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Abstract

Distributed, shared-nothing architectures of commodity machines are a popular design choice for the
implementation and deployment of big data platforms. The introduction of MapReduce, a simple program-
ming model for parallel data analysis, has greatly simplified data-parallel programming by abstracting the
details of data partitioning, node communication, and fault tolerance. While MapReduce is a powerful
model for simple tasks, such as text processing and web log analysis, it is a poor fit for more complex tasks,
such as graph analysis. Inter-connected data that can be modeled as graphs appear in several application
domains, including machine learning, recommendation, web search, and social network analysis. Graph
algorithms are very diverse and expose various computation and communication patterns. MapReduce rev-
olutionized the area of distributed data processing and inspired the development of similar high-level graph
processing models and platforms. However, as graphs grow bigger, delivering high performance for graph
analysis tasks becomes challenging. Existing distributed graph processing platforms often deliver disap-
pointing performance, while demanding expensive resources, as compared to sequential or multi-threaded
algorithms running on a single machine.

Processing graphs on a single machine is often not a viable solution. First of all, graphs rarely appear as
raw data. Instead, they are derived from processing, filtering, and transformation of other, often distributed,
data sources. Second, graph analysis tasks are usually part of a larger data analysis pipeline. Thus, previous
and succeeding processing might require distribution over several machines. Finally, the nature of the graph
analysis problem might require distribution. Thus, developing optimization techniques and tools to improve
the performance of distributed graph processing platforms is essential.

In this thesis, we propose optimization techniques for distributed graph processing on general-purpose
data processing engines and on specialized graph processors. Our optimizations leverage both data and
algorithmic properties. Driven by a real-world graph problem, we design performance optimization tech-
niques and tools. First, we describe a data processing pipeline that leverages an iterative graph algorithm
for automatic classification of web trackers. Using this application as a motivating example, we examine
how asymmetrical convergence of iterative graph algorithms can be used to reduce the amount of computa-
tion and communication in large-scale graph analysis. We propose an optimization framework for fixpoint
algorithms and a declarative API for writing fixpoint applications. Our framework uses a cost model to au-
tomatically exploit asymmetrical convergence and evaluate execution strategies during runtime. We show
that our cost model achieves speedup of up to 1.7x and communication savings of up to 54%. Next, we
propose to use the concepts of semi-metricity and the metric backbone to reduce the amount of data that
needs to be processed in large-scale graph analysis. We provide a distributed algorithm for computing the
metric backbone using the vertex-centric programming model. Using the backbone, we can reduce graph
sizes up to 88% and achieve speedup of up to 6.7x.






Sammanfattning

Distribuerade shared-nothingérkitekturer for vanligt forekommande datorer &r ett populért designval for
att implementera big data-plattformar. Introduktionen av programmeringsmodellen MapReduce, en enkel
programeringsmodell for parallell dataanalys, gjorde det mgjligt att processa stora méingder data parallellt
genom att abstrahera detaljerna for uppdelning av data, kommunikation mellan noder, och feltolerans. Men
dven om MapReduce ir bra for enkla uppgifter som text och logganalys dr det betydligt svérare att anvinda
for analys av mera komplexa datatyper som inom grafanalys. Sammankopplade data som kan modelleras
som en graf &dr vanligt férekommande i flera doméner, bland annat maskininlérning, rekommendationssy-
stem, webb-sokning, och sociala nétverk. Dessutom skiljer sig grafalgoritmer avsevirt fran varandra, bade
sett ur berdknings och kommunikationsperspektiv. MapReduce revolutionerade distribuerad databehandling
och inspirerade utvecklingen av liknande modeller och plattformar for analys av grafer. Allteftersom gra-
ferna har vuxit i storlek har utmaningarna foljt efter. Plattformarna for parallell grafanalys som finns idag
lever inte upp till de prestandakrav som stills och kréver allt for stora berdkningsresurser jimfort med dess
sekventiella eller multi-tradade motsvarigheter.

Tyvirr dr en maskin séllan tillrdckligt for att behandla stora grafer. Forst och frimst forekommer séllan
grafer som radata. Istillet tas graferna fram genom att behandla, filtrera, och omvandla ofta distribuerade
datakillor. Darutover dr grafanalysen ofta bara en liten del i en storre kedja. Slutligen behdver man kun-
na sprida ut behandlingen &ver flera maskiner. Dérfor behover man utveckla tekniker och verktyg for att
forbattra prestandan i distribuerade plattformar for grafanalys.

I den hir avhandlingen presenterar vi op timeringar for distribuerad grafbehandling pa savil vanliga
datorer och servrar som paspecialiserade grafprocessorer. Vara forbittringar utnyttjar bade grafens struktur
och algoritmiska egenskaper. Designen av teknikerna och verktygen hirstammar fran ett realistiskt graf-
problem. Avhandlingen borjar med att presentera en pipeline som anvinder en iterativ grafalgoritm for
att automatiskt gruppera webb-trackers. Detta exempel star som grund for en utvirdering av hur sikallad
asymmetrisk konvergens kan anvéndas i iterativa grafalgoritmer for att minska antalet berdkningar i sto-
ra grafanalyser. Vi foreslar ett optimeringsramverk for fixpunktsalgoritmer och ett deklarativt API for att
utveckla fixpunktstillimpningar. Vart ramverk anvé nder en kostnadsbaserad optimerare som automatiskt
kan utnyttja asymmetrisk konvergens och utvirdera exekveringsstrategin nir tillimpningen kors. Vi visar
att den kostnadsbaserade modellen forbéttrar prestandan upp till 1.7 ganger och minskat kommunikations-
behov med 54%. Direfter foreslar vi att man kan forminska dataméngden som behiver processas i stora
grafer genom begrepp som semimetricitet och metric backbone. Vi presenterar en distribuerad algoritm for
att beridkna den senare genom att anvinda programmeringsmodellen som utgar fran varje bage i grafen.
Resultaten visar att grafens storlek minskar med upp till 88% och en prestandavinst pa upp till 6.7 ganger
jamfort med dagens alternativ.






Résumé

Des architectures distribuées sans partage sont un choix de conception populaire pour la mise en ceuvre
et le déploiement de grandes plates-formes de données. L’introduction de MapReduce a grandement sim-
plifié la programmation parallele de données en faisant abstraction du partitionnement des données, de la
communication entre noeuds, et de la tolérance aux pannes. Alors que MapReduce est un modele puis-
sant pour des taches simples telles que le traitement de texte et I’analyse de trafic web, il est un mauvais
ajustement pour des taches plus complexes telles que 1’analyse des graphes. Des données interconnectées
qui peuvent &tre modélisées sous forme de graphes apparaissent dans plusieurs domaines d’applications, y
compris I’apprentissage automatique, les systeémes de recommandation, la recherche sur le Web, et I’analyse
des réseaux sociaux. Les algorithmes d’analyse de graphes sont trés diverses et exposent divers modeles de
calcul et de communication. MapReduce a révolutionné le domaine du traitement de données distribuées et
a inspiré le développement des modeles et plate-formes de traitement a haut niveau. Cependant, quand la
taille des graphes augmente, offrir des performances élevées pour les tiches d’analyse devient difficile. Les
systemes distribués actuels de traitement de graphes offrent souvent des mauvaises performances, tout en
exigeant des ressources coliteuses par rapport aux algorithmes séquentiels ou multi-thread qui s’exécutent
sur une seule machine.

Souvent, le traitement des graphes sur une seule machine n’est pas une solution viable. Tout d’abord,
les graphes apparaissent rarement comme données brutes. Au contraire, elles sont obtenues par la trans-
formation, le filtrage et la transformation d’autres sources de données, souvent distribuées. Deuxieémement,
I’analyse de graphes fait généralement partie d’un plus grande pipeline de traitement de données. Le trai-
tement précédent et suivant peuvent nécessiter la distribution sur plusieurs machines. Enfin, la nature du
probléme d’analyse pourrait nécessiter la distribution. En conclusion, il est essentiel de développer des
techniques et outils d’optimisation pour améliorer la performance des systemes de traitement de graphes
distribués.

Dans cette theése, nous proposons des techniques d’optimisation pour le traitement des graphes distri-
bués sur des plate-formes d’analyses générales et spécialisées. Nos optimisations exploitent des propriétés
des données et des propriétés des algorithmes. Motivé par un probléme dans le monde réel, nous concevons
des techniques et des outils d’optimisation de la performance. Tout d’abord, nous décrivons un pipeline de
traitement de données qui exploite un algorithme de graphe itérative pour la classification automatique des
trackers web. En utilisant cette application comme un exemple de motivation, nous examinons comment la
convergence asymétrique des algorithmes de graphe itératives peut étre utilisée pour réduire la quantité de
calcul et de communication dans 1’analyse a grande échelle. Nous proposons un cadre d’optimisation pour
des algorithmes de point fixe et une API déclarative pour écrire des applications de point fixe. Notre cadre
utilise un modele de cofit pour exploiter automatiquement la convergence asymétrique et évaluer des stra-
tégies d’exécution lors de I’exécution. Nous montrons que notre modele de coft atteint une augmentation
de vitesse jusqu’a 1.7x et une réduction du colit de communication jusqu’a 54%. Ensuite, nous proposons
d’utiliser les concepts de sémi-métricité et de dorsale métrique pour réduire la quantité de données que doit
&tre traitée dans I’analyse des graphes a grande échelle. Nous proposons un algorithme distribué pour cal-
culer la dorsale métrique en utilisant le modele de programmation vertex-centrique. En utilisant la dorsale
metrique, nous pouvons réduire la taille des graphes jusqu’a 88% et obtenir une augmentation de vitesse
jusqu’a 6,7x.
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Chapter 1

Introduction

Recent advances in technology and the web, as well as and the decreasing cost of
data storage, have motivated all kinds of organizations to capture, store, and analyze vast
amounts of data. The term Big Data is often used to describe this phenomenon, mean-
ing information that cannot be processed in a practical way, using traditional processes or
tools [196], such as relational databases and data warehouses. The term is often used to
describe data analysis problems that are defined by certain characteristics, known as the
"3 V’s of Big Data": Volume, Variety, and Velocity [114]. Volume reflects the fact that the
amount of data being collected and analyzed today is incomparable to the amount of data
we could collect and store a few years back [171, 124]. Even considering the latest techno-
logical advances in hardware, collected data might not fit in the main memory or even on
the available disk space of a single machine. Thus, it is often partitioned and distributed in
several physical machines [40, 144, 21]. Variety means that data is being collected from all
kinds of diverse sources, such as sensor networks, logs, web traffic, images, etc.. Organiza-
tions have started storing all kinds of data, with the hope that its analysis and combination
with historical data will yield business value. At the same time, data appears in various
formats and schemas. Sources like the web, social media, and sensors, produce data in
semi-structured or unstructured formats [96, 17, 60]. New technology needs to be devel-
oped in order to combine data being represented in different ways, such as raw text, xml,
json, streams of clicks, logs, graphics, audio, video. Velocity refers to the rate at which
data is generated, collected, and processed. Nowadays, we can generate and capture data
at rates we have never experienced before [24, 193, 139]. For example, it is reported that
more than 400 hours of video is being uploaded to YouTube every minute [16].

A shared-nothing architecture of commodity machines has proved to be a popular de-
sign choice for the implementation and deployment of big data platforms. Clusters of
commodity servers are often favored over expensive infrastructure because of their low op-
erational costs [59, 131, 40]. In such clusters, data is partitioned and distributed over several
machines, usually leveraging the functionality of a distributed file system [39, 64, 117]. The
processing component is often also deployed on the same cluster of machines, in order to
leverage data locality; the incentive is to process data on the machine where it is already
stored and avoid expensive network transfers.
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These ideas were initially introduced by Google’s MapReduce paper [59] and adopted
by its open-source implementation, Hadoop [7], as well as successor distributed data pro-
cessing systems. MapReduce proposes a simple programming model for parallel data anal-
ysis. It simplifies data-parallel programming by abstracting the details of data partitioning,
node communication, and fault tolerance. MapReduce is a powerful model for simple tasks,
such as text processing and web log analysis. On the other hand, it is a poor fit for more
complex tasks [144, 117, 97], such as machine learning [79, 122], iterative [43, 67, 192],
and graph processing [125, 122, 142]. To address these limitations, several other data-
intensive frameworks have been developed. Next-generation platforms offer more flexible
and efficient runtimes, while aiming to maintain the simplicity and high abstraction level
of MapReduce. MapReduce Online [57] implements data pipelining between operators
and a simple form of online aggregation. Spark [192] leverages in-memory computation,
Dryad [92] uses an arbitrary DAG to describe the application’s communication patterns and
express data transport mechanisms, Stratosphere [29] offers an extension of the MapReduce
programming model with a relational taste and runtime optimizer, ASTERIX [31] offers a
storage and computing platform for semi-structured data, HalL.oop [43], Twister [67] and
CIEL [137] target iterative computations, while Pregel [125] and GraphLab [122] are spe-
cialized systems for graph processing.

Building efficient distributed data-intensive computation platforms is a challenging
task. Data partitioning, communication, fault-tolerance, scalability, and load-balancing
are only a few of the issues that need to be addressed when designing such systems. At the
same time, in order to make the power of big data frameworks accessible to non-technical
users and relieve the programmer from error-prone, low-level tuning, automatic optimiza-
tion must be performed [183, 141].

The aforementioned challenges are magnified when aiming to efficiently support com-
plex data processing tasks, rather than simple MapReduce-style applications. In particular,
application domains like graph processing are especially interesting. Inter-connected data
that can be modeled as graphs appear in several application domains, such as machine
learning, recommendation, web search, and social network analysis. Graph algorithms are
very diverse and expose various computation and communication patterns. For instance,
value-propagation algorithms, like PageRank, require efficient iteration mechanisms, but
have predictable communication patterns and can be easily parallelized. On the other
hand, graph traversals and path exploration have unpredictable data access patterns and
distributed solutions can incur high communication costs.

As graphs grow bigger, delivering high performance for graph analysis tasks becomes
even more challenging. Even with the use of specialized graph management systems [125,
81, 122], several graph metrics are painfully slow to compute. As a matter of fact, existing
distributed graph processing platforms often deliver disappointing performance, while de-
manding unreasonable resources, as compared to sequential or multi-threaded algorithms
running on a single machine [128, 195, 113]. However, processing on a single machine is
often not a viable solution. First of all, graphs rarely appear as raw data. Instead, they are
derived from processing, filtering, and transforming other, often distributed, data. Second,
graph analysis tasks are usually part of a larger data analysis pipeline. Thus, previous and
succeeding processing might require distribution over several machines. Finally, the nature
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of the graph analysis problem might require distribution. For example, when analyzing
a social network of users who are physically distributed, it might be favorable to process
their data at their physical location. Thus, developing optimization techniques and tools to
improve the performance of distributed graph processing platforms is essential.

In this thesis, we propose optimization techniques for distributed graph processing on
general-purpose data processing engines and on specialized graph processing systems. Our
optimizations leverage both data and algorithmic properties. We begin our study by review-
ing general-purpose distributed data processing platforms, like MapReduce and its succes-
sors. Then, we focus our study on systems and programming abstractions for distributed
graph processing. Driven by a real-world graph problem of web tracker classification, we
identify optimization opportunities and then proceed to design methods, algorithms, and
tools that implement optimization techniques. Finally, we apply our proposed optimization
techniques to the algorithms of the web tracker classification problem and we evaluate their
effectiveness.

1.1 Research Objectives

We research methods and we build tools for efficient distributed processing of very
large graphs. In particular, we aim at making existing graph processing platforms faster,
by inventing and implementing optimization techniques. Our main goal is to improve per-
formance, with respect to total execution time and resource requirements. To this end,
we analyze existing models and infrastructure, identify limitations, and design concrete
optimization techniques that we integrate in popular graph processing platforms. Our sec-
ondary goal is to facilitate the development of distributed graph applications and provide
automatic optimization that requires minimal user involvement. We aim to make big-graph
analytics accessible to non-experts, so that users with limited programming experience
and understanding of distributed architectures can benefit from analyzing enormous graph
datasets. In this direction, we design our optimization methods to be automatic, with the
objective to relieve the programmer from low-level, error-prone instrumentation.

From a high-level view, there are three main factors that dominate the execution time of
a distributed data-intensive graph application, assuming stable execution environment con-
ditions and a fixed number of available resources: (a) the input data size, (b) the amount of
computations performed, and (c) the amount of communication. Thus, in order to improve
performance, we define three main corresponding goals:

1. to reduce the size of datasets to be processed,
2. to reduce the amount of total computation to be performed, and
3. to reduce the amount of communication required.

With respect to these objectives, we first present a study of distributed data processing
with MapReduce (Chapter 2) and a study on distributed graph processing abstractions and
systems (Chapter 3). Then, we describe a real-world use-case of large-scale graph ana-
Iytics (Chapter 4). This work exposes limitations in existing implementations and reveals
concrete optimization opportunities. In Chapter 5, we propose a framework for automatic
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optimization of iterative fixpoint graph algorithms. Our optimization framework leverages
properties of the fixpoint update functions, in order to reduce the computation and com-
munication required in each iteration step. With respect to the goal of reducing the size of
processed datasets, in Chapter 6 we leverage the concept of the metric backbone [154, 169],
in the context of large-scale graph analytics. The metric backbone is a reduced representa-
tion of a weighted graph, that preserves information about connectivity and distances.

We also define the following design directives for the optimizations presented in this

thesis:

— Application transparency. It is our goal to make all proposed optimization tech-
niques applicable to existing applications. Ideally, the user should be able to benefit
from the optimization, without having to re-write or re-compile their application.
In order to achieve this goal, we try to design our optimizations without changing
the systems’ application programming interface and programming model.

— System independence. We strive to make our optimizations as generic as possible,
so that they are applicable to a variety of graph processing systems. The opti-
mizations presented in this thesis are implemented in two different, widely used
computation platforms; a general-purpose distributed data processing engine and a
specialized graph system. To meet this design objective, we decouple our methods
from system implementations.

— Minimum user involvement. In order to relieve users from error-prone and low-
level tuning, optimizations should minimize user involvement. With respect to this
goal, we automate the optimization techniques and avoid manual configuration,
whenever possible.

1.2 Research Methodology

In this section, we provide a high-level view of the methods used in this research work.
We give a summary of the general principles we followed and the design decisions we
made in order to achieve our goals. We also discuss several challenges we faced and how
we chose to overcome each if these challenges.

1.2.1 General Approach

Among the wide variety of data-intensive applications and platforms, we focus on
graph algorithms and distributed graph processing systems for two reasons. First, graph
algorithms are vital to a plethora of modern analytics domains, such as social networks,
machine learning, anomaly detection, recommender systems, bioinformatics, web security
and privacy. Second, distributed graph processing presents interesting research challenges
and open issues. Distributed graph applications are complex and hard to implement effi-
ciently. Moreover, they expose diverse computation and communication patterns.

With respect to our main goal of speeding up large-scale graph analytics, we design and
apply performance improvements. More specifically, we focus on performance optimiza-
tions for distributed, batch-processing, computation platforms, including general-purpose
data processing engines and specialized graph processors. We approach the problem of
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Figure 1.1 — A high-level overview of the thesis research methodology.

performance enhancement from two main angles. First, we choose a common applica-
tion category of graph algorithms, namely fixpoint, value-propagation algorithms. Second,
we focus on graphs with commonly encountered characteristics, namely weighted graphs;
graphs with attached properties on their edges. We show the applicability of our choices
and draw our motivation from a real-world use-case. We focus on techniques that minimize
resource requirements and avoid redundancy in computations and data, by targeting:

— Algorithmic Properties. We explore how the algorithms we execute can be opti-
mized, so that we avoid redundant computations. For example, the asymmetrical
convergence of fixpoint algorithms is exploited to detect inactive parts of the graph
and reduce the amount of computations and communication required.

— Data Properties. We explore whether the data we process have properties that
we can leverage to reduce execution time. For example, we exploit graph semi-
metricity to reduce the size of the input graph, while still achieving exact results for
applications that depend on the shortest-paths or approximate results for algorithms
that do not.

We adopt an empirical approach, common to computer systems research, instead of us-
ing analytical, mathematical optimization methods. A high-level overview of our method-
ology is shown in Figure 1.1. The numbers represent chronological order. First, we identify
performance bottlenecks and limitations in data-intensive graph computation platforms and
then we design and implement techniques to overcome these limitations. We start by con-
ducting a literature study of recent research results on the limitations and optimizations
for big data platforms (Chapter 2). In particular, we focus on platforms implementing or
extending the MapReduce programming model. This model revolutionized the area of dis-
tributed data processing and inspired the graph processing models and platforms that we
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target in this work. The results of this study provide us with an overview of the state of the
art in the research field and reveal open issues. Next, we review the programming abstrac-
tions, architecture, and implementation of modern distributed graph processing platforms
(Chapter 3). Most of these platforms are MapReduce successors, and thus, they are of-
ten heavily inspired by its design principles. This study helps us identify the techniques
developed to extend the MapReduce model to meet the requirements of graph processing
applications. In order to invent useful and practical optimizations, we center our research
around a specific, real-world graph application. We perform a study in the area of web
tracker detection and privacy on the web and we define the problem of automatically de-
tecting web trackers as a graph problem (Chapter 4). We use a real dataset from a large
European telecom operator and we implement a data pipeline that solves the problem using
an iterative fixpoint graph algorithm. We confirm the presence of performance shortcom-
ings by experiment and we design techniques to eliminate them (Chapters 5 and 6). We
implement each optimization technique, while trying to meet our design goals of appli-
cation transparency, system independence, and minimum user involvement. Finally, we
evaluate our implementations by comparing the performance of a modified system, which
uses our optimization technique, to the performance of the original unmodified system. For
the evaluation, we use the motivating web tracker detection algorithm, as well as a set of
additional representative applications and real-world or publicly available datasets. We use
job execution time as our main performance measure, add we define secondary measures,
such as communication load, where applicable.

1.2.2 Implementations

We use open-source, widely-used, and mature systems and libraries to implement and
evaluate our optimization techniques. Specifically, we use Apache Flink [1] to implement
the graph processing use-case of Chapter 4 and the cost-based optimization method for
fixpoint iterations presented in Chapter 5. We use the Apache Giraph [2] graph processing
system and the Neo4j [12] graph database to implement the metric backbone algorithm
and evaluate the methods described in Chapter 6. The implementations of our optimization
techniques are free to use, open-source, and documented. More details can be found in
Section 1.3.2.

1.2.3 Experimental Evaluation

For our experiments, we always choose the latest -at the time of the research work-
stable version of the system considered. We use publicly available and real-world datasets,
and share our detailed setup configuration in each of our works, in order to facilitate re-
producibility. We conducted most of our experiments using virtual machines in a cloud
environment. Thus, we are able to create a clean, isolated environment, where only the
necessary tools were installed. We choose representative applications for our evaluation,
by either using applications that appear often in related research or by implementing algo-
rithms that can demonstrate the benefits of our optimization methods.
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1.2.4 Optimizations Overview

In this section, we present a categorization of optimization types and methods for dis-
tributed data processing. Most of the available techniques have been inspired by previous
research conducted in the context of relational database systems. We categorize optimiza-
tions based on their main objective and we describe popular existing techniques that fit into
each category. We refer the reader to Chapter 2 for a detailed overview of the state of the
art in optimization for data-intensive computation platforms.

1.2.5 Optimization Types and Methods

We categorize optimizations based on their main objective, namely Performance, Ease-
of-use and Cost reduction. Performance optimizations aim at reducing job execution time
and making data processing faster. The goal is to provide faster answers to user queries.
Ease-of-use optimizations aim at making data processing easier, from a user’s perspective.
These techniques intent to automate the complex parts of data analysis and facilitate appli-
cation development and deployment. Cost reduction optimizations are to methods whose
purpose is minimizing operating costs of data analysis systems.

— Performance Optimizations. Techniques in this category can be further divided
into two main subcategories: (a) single-program optimizations and (b) batch op-
timizations. Single-program optimizations target a single application at a time.
These techniques consider the characteristics of a specific application when exe-
cuted in isolation. Thus, these techniques do not take into account interactions with
other applications running at the same time and do not consider possible optimiza-
tion opportunities in this context. Batch optimizations are techniques that intend to
optimize a workload of applications as a whole. These techniques view the system
as an environment where applications are running concurrently or during a specified
period of time.

Single-program optimizations. A lot of techniques in this category are based
on extracting information about the input and intermediate datasets. These opti-
mizations aim at inventing more efficient ways of executing a query. Typically, a
user writes a data processing application in some language and the data processing
system is responsible for defining an execution strategy for running this application,
using the available resources. The process of translating the user’s application into
a series of steps that the system can execute is called query planning. Widely used
optimizations in this category concern choosing an efficient query execution plan.
These techniques usually involve methods for accurate dataset size estimation and
estimation of key cardinalities. Static code analysis is another popular method used
for this purpose. An example of a concrete query plan optimization technique is
operator reordering.

Another class of optimization techniques in this category is concerned with how to
efficiently access data in the processing system’s storage. The goal is to minimize
communication and random data accesses. In order to reduce data I/O, several smart
data placement and partitioning strategies have been developed. For example, one
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can predict which data blocks are likely to be accessed at the same time and try to
co-locate them. Related issues include efficient data representation, compression
techniques, erasure coding and amortizing data skew.

Result approximation is an optimization technique that is very useful when the
amount of data to be processed is very large. The goal of this class of techniques is
to return an approximate result to the user query, as soon as possible, even before
the analysis has finished. Partial job execution can yield very fast results but it has
to be paired with a robust results estimation method. Sampling histogram build-
ing and wavelets are popular choices in this area. Regarding sampling, techniques
can utilize online sampling or use pre-cached samples of the input or pre-processed
datasets. These techniques are especially efficient and accurate when the queries
are known beforehand and the system has adequate information about the data dis-
tribution.

Batch optimizations. The main goal of batch optimization techniques is to
increase the performance of an execution environment, such as a cluster or data-
center, as a whole. These techniques often consider metrics like system throughput
and query latency. A big class of batch optimization techniques aim at efficiently
scheduling and managing applications running in the same environment. In dis-
tributed setups, load balancing is another very important issue that significantly
affects performance and it is also very closely related to scheduling. Another pop-
ular technique makes use of work sharing for simultaneous queries. This opti-
mization considers a batch of jobs submitted for execution and re-orders them to
enable sharing of execution pipelines. A related technique is sometimes referred to
as non-concurrent work-sharing and aims at avoiding redundant computations by
materializing and reusing results of previously executed jobs.

— Ease-of-use Ease-of-use optimizations aim at facilitating non-expert users in con-
ducting data analysis. These techniques mainly include tools that analysts can use
to boost their productivity and avoid bad development practices that may lead to
buggy programs. Tools for easy application development automate parts of the
analysis process and abstract low-level details from the user, such as paralleliza-
tion and data distribution. Another set of techniques facilitates the deployment and
maintenance of analysis applications on complex environments. They might per-
form automatic system configuration and load balancing or handle fault-tolerance.
Related tools facilitate testing and debugging of data analysis programs.

— Cost reduction This category of optimizations primarily intends to minimize the
cost of data processing. Such optimizations include tools for reducing storage re-
quirements, by using data deduplication techniques or erasure coding. A big class
of cost reduction optimizations also concerns resource and cost-aware scheduling.
By assumption, the system has information about the cost of different resources and
can evaluate different execution strategies and deployments, in order to efficiently
utilize resources and reduce operational costs. Resource utilization optimizations
usually also benefit the performance and throughput of a system.

We summarize the discussed optimization types and methods in Table 1.1.
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Table 1.1 — Optimization Types and Methods for Data-Intensive Computation Platforms

Query Planning
Single-Program | 1/0O Reduction

Results Approximation
Scheduling

Batch Concurrent Work Sharing
Results Materialization and Reuse
Development Tools

Deployment Tools

Automatic Configuration

Debugging Tools

Resource Utilization

Cost-aware Scheduling

Performance

Ease-of-use

Cost

1.2.6 Challenges

In this section, we highlight some of the challenges we faced throughout this work,
while we expand on the details of problem-specific challenges in the corresponding chap-
ters.

While conducting the state-of-the-art survey on distributed data processing with MapRe-
duce (Chapter 2), we discovered that a lot of the published research in the area lacked open-
source or available to use implementations. Even after contacting corresponding authors,
we failed to gain access to most of the studied frameworks. As a result, it was impossi-
ble to perform an empirical evaluation and we rather focused on a qualitative comparison
of system features and optimizations. Another challenge that needs to be addressed when
conducting systems comparison is that researchers use widely different environments and
applications to evaluate their work. Thus, it is very difficult to compare systems fairly.

A different set of challenges appeared when implementing the graph processing use-
case described in Chapter 4. Evaluating the classification accuracy of our solution required
some ground truth. We have used the easyprivacy list [6], which was also used to tag the
input records of our classifiers. Therefore, even though our classification results reflect how
close our solution is to the accuracy of the list, it was impossible to quantify whether our
solution could identify trackers that do not appear on the list. Another difficult task was
the visualization of large graph datasets. Currently available software is practical to use for
input graphs in the order of hundreds of thousands of edges, but struggle to scale for the
input graphs that we study in this thesis. When we had to visualize a graph, we created
subgraphs that only contained the useful information for the particular case. For example,
in Chapter 4, we only visualize the subgraph of a single month of user data and filter out
all edges that do not have a tracker endpoint.

We also faced several challenges related to the platforms we used for the implemen-
tation of our optimizations, primarily on appropriately configuring and tuning the system
parameters for experimentation. Fortunately, both Apache Giraph [2] and Apache Flink [1]
have welcoming and helpful open-source communities, whose members provided us with



CHAPTER 1. INTRODUCTION

valuable guidance.

1.3 Thesis Contributions

1.3.1 Summary of Contributions

The contributions of this thesis are as follows.

— A survey of the state-of-the-art in Hadoop/MapReduce optimizations. We compare
and classify frameworks that adopt and extend the MapReduce programming model
and we summarize the state of the research field, while identifying open issues and
possible future research directions.

— An overview of MapReduce-inspired, high-level programming abstractions for dis-
tributed graph processing. We analyze their execution semantics, user-facing APIs,
extensions and proposed optimizations. We identify which classes of applications
can be intuitively expressed with each model and which computational patterns
might be problematic to express with certain abstractions. We categorize mod-
ern distributed graph processing systems, with regard to the graph programming
abstractions they expose, their execution models, and their communication mecha-
nisms.

— A study of web tracker behavior and user exposure to the tracking ecosystem, as a
representative, real-world graph processing application. We use this study to con-
cretely reason about optimization opportunities, which are general enough to be
applied in a wide class of real-word graph applications. We build a classifier that
models user access logs as graphs and analyzes those graphs to automatically clas-
sify a web request as a tracker or non-tracker. We use the classification algorithms
as a motivating example of a real-world, distributed graph processing application
that drives the optimization methods developed in this thesis.

— An optimization framework for fixpoint iterative graph processing. We review four
fixpoint iteration techniques and we formally describe the necessary conditions, un-
der which each technique can be applied. We map iteration techniques to existing
graph processing abstractions and we explain how missing techniques can be im-
plemented. We implement template optimized execution plans, using general data-
flow operators and we experimentally evaluate each optimization, using a common
runtime. We develop a declarative fixpoint API that supports all four fixpoint itera-
tion techniques and we implement a cost model that evaluates alternative execution
strategies. Our framework uses the cost model to automatically switch execution
plans during runtime and avoid redundant computations and communication.

— A distributed sparsification algorithm to compute the metric backbone for speed-
ing up computations in large-scale graph analysis. We analyze a variety of real
graphs and show that they exhibit high semi-metricity. We categorize the types of
applications which benefit from the metric backbone and we propose a practical al-
gorithm for calculating the metric backbone, in a distributed setting. We apply the
approach inside two graph management systems and evaluate their efficiency with
real datasets. We show that our technique can speed up typical graph queries and
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improve the performance of several graph applications.

1.3.2 Software

The following software was developed in the course of this thesis.

— Gelly [8], a graph processing library and API for Apache Flink [1]. The author
developed the initial version of the Gelly library and API and continues to be a
core developer and maintainer of the module. Gelly has been the official graph
processing library of Apache Flink since its 0.9 release and can be downloaded
from the Apache Flink website [1]. Since then, several Apache Flink community
members have contributed library algorithms, optimizations, and documentation to
Gelly. In this thesis, we describe Gelly in Chapter 3 and we use its API and library
methods to implement the data processing pipeline for automatically detecting web
trackers (Chapter 4).

— A framework for fixpoint applications on Apache Flink. The framework provides a
high-level Java API for writing fixpoint applications and a cost model that automat-
ically identifies and avoids redundant computations. The framework is described in
Chapter 5 and it is available under the Apache 2.0 license !

— A distributed algorithm for computing the metric backbone in Apache Giraph [2].
We describe the algorithm in detail in Chapter 6. The algorithm is implemented
using the vertex-centric programming model and it is available in the Okapi open
source library for machine learning and graph analytics 2.

1.3.3 Publications

Results presented in this thesis have been published as papers in international confer-

ence proceedings and workshops as follows.

