current system load without compromising
the latency SLO. Thus, function f depends on system load (α

′ ∗ L/N, β′ ∗ L/N ), server
capability (α ∗ C, β ∗ C) and the latency SLO (SLOlatency).

We denote the predicted workload as Lpredicted. According to the performance model
introduced in the previous section, we know that a scaling plan in terms of adding or remov-
ing instances can be calculated. Let us consider a scaling plan that needs to add or remove
n instances. When adding instances, n is a positive value and when removing instances, n
is a negative value.

First, we calculate the amount of data that needs to be reallocated. It can be expressed
by the difference of the amount of data hosted on each storage instance before scaling and
after scaling. Since all the storage instances are homogeneous, the amount of data stored
in each storage instance before scaling is D/N . And the amount of data stored in each
storage instance after scaling is D/(N + n). Thus, the amount of data that needs to be
migrated can be calculated as |D/N −D/(N + n)| ∗ N , where |D/N −D/(N + n)| is
for a single instance. Given the maximum speed that can be used for data migration (f())
on each instance, the time needed to carry out the scaling plan can be calculated.

Timescale =
|D
N
− D

(N+n) |

f(α∗C,β∗C,α
′ ∗L
N

,β
′ ∗L
N

,SLOlatency)
The workload intensity during the scaling in the above formula is assumed to be con-

stant L. However, it is not the case in the real system. The evolving pattern of the workload
during scaling is application specific and sometimes hard to predict. For simplicity, we
assume a linear evolving pattern of the workload between before scaling and after scaling.
However, any workload evolving pattern during scaling can be given to the data migration
controller with little adjustment. Remind that the foreseeing workload is Lpredicted and the
current workload is L. If a linear changing of workload is assumed from L to Lpredicted,
using basic calculus, it is easy to know that the effective workload during the scaling time is
the average workload Leffective = (L+ Lpredicted)/2. The time needed to conduct a scal-
ing plan can be calculated using the above formula with the effective workload Leffective.

We can obtain α and β from the performance model for any instance flavor. α
′

and β
′

are obtained from workload monitors. Then, the problem left is to find a proper function
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Figure 5.14 – ProRenaTa control framework

f that defines the data migration speed under certain system setup and workload condition
with respect to latency SLO constraint. The function f is obtained using the empirical
model explained in section 5.3.1.

5.3.2 Design of ProRenaTa

Figure 5.14 shows the architecture of ProRenaTa. It follows the idea of MAPE-K (Monitor,
Analysis, Plan, Execute - Knowledge) control loop with some customizations and improve-
ments.

Monitor

The arrival rate of reads and writes on each server is monitored and defined as input work-
load in ProRenaTa. Then, the workload is fed to two modules: workload pre-processing
and ProRenaTa scheduler.

Workload pre-process: The workload pre-processing module aggregates the mon-
itored workload in a predefined window interval. We define this interval as smoothing
window (SW). The granularity of SW depends on workload patterns. Very large SW will
smooth out transient/sudden workload changes while very small SW will cause oscillation
in scaling. The size of SW in ProRenaTa can be configured in order to adjust to different
workload patterns.

The monitored workload is also fed to ProRenaTa scheduler to estimate the utilization
of the system and calculate the spare capacity that can be used to handle scaling overhead.
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Analysis

Workload prediction: The pre-processed workload is forwarded to the workload predic-
tion module for workload forecasting. Workload prediction is conducted every prediction
window (PW). Specifically, at the beginning of each PW, the prediction module forecasts
the workload intensity at the end of the current PW. Workload pre-processing provides an
aggregated workload intensity at the beginning of each SW. In our setup, SW and PW have
the same size and are synchronized. The output of the prediction module is an aggregated
workload intensity marked with a time stamp that indicates the deadline for the scaling
to match such workload. Workload aggregations and predictions are conducted at a key
granularity. The aggregation of the predicted workload intensity on all the keys is the total
workload, which is forwarded to the proactive scheduler and the reactive scheduler. The
prediction methods will be explained in Section 5.3.3.

Plan

Proactive scheduler: The Proactive scheduler calculates the number of instances needed
in the next PW using the performance model in Section 5.3.1. Then, it sends the number of
instances to be added/removed to the ProRenaTa scheduler.

Reactive scheduler: The reactive scheduler in ProRenaTa is different from those that
reacts on monitored system metrics. Our reactive scheduler is used to correct the inaccu-
rate scaling of the system caused by the inaccuracy of the workload prediction. It takes
in the pre-processed workload and the predicted workload. The pre-processed workload
represents the current system status while the predicted workload is a forecast of workload
in a PW. The reactive scheduler stores the predicted workload at the beginning of each
PW and compares the predicted workload with the observed workload at the end of each
PW. The difference from the predicted value and the observed value represents the scaling
inaccuracy. Using the differences of the predicted value and the observed value as an in-
put signal instead of monitored system metrics guarantees that the reactive scheduler can
operate along with the proactive scheduler and not get biased because of the scaling activi-
ties from the proactive scheduler. The scaling inaccuracy, i,e, workload difference between
prediction and reality, needs to be amended when it exceeds a threshold calculated by the
throughput performance model. If scaling adjustments are needed, the number of instances
that need to be added/removed is sent to the ProRenaTa scheduler.

ProRenaTa scheduler: The major task for ProRenaTa scheduler is to effectively and
efficiently conduct the scaling plan for the future (provided by the proactive scheduler) and
the scaling adjustment for now (provided by the reactive scheduler). It is possible that the
scaling decision from the proactive scheduler and the reactive scheduler are contradictory.
ProRenaTa scheduler solves this problem by consulting the data migration model as shown
in Figure 5.13, which quantifies the spare system capacity that can be used to handle the
scaling overhead. The data migration model estimates the time needed to finish a scaling
decision taking into account the current system status and SLO constraints explained in
Section 5.3.1. Assume that the start time of a PW is ts and the end time of a PW is te. The
scaling plan from the reactive controller needs to be carried out at ts while the scaling plan
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Figure 5.15 – Scheduling of reactive and proactive scaling plans

from the proactive controller needs to be finished before te. Assume the workload intensity
at ts and te isWs andWe respectively. We assume a linear evolving model between current
workload intensity and the future workload intensity. Thus, workload intensity at time t in
a PW can be calculated by W (t) = γ ∗ t + Ws where γ = (We − Ws)/(te − ts). let
Planr and Planp represent the scaling plan from the reactive controller and the proactive
controller respectively. Specifically, a Plan is an integer number that denotes the number
of instances that needs to be added or removed. Instances are added when Plan is positive,
or removed when Plan is negative. Note that the plan of the proactive controller needs to
be conducted based on the completion of the reactive controller. It means that the actual
plan that needs to be carried out by the proactive plan is Plan

′
p = |Planp−Planr|. Given

workload intensity and a scaling plan to the data migration model, it needs Tr and Tp to
finish the scaling plan from the reactive controller and the proactive controller respectively.