— The shortest path is not always a straight line: Leveraging semi-metricity in graph
analysis. Kalavri, Vasiliki; Simas, Tiago; Logothetis, Dionysios; Proceedings of
the VLDB Endowment, Vol. 9, No. 9 (PVLDB), 2016

— Like a Pack of Wolves: Community Structure of Web Trackers. Kalavri, Vasiliki;
Blackburn, Jeremy; Varvello, Matteo; Papagiannaki, Konstantina; 17th Interna-
tional Conference on Passive and Active Measurement. Vol. 9631. Springer, 2016.

— Asymmetry in large-scale graph analysis, explained. Kalavri, Vasiliki; Ewen, Stephan;
Tzoumas, Kostas; Vlassov, Vladimir; Markl, Volker; Haridi, Seif; Proceedings of
Workshop on GRAph Data management Experiences and Systems, 1-7, (GRADES),
2014.

— MapReduce: Limitations, Optimizations and Open Issues. Kalavri, Vasiliki; Vlassov,
Vladimir; 11th IEEE International Symposium on Parallel and Distributed Process-
ing with Applications 2013.

1. http://github.com/vasia
2. http://grafos.ml/#Okapi
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1.3.4 Other Contributions

Other related contributions that are not included in this thesis but were developed during
the course of the author’s PhD studies can be found in the author’s Licentiate thesis [98].
These include the following.

— PonlC, a project that ports the high-level dataflow framework Apache Pig [78] on
top of the data-parallel computing framework Stratosphere [23]. In this work, we
show that Pig can highly benefit from using Stratosphere as the backend system and
gain performance, without any loss of expressiveness. We identify the features of
Pig that negatively impact execution time and present a way of integrating it with
different backends. We also propose a complete translation process of Pig plans
into Stratosphere plans and we evaluate PonIC.

— HOP-§, a system that uses in-memory random sampling to return approximate, yet
accurate query results. We propose a simple, yet efficient random sampling tech-
nique implementation, which significantly improves the accuracy of online aggre-
gation in MapReduce Online [57]. MapReduce Online is a system that uses online
aggregation to provide early results, by partially executing jobs on subsets of the
input, using a simplistic progress metric.

— An optimization that exploits computation redundancy in analysis programs. We
have built m2r2, a system that stores intermediate results and uses plan matching
and rewriting in order to reuse results in future queries. We have built our prototype
on top of the Apache Pig framework and report significantly reduced query response
times.

These contributions appear in publications [100, 102, 105] as follows.

— Ponic: Using stratosphere to speed up pig analytics. Kalavri, Vasiliki; Brand, Per;
Vlassov, Vladimir; European Conference on Parallel Processing. Springer Berlin
Heidelberg, (Euro-Par), 2013.

— Block Sampling: Efficient Accurate Online Aggregation in MapReduce. Kalavri,
Vasiliki; Brundza, Vaidas; Vlassov, Vladimir; 5th IEEE International Conference
on Cloud Computing Technology and Science (CloudCom) 2013.

— m2r2: A Framework for Results Materialization and Reuse in High-Level Dataflow
Systems for Big Data. Kalavri, Vasiliki; Shang, Hui; Computational Science and
Engineering (CSE), 2013 IEEE 16th International Conference on. IEEE, 2013.

1.4 Related Work

We summarize related work in the areas of distributed graph processing, web tracker
detection, optimizations for fixpoint graph algorithms, and semi-metricity, graph compres-
sion, and sparsification techniques. We compare with more specific related work in the
corresponding chapters throughout this thesis.
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Graph Processing Surveys

A recent survey of vertex-centric frameworks for graph processing [127] presents a
extensive study of frameworks that implement the vertex-centric programming model and
compares them in terms of system design characteristics, such as scheduling, partitioning,
fault-tolerance, and scalability. Moreover, it briefly introduces subgraph-centric frame-
works, as an optimization to vertex-centric implementations. While there is some overlap
between this work and ours, the objective of our study in Chapter 3 is to present the first
comprehensive comparison of distributed graph processing abstractions, regardless of the
specifics of their implementations. While in [127] the discussion revolves around certain
frameworks, in our work, we first consider the programming models decoupled from the
systems, then build a taxonomy of systems based on their implemented model.

A notable study of parallel graph processing systems is presented in [63]. The work
surveys over 80 systems, spanning single-machine, shared-memory, and distributed archi-
tectures. The scope of their study is much wider than ours, yet their results are driven by
system implementations and platform design choices. With regard to programming models,
they consider general-purpose processing systems, vertex-centric, and subgraph-centric,
but do not further expand on execution semantics, user-facing interfaces or limitations.

While the focus of our work is to describe and compare available programming ab-
stractions for distributed graph processing, several recent studies focus on the performance
of modern distributed graph processing platforms. In [85], the authors compare the perfor-
mance of six systems, including general-purpose data processing frameworks, specialized
graph processors and a non-distributed graph database. The study evaluates these systems
across a number of performance metrics, such as execution time, CPU and memory uti-
lization, and scalability, using real-world datasets and a diverse set of graph algorithms.
Similarly, [123] presents an experimental evaluation of distributed graph processing plat-
forms, but covering only specialized graph processors. The also study the effectiveness
of implemented optimization techniques and compare performance with a single machine
system as baseline. A similar but more extensive study can be found in [28]. Both these
studies conclude that no single system performs best in all cases and also highlight the
need for a standard benchmark solution, that could simplify the performance compari-
son of graph processing platforms. Even though a standard benchmarking solution for
graph processing systems does not exist yet, [86, 45] are two significant steps towards
that direction. They propose a clear vision for a benchmark, listing challenges that need
to be addressed and share early results in designing a graph processing benchmark, called
Graphalytics. Graphalytics supports graph generation with custom degree distributions and
structural characteristics and already supports several systems and algorithms.

Web Tracking

TrackAdvisor [120] is a tool that analyzes cookie exchange statistics from HTTP re-
quests to automatically detect trackers. Similar to us, their goal is to identify trackers with-
out having to rely on blacklists. They also identify third-party requests by looking at the
referer field. Their dataset is created by visiting Alexa top 10K pages (not real user data)
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and is an order of magnitude smaller than ours (500k requests in total). Our method does
not need to intercept cookie traffic. Our finding that a tracker appears in multiple pages
agrees with their results. In conclusion, we could call the two methods complementary;
they could be combined to produce a more powerful tool.

Roesner et al. provide a study of web tracking, classifying tracking behaviors and
evaluating defense mechanisms [158] using web traces from AOL search logs to simulate
real user behavior. Although their work focuses on classifying tracking mechanisms that
use cookies and proposes a Firefox add-on, which transparently removes cookies from
third-party requests, as a new defense mechanism. They build a classification framework
for distinguishing different types of trackers, based on their functionality. In contrast, our
classification method distinguishes between trackers and non-trackers, while it is oblivious
to the tracker mechanisms and functionality specifics. As in our study, the authors also find
that popular trackers can capture more 20% of a user’s browsing behavior.

Bau et al. propose a machine learning mechanism for detecting trackers [30]. They
evaluate machine learning approaches and present results from a prototype implementation.
They use DOM-like hierarchies from the crawl data HTTP content headers as the main
features. While they achieve precision of 54% for 1% FPR, our methods achieve much
better precision and lower FRP, while not relying on page content collection.

Gomer et al. investigate the graph structure of third-party tracking domains in [80]
in the context of search engine results. They obtain their graph by using several popular
search engines with a set of pre-defined queries as opposed to real browsing behavior as
we do. Their focus is on how users are exposed to trackers via normal search behavior
and they find a 99.5% chance of being tracked by all major trackers within 30 clicks on
search results. They further found that the graph structure was similar across geographic
regions, which reduces the concern of bias in our dataset. Their results agree with our
findings regarding the community structures of trackers. They find a dominant connected
component that includes the vast majority of tracking nodes and connections. They show
that tracking networks expose small-world characteristics, where a small group of entities
are highly connected among them.

In [73], Falahrastegar et al. examine the geographical properties of third-party track-
ers. They show that there are several trackers that focus on specific regions or countries,
while there also exists a small number of international corporations with dominant presence
across regions.

In [90], Ihm et al. analyze web traffic over a 5-year period. They use a distributed proxy
and analyze traffic from 70k users and 187 countries. The work focuses on general web
traffic characteristics, such as bandwidth, browser popularity, page complexity and data
redundancy. The authors do not make a separate analysis on trackers or tracking behavior.

Another large-scale analysis of third-party trackers on the internet is presented in [163].
The data is extracted from more than 3.5 billion web pages of the CommonCrawl 2012
corpus, creating a dataset with more than 41 million domains. The goals of this study is
to reveal the extent of tracking and analyze how the tracking ecosystem differs in different
countries.

In agreement with our findings, most of the above works also find that a small number
of trackers are able to capture the majority of user behavior. However, our work is, to the
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best of our knowledge, the first to show that using this community structure as an explicit
feature can accurately predict whether an unknown URL is a tracker or not.

Fixpoint Graph Processing Optimizations

GraphLab’s [122] adaptive execution and its use of a pull-based model make an inter-
esting comparison with our view of a push-based model where vertices generate updates for
their neighbors, described in Chapter 5. GraphLab update functions can access the state of
adjacent vertices, even if those are not scheduled for execution in the current superstep. The
dependency plan can be implemented in this pull-based model by having a vertex check all
of its neighbors’ states and decide to participate in the computation if at least one of them
has changed value. Note that the trade-offs might be different in this case and the cost
model will have to be adjusted accordingly.

GraphX [82] and Pregelix [42] are two graph processing systems that also adopt the
idea of performing graph analytics using dataflow operators. Naiad [136] is distributed
dataflow system able to perform iterative and incremental computations. It efficiently sup-
ports stateful batch and streaming graph computations. High-level graph programming
abstractions like hte pregel model can be easily mapped to Naiad primitives. In [142], the
authors decompose iterative MapReduce queries into invariant and variant views and in-
crementally compute the variant view to avoid redundant computations. The main idea is
conceptually the same as our the incremental and delta iteration techniques, but incremen-
talization is abandoned if the aggregation computation is not distributive. In our case, such
an application can still benefit by the dependency iteration plan.

Delta and incremental optimizations have been used in several other systems as well.
REX [133] is a system for recursive, delta-based data-centric computation, which uses user-
defined annotations to support incremental updates. It allows explicit creation of custom
delta operations and lets nodes maintain unchanged state and only compute and propa-
gate deltas. The system optimizer discovers incrementalization possibilities during plan
optimization, while the user can also manually add delta functions to wrap operators, can-
didates for incrementalization.

Distributed SociaLite [164] and BigDatalog [166] explore the possibility of using data-
log for large-scale graph analysis. Socialite enhances datalog with a set of extensions, effi-
cient data structures, and recursive aggregate functions, which can be efficiently evaluated
using semi-naive evaluation. To parallelize the recursive aggregate functions, these have to
be monotone, idempotent, commutative, and associative. Under these circumstances, delta
stepping [132] is be used to parallelize monotone recursive aggregate functions. BigData-
log uses parallel semi-naive evaluation to efficiently execute recursive queries on Apache
Spark. The authors present a parallel evaluation technique that allows using Spark as a
Datalog runtime and they propose novel data structures and recursive operators. They
also propose several optimizations, most of which are also automatically implemented by
the Apache Flink optimizer and its native iteration operators. Specifically, mutable RDD
types would correspond to the use of a mutable distributed hash table to represent the it-
eration solution set in Apache Flink. Input caching and the use of broadcast joins are also
handled transparently by Flink’s optimizer. Finally, single-job scheduling and caching op-
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timizations are not required in our case, since Flink’s iteration operators are native in the
execution DAG and no job re-submission is required after an iteration step.

Semi-metricity, Graph Sparsification and Compression
Complex network analysis

The concept of semi-metricity in weighted graphs has been first used in complex net-
work analysis. Semi-metricity was introduced in weighted graphs by Rocha [154, 155],
showing that semi-metric edges in a weighted graph encode some latent information be-
tween a pair of nodes, which may be useful for information discovery [154, 155, 168, 153,
169]. Simas et al. introduce in [169] a new mathematical framework to the study of net-
works in general and specifically semi-metric networks. In [169] Simas et al. introduce the
concept of distance backbones, a generalization of the metric backbone. In this work they
present a few examples of how distance backbones, including the metric backbone, can be
useful in network analysis, such as improving modularity in community detection.

Graph compression and query optimization

Graph compression and summarization techniques are closely related to this work. Re-
search in this area aims to provide reduced graph representations, which may have lower
storage requirements for large graphs and lower graph query costs. In [134, 19], the au-
thors examine the problem of producing minimal graph representations, while preserving
the graph’s reachability properties. Their goal is to reduce the memory used for storing the
graph and potentially improve the efficiency of certain algorithms that contain reachability
queries. More recent works on graph compression, [37], [52], look into specific techniques
for compressing web graphs and social networks. These provide methods that preserve the
information of the original graph. In these cases, graph decompression is necessary for
query evaluation. On the other hand, [74], proposes a query-preserving graph compression
method, relative to reachability and graph pattern queries. Similar to our work, the query
can be directly issued on the compressed graph representation. The authors also provide a
method for incrementally maintaining the compressed graph structure, for dynamic graphs.
The proposed algorithms summarize nodes, based on equivalence relations for each query
class. Compression algorithms are also studied in [138, 121]. These works explore ways to
minimize graph representation overhead and offer several algorithms, both sequential and
distributed, for lossless and lossy graph compression. However, their main goal is reducing
the graph sizes, while providing guarantees on decompression accuracy.

Graph compression is also closely related to graph query optimization. [194] provides a
graph indexing technique that speeds up search in large graphs. It leverages shortest-paths
information, but does not generate a reduced graph representation. The indexes encode
neighborhood shortest-paths information, which is used to prune the graph search space.
The technique is mostly targeted to graph isomorphism queries.

If we view the metric backbone as a reduced graph representation, there are two fun-
damental differences between our work and aforementioned works. First, our method does
not collapse graph vertices; the metric backbone preserves all the vertices of the original
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graph. Second, none of these works take into account the weights when compressing the
graph. Regarding the motivation of our work, an important difference is that we are mainly
concerned with the challenge of scalability and we provide a distributed implementation of
the metric backbone algorithm. Moreover, existing works focus on optimizing reachabil-
ity and graph matching queries. In contrast, we go a step further and evaluate the metric
backbone in the context of graph analytics and iterative graph processing.

Spanners and Sparsifiers

Spanners [145, 65] and sparsifiers [77] are approximate graph structures that are used to
approximate graph distances and shortest paths. They have been mostly used in streaming
algorithms as sketches or graph summaries. In this context, the metric backbone can be
considered equivalent to the minimum 1-Spanner. A spanner guarantees that distances can
be approximated with a certain maximum multiplicative error. On the contrary, the metric
backbone preserves all shortest paths and gives the exact shortest distances. Thus, it can be
used in applications that cannot tolerate errors on the graph distances.

1.5 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we provide a literature
study on distributed data processing with MapReduce. We summarize the limitations of
the MapReduce programming model and we survey optimizations and open issues. In
Chapter 3, we provide an overview of high-level programming abstractions for distributed
graph processing. We explore their semantics and their limitations, and we categorize mod-
ern distributed graph processing systems, with respect to the abstraction they implement.
Chapter 4 presents a use-case scenario of a distributed graph processing application and
describes an end-to-end data processing pipeline that implements it. In Chapters 5 and 6
we present two optimization techniques for distributed graph processing on (1) a general-
purpose distributed data processing platform and (2) a specialized distributed graph pro-
cessor, respectively. We summarize the results of this work and conclude in Chapter 7.

Some passages and figures in this thesis have been quoted verbatim from the following
sources [104, 99, 103, 101].
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Chapter 2

Distributed Data Processing with
MapReduce

A data-intensive application is an application that, as opposed to a computation-intensive
application, requires processing of an amount of data that is large in comparison to the
amount of computation that needs to be performed. Data-intensive applications are of-
ten implemented on top of distributed frameworks and exploit data parallelism in order to
achieve good performance. In distributed environments, where network communication
is expensive, minimizing data transfers between computation nodes is of essence. One of
the prevalent design ideas towards this direction suggests moving the computation close to
the data. Thus, both the data storage framework and the data processing engine would be
deployed on the same set of nodes. This is one of the main ideas introduced by MapRe-
duce [59]. The invention of MapReduce radically transformed the area of distributed data
processing and heavily inspired the development of modern data processing frameworks.
Next-generation frameworks, including the ones we use for this work, borrow the ideas
of high-level, declarative programming abstractions and automatic data distribution and
parallelism from MapReduce.

Out of the numerous implementations of the MapReduce programming model that
have been developed, the open-source Apache Hadoop framework [7] is the most widely
adopted. Apart from the MapReduce programming model, Hadoop offers various other
capabilities, including a distributed file system, HDFS [167] and a scheduling and re-
source management layer. Despite its popularity, the MapReduce model and its Hadoop
implementation have also been criticized [10] and have been compared to modern parallel
database management systems (DBMSs), in terms of performance and complexity [144].
Several studies [117, 97, 83] have previously identified shortcomings of the model and its
current implementations. Researchers and system designers have criticized features such
as the static map-shuffle-reduce pipeline, the frequent data materialization (writing data to
disk for fault-tolerance), the lack of support for iterations and state transfer between jobs,
the lack of indexes and schema, and the sensitivity to configuration parameters. All of the
above have been shown to negatively affect the performance of certain classes of MapRe-
duce applications.
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Figure 2.1 — Stages of a MapReduce job.

During the last few years, there has been significant work towards improving MapRe-
duce and Hadoop, proposing performance improvements, programming model extensions,
automation of use, and tuning. In this chapter, we describe the motivation of MapReduce
and we give an overview of the programming model and the Hadoop implementation. We
discuss its limitations, proposed optimizations, and we identify open issues in the area of
MapReduce and distributed data processing.

2.1 The MapReduce Programming Model

The MapReduce programming model is designed to efficiently execute programs on
large clusters, by exploiting data parallelism. A distributed file system is deployed on the
same machines where the applications run, so that execution can benefit from data locality,
by trying to schedule computations where the data reside. Figure 2.1 shows the stages of
a MapReduce job. The model is inspired by functional programming and consists of two
second-order functions, Map and Reduce, which form a static pipeline, where the Map
stage comes first and is followed by the Reduce stage.

Data is read from the distributed file system, in the form of user-defined key-value pairs.
These pairs are then grouped into subsets and serve as input for parallel instances of the
Map function. A user-defined function must be specified and is applied to all key-value
pairs independently. The Map function outputs a new set of key-value pairs, which is then
sorted by key and partitioned according to a partitioning function. The sorted data feed the
next stage of the pipeline, the Reduce function. The partitioning stage of the framework
guarantees that all pairs sharing the same key will be processed by the same Reduce task.
A user-defined function is applied to each group of pairs sharing the same key, producing
one output file per Reduce task. The results are stored in the distributed file system.

One of the important advantages of this model is that the parallelization is automatically

20



2.1. THE MAPREDUCE PROGRAMMING MODEL

start/stop tasks
report status L
Map Slot

Map Slot
Reduce Slot

N /

resource management
scheduling
monitoring progress

Figure 2.2 — The Master-Slave architecture of early MapReduce frameworks

handled by the framework. The user only has to specify the computation logic that will be
wrapped inside the Map and Reduce functions. However, this advantage comes with a
certain loss of flexibility. Every job must consist of exactly one Map function followed by
an optional Reduce function, and steps cannot be executed in a different order. Moreover,
if an algorithm requires multiple Map and Reduce steps, these can only be implemented as
separate jobs. Data between different jobs can only be transferred through the file system.

In the initial implementations of Hadoop, MapReduce is designed as a master-slave
architecture, as shown in Figure 2.2. The JobTracker is the master, managing the cluster
resources, scheduling jobs, monitoring progress, and dealing with fault-tolerance. On each
of the slave nodes, there exists a TaskTracker process, responsible for launching parallel
tasks and reporting their status to the JobTracker. The slave nodes are statically divided
into computing slots, available to execute either Map or Reduce tasks.

The Hadoop community realized the limitations of this static model and recently re-
designed the architecture to improve cluster utilization and scalability. They introduced
YARN [178], Yet Another Resource Negotiator, which allows Hadoop to serve as a general
data-processing framework. It supports programming models other than MapReduce, while
also improving scalability and resource utilization. YARN makes no changes to the pro-
gramming model or to HDFS. It consists of a re-designed runtime system, aiming to elimi-
nate the bottlenecks of the master-slave architecture. The responsibilities of the JobTracker
are split into two different processes, the ResourceManager and the ApplicationMaster.
The ResourceManager handles resources dynamically, using the notion of containers, in-
stead of static Map/Reduce slots. Containers are configured based on information about
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available memory, CPU and disk capacity. YARN also has a pluggable scheduler, which
can use different strategies to assign tasks to available nodes. The ApplicationMaster is a
framework-specific process, meaning that it allows other programming models to be exe-
cuted on top of YARN. It negotiates resources with the ResourceManager and supervises
the scheduled tasks. The YARN architecture is shown in Figure 2.3.

2.2 MapReduce Limitations

Even though YARN manages to overcome the well-known limitations of the Hadoop
scheduling framework and improves scalability and resource utilization, there still exist
several opportunities for optimizations in Hadoop and MapReduce. We group the opti-
mization opportunities, found in recent literature, in three main categories: performance
issues, programming model extensions, and usability enhancements. Next, we discuss the
limitations which lead to these optimization opportunities.

2.2.1 Performance lIssues

Even though Hadoop/MapReduce has been praised for its scalability, fault-tolerance,
and capability of processing vast amounts of data, query execution time can often be in the
order of several hours [107]. This is orders of magnitude higher than what modern DBMSs
offer and prevents interactive analysis. Performance highly depends on the nature of the
application, but is also influenced by inherent system characteristics and design choices. A
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quite large percentage of the execution time is spent in task initialization, scheduling, coor-
dination, and monitoring. Moreover, Hadoop/MapReduce does not support data pipelining
and does not allow overlapping between the execution of the Map phase and the execu-
tion of the Reduce phase. Data materialization for fault-tolerance and intensive disk I/O
during the shuffling phase have also been found to significantly contribute to the overall
execution time. It has been suggested that Hadoop performance would benefit from well-
known optimization techniques, already used by database systems and query optimizers.
Even though Hadoop lacks a built-in optimizer, similar to what one can find on database
systems, many techniques have been borrowed from database research and implemented in
Hadoop extensions. Optimizations include index creation [61], data co-location [70], reuse
of previously computed results [68, 102], exploiting sharing opportunities [140], mecha-
nisms dealing with computational skew [112] and techniques allowing early approximate
query results [57, 100].

2.2.2 Programming Model Issues

Developing efficient MapReduce applications requires advanced programming skills
and deep understanding of the system architecture. Common data analysis tasks usually
include processing of multiple datasets and performing relational operations, such as joins,
which are not trivial to implement in MapReduce. Thus, the MapReduce programming
model has often been characterized as being too low-level for analysts used to SQL-like
or declarative languages. Another limitation of the programming model stems from its
batch nature. Data must be uploaded to the file system and even when the same dataset
needs to be analyzed multiple times, it must be read from scratch every time. Furthermore,
the computation steps are fixed and applications must respect the map-shuffle-sort-reduce
sequence. Complex analysis queries can only be realized by chaining multiple MapReduce
jobs, having the results of one serving as the input for the next. These limitations make
the model inappropriate for certain classes of algorithms. Various applications, including
machine learning and graph analysis algorithms, often require iterations or incremental
computations. Since MapReduce operators are stateless, MapReduce implementations of
iterative algorithms require manual management of the state and manual chaining of the
iterative steps. In order to facilitate complex application development with MapReduce,
several abstractions and high-level languages have been built [78, 175]. Also, a set of
domain-specific systems have emerged, extending the MapReduce programming model.
We review these systems in Section 2.3.2.

2.2.3 Configuration and Automation Issues

The third category of optimizations are related to automatic tuning and ease of use.
There are numerous configuration parameters to set when deploying a Hadoop MapReduce
cluster. Performance is often quite sensitive to them and users usually rely on empirical
"rules of thumb". Options include the number of parallel tasks, the size of the file blocks,
and the replication factor. Proper tuning of these parameters requires knowledge of both
the available hardware characteristics and the workload characteristics. Failure to properly
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Figure 2.4 — Data pipelining between operators in MapReduce Online.

configure important parameters might lead to inefficient execution and under-utilization
of resources [107, 88]. Hadoop variations dealing with automatic tuning are discussed in
Section 2.3.3.

2.3 MapReduce Variations

Here, we now look into how specific MapReduce systems implement the presented
optimizations in order to address the limitations of the vanilla MapReduce implementation.
Some of the optimizations discussed in this section could fall into more than one of the
categories we have presented. We base the categorization and comparison that follows on
the primary motivation of each examined system.

2.3.1 Performance Optimizations
Operator Pipelining and Online Aggregation

One of the early Hadoop extensions is MapReduce Online [57]. It boosts performance
by supporting online aggregation and stream processing, while also improving resource
utilization. The motivation of MapReduce Online is to enable pipelining between opera-
tors, while preserving fault-tolerance guarantees. Pipelining is implemented both between
tasks and between jobs. The system uses a “mixed” push/pull approach for data transfers.
Figure 2.4 shows the data pipelining operation in MapReduce Online. The left drawing de-
picts the original MapReduce execution. In this case, after the mapper tasks have finished
execution, they write their intermediate results in local disk, while the reducer tasks remain
idle until then. Once all mappers have finished, the reduce tasks get notified and retrieve
input data from the local disks of the map tasks, by issuing an HTTP request. On the right,
we see how MapReduce Online operates. Reduce tasks do not have to remain idle until
the map tasks have finished. Instead, they receive intermediate results as they are being
produced.

The pipelining technique is hard to use together with combiners. Combiners are tasks
that are executed on the mapper side before sending intermediate results to reducers. Their
goal is to combine results when possible, so that less data is shipped over the network. In
order to use pipelining in conjunction with combiners, MapReduce Online buffers inter-
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mediate data up to a specified threshold, applies the combiner function on them, and then
spills them to disk.

As a side-effect of the MapReduce Online design, early results can be computed, mak-
ing approximate answers to queries available to users. This technique is called online ag-
gregation and returns useful early results, before job completion. By applying the reduce
function to the data that the reducer has seen so far, the system can provide an early snap-
shot of the current result. Users can approximate the accuracy of the provided snapshot by
combining it with job progress metrics.

Approximate Results

A more sophisticated approach to retrieving approximate results in MapReduce is pro-
posed by Laptev et al. [115]. The EARL library is a Hadoop extension which allows incre-
mental computations of early results using sampling and the bootstrapping technique. The
system obtains an initial sample of the data and estimates the error using bootstrapping. If
the error is too high, the sample is expanded and the error is recomputed. This process is
repeated until the error is under a user-defined threshold. In order to implement EARL,
Hadoop was extended to support dynamic input size expansion. First, the authors imple-
mented pipelining between mappers and reducers, similarly to MapReduce Online, so that
reduce tasks can start processing data as soon as they become available. EARL modifies
the mapper task management to keep mapper tasks active and reuse them instead of restart-
ing them in every sampling iteration. This modification saves a significant amount of setup
time. Finally, a communication channel was built between mappers and reducers, so that
the termination condition can be easily tested. EARL is an addition to the MapReduce API
and existing applications require modifications in order to exploit the library.

Indexing and Sorting

Quite a few of the proposed optimizations for Hadoop/MapReduce are inspired by well-
known database techniques. Long query runtimes are often caused due to lack of proper
schemas and data indexing. Hadoop++ [61] and HAIL [62] are two remarkable works
dealing with this issue in the context of MapReduce. Hadoop++ is a transparent addition
to Hadoop implemented using User Defined Functions (UDFs). It provides an indexing
technique, the Trojan Index, which extends input splits with indexes at load time. Addi-
tionally to the Trojan Index, the paper also proposes a novel join technique, the Trojan Join,
which uses data co-partitioning in order to perform the join operation using only map tasks.
HAIL proposes inexpensive index creation on Hadoop data attributes, in order to reduce ex-
ecution times in exploratory use-cases of MapReduce. It modifies the upload pipeline of
HDFS and creates a different clustered index per block replica. HAIL uses the efficient
binary PAX representation [20] to store blocks and keeps each physical block replica in a
different sort order. Sorting and indexing happen in-memory at upload time. If index in-
formation is available, HAIL also uses a modified version of the task scheduling algorithm
of Hadoop, in order to schedule tasks to nodes with appropriate indexes and sort orders.
The block binary representation and in-memory creation of indexes improve upload times
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for HDFS. Query execution times significantly improve as well when index information
is available. HAIL preserves Hadoop’s fault-tolerance properties. However, failover times
are sometimes higher, due to HAIL assigning more blocks per map task, therefore limiting
parallelization during recovery. In a system with the default degree of replication, three
different sort orders and indexes are available, greatly increasing the probability of finding
a suitable index for the corresponding filtering attribute of the query. HAIL benefits queries
with low selectivity, exploratory analysis of data, and applications for which there exists
adequate information for index creation.

Work Sharing

MRShare [140] is a Hadoop extension that aims to exploit sharing opportunities among
different jobs. It transforms a batch of queries into a new batch, by forming an optimization
problem and providing the optimal grouping of queries to maximize sharing opportunities.
MRShare works on the following levels. Sharing scans when the input to mapping pipelines
is the same and sharing map outputs and map functions. MRShare modifies Hadoop to
support tagging of tuples and merges the tags into the keys of tuples, so that their origin
jobs can be identified. Moreover, it modifies reducers to enable them to write to more than
one output files.

Data Reuse

ReStore [68] is an extension to Pig [78], a high-level system built on top of Hadoop/MapRe-
duce. It stores and reuses intermediate results of scripts, originating from complete jobs or
sub-jobs. The input of ReStore is Pig’s physical plan; a workflow of MapReduce jobs. Re-
Store maintains a repository where it stores job outputs together with the physical execution
plan, the file name of the output in HDFS, and runtime statistics about the MapReduce job
that produced the output. The system consists of a plan matcher and rewriter which searches
in the repository for possible matches and rewrites the job workflow to exploit stored data.
It also has a sub-job enumerator and a sub-job selector, which are responsible for choosing
which sub-job outputs to store, after a job workflow has been executed. Sub-job results are
chosen to be stored in the repository based on the input to output ratio and the complexity
of their operators. Repository garbage collection is not implemented, however guidelines
for building one are proposed.

Skew Mitigation

SkewTune [112] is a transparent Hadoop extension providing mechanisms to detect
stragglers and mitigate skew by re-partitioning their remaining unprocessed input data. In
order to decide when a task should be treated as a straggler, while avoiding unnecessary
overhead and false-positives, SkewTune is using a technique called Late Skew Detection.
Depending on the size of the remaining data, SkewTune may decide to scan the data locally
or in parallel. In Hadoop, skew mitigation is implemented by SkewTune as a separate
MapReduce job for each parallel data scan and for each mitigation. When re-partitioning a
map task, a map-only job is executed and the job tracker broadcasts all information about
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the mitigated map to all the reducers in the system. When re-partitioning a reduce task, due
to the MapReduce static pipeline inflexibility, an identity map phase needs to be executed
before the actual additional reduce task.

Data Colocation

CoHadoop [70] allows applications to control where data is stored. In order to ex-
ploit its capabilities, applications need to state which files are related and are likely to be
processed together. CoHadoop uses this information to collocate files and improve job
runtimes. While HDFS uses a random placement policy for load-balancing reasons, Co-
Hadoop allows applications to set a new file property, in order for all copies of related files
to be stored together. This property, the locator, is an integer and there is a N:1 relationship
between files and locators, so that files with the same locator are stored on the same set
of storage nodes. If the selected set of storage nodes runs out of space, CoHadoop simply
stores the files in another set of nodes. CoHadoop may lead to skew in data distribution or
loss of data in the presence of failures. It performs collocation and special partitioning by
adding a pre-processing step to a MapReduce job, which is itself a MapReduce job.

2.3.2 Programming model extensions
High-Level Languages

Developing applications using high-level languages on top of Hadoop has proven to be
much more efficient in terms of development time than using native MapReduce. Mainte-
nance costs and bugs could be reduced, as less code is required. Pig [78] is a high-level
system that consists of a declarative scripting language, Pig Latin, and an execution engine
that allows the parallel execution of data-flows on top of Hadoop. Pig offers an abstraction
that hides the complexity of the MapReduce programming model and allows users to write
SQL-like scripts, providing all common data operations (filtering, join, ordering, etc.).

Another widely-used high-level system for Hadoop is Hive [175]. Initially developed
by Facebook, Hive is not just an abstraction, but a data warehousing solution. It provides
a way to store, summarize, and query large amounts of data. Hive’s high-level language,
HiveQL, allows users to express queries in a declarative, SQL-like manner. Very simi-
lar to Pig, HiveQL scripts are compiled to MapReduce jobs and executed on the Hadoop
execution engine.

Another query language for Hadoop is Jagl [34]. Jaql is less general than Pig and
Hive, as it is designed for querying semi-structured data in JSON format only. The system
is extensible and supports parallelism using Hadoop. Although Jaql has been specifically
designed for data in JSON format, it borrows a lot of characteristics from SQL, XQuery,
LISP, and PigLatin.

Cascading [5] is a Java application framework that facilitates the development of data
processing applications on Hadoop. It offers a Java API for defining and testing complex
dataflows. It abstracts the concepts of map and reduce and introduces the concept of flows,
where a flow consists of a data source, reusable pipes that perform operations on the data,
and data sinks.
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Domain-specific Systems

Support for Iterations. Iterative algorithms are very common in data-intensive prob-
lems, especially in the domains of machine learning and graph processing. HaLL.oop [43] is
a modified version of Hadoop with built-in support for development and efficient execution
of iterative applications. HalL.oop offers a mechanism to cache and index invariant data
between iterations, significantly reducing communication costs. It extends Hadoop’s API,
allowing the user to define loops and termination conditions easily. The authors also pro-
pose a novel scheduling algorithm, which is loop-aware and exploits inter-iteration locality.
It exploits cached data in order to co-locate tasks which access the same records in different
iterations.

Support for Incremental Computations Incremental computations are useful for jobs
which need to be run repeatedly with slightly different, most often augmented input. Per-
forming such computations in MapReduce would obviously lead to redundant computa-
tions and inefficiencies. A possible solution is to specially design MapReduce applications
to store and use state across multiple runs. Since MapReduce was not designed to reuse in-
termediate results, writing such programs is complex and error-prone. Incoop’s [35] goal is
to provide a transparent way to reuse results of prior computations, without demanding any
extra effort from the programmer. Incoop extends Hadoop to support incremental compu-
tations, by introducing three novel features: (a) Inc-HDFS. A modified HDFS which splits
data depending on file contents instead of size. It provides mechanisms to identify similar-
ities between datasets and opportunities for data reuse, while preserving compatibility with
HDEFS. (b) Contraction Phase. An additional computation phase added before the reduce
phase, used to control task granularity. This phase leverages the idea of combiners to break
the reduce task into a tree-hierarchy of smaller tasks. The process is run recursively until
the last level, where the reduce function is applied. In order to result into a data partitioning
suitable for reuse, content-based partitioning is again performed on every level of combin-
ers. (c¢) Memoization-aware Scheduler. An improved scheduler which takes into account
data locality of previously computed results, while also using a work-stealing algorithm.
The memoization-aware scheduler schedules tasks on the nodes that contain data which
can be reused. However, this approach might create load imbalance if some data items are
very popular. To avoid this situation, the scheduler implements a simple work-stealing al-
gorithm. When a node runs out of work, the scheduler will locate the node with the largest
task queue and delegate a task from the busy node to the idle node.

2.3.3 Automatic tuning
Self-Tuning

Configuring and tuning Hadoop MapReduce is usually not a trivial task for develop-
ers and administrators. Misconfiguration is a common cause of poor performance, re-
source under-utilization, and consequently increased operational costs. Starfish [88] is a
self-tuning system, built as an extension to Hadoop, which dynamically configures system
properties based on workload characteristics and user input. Starfish performs tuning on
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three levels. In the job-level, it uses a Just-in-Time Optimizer to choose efficient execution
techniques, a Profiler to learn performance models, and build job profiles and a Sampler
to collect statistics about input, intermediate and output data, and help the Profiler build
approximate models. In the workflow-level, it uses a Workflow-aware Scheduler, which ex-
ploits data locality on the workflow-level, instead of making locally optimal decisions. A
What-if Engine answers questions based on simulations of job executions. In the workload-
level, Starfish consults the Workload Optimizer to find opportunities for data-flow sharing,
materialization of intermediate results for reuse or reorganization of jobs inside a batch,
and the Elastisizer to automate node and network configuration.

Disk I/0 Minimization

Sailfish [152] is another Hadoop modification also providing auto-tuning opportuni-
ties, such as dynamically setting the number of reducers and handling skew of intermediate
data. Additionally, it improves performance by reducing disk I/O due to intermediate data
transfers. The proposed solution uses KFS [9] instead of HDFS, which is a distributed file
system allowing concurrent modifications to multiple blocks of a single file. The authors
propose I-files, an abstraction which aggregates intermediate data, so that they can be writ-
ten to disk in batches. An index is built and stored with every file chunk and an offline
daemon is responsible for sorting records within a chunk.

Data-aware Optimizations

Manimal [95] is an automatic optimization framework for MapReduce, transparent to
the programmer. The idea is to apply well-known query optimization techniques to MapRe-
duce jobs. Manimal detects optimization opportunities by performing static analysis of
compiled code and only applies optimizations which are safe. The system’s analyzer ex-
amines the user code and sends the resulting optimization descriptors to the optimizer. The
optimizer uses this information and pre-computed indexes to choose an optimized execu-
tion plan, the execution descriptor. The execution fabric then executes the new plan in
the standard map-shuffle-reduce fashion. Example optimizations performed by Manimal
include Selection and Projection. In the first case, when the map function is a filter, Man-
imal uses a B+Tree to only scan the relevant portion of the input. In the second case, it
eliminates unnecessary fields from the input records.

2.4 Discussion

Table 2.1 shows a brief comparison of the systems discussed in this chapter. We have
excluded high-level languages from this comparison, since they share common goals and
major characteristics among them.

MapReduce, Hadoop, and similar frameworks still have plenty of optimization opportu-
nities to exploit. However, some techniques can be challenging to apply in architectures of
shared-nothing clusters of commodity machines. Scalability, efficiency and fault-tolerance
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Optimization Major Contributions Open-Source | Transparent to
Type / Available to | Existing Ap-
use plications
MapReduce | performance, Pipelining, Online aggre- | yes yes
Online programming gation
model
EARL performance Fast approximate query | yes no
results
Hadoop++ performance Performance gains for re- | no yes
lational operations
HAIL performance Performance gains for re- | no no
lational operations
MRShare performance Concurrent work sharing | no no
ReStore Reuse of previously com- | no yes
puted results
SkewTune performance Automatic skew mitiga- | no yes
tion
CoHadoop performance Communication min- | no no
imization by data co-
locations
HaL.oop programming Iteration support yes no
model
Incoop programming Incremental  processing | no no
model support
Starfish tuning, perfor- | Dynamic self-tuning no yes
mance
Sailfish tuning, perfor- | Disk 1/O minimization | no yes
mance and automatic tuning
Manimal tuning, perfor- | Automatic data-aware op- | no yes
mance timizations

Table 2.1 — Comparative Table of Hadoop Variations
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are major requirements for any distributed data processing framework and trade-offs be-
tween optimizations and these features have to be carefully considered.

We can identify several trends by reviewing the systems we present in this chapter. In
order to achieve good performance for data-intensive, MapReduce applications, it is vital
to minimize disk I/O and communication. Therefore, many systems have sought ways to
enable in-memory processing and avoid reading from disk when possible. For the same rea-
son, traditional database techniques, such as materialization of intermediate results, caching
and indexing have been favored.

Another recurring theme in MapReduce systems is relaxation of fault-tolerance guar-
antees. The initial MapReduce design from Google assumed deployments in clusters of
hundreds or even thousands of commodity machines. In such setups, failures are very com-
mon and strict fault-tolerance and recovery mechanisms are necessary. However, after the
release of Hadoop, MapReduce has also been used by organizations much smaller than
Google. Common deployments may consist of only tenths of machines [13] and exhibit
significantly decreased failure rates. Such deployments can benefit from higher perfor-
mance, by relaxing the strict fault-tolerance guarantees of MapReduce. For example, we
can avoid materialization of task results and allow pipelining of data. In this scenario, when
a failure occurs, the whole job would have to be re-executed, instead of only rescheduling
the tasks running on the failed node.

Despite the significant progress that has been made since the launch of MapReduce and
Hadoop, several open issues still exist. Even though it is clear that relaxing fault-tolerance
offers performance gains, we believe that this issue needs to be further studied in the context
of MapReduce. The trade-offs between fault-tolerance and performance need to be quanti-
fied. When these trade-offs have become clear, Hadoop could offer capabilities of tunable
fault-tolerance to the users or provide automatic fault-tolerance adjustment mechanisms,
depending on cluster and application characteristics.

Another open issue is the lack of a standard benchmark or a set of typical workloads
for comparing different Hadoop implementations. Each system is evaluated using differ-
ent datasets, deployments and set of applications. There have been some efforts in this
direction [152, 51], but no clear answer exists to what is typical MapReduce workload.

Regarding programming extensions, we believe that the main requirement is to provide
transparency to the developer. In our view, programming extensions need to be smoothly
integrated into to the framework, so that existing applications can benefit from the opti-
mizations, automatically, without having to significantly change the source code.

Finally, even if successful declarative-style abstractions exist, Hadoop MapReduce is
still far from offering interactive analysis capabilities. Developing common analysis tasks
and declarative queries has indeed been significantly facilitated. However, these high-level
systems still compile their queries into MapReduce jobs, which are executed on top of
Hadoop. These systems could greatly benefit from more sophisticated query optimization
techniques. Mechanisms such as data reuse and approximate answers could also be more
extensively studied and exploited in high-level systems.
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Chapter 3

Programming Abstractions and
Platforms for Distributed Graph
Processing

Efficient processing of large-scale graphs in distributed environments has been an in-
creasingly popular topic of research and systems development in recent years. Inter-connected
data that can be modeled as graphs arise in application domains, such as machine learning,
recommendation, web search, and social network analysis. Writing distributed graph ap-
plications is inherently hard and requires programming models and abstractions that can
cover a diverse set of problem domains, including iterative refinement algorithms, graph
transformations, graph aggregations, pattern matching, ego-network analysis, and graph
traversals. Several high-level programming abstractions have been proposed and adopted
by distributed graph processing systems and big data platforms. Even though there exists
significant work that experimentally compares distributed graph processing frameworks, no
qualitative study and comparison of graph programming abstractions has been conducted
yet. In this chapter, we review and analyze the most prevalent high-level programming
models for distributed graph processing, in terms of their semantics and applicability. We
identify the classes of graph applications that can be naturally expressed by each abstrac-
tion. For each model, we also give examples of applications that are hard to express. We
review 34 distributed graph processing systems with respect to the graph processing mod-
els they implement and we survey the applications that appear in recent distributed graph
systems papers.

3.1 The Emergence of Distributed Graph Processing

Graphs are immensely useful data representations, vital to diverse data mining applica-
tions. Graphs capture relationships between data items, like interactions or dependencies,
and their analysis can reveal valuable insights for machine learning tasks, anomaly de-
tection, clustering, recommendations, social influence analysis, bioinformatics, and other
application domains.
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The rapid growth of available datasets has established distributed shared-nothing clus-
ter architectures as one of the most common solutions for big data processing. Vast social
networks with millions of users and billions of user-interactions, web access history, prod-
uct ratings, and networks of online game activity are a few examples of graph datasets
that might not fit in the memory of a single machine. Such massive graphs are usually
partitioned over several machines and processed in a distributed fashion. However, coping
with huge data sizes is not the sole motivation for distributed graph processing. Graphs
rarely appear as raw data; they are most often derived by transforming other datasets into
graphs. As we show in Chapter 4, data entities of interest are extracted and modeled as
graph nodes and their relationships are modeled as edges. Thus, graph representations fre-
quently appear in an intermediate step of some larger distributed data processing pipeline.
Such intermediate graph-structured data are already partitioned upon creation and, thus,
distributed algorithms are essential in order to efficiently analyze them and avoid expensive
data transfers.

The increasing interest in distributed graph processing is largely visible in both academia
and industry. Highly influential papers on parallel and distributed graph processing have
been recently published [63, 127] and dominate the proceedings of prime data management
conferences [87, 42, 186, 53, 147, 161, 103, 188]. At the same time, open-source distributed
graph processing systems have gained popularity [53, 3, 122] and several general-purpose
distributed data processing systems offer implementations of graph libraries and connectors
to graph databases [82, 8, 42, 4].

Writing distributed graph mining applications is inherently hard. Computation paral-
lelization, data partitioning, and communication management are major challenges of de-
veloping efficient distributed graph algorithms. Furthermore, graph applications are highly
diverse and expose a variety of data access and communication patterns [69, 135]. For
example, iterative refinement algorithms, like PageRank, can be expressed as parallel com-
putations over the local neighborhood of each vertex, graph traversal algorithms produce
unpredictable access patterns, while graph aggregations require grouping of similar vertices
or edges together.

To address the challenges of distributed graph processing, several high-level program-
ming abstractions and respective system implementations have been recently proposed [122,
125, 176, 174, 148]. Each abstraction is optimized for certain classes of graph applica-
tions. For instance, the popular vertex-centric model [125] is well-suitable for iterative
value propagation algorithms, while the neighborhood-centric model [148] is designed to
efficiently support operations on custom subgraphs, like ego networks. Unfortunately, there
is no single model yet that can efficiently and intuitively cover all classes of graph applica-
tions.

Although several studies have experimentally compared the available distributed graph
frameworks [86, 45, 28, 85, 123], there exists no qualitative comparison of the graph pro-
gramming abstractions these frameworks offer. In this chapter, we review prevalent high-
level abstractions for distributed graph processing, in terms of semantics, expressiveness,
and applicability. We identify the classes of graph applications that can be naturally ex-
pressed by each abstraction and we give examples of application domains for which a
model appears to be non-intuitive. We further analyze popular distributed graph process-
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ing systems, with regards to their implementations of programming models and semantic
restrictions.

3.1.1 Notation

Here, we introduce the notation used for the execution semantics pseudocode and inter-
faces in the rest of this chapter. Let G = (V, E) be a directed graph, where V' denotes the
set of vertices and E denotes the set of edges. An edge is represented as a pair of vertices,
where the first vertex is the source and the second vertex is the target. For example, for
u,v € V, an edge from u to v is represented by the pair (u,v). Vertices and edges might
have associated state (value) and local data structures of arbitrary type. For v € V, S,
refers to v's associated value and S(u,v) refers to the value associated with the edge (u, v).
We define the set of first-hop, out-neighbors of vertex v as N9 = {u|lu € V A(v,u) € E}
and the set of first-hop in-neighbors of v as N = {ulu € V A (u,v) € E}.

For the user-facing APIs, we use Java-like notation. We assume that each vertex can
be identified by a unique ID of an arbitrary type, to which we refer with I. Similarly, we
use V'V to refer to the type of the vertex state, 'V for the type of the edge value, M for
message types, and T for arbitrary intermediate data types.

3.2 Programming Abstractions for Distributed Graph
Processing

In this section, we review high-level programming models for distributed graph pro-
cessing. A distributed graph programming model is an abstraction of the underlying com-
puting infrastructure that allows for the definition of graph data structures and the expres-
sion of graph algorithms. We consider a distributed programming model to be high-level
if it hides data partitioning and communication mechanisms from the end user. Thus, pro-
grammers can concentrate on the logic of their algorithms and do not have to care about
data representation, communication patterns, and underlying system architecture. High-
level programming models are inevitably less flexible than low-level models, and limit the
degree of customization they allow. On the other hand, they offer simplicity and facilitate
the development of automatic optimization.

We provide a high-level description of main abstractions and user-facing APIs. We
give examples of representative applications and examples of algorithms that are difficult
to express with certain abstractions. We also review implementation variants, known per-
formance limitations, and proposed optimizations. We describe six models that were devel-
oped specifically for distributed graph processing, namely the vertex-centric, scatter-gather,
gather-sum-apply-scatter, subgraph-centric, filter-process, and graph traversals.

3.2.1 Vertex-Centric

The vertex-centric model, introduced in the Pregel paper [125], is one of the most
popular abstractions for large-scale distributed graph processing. Inspired by the simplicity
of MapReduce [59], which only requires the user to implement two functions, map and
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reduce, while hiding the complexity of communication and data distribution, in the vertex-
centric model users describe the computation as a vertex program. Also known as the think
like a vertex-model, it requires users to express the computation logic from the point of
view of a single vertex, by providing one user-defined vertex function.

A vertex-centric program receives a directed graph and a vertex function as input. A
vertex serves as the unit of parallelization and has local state that consists of a unique
ID, an optional vertex value, and its out-going edges, with optional edge values. Vertices
communicate with other vertices through messages. A vertex can send a message to any
other vertex in the graph, provided that it knows the destination’s unique ID.

The execution workflow and computation parallelization of the vertex-centric model is
shown in Figure 3.1. The dotted boxes correspond to parallelization units. Vertices can be
in two states: active or inactive. Initially, all vertices are active. The computation proceeds
in synchronized iterations, called supersteps. In each superstep, all active vertices execute
the same user-defined computation in parallel. Supersteps are executed synchronously, so
that messages sent during one superstep are guaranteed to be delivered in the beginning
of the next superstep and be available to the vertex function of the receiving vertex. The
output of a vertex-centric program is the set of vertex values at the end of the computation.
If the graph is partitioned over several machines, a partition can contain several vertices
and may have multiple worker-threads executing the vertex functions.

For simplicity of presentation, we define two auxiliary local data structures for each
vertex. During a superstep, inbox, contains all the messages that were sent to vertex v
during the previous superstep. inbox, is empty during the first superstep for all vertices.
outbox, stores all the messages that a vertex v produces during a superstep. Message-
passing is done as follows. At the end of each superstep, the runtime takes care of message
delivery, by going through the outboz of each sending vertex and placing the corresponding
messages to the inbox of each destination vertex. Message-passing can be implemented in
batch or pipelined fashion. In the first case, messages are buffered in the local outbox of
each vertex and are delivered in batches at the end of each superstep. In the case of pipelin-
ing, the runtime delivers messages to destination vertices as soon as they are produced.
Pipelined message-passing might improve performance and lower memory requirements,
but it limits ability of pre-aggregating the results at the outbox using combiners [125].

The execution semantics of the vertex-centric model are shown in Algorithm 1. Ini-
tially, all vertices are active. At the beginning of each superstep, the runtime delivers mes-
sages to vertices (recetveM essages function). Then, the user-defined compute function
is invoked in parallel for each vertex. It receives a set of messages as input and can pro-
duce one or more messages as output. At the end of a superstep, the runtime receives
the messages from the outbox of each vertex and computes the set of active vertices for
the superstep. The execution terminates when there are no active vertices or when some
user-defined convergence condition is met.

The user-facing interface of a vertex-centric program is shown in Interface 1. The user-
defined vertex function can read and update the vertex value and has access to all out-going
edges. It can send a message to any vertex in the graph, addressing it by its unique ID.
A vertex declares that it wants to become inactive by voting to halt. If an inactive vertex
receives a message, it becomes active again. In many implementations of the vertex-centric
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Figure 3.1 — Superstep execution and message-passing in the vertex-centric model. Graph
edges can also have associated values, but we omit them here for simplicity. Each dotted
box represents the computation scope of a vertex. Vertices in different scopes might reside
on the same or different physical partitions. Arrows denote communication actions.

Algorithm 1 Vertex-Centric Model Semantics
Input: directed graph G=(V, E)
activeVertices <V
superstep < 0
while activeVertices # () do

for v € activeVertices do
inbox, < receiveMessages(v)
outbox,, = compute(inbox,)
end for
superstep <— superstep + 1
end while

model, vertices can also add or remove a local edge or issue a mutation request for adding
or removing non-local edges or vertices.

The GraphLab variant

GraphLab [122] generalizes the vertex-centric model by introducing the notion of a
vertex scope. The scope of a vertex contains the adjacent edges, as well as the values of
adjacent vertices. The vertex function is applied over the current state of a vertex and its
scope. It returns updated values for the scope (a vertex can mutate the state of its neighbors)
and a set of vertices 7, which will be scheduled for execution.
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Interface 1 Vertex-Centric Model
void abstract compute(Iterator[M] messages);

VV getValue();

void setValue(VV new Value);

void sendMessageTo(I target, M message);
Iterator getOutEdges();

int superstep();

void voteToHalt();

We observe the equivalence mapping between GraphLab’s vertex-centric model and
the Pregel, described in the previous section. In Pregel, the scope corresponds to the lo-
cal vertex state together with the messages received from the neighboring vertices, and the
set T contains the active vertices. Instead of message-passing, GraphLab implements the
pull model, where vertices can read the values of neighbors in a defined scope, and uses
a shared-memory model to enable communication between vertices. GraphLab’s vertex-
centric programming model variant, allows for dynamic computation, different consistency
models and asynchronous execution. However, it also poses two limitations: (1) vertices
can only communicate with their immediate neighbors, and (2) the graph structure has to
be static, so that no mutations are allowed during execution. The shared-memory abstrac-
tion for communication is also adopted by Cyclops [48], even though its model is more
restricted than the one provided by GraphLab.

Applicability and expressiveness

The vertex-centric model is general enough to express a broad set of graph algorithms.
The model is a good fit when the computation can be expressed as a local vertex function
which only needs to access data on adjacent vertices and edges. Iterative value-propagation
algorithms and fixed point methods map naturally to the vertex-centric abstraction.

PageRank [41] is a representative algorithm that can be easily expressed in the vertex-
centric model. In this algorithm, each vertex iteratively updates its rank by applying a
formula on the sum of the ranks of its neighbors. The pseudocode for the PageRank vertex
function is shown in Algorithm 3. Initially, all ranks are set to 1/numVertices(). In each
superstep, vertices send their partial rank along their outgoing edges and use the received
partial ranks from their neighbors to update their ranks, according to the PageRank formula.
After a certain number of supersteps (30 in this example) all vertices vote to halt and the
algorithm terminates. In this pseudocode, we see that the superstep number is used to
differentiate the computation between the first iteration and the rest of the iterations. This
is a common pattern in vertex-centric applications, since during superstep 0, no messages
have been received by any vertex yet.

Non-iterative and asynchronous graph algorithms might be difficult to express in the
vertex-centric model for which the concept of synchronized supersteps is central. Further-
more, expressing a computation from the perspective of a vertex can often be challenging,
as it also requires expressing all non-local state updates (further than one hop) as messages.
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Algorithm 3 PageRank Vertex Function
void compute(Iterator[double] messages):

outEdges = getOut Edges().size()
if superstep() > 0 then
double sum = 0
for m € messages do
sum <— sum +m
end for
setValue(0.15/numVertices() 4+ 0.85 * sum)
end if
if superstep() < 30 then
for edge € getOutEdges() do
sendMessageTo(edge.target(), getValue() /out Edges)
end for
else
voteToH alt()
end if

Graph transformations and single-pass graph algorithms, like triangle counting, are not a
good fit for the vertex-centric model.

Let us consider an implementation of a triangle counting algorithm in the vertex-centric
model. A triangle consists of three vertices which all form edges between them. In a
MapReduce-like data processing model, we would solve this problem by generating triads
and checking how many of the triads form triangles. In the vertex-centric model, however,
we need to formulate the computation logic from the perspective of a vertex. That is, a
vertex has to make a local decision on whether it is a member of a triangle. To detect a
triangle, a vertex needs to know whether any two of its neighbors are connected. Since
vertices can immediately access information about their edges only, they need to ask their
neighbors for further information, using message-passing. The main idea is to propagate a
message along the edges of a triangle, so that when the message returns to the originator
vertex, the triangle can be detected. In order not to count the same triangle multiple times,
messages are only propagated from vertices with lower IDs to vertices with higher IDs.
The algorithm is shown in Figure 3.2 and proceeds in three supersteps. During the first
superstep, each vertex sends its ID to all neighbors with higher ID than its own. During the
second superstep, each vertex attaches its own ID to every received message and propagates
the pair of IDs to neighbors with higher IDs. During the final superstep, each vertex checks
the received pairs of IDs to detect whether a triangle exists.

Another non-intuitive computation pattern is sending messages to the in-neighbors of
a vertex. Computing strongly connected components is an algorithm that contains this
pattern [160]. Remember that each vertex only has access to its out-going edges and can
only send messages to vertices with a known ID. Thus, if a vertex needs to communicate
with its in-neighbors, it has to use a pre-processing superstep, during which, each vertex
sends a message containing its own ID to all its out-neighbors. This way, all vertices will
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superstep 0 superstep 1 superstep 2

Figure 3.2 — A triangle counting algorithm in the vertex-centric model. Messages produced
by a vertex during the current superstep are shown with red arrows. Messages received in
the current superstep are shown in grey boxes.

know the IDs of all their in-neighbors in the following superstep.

Performance optimizations

The vertex-centric model has been successful due to its simplicity and linear scalability
for iterative graph algorithms and it has inspired research and engineering efforts on opti-
mizing the performance of its implementations. In this section, we summarize some of the
results of work on performance optimizations for vertex-centric programs.

Communication can often become a bottleneck in the vertex-centric message-passing
model. An overview of the model’s limitations with regard to communication bottlenecks
and worker load imbalance is presented in [187]. The authors show that high-degree ver-
tices or custom algorithm logic can create communication and computation skew, so that
a small number of vertices produce many more messages than the rest, thus also increas-
ing the workload of the worker machines where they reside. The authors address this issue
with two message reduction techniques. First, they use mirroring, a mechanism that creates
copies of high-degree vertices on different machines, so that communication with neigh-
bors can be local. A similar technique is also presented in [159]. Second, they introduce a
request-response mechanism, that allows a vertex to request the value of any other vertex
in the graph, even if it is not a neighbor. For not neighboring vertices, such a process would
require three supersteps in the vanilla vertex-centric model. High communication load can
also be avoided by using sophisticated partitioning mechanisms [47, 159].

Using synchronization barriers in the vertex-centric model allows programmers to write
deterministic programs and easily reason about and debug their code. However, global bar-
riers limit concurrency and may cause unnecessary synchronization, and as a consequence,
poor performance, especially for applications with irregular or dynamic parallelism. In fact,
various graph algorithms can benefit from asynchronous [184, 33, 122] or hybrid [180, 72]
execution models. In [87], the authors propose the barrierless asynchronous parallel BAP
model, to reduce stale messages and the frequency of global synchronization. The model
allows vertices to immediately access messages they have received and utilizes only barri-
ers local to each worker, which do not require global coordination.

Several algorithm-specific optimization techniques for the vertex-centric model are pro-
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posed in [160, 189]. Specifically, the authors exploit the phenomenon of asymmetric con-
vergence often encountered in graph algorithms. We say that an iterative fixpoint graph
algorithm converges asymmetrically, if different parts of the graph converge at different
speeds. As a result, the overall algorithm converges slowly because, during the final super-
steps, only a small fraction of vertices are still active. The proposed solution is to monitor
the active portion of the graph and, when it drops under some threshold, ship it to the mas-
ter node, which executes the rest of the computation. Other optimizations include trading
memory for communication and performing mutations (edge deletions) lazily.

In [161], the authors propose using special data structures, such as bit-vectors, to rep-
resent the neighborhood of each vertex. They also suggest compressing intermediate data
that needs to be communicated over the network. They find that overlapping computation
and communication, sophisticated partitioning, and different message-passing mechanisms
have a significant impact on performance. Another issue they identify is that many algo-
rithms have high memory requirements because of the outbox data structures of vertices
growing too large. The authors propose to break each superstep into a number of smaller
supersteps and processing only a subset of the vertices in each smaller superstep. Similar
techniques are used in [53, 103].

3.2.2 Scatter-Gather

The Scatter-Gather abstraction, also known as Signal-Collect [172], is a vertex-parallel
model, sharing the same think like a vertex philosophy as the vertex-centric model. Scatter-
Gather also operates in synchronized iteration steps and uses a message-passing mechanism
for communication between vertices. The main difference is that each iteration step con-
tains two computation phases, scatter and gather. Thus, the user also has to provide two
computation functions, one for each phase.

The model phases are graphically shown in Figure 3.3. Scatter-Gather decouples the
sending of messages from the collection of messages and state update. During the scatter
phase, each vertex executes a user-defined function that sends messages or signals along
out-going edges. During the gather phase, each vertex collects messages from neighbors
and executes a second user-defined function that uses the received messages to update the
vertex state. It is important to note that, contrary to the vertex-centric model, in Scatter-
Gather both message sending and receipt happen during the same iteration step. That is,
during iteration ¢, the gather phase has access to the messages sent in the scatter phase of
iteration .

The execution semantics of the Scatter-Gather abstraction are shown in Algorithm 4.
The input of a Scatter-Gather program is a directed graph and the output is the state of the
vertices after a maximum number of iterations or some custom convergence condition has
been met. Similarly to the vertex-centric model, vertices can be in an active or inactive
state. Initially, all vertices are active. Vertices can either explicitly vote to halt, like in the
vertex-centric model, or implicitly get deactivated, if their value does not change during
an iteration step. If a vertex does not update its value during a gather phase, then it does
not have to execute a scatter phase in the next iteration, because its neighbors have already
received its latest information. Thus, it gets deactivated.
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Figure 3.3 — One iteration in the Scatter-Gather model. In the Scatter phase, each vertex
has read-access to its state, write-access to its outbox, and no access to its inbox. In the
Gather phase, a vertex has read-access to its inbox, write-access to its state, but no access
to its outbox.

The user-facing interfaces of Scatter and Gather are shown in Interfaces 2 and 3, respec-
tively. Note that the scopes of the two phases are separate and each interface has different
available methods. The scatter interface can retrieve the current vertex value, read the state
of the neighboring edges, and send messages to neighboring vertices. The gather interface
can access received messages, read and set the vertex value.

Applicability and expressiveness

Scatter-Gather can be used to express a variety of algorithms in a concise and ele-
gant way. Similarly to the vertex-centric model, iterative, value-propagation algorithms
like PageRank are a good fit for Scatter-Gather. Since the logic of producing messages is
decoupled from the logic of updating vertex values, programs written using Scatter-Gather
are sometimes easier to follow and maintain. The vertex-centric PageRank example that we
saw in the previous section can be easily expressed in the Scatter-Gather model, by simply
separating the sending of messages and the calculation of ranks in two phases. The pseu-
docode is shown in Algorithm 7. The scatter phase contains only the the rank propagation
logic, while the gather phase contains the message processing and rank update logic.

Separating the messaging phase from the vertex value update logic not only makes
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Algorithm 4 Scatter-Gather Model Semantics
Input: directed graph G=(V, E)
activeVertices <V
superstep < 0
while activeVertices # () do

activeVertices < ()
for v € activeVertices do
outbox, < scatter(v)
S, « gather(inbox.,, S,)
if S, # S, then
S, S,
activeVertices + activeVertices Uwv
end if
end for
activeVertices < activeVertices
superstep <— superstep + 1
end while

Interface 2 Scatter

void abstract scatter();

VV getValue();

void sendMessageTo(I target, M message);
Iterator getOutEdges();

int superstep();

Interface 3 Gather
void abstract gather(Iterator[M] messages);

void setValue(VV newValue);
VV getValue();
int superstep();

some programs easier to follow but might also have a positive impact on performance.
Scatter-Gather implementations typically have lower memory requirements, because con-
current access to the inbox (messages received) and outbox (messages to send) data struc-
tures is not required. However, this characteristic also limits expressiveness and makes
some computation patterns non-intuitive. If an algorithm requires a vertex to concurrently
access its inbox and outbox, then the expression of this algorithm in Scatter-Gather might be
problematic. Strongly Connected Components and Approximate Maximum Weight Match-
ing [160] are examples of such graph algorithms. A direct consequence of this restriction
is that vertices cannot generate messages and update their states in the same phase. In the
scatter phase, vertices have read-access to their state and adjacent edges, write-access to
their outbox, and no access to their inbox. In the gather phase, vertices have read-access
to their inbox, write-access to their state, but no access to their outbox or adjacent edges.
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Algorithm 7 PageRank Scatter and Gather Functions
void scatter():
outEdges = getOut Edges().size()
for edge € getOutEdges() do
sendMessageT o(edge.target(), getValue() /out Edges)
end for

void gather(Iterator[double] messages):

if superstep() < 30 then
double sum =0
for m € messages do
sum <— sum +m
end for
setValue(0.15/numVertices() + 0.85 * sum)
end if

Thus, deciding whether to propagate a message based on its content would require storing
it in the vertex value, so that the gather phase has access to it, in the following iteration step.
Similarly, if the vertex update logic includes computation over the values of the neighbor-
ing edges, these have to be included inside a special message passed from the scatter to
the gather phase. Such workarounds often lead to higher memory requirements and non-
elegant, hard to understand algorithm implementations.

For example, consider the problem of finding whether there exists a path from source
vertex a to target vertex b, with total distance equal to a specified user value d. Let us
assume that the input graph has edges with positive values corresponding to distances. We
can solve this problem in a message-passing vertex-parallel way, by iteratively propagating
messages through the graph and aggregating edge weights on the way. Messages originate
from the source vertex and are routed towards the target vertex, one neighborhood hop
per superstep. When a vertex v receives a message, it decides whether to propagate the
message to a neighbor u, based on the current distance that the message contains plus the
distance of the edge that connects v with u. If the computed sum is less than or equal to
d, v updates the message content and propagates it to u. If the sum exceeds the value of
d, then v drops the message. In the vertex-centric model, this logic can be implemented
inside the vertex compute function, since vertices receive and send messages during the
same phase. However, in Gather-Scatter, vertices receive messages in the gather phase, but
can only generate messages in the scatter phase. In order for a vertex to know whether to
propagate a message based on its content, it needs a mechanism to allow the scatter phase
to access messages received in the previous superstep. One way that this can be achieved is
by storing all received messages in the vertex value, so that the scatter interface can access
them in the next superstep.
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3.2.3 Gather-Sum-Apply-Scatter (GAS)

The Gather-Sum-Apply-Scatter (GAS) programming abstraction, introduced by Pow-
ergraph [81], tries to address performance issues that arise when using the vertex-centric
or scatter-gather model on power-law graphs. In such graphs, most vertices have relatively
few neighbors, while few vertices have a very large number of neighbors. This degree skew
causes computational imbalance in vertex-parallel programming models. The few high-
degree vertices, having much more work to do during a superstep, act as stragglers, thus,
slowing down the overall execution.