We assume that Tr < (te−ts)&&Tp < (te−ts), i,e, the scaling decision by either of the
controller alone can be carried out within a PW. This can be guaranteed by understanding
the applications’ workload patterns and tuning the size of PW accordingly. However, it
is not guaranteed that (Tr + Tp) < (te − ts), i,e, the scaling plan from both controllers
may not get finished without having an overlapping period within a PW. This interference
needs to be prevented because having two controllers being active during an overlapping
period violates the assumption, which defines only current system workload influence data
migration time, in the data migration model.

In order to achieve the efficient usage of resources, ProRenaTa conducts the scaling
plan from the proactive controller at the very last possible moment. In contrast, the scaling
plan of the reactive controller needs to be conducted immediately. The scaling process of
the two controllers are illustrated in Figure 5.15. Figure 5.15(a) illustrates the case when
the reactive and proactive scaling do not interfere with each other. Then, both plans are
carried out by the ProRenaTa scheduler. Figure 5.15(b) shows the case when the system
cannot support the scaling decisions of both reactive and proactive controller. Then, only
the difference of the two plans (|Planr − |Planp − Planr||) is carried out. And this plan
is regarded as a proactive plan and scheduled to be finished at the end of this PW.

Execute
Scaling actuator: Execution of the scaling plan from ProRenaTa scheduler is carried out
by the scaling actuator, which interacts with the underlying storage system. Specifically,
it calls add server or remove server APIs exposed by the storage system and controls the
data migration among storage servers. The quota used for data migration among servers
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are calculated by Prerenata scheduler and indicated to the actuator. The actuator limits the
quota for data migration on each storage servers using BwMan [116], which is a bandwidth
manager that allocates bandwidth quotas to different services running on different ports as
presented in the previous Section. In essence, BwMan uses Netem tc tools to control the
traffic on each storage server’s network interface.

Knowledge

To facilitate the decision making to achieve elasticity in ProRenaTa, there are two knowl-
edge bases. The first one is the performance model presented in Section 5.3.1, which
correlates the server’s capability of serving read and write requests under the constraint of
latency SLO. In addition, the model is also able to quantify the spare capacity that can be
used to handle data migration overhead while performing system resizing. The last one
is the monitoring, which provides real-time workload information, including composition
and intensity, in the system to facilitate the decision making in ProRenaTa.

Figure 5.16 illustrates the control flow of ProRenaTa. In the procedure of Proactive
Control as shown in algorithm (a), PW.Ti+1 is the predicted workload at Ti+1, namely the
start of the next control interval. The workload prediction algorithm (workloadPrediction())
is presented in later in Figure 5.17 and Figure 5.18. A positive value of ∆VMs.Ti+1 indi-
cates the number of VMs to launch (scale up). A negative value of ∆VMs.Ti+1 indicates
the number of VMs to remove (scale down). Similarly, in the procedure of Reactive Control
as shown in algorithm (b), W.Ti is the workload observed at Ti, using which we are able
to correct the error caused by the proactive controller. ProRenaTa Scheduler as shown in
algorithm (c) integrates and conducts the decisions from proactive and reactive controller.
Specifically, it first calculates the resources (RS.Ti) currently available in the system, to
reason about the maximum data rebalance speed at Ti under the constraint of maintaining
the latency SLO. T.p and T.r are the time to finish data rebalance using the maximum pos-
sible rebalance speed for proactive and reactive scaling respectively. The decision from the
proactive controller is scheduled to the latest possible time to meet the workload in the next
control period while the decision from the reactive controller is scheduled immediately.
Furthermore, the scheduler also calculates that whether the decisions from both controllers
contradict with each other and cannot be accomplished within a control period. Then, the
two scaling plans are merged.

5.3.3 Workload Prediction in ProRenaTa

We apply wikipedia workload as a use case for ProRenaTa. The prediction of wikipedia
workload is a specific problem that does not exactly fit the common prediction techniques
found in literature. This is due to the special characteristics of the workload. On the one
hand, the workload associated can be highly periodic, which means that the use of the
context (past samples), will be effective for making an estimation of the demand. On the
other hand the workload time series may have components that are difficult to model with
demand peaks that are random. Although the demand peaks might have a periodic compo-
nent (for instance a week), the fact that the amplitude is random, makes the use of linear

111



CHAPTER 5. ACHIEVING PREDICTABLE PERFORMANCE ON DISTRIBUTED STORAGE
SYSTEMS WITH DYNAMIC WORKLOADS

Data: Workload trace, Trace
Result: Number of VMs to add or remove for the next control period
/* Program starts at time Ti */

PW.Ti+1 ←workloadPrediction(Trace)
VMs.Ti+1 ←throughputModel(PW.Ti+1)
∆VMs.Ti+1 ← VMs.Ti+1 − VMs.Ti

(a) ProRenaTa Proactive Control

Data: Observed workload, W.Ti
Result: Number of VMs to add or remove currently
/* Program starts at time Ti */

∆W.Ti ←W.Ti − PW.Ti
δVMs.Ti ← throughputModel(∆W.Ti)

(b) ProRenaTa Reactive Control

Data: Number of VMs to add and remove from Proactive and Reactive Controller
Result: System resizes
/* Program starts at time Ti */

RS.Ti ← dataMigrationModel(Ti)
/* RS.Ti is available bandwidth for data migration */

T.p←analyticalModel(∆VMs.Ti+1, RS.Ti)
T.r ←analyticalModel(δVMs.Ti, RS.Ti)
if T.p+ T.r > Ti+1 − Ti then
VMsToChange← ∆VMs.Ti+1 + δVMs.Ti

t←analyticalModel(VMsToChange, RS.Ti)
TimeToAct← Ti+1 − t
/* WaitUntil TimeToAct */

ConductSystemResize(VMsToChange)
else

ConductSystemResize(δVMs.Ti)
TimeToAct← Ti+1 − T.p
/* WaitUntil TimeToAct */

ConductSystemResize(∆VMs.Ti+1)
end

(c) ProRenaTa Scheduler

Figure 5.16 – ProRenaTa Control Flow
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combination separated by week intervals unreliable. The classical methods are based on
linear combinations of inputs and old outputs with a random residual noise, and are known
as ARIMA, (Autoregressive-Integrated-Moving-Average) or Box-Jenkins models [117].