The GAS model addresses the bottlenecks caused by high-degree vertices by paralleliz-
ing the computation over the edges of the graph. The abstraction essentially decomposes
a vertex-program in separate phases, which allow distributing the computation more ef-
fectively over a cluster. The computation proceeds in four phases, each executing a user-
defined function. During the gather phase, a user-defined function is applied on each of
the adjacent edges of each vertex in parallel, where an edge contains both the source ver-
tex and the target vertex values. The transformed edges are passed to an associative and
commutative user-defined function, which combines them to a single value during the sum
phase. The gather and sum phases naturally correspond to a map-reduce step and are some-
times considered as a single phase [81]. The result of the sum phase and the current state
of each vertex are passed to the apply user-defined function, which uses them to compute
the new vertex state. During the final scatter phase, a user-defined function is invoked in
parallel per edge, having access to the updated source and target vertex values. In some
implementations of the model, the scatter phase is either optional or omitted. The four
phases of the GAS model are graphically shown in Figure 3.4 and its execution semantics
in Algorithm 8.

Algorithm 8 GAS Model Semantics
Input: directed graph G=(V, E)
a, <— empty
forv € V do
for n € Ni™ do
ay < sum(ay, gather(Sy, Sy n), Sn))
end for
Sy « apply(Sy, ay)
S(om) < scatter(Sy, S(yn), Sn)
end for

The public interfaces of the GAS abstraction are shown in Interface 4. Note how these
interfaces are simpler and more restrictive than the vertex-centric and gather-scatter inter-
faces. All four user-defined functions return a single value and the scope of computation is
restricted to local neighborhoods.
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Figure 3.4 — The GAS computation phases. The gather phase parallelizes the computa-
tion over the edges of the input graph. The user-defined function has access to an edge,
including its source and target vertex states. The sum phase combines partial values using
a user-defined associative and commutative function. The vertex states are updated during
the apply phase. The scatter phase is optional and can be used to update edge states.

Interface 4 Gather-Sum-Apply-Scatter

T abstract gather(VV sourceV, EV edgeV, VV targetV);
T abstract sum(T left, T right);

VV abstract apply(VV value, T sum);

EV abstract scatter(VV newV, EV edgeV, VV oldV);

Applicability and expressiveness

The GAS abstraction imposes the restriction of an associative and commutative sum
function to produce edge-parallel programs that will not suffer from computational skew.
Nevertheless, the model can be used to emulate vertex-centric programs, even if the update
function is not associative and commutative. To express a vertex-centric computation, the
gather and sum functions can be used to combine the inbound messages (stored as edge
data) and concatenate the list of neighbors needed to compute the outbound messages. The
vertex compute function is then executed inside the apply phase. The apply user-defined
function generates the messages, which can then be passed as vertex data to the scatter
phase. Similarly, to emulate a GraphLab vertex program, the gather and sum functions can
be used to concatenate all the data on adjacent vertices and edges and then run the vertex
function inside the apply phase.

Executing vertex-parallel programs inside the apply function results in complexity lin-
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ear in the vertex degree, thus defeating the purpose of eliminating computational skew.
Moreover, manually constructing the neighborhood in the sum phase and concatenating
messages in order to access them in the apply phase, are both non-intuitive and com-
putationally expensive. Fortunately, many graph algorithms can be decomposed into a
gather transformation and an associative-commutative sum function. Algorithm 10 shows
a PageRank implementation using the GAS interfaces. The gather phase computes a partial
rank for each neighbor. The sum phase sums up all the partial ranks into a single value,
and the the apply phase computes the new PageRank and updates the vertex value. The
scatter phase has been omitted, since edge values do not get updated in this algorithm.
Alternatively, the scatter phase can be used to selectively activate vertices for the next iter-
ation [81].

Algorithm 10 PageRank Gather, Sum, Apply
double gather(double src, double edge, double trg):

return trg.value/trg.out Neighbors

double sum(double rank1, double rank?2):
return rankl + rank2

double apply(double sum, double currentRank):
return 0.15 + 0.85 * sum

If the algorithm cannot be decomposed into a gather step and a commutative-associative
sum, implementation in the GAS model might require manual emulation of the vertex-
centric or scatter-gather models, as described previously. For example, in the Label Prop-
agation algorithm [150], a vertex receives labels from its neighbors and chooses the most
frequent label as its vertex value. Computing the most frequent item is not an associative-
commutative function. In order to express this algorithm in GAS, the sum phase needs to
construct a set of all the neighbor labels. The gather user-defined function returns a set
containing a single label for each neighbor. The sum user-defined function receives a pair
of sets, each containing a neighbor’s label and returns the sets’ union. Finally, each vertex
chooses the most frequent label in the apply function, which has access to all labels.

Table 3.1 shows a comparison among the vertex-centric, gather-scatter, and GAS pro-
gramming models, with regard to update functions and communication. The vertex-centric
model is the most generic of the three, allowing for arbitrary vertex-update functions and
communication logic, while GAS is the most restrictive of the three.

Performance optimizations

In [49], the authors find that, even though the GAS model manages to overcome the load
imbalance issues caused by high-degree vertices, at the same time it poses a high memory
and communication overhead for the low-degree vertices of the input graph. They propose
a differentiated vertex computation model, where the high-degree vertices are processed
using the GAS model, while the low-degree vertices are processed using a GraphLab-like
vertex-centric model.

47



CHAPTER 3. PROGRAMMING ABSTRACTIONS AND PLATFORMS FOR DISTRIBUTED

GRAPH PROCESSING
Table 3.1 — Comparison of the vertex-centric, gather-scatter, and GAS programming mod-
els.
update update communication | communication
function function scope logic
properties | logic
Vertex-Centric | arbitrary arbitrary any vertex arbitrary
Scatter-Gather | arbitrary based on | any vertex based on vertex
received state
messages
GAS associative | based on | neighborhood based on vertex
and com- | neighbors’ state
mutative values

3.2.4 Subgraph-Centric

All the models we have seen so far, vertex-centric, gather-scatter, and GAS, operate
on the scope of a single vertex or edge in the graph. While such fine-grained abstrac-
tions for distributed programming are considerably easy to use by non-experts, they might
cause high communication overhead when compared to coarse-grained abstractions. In this
section, we present two distributed graph processing models that operate on the subgraph
level, with the objective to reduce communication and exploit the subgraph structure to
enable the implementation of optimized algorithms.

Partition-Centric

The partition-centric model offers a lower-level abstraction than the vertex-centric, set-
ting the whole partition as the unit of parallel computation. The model exposes the sub-
graph of each partition to the user function, in order to avoid redundant communication and
accelerate convergence of vertex-centric programs. The abstraction has been introduced by
Giraph++[176] and has been further optimized in succeeding works [170, 186].

The the partition-centric model perceives each partition as a proper subgraph of the
input graph, instead of a collection of unassociated vertices. While in the vertex-centric
model a vertex is restricted to accessing information from its immediate neighbors, in the
partition-centric model information can be propagated freely inside all the vertices of the
same partition. This simple property of the partition-centric model can lead to significant
communication savings and faster convergence.

The partition-centric model is graphically shown in Figure 3.5. Note that the whole
partition becomes the parallelization unit on which the user-defined function is applied. As
compared to the vertex-centric case, message exchange happens only between partitions,
thus resulting in reduced communication costs. Inside a partition, vertices can be inter-
nal or boundary. Internal vertices are associated with their value, neighboring edges, and
incoming messages. Boundary vertices only have a local copy of their associated value;
the primary value resides in the partition where the vertex is internal. In Figure 3.5, ver-
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Figure 3.5 — Two iterations in the Partition-Centric model. Each dotted box represents a
separate physical partition and dotted arrows represent communication.

tices 1 and 2 are internal in the upper partition, while vertices 3 and 4 are boundary. In the
lower partition, vertices 3 and 4 are internal, while vertex 1 is boundary. Message exchange
between internal vertices of the same partition is immediate, while messages to boundary
vertices require network transfer.

The execution semantics of the partition-centric model are the same as in the vertex-
centric model, with the only difference that the user-defined update function is invoked
per partition and messages are distributed between partitions, not vertices. The user-facing
interface of the model offers most of the methods of the vertex-centric interface, with a few
additional ones, shown in Interface 5. The interface needs to provide a mechanism to check
whether a vertex belongs to a particular partition and to retrieve internal and boundary
vertices inside a partition. Note that since the scope of the user-defined function is not
a single vertex, the methods to retrieve and update vertex attributes are not part of the
compute( ) interface.

Interface 5 Partition-Centric Model
void abstract compute();

void sendMessageTo(I target, M message);
int superstep();

void voteToHalt();

boolean containsVertex(I id);

boolean isInternalVertex(I id);

boolean isBoundary Vertex(l id);
Collection getInternal Vertices();
Collection getBoundary Vertices();
Collection getAllVertices();
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Figure 3.6 — A chain example graph.

Neighborhood-Centric

The neighborhood-centric model [148] sets the scope of computation on custom sub-
graphs of the input graph. These subgraphs are explicitly built around vertices and their
multi-hop neighborhoods, in order to facilitate the implementation of graph algorithms
that operate on ego-networks; networks built around a central vertex of interest. The user
specifies custom subgraphs and a program to be executed on those subgraphs. The user
program might be iterative and is executed in parallel on each subgraph, following the
Bulk Synchronous protocol (BSP) [177]. In contrast to the partition-centric model, in an
implementation of the neighborhood-centric model, a physical partition can contain one or
more custom subgraphs. Information exchange happens through shared state updates for
subgraphs in the same partition and through replicas and messages for subgraphs belonging
to different partitions.

Applicability and expressiveness

The partition-centric model is a good fit when there exists an efficient sequential al-
gorithm which can be executed in each partition and whose partial results can be easily
combined to produce the global result. A drawback of the partition-centric model is that
users have to switch from "thinking like a vertex" to thinking in terms of partitions. In order
to reason about their algorithm, users need to understand what a partition represents and
how to differentiate the behavior of an internal vertex versus that of a boundary vertex. The
model allows for more control on computation and communication, but at the same time
exposes low-level characteristics to users. This loss of abstraction might lead to erroneous
or hard-to-understand programs.

Algorithm 12 shows the pseudocode of a partition-centric PageRank implementation.
This implementation is quite longer and more complex than the ones we have seen so far.
Part of the complexity is introduced because, inside each partition, PageRank computation
is asynchronous. Each vertex has an additional attribute, delta, besides its PageRank score,
where it stores intermediate updates from vertices inside the same partition. At the end
of each superstep, boundary vertices with positive delta values produce messages to be
delivered in other partitions.

The neighborhood-centric model is preferable when applications require accessing multi-
hop neighborhoods or ego-centric networks of certain vertices. Such applications include
personalized recommendations, social circle analysis, anomaly detection, and link predic-
tion. While in the partition-centric model, the graph is partitioned into non-overlapping,
application-independent subgraphs, in the neighborhood-centric model, subgraphs are ex-
tracted based on specific application criteria. This way, users can specify subgraphs to be

50



3.2. PROGRAMMING ABSTRACTIONS FOR DISTRIBUTED GRAPH PROCESSING

! 2 3 A

- @9
! z 2

- @@
! 2

- @ @@
‘-1-” \___2-,/ \\-3',1

-~ @ @-@-@

- @ @ 0 @O

Figure 3.7 — Connected Components via label propagation in the vertex-centric model. The
minimum value propagates to the end of the chain after 5 supersteps.

k-hop neighborhoods around a set of query vertices, satisfying a particular predicate. The
user program executed on these subgraphs can have arbitrary random access to the state of
the whole subgraph. Note that creating these overlapping neighborhoods requires an often
expensive pre-processing step, in terms of both execution time and memory.

Performance optimizations

The performance of the partition-centric model is highly dependent on the quality of
the partitions. If the partitioning technique used creates well-connected subgraphs and
minimizes edge cuts between partitions, it is highly probable that a partition-centric imple-
mentation will require less communication than a vertex-centric implementation and that a
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Figure 3.8 — Connected Components via label propagation in the partition-centric model.
Vertices 1 and 2 belong to the first partition and vertices 3, 4, 5 belong to the second
partition. Each partition converges asynchronously, before initiating communication with
other partitions. The minimum value propagates to all vertices after 2 supersteps.

value-propagation algorithm will converge is fewer supersteps. For example, consider the
execution of the connected components algorithm on a chain graph, like the one shown in
Figure 3.6. In a vertex-centric execution of the algorithm, shown in Figure 3.7, the mini-
mum value can only propagate one hop per superstep. Consequently, the algorithm requires
as many supersteps as the maximum graph diameter plus one, in order to converge. In the
parition-centric model instead, values can propagate asynchronously inside a partition. If
the chain is partitioned in two connected subgraphs, like the ones of Figure 3.8, the algo-
rithm converges after just two supersteps. However, if the graph is partitioned poorly, there
will be little to no benefit compared to the vertex-centric execution. For instance, if we par-
tition the given chain into two partitions of odd and even vertices, the algorithm will need
as many supersteps to converge as in the vertex-centric case. Sophisticated partitioning can
be an expensive task and users must carefully consider the pre-processing cost that it might
impose to the total job execution time.

GoFFish [170] and Blogel [186] propose a subgraph-centric model that partitions the
input graph in subgraphs which are connected. This way, well-known shared-memory al-
gorithms can be applied on the connected subgraphs. A partition can contain multiple sub-
graphs and execute the computation on each subgraph in parallel. GoFFish also proposes
a distributed persistent storage, optimized for subgraph access patterns. On the other hand,
Blogel allows a subgraph to define and manage its own state, allowing for subgraph-level
communication. Both GoFFish and Blogel are beneficial when the number of subgraphs is
sufficiently larger than the number of workers, so that a balanced workload can be achieved.

3.2.5 Filter-Process

The filter-process computational model, also known as or "think like an embedding",
is proposed by Arabesque [174]. Arabesque is a system for efficient distributed graph
mining. An embedding is a subgraph instance of the input graph that matches a user-
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Algorithm 12 PageRank Partition-Centric Function
void compute():

if superstep() > 0 then
for v € get AllVertices() do
v.getValue().pr =0
v.getValue().delta = 0
end for
end if
for iv € internalVertices() do
if superstep() > 0 then
iv.getValue().delta+ = 0.15
end if
iv.getValue().delta+ = iv.get Messages()
if iv.getValue().delta > 0 then
iv.getValue().pr+ = iv.getValue().delta
u = 0.85 x jv.getValue().delta/iv.get NumOut Edges()
while iv.iterator.hasNext() do
neighbor = getVertex(iv.iterator().next())
neighbor.getValue().delta+ = u
end while
end if
iv.getValue().delta = 0
end for
for bu € boundaryVertices() do
if bu.getValue().delta > 0 then
sendMessageTo(bv.getVertexId(),bv.getValue().delta)
bu.getValue().delta =0
end if
end for

specified pattern. The model facilitates the development of graph mining algorithms, which
require subgraph enumeration and exploration. Such algorithms are challenging to express
and efficiently support with a vertex-centric model, due to immense intermediate state and
high computation requirements.

The programming model consists of two primary functions, filter and process. Filter
examines whether a given embedding is eligible for processing and process executes some
action on the embedding and may produce output. The model assumes immutable input
graphs and connected graph patterns.

Computation proceeds in a sequence of exploration steps, using the BSP model. Dur-
ing each exploration step, the system explores and extends an input set of embeddings.
First, a set of candidate embeddings is created, by extending the set of input embeddings.
In the first exploration step the set of candidates contains all the edges or vertices of the
input graph. Once the candidates have been produced, the filter function examines them
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and selects the ones that should be processed. The selected embeddings are then sent to
the process function, which outputs user-defined values. Finally, the selected embeddings
become the input set of embeddings for the next step. The computation terminates when
there are no embeddings to be extended.

The filter-process model differs from the partition-centric and neighborhood-centric
models, where partitions and subgraphs are generated once, at the beginning of the com-
putation as a pre-processing step. In filter-process, embeddings are dynamically generated
during the execution of exploration steps. The model is suitable for graph pattern mining
problems, which require subgraph enumeration, such as network motif discovery, semantic
data processing, and spam detection.

3.2.6 Graph Traversals

Distributed graph analysis through graph traversals is the programming model adopted
by the Apache Tinkerpop project [4]. The system provides a graph traversal machine and
language, called Gremlin [157], which supports distributed traversals via the Bulk Syn-
chronous Parallel (BSP) computation model.

In the traversal model of graph databases, traversers walk through an input graph, fol-
lowing user-provided instructions. The Gremlin machine supports distributed graph traver-
sals, by modeling traversers as messages. Vertices receive traversers, execute their traver-
sal step, and, as a result, generate other traversers to be sent as messages to other vertices.
Halted traversers are stored in a vertex attribute. The process terminates when no more
traversers are being sent. The result of the computation is the aggregate of the locations of
the halted traversers.

3.3 General-Purpose Programming Models used for Graph
Processing

Except from the specialized programming models that we have reviewed so far, several
general-purpose distributed programming models have also been used for graph processing.
Here, we review five such data processing abstractions that have been used for developing
graph applications, namely MapReduce, dataflow, linear algebra primitives, datalog, and
shared partitioned tables.

3.3.1 MapReduce

MapReduce [59], extensively presented in Chapter 2, is a popular distributed program-
ming model for large-scale data processing on commodity clusters. However, its program-
ming model is not suitable for graph applications, which are often iterative and require
multi-step computations. Several extensions of the model have been proposed in order to
support such algorithms [43, 67, 106]. The main idea of these extensions is adding a driver
program that can coordinate iterations, containing one or more MapReduce jobs. The main
task of the driver is to submit a new job per iteration and track convergence. Iterations are
typically chained by using the output of one MapReduce iteration as the input of the next.
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Pegasus [106] implements a generalized iterative matrix-vector multiplication primi-
tive, GIM-V, as a two-stage MapReduce algorithm. The graph is represented by two input
files, corresponding to the vertices (vector) and edges (matrix). In the first stage, the map
phase transforms the input edges to set the destination vertex as the key. The following
reduce phase applies a user-defined combine2 function on each group to produce partial
values for each vertex. combine2 corresponds to a multiplication of a matrix element with
a vector element. In the second MapReduce stage, the mapper is an identity mapper and the
reducer encapsulates two user-defined functions, combineAll and assign. combineAll corre-
sponds to summing the partial multiplication results and assign writes the new result in the
vector. GIM-V can be used to express many iterative graph algorithms, such as PageRank,
diameter estimation, and connected components. Hal.oop [43] supports iterative computa-
tions on top of Hadoop [7], by extending Hadoop with a caching and indexing mechanism,
to avoid reloading iteration-invariant data and reduce communication costs. It also extends
Hadoop’s API, offering a way to define loops and termination conditions. Twister [67]
also extends the MapReduce API to support the development of iterative computations, in-
cluding graph algorithms. It offers primitives for broadcast and scatter data transfers and
implements a publish-subscribe protocol for message passing.

3.3.2 Dataflow

Dataflow is a generalization of the MapReduce programming model, where a dis-
tributed application is represented by a Distributed Acyclic Graph (DAG) of operations.
In the DAG, vertices correspond to data-parallel tasks and edges correspond to data flowing
from one task to another. As opposed to MapReduce, dataflow execution plans are more
flexible and operators can support more than one input and output. In the DAG model, itera-
tions can be supported by loop unrolling [192], or by introducing complex iterate operators,
as part of the execution DAG [72].

Spark [192], Stratosphere [23], Apache Flink [1], Hyracks [38], Asterix [31], and
Dryad [92] are some of the general-purpose distributed execution engines implementing
the DAG model for data-parallel analysis. Naiad [136] enriches the dataflow model with
timestamps, representing logical points in computation. Using these timestamps, the timely
dataflow computational model supports efficient incremental computation and nested loops.

Dataflow systems offer different levels of abstraction for writing distributed applica-
tions. In Dryad and early versions of Stratosphere, the user describes the DAG by explicitly
creating task vertices and communication edges. User-defined functions are encapsulated in
the vertices of the graph. Modern dataflow systems, like Apache Spark and Apache Flink,
offer declarative APIs for expressing distributed data analysis applications. Data sets are
represented by an abstraction that handles partitioning across machines, like RDDs [191],
and operators define data transformations, like map, group, join, sort.

It has been shown that the vertex-centric, scatter-gather, and other iterative models can
be mapped to relational operations [72, 82, 42, 101]. For example, by representing the
graph as two data sets corresponding to the vertices and edges, the vertex-centric model
can be emulated by a join followed by a group-by operation. Algorithm 13 shows an
implementation of the PageRank algorithm in the Spark Scala API. The input edges (links)
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are grouped by the source ID to create an adjacency list per vertex and ranks are initialized
to 1.0. Then, the links are iteratively joined with the current ranks to retrieve each node’s
neighbors’ rank values. A reduce operation is applied on the neighbor ranks to compute
the updated PageRank for each node. Spark, Flink, and AsterixDB, all currently offer
high-level APIs and libraries for graph processing on their dataflow engines. Differential
dataflow [129] also exposes a set of programming primitives, on top of which, higher-level
programming models, such as vertex-centric, can be implemented.

Algorithm 13 PageRank in Apache Spark Scala API
Input lines: alist of space-separated ID node pairs

val links = lines.map{ s =>

val parts = s.split(" ")(parts(0), parts(1))
}.distinct().groupByKey().cache()
var ranks = links.mapValues(v => 1.0)

for i < — 1 toiters) {
val contribs = links.join(ranks).values.flatMap{ case
(urls, rank) =>
val size = urls.size
urls.map(url => (url, rank / size))
}
ranks = contribs.reduceByKey(_ + _)
.mapValues(0.15 + 0.85 * _)
}

val output = ranks.collect()

Gelly

In this section, we describe Gelly, Apache Flink’s graph processing API. Gelly demon-
strates how the dataflow model can be used to implement several programming abstractions
for distributed graph processing in the same system. Apache Flink is a promising platform
for large-scale graph analytics, because of its native support for iterative computations. By
leveraging Flink’s delta iterations [72], Gelly is able to map various graph processing mod-
els, such as vertex-centric, scatter-gather, and gather-sum-apply, to dataflows. Gelly users
can perform end-to-end data analysis, without having to build complex pipelines and com-
bine different systems, since the Gelly API can be seamlessly used with Flink’s DataSet
API. Thus, pre-processing, graph creation, graph analysis, and post-processing can be im-
plemented in the same application.

In Gelly, a graph is represented by a data set of vertices and a data set of edges. A
vertex is defined by its unique ID and a value, whereas an edge is defined by its source
ID, target ID and value. The library includes common graph metrics, transformations,
mutations, and neighborhood aggregations. Graph metrics are methods that can be used
to retrieve graph properties, such as the number of vertices, edges, and the node degrees.
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Figure 3.9 — PageRank computation as a vector-matrix multiplication. Vector R; represents
the computed ranks at iteration ¢, M is the input graph’s adjacency matrix, with values
scaled to account for the damping factor, and P contains the transition probabilities.

The transformation methods can be used to apply operations on a graph, in a declarative
way. Neighborhood methods are single-step operations that allow vertices to perform an
aggregation on their first-hop neighborhood. They provides a vertex-centric view, where
each vertex can access its neighboring edges and neighbor values. Finally, Gelly provides
APIs for writing iterative graph processing programs. It has support for vertex-centric,
scatter-gather, and gather-sum-apply iterations. Gelly’s iterative methods exploit Flink’s
efficient delta iteration operators.

3.3.3 Linear Algebra Primitives

Linear algebra primitives and operations have been long used to express graph algo-
rithms. This model leverages the duality between a graph and its adjacency matrix repre-
sentation [108]. A graph G = (V, E) with N vertices can be represented by a N x [N matrix
M, where M;; = 1 if there is an edge e;; from node ¢ to node j and 0O otherwise. Using
this representation, many graph analysis algorithms can be expressed as a series of linear
algebra operations. For example, a breadth-first search (BFS) starting from node 7 can be
expressed as matrix multiplication. Starting from an initial 1z N vector yg, where only the
iy, element is non-zero, the multiplication y; = yo * A will give the immediate neighbors
of node i, y2 = y; * A will give the 2-hop neighbors of 4, and so on. Figure 3.9 shows the
computation of the PageRank algorithm in this model. Essentially, PageRank corresponds
to the dominant eigenvector of the input graph’s adjacency matrix. Starting from an ini-
tial vector of ranks Ry, PageRank can be computed by iteratively multiplying R; with the
adjacency matrix and adding the transition probabilities to get 12,41, until convergence.

Combinatorial BLAS [44] and Presto [179] are two seminal works in porting the linear
algebra model for graph processing to a distributed setting. In Combinatorial BLAS, the
graph adjacency matrix is represented as a distributed sparse matrix and graph operations
are mapped to linear algebra operations between sparse matrices and vectors. The main
operations perform matrix-matrix multiplication and matrix-vector multiplication and re-
quire user-defined functions for addition and multiplication. Presto extends the R language
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to support a distributed array abstraction, which can represent both dense and sparse matri-
ces. Computation is distributed automatically based on the data partitioning. For instance,
in Figure 3.9, the shaded areas correspond to the data that is required for the computation
of Ry . We notice that only a single row of the adjacency matrix is accessed and only one
element of the transition probability vector. Thus, the computation task of Ry should be
sent to the partition that contains Mg and Py . Extracting such access patterns is essential
for partitioning data and computation in the linear algebra model.

3.3.4 Datalog Extensions

Datalog is a declarative logic programming language used as query language for deduc-
tive databases. Datalog programs consist of a set of rules, which can be recursive. Datalog’s
support for recursion makes it suitable for expressing iterative graph algorithms. In [164],
Datalog is enhanced with a set of extensions that allow users to define data distribution,
efficient data structures for representing adjacency lists, and recursive aggregate functions,
which can be efficiently evaluated using semi-naive evaluation [26]. Algorithm 14 shows
the set of rules to compute an iteration of PageRank, using these extensions.

Algorithm 14 A PageRank iteration in SociaLite [164]
PageRank (iteration i+1) Input /N: number of vertices

EDGE (int src: 0..N, (int sink)).
EDGECOUNT (int src: 0..N, int cnt).
NODES (int n: 0..N).
RANK (int ¢ter : 0..10, (int node: 0..N, int rank)).
RANK(+1, n, $SSUM(r)) :- NODES(n), r = 0.15/N;
:- RANK(, p, 1), EDGE(p, n),
EDGECOUNT(p, cnt),
ent > 0,7 = 0.85 % r1 /ent.

A Datalog program is called stratifiable if it contains no negation operations within
a recursive cycle. For such a program, there exists a unique greatest fixed point for its
rules. In order to parallelize Datalog programs, it is assumed that all input programs are
stratifiable. To parallelize the recursive aggregate functions, these have to be monotone, i.e.
idempotent, commutative, and associative. Under these circumstances, it is shown in [164]
that delta stepping [132] can be used to parallelize monotone recursive aggregate functions.

3.3.5 Shared Partitioned Tables

Distributed graph processing through shared partitioned tables is an idea implemented
by Piccolo [146]. The computation is expressed as a series of user-provided kernel func-
tions, which are executed in parallel and control functions, which are executed on a single
machine. Kernel instances communicate through shared distributed, mutable state. This
state is represented as in-memory tables whose elements are stored in the memory of dif-
ferent compute nodes. Kernels can use a key-value table interface to read and write entries
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to these tables. The tables are partitioned across machines, according to a user-provided
partitioning function. Users are responsible for handling synchronization and resolution
functions for concurrent writes in the shared tables.

3.4 Categorization of Distributed Graph Processing
Systems

In this section, we present a taxonomy of recent distributed graph processing systems.
Table 3.2 contains 34 such systems and compares them in terms of supported graph pro-
gramming abstractions, execution model, and communication mechanisms. We also review
graph analysis applications, as these appear in recent distributed graph processing systems
publications. We present the results in Table 3.3.

3.4.1 Programming Model

The vertex-centric model appears to be the most commonly implemented abstraction
among the systems that we consider. Pregel, Apache Giraph, Apache Hama, GPS, Mizan,
Giraphx, Seraph, GiraphUC, Pregel+, and Pregelix (Apache AsterixDB) implement the full
semantics of the model. GraphLab, LFGraph, Cyclops, Gelly, and Trinity do not support
graph mutations, while the former three do not support communication with vertices out-
side of the defined scope / neighborhood either. GraphX provides an operator called pregel
for iterative graph processing, but, in fact, this operator implements the GAS paradigm.
Apache Tinkerpop provides connectors to Giraph and Spark, allowing the execution of
graph traversals on top of their computation engines.

3.4.2 Execution Model

We encounter four execution techniques in the graph systems considered in this survey:
synchronous (S), asynchronous (A), hybrid (H), and incremental (I). Synchronous execu-
tion refers to implementations where a global barrier separates one iteration from the next.
In such a model, during iteration i, vertices perform updates based on values computed
in iteration ¢ — 1. On the other hand, in the asynchronous execution model, computation
is performed on the most recent state of the graph. Synchronization can happen either
through shared memory or through local barriers and distributed coordination. In a hy-
brid execution model, synchronous and asynchronous modes can coexist. For example, in
Giraph++, computation and communication inside each partition happens asynchronously,
while cross-partition computation requires global synchronization points. Incremental ex-
ecution refers to the ability of a system to efficiently update the computation when its input
changes, without halting and re-computing everything from scratch.

Synchronous execution is naturally the most common design choice. It simplifies ap-
plication development and facilitates debugging. Asynchronous execution is usually sup-
ported together with synchronous or hybrid. The incremental execution model is only
supported in Naiad.
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Table 3.2 — Distributed graph processing systems comparison in terms of supported pro-
gramming models, execution model, and communication mechanisms. S stands for syn-
chronous, A for asynchronous, H for hybrid, and I for incremental.

System Year || Programming Execution Communication
Model
Pegasus [106] 2009 || MapReduce S Dataflow
Pregel [125] 2010 || Vertex-Centric S Message-Passing
Signal/Collect [172] 2010 || Scatter-Gather A, S Message-Passing
HaLoop [43] 2010 || MapReduce S Dataflow
Twister [67] 2010 || MapReduce S Dataflow
Piccolo [146] 2010 || Partitioned Tables S Shared global state
Apache Giraph [53] 2011 || Vertex-Centric S Message-Passing
Comb. BLAS [44] 2011 || Linear Algebra S Message-Passing
Apache Hama [3] 2012 || Vertex-Centric S Message-Passing
GraphLab [122] 2012 || Vertex-Centric A, S Shared Memory
PowerGraph [81] 2012 || GAS A, S Shared Memory
Giraph++ [176] 2013 || Subgraph-Centric H Message-Passing
Naiad [136] 2013 || Dataflow A, S, T Dataflow
GPS [159] 2013 || Vertex-Centric S Message-Passing
Mizan [109] 2013 || Vertex-Centric S Message-Passing
Presto [179] 2013 || Linear Algebra S Dataflow
Giraphx [173] 2013 || Vertex-Centric A Shared Memory
X-Pregel [27] 2013 || Vertex-Centric S Message-Passing
LFGraph [89] 2013 || Vertex-Centric S Shared Memory
SociaLite [164] 2013 || Datalog Extensions S Message-Passing
Trinity [165] 2013 || Vertex-Centric A, S Message-Passing,
Shared Memory
Graphx [82] 2014 || GAS S Dataflow
GoFFish [170] 2014 || Subgraph-Centric H Message-Passing
Blogel [186] 2014 || Vertex-Centric, H Message-Passing
Subgraph-Centric
Seraph [185] 2014 || Vertex-Centric S Message-Passing
Cyclops [48] 2014 || Vertex-Centric S Message-Passing
GiraphUC [87] 2015 || Vertex-Centric A H Message-Passing
Gelly [8] 2015 || Vertex-Centric, S Dataflow
Scatter-Gather, GAS
Pregelix [42] 2015 || Vertex-Centric S Dataflow
Apache Tinkerpop [4] || 2015 || Graph Traversals S Message-Passing
PowerLyra [49] 2015 || GAS S Shared Memory
NScale [148] 2015 || Neighborhood- S Dataflow
Centric
Arabesque [174] 2015 || Filter-Process S Message-Passing
Pregel+ [187] 2015 || Vertex-Centric S Message-Passing
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Table 3.3 — Applications used in distributed graph processing systems papers to demon-
strate programming models and evaluate performance.