ARIMA assumes that the future observation depends on values observed a few lags in
the past, and a linear combination of a set of inputs. These inputs could be of different
origin, and the coefficients of the ARIMA model take care of both, the importance of the
observation to the forecast, and the scaling in case that the input has different units than
the output. However, an important limitation of the ARIMA framework is that it assumes
that the random component of the forecasting model is limited to the residual noise. This is
a strong limitation because the randomness in the forecasting of workload, is also present
in the amplitude/height of the peaks. Other prediction methodologies are based on hybrid
methods that combine the ideas from ARIMA, with non-linear methods such as Neural Net-
works, which do not make hypothesis about the input-output relationships of the functions
to be estimated. See for instance [118]. The hybrid time series prediction methods use Neu-
ral Netwoks or similar techniques for modeling possible non-linear relationships between
the past and input samples and the sample to be predicted. Both methods, ARIMA and a
hybrid method assume that the time series is stationary, and that the random component is
a residual error, which is not the case of the workload time series.

Representative workload types

We categorize the workload to a few generic representative types. These categories are
important because they justify the architecture of the prediction algorithm we propose.
Stable load and cyclic behavior: This behaviour corresponds to a waveform that can be
understood as the sum of a few (i.e. 3 or 4) sinusoids plus a random component which can
be modeled as random noise. The stable load and cyclic behavior category models key-
words that have a clear daily structure, with a repetitive structure of maxima and minima.
This category will be dealt with a short time forecast model.
Periodic peaks: This behaviour corresponds to peaks that appear at certain intervals, which
need not be harmonics. The defining characteristic is the sudden appearance of the peaks,
which run on top of the stable load. The periodic peaks category models keywords that
have a structure that depends on a memory longer than a day, and is somehow independent
of the near past. This is the case of keywords that for instance, might be associated to a
regular event, such as chapters of a TV series that happen certain days of the week.This
category will be dealt with a long time forecast model.
Random peaks and background noise: This behaviour corresponds to either rarely sought
keywords which have a random behaviour of low amplitude or keywords that get popular
suddenly and for a short time. As this category is inherently unpredictable, unless there is
outside information available, we deal with his category using the short term forecasting
model, which accounts for a small percentage of the residual error.
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Prediction methodology
The forecasting method consists of two modules that take into account the two kind of
dependencies in the past: short term for stable load, cyclic behavior and background
noise and long term for periodic peaks.

The short term module will make an estimate of the actual value by using a Wiener
filter [119] which combines linearly a set of past samples in order to estimate a given value,
in this case, the forecasted sample. In order to make the forecast the short term module
uses information in a window of several hours. The coefficients of the linear combination
are obtained by minimizing the Mean Square Error (MSE) between the forecast and the
reference sample. The short term prediction is denoted as x̃Shrt[n]. The structure of the
filter is as follows.

x̃Shrt[n+NFrHr] =
LShrt∑
i=0

wix[n− i]

where; LShrt is the length of the Wiener filter,NFrHr is the forecasting horizon, x[n] is the
n-th sample of the time series, and wi is the i-th coefficient of the Wiener filter. Also, as
the behaviour of the time series is not stationary, we recompute the weights of the Wiener
filter forecaster when the prediction error (MSE) increases for certain length of time [119].

The long term module x̃Lng[n] takes into account the fact that there are periodic and
sudden rises in the value to be forecasted. These sudden rises depend on the past values
by a number of samples much higher than the number of past samples of the short term
predictor LShrt. These rises in demand have an amplitude higher than the rest of the time
series, and take a random value with a variance that empirically has been found to be
variable in time. We denote these periodicities as a set

{
P0 . . . PNp

}
, where Pi indicates

the i-th periodicity in the sampling frequency and Np the total number of periodicities.
Empirically, in a window of one month, the periodicities of a given time series were found
to be stable in most cases, i.e. although the variance of the peaks changed, the values of Pi
were stable. In order to make this forecast, we generated a train of periodic peaks, with an
amplitude determined by the mean value taken by the time series at different past periods.
This assumes a prediction model with a structure similar to the auto-regressive (AR), which
combines linearly past values at given lags. The structure of this filter is

x̃Lng[n+NFrHr] =
Np∑
i=0

Lj∑
j=0

hi,jx[n− jPi]

where, NFrHr is the forecasting horizon, Np is the total number of periodicities, Lj is the
number of weighted samples of the i-th periodicity, hi,j is the weight of each sample used
in the estimation, x[n] is the n-th sample of the time series. We do not use the moving
average (MA) component, which presupposes external inputs. A model that takes into
account external features, should incorporate a MA component.

The final estimation is as follows:

x̃[n+NFrHr] =
{
x̃Lng[n+NFrHr] if n+NFrHr = k0Pi
x̃Shrt[n+NFrHr] if n+NFrHr 6= k0Pi
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where the decision on the forecast to use is based on testing if n+NFrHr is a multiple of
any of the periodicities Pi .

Implementation of Predictors
Short term forecast the short term component is initially computed using as data the es-
timation segment, that is the same initial segment used in order to determine the set of
periods Pi of the long term forecaster. On the forecasting component of the data, the values
of the weights wi of the Wiener filter are updated when the forecasting error increases for a
certain length of time. This assumes a time series with a statistical properties that vary with
time. The procedure for determining the update policy of the Wiener filter is the following:
first the forecasting error at a given moment

Error[n] = |x̃[n]− x[n]|2

note that this is computed considering a delay equal to the forecasting horizon NFrHr, that
is x̃[n] is compute form the set of samples: {x[n−NFrHr] . . . x[n−NFrHr − LShrt]}.
In order to decide when to update the coefficients of the Wiener filter, we compute a long
term MSE and a short term MSE by means of an exponential window. Computing the
mean value by means of an exponential window is justified because it gives more weight to
the near past. The actual computation of the MSE at moment n, weights the instantaneous
error Error[n], with the preceding MSE at n − 1. The decision variable Des[n] is the
ratio between the long term MSE at moment n MSElng[n] and the the short term MSE at
moment n MSEsrt[n] :

MSElng[n] = (1− αlng)Error[n] + αlngMSElng[n− 1]

MSEsrt[n] = (1− αshrt)Error[n] + αsrtMSEshrt[n− 1]

where α is the memory parameter of the exponential window, with 0 < α < 1 and for our
experiment αlng was set to 0.98, which means that the sample n − 100 is given 10 times
less weight that the actual sample and αshrt was set to 0.9, which means that the sample
n − 20 is given 10 times less weight that the actual sample. The decision value is defined
as:

Des[n] = MSElng[n]/max(1,MSEsrt[n])

if Des[n] > Thrhld it is assumed that the statistics of the time series has changed and a
new set of coefficients wi are computed for the Wiener filter. The training data sample con-
sists of the near past and are taken as {x[n] . . . x[n−MemLShrt]}. For our experiments
we took as threshold Thrhld = 10 and Mem = 10. Empirically we have found that the
performance does not change much when these values are slightly perturbed. Note that
the max() operator in the denominator of the expression that computes Des[n] prevents a
division by zero in the case of keywords with low activity.
Long term forecast In order to compute the parameters Pi of the term x̃Lng[n] we re-
served a first segment (estimation segment) of the time series and we computed the auto-
correlation function on this segment. The auto-correlation function measures the similarity
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Data: Lini
Initialization