Application #Appearances Programming Models

PageRank (and variations) 31 Vertex-Centric, Scatter-Gather, GAS,
Dataflow, Linear Algebra, Subgraph-
Centric, Partitioned Tables, MapReduce,
Datalog Extensions

Shortest Paths (and variations) 15 Vertex-Centric, Scatter-Gather, GAS,
Dataflow, Linear Algebra, Subgraph-
Centric, Datalog Extensions

Weakly Connected Components 12 Vertex-Centric, GAS, Dataflow,
Subgraph-Centric, MapReduce

Graph Coloring 5 Vertex-Centric, Scatter-Gather, GAS,
Linear Algebra

Alternate Least Squares (ALS) 4 Vertex-Centric, GAS, Linear Algebra

Triangle count 4 Vertex-Centric, Linear Algebra,
Subgraph-Centric, Datalog Extensions

K-Means 4 Vertex-Centric, Linear Algebra,
Subgraph-Centric, Partitioned Tables

Minimum Spanning Forest / Tree || 4 Vertex-Centric

Belief Propagation (and varia- || 2 Vertex-Centric

tions)

Strongly Connected Components || 2 Vertex-Centric, Dataflow

Label Propagation 2 Vertex-Centric

Diameter Estimation 2 GAS, MapReduce

Clustering Coefficient 2 Subgraph-Centric, Datalog Extensions

Motif Counting 2 Subgraph-Centric, Filter-Process

BFS 2 Vertex-Centric, Subgraph-Centric

Centrality Measures 1 Linear Algebra

Markov Clustering 1 Linear Algebra

Find Mutual Neighbors 1 Datalog Extensions

SALSA 1 Dataflow

n-body 1 Partitioned Tables

Bipartite Matching 1 Vertex-Centric

Semi-Clustering 1 Vertex-Centric

Random Walk 1 Vertex-Centric

K-Core 1 Vertex-Centric

Approximate Max. Weight || 1 Vertex-Centric

Matching

Graph Coarsening 1 Subgraph-Centric

Identifying Weak Ties 1 Subgraph-Centric

Frequent Subgraph Mining 1 Filter-Process

Finding Cliques 1 Filter-Process
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3.4.3 Communication Mechanisms

We come across four different communication mechanisms. In the Message-Passing
model, the state is partitioned across worker tasks and updates to non-local state happen by
sending and receiving messages. Worker tasks have read-write access to local state but they
cannot directly access and modify state on a different machine. On the contrary, the shared
memory mechanism allows tasks in different machines to communicate by mutating shared
state. Systems that employ this mechanism need to account for race conditions and data
consistency. In the dataflow model, operators are usually stateless and data flows from one
stage of computation to the next. In order to efficiently support graph computations in this
model, dataflow systems offer explicit or automatic caching mechanisms. For example,
Spark has a cache() method, which can be used to cache the graph structure, which is
static. In Stratosphere and Flink, the optimizer will detect loop-invariant data and cache
them automatically.

3.4.4 Applications

To further assess distributed graph programming model expressiveness and systems us-
ability, we survey the applications which appear in recent distributed graph processing sys-
tems papers. We gather and group graph algorithms that are used in the papers introducing
the systems of Table 3.2. We choose applications that appear as examples or pseudocode to
demonstrate APIs and programming model interfaces, as well as applications used for per-
formance evaluation. We base this study on the assumption that paper and systems authors
choose representative algorithms to include in their papers, in order to show their systems’
applicability and efficiency. Table 3.3 shows the most commonly encountered applications,
sorted by appearance frequency. For each application, we also list the programming models
in which they are implemented.

Unsurprisingly, we find the PageRank algorithm to be extremely popular. This algo-
rithm appears in 31 out of the 34 examined systems and we encounter implementations in
9 out of the 11 programming abstractions that we present in Section 3.2. Shortest paths
calculation and weakly connected components appear in more than one third of the pa-
pers. Graph coloring, ALS, k-means clustering, and minimum spanning forest are also
commonly used. However, we notice that the majority of applications are only encoun-
tered once or twice. This is partially explained by the fact that some of them, like finding
cliques, serve the purpose of introducing a specialized programming model, like filter-
process. Nevertheless, it appears that the vertex-centric model has been used to implement
most of the applications in the table.

Based on the findings of Table 3.3 and our analysis in the rest of this chapter, we can
categorize graph analysis applications and provide guidelines regarding suitable program-
ming models as follows.

— Value-propagation. Value-propagation algorithms are fixpoint algorithms that it-
eratively refine the values of the vertices, until they all converge to their final val-
ues. Such applications include PageRank, Single-Source Shortest Paths, Weakly
Connected Components, and Label Propagation. In these applications, vertex val-
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ues are typically computed by applying a function on the values of their first-hop
neighbors. Value-propagation algorithms can be easily expressed using the vertex-
centric, gather-sum-apply, and scatter-gather models.

— Traversals. Graph traversal are algorithms that visit the vertices of a graph with
the objective to find a particular value or pattern. Breadth-first search and depth-
first search are graph traversal algorithms. Even though the vertex-centric model
has been used to implement graph traversals, its synchronized nature might incur
unnecessary overhead. Subgraph-centric models are preferable in this case, as they
allow for asynchronous computation within each subgraph.

— Ego-network analysis. Ego-network applications include algorithms that compute
personalized metrics using neighborhood information for each vertex. Among the
models that we consider in this chapter, the neighborhood-centric model is the most
suitable model for such applications.

— Pattern matching. Graph pattern matching applications include graph mining al-
gorithms, like identifying cliques and frequent subgraphs. Among the models that
we consider in this chapter, the filter-process and the subgraph-centric models can
be used to implement such applications.

— Machine learning. Several machine learning tasks can be expressed using graph
models. Table 3.3 includes machine learning algorithms, such as k-means cluster-
ing, Alternate Least Squares, and Markov Clustering. Such applications are most
commonly implemented using linear algebra models.

3.5 Discussion

Similarly to how the introduction of the map-reduce programming model simplified
large-scale data analysis to a large extend, the invention of the vertex-centric model revo-
Iutionized the area of distributed graph processing. Thinking like a vertex has proved to be
a valuable abstraction that allows writing comprehensive programs for a variety of graph
problems. However, despite its wide adoption, researchers and users have also started to
identify its shortcomings [160, 187, 176]. The understanding of the abstraction’s limits has
spawned novel specialized models, such as the neighborhood-centric for ego-network anal-
ysis and filter-process for graph mining tasks. At the same time, lower-level abstractions,
such as the partition-centric model, are proposed as alternatives for higher performance.

It is clear from our study that no single model is suitable for all classes of graph algo-
rithms. This is an open challenge for researchers and systems designers to either invent a
more expressive and flexible programming model or explore the possibility of supporting
multiple programming abstractions on top of the same platform. To that end, general-
purpose dataflow systems look promising. It has already been shown how the vertex-
centric, scatter-gather, and GAS abstractions can be mapped to relational execution plans,
and how distributed dataflow frameworks can efficiently support them [72, 42, 82]. Never-
theless, current systems still rely on the user for efficient implementations.

For our work, we use both a general-purpose system and a specialized graph processing
system that implements the vertex-centric model. In the next chapter, we present a real-
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world graph processing use-case, implemented with a general-purpose dataflow system.
Such systems are especially useful when graph processing is only one step in a bigger data
analysis pipeline. In Chapter 6, we use the Apache Giraph graph processing system.
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Chapter 4

Automatic Detection of Web Trackers:
a Real-World Application of Distributed
Graph Processing

In this chapter, we present a real-world application of graph processing and its dis-
tributed implementation. Our goal is twofold. First, we use this use-case to demonstrate
the importance of graph analysis in the context of a real business scenario. We show how
the graph abstraction can be used to model user-generated data and how mining the rela-
tionships in the induced graphs can provide useful answers to interesting questions. Sec-
ond, we use the implementation of this graph application as a motivating example for the
optimization techniques that we propose in Chapters 5 and 6.

4.1 Advertisements and Tracking on the Web

The massive growth of the web has been funded almost entirely via advertisements
shown to users. Web ads have proven superior to traditional advertisements for several
reasons, the most prominent being the ability to show personally relevant ads. While the
content of the web page the ad is being served on can help provide hints as to relevance,
web advertisement agencies also rely on mechanisms to uniquely identify and track user
behavior over time. Known as trackers, these systems are able to uniquely identify a user
via a variety of methods (e.g., persistent cookies, browser fingerprinting, etc.) and over
time can build up enough information about a user to serve extremely targeted ads.

While ad agencies’ use of trackers has enabled services to provide access to users free of
charge, there is also a certain degree of “creepiness” in the way the current ecosystem works
that has also been highlighted in the US Congress [156]. Even worse, recent work [71] has
shown that trackers can be easily exploited by government agencies to spy on people.

Privacy concerns have led to the creation of client side applications that block trackers
and ads, for example AdBlock, which uses crowdsourcing to build what amounts to black
lists of URLs called EasyPrivacy. Since it is crowdsourced, by definition EasyPrivacy
requires human effort to identify trackers. Further, the EasyPrivacy list is mostly opaque:
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there is no straight forward way to understand why a tracker was added to the list or to get a
sense as to how trackers work on an individual or group basis. In the research community,
several strategies for detecting and defending against trackers have been introduced [158,
110], in general focusing on understanding the methods that trackers use and techniques
for obfuscating a user’s browsing behavior.

Targeted advertising and personalization services on the web rely heavily on monitor-
ing the users’ browsing behavior. This is often realized using code embedded in web pages
that has the capability to log a user’s visit, set cookies in their browser, and share this in-
formation with a tracker. Trackers enable targeted advertising and personalization services
by monitoring user behavior on the web. To understand web tracking, let us consider what
happens in the browser when a user visits a URL. First, the browser issues an HTTP re-
quest to the site to fetch the contents of the web page. The response contains the page
resources, including HTML, and references to embedded objects like images and scripts.
These references might then instruct the browser to make additional HTTP requests (e.g.,
for the image itself) until the page is fully loaded. Embedded objects can be hosted on
different servers than the page content itself, in which case they are referred to as third-
party objects. A fraction of these third-party objects open connections to trackers, e.g., the
popular Facebook "like" button, at which point the users’ online whereabouts are logged
for targeting/personalization purposes.

In this chapter, we use a large-scale dataset of real users extracted from the logs of an
explicit mobile proxy to characterize web trackers. We use graph analysis techniques to
explore the network level behavior of trackers, such as latency and data transfer sizes. We
quantify user exposure to trackers and try to understand what types of browsing behavior
are more likely to be exposed to tracking. We then explore trackers’ positions within a
graph induced from user browsing behavior. To achieve that, we create a bipartite graph
of user visited URLs and the 3rd party requests generated from those URLs. We create
the graph projection and using a community detection algorithm, we discover that trackers
form distinct and tightly coupled clusters. Finally, we show that using the induced graph
structure, we can build a scalable tracker classification pipeline, which operates with high
precision and very low false positive rate.

4.2 The Referer-Hosts and the Hosts-Projection Graphs

In this section, we introduce the dataset and the graph models that we create to help
us solve the tracker classification problem. We also provide the necessary background on
graph theory concepts and techniques that we use later in this chapter.

4.2.1 Dataset

Our dataset is derived from 6 months (November 2014 - April 2015) of traffic logs
from an explicit web proxy. The proxy is operated by a major telecom located in a large
European country. Our data is delivered to us in the form of augmented Apache logs. The
logs include fields to identify the user that made the access, the URL that was requested,
headers, performance information like latency and bytes delivered. We call this dataset the
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proxy log, and in total it represents 80 million accesses to 2 million individual sites. In the
following section, we describe how we use the proxy log to model web tracking as a graph
problem. We label URLs in our dataset as tracker or other based on ground truth derived
from the EasyPrivacy list for AdBlock [6].

4.2.2 Modeling Tracking Relationships as Graphs

A bipartite graph is a graph with two different modes (or classes) of vertices, where
edges are only allowed between vertices belonging to different modes. The interactions
between explicit user requests and background requests, both page content and third-party
objects like web tracking services, can be naturally modeled as a bipartite graph. The first
mode of vertices in the graph are URLs that the user intentionally visits, while the second
mode are URLs for objects that are embedded in the visited page.

More precisely, we represent the URLs that a browser accesses as a bipartite graph
G = (U,V,E), where U are the URLs that the user explicitly visits, V" are the URLs
that are embedded within those pages, and FE is the set of edges connecting vertices in U
(explicitly visited URLSs) to vertices in V' (URLs embedded within visited pages). We call
vertices in U referers, vertices in V' hosts, and G the referer-hosts graph.

In graph analysis, communities are groups of vertices that are well-connected internally,
and sparsely connected with other groups of vertices. An example of graph communities is
graphically shown in Figure 4.1. Vertices belonging to the same community are more likely
to be similar with respect to connectivity and network position than vertices belonging to
different communities. V' contains both regular embedded objects and third-party objects
potentially associated with trackers. We expect regular embedded objects to only appear
on the hosting web page, while tracker objects need to appear on as many web pages as
possible to enable successful tracking of users across websites. This implies that: 1) tracker
vertices in V' should be linked to many different vertices in U and 2) tracker vertices are
members of well-defined communities in G.

Unfortunately, working with communities in bipartite graphs can be tricky. For exam-
ple, the relationships between vertices in the same mode are only inferred from relation-
ships that pass through vertices in the second mode, which can lead to unexpected results
from standard community detection algorithms run on a raw bipartite graph. This is es-
pecially a problem when the community structures of the two modes are different, as we
might expect in our case [130]. To avoid this problem, it is typical to extract and analyze
1-mode projections of bipartite graphs.

Assuming that users do not intentionally visit tracker sites, U should not contain tracker
URLSs which are instead contained in V. Accordingly, we can project the bipartite graph
into a 1-mode graph that only contains the vertices in V, by creating the hosts-projection
graph G'. In G, we create an edge between any two vertices in V' that share a common
neighbor in G. Le., if two vertices, v and v’ from V both share an edge with a vertex u
from U, then there is an edge ¢ = (v, v") in G’. Fig. 4.2 illustrates this transformation. This
way, G’ preserves much of the original graph’s structural information and captures implicit
connections between trackers through other sites.
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Figure 4.1 — Example of graph communities. Vertices belonging to the same community
are well-connected with each other, while vertices belonging to different communities are
sparsely connected.
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Figure 4.2 — Example of the hosts-projection graph transformation. Vertices prefixed with r
are the pages the user explicitly visited while those prefixed with h were embedded within
the  vertex they have an edge with. Note that additional information associated with the
vertex (e.g., tracker/non-tracker/unknown label) is not affected by the transformation.

4.2.3 Graph Weighting Schemes

The referer-hosts graph and the hosts-projection graph let us encode the relationships
between referer-host and host-host pairs respectively. We can enrich these graphs with edge
weights to encode the strength of these relationships. The proxy log contains information
that can help us quantify the relationship strengths. For example, if a request from referer
A to host B appears more often in the proxy log than a request from referer A to host
C, it might be the case that the relationship between A and B is more important than the
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relationship between A and C'. In this section, we describe four weighting schemes for the
referer-hosts and the hosts-projection graphs.

1.

Common neighbors. The first weighting scheme is based on the intuition that if two
hosts are pointed to by many different referers, then they should probably be similar
to each other. We assign weights in the projection graph to represent the number of
common neighbors that the connected hosts have in the referer-hosts graph. We use
the logs to create the bipartite graph by adding one edge between every distinct pair
of referer and host URLs. Then, we create the projection graph by connecting two
hosts with an edge and add a weight equal to the number of common neighbors that
the hosts have in the bipartite graph.

Request frequency. In the second weighting scheme, we want to encode the im-
portance of a request occurrence frequency in the proxy log. For each request in the
proxy log, we extract the referer and host URLs. If no edge between the two exists
in the bipartite graph, we add one with initial weight equal to one. If an edge already
exists between the URLSs, we increment its weight. In a variation of this scheme,
we can normalize the weights as follows. We divide each edge weight by the total
number of occurrences of its endpoints’ pair in the logs. This way, we can express
the frequency of a connection between a referer and a host as compared to the rest
of the connections of this referer. Figure 4.3 illustrates this idea. Without normaliza-
tion, edges (R1, H1) and (R2, H1) are assigned the same weight. Since R1 appears
in the proxy log ten times and in five of them it is connected to H 1, the normalized
weight reflects that R1 connects to H1 half of the times. Similarly, the normalized
weight reflects that R2 connects to H 1 every time.

Attribute similarity. The proxy log contains performance information about each
request, including the number of bytes exchanged and the request latency. We create
a vector of attributes for each host and we use it to weight the projection graph edges
by computing the euclidean distance between the vectors of the edge endpoints. The
lower the distance, the more similar two hosts are assumed to be.

. Attribute similarity and common neighbors. This weighting scheme combines

the attribute similarity weights with the common neighbor weights. We create the
projection graph with edge weights computes as the number of common neighbors
between the edge end-points multiplied by the inverse of the euclidean distance of
the attribute vectors. In this case, the higher the weight, the more similar we assume
the hosts to be.

4.3 Tracker Behavior Analysis

In this section we perform a high-level analysis on tracker behavior by analyzing the
referer-hosts graph and the hosts-projection graph. We are especially interested in dis-
covering whether trackers have different properties than normal pages in these graphs and
whether their network position can be used as a distinguishing feature.
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Figure 4.3 — Example of the request frequency weighting scheme. On the left graph,
weights correspond to the number of occurrences of each referer-hosts pair in the proxy
log. On the right graph, weights are normalized to reflect the occurrence probability of the
connections.

4.3.1 Trackers’ Position in the Referer-Hosts Graph
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Figure 4.4 — CDF of in-degree per host for trackers and others.

The first question we examine here is how well connected trackers are. Although track-
ers are essentially required to appear on many different pages to collect meaningful data,
we are interested in quantifying this. We begin by plotting the in-degree (i.e., the number
of unique source URLs they are requested from) of tracker and other URLSs in Figure 4.4.
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Interestingly, we find that trackers tend to have a slightly lower in-degree than other URLSs.
When looking at things a bit closer, we discovered that this is likely due to the use of user
specific tracking URLs, primarily those from Google. These URLs are in the form, e.g.,
unique—hash.metrics.gstatic.com. Therefore, straight-forward outlier detec-
tion techniques on the in-degree would miss them.

I I I I I
100 10* 10° 10* 10°
Component Size

Figure 4.5 — Connected Components Size Distribution in the Referer-Hosts Graph .

Next, to see how well-connected trackers are to each other we extract connected com-
ponents and plot the distribution of their sizes in Figure 4.5. As expected, there are many
2-node components, however, we find that over 94% of the total amount of trackers belong
to the largest connected component (LCC). For the remainder of this chapter, we focus on
this largest connected component, consisting of of 500,000 vertices and 1 million edges.

4.3.2 Trackers’ Position in the Hosts-Projection Graph

We create the hosts-projection graph from the largest connected component in the
referer-hosts graph. The projection has 80,000 vertices and 43 million edges.

Figure 4.6 shows the degree distribution of trackers and other hosts in the hosts-projection
graph. As opposed to the referer-hosts case, here we observe a clear difference between the
degree distribution of trackers and other pages. A higher degree might imply that trackers
are more important and central nodes in the projected network than other pages.

Next, we examine trackers’ neighborhoods more closely. Figure 4.7 shows the ratio of a
nodes’s neighbors that are trackers. We observe that the vast majority of trackers’ neighbors
are other trackers. To further investigate how well-connected trackers are among them, we
plot the ratio of a node’s neighbors that are trackers over the total number of trackers in the
dataset in Figure 4.8. From this figure, we see that trackers appear to be direct neighbors
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Figure 4.6 — CDF of degrees in the hosts-projection graph for trackers and others.
with most of the existing trackers in the whole network. What this essentially means is that

trackers tend to be pointed to by the same pages. Something that makes intuitive sense,
since publishers tend to add multiple trackers on their web sites for better ad targetting.
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Figure 4.7 — Ratio of the projection graph nodes’ neighbors that are trackers.

Figure 4.9 shows co-occurrence ratios for different types of pages. From this figure,
we see that not only trackers are mostly connected to other trackers, but also that edges
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Figure 4.8 — Ratio of a node’s tracker neighbors over the total number of trackers in the
dataset.
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Figure 4.9 — CDF of co-occurrences for different types of pages.

between trackers are the most common, in the hosts-projection graph !.

All of these findings suggest that trackers form a dense community in the hosts-projection
graph. Figure 4.10 shows a visualization of the host-projection graph (from April’s logs)
focused on trackers’ positions. The visualized network contains only edges with at least
one tracker endpoint. We observe that the majority of low-degree trackers form a very

1. To increase readability of this figure, we have removed edges that only appear once in the dataset
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Figure 4.10 — Visualization of the Tracker network structure of the hosts-projection graph,
created using the logs of April. The network contains 60k nodes and 340k edges. Nodes
are ranked by degree, so that a darker color denotes a higher degree. The community on the
right contains tracker nodes and ad server nodes, where ad servers can be seen as having a
slightly lighter color and being mostly clustered on the left edge of the community. The left
cluster consists of normal webpages and a few popular trackers, which can be distinguished
by their larger size and darker color.

dense and easily identifiable community indeed, seen on the right side of the figure. On
the other hand, there exist a few popular trackers, which are connected to the majority of
normal URLSs and are also very well-connected among each other.

4.4 Classification Methods

Our main goal is to exploit the hosts-projection graph structure to automatically classify
trackers. Our findings so far suggest that trackers form a well-connected cluster and are
mostly connected to other trackers. We leverage these findings and confirm that even a
simple assessment of the nodes’ neighbors in the hosts-projection graph can yield good
classification results. We further evaluate a community detection algorithm and show that
it succeeds in identifying clusters of trackers.

We evaluate two methods for automatic web tracker classification. As a baseline method,
we use a simple structural assessment of the hosts-projection graph to identify trackers.
Next, we use a slightly modified version of the well-know Label Propagation algorithm [151]
to identify clusters in the hosts-projection graph. We use these methods to identify commu-
nities of similar web pages and classify unlabeled hosts as trackers or non-trackers, based
on their community membership.
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4.4.1 Neighborhood-Based Classification

This is a simple rule-based classification method which analyzes the first-hop neigh-
borhoods of each unlabeled node in the hosts-projection graph. For each unlabeled node,
we count the number of trackers among its immediate neighbors and make a classification
decision based on a configurable threshold. If the percentage of tracker neighbors is above
the threshold, then the node is labeled as a tracker. The intuition behind this method is
that we expect most trackers to be mostly connected to other trackers in the host-projection
graph. Previous work [110, 73, 80] indicates that web trackers form networks with small-
world network characteristics, where small groups of entities are highly connected among
them and that tracker networks also tend to cluster based on their geographical location.

4.4.2 Community Detection via Label Propagation

Label Propagation is a scalable iterative algorithm for community detection. It consists
of an iterative process, which exploits the network structure to propagate labels and identify
densely connected groups of nodes. Initially, nodes are assigned unique labels. Then, the
algorithm proceeds in iterations, where nodes exchange labels with their neighbors. In each
iteration, a node receives a list of the all the labels of its immediate neighbors and adopts the
most frequent label among them. The algorithm converges when no label changes during
an iteration. An example is shown in Figure 4.11. In our implementation of the label
propagation algorithm, a node considers its own label as well when computing the most
frequent label. In order to break ties in the case that two labels have the same frequency,
we always choose the label with the highest identifier.

We use this algorithm on the hosts-projection graph as follows. Initially, we assign a
unique numeric label to each host in the graph. Upon convergence, we consider that nodes
with the same label belong to the same cluster. Then, we use the EasyPrivacy list to identify
and tag known trackers inside the clusters. White-listed nodes are tagged as non-trackers.
Finally, we assign a tag to each cluster, by choosing the most popular tag among its cluster
members. We classify unlabeled nodes by assigning them the tag of the cluster in which
they belong. A threshold-based approach for tagging the clusters could be used here as
well.

4.4.3 Weighted Label Propagation

The label propagation algorithm can be extended to leverage the edge weights of the
projection graph. Using the weighting schemes of Section 4.2.3, we modify the algorithm
as follow. During an iteration, nodes send messages to their to their neighbors, containing
both the node’s label and the edge weight connecting the sender node to the destination
node. On the receiving side, a node adds up the received weights for each label and adopts
the label with the highest sum.
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Figure 4.11 — An example of the label propagation algorithm for tracker classification.
Green nodes are known to be legitimate pages and red nodes are known to be tracker URLs.
The blue node is unlabeled. After the algorithm has converged (i=5), there exist two clusters
in the graph. The cluster with label=8 contains two legitimate URLs and is labeled as a non-
tracker cluster. The cluster with label=7 contains three tracker URLs and two legitimate
URLSs. Since the majority of pages are trackers, this cluster is labeled as a tracker cluster
and the blue node is classified as a tracker.

4.5 Data processing pipeline implementation

In this section, we describe the system we built to aggregate the data from our logs,
construct and transform graphs, and classify URLs as trackers or non-trackers. We pro-
vide details on the data processing pipeline and the implementations of the different graph
algorithms that we used for classification.

We built an end-to-end data processing pipeline with Apache Flink [1] and its graph
processing API, Gelly, to enable our analysis. Flink is an efficient and scalable open-source
system for distributed large-scale data processing. It supports both batch and streaming an-
alytics and contains libraries for graph processing and machine learning tasks. Flink can
execute applications in single-node mode or cluster mode and scales to very large datasets.
It is ideal for our use-case for the following reasons. First, it can easily handle the large
datasets we have to process. Second, Flink has native operators which are used to efficiently
run iterative graph processing tasks. Finally, Flink can be used to easily build long data pro-
cessing pipelines that seamlessly combine ETL-style (Extract-Transform-Load) and graph
analytics in the same application.
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Figure 4.12 — Classification data pipeline

The implemented pipeline is shown in Figure 4.12 and consists of the following steps:

1. Logs pre-processing. We process the raw logs of user traffic to filter out bad records

and extract useful information. For example, we filter out log records that are missing
referer of host information. Then, we parse valid records to extract the fields that we
use in our analysis: referer URL, host URL, timestamp, and tag.

. Bipartite graph creation. We use Flink’s graph API, Gelly, to parse the extracted

fields as edges and create a bipartite graph. Since the same referer-host pair may
appear several times, we remove duplicate edges. Finally, we ensure that the result
is a bipartite graph and no dual-role nodes exist.

Upon receiving new logs, we incrementally update the existing bipartite graph as
follows. We process the new logs to extract < refererURL,hostURL > pairs
and create a new set of edges. We then check whether the new edges contain con-
nections that we have encountered in the previous months. The edges formed by
these connections are already present in the bipartite graph and we do not add them
again, while we form new edges for connections that we encounter for the first time.
Finally, we tag previously identified trackers and non-trackers. The result is a new
bipartite graph, where some host nodes (URLs) are not tagged. Figure 4.13 shows
the process of merging the logs of a new month to the existing state of the bipartite
graph.

. Largest Connected Component Extraction. We use Gelly’s scatter-gather implemen-

tation of the weakly connected components algorithm to find the connected compo-
nents of our bipartite graph. We then use Flink’s DataSet API to extract the largest
component.

. Hosts projection graph creation. We create the hosts-projection graph of the largest

connected component of the bipartite graph as follows. We group by referer and
create one edge for each pair of its neighbors. This way, if two hosts are referenced
by the same referer, they are neighbors in the projection graph.
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Figure 4.13 — Merging new logs into the current bipartite graph.

5. Community Detection. The neighborhood-based classification is implemented using
Gelly’s neighborhood-based aggregation methods. We implement the Label Propa-
gation algorithm using a custom iterative scatter-gather program. After convergence,
we use Flink’s DataSet API to extract and tag the clusters and to classify unlabeled
nodes.

6. Results post-processing. During the post-processing, each unlabeled host is assigned
a tracker or non-tracker label. For the neighborhood method, the label is the most
popular label among its neighbors, where popularity is calculated based on a speci-
fied threshold. For the community detection method, the label chosen is the cluster
label in which the host belongs.

4.6 Classification Evaluation

In this section, we summarize the results of evaluating the proposed classification meth-
ods. We evaluate the methods, using three subsets of our dataset. For every subset, we use
all the hosts that appear in the last month as the test set and all the previous months as the
training set. Thus, we use the logs from November up to January in order to classify hosts
seen in February logs, November up to February logs to classify hosts first encountered in
March, and logs from November up to March to classify hosts seen in April logs. Note
that we remove from the test set all hosts that we have seen before, i.e. nodes for which we
already know whether they are trackers or not. The number of test records and new trackers
per month are shown in Table 4.1. We use the classification methods to tag each of the un-
tagged nodes as tracker or non-tracker and measure precision, accuracy, false positive rate
(FPR) and recall for each method. Finally, we assess classification stability, by randomly

78



4.6. CLASSIFICATION EVALUATION

choosing test sets out of the complete dataset.

Test Records | Trackers | Total

in LCC in LCC New Trackers
Feb 13685 760 811
March 18313 740 774
April 40465 747 792

Table 4.1 — New Trackers per Month

4.6.1 Neighborhood-Based Classification

We evaluate the neighborhood-based method, which utilizes only the first-hop neigh-
borhood information to tag a test item. The results for the months of February, March and
April are shown in Figure 4.14. We vary tag popularity, in the following ways:

— the most common tag among all tagged neighbors (Threshold: 0.00).

— the tag appears on at least y% of the node’s neighbors, where y=30, 40, 50, 60, 70,

80, 85 and 90. This way, a node is classified as tracker if at least % of its neighbors
are tagged as trackers.

In all cases, we achieve a classification precision that varies from 64% up to 83%. We
observe that precision increases for higher thresholds: the more tracker neighbors a node
has, the higher the probability that it is a tracker itself. Similarly, false positive rate (FPR)
and accuracy, both improve for higher thresholds. FPR remains under 2% in all cases and
accuracy above 97%. On the other hand, recall decreases as we increase the threshold,
which means that we might miss a few trackers, but it is above 90% in all cases.

4.6.2 Label Propagation

The results for the Label Propagation method are shown in Table 4.2. To assess classi-
fication stability, we evaluate the classification using random sets of test records of varying
sizes. Instead of selecting the test set based on the timestamp of the log record, we create
test sets from the complete graph, by randomly choosing log records and marking them
as “untagged”. We run this experiment for test sets of 5%, 10% , 20% and 30% of the
complete dataset and repeat it 3 times.

By exploring further than the first-hop neighborhood of nodes, this method can success-
fully locate the trackers community and classify test items with extremely high precision,
up to 94%. As compared to the simple neighborhood inspection, this method achieves
higher accuracy and higher recall, while further lowering the false positive rate. Note that
this result does not come at a cost of performance, since the algorithm converged in less
than 10 iterations, for all the test sets used. Additionally, this method has the advantage
that we do not need to set a threshold.

We also evaluated label propagation on the weighted projection graph, using the weight-
ing schemes introduced in Section 4.2.3 to capture structural and operational similarity
between nodes. The results for the attribute similarity weighting scheme are shown in Fig-
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Figure 4.14 — Classifier performance for the neighbor count method.

ure 4.15. We found that community detection method on the weighted graph had similar
classification performance to the one of the unweighted graph, but, in some cases, it could
lower FPR further. The feature that appeared to improve classification performance most
was the size of bytes received. However, the classification results were not stable, as the
method is not guaranteed to converge.

4.7 Conclusion

In this chapter, we presented a real-world graph analysis use-case. We characterized
tracker behavior using a large-scale dataset of logs from an explicit proxy. We transformed
user requests into a bipartite referer-hosts graph where vertices in the first node represent
URLs the user visited and vertices in the second node represent requests for objects embed-
ded in those pages. From this graph we discovered that 94% of trackers are in the largest
connected component. To further focus in on how trackers are related to each other, we
collapsed the bipartite referer-hosts graph into a 1-mode hosts-projection graph. From the
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precision | FPR | accuracy | recall

Monthly Feb 0.934 | 0.004 0.993 | 0.932
Test Sets March 0.946 | 0.002 0.994 0.9
April 0.922 | 0.001 0.997 | 0.872

5% 0.923 | 0.004 0.994 | 0.958

Random | 10% 0.934 | 0.004 0.993 | 0.941
Test Sets | 20% 0.941 | 0.003 0.994 | 0.948
30% 0.939 | 0.003 0.994 | 0.951

Table 4.2 — Label Propagation Classification Results
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Figure 4.15 — Classifier performance for weighted Label Propagation.

hosts-projection graph we observed an extremely high degree of clustering: trackers tend
to co-appear on pages together in a very distinct manner. Next, using the insight from our
characterization, we built a classification pipeline which aggregates our proxy logs, pro-
cesses them into the hosts-referer graph, transforms the hosts-referer graph into the hosts-
projection graph, and classifies using two algorithms. From the classification results, we
discover that the structure of the induced graph alone resulted in high accuracy.

We have shown a representative graph processing pipeline that consists of a pre-processing
step for graph creation, a graph analysis step, and a post-processing step to retrieve the final
results. Building and studying the properties of this data processing pipeline has inspired
the optimization methods that we present in the following chapters. With respect to the
research objectives and goals that we set in the introduction of this thesis, we are going to
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design and implement performance optimizations for the graph analysis step of this use-
case. Specifically, in Chapter 5 we show how we can reduce the amount of computations
required in fixpoint graph algorithms, like the label propagation algorithm, and in Chapter 6
we show how we can compress weighted graphs, so that we can reduce the amount of data
that we need to process.
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Chapter 5

Asymmetrical Convergence in
Large-Scale Graph Analysis

As we saw in Chapter 3, fixpoint algorithms like PageRank, Connected Components,
and Shortest Paths, are commonly used as representative applications for evaluating graph
processing systems. In a recent benchmark for parallel and distributed graph processing
systems [91], four out of the six applications used are fixpoint algorithms. One of them,
Label Propagation, also lies in the core of the web tracker classification use-case that we
described in Chapter 4. Fixpoint algorithms iteratively refine the values of a set of parame-
ters, until they all converge to their final values. Each parameter is associated with a set of
dependency parameters. Parameter values are computed by applying a step function on the
parameter’s dependency set. In the context of graph processing, fixpoint algorithms can be
mapped to the BSP model [177]. The parameters are represented by the graph’s vertices
and dependencies are represented by edges. In each iteration, vertices compute their values
by applying a user-defined function on the values of their incoming neighbors and their
current state. The algorithm terminates when no vertex changes its value or when some
other convergence criterion is met.