/* Uses {x[0] . . . x[Lini]} */

Pi ← ComputeSetOfPeriodicities()
/* Pi is the set of Np long term periodicities computed in an initial

segment from the auto-correlation function. */

Li ← ValuesOfLengthForPi(Pi)
/* For this experiment Li = 2 ∀ period Pi. */

hi,j ←ValuesOfFilter(Pi,Li)
/* For this experiment hi,j = 1

Li
for 1 · · ·Li. */

(a) Initialize Long Term Module

Data: Lini
Initialization

/* Uses {x[0] . . . x[Lini]} for computing wi. */

{wi} ← InitalValuesOfPredictor()
/* Weights wi are initialized by solving the Wiener equations. */

{NFrHr, LShrt,MemLShrt} ← TopologyOfShortTermPredictor() //
{Thrhld, αsrt, αlng} ← UpDatingParamOfWienerFilter()

/* Parameters {αsrt, αlng} define the memory of the filter that smooths

the MSE, and Thrhld, is the threshold that determines the updating

policy. */

(b) Initialize Short Term Module

Figure 5.17 – ProRenaTa prediction module initialization

of the time series to itself as a function of temporal shifts and the maxima of the auto-
correlation function indicates it’s periodic components denoted by Pi. These long term pe-
riodicities are computed from the lags of the positive side of the auto-correlation function
with a value above a threshold. Also, we selected periodicities corresponding to periods
greater than 24 hours. The amplitude threshold was defined as a percentage of the auto
correlation at lag zero (i.e. the energy of the time series). Empirically we found that the
0.9 percent of the energy allowed to model the periods of interest. The weighting value
hi,j was taken as 1/Lj which gives the same weight to each of the periods used for the
estimation. The number of weighted periods Lj was selected to be two, which empirically
gave good results.

Figure 5.17 and Figure 5.18 summarizes the prediction algorithms of ProRenaTa.
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Data: wi, NFrHr, x
x̃Shrt[n+NFrHr] =

∑LShrt
i=0 wix[n− i]

/* Compute x̃Shrt[n + NFrHr] from a linear combination of the data in a

window of length LShrt. */

(a) Short Term Prediction

Initialization
Error[n] = |x̃[n]− x[n]|2
MSElng[n] = (1− αlng)Error[n] + αlngMSElng[n− 1]
MSEsrt[n] = (1− αshrt)Error[n] + αsrtMSEshrt[n− 1]
Des[n] = MSElng[n]/max(1,MSEsrt[n])
/* Estimation of the short term and long term value of the MSE, and

the decision variable Des[n]. */

if Des[n] > Thrhld then
Compute values of the Wiener filter using data {x[n] . . . x[n−MemLShrt]}

end

(b) Update Short Term Predictor

Data: hi,j , Pi, Li, x
x̃Lng[n+NFrHr] =

∑Np
i=0

∑Lj
j=0 hi,jx[n− jPi]

/* Compute x̃Lng[n + NFrHr] from a linear combination of the data in a

window of length corresponding to the periods Pi. */

(c) Long Term Prediction

x̃[n+NFrHr] =
{
x̃Lng[n+NFrHr] if n+NFrHr = k0Pi
x̃Shrt[n+NFrHr] if n+NFrHr 6= k0Pi

(d) Final Estimation

Figure 5.18 – ProRenaTa prediction algorithm
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Table 5.2 – GlobLease and workload generator setups

Specifications GlobLease VMs Workload VMs
Instance Type m1.medium m1.xlarge
CPUs Intel Xeon 2.8 GHz*2 Intel Xeon 2.0 GHz*8
Memory 4 GiB 16 GiB
OS Ubuntu 14.04 Ubuntu 14.04
Instance Number 5 to 20 5 to 10

5.3.4 Evaluation of ProRenaTa

we present the evaluation of ProRenaTa elasticity controller using a workload synthesized
from Wikipedia access logs from 2009/03/08 to 2009/03/22. The access traces are available
online [115]. We first present the setup of the storage system (GlobLease as presented
in Section 4.1) and the implementation of a workload generator. Then, we present the
evaluation results of ProRenaTa and compare its latency SLO commitments and overall
resource utilization against feedback and prediction based elasticity controllers, which act
as baselines.

Deployment of the storage system

GlobLease [12] is deployed on a private OpenStack Cloud platform. Homogeneous virtual
machine instance types are used in the experiment for simplicity. It can be extended to
heterogeneous scheduling by profiling capabilities of different instances types using the
methodology described in Section 5.3.1. Table 5.2 presents the virtual machine setups for
GlobLease and the workload generator.

Workload generator

We implemented a workload generator in JAVA that generates workloads with different
compositions and intensities to GlobLease. To setup the workload, a couple of config-
uration parameters are fed to the workload generator including the workload trace from
Wikipedia, the number of client threads, and the server addresses of GlobLease.

Construction of the workload from raw Wikipedia access logs. The access logs
from Wikepedia provide the number of accesses to each page every 1 hour. The first step to
prepare a workload trace is to remove the noise in accesses. We removed non-meaningful
pages such as "Main_Page", "Special:Search", "Special:Random", etc from the logs, which
contributes to a large portion of accesses and skews the workload pattern. Then, we chose
the 5% most accessed pages in the trace and abandoned the rest. There are two reasons
for this choice: First, these 5% popular keys constructs nearly 80% of the total workload.
Second, access patterns of these top 5% keys are more interesting to investigate while
the remaining 95% of the keys are mostly with 1 or 2 accesses per hour and very likely
remain inactive in the following hours. After fixing the composition of the workload, since
Wikipedia logs only provide page views, i,e, read accesses, we randomly chose 5% of these
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Table 5.3 – Wikipedia Workload Parameters

Concurrent clients 50
Request per second roughly 3000 to 7000
Size of the namespace around 100,000 keys
Size of the value 10 KB

accesses and transformed them as write operations. Then, the workload file is shuffled and
provided to the workload generator. We assume that the arrivals of clients during every hour
follow a Poisson distribution. This assumption is implemented in preparing the workload
file by randomly placing accesses with a Poisson arrival intensity smoothed with a 1 minute
window. Specifically, 1 hour workload has 60 such windows and the workload intensities
of these 60 windows form a Poisson distribution. When the workload generator reads the
workload file, it reads the whole accesses in 1 window and averages the request rate in
this window, then plays them against the storage system. We do not have the information
regarding the size of each page from the logs, thus, we assume that the size of each page
is 10 KB. We observe that the prepared workload is not able to saturate GlobLease if the
trace is played in 1 hour. So, we intensify the workload by playing the trace in 10 minutes
instead.

The number of client threads defines the number of concurrent requests to GlobLease
in a short interval. We configured the concurrent client threads as 50 in our experiment.
The size of the interval is calculated as the ratio of the number of client threads over the
workload intensity.

The setup of GlobLease provides the addresses of the storage nodes to the workload
generator. Note that the setup of GlobLease is dynamically adjusted by the elasticity con-
trollers during the experiment. Our workload generator also implements a load balancer
that is aware of the setup changes from a programmed/hard-coded notification message
sent by the elasticity controllers (actuators). Table 5.3 summaries the parameters config-
ured in the workload generator.

Handling data transfer

Like most distributed storage systems, GlobLease implements data transfer from nodes
to nodes in a greedy fashion, which stresses the available network bandwidth. In order
to guarantee the SLO latency of the system, we control the network resources used for
data transfer using BwMan, which is presented in Section 5.2. The amount of available
network resources allocated for data transfer is calculated using the data migration model
in ProRenaTa.

Evaluation results

We compare ProRenaTa with two baseline approaches: feedback and prediction-based elas-
ticity controller. Most recent feedback-based auto-scaling literature on distributed storage
systems are [70, 30, 68, 120]. These systems correlate monitored metrics (CPU, workload,
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response time) to a target parameter (service latency or throughput). Then, they periodically
evaluate the monitored metrics to verify the commitment to the SLO latency. Whenever
the monitored metrics indicate a violation of the service quality or a waste of provisioned
resources, the system decides to scale up/down correspondingly. Our implementation of
the feedback control for comparison relies on similar approach and represents the current
state of the art in feedback control. Our feedback controller is built using the throughput
model described in section 5.3.1. Dynamic reconfiguration of the system is performed at
the beginning of each control window to match the averaged workload collected during the
previous control window.

Most recent prediction-based auto-scaling work are [74, 78, 76]. These systems predict
interested metrics. With the predicted value of the metrics, they scale their target sys-
tems accordingly to match the desired performance. We implemented our prediction-based
controller in a similar way by predicting the interested metric (workload) described in sec-
tion 5.3.3. Then, the predicted value is mapped to system performance using an empirical
performance model described in section 5.3.1. Our implementation closely represents the
existing state of the art for prediction based controller. System reconfiguration is carried
out at the beginning of the control window based on the predicted workload intensity for
the next control period. Specifically, if the workload increase warrants addition of servers,
it is performed at the beginning of the current window. However, if the workload decreases,
the removal of servers are performed at the beginning of the next window to ensure SLO.
Conflicts may happen at the beginning of some windows because of a workload decrease
followed by a workload increase. This is solved by simply adding/merging the scaling
decisions.

ProRenaTa combines both feedback control and prediction-based control but with more
sophisticated modeling and scheduling. Prediction-based control gives ProRenaTa enough
time to schedule system reconfiguration under the constraint of the SLO latency. The scal-
ing is carried out at the last possible moment in a control window under the constraint
of SLO latency provided by the scaling overhead model described in Section 5.3.1. This
model guarantees ProRenaTa with less SLO violations and better resource utilization. In
the meantime, feedback control is used to adjust the prediction error at the beginning of
each control window. The scheduling of predicted actions and feedback actions is handled
by ProRenaTa scheduler.

In addition, we also compare ProRenaTa with an ideal case. The ideal case is imple-
mented using a theoretically perfect elasticity controller, which knows the future workload,
i,e, predicts the workload perfectly. The ideal also uses ProRenaTa scheduler to scale the
cluster. So, comparing to the prediction based approach, the ideal case not only uses more
accurate prediction results but also uses better scheduling, i,e, the ProRenaTa scheduler.

Performance overview

Here, we present the evaluation results using the aforementioned 4 approaches with the
Wikipedia workload trace from 2009/03/08 to 2009/03/22. We select performance metric
to be the 95th percentile request latency aggregated each hour. Also, we consider service
provisioning cost by introducing another performance metric, which is the aggregated CPU
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Figure 5.19 – Aggregated CDF of latency for different approaches

utilization of all GlobLease nodes.
SLO commitment. Figure 5.19 presents the cumulative distribution of 95 percentile

latency by running the simulated Wikipedia workload from 2009/03/08 to 2009/03/22. The
vertical red line demonstrates the SLO latency that each elasticity controller tries to main-
tain.

We observe that the feedback approach results in the most SLO violations. This is
because the algorithm reacts only when it observes the actual workload changes, which
is usually too late for a stateful system to scale. This effect is more obvious when the
workload is increasing. The scaling overhead along with the workload increases lead to
a large percent of high latency requests. ProRenaTa and the prediction-based approach
achieve nearly the same SLO commitments as shown in Figure 5.19. This is because we
have an accurate workload prediction algorithm presented in 5.3.3. And, the prediction-
based algorithms try to reconfigure the system before the actual workload comes, leaving
the system enough time and resources to scale. However, we shown in the next section
that the prediction-based approach does not efficiently use the resources, i,e, CPU, which
results in more provision cost.

CPU utilization. Figure 5.20 shows the cumulative distribution of the aggregated CPU
utilization on all the storage servers by running the two weeks simulated Wikipedia work-
load. It shows that some servers in the feedback approach are under utilized (20% to 50%),
which leads to high provision cost, and some are saturated (above 80%), which causes SLO
violations. This CPU utilization pattern matches the nature of reactive approach, i,e, the
system only reacts to the changing workload when it is observed. In the case of workload
increase, the increased workloads usually saturate the system before it reacts. Worse, by
adding storage servers at this point, the data migration overhead among servers aggravate
the saturation. This scenario contributes to the portion of saturated CPU utilization in the
figure. On the other hand, in the case of workload decrease, the excess servers are removed
only in the beginning of the next control period. This causes CPU to be under utilized.

It is shown in figure 5.20 that a large portion of servers remain under utilized when
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Figure 5.20 – Aggregated CDF of CPU utilization for different approaches

using the prediction based elasticity control. This is because of the prediction-based control
algorithm. Specifically, in order to guarantee SLO, in the case of workload increase, servers
are added in the previous control period while in the case of workload decrease, servers
are removed in the next control period. Note that the CPU statistics are collected every
second on all the storage servers. Thus, the provisioning margin between control periods
contributes to the large portion of under utilized CPUs.

In comparison with the feedback or prediction based approach, ProRenaTa is smarter
in controlling the system. Figure 5.20 shows that most servers in ProRenaTa have a CPU
utilization from 50% to 80%, which results in a reasonable request latency that satisfies the
SLO. Under/over utilized CPUs are alleviated by the feedback mechanism that corrects the
prediction errors. Furthermore, there is much less over provision margins observed in the
prediction based approach because of the data migration model. ProRenaTa assesses and
predicts system spare capacity in the coming control period and schedules system reconfig-
urations (scale up/down) to an optimized time (not in the beginning or the end of the control
period). This optimized scheduling is calculated based on the data migration overhead of
the scaling plan as explained in Section 5.3.1. All these mechanisms in ProRenaTa leads to
an optimized resource utilization with respect to SLO commitment.