Many iterative refinement graph algorithms expose non-uniform behavior, where dif-
ferent vertices require a different number of iterative steps to converge. Consequently,
some vertices converge faster than others and do not need to participate in the computation
in the following iterations [72, 122, 125]. If this asymmetrical convergence behavior is
not accounted for, redundant computations will be possibly performed. Ideally, we would
like to detect this phenomenon and stop the computation early for the inactive parts. This
would allow the system to avoid redundant computation and communication. Applying
this optimization requires detecting inactive vertices and identifying the parts for which
computation can halt. However, we must examine how, halting computation for some ver-
tices, could potentially affect the correctness of the computation for the rest of them. Even
if inactive parts can be accurately identified, is it always possible to halt computation for
these parts and still obtain correct results?

To clarify these issues, let us consider the vertex-centric fixpoint version of the single-
source shortest paths (SSSP) algorithm. Consider the graph of Figure 5.1, where S is
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Figure 5.1 — An example execution of SSSP. Grey nodes have not changed their value since
the previous iteration and they do not need to participate in the computation. Messages are
propagated only along edges depicted with solid lines.

the source, the weights on the edges represent distances, ¢ is the iteration counter and the
values in the boxes show the distance computed for each vertex at the current iteration. In
this example, the algorithm is refining the distances of vertices from the source vertex S.
In each iteration, a vertex receives new candidate distances from its in-neighbors, selects
the minimum of these candidates and its current value, adopts this minimum as the new
value, and propagates it to its out-neighbors. For this algorithm, it is trivial to observe that
if a vertex does not change its distance during an iteration, it does not have to propagate
its value to its out-neighbors; the neighbors have already seen this distance in the previous
iteration. Vertices whose value does not change between two consecutive iterations are
shown in gray in Figure 5.1. If we halt computation for these vertices, so that values
propagate only along edges depicted with solid lines, the final result will still be correct.
For example, in iteration 3, vertex C' does not need to receive the value of A again. Any
future distances that C' will compute can only be equal or lower its current distance.

Even though applying this optimization to SSSP may seem obvious, it cannot be easily
generalized for all similar algorithms. Let us consider computing Label Propagation [150]
instead. In this algorithm, each vertex is again initialized with a label, or color as shown
in Figure 5.2. Vertices iteratively exchange labels with their neighbors, with the difference
that they do not pick the minimum label, but the one that most of its neighbors currently
have. Execution A in Figure 5.2 shows what happens if we follow the logic of the shortest
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Figure 5.2 — Three possible example executions of the Label Propagation algorithm. In
execution A, vertices that do not change value get de-activated and that causes vertex v to
decide on an incorrect label. In execution B, all vertices remain active and compute the
correct result, but redundant computation and communication is performed. In execution
C, only vertices whose values are essential for correct computation are active.

paths example and stop propagating labels from vertices that do not change their values.
De-activated vertices are shown in faded colors. All nodes are initially active and send their
labels to their neighbors. In iteration 1, node v has received a majority of blue labels and
joins the blue community. In iteration 2, v has only received labels from active nodes d
and e and incorrectly decides to join the red community, even though the majority of its
incoming neighbors have blue labels. A straight-forward way to avoid this situation is to use
a bulk iteration technique [72], as shown in execution B. In this case all vertices are always
active. However, this approach leads to redundant computation and communication. As
shown in execution C, a large part of the graph can be safely de-activated without affecting
the correctness of the result.

In this chapter, we present an overview of general optimizations for value propagation
graph algorithms, in the presence of asymmetrical behavior in computations. We study the
characteristics of four iterative techniques and we describe what these characteristics mean
and how they can be safely exploited, in order to derive optimized algorithms. More impor-
tantly, we give the necessary conditions under which it is safe to apply each of the described
optimizations, by exploiting problem-specific properties. We use general-purpose dataflow
operators to create template optimized execution plans, which can detect converged parts
and avoid redundant computations, while providing functionality equivalent to Pregel and
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Table 5.1 — Graph data sets that we use for observing asymmetrical convergence.

] Graph H VI \ IEl \ size \ avg. degree | clust. coeff. | diameter
Twitter [111] 41.6M | 1.5B | 24GB | 70.506 0.0846% 23
Wikipedia [15] 12.2M | 378M | 6.2GB | 62.241 1.63% 11
Livejournal [118] || 4.8M | 68M | 1GB 28.251 11.8% 20
Youtube [190] 1.LIM | 29M | 38MB | 5.265 0.622% 24

GraphLab. We propose an expressive, high-level fixpoint API for writing graph iterative
fixpoint applications in a declarative way. We build this on top of a flexible runtime capable
of identifying and avoiding redundant computations. We evaluate the optimizations using
four iterative algorithms and we present extensive experiments using real-world datasets
of varying sizes and characteristics. We show that optimized algorithms can yield order
of magnitude gains compared to the naive execution. We perform a cost analysis for the
fixpoint iteration techniques and we build a model that can accurately predict the cost of
an iteration step during runtime. We integrate the cost model with our framework and we
use it to avoid redundant computation and communication, by switching execution strategy
on-the-fly. We evaluate the performance of our cost model by measuring runtime speedup
and communication savings as compared to naive bulk execution.

5.1 Observing Asymmetrical Convergence

First, we examine several datasets to verify their asymmetrical convergence behavior.
We select four real-world graphs of varying sizes and different network properties, shown
in Table 5.1. Reported sizes correspond to raw edge list representation. Using these graphs,
we run four common value propagation graph algorithms: Weakly Connected Components,
PageRank, Label Propagation, and Community Detection [119]. We choose the first two
algorithms because they are among the most popular applications used for graph systems
evaluation, as we saw in Chapter 3. We choose the latter two applications, because they can
both be used for classification in the use-case of Chapter 4. Moreover, both these algorithms
require a holistic view of the neighborhood for computation, where the common vertex
de-activation techniques not applicable. For every graph-application pair, we measure the
number of vertices that actually update their values during each iteration, until convergence
or until a maximum of 20 iterations. For PageRank, we consider a vertex updated if its value
has changed more than 0.001% since the last iteration. Figure 5.3 shows the results.

All four algorithms exhibit asymmetrical convergence behavior on all input graphs.
The decline of active vertices appears to be faster in early iterations and slower towards
the last iterations. The Connected Components algorithm seems to exhibit the steepest
decline. Label Propagation and Community Detection show irregularity for the Youtube
graph, where after the initial decrease of active vertices, there is a small increase in later
iterations, before the algorithms converge.

This analysis reveals an optimization opportunity and a challenge. Iterative refinement
algorithms expose non-uniform convergence behavior, where big parts of the graph con-
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Figure 5.3 — Number of updated vertices per iteration

verge early. If we can detect this behavior during runtime, we could potentially deactivate
the converged parts and avoid redundant computations. However, we need to make sure
that halting computation in some parts of the graph will not affect the correctness of the
final result. In the following sections, we introduce four iteration techniques and we show
how and when we can use them to safely exploit asymmetrical convergence in fixpoint
algorithms.

5.2 Fixpoint Iteration Techniques

During the past few years, a large number of highly-specialized systems for large-scale
iterative and graph processing have been developed [122, 125, 82], while there also exist
general-purpose analysis systems with support for iterations and graph processing [192, 72,
136]. Some of these systems are designed to exploit dataset dependencies, in order to effi-
ciently execute applications and avoid redundant computations. Existing graph processing
frameworks exploit computational dependencies to provide efficient runtimes. However,
either they assume certain properties for the update functions or they require caching and
expensive state management for more complex cases. For example, Pregel [125] defines
that if a vertex does not receive any messages during an iteration, it becomes inactive and
does not execute or produce messages in the subsequent superstep. GraphLab [122] re-
alizes similar behavior with its adaptive execution mechanism. However, it is left to the
developer to decide when it is safe to deactivate vertices or halt parts of the computation.
This requires the user to understand both models and to carefully verify the correctness of
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the algorithm.

In this section, we formally describe four fixpoint iteration techniques. The first tech-
nique is a general, naive approach, while the following three techniques are optimizations
that leverage asymmetrical behavior. We specify when each optimization is safe to apply
and we prove equivalence to the general approach. Then, we study modern graph process-
ing systems to find which techniques they already offer and how they could support the
missing ones.

5.2.1 Fixpoint Iteration Techniques

We use common graph notation to explain the iteration techniques. Let G = (V| F) be
an static directed graph, where V' is the set of vertices, F is the set of edges, |V| = n, and
|E| = m. Vertices and edges can have associated values of arbitrary type. Given G, we
define the following auxiliary problem constructs:

— The solution set, S, is the set of all values of the vertices in V. We refer to the

instance of S during iteration j as S7 and to the value of vertex i during iteration j
as r.

— The dependency collection, D, is a collection of dependency sets, each containing
the in-neighbors of a vertex in V. We refer to the set of in-neighbors of vertex 7 as
D;.

— The out-dependency collection, is a collection of out-dependency sets, each con-
taining the out-neighbors of a vetex in V. We refer to the set of out-neighbors of
vertex ¢ as Uj.

D and U are invariant and trivial to construct from the set of edges E. In the graph
example of Figure 5.1, the initial solution set would be S0 = {0,na,na,na,na} and the
final solution set would be S® = {0, 3,4,6, 7}. The dependency sets for each vertex would
be Ds =0, Dy = {S}, Dp = {S, A}, Dc = {A,B,D} and Dp = {B} and the out-
dependency sets Us = {A, B}, Uy = {B,C},Up = {C,D}, Us = h and Up = {C},
respectively.

Let F' be an update function defined over the domain of the values of the vertices, where
Fis decomposable into partial functions for computing each x; € S. If F' has a fixed point
which can be computed in a finite number of iterations, we can compute it by iteratively
executing the following procedure:

SItL .= F(S7, D) until 7T = 57 (5.1

The Bulk Technique

As we discussed in the beginning of this chapter, our goal is to detect non-uniform
behavior in iterative graph algorithms and avoid redundant computations. Essentially, we
want to find the active parts in the graph and only engage these parts in the computation,
while guaranteeing algorithm correctness. A trivial approach to the problem is to assume
that the whole graph is constantly active and participates in the computation of each itera-
tion, until convergence. We call this technique the bulk iteration technique. During a bulk
iteration, all the elements of the solution set .S are recomputed, by applying the update
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function F' to the result of the previous iteration. In the end of an iteration, S is updated
with the newly computed values. The algorithm terminates when none of the values of the
solution set changes, i.e. the newly computed S in iteration  is identical to the solution set
of the previous iteration. The pseudocode for the bulk technique is given in Algorithm 15.

Algorithm 15 Bulk Iteration Algorithm

S0 = {29,29,...,20}
1:=0
repeat

foreach z; € S°

.73;»—’—1 = fj (:C;, Dj)

end

i+1 . i+1 i+l i+1
St = {7 2T L 2k}
=1+ 1

until S¢ = 571,

The Incremental Technique

In the introductory example of Figure 5.1, we saw that in some cases we can safely
detect inactive vertices of a graph based on whether their values have changed during two
consecutive iterations. Here, we specify the properties that the update function must have
in order to safely apply this optimization. Specifically, if the function f; is of the form
fi =tiUtaou------t,, where t1,1s,- - -1, represent independent contributions and
fj is distributive over the combination operator LI, then we only need to compute f; on
the changed values of the solution set in each iteration and then, combine the result with
the previous value. We call this technique incremental iteration technique. For exam-
ple, if ¢ is the identity function and the combination operator is minimum, then f; =
min(t(D;)) = t(min(Dj)). In the graph of Figure 5.1, the value of node B depends on the
values of nodes S and A, thus, Dp = {S, A}. Then, fp = min(t(value(S)), t(value(A)))
=t(min(value(S),value(A))) = min(value(S), value(A)).

We introduce two auxiliary sets, the workset W and the candidate set Z. In each
iteration, W stores the vertices which have changed value since the last iteration and Z
stores the candidate vertices for re-computation: vertices whose at least one in-neighbor
has changed value during the last iteration. Z is essentially an overestimation of the ideal
set of vertices that are guaranteed to require recomputation. Figure 5.4 shows an example
of how parts of an input graph get de-activated during an execution of the weakly connected
components algorithm. In each iteration, W contains the orange vertices. The contents of
the Z set in each iteration are shown in Figure 5.5 with green color.

The pseudocode for the incremental technique is given in Algorithm 16.

Proposition 1. If f; is of the form f; = t1 UtoU---U---t,, wherety, ta,---t, represent
independent contributions to the value of fj, i.e. f; is distributive over the combination
operator Ll and f; is also idempotent and weakly monotonic, then the Incremental technique
is equivalent to the Bulk technique.
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Figure 5.4 — Graph activation in the Connected Components algorithm, using the Incre-
mental Technique. Active nodes are shown in orange color and active edges in solid lines.
The set of active nodes during iteration ¢ contains the nodes which updated their values
since iteration ¢ — 1.

@ 2@ —0

(=]

(=]

Figure 5.5 — Candidate vertices for re-computation in the Connected Components algo-
rithm. The set of candidates during iteration ¢ contains the nodes whose at least one in-
neighbor has updated its value since iteration ¢ — 1.
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Algorithm 16 Incremental Iteration Algorithm
S0 = {xl,xQ, 2Ol

W =80
1:=0
repeat
foreach xj ew!
Zt .= Z"U U; > generate candidates
end

foreach z; € Z°
x;—i—l — fj (ZL’ Wz)
if /7! # & then
Wz+1 Witl y {1’ +1}
end if
end 4 '
S = {aft gt
1:=1+1
until Wi =0 .

. $ib—i-l}

AR

Proof. Let xé be the Value of an element of S in iteration ¢. Since f; is distributive over LI

and idempotent then :1: f]( Sl Uty U cety) = fj( =gy tn), where
T=ti1Utag---U---ty_1. Let us assume that during iteration ¢, only t, changed value
and therefore

2= fuT Ut (5.2)

Since f; is idempotent,
fj(tmtn) =tp

and
filab uTut,) = fIT Ut U f(TUt, Uz —
filzbuTut,) = fi(Tut,Ut, Uzl —
fj(xzuTut’):f[f(Tut I_Ia: Hhut)) —
fi@UT Ut = fi(ah ut,) —
i = fi(zhuty) O

Returning to the SSSP example, minimum is also idempotent (min(a,a) = a) and
also weakly monotonic, since, for a < a’ and b < ¥, min(a,b) < min(a’,b’).

The Delta Technique

Ideally, for each change dx in the input, we would like to have an efficient function § F',
such that: F'(z @ éx) = F(x) ® 0F(x,dx) where @ is a binary composition operator. In
this ideal scenario, we could propagate only the differences of values, or deltas, from each
iteration to the next one. That would potentially decrease the communication costs and
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make the execution more efficient. The delta iteration technique uses only the differences
of values to compute the fixpoint.

There are two major factors to consider when implementing the delta technique. First,
it might not always be the case that computing 6 F'(x, ) is more efficient than simply
computing F'(z @ dzx). Moreover, even if we are able to find an efficient § F', combining
its result with F'(z) could still prove to be a costly operation. In the special case where the
update function f is linear over the composition operator ¢, then

F(x®dx) = F(x) ® F(éx) (5.3)

in which case we can use the same function f in the place of § f.

For example, if f = sum(D), this optimization is applicable. Let us assume that
D' = {a,b} and D! = {d',b}, where a’ = a + da. Then, f"™! = sum(a’,b) =
fH = sum(a + da,b) = fit! = sum(a, b, da) = sum(fi + da).

Proposition 2. If f; is linear over the composition operator @, then the delta technique is
equivalent to the bulk technique.

The pseudocode is given in Algorithm 17, while the proof is trivial and based on equa-
tion 5.3.

Algorithm 17 Delta Iteration Algorithm

S0 = {29,29,...,20}

AY = init
1:=0
repeat
foreach z; € A’
Zt=27Z"0U; > generate candidates
end

foreach z; € A
b= f(at, AY)
if 5.%;“ > ¢ then
AL = Aitly {&c;“}
end if
end
Si-i—l = Sz D Ai+1
1:=1+1
until A7 = ().

The Dependency Technique

When the bulk technique computes a vertex value, it may produce the same result as
the one of the previous iteration. This may happen because (a) either none of the values in
the dependency set of the vertex has changed since the previous iteration or (b) applying
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the update function to the changed values happens to return an identical result. Ideally, we
would like to recompute only the values of the vertices that are guaranteed to change value
during an iteration. Instead, the dependency iteration technique exploits the dependency
set to safely select the vertices that are likely to change value in the next iteration and only
recompute those.

The intuition behind this technique is that if a vertex of the graph changes value, then,
all its out-neighbors are likely to be affected by this change. On the other hand, if none of
the dependencies of a vertex changes value, it is safe to exclude this vertex from the next
computation, since recomputing the update function on the same arguments, would return
an identical result. The pseudocode of the dependency technique is shown in Algorithm 18.

Algorithm 18 Dependency Iteration Algorithm
SO = {29,29,...,20}
WO .= g0
1:=0
repeat
foreach z; € W*
7t = 7'U U; > generate candidates
end
foreach z; € Z
o= fi(xh, D;) > (5.1.1)
. i .
if 2 ‘7é z} thgn
Wit = witl g {z;} > (5.1.2)
end if
end 4 '
St = gt gt iy
1:=14+1
until Wi = ().

Proposition 3. The dependency technique is equivalent to the bulk technique.

Proof. We prove this statement using the method of contradiction. Let us assume that the
two algorithms are not equivalent. Then, there exists an initial input set Sy and a function
f for which the two algorithms converge to different solution sets. Let us assume that
the algorithms give identical partial solution sets until iteration 4, but the results diverge in
iteration 7 + 1. If Sg“ is the partial solution set produced by the execution of the bulk
technique and S5 is the partial solution set produced by the execution of the dependency
technique after iteration ¢ + 1, there should exist at least one element that is different in the
two sets.

Since W is a subset of .S, that would mean that the dependency technique failed in
identifying all the vertices that required re-computation during iteration ¢, i.e. there exist
x;'-,b €S, x%l € Sé“, i €S, x;’;l € Sl such that

j7z
. -
ahy # x;fb (5.4)
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Iteration Equivalent to Bulk? Vertex Activation Vertex Update
Technique
Bulk n/a always using values of all in-
neighbors
Dependency | always if any in-neighbor | using values of all in-
is updated neighbors
Incremental | f idempotent and | if any in-neighbor | using values of
weakly monotonic is updated changed in-neighbors
Delta f is linear over com- | if any in-neighbor | using values of
position operator is updated changed in-neighbors

Table 5.2 — Iteration Techniques Equivalence

and ‘
zh =gt (5.5)

j7w j’w

From the relations 5.4 and (5.1.1) we can derive the following relation:
£i(D7 # f;(D5)
From the relations 5.5 and (5.1.2) we can derive the following relation:
£(D;7Y) = £;(D5)
and we have therefore arrived at a contradiction. O

Table 5.2 summarizes the equivalence among the different techniques and the condi-
tions for safely applying each optimization.

5.2.2 lteration Techniques in Graph Processing Systems

The vertex-centric Pregel model [125] naturally translates to the incremental iteration
technique. Vertices receive messages from neighbors and compute their new value using
those messages only. The candidates set Z can be seen as maintaining the subset of the
active vertices for the next superstep. The delta iteration technique can be easily expressed
using the vertex-centric model, if vertices produce deltas as messages for their neighbors.
To emulate a bulk iteration in the Pregel model, vertices simply need to transfer their state
to all their neighbors, in every iteration. Vertices would remain active and not vote to
halt, even if they do not have an updated state. Implementing the dependency iteration
technique in Pregel is not trivial. Pregel uses a push communication model, where vertices
send messages to their out-neighbors only. However, in the dependency technique, if a
vertex is candidate for re-computation, it needs to activate all its in-neighbors. In order to
achieve that, we could add a pre-processing step, where all vertices send their IDs to their
out-neighbors, so that they can create auxiliary out-going edges to them. The computation
can then proceed by using a three supersteps as one dependency iteration: during the first
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System Bulk Dependency Incremental Delta
Pregel ok Hokk > *%
GraphLab * * ok ok
GraphX ok gk * o
Powergraph * ok * *
Stratosphere * *% * ok

Table 5.3 — Iteration Techniques in Graph and Iterative systems. *: provided by default,
**: can be easily implemented, ***: possible, but non-intuitive

step, vertices with updated values produce messages for their out-neighbors. During the
second step, vertices that receive at least one message are candidates for re-computation and
produce messages for all their in-neighbors, while the rest of the vertices become inactive.
In the third step, the candidates for re-computation receive messages from all their in-
neighbors and update their value.

GraphLab’s [122] programming abstraction consists of the data graph, an update func-
tion and the sync operation. The data graph structure is static, similar to what we assume
for the dependency set. GraphLab introduces the concept of the scope of a vertex, which
is explicitly declared and refers to the set of values of a vertex and its neighbors. This
scope corresponds to the dependency set in the bulk and dependency techniques and to the
intersection of the dependency set of a vertex and the workset, in the incremental and delta
iterations. Therefore, all four techniques can be implemented in GraphLab by computing
the appropriate scopes.

PowerGraph [81] is a graph processing system for computation on natural graphs. It
introduces the Gather-Apply-Scatter (GAS) abstraction, which splits a program into these
three phases. During the gather phase, a vertex collects information from its neighborhood,
which then uses during the apply phase to update its value. During the scatter phase, the
newly computed values are used to update the state of adjacent vertices. The GAS abstrac-
tion can be used to implement both the bulk and the incremental iteration techniques, while
the delta technique is equivalent to PowerGraph’s delta caching mechanism. The model
does not intuitively support the dependency technique. However, it can be implemented in
a similar way to the three-step superstep described for Pregel.

GraphX [82] is a graph processing library built on top of Spark [192], in order to effi-
ciently support graph construction and transformation, as well as graph parallel computa-
tions. The programming model of GraphX is similar to that of Pregel and PowerGraph.

Stratosphere [23] supports flexible plans in the form of a Directed Acyclic Graph
(DAG) of operators. Iterations are implemented in Stratosphere as composite operators,
which encapsulate the step function and the termination criterion. The implementation of
the bulk and the incremental algorithms are described in [72]. All of the iteration techniques
described above can be easily implemented in Stratosphere.

Table 5.3 summarizes the support of each technique in popular graph processing and
iterative systems. Most of the existing systems implement the bulk technique by default
and special implementations of operators to support the delta optimization. These models

95



CHAPTER 5. ASYMMETRICAL CONVERGENCE IN LARGE-SCALE GRAPH ANALYSIS

assume that the update function has the required characteristics, or that it can be easily
re-written to fulfill the required conditions. Therefore, they do not usually expose the im-
plementation of an equivalent to the more general dependency technique. Indeed, it is
often trivial to derive an incremental or delta version of a common aggregate update func-
tion, like minimum or average. The dependency technique is useful when an incremental
or delta version of the update function cannot be easily derived. Examples include holistic
functions, such as count distinct, mode, and median. Moreover, the dependency technique
can be safely used when the properties of the update function are not known to the user; for
instance when calling an update function of an external library.

5.3 Fixpoint Execution Plans Implementation

There has been significant recent work on mapping distributed graph processing mod-
els to relational dataflow execution plans [82, 72, 42, 101]. In fact, special optimizations
and evaluation strategies proposed in graph programming systems have a foundation in re-
lational query processing primitives. This realization shows a promising avenue to deploy
sophisticated query optimization and query execution techniques in Pregel-like environ-
ments. Motivated by the increasing interest in using general-purpose distributed dataflow
engines for graph processing, we implement the four fixpoint iteration techniques with
Apache Flink [1, 46].

Apache Flink is a general-purpose platform for distributed data processing built on a
streaming dataflow engine. Flink has native support for iterations and a custom optimizer
for batch programs which make it suitable for iterative graph processing. In this section,
we give a high-level overview of distributed dataflow processing with Apache Flink and
we show how the previously introduced iteration techniques can be mapped to concrete
execution plan implementations.

5.3.1 Apache Flink Overview

Apache Flink supports both batch and stream data processing on top of the same ex-
ecution engine. Users write Flink programs using either the DataSet or the DataStream
API for a batch or stream application respectively. These APIs are expressive and declar-
ative and allow reading data from diverse sources, applying transformations on distributed
data sets or streams, and writing data to several data sinks, such as distributed file systems,
databases, or message queues. Specialized libraries for graph processing, complex event
processing, and machine learning have been built on top of these APIs. Here, we focus on
the DataSet API and the development and execution of batch programs in Flink.

A Flink program consists of one or multiple data sources, a set of transformations,
and one or multiple data sinks. Transformations are defined on Datasets, an abstraction
of immutable distributed collections of typed data elements. A transformation takes one
or more datasets as input and generates one or more datasets as output. The DataSet API
includes implementations of common transformations, such as map, flatMap, groupBy,
and join. Before execution, Flink programs are mapped to a directed acyclic dataflow
graph (DAG) of operations. This DAG is then optimized to create an execution plan. The
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system automatically decides on physical execution strategies and handles data distribution,
parallelization, and task assignment to available resources.

The DataSet API

Flink DataSet programs are written in Java or Scala and implement transformations on
immutable distributed collections of data. Flink supports simple and complex data types,
including Scala case classes and Java POJOs. Flink also provides its own custom Tuple
type. Tuples are composite types containing up to 25 fields of various types and can be
efficiently serialized by the system. We give an overview of basic DataSet transformations
below.

— map: Receives a MapFunction that describes how each element of the input DataSet

is mapped to one element of the output DataSet.

— flatMap: Receives a FlatMapFunction that describes how each element of the input
DataSet is mapped to zero, one, or more element of the output DataSet.

— reduce: Receives a ReduceFunction that combines a group of elements into a sin-
gle element of the same type. The ReduceFunction repeatedly combines the input
elements two-by-two, until a single element remains.

— join: Joins two datasets on a specified key. The operator creates all pairs of elements
that share the key and applies a user-defined JoinFunction on each pair.

For a complete set of available transformations, we refer the reader to the Apache Flink
documentation [1].

Iterations

The DataSet API contains two specialized operators for synchronized iterations. Both
operators repeatedly execute a user-defined set of transformations, referred to as the step
function. Iterations proceed in synchronized supersteps according to the BSP model. Dur-
ing a superstep, the step function is evaluated in parallel on different partitions. The iter-
ation operators produce their output after a user-specified maximum number of iteration
steps or when a user-defined convergence criterion is met.

The Iterate operator implements a simple form of an iterative dataflow program, where
a single input feeds a step function. The step function consumes the entire input dataset
and produces a new dataset, the partial solution, which serves as the input of the following
iteration step. The iterate operator is shown in Figure 5.6a. The Delta Iterate operator
receives two input datasets and maintains state in the form of a distributed hash table. The
operator is shown in Figure 5.6b. The first input, the solution set, serves as the initial
value of the state and feeds the step function together with the second input, the workset.
During an iteration, the step function is evaluated and produces two outputs. The first
output corresponds to updates that are applied on the solution set and the second output
becomes the next workset. The iterative computation finishes when the workset is empty
or when a custom convergence criterion is met. Then, the solution set becomes the output
of the delta iterate operator.
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Figure 5.6 — Iteration Operators in Apache Flink

Optimizer

The Apache Flink optimizer is similar to parallel database optimizers. The optimizer
chooses join execution strategies (e.g. hash-join, sort-merge join) and data shipping strate-
gies (e.g. broadcast or shuffling). Moreover, it is able to automatically reuse existing
partitioning and sort orders across operators. In the case of iterations, the optimizer can
detect and cache loop-invariant data and move certain operations out of the loop.

5.3.2 Bulk Plan

The bulk iteration technique can be easily implemented using Flink’s iferate opera-
tor. An execution plan implementing the bulk iteration technique using Flink operators is
shown in Figure 5.7a. The solution set S contains the vertices of the input graph and the de-
pendency set D contains directed edges (in case of an undirected graph, each edge appears
twice, covering both dependencies). In every iteration, the set of vertices is joined with the
set of edges to produce the dependencies (neighbors) of each vertex. For every neighbor-
pair, the join emits one record with the target vertex ID as key. Then, the user-defined step
function is applied on the neighbor pairs. The output of the step function contains the newly
computed vertex values. These are joined with the previous values, in order to update the
solution set and check the convergence criterion (if any). The new vertex values completely
replace the solution set input for the following iteration.

5.3.3 Incremental and Delta Plans

The Incremental and Delta techniques can be implemented in Flink using its delta iter-
ate operator, as shown in Figure 5.7b. The initial workset and solution set inputs consist of
the set of vertices and their initial values. The iteration state, the solution set, consists of
vertex ID - vertex value pairs and is updated after each iteration. The workset is replaced
after each iteration and it contains only active vertices; vertices that have updated their val-
ues. In the beginning of an iteration, the workset is joined with the dependency set (edges)
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Figure 5.7 — Fixpoint Graph Iteration Techniques as Data Flow Plans. The yellow cloud
operator corresponds to the dynamic, user-defined part of the plan.

to produce updates for candidate vertices. The update function is applied to the neighbor
values and produces a set of new vertex ID - value pairs. This set is then joined with the
solution set, to filter out vertices which have not updated their values. The join output is
used to update the solution set and also serves as the new workset. In the case of the Delta
technique, the initial value differences have to be computed before the computation begins.
This can be easily achieved by chaining a single bulk iteration before the incremental plan.
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5.3.4 Dependency Plan

An implementation of the dependency technique is shown in Figure 5.7c. The work-
set W is isomorphic to the solution set S and contains only the records corresponding to
the vertices that changed value during the previous iteration. First, W is joined with the
dependency set to generate candidate vertices for computation, emitting a record with the
target vertex id as the key for each match. A reduce transformation is then applied on the
candidate vertices to remove duplicates. The result is joined with the dependency set on the
target vertex ID, producing a subset of the dependency set. This set contains only active
edges, like the ones shown in solid lines in Figure 5.4. The resulting set serves as input to a
subplan equivalent to a bulk iteration. This bulk plan only computes new values for vertices
whose at least one in-neighbor has changed value during the previous iteration. The final
join operator, only emits records containing active vertices back to the workset.

The dependency technique can alternatively be implemented using the incremental plan
and a caching mechanism. In this case, each vertex has to maintain a local cache of
all neighbor values. Using the incremental plan, vertices receive only values of updated
neighbors and retrieve the rest of the neighbors values from the cache. Note that such an
implementation is feasible in Flink, because Flink operators are stateful. Operator state
is maintained across iterations and thus, it can serve as a cache for the dependency plan.
However, this implementation would be challenging to realize in systems with stateless
operators, like Apache Hadoop, Apache Giraph, and Apache Spark.

5.4 Fixpoint Execution Plans Performance Comparison

In this section, we provide an evaluation of the iteration techniques and their implemen-
tation in Apache Flink. Our goal is to compare the performance of the iteration techniques,
using a common execution platform and reveal potential optimization opportunities. For a
performance comparison of Flink with other distributed data processing platforms, we refer
the reader to [72] and [23].

We evaluate the performance of four iterative algorithms, Weakly Connected Com-
ponents, PageRank, Label Propagation, and Community Detection, using the datasets of
Table 5.1. The update function of the Connected Components algorithm (minimum) satis-
fies the conditions of the incremental technique. Therefore, we implement this application
using the bulk and incremental plans. The update function of PageRank (summation of
partial ranks) satisfies the conditions of the delta technique. Thus, we implement this appli-
cation using the bulk and delta plans. Initial deltas are derived from the difference between
the uniform initial rank and the in-degree proportional rank. The Label Propagation and
Community Detection algorithms cannot be implemented with the incremental or delta
techniques. We implement these algorithms using the bulk and the dependency techniques.

We run our experiments on AWS, using r3.2xlarge instances. Each instance has 8
virtual CPUs, 61 GB of memory, and 160 GB of SSD storage. We use one such instance
for the experiments on the Youtube dataset, two instances for Livejournal, four instances for
Wikipedia, and eight instances for the Twitter dataset. We read data from HDFS (Hadoop
2.7.2) and we implement all algorithms using Apache Flink 1.0.3.
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Figure 5.8 — Execution Time per Iteration - Youtube

5.4.1 Results

Figures 5.8, 5.9, 5.10, and 5.11 show execution time measurements for the Youtube,
Livejournal, Wikipedia, and Twitter graph respectively. In each figure, we have plotted the
execution time per iteration for the bulk, dependency, incremental, and delta plan imple-
mentations. For the Youtube and Livejournal graphs, we also plot the execution time per
iteration for the alternative implementation of the dependency plan, using a cache.

As expected, the time for all bulk iterations is stable throughout execution, for all al-
gorithms and data sets examined. The incremental and delta plans match the bulk plan
performance during the first iterations, while they significantly outperform it as the work-
set shrinks. In all cases, the optimized plans outperform the bulk plan by an order of
magnitude or more, as iterations proceed. Regarding the dependency plan, we observe that
in the first few iterations, it is consistently less efficient than the bulk plan. This is because
the dependency plan first needs to identify the candidate elements for computation and re-
trieve their dependencies. This pre-processing step imposes an overhead compared to the
bulk execution. When the number of elements in the workset is close to the total number of
elements in the solution set, the overhead of the pre-processing step is larger than the time
we save by updating less elements.

The cached dependency plan performs well for small datasets, but its performance
quickly degrades for larger inputs. Indeed, using Livejournal, the first few iterations are
almost two times slower compared to the stateless dependency plan and 4-6 times slower
than the bulk plan. Using the caching mechanism with the Wikipedia and Twitter datasets
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Figure 5.9 — Execution Time per Iteration - Livejournal

proved impractical, given our available resources. Maintaining the cache poses a signifi-
cant overhead that negates all benefit. In early iterations, almost all vertices change value,
thus invalidating their cache entries. Moreover, this implementation has much higher mem-
ory requirements than the stateless dependency plan. Even inactive vertices that might not
receive any update from neighbors need to maintain their caches until the computation
converges.

Our experiments show that the incremental and delta plans save a lot of redundant
computations and should always be preferred over bulk plans. Using these techniques is a
well-known and widely used optimization. However, these plans can be used only when
the update function of the algorithm satisfies the conditions described in Section 5.2.1 for
the incremental and the delta techniques respectively. What is more interesting to examine
is when and how the more general dependency plan can be used to speed up total execution
time. Our results show that there is a trade-off that depends on the size of the workset. Two
main factors contribute to the cost of the dependency plan. First, there is the cost of the pre-
processing step that computes how many vertices are candidates for computation. This cost
decreases as the workset decreases. The second factor is the cost of the actual computation,
which also decreases as the number of active vertices declines. We observe that there is a
threshold of active vertices under which the dependency plan outperforms the bulk plan.
In the following section, we build a cost model that is able to capture and quantify the
overhead of the dependency plan over the bulk plan. We integrate the cost model with
our fixpoint iteration framework that is able to choose the most efficient iteration plan, at
runtime.
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Figure 5.10 — Execution Time per Iteration - Wikipedia

5.5 Cost-Based Optimization for Fixpoint Iterations

As demonstrated by our experimental analysis, the incremental and delta plans always
perform better than the bulk plan, for the applications we consider. However, it is still
unclear when using the dependency plan instead of the bulk plan can be beneficial. The
dependency plan, as shown in Figure 5.7c, consists of a bulk plan (inside the dotted box)
plus a pre-processing step. This pre-processing is required in order to find the candidate set;
vertices that need to participate in the computation. Such vertices are located by filtering
out the vertices whose neighbors did not change since the last iteration and, thus, do no
need to recompute their value. If the size of the candidate set is in the order of the solution
set size, then the cost of the dependency plan will roughly be equal to the cost of the bulk
plan plus the overhead of the pre-processing step. As iterations proceed and the workset
is getting smaller, the number of candidates also declines. Consequently, both the cost of
the pre-processing step and the cost of the bulk sub-plan decrease over time (since the bulk
iteration plan operates on decreasing input). The challenge is to identify the workset size
threshold for which the dependency plan cost becomes less than the bulk plan cost.

In this section, we present a framework for fixpoint iterations built on top of Apache
Flink. We develop a cost model for the fixpoint bulk and dependency techniques. Our
framework uses a common fixpoint API for expressing all four iteration techniques and
leverages the cost model to choose the best iterative execution plan during runtime. Using
the cost model we achieve up to 1.7x speedup on iterative applications and 54% communi-
cation savings, as compared to using the bulk execution technique.
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Figure 5.11 — Execution Time per Iteration - Twitter

5.5.1 An Approximate Cost Model for Fixpoint Applications

We approximate the costs of the two plans in terms of their input sizes. We assume
that the costs of operators are proportional to the size of their input and that the input size
defines the dominant cost of an operator. Therefore, in our model, any two operators of the
same type will have the same cost when accepting the same amount of input. We denote
the cost of a join operation with C; and the cost of a reduce operation with C’.. Let us
also define the size of the solution set as |S|, the size of the dependency set as | D| and the
size of the workset as |WW|. The bulk plan cost is constant throughout iterations and can be
approximated as follows.

BulkCost = Cj * (|S| +|D|) + Cr x |D| + C; % 2 % |S| =

BulkCost = 3 % Cj % |S| + (Cj + C;) = | D| (5.6)

The cost of the dependency plan is different in every iteration and depends on the con-
vergence rate of the algorithm and the properties of the input dependency graph. Consider
that in iteration k, the workset contains Ay * .S vertices and that, given a their neighbor-
hoods, these A\ * .S vertices will produce p, * .S candidates for computation. Assuming a
regular graph so that each node has approximately the same number of neighbors, we can
then express the dependency plan cost in iteration k as follows.
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DepCosty, = Cj* (A * |S| + |D]) + Cp % A\ * | D|+
Cj* (ID| + pur % |S]) + Cj * (|S] 4 e * [ D)+
Cr o e | D] 4 Cj o (1S] 4 p  |S]) =

DepCosty, = Cj x (A + 2% py + 2) x |S|+

5.7
[y (e +2) + Cot (s + A)] #1D) ©-D

Based on the assumption that operation cost depends solely on the amount of input, we
can simplify, equations 5.6 and 5.7 by substituting C;, C;. = 1

BulkCost = 3 x|S| + 2 x |D| (5.8

DepCosty, = (A, + 2 % g + 2) * (|S] + | D) (5.9)

We seek the values of A and u, such that

DepCosty, < BulkCost =

(Ak + 2% g +2) % |S| 4+ |D] <3%|S|+2x|D| (5.10)

For a regular graph, the average node degree d of is equal to the number of edges
divided by the number of the vertices:
_ D

d=+= =|D|=dx*|S]|
5] | !

Substituting in equation 5.10, we get:

M+ 2%pg)x(d+1)<1=

1
A 2 < — 5.11
E+ *Mk*d—i—l (5.11)

Conceptually, A expresses how fast the workset is shrinking, while ;. depends on the
value of A and the clustering coefficient of the input graph.

Unfortunately, neither A nor iz can be measured without pre-processing the input. More-
over, such a step could prove very expensive for the orders of input sizes that we are con-
sidering. Another challenge is that the decrease rate of the workset is not only a graph
property but also depends on the algorithm, so a pre-processing step would give us A only
for one specific application. It seems that computing the cost of a dependency plan for the
whole execution of an arbitrary iterative application would be either expensive or highly
inaccurate. Nevertheless, we know that the bulk plan performs better than the dependency
plan, during the initial iterations. Moreover, we can easily measure how many elements
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of the solution set have changed value at the synchronization barrier of a bulk iteration.
That is, in iteration k, we can measure A 1. If we could also measure i1, we could
use equation 5.11 to decide whether to switch to a dependency plan execution strategy in
iteration k£ + 1, at runtime. Note that, the candidate vertices for computation in iteration k
should be roughly equal to the workset elements in the next iteration. This would be true
if we expect that from the py, * |S| elements that are likely to change in iteration k, most
of them do change. In fact, uy is an upper bound for A;1 and Ag. Substituting A\, = pg,
equation 5.11 becomes

1

This is an inequality that we can easily and efficiently compute during runtime.

5.5.2 Cost Model Implementation

When a Flink program is submitted for execution, the system creates an optimized
execution plan, allocates resources and schedules the job for execution. This execution plan
cannot be dynamically modified during job execution. To implement the cost model and
be able to switch iteration technique during runtime, we use equation ?? inside a custom
convergence criterion. In Flink, convergence criteria are implemented using aggregators.
Aggregators are auxiliary iteration constructs that can be used to maintain simple global
statistics during the iteration, such as the number of processed elements. At the end of
each iteration step, local aggregates are combined to produce one global aggregate that
represents the statistic across all parallel instances. Aggregator values computed during an
iteration step are made available to the operators of the the next iteration step. Similarly,
a convergence criterion is evaluated at the end of each iteration step. The convergence
criterion decides whether the iteration should terminate, based on the value of a global
aggregate.

We create a bulk execution plan chained to a dependency execution plan and we use
the convergence criterion to implement the cost model. The optimization logic is depicted
in Figure 5.12. If an incremental or delta plan is provided, it is chosen and executed until
convergence. If no incremental or delta plan is available, the framework starts executing
the bulk plan for the given application. At the end of iteration 7 of the bulk plan, the frame-
work counts the number of updated vertices and uses equation 5.12 to compute whether
DepCost;11 < BulkCost;y1. If the dependency plan cost is estimated to be lower than
the bulk plan cost, the framework switches the execution strategy to a dependency plan in
the next iteration.

5.5.3 Fixpoint API on Apache Flink

We build a fixpoint API as a thin layer on top of the Apache Flink Java DataSet API.
Our API simplifies the development of fixpoint graph applications by allowing users to
specify a single update function. We provide implementations for all four iteration tech-
niques and let users decide whether to use a specific technique or activate the fixpoint cost
model optimization that we described in the previous section. The fixpoint API hides the
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complexity of delta iterations, neighborhood construction, candidate vertices calculation,
cost model evaluation, and plan switching from the user.

The main components of the API are shown in Listing 5.1. Vertices are represented as
a DataSet of Tuple?2 type, where the first element, f0, denotes the unique vertex identifier
and the second element, f1, corresponds to the vertex value. Edges are represented with a
DataSet of Tuple3 type, where f0 is the identifier of the source vertex, f1 is the identifier
of the target vertex, and the third element, f2, is an optional edge value. The API main
abstraction is FixedPointIteration. It is implemented as a complex operator that
consists of a delta iteration operator and encapsulates the vertices, the edges, and a user-
defined a step function. FixedPointIteration only exposes one method, iterate,
which takes the following parameters:

edges: the data set of edges.

stepFunctIon: the step function that defines how the state of vertices is to be
updated.

maxIterations: the maximum number of iterations.

execMode: the execution mode. This parameter corresponds to the iteration tech-
niques discussed in Section 5.2.1 and can take the values BULK, INCREMENTAL,
DELTA or COST_MODEL. The COST_MODEL execution mode utilizes the cost-
model optimization described in Section 5.5.1.

To use the fixpoint API, users only need to define the input vertices with their initial

values,

the edges data set, and an implementation of the StepFunction abstract class.

The StepFunction requires the implementation of one method, updateState ().

107



CHAPTER 5. ASYMMETRICAL CONVERGENCE IN LARGE-SCALE GRAPH ANALYSIS

Listing 5.1 Fixed Point API

FixedPointlteration iterate(
DataSet<Tuple3> edges,
StepFunction stepFunction,
int maxlIterations,
ExecutionMode mode);

abstract class StepFunction {
abstract DataSet<Tuple2> updateState(DataSet<Tuple4> inNeighbors);
DataSet<Tuple2> deltalnput(DataSet<Tuple2> in_0, DataSet<Tuple2> in_1);
Tuple2 deltaUpdate(Tuple2 previousValue, Tuple2 deltaValue);

boolean deltaEquals(Tuple2 previousValue, Tuple2 currentValue);

This method contains the fixpoint iteration logic and defines how vertices update their
values based on the state of their neighbors. The method receives one input DataSet,
inNeighbors, which contains records of Tuple4 type. The tuple fields correspond
to the target vertex ID, the source vertex ID, the source vertex value, and the edge value, re-
spectively. Note that records are intentionally not grouped by vertex ID. This design choice
offers greater implementation flexibility than using a vertex-centric approach. Users can
apply transformations to the inNeighbors DataSet to simulate different computation
models. For example, grouping by source vertex ID and applying an aggregation would
correspond to the vertex-centric model. Alternatively, applying a map transformation and
then a combinable reduce would simulate the gather-sum-apply model.

The StepFunction class contains three additional methods that must be imple-

mented when using the delta iteration technique.

— deltalnput () defines how to produce the input for the delta iteration plan. Its
first parameter is the initial vertex dataset and the second parameter corresponds
to the result DataSet after one first bulk iteration. The method returns a DataSet
containing the initial delta values.

— deltaUpdate () defines how to produce the next DataSet of delta values. The
previousValue DataSet contains the vertex deltas of the previous iterations and the
deltaValue DataSet contaons the delta values computed in the current iteration.

— deltaEquals () defines when two delta values should be considered equal and
it is used to control he convergence of the fixpoint algorithm.
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Listing 5.2 Fixpoint Application Skeleton
/I retrieve the Apache Flink execution environment
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

DataSet<Tuple2> vertices = env.read(...) // read the vertices input
DataSet<Tuple3> edges = env.read(...) // read the edges input

DataSet<Tuple2> result = vertices.runOperation(
FixedPointlteration.iterate(
edges, new UDF(), maxlIterations, ExecutionMode.COST_MODEL));

result.write("path/to/result"); // store the output
env.execute("Fixpoint Application");

Examples

Here, we present some usage examples of the fixpoint API. Listing 5.2 shows the
skeleton code for a typical fixpoint application. Like in any other Apache Flink appli-
cation, we first retrieve the execution environment, which contains methods and utili-
ties for reading input from external sources and writing output to sinks. We use those
methods to read the vertex and edge data and represent them as Flink DataSets. Next,
we call DataSet’s runOperation () method, which allows running complex operators
that are composed of multiple steps. In our case, the complex operator is created by
FixedPointIteration.iterate (). Finally, we write the result to a sink, like a
distributed file system, and we call execute (), which triggers the program execution.

Listing 5.3 Weakly Connected Components Step Function
updateState(inNeighbors):
return inNeighbors
.groupBy(0) // create neighborhood groups
.min(2) // choose min label
.project(0, 2); // project source vertex ID and min label

Listing 5.3 shows the step function implementation for the weakly connected compo-
nents algorithm. The input DataSet is grouped by the first tuple element, which corresponds
to the source vertex ID, resulting in creating groups of in-neighbors for each vertex. A
min() aggregation is applied on each group, in order to choose the minimum label among
all neighbors. The output contains the source vertex ID and the the minimum label value.

An implementation of a delta PageRank step function is shown in Listing 5.4. Here,
we have implemented all four methods. First, we apply a map transformation to each
neighbor record in order to compute the rank contribution of this neighbor. Then, records
are grouped by source vertex ID and the ranks are summed up. The deltalnput() method
simply computes the difference between the rank computed during the first bulk iteration
and the initial rank value. deltaUpdate() adds the computed delta to the previous value
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Listing 5.4 Delta PageRank StepFunction

updateState(neighbors):
return neighbors
.map(new PartialRank()) // compute partial ranks
.groupBy(0).sum(1) // create neighborhood groups and sum up ranks
.project(0, 1); // project the source vertex ID and new rank

deltalnput(in0, inl):
/I join the two inputs on vertex source 1D
initialDeltas = in0.join(in1).where(0).equalTo(0)
.with(new JoinFunction() {
join(Tuple?2 initial, Tuple2 afterBulk, Collector out)
/! the initial delta is the difference of the two ranks
out.collect(new Tuple2(initial.f0, afterBulk.f1 - initial.f1));

}

return initialDeltas;

deltaUpdate(prev, delta):
/] the new rank is the previous rank plus the delta value
return (prev.f0, prevl.f1+delta.f1);

deltaEquals(prev, delta):
/I check if the rank has changed more than epsilon
return Math.abs(prev.f1 - delta.f1) < epsilon;

PartialRank implements MapFunction:
map(val):
partialRank = 0.85+0.15*(val.f2/val.f3);
return (val.fO, partialRank);

Listing 5.5 Label Propagation StepFunction

updateState(neighbors):
return neighbors.map(v ->(v.f0, v.f2, 1))
/I groupBy vertexID, label
.groupBy(0, 1).sum(2)
/I groupBy vertexID
.groupBy(0).max(2).project(0, 1);
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to compute the rank, and deltaEquals() checks if a rank has changed more than a user-
specified threshold value.

Listing 5.5 shows an implementation of the Label Propagation step function. Initially,
each neighbor record is mapped to a Tuple3 containing the source vertex ID, the neighbor
label, and the a constant equal to one. The tuples are then grouped by the composite key of
vertex ID and label. A sum() aggregation is applied on each group, in order to produce the
frequency of each label for each source vertex. The result is grouped by source vertex ID
and the label with the highest frequency is chosen as the new value. The same algorithm can
alternatively be implemented in a vertex-centric way similar to that of the weakly connected
components implementation of Listing 5.3. In this case, a GroupReduceFunction
needs to be applied on each neighborhood group. Inside this function, each vertex would
have to store its neighbors’ labels (e.g. in a HashMap) and compute the one that appears
more frequently.

5.6 Cost Model Evaluation

Here, we present evaluation results for our fixpoint framework and cost model. Using
the fixpoint API, we implement the Label Propagation and Community Detection algo-
rithms. We run these applications on the graphs of Table 5.1 until convergence, in BULK,
DEPENDENCY, and COST_MODEL execution mode. We use the same environment as in
Section 5.4. For each run, we measure the total execution time, the time per iteration, and
the values of A and p. We also measure the number of updates that each vertex generates for
its neighbors in each iteration. In a vertex-centric model, these updates would correspond
to the number of messages exchanged per superstep.
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Figure 5.13 — Runtime speedup for Label Propagation when using the dependency plan or
the cost model execution as compared to a bulk execution. The third bar corresponds to the
ideal speedup we could get with an exact cost model.
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Figure 5.14 — Runtime speedup for Community Detection when using the dependency plan
or the cost model execution as compared to a bulk execution. The third bar corresponds to
the ideal speedup we could get with an exact cost model.

Figures 5.13 and 5.14 show the runtime speedup when using the dependency or cost
model execution mode, as compared to when using the bulk execution mode, for Label
Propagation and Community Detection, respectively. In the plots, the third bar corresponds
to the ideal speedup we would achieve, if we used an exact cost model. That is, the ideal
speedup corresponds to a perfect optimizer that would switch execution plan immediately
after the cost of the dependency technique would become lower than the cost of the bulk
technique. Knowing the execution time per iteration, we can easily compute the ideal
speedup. Our cost model uses the approximation of Equation 5.12, thus, we expect it to
switch plans a few iterations later than an ideal cost model would.

Our results show that even using the dependency plan for the complete execution is
beneficial in some cases. For the Label Propagation algorithm, the dependency execution
mode yields lower total execution time than the bulk execution mode for three input graphs,
and for two graphs in the case of Community Detection. However, as we saw in Section 5.4,
the dependency plan imposes a significant overhead in early iterations, when many vertices
update their values. Using the cost model execution mode, we can successfully decide
when this overhead has become small enough and switch from a bulk execution strategy
to a cheaper dependency execution strategy. Using the cost model execution mode, we see
speedup of 1.1-1.7x for all input graphs and for both applications. Note that the execution
time measured in the cost model case does include any overhead imposed by monitoring the
value of A, recalculating the dependency cost, and evaluating the cost model convergence
criterion at the end of each iteration. Finally, by comparing with the ideal speedup, we
verify that our approximate cost model performs almost as well as an ideal cost model
would. Indeed, the additional benefit that a perfect cost model would provide is small in all
cases.

Speedup is a good metric for assessing our optimization’s performance, but it is a met-
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ric naturally dependent on the underlying system’s properties and implementation details.
What is more interesting to consider is how much communication load we can save by us-
ing the fixpoint cost model. Figure 5.15 shows the communication savings for the consid-
ered algorithms when using a cost model execution strategy over a bulk execution strategy.
We measure communication load by counting the number of updates generated per itera-
tion. This number is a equivalent to the number of exchanged messages in a vertex-centric
model. We see that communication savings are substantial, ranging from 19% for com-
munity detection on the Wikipedia graph to 54% for the same algorithm on the Youtube
graph.

T

70l 3 Label Propagation

60 EE Community Detection

50} f
40}
30}

% Communication Reduction

Youtube LiveJournal Wikipedia Twitter

Figure 5.15 — Percentage of communication reduction when using the cost model. We use
the number of updated generated per vertex as a measure of communication load. In a
vertex-centric model, this would correspond to exchanged messages.

5.7 Conclusion

Iterative value-propagation algorithms often expose non-uniform convergence behav-
ior. In this chapter, we have shown that failure to detect this behavior often leads to re-
dundant computations and communication. We have experimentally observed this asym-
metrical converge and we have presented ways to exploit. We have presented a taxonomy
of optimizations for iterative fixpoint algorithms. We have experimentally observed asym-
metrical converge of iterative graph algorithms and we have presented ways to exploit this
behavior. We have implemented template execution plans, using common dataflow opera-
tors and we have presented experimental evaluation, using a common runtime. Our results
demonstrate order of magnitude gains in execution time, when the optimized plans are used.
Using our evaluation results, we built a framework for fixpoint algorithms on top of Apache
Flink. Our framework consists of a simple declarative API for fixpoint applications and a
cost-based optimizer that chooses the best iterative execution plan at runtime. We propose
an approximate cost model, which can accurately predict the cost of subsequent iterations,
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by monitoring the number of active vertices. We have shown that using our cost model, we
can achieve substantial computation and communication savings. Our approximate cost
model demonstrates performance close to that of an ideal cost model. To the best of our
knowledge, this is the first work that builds a distributed fixpoint iteration framework, capa-
ble of switching execution strategy, based on a cost model, during run time. Nevertheless,
our technique is general and easy to integrate in any distributed dataflow execution engine.
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Chapter 6

Semi-metricity in Large-Scale Graph
Analysis

In the previous chapter, we explored how algorithmic properties can be exploited to
optimize the execution of graph applications like Label Propagation. In this chapter, we
explore how properties of the graph data can be leveraged in order to reduce execution
time. Specifically, we propose to use the concepts of semi-metricity [154] and the met-
ric backbone, introduced in [58], for efficient large-scale graph analysis. In a weighted
graph, semi-metric edges are direct links for which there exists an indirect shorter path.
In the example of Figure 6.1, the dashed lines represent such semi-metric edges. The
metric backbone is the subgraph of a weighted graph that includes no semi-metric edges.
In Figure 6.1, the solid lines represent the metric backbone of the depicted social graph.
Effectively, the metric backbone is a reduced representation of a graph, that preserves in-
formation about shortest paths. This property has been used to improve recommendation
algorithms [155, 153, 168] and more recently, to improve the modularity in community
detection [169].

In this chapter, we explore how the performance of various large-scale graph analysis
tasks can benefit from the concept of the metric backbone. In particular, we apply the met-
ric backbone concept in the context of large-scale graph analysis systems, such as graph
databases [12] and batch processing systems [53, 125]. First, we show that, for applications
that depend explicitly on the calculation of shortest paths, we can get exact answers, but
significantly improve performance by computing on the reduced metric backbone instead.
Second, even when shortest paths are not explicitly used, such as when performing reach-
ability queries, the metric backbone can still yield correct answers faster, by reducing the
amount of paths that must be explored. Third, we study algorithms, for which the metric
backbone does not yield exact answers, but an approximation. Here, we consider PageRank
and show that executing the algorithm on the metric backbone produces a good approxi-
mation, while considerably improving efficiency. In particular cases, the edges removed
from the backbone may act as noise for specific algorithms. Running these algorithms on
the backbone can often give better quality results. For example, it has been shown that
the metric backbone can improve the modularity of community detection, on weighted
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Figure 6.1 — An example graph representing a social network. The edge weights represent
the proximity of the social tie. Dashed lines represent semi-metric edges, indicating there
is a shorter, indirect path between two nodes.

graphs [169].

Despite its usefulness, the metric backbone has not been used in large-scale graph anal-
ysis yet. This is mainly due to the fact that the calculation of the backbone itself, on
big graphs, is challenging. Computing the metric backbone requires solving the APSP
(All-Pairs-Shortest-Paths) problem and storing O(N?) paths, which is prohibitive for large
graphs. We address this challenge in two ways. First, we provide an algorithm for the
calculation of the backbone that does not require the computation of APSP. Our algorithm
starts by detecting and removing only those semi-metric edges that violate the triangle in-
equality. Subsequently, it iteratively labels metric edges by performing short breadth-first
searches. Second, we show that even an approximation of the metric backbone, where
only the semi-metric triangles have been removed, reduces the size of the original graph
significantly.

We start by describing the concept of the metric backbone. To motivate its use in graph
analysis, we first discuss how different graph analysis tasks may benefit from the concept
at the algorithm level. Then, we analyze a variety of real data sets, to validate that graphs
exhibit high degree of semi-metricity, making this approach effective in real scenarios.
Further, we outline how we can apply the concept in graph management systems.

6.1 The metric backbone

The metric backbone is introduced in [58], primarily to improve the accuracy of com-
munity detection algorithms [169]. To describe it more formally, let us first introduce
the necessary notation. Let G = (V| E) be a graph, where V' is the set of vertices and
E C V x V is the set of edges, with (u,v) € E denoting an edge from u to v. We use
d(u,v) to denote the weight of an edge (u,v), representing a distance. The weight may
represent any application-defined distance metric imposed on the graph, such as commu-
nication latency or euclidean distance. Finally, given an acyclic path p, d(p) denotes the
distance of the path.

The utility of the metric backbone is based on the role of semi-metric edges in a graph.
In a weighted graph, we say that an edge between two nodes is semi-metric, if there exists
an indirect path between these two nodes, with a shorter distance.

Definition 1. An edge (u,v) is nt"-order semi-metric if there exists an alternative path,
Uy T1y oeey Ty, U, With m + 1 edges (u, 1), ..., (Tn,v) € E, such that d(u,v) > d(u,z1) +
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e Hd(xp,0).

For instance, in Figure 6.1, edge C'E is 1°*-order semi-metric and edge AD is 2"%-
order semi-metric. The metric backbone is essentially a subgraph of the original graph that
contains no semi-metric edges.

Definition 2. Given a weighted graph, where weights represent non-negative distances, the
metric backbone is the minimum subgraph that preserves the shortest paths of the original
graph.

In Figure 6.1 the solid lines represent the metric backbone of the depicted social graph.

The utility of the backbone is not limited to weighted graphs where weights represent
distances. Often, instead of a distance metric, relations in graphs are described by a simi-
larity metric [169, 50]. For instance, the Jaccard index [94] is a popular similarity metric
that relies on the number of common neighbors between two nodes in a graph. Alterna-
tively, in the context of an social network, similarity is sometimes related to the amount of
interaction between two users, like the number of messages exchanged. In such cases, we
can transform similarity to distance, through appropriate functions [169, 50], and still take
advantage of the metric backbone for analysis !

Once we have computed the metric backbone, we can use it to calculate metrics based
on shortest distances, since it maintains this information. Additionally, recent work has
shown that removing semi-metric edges from a graph also allows us to perform community
detection [169] or recommendations [153] with improved accuracy.

6.2 Semi-metricity in real graphs

The utility of the metric backbone is based on the observation that many real-world
graphs exhibit high degree of semi-metricity. As it has been shown in various contexts,
especially in social networks, indirect connections are often stronger than direct ones. For
instance, OSN interactions between users, a common metric of social proximity [84], are
often more frequent between users who are not directly connected [36, 182]. In fact, this
principle has been used, for example, to predict information propagation paths [197], to
improve link prediction in OSNs, to provide better recommendations and even to design
more efficient storage systems that back OSNs [36].

In general, different real-world graphs present different degrees of semi-metricity. Semi-
metricity also varies with the distance metric imposed on the graph. To study the practi-
cality of our approach, we analyze a variety of real-world graph datasets, measuring the
degree of semi-metricity. We present results for graphs in several domains, such as OSN,
web, authorship, air traffic and biological graphs. We measure semi-metricity under various
commonly used metrics, such as the Jaccard [94] and the Adamic-Adar [18] metrics.

In Table 6.1, we describe the datasets we analyzed and summarize the results. The
degree of semi-metricity ranges from 9% to 88% depending on the dataset and metric. The

1. While there are various functions available, a simple and commonly used function to convert
a similarity metric z to distance is p(z) = 2 — 1.
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] Graph \ V| \ |E| \ metric \ % ‘
Facebook > 190M | 49.9B Custom 26.5%
Twitter [111] 40M | 1.5B Jaccard 39%
Tuenti [14] 12M | 685M Jaccard 59%
LiveJournal [25] | 4.8M | 34M Jaccard 40%

Jaccard 45%
Adamic 29%
Jaccard 23%
Adamic 9%
Jaccard 57%
Adamic 39%
Movielens [11] 1.6K | 1.9M Jaccard 88%
#messages | 78%
message size | 77%
US- 0.5K | 6K #passengers | 72%
Airports [56]
C-Elegans [181] | 0.3K | 2.3K | #connections | 17%

NotreDame [22] | 0.3M | 1.5M

DBLP [190] 318K | IM

Twitter-ego [126] | 81K 1.7M

Facebook [143] 1K 143K

Table 6.1 — The percentage of semimetric edges on various real graphs under different
similarity metrics. In the small Facebook dataset, we use the number of messages or size
of messages exchanged between users to measure similarity. In the US-Airports graph we
measure similarity as the number of passengers that travel between cities.

Movielens [11] movie preference graph exhibits the highest semi-metricity, while among
the analyzed OSN graphs, Tuenti [14] has the highest semi-metricity of 59%. Further, we
see that the same graph may exhibit different semi-metricity for different distance metrics.
For instance, the Jaccard similarity metric [94] typically results in more semi-metric edges
than the Adamic-Adar metric [18].

Further, in Figure 6.2 we plot the percentage of semi-metric edges for different orders of
semi-metricity, for some of the networks of Table 6.1. Notice that, in most of the graphs, the
vast majority of the semi-metric edges are 1%’-order semi-metric. In other words, there are
few indirect paths with three or more edges that are shorter than any direct edges. Previous
work has also identified that the strength of indirect social connections decreases with the
length [76, 54].

This analysis reveals an opportunity. First, based on Table 6.1, we see that in practice,
we can run a variety of analytical tasks on a graph that is significantly reduced in size, in
some cases, with more than half the edges removed. Indeed, when we apply the concept in
large-scale graph management systems later in this chapter, even seemingly modest degrees
of semi-metricity have a significant impact on application performance. Second, the analy-
sis of Figure 6.2 shows that we can compute a good approximation of the metric backbone
by removing only the 1%!-order semi-metric edges. We use this intuition to guide the design

2. A subgraph of the Facebook social network representing a geographic area. The graph is weighed with
a custom similarity score that integrates a number of user features.
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Figure 6.2 — Percentage of semi-metric edges over their order of semi-metricity. For most
of the graphs, the majority of edges are 1st-order semi-metric edges.

of the algorithm for the computation of the metric backbone. This approximation is not the
optimal subgraph that gives us the shortest paths, but it is very close to the optimal. Note
that the approximate metric backbone preserves the connectivity and reachability properties
just like the exact metric backbone and it generates the same shortest paths distribution.

6.3 Exploiting Semi-metricity in Graph Algorithms

Graph processing may benefit from the metric backbone in different ways. Here, we
divide graph algorithms in two classes and give examples for each class. Note that the
classification does not depend on the framework or model in which the corresponding al-
gorithms may be programmed and executed. We discuss framework-specific impact in
Section 6.3.1.

We summarize the classification in Table 6.2. Class A consists of algorithms that we
can run unmodified on the metric backbone and get the exact same answer, as when running
the algorithm on the original graph. Examples include the calculation of shortest distances
or algorithms that depend on computing shortest distances, like betweenness centrality. The
metric backbone also maintains the connectivity of the graph, therefore, we can compute
exact answers for connected components and reachability queries.

Class B includes algorithms that we can run unmodified on the metric backbone but
may return an approximation of the metric they are intended to calculate. Examples in
this category include PageRank and various community detection algorithms [169, 75].
We empirically validate the accuracy of PageRank approximation when using the metric
backbone in Section 6.6.

The metric backbone reduces the information and thus, there are graph metrics for
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] Class \ Description Examples

A Algorithms we can run unmod- | Shortest weighted paths, betweeness cen-
ified and produce exact result. | trality, closeness centrality, connected com-
ponents, radius, reachability queries.

B Algorithms we can run unmod- | PageRank, eigenvector centrality, random
ified and produce an approxi- | walks, community detection, clustering.
mation.

Table 6.2 — A classification of graph algorithms and metrics that may be computed on the
metric backbone. For each class we provide a list of example algorithms.

which the metric backbone may yield highly inaccurate answers. For instance, we cannot
use the metric backbone to calculate the unweighted shortest distances, as it will overesti-
mate the distance for all the pairs of nodes connected by semi-metric edges.

Finally, note that this is not meant to be an exhaustive list of the algorithms we can or
cannot use with the metric backbone. We believe that the concept of the metric backbone
opens up an opportunity to define more metrics and characterize how to benefit from it.

6.3.1 Applications in Graph Management Systems

While the benefit of the metric backbone is not specific to a computation model or
framework, it manifests in distinct ways when used in the context of graph management
systems. We use the metric backbone to improve the performance of two types of systems,
graph databases and distributed batch processing systems.