Detailed performance analysis

In the previous section, we presented the aggregated statistics about SLO commitment
and CPU utilization by playing a 2 weeks Wikipedia access trace using four different ap-
proaches. In this section, we zoom in the experiment by looking at the collected data
during 48 hours. This 48 hours time series provides more insights into understanding the
circumstances that different approaches tend to violate the SLO latency.

Workload pattern. Figure 5.21 (a) shows the workload pattern and intensity during 48
hours. The solid line presents the actual workload from the trace and the dashed line depicts
the predicted workload intensity by our prediction algorithm presented in Section 5.3.3.

122



5.3. PRORENATA

Figure 5.21 – Actual workload and predicted workload and aggregated VM hours used
corresponding to the workload

Total VM hours used. Figure 5.21 (b) demonstrates the aggregated VM hours used for
each approach under the workload presented in Figure 5.21 (a) during 48 hours. The ideal
provisioning is simulated by knowing the actual workload trace beforehand and feeding
it to the ProRenaTa scheduler, which generates an optimized scaling plan in terms of the
timing of scaling that takes into account the scaling overhead. It is shown that ProRenaTa is
very close to the VM hours used by the ideal case. On the other hand, the predict approach
has consumed more VMs during this 48 hours, which leads to high provisioning cost. The
feedback approach has allocated too few VMs, which has caused a lot of SLO latency
violations shown in Figure 5.19.

SLO commitment. Figure 5.22 presents the comparison of SLO achievement using
the ideal approach (a), the feedback approach (b) and the prediction based approach (c)
compared to ProRenaTa under the workload described in Figure 5.21 (a). Compared to
the ideal case, ProRenaTa violates SLO when the workload increases sharply. The SLO
commitments are met in the next control period. The feedback approach on the other hand
causes severe SLO violation when the workload increases. ProRenaTa takes into account
the scaling overhead and takes actions in advance with the help of workload prediction,
which gives it advantages in reducing the violation in terms of extend and period. In com-
parison with the prediction based approach, both approaches achieve more or less the same
SLO commitment because of the pre-allocation of servers before the workload occurs.
However, it is shown in Figure 5.20 that the prediction based approach cannot use CPU
resource efficiently.
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Figure 5.22 – SLO commitment comparing ideal, feedback and predict approaches with
ProRenaTa

Figure 5.23 – Utility for different approaches

Utility Measure

An efficient elasticity controller must be able to achieve high CPU utilization and at the
same time guarantee latency SLO commitments. Since achieving low latency and high
CPU utilization are contradictory goals, the utility measure needs to capture the goodness
in achieving both these properties. While a system can outperform another in any one
of these properties, a fair comparison between different systems can be drawn only when
both the aspects are taken into account in composition. To this order, we define the utility
measure as the cost incurred:

U = VM_hours+ Penalty

Penalty = DurationOfSLOV iolations ∗ penalty_factor
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DurationOfSLOV iolations is the duration through the period of the experiment the
SLO is violated. We vary the penalty factor which captures the different cost incurred for
SLO violations. We analyze the results obtained by running a 48 hours Wikipedia workload
trace using different auto-scaling controllers. Figure 5.23 shows the utility measure for 4
different scaling approaches. Without any penalty for SLO violations, feedback approach
performs the best. But as the penalty for SLO violations increase, ProRenaTa and the ideal
approach achieve the lowest utility (cost), which is much better than both feedback and
prediction-based auto-scaling approaches.

5.3.5 Summary and Discussions of ProRenaTa

We show the limitations of using proactive or reactive approach in isolation to scale a
distributed storage system. Then, we have investigated the efficiency of an elasticity con-
troller named ProRenaTa, which combines both proactive and reactive approaches for auto-
scaling a distributed storage system. It excels the classic prediction based scaling approach
by taking into account the scaling overhead, i.e., data/state migration. It outperforms the
traditional reactive controller by efficiently and effective scheduling scaling operations in
advance, which significantly reduces SLO violations. The evaluations of ProRenaTa indi-
cate that we are able to beats the state of the art approaches by guaranteeing a higher level
of SLO commitments while also improving the overall resource utilization.

There are also limitations of ProRenaTa. First of all, like all the other prediction-based
elasticity controllers, the accuracy of workload prediction plays an essential role in the per-
formance of ProRenaTa. Specifically, a poorly predicted workload causes possibly wrong
actions from the proactive controller. As a result, severe SLO violations are expected. In
other words, ProRenaTa is not able to perform effectively without an accurate workload
prediction. Furthermore, ProRenaTa sets up a provisioning margin for data migration dur-
ing the scaling of a distributed storage system. The margin is used to guarantee a specific
scaling speed of the system. But, it leads to an extra provisioning cost. Thus, it is not
recommended to provision a storage system that does not scale frequently or does not need
to migrate a significant amount of data during scaling. In addition, the control models in
ProRenaTa are trained offline, which makes them vulnerable to unmonitored execution en-
vironment changes. Besides, the data migration model and the bandwidth actuator BwMan,
assume a well-balanced workload on each storage server. The imbalance of workload on
each server will influence the performance of ProRenaTa.

5.4 Hubbub-scale

In the previous sections, we have investigated the necessity of regulating network band-
width among activities, i.e. serving client workload or migrating data, within a server in
order to preserve the quality of service (satisfying a performance SLO). In this section, we
study the causes of performance degradation outside the server level. Specifically, we in-
vestigate performance interference of among servers, essentially virtual machines (VMs),
sharing the same host. VM performance interference happens when behavior of one VM
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Figure 5.24 – Throughput Performance Model for different levels of Interference. Red and
green points mark the detailed profiling region of SLO violation and safe operation

respectively in the case of no interference.

adversely affects the performance of another due to contention in the use of shared re-
sources in the system such as memory bandwidth, cache etc [86].

In this thesis, we skip the explanation of identifying and modeling interference from the
hosting platform or VMs. For readers interested in understanding these aspects, the detailed
explanations can be found in these three of my co-authored papers [71, 77]. My focus will
be on applying an interference index, which captures the degree of interference that a VM
is suffering and leads to performance degradation, in the scenario of elastic scaling.

In essence, data migration can be generalized as an interference imposed on the serving
of client requests. Thus, similar to ProRenaTa, we have built a performance model that cap-
tures the effect of platform interference as shown in Figure 5.24. Then, we have applied and
implemented this performance model inside of an elasticity controller, namely Hubbub-
scale. We evaluate the accuracy and effectiveness of this performance model by comparing
with a performance model that does not consider the existence of platform interference.

5.4.1 Evaluation of Hubbub-scale

We implemented Hubbub-scale on top of a KVM virtualization platform and conducted ex-
tensive evaluation using Memcached and Redis for varying types of workload and varying
degrees of interference.

Experiment Setup

All our experiments were conducted on the KTH private Cloud which is managed by Open-
stack [26]. Each host is an Intel Xeon 3.00 GHz CPU with 24 cores, 42GB memory and
runs Ubuntu 12.04 on 3.2.0-63-generic kernel. It has a 12 MB L3 cache and uses KVM
virtualization. The guest runs Ubuntu 12.04 with varying resource provisioning depending
on the experiment. We co-locate memory intensive VMs with the storage system on the
same socket for varying degrees of interference by adding and removing the number of in-
stances. MBW [121], Stream [122] and SPEC CPU benchmarks [123] are run in different
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combinations to generate interference. In all our experiments we disable DVFS(dynamic
voltage scaling) from the host OS using the Linux CPU-freq subsystem.

Hubbub-scale performs fine-grained monitoring by frequently sampling the CPU uti-
lization and the different performance counters for all the VMs on the host and repeatedly
updates the interference index every 1 min. The time-frame chosen for monitoring the se-
lected VMs after classification is 15 seconds and the counters are released for use by other
processes for 45 seconds. The hosts running our experiments also run VMs from other
users which introduces some amount of noise to our evaluation. However, our middleware
also takes into account those VMs to quantify the amount of pressure exerted by them on
the memory subsystem.

To focus on Hubbub-Scale rather than on the idiosyncrasies of our private Cloud envi-
ronment, our experiments assume that the VM instances to be added are pre-created and
stopped. These pre-created VMs are ready for immediate use and state management across
the service is the responsibility of the running service, not Hubbub-Scale. Alternatively,
interference generated from data migration can be accounted for by the middleware to re-
define the SLO border to avoid excessive SLO violations from state transfer. In order to
demonstrate the exact impact of varying interference on Hubbub-Scale, we generate equal
amounts of interference on all physical hosts and decisions for scaling out are based on the
model from any one of the hosts. The load is balanced in a round robin fashion to ensure
all the instances receive an equal share of the workload. We note that none of this is a lim-
itation of Hubbub-Scale and is performed only to accurately demonstrate the effectiveness
of the system in adapting to varying levels of workload and interference with respect to the
latency SLO.

The control model of Hubbub-scale is partially trained offline before putting it online.
It identifies the operational region of the controlled system on a particular VM with vari-
ous degrees of interference. However, the Hubbub-scale control model can never be fully
trained offline, because inter-VM interferences are hard to artificially produce as a cloud
tenant. So, this part of the model can only get trained in an online fashion. The control
models used in our evaluations are well warmed up by training them with different work-
loads and interferences.

Results

Our experiments are designed to demonstrate the ability of Hubbub-Scale to dynamically
adapt the number of instances to varying workload intensity and varying levels of inter-
ference, without compromising the latency SLO. The experiments are carried out in four
phases, shown in figure 5.25a with each phase (separated by a vertical line) correspond-
ing to a different combinations of workload and interference settings. We begin with a
workload that increases and then drops with no interference in the system. The second
phase corresponds to a constant workload with an increasing amount of interference and
later drops. The third phase consists of a varying workload with a constant amount of
interference and in the final phase, both workload and interference vary.

Figure 5.25b(b) and 5.25c(b) compares the latency of Memcached and Redis under
the provision of two elasticity controllers, which are essentially different in the perfor-
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(a) [Experimental setup] (b) [Memcached Results] (c) [Redis Results]

Figure 5.25 – (i) 5.25a shows the experimental setup. The workload and interference are
divided into 4 phases of different combinations demarcated by vertical lines. 5.25a(b) is

the interference index generated when running Memcached and 5.25a(c) is the
interference index generated when running Redis. (ii) 5.25b shows the results of running
Memcached across the different phases. 5.25b(a) and 5.25b(b) shows the number of VMs
and latency of Memcached for a workload based model. 5.25b(c) and 5.25b(d) shows the
number of VMs and latency of Memcached for a CPU based model. (iii) 5.25c shows the

results of running Redis across the different phases. 5.25c(a) and 5.25c(b) shows the
number of VMs and latency of Redis for a workload based model. 5.25c(c) and 5.25c(d)

shows the number of VMs and latency of Redis for a CPU based model.

mance model. The elasticity controller, which is ignorant of performance interference, is
referred as a standard approach while Hubbub-scale is based on the performance model
presented in Figure 5.24. Both approaches provision Memcached and Redis for the four
different phases. Without any interference (first phase), both approaches perform equally
well. However, in the presence of interference, the SLO guarantees of the standard ap-
proaches begins to deteriorate significantly (figure 5.25b(b), plotted in log scale to show
the scale of deterioration). Hubbub-scale performs well in the face of interference and up-
holds the SLO commitment. The occasional spikes are observed because the system reacts
to the changes only after they are seen. Figure5.25a(b) plots the interference index captured
by the hubbub-scale middleware during the run-time corresponding to the intensity of inter-
ference generated in the system. The index captures the pressure on the storage system for
different intensities of interference. Certain phases of the interference index in the second
phase do not overlap because of the interference from other users sharing the physical host
(apart from generated interference). We found that during these periods services such as
Zookeeper and Storm client were running alongside our experiments on the same Cloud
platform increasing the effective interference generated in the system. Figure 5.25b(a) and
5.25c(a) plots the number of active VM instances and shows that Hubbub-Scale is aware of
interference and spawns enough instances to satisfy the SLO.
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5.4.2 Summary and Discussions of Hubbub-scale
We have conducted systematic experiments to understand the impact of performance in-
terference when scaling a distributed storage system. Our observations show that input
metrics for control models become unreliable and do not accurately reflect the measure of
service quality in the face of performance interference. Discounting the number of VMs
in a physical host and the amount of interference generated can lead to inefficient scaling
decisions that result in under-provisioning or over-provisioning of resources. It becomes
imperative to be aware of interference to facilitate accurate scaling decisions in a multi-
tenant environment.

As a pioneer, we model and quantify performance interference as an index that can
be used in the models of elasticity controllers. We demonstrate the usage of this index
by building an elasticity controller, namely Hubbub-scale. We show that Hubbub-scale is
able to make more reliable scaling decisions in the presence of interference. As a result,
Hubbub-scale is able to elastically provision a distributed storage system with reduced SLO
violations and improved resource utilization.
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Chapter 6

Conclusions and Future Work

In this thesis, we have worked towards improving the performance of distributed storage
systems in two directions. On one hand, we have investigated towards providing low la-
tency storage solutions in a global scale. On the other hand, we have strived towards guar-
anteeing stable/predictable request latency of distributed storage systems under dynamic
workloads.

Regarding the first direction, we have approached our goal by investigating the effi-
ciency of node communications within storage systems. Then, we have tailored the com-
munication protocols under the scenario of geo-distributed nodes. As a result, we are able
to reduce request latency significantly. Three systems, GlobLease [12], MeteorShower, and
Catenae, are implemented to demonstrate the benefits of our designs.

GlobLease employs lease mechanisms to cache and invalidate values of replicas that
are deployed globally. As a result, it is able to reduce around 50% of high latency read
requests while guaranteeing the same data consistency level.

MeteorShower leverages the caching idea. Replicas actively exchange their status/up-
dates periodically instead of waiting for read queries. Based on the exchanged updates,
even though a little out-dated because of message delays, the algorithm in MeteorShower
is able to guarantee strong data consistency. As a result, MeteorShower significantly re-
duces read/write request latency.

Catenae applies similar idea as MeteorShower. Catenae uses the cached information
of replicas to execute transactions against multiple data partitions, which are replicated in
multiple sites/data centers. It employs and extends a transaction chain concurrency con-
trol algorithm to speculatively execute transactions in each data center with maximized
execution concurrency and determinism of transaction ordering. As a result, Catenae is
able to commit a transaction within half a RTT to a single RTT among DCs in most of
the cases. Evaluation with TPC-C benchmark have shown that Catenae significantly out-
performs Paxos Commit over 2-Phase Lock and Optimistic Concurrency Control. Catenae
achieves more than twice of the throughput than both approaches with over 50% less com-
mit latency.

Regarding the second direction, we have designed smart agents (elasticity controllers)
to guarantee the performance of storage systems under dynamic workloads and environ-
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ment. The major contributions that distinguish our work from the state-of-the-art elasticity
controller designs are the consideration of data migration during elastic scaling of storage
systems. Data migration is an unique dimension to consider when scaling a distributed
storage system comparing to the scaling of stateless services. On one hand, data need to
be properly migrated before a storage node can serve requests during the scaling process.
We would like to accomplish this process as fast as possible. However, on the other hand,
data migration hurts the performance, i.e. request latency. Thus, it needs to be throttled
in a smart way. We have presented and discussed this issue while building three prototype
elasticity controllers, i.e., BwMan [116], ProRenaTa [69], and Hubbub-scale [71].

BwMan arbitrates the bandwidth consumption between client requests and data mi-
gration workloads. Dynamic bandwidth quotas are allocated to both workloads based on
empirical control models. We have shown that, with the help of BwMan, latency SLO vio-
lations of a distributed storage system can be reduced by a factor of two or more when the
storage system has some data migration workload running in the background.

ProRenaTa systematically models the impact of data migration. The model helps
ProRenaTa elasticity controllers to make smart decisions while scaling a distributed storage
system. In essence, ProRenaTa balances the scaling speed (data migration speed) and the
impact of data migration under scaling deadlines, which is given by a workload prediction
module. As a result, ProRenaTa outperforms the state-of-the-art approaches in guaran-
teeing a higher level of latency SLO commitments while improving the overall resource
utilization.

Hubbub-scale proposes an index that quantifies performance interference among vir-
tual machines sharing the same host. We show that ignoring the interference among VMs
leads to inaccurate scaling decisions that result in under-provisioning or over-provisioning
of resources. We have built Hubbub-scale elasticity controller, which considers perfor-
mance interference indicated by our index, for distributed storage systems. Evaluations
have shown that Hubbub-scale is able to reliably make scaling decisions in a multi-tenant
environment. As a result, it observes significantly less SLO violations and achieves higher
overall resource utilization.

6.1 Future Works

Providing low latency storage solutions has been a very active research area with a plethora
of open issues and challenges to be addressed. Challenges for this matter include: the
emerging of novel system usage scenarios, for example, global distribution, the uncertainty
and dynamicity of incoming workload, the performance interference from the underlying
platform.

The research work described here have the opportunities to be improved in many ways.
For the work in designing low latency storage solutions in a global scale, we are particularly
interested in data consistency algorithms that are able to provide the same consistency
level while requiring less replica synchronization. We have approached the research issue
from the direction of using metadata and novel message propagation mechanisms to reduce
replica communication overhead. However, the usage of periodic messages among data

132



6.1. FUTURE WORKS

centers consumes a considerable amount of network resources, which influences the tail
latency of requests as shown in our evaluations. In other words, the network connections
among data centers become the potential bottleneck when exploited extensively. We can
foresee the improvements of these connections in the coming few years. Then, providing
low latency services over all the world will be made possible by trading off the utilization
of network resources.

Another direction is the design and application of various data consistency models. We
believe that with the emergence of different Internet services and their usage scenarios,
e.g., global deployment, strong data consistency model is not always required. Tailoring
data consistency models for different applications or components will significantly alleviate
the overhead of maintaining data and reduce the service latency. In general, larger system
overhead is expected to achieve a stronger data consistency guarantee.

When designing elasticity controllers for distributed storage systems, there are more
aspects to consider beyond the network bandwidth. Particularly, we have shown that per-
formance interference among virtual machines sharing the same host also plays an essential
role in affecting the quality of a storage service when deployed in the Cloud. Different ef-
forts have been made to quantify this performance interference. However, none of the
approaches can be applied easily. This is because that the accesses to host machines are
not transparent to a Cloud user. Thus, the quantification of performance interference is
not conducted directly on the hosts. Instead, it is usually estimated based on profiling and
modeling from virtual machines. We believe that these approaches cannot quantify the in-
terference accurately and impose a considerable amount of overhead to managed systems.
Striving to provide transparent platform information and fair resource sharing mechanisms
to Cloud users is another step to guarantee the QoS of Cloud-based services.

There is a gap between industry and academia regarding the design and application of
elasticity controllers. Essentially, industrial approaches focus on simplicity and usability of
elasticity controllers in practice. Most of these elasticity controllers are policy-based and
rely on simple if-then threshold based triggers. As a result, they do not require pre-training
or expertise to get it up and running. However, most of the elasticity controllers proposed by
research community focus on improving the control accuracy but do not consider usability.
As a result, these elasticity controllers are challenging or even impossible to be deployed
and applied in the real world. Specifically, the first challenge is the selection of elasticity
controllers. In fact, there is no way to consistently evaluate an elasticity controller proposed
by the research community[124]. Even after an elasticity controller is chosen, it often
requires expertise and thorough knowledge regarding the provisioned systems in order to
instrument and retrieve the required metrics to make proper deployment of the controller.
Additionally, the controllers from academia usually integrate complex components, which
require complicated configurations, e.g., empirical training. Thus, we propose researches
on elasticity controllers that minimize the gap between industrial and academic approaches.
The future work is to propose and design elasticity controllers that achieve both usability
and accuracy.
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