Graph databases. Graph databases are used to store and query large graphs. They
are optimized for traversals, reachability, and pattern matching queries [12]. For example,
users can query for paths that satisfy criteria, such as length or the properties of the nodes.
For several queries, the metric backbone preserves the semantics. At the same time, exe-
cuting a query on the metric backbone only, reduces the path search space and may provide
significant query speedups. We apply this technique manually, by re-writing queries to
use the metric backbone but we envision that a closer integration with automatic query re-
writing will allow for more optimizations and a more user-friendly interface. We evaluate
the impact in Section 6.6.3.

Batch processing systems. We consider large-scale graph processing systems, such as
Pregel [125, 53] and Graphlab [122]. In such systems, graph algorithms are implemented as
parallel per-vertex computations and typically, vertices communicate by exchanging mes-
sages. This communication usually occurs along the edges of the graph. In these systems,
the CPU and memory requirements depend on the number of messages that have to be
processed, which is typically proportional to the number of the edges of the graph. In Sec-
tion 6.6.4, we validate that by reducing the edges of a graph, we reduce communication
overhead and resource requirements, eventually improving runtime performance.

Graph compression The metric backbone can also be used as a lossy compression
mechanism, as the amount of semi-metric edges directly translates to storage reduction.

120



6.4. COMPUTING THE METRIC BACKBONE

The last column of Table 6.1 corresponds to size reduction, when the backbone is used in
the place of the original graph.

6.3.2 Discussion

For algorithms that do not depend on the edge weights of a graph, it might not be
clear whether they could benefit from the metric backbone. Actually, iterative applications
that use the graph structure to propagate information, might require more iterations to con-
verge, when run on top of the metric backbone. For example, let us consider the Connected
Components problem. In its typical distributed implementation, in every iteration, a node
receives the IDs of its neighbors, adopts the minimum of these IDs and, if its value has
changed since the previous iteration, it propagates the new value to its neighbors. Compu-
tation stops when none of the nodes changes value. This computation does not utilize the
edge weights of the graph, but only the graph structure. The maximum number of iterations
necessary for convergence is equal to the maximum graph diameter + 1. When removing
edges to generate the metric backbone, the absolute paths between some nodes become
longer; the removed edges might be shortcuts in the unweighted graph. Thus, by removing
them, we increase the graph diameter and consequently, the number of iterations required
for convergence. However, as we show in Section 6.6, such applications can still benefit
from the metric backbone. Even if the algorithm does not depend on the edge weights,
when removing a large amount of edges, we notably decrease the communication required,
thus, speeding up execution.

6.4 Computing the Metric Backbone

Figure 6.3 — The three phases of the backbone calculation. In the first phase, the algorithms
removes Ist-order semi-metric edges, in this case edge CE, marked with a dotted line. In
the second phase, the algorithm identifies metric edges, within the two-hop neighborhood
of each node. Here, edges AB, BC, CD and DE are identified as metric, while edge AD
remains unlabeled. In the third phase, the algorithm discovers all remaining higher-order
semi-metric edges, by running a BFS for each unlabeled edge (in this case AD).
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In this section, we describe the algorithm for computing the metric backbone. We show
how to implement it in an efficient and scalable manner in Section 6.5. The algorithm we
propose in this paper assumes a static graph that does not change over time. We believe that
incremental maintenance of the backbone is an important topic and we plan to address it in
future work. In Section 6.4.4, we provide a brief description of an incremental algorithm
and explain how changes in the original graph affect the backbone. We target undirected
graphs with symmetric relations. We focus on undirected graphs as they appear naturally in
the scenarios we examined. For instance, commonly used similarity metrics, like Adamic-
Adar, are symmetric. Note, however, that the concept of the metric backbone applies to
directed graphs with asymmetric relations too. For a detailed description of the conditions
under which an edge in a directed graph is semi-metric, we refer the reader to [169].

6.4.1 Naive algorithm

The most straight-forward approach to computing the metric backbone is to identify
semi-metric edges through multiple breadth-first searches (BFS): to test an edge (u, v) for
semi-metricity, we start a breadth first search from node v and we accumulate path weights,
while visiting new nodes. During the BFS, if vertex v is visited, we check whether the
weight of the newly discovered path is lower than d(u,v). If it is, then (u,v) is semi-
metric. Otherwise, we stop exploring towards this direction. If the BFS finishes without
encountering vertex v, then there is no alternative path from w to v, and thus, (u,v) is
metric. This process is essentially equivalent to solving the APSP problem.

This approach incurs high overhead and does not scale to large graphs. Even if we start
several BFSs in parallel, a lot of communication and substantial storage is required to keep
track of the visited paths and their weights. Next, we present a three-phase algorithm, that
uses optimizations and empirical heuristics to considerably speed up the computation of
the metric backbone. We show that, by using simple scalable steps, we can identify the
majority of the semi-metric edges and significantly prune the paths that ultimately need to
be explored by a BFS.

6.4.2 Core algorithm

We divide the algorithm in three phases. In the first phase, we discover and remove
all the 1st-order semi-metric edges. In the second phase, we identify metric edges within
the two-hop neighborhood of each node in the induced subgraph. Finally, we discover
remaining semi-metric edges with breadth-first searches and remove them to produce the
metric backbone. Figure 6.3 illustrates the algorithm phases.

We divide the algorithm in these three phases for different reasons. First, we can easily
parallelize and scale the removal of 1st-order semi-metric edges, by detecting triangles.
Specifically, in Section 6.5.1, we show how to implement this phase on top of a distributed
graph processing system. Second, as we already saw in the analysis results of Section 6.2,
the largest fraction of semi-metric edges are typically /st-order semi-metric. This allows
us to significantly reduce the size of the graph early in the process and provide a fair and
practical approximation of the metric backbone, after having executed just the first phase.
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Third, the second phase can exploit the knowledge that there are no 1st-order semi-metric
edges to efficiently discover metric edges. Next, we describe the three phases in detail.

In the first phase, for every triangle in the graph, we test whether one of its edges vio-
lates the triangle inequality. Such edges are by definition semi-metric, and we can remove
them from the graph. Triangle enumeration is a well-studied problem in graph theory and
several algorithms have been proposed for its solution [93, 162, 55]. Here, we use a vari-
ation of the node-iterator algorithm to demonstrate the removal of first-order semi-metric
edges. Algorithm 24 shows the pseudocode for this phase.

Algorithm 24 Detect semi-metric edges in triangles.

1: Input: the set of vertices, V' and the set of edges, E

2: forallv € V do > Iterate over all vertices
3: for all =,y € neighbors(v) do

4: if z,y € E then > Check if there exists a triangle
5: ifd(z,y) + d(y,v) < d(z,v) then

6: remove (z,v)

7: remove (v, x)

In the second phase, we reverse the logic of the algorithm and aim to identify met-
ric edges. Each node exploits information in its two-hop neighborhood to reason about
the semi-metricity of its adjacent edges. The initialization of this phase is based on the
following proposition:

Proposition 1. The lowest-weight edge of every vertex in a graph, belongs to the metric
backbone.

Let v be a vertex in G and (v, u1), (v, u2), ..., (v, ux) be v's edges, in increasing weight
order. If the edge with the lowest weight, (v, u1), is semi-metric, then there exists a path
p = (v,ug,...,u1), such that d(p) < d(v,u1). This cannot be true, since d(v,u;) <
d(v,ugz), Vo # 1.

For example, consider node C of the network in Figure 6.1. Its lowest-weight edge,
CD, belongs to the metric backbone: any indirect path between C and D would contain
either edge CB or edge CE and thus, have a larger weight than the direct edge.

After each node has marked its lowest-weight edges as metric, it checks whether it
can reason about the semi-metricity of the rest of its edges, by comparing their weights to
the minimum weights of its two-hop paths, which contain metric edges. This process is
shown in Figure 6.4. Node u decides whether edge e; is metric, by checking the weights of
the two-hop paths along its metric edges, m; and ms. Any alternative path would include
edges e or ez, which already have a larger weight than e;. If u discovers that the minimum
two-hop paths containing its metric edges have larger distance than the direct edge e, then
e1 1s metric.

Proposition 2. Given a node with metric edges m1, mo, ..., my and unlabeled edges e, es, ...

in increasing weight order, edge ey is metric if its weight is lower than all the weights of
the node’s two-hop paths, which contain edges my,ma, ..., M.
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e.l m;, m,: metric

ex| €3

d(e,) < d(e,) < d(e;)

Figure 6.4 — The second phase of the algorithm. Edge indices are ordered by increasing
weight value. u has already discovered that m; and mo are metric. The minimum paths
containing its metric edges are shown with dashed lines. If edge e; has a lower weight than
both these paths, then e; is metric.

Proof. Let edge e; of Figure 6.4 be the edge in consideration and let v be the label of its
target node. According to the proposition,

d(el) < d(ml) + d(l‘l) (6.1)

and
d(el) < d(mg) + d(yl) (6.2)

We will assume that e; is semi-metric and prove that this cannot be true. If e; is semi-
metric, then there exists a path p, from v to u, which does not contain e1, has length at least
two and its weight is lower than the weight of e, i.e.

d(p) < d(e1). (6.3)

Obviously, this path cannot contain es and es, since d(e1) < d(ez) < d(es). Thus, p
passes through m or mo. If p passes through m;, then its lowest weight possible would be
d(mq) 4 d(z1). According to 6.1, e; has a weight smaller than the lowest possible weight
of a path passing through m;, thus, equation 6.3 cannot be true. We arrive at the same
contradiction assuming that p passes through ms. Therefore, e; is metric. O

Algorithm 25 shows the pseudocode for the second phase. We assume a partial or-
dering on the edge weights and that a node’s access to its edges respects this order. We
represent the edges of a node v as an ordered set, U, with two additional methods, first
and remove. If the set is not empty, a call to first will return the edge in the set with the
minimum weight. If the set contains more than one edge with the minimum weight, first
will return all of them. A call to remove will return the same edge(s) as a call to first,
while also removing them from the set.

When no further local metric edges can be found, we proceed to the third phase, where
we characterize the remaining unlabeled edges, by performing breadth first search. For
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each unlabeled edge (u,v), we start a BFS from node . If the BFS discovers an indirect
path from u to v with a lower weight than the weight of the direct edge, then (u, v) is semi-
metric. Otherwise, if the BFS finishes without finding a shorter indirect path, then (u,v)
is metric. We present the pseudocode for the third phase in Algorithm 26. The method
bfs(u,v) returns the set of all indirect paths, starting from node u and ending in node v.

Algorithm 25 Identify local metric edges.

1: Input: the set of vertices, V' and the set of edges, F

20 M+ ) > Metric edges found so far
3: forallv € V do > Iterate over all vertices
4: U, +— E, > All edges are initially unlabeled
5: W+ 0 > Set of weights for comparison
6: metric < TRUFE
7: M <+ M U (U,.remove) > See Proposition 1
8: while U, # () do
9: e < U,.remove
10: for all m € M do
11: T < m.target > The target node of m
12: wy = d(v,z) + d(Uy. first) > The min 2-hop
13: > path weight, that includes m
14: W+ W Uw,
15: for all w € W do
16: if d(e) > w then
17: metric < FALSE
18: break
19: if metric then > All 2-step paths were larger
20: M+ MUe > e is metric
21: W0
22: else
23: return M > Cannot label further edges

Based on the results of Figure 6.2, we expect the majority of metric edges to be iden-
tified during the first phase. Moreover, since most of the semi-metric edges are discovered
during the first phase, we also expect the BFSs to finish early. Indeed, in the same figure,
we observe that this is true for all the networks we analyze. In the worst case, a total of 6
hops is required to label all the edges of the graph.

6.4.3 Complexity analysis discussion

While our algorithm does not lower the worst-case complexity of the naive algorithm,
our heuristic makes the computation practical for large-scale graphs. Here, we analyze the
conditions under which our approach is faster than solving APSP.

Let U be the set of vertices which are sources of unlabeled edges, after removing semi-
metric triangles. U is the upper bound of the number of BFSs we have to run, after semi-
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Algorithm 26 Characterize remaining unlabeled edges

1: Input: the set of unlabeled edges, U
2: for all (u,v) € U do
3: label < M ETRIC

4: P, < bfs(u,v) > Indirect paths from v to v
5: for all p € P do
6: if d(p) < d(u,v) then > Shorter indirect path found
7: label <~ SEMIMETRIC
8: break
9: if label = SEMIM ETRIC then

10: remove(u, v)

11: else

12: label < M ETRIC

metric triangle removal. The worst-case complexity of the metric-backbone algorithm is
complexity of semi-metric triangles + complexity of computing shortest paths (or BFSs) on
U. The worst-case complexity of basic triangle listing algorithms is ©(E * d,,q5), Where
dpnaz is the maximum vertex degree [116]. This leads to ©(E * V') in the worst case.
Thus, computing the metric backbone has a worst-case complexity of O(E x V) + O(U?).
If the graph is highly metric, U ~ V, and the worst case is equivalent to running APSP,
i.e. O(V3). If the graph is highly semi-metric (and most of the semi-metric edges are
discovered in the first step), then U < V' and the practical run time is lower.

6.4.4 Maintaining the backbone incrementally

We only consider one-at-a-time edge removals and edge additions. We can simulate
all other graph structure and value changes, using edge additions and removals. Changing
the weight of an edge is equivalent to removing the edge and then adding the same edge,
but with the new weight. Adding a node with no edges results in simply adding the new
vertex to the metric backbone. Adding a node with one or more edges is equivalent to a
combination of adding a single vertex and each of the edges one by one. Finally, removing
a node is equivalent to first removing its edges one by one and then removing the vertex.
— Edge Removal: If the edge to be removed is semi-metric, the metric backbone does
not change. The edge can be simply removed from the original graph. If the edge
to be removed is metric, some of the semi-metric edges might now become metric.
Note that the metric edges do not get affected. Let (u, v) be the metric edge to be
removed. A semi-metric edge (z,y) is potentially affected by the removal of (u, v)
if there is a path p = (z,...,u,v,...y) in G, such that d(p) < d(z,y). Thus, the
only edges that might be affected are the semi-metric edges in indirect paths from u
to v. We check these edges with the following steps. First, remove edge (u, v) from
(. Then, for every semi-metric edge in all remaining paths from u to v, execute the
backbone algorithm, starting from phase 2.

— Edge Addition: When adding an edge (u,v) to the original graph, we first check
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whether this edge is semi-metric. In order to do so, we can easily find the current
shortest path from u to v, using the metric backbone. If the weight of the new edge
is larger than the current shortest path, then this edge is semi-metric and the metric
backbone does not change. If the edge weight of the new edge is lower than the
current shortest path from u to v, then the edge is metric. In this case, some of
the metric edges of the backbone might become semi-metric, if a shorter path is
introduced through the new edge. Again, the only edges that we need to consider
are the ones on the indirect paths from node u to node v.

Note that the edges that change from semi-metric to metric (or vice-versa), in one of the

above cases, do not cause further changes in the metric backbone, since all weights remain

unchanged.

Proposition 3. When removing a metric edge (u,v) from the original graph G, the only
edges that might be affected are the semi-metric edges in indirect paths from u to v.

Proof. We prove this statement using the method of contradiction. Proving that no metric
edges are affected is trivial. Let G’ denote the graph after the removal of edge (u,v) and
(x,y) be a semi-metric edge in GG, which does not participate in any path from « to v and
which becomes metric in G’. Since (z,y) is semi-metric in G, there exist one or more
a paths x, vy, ..., vk, y in G, such that d(x, vy, ..., vk, y) < d(x,y). Let p be the minimal
of these paths. Given that (z,y) is metric in G’, its weight is smaller than the weights of
all indirect paths from z to y, including p. Thus, p in G’ has a smaller weight than p in
G. Since (x,y) does not participate in any path from u to v, (u,v) cannot belong to p.
Therefore, path p in G and G’ are identical and we have arrived at a contradiction. 0

6.5 Vertex-Centric Implementation of the Metric
Backbone Algorithm

To be usable in real scenarios, the computation of the metric backbone must be practical
for large graphs. We have implemented the computation of the backbone on top of the
Pregel programming model [125], and specifically the Apache Giraph system [53]. Pregel-
like platforms [125, 53, 81, 122] are widely adopted and are common components of data
centers. We have made the implementation of the algorithm available as open source 3.

Here, we describe our vertex-centric implementation in Giraph. It consists of three
phases: (i) detection of the 15!-order semi-metric edges (ii) iterative labeling of local metric

edges and (iii) labeling of all remaining metric edges.

6.5.1 Phase 1: Detect semi-metric triangles

This phase is based on the BSP-model algorithm for triangle detection, as described
in [66] for a weighted, undirected graph with total ordering on the vertex IDs. The al-
gorithm consists of four supersteps and discovers each triangle exactly once. In the first

3. Implementation available at http://grafos.ml
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s=3 s=4

Figure 6.5 — Detecting semi-metric triangles in the vertex-centric model. Messages in
transit are shown with dotted arrows. Received messages are shown in dark grey boxes. At
the third superstep, vertex 3 detects the semi-metric triangle and issues a request to remove
edge 1-2.

superstep, each vertex propagates its ID to neighbors with higher IDs. For example, if
vertex 5 is a neighbor of vertices 1 and 6, it only propagates its ID to vertex 6. In the
second superstep, each vertex iterates over received messages and augments each one with
(1) its own ID and (2) the edge weight connecting this vertex with the message sender.
It then propagates the augmented messages to all neighbors with higher IDs. In the third
superstep, each vertex checks whether each of the received messages forms a triangle. If a
triangle is found, the vertex compares the edge distances to discover whether there exists
a semi-metric edge. If a semi-metric edge is found, it is marked for removal. In the final
superstep, all marked edges are removed. Figure 6.5 illustrates an example.

6.5.2 Phase 2: Identify local metric edges

This phase consists of three supersteps. The first superstep is executed once, while
steps two and three are executed in an alternate fashion, until no further metric edges can
be discovered.

1. Mark the lowest-weight local edges as metric: Each vertex marks its lowest-weight
edges as metric (according to Proposition 1). Then, it sends a message with its ID
and the edge weight, along the identified metric edges.

2. Send lowest alternative path distance to metric edges: Vertices which have received
a message are endpoints of metric edges found in the previous superstep. Thus,
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] Graph \ % of unlabeled edges
Tuenti [14] 1.17
LiveJournal [25] 4.36
NotreDame-web [22] 9.09
DBLP [190] 8.08
Twitter egonet [126] 1.15

Table 6.3 — Percentage of unlabeled edges, after the second phase of the mertric backbone
algorithm.

s=1

Figure 6.6 — Identifying local metric edges in the vertex-centric model. Messages in transit
are shown with dotted arrows. Received messages are shown in dark grey boxes. At the
third superstep vertex 3 has identified both of its unlabeled edges as metric.

these vertices mark opposite-direction edges as metric. Then, every vertex sends one
message along all its metric edges. For metric edge (u, v), the message contains the
distance of the shortest two-hop path, that passes through « and contains (u, v). This
distance is computed by adding the weight of (u, v) and the smallest weights of the
rest of u’s edges.

3. Check lowest-weight unlabeled edge In the third superstep, each vertex checks whether
it can reason about the semi-metricity of its smallest-weight unlabeled edge. If all
of the weights in the received messages are larger than the weight of this edge, then
both this edge and the opposite-direction edge can be safely marked as metric.

Figure 6.6 illustrates an example.

6.5.3 Phase 3: Label remaining metric edges

In order to characterize the remaining unlabeled edges, we initiate parallel breadth-
first searches. For every unlabeled edge (u,v), u propagates a message to its neighbors
to explore paths that have weight lower than the weight of (u,v). After one initialization
superstep the computation iteratively runs custom breadth-first searches, until no unlabeled
edges remain. During the initialization superstep, each vertex gathers its unlabeled edges.
For each unlabeled edge, it creates a message and propagates it along all edges that have
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weight lower than the unlabeled edge weight. In the next supersteps, each vertex performs
the following computation until convergence. Upon receiving a message, it checks whether
it is the target of the message edge. If it is, then this edge is labeled as semi-metric. Other-
wise, it propagates the message to neighbors that could produce shorter paths, making sure
not to forward the message back to its source. Note that, the percentage of unlabeled edges
for which we need to execute a BFS is usually very small. For the networks we analyze, the
percentage of unlabeled edges, after executing the second step of the algorithm, is under
10% in all cases, and as low as 1% for the Twitter and Tuenti graphs. We present these re-
sults in Table 6.3. Also, since most of the semi-metric edges have already been discovered,
the majority of the BFSs terminate after only a few steps.

6.5.4 Spreading the communication overhead over multiple supersteps

The computational complexity of the first phase of the metric backbone algorithmis
equivalent to the one of triangle enumeration in undirected graphs. Even though there exist
several heuristics that significantly reduce the practical computation time [32, 149, 66],
the memory requirements in a message-passing system like Apache Giraph might still be
fairly high. In order to avoid memory problems, we apply a simple, yet practically effective
optimization in this phase.

We make the observation that the computations for detecting semi-metric edges can
be performed completely independently. None of the parts of the algorithm require any
message aggregation or combining. Thus, in order to reduce the communication load,
we spread the algorithm execution into several identical superstep-groups, which we call
megasteps. Each megastep contains the three supersteps of the first phase of the algorithm,
as described in 6.5.1. Throughout the program execution, we keep all vertices active. How-
ever, during each megastep, only some of the vertices execute the computation, while the
rest remain idle. Since all computations are independent from each other, there is no need
to maintain or transfer any state across supersteps. When all vertices have executed their
computation, we have encountered all first-order semi-metric edges. Note that for this op-
timization to work, we do not remove any edges before all vertices have completed their
computation phase. Instead, when we encounter a semi-metric edge, we simply put a mark
on it. We then remove semi-metric edges during a single finalization superstep.

In our implementation, we decide which vertices to activate in which megastep, based
on their numeric vertex IDs. More sophisticated load balancing methods might yield better
performance. In our evaluation, we varied the number of megasteps for each the of the
experiments. Intuitively, the number of megasteps should increase with the graph size,
but it also depends on the amount of available memory. For example, we found that, for
our experimental setup, 10 megasteps result in a fairly fast execution for finding first-order
semi-metric edges in the Livejournal dataset, while we used 100 megasteps for the Tuenti
network.
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| Graph | SSSP | MSSP |

DBLP [190] 120 11
Twitter-ego [126] 177 14

Table 6.4 — Ratio of the projected execution time of (1) SSSP from all vertices and (2)
MSSP for all vertices of the input graphs over the total execution time of our algorithm for
computing the metric backbone.

6.6 Evaluation

We evaluate our approach in different respects. First, we measure the performance of
our algorithm and show that it is orders of magnitude faster than APSP. Second, we show
that even when computing the exact backbone incurs high overhead, we can compute a
backbone approximation by removing only 1%-order semi-metric edges, to scale to large
graphs. Third, we measure the impact on the performance on different graph management
systems. We evaluate this using a variety of real-world data sets and graph queries.

6.6.1 Comparing to APSP

We first compare our algorithm’s performance with that of APSP. Computing APSP on
a distributed platform like Apache Giraph is a challenging task. To perform this computa-
tion, every vertex must compute and store |V'| distances, resulting in excessive communi-
cation and memory overhead. Instead, we implement APSP in two alternative ways. The
first approach computes Single-Source Shortest Paths (SSSP) for each vertex individually,
in successive jobs. The second approach runs multiple instances of Multi-Source Shortest
Paths (MSSP) #. MSSP batches a configurable number of simultaneous SSSPs in the same
job to improve efficiency.

First, we run 100 instances of SSSP from different sources and average the execution
time. Second, we run MSSP using 1% of the vertices as sources. Because of the time
it takes to run the entire APSP computation, we estimate the total time by projecting the
measured time to the entire graph. We compare the projected execution times with the total
execution time of our algorithm for the Twitter-egonet and DBLP graphs. Running APSP
for larger graphs was impossible with our available computing resources.

We show the results in Table 6.4. The projected execution times for SSSP are in the
order of months, while the projected execution times for MSSP are in the order of days.
Instead, our algorithm was able to compute the metric backbone in 8 hours for the DBLP
graph and 2 hours for the Twitter graph.

6.6.2 Scalability

Even though computing the exact backbone can incur high overhead, we can still com-
pute a backbone approximation in a scalable manner by removing only 1%¢-order semi-
metric edges. As we show in the beginning of this chapter, the first phase of our algorithm

4. Our implementation of MSSP is available as open source.
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] Graph \ [El \ Size (GB) \ Time (s) ‘
Twitter [111] 1.5B 72 3792
Tuenti [14] 685M 33 1305
LiveJournal [25] 34M 1.6 62
NotreDame-web [22] | 1.5M 0.07 25
Twitter egonet [126] | 1.7M 0.08 32
DBLP [190] M 0.05 20

Table 6.5 — Execution runtime of semi-metric triangle detection and removal for real-world
graphs.

removes the majority of semi-metric edges, practically providing a good approximation for
many applications. Here, we show that this phase affords a scalable implementation on
top of distributed graph processing frameworks, such as Giraph. We measure execution
time as the size of the graph increases. In the experiments following, we use this backbone
approximation to measure speedup of graph analysis applications.

We run the first phase of our algorithm on synthetic graphs constructed with the Watts-
Strogatz model [181], using Giraph’s built-in graph generator. The generator produces
unweighted graphs with high clustering coefficient and low average path length. Using
synthetic graphs for these experiments allows us to gradually increase the number of ver-
tices and edges in a controlled manner, still working with a graph that resembles a real-
world social network or web-graph characterized by small-world properties. Even though
the synthetic graphs do not have edge weights, the execution time of this phase depends
only on the size of the graph and the number of triangles. Edge weights impact only the
the number of edges removed at the end (see Section 6.5.1). Edge removals have a con-
stant overhead that does not affect scalability. We configure the generator so that vertices
have 30 edges on average and set the model rewiring probability to 0.3. We performed this
experiment on an AWS cluster consisting of 32 r3.4xlarge instances (16 vCPUs, 122GB
memory).

We show the result in Figure 6.7. As the graph size increases from 240 million to
3.8 billion edges, the running time increases almost linearly. On the largest graph, which
has a size of 123GB and 4.6 billion triangles, the computation finishes in 14 minutes.
This is the largest graph we could process on the 32 compute nodes due to the message
overhead. Further, in Section 6.6.4, we provide results on a ~50 billion-edge subgraph of
the Facebook social network, demonstrating that our algorithm is practical for even larger
graphs. In Table 6.5, we also provide the execution time of semi-metric triangle detection
for the real-world graph datasets we consider in this paper. The table shows the number of
edges and size in GB of each graph. This experiment was performed on an Amazon EC2
cluster of 16 r3.2xlarge instances (8 vCPUs, 61GB memory).
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Figure 6.7 — Scalability evaluation of the backbone algorithm. The figure shows execution
time of the first phase for synthetic graphs of increasing size.

Graph \ % of size reduction
Tuenti [14] 59.14
LiveJournal [25] 39.66
NotreDame-web [22] 16.67
DBLP [190] 22.62
Twitter egonet [126] 57.14

Table 6.6 — The Neo4j relationship store size reduction when 1st-order semi-metric edges
have been removed from the graph.

6.6.3 Graph databases

Here, we want to measure the impact on query latency and storage reduction by using
the backbone transparently in a graph database. We load the original graph in the Neo4j
database and then run two different queries: (i) we run a shortest path query for 1000
randomly selected pairs of nodes in the graph, (ii) we run a connected components query
10 times. For both queries we measure the average latency. We perform this measurement
for different graphs. Subsequently, we start another instance of the database, where we load
the graph after removing 1%t-order semi-metric edges, and repeat the same experiment. We
run this experiment on an Intel Xeon ES530 2.40GHz server with 128GB of RAM, running
Ubuntu 2.6.38.

Table 6.6 shows the size reduction of the Neo4j database when we use the approximate
backbone for query evaluation. We see that for highly semi-metric graphs, the database
files have close to 60% less storage requirements.

Figure 6.8 shows the speedup when we execute the queries on the approximate metric
backbone compared to the original graph for all the workloads. First, we observe the high-
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Figure 6.8 — Query speedup on the Neo4j graph database. Graphs in the x-axis are ordered
from larger to smaller.

] Graph \ Spearman Coefficient
Facebook 0.98
Tuenti [14] 0.98
LiveJournal [25] 0.95
NotreDame-web [22] 0.76
DBLP [190] 0.98
Twitter egonet [126] 0.97

Table 6.7 — The Spearman correlation coefficient between (a) the ranking computed by
PageRank on the original weighted graph and (b) the ranking computed by PageRank on
the same graph, after removing first-order semimetric edges.

est speedups occur for the shortest path query. Second, the larger the graph, the higher the
speedup. For the three smaller graphs, the speedup ranges from 1.51 to 2.7, while for the
LiveJournal graph the speedup is 6.7.

Notice that the connected components query does not consider the edge weights. For
smaller graphs the speedup is 1.01. However, for larger graphs we still measured significant
performance improvement, with the speedup ranging from 1.30 to 1.5.

In general, even in a highly optimized system such as a commercial graph database,
we still derive a significant speedup by applying the backbone approach transparently. We
believe that integrating the approach inside the system can yield even higher speedups.

6.6.4 Distributed graph analytics

Reducing the edges of a graph impacts directly the performance of algorithms devel-
oped on top of distributed graph processing systems, such as Pregel and Graphlab. In
such systems, programs are typically communication-intensive and communication coin-
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cides with the edges of the graph. Further, reducing the size of a distributed graph also
reduces the runtime memory requirements of such systems, which may indirectly affect
performance as well.

We measure how removing semi-metric edges from a graph improves the performance
of different applications, developed on the Apache Giraph graph processing system. We
run three applications on the original graph and on the graph with no 1%*-order semi-metric
edges; Connected Components (CC), Single-Source-Shortest-Paths (SSSP), and weighted
PageRank (15 iterations). For each application, we measure (a) the runtime speedup, and
(b) the total amount of messages sent. For PageRank, we also compute the Spearman cor-
relation coefficient of the resulting rankings, shown in Table 6.7. The Spearman correlation
measures the statistical dependence between the ranking of two variables. Intuitively, we
expect two variables to have a high Spearman correlation when their values have simi-
lar rankings. We perform this experiment on an Amazon EC2 cluster with 16 r3.2xlarge

instances .
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PageRank
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Figure 6.9 — Runtime speedup on Apache Giraph. Graphs in the x-axis are ordered from
larger to smaller. Bars are overlayed, not stacked.

In Figure 6.9, we plot the runtime speedup for different applications. Bars are over-
layed, not stacked. The white bars show the speedup S1 = T, /(T + T'), where T, is the
time to run the analysis on the original graph, 7}, is the time to calculate the backbone ap-
proximation, that is, remove the 15-order semi-metric edges, and 7' is the time to run the
analysis on the backbone approximation. The gray bars show the speedup Sy = T,,/T that
considers only the time to run the analysis on the two graphs. This is the speedup after the
overhead of our algorithms gets amortized.

For more compute-intensive applications, such as PageRank, the total runtime, includ-
ing the removal of semi-metric edges, is typically lower than running the application on the
original graph. For SSSP, this is also true for the Tuenti and Livejournal datasets. In some

5. The analysis on the Facebook graph was run on an experimental cluster with 50 machines, each with 16
cores and 10Gbs Ethernet.
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Figure 6.10 — Communication reduction on Apache Giraph. Graphs in the x-axis are or-
dered from larger to smaller.

cases, though, if we consider only one run of the analysis, the overhead of our approach
exceeds the analysis runtime on the original graph. This is true for the Facebook and DBLP
datasets, and all instances of the Connected Components experiment.

Note, however, that computing the backbone is intended to be run once and re-used
multiple times across applications, so .So represents the practical speedup we see in the
applications. For example, approximating betweenness centrality in a graph requires run-
ning multiple SSSP instances with different source vertices. For such an application, the
overhead of removing semi-metric edges gets amortized after only the first two runs of the
analysis in the worst case.

With regard to graph semi-metricity, as expected, we notice larger gains for highly
semi-metric graphs. Tuenti, Livejournal, Twitter, and Notredame (40-60% semi-metric)
give better speedups than Facebook and DBLP (23-27% semi-metric). With regard to ap-
plication complexity, we observe a higher benefit for more compute-intensive applications.
We see the highest speedup for PageRank, which runs close to six times faster for the
Tuenti graph. We believe that this is because, in contrast to the SSSP and CC applications,
in PageRank, all the nodes communicate with all their neighbors, in every iteration (in
SSSP and CC nodes do not send outgoing messages to their neighbors, if their value does
not change). The shortest paths application also benefits significantly, running about two
times faster on average. Not surprisingly, connected components experiences the lowest
speedup, since it does not make use of the edge weights. Even so, for a highly semi-metric
graph, such as Tuenti, the benefit is substantial.

Figure 6.10 shows the communication reduction, when running the same three applica-
tions, for the different networks. For SSSP and PageRank, we observe tremendous commu-
nication reduction, ranging from 30% to 70%, in terms of messages exchanged, throughout
the application execution. Even for connected components, the reduction is remarkable,
ranging from 10% to 50%.
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6.7 Conclusion

In this chapter, we examined the property of semi-metricity in real-world graphs and
we showed how we can use the metric backbone to compute graph metrics efficiently. Our
experimental results show that using the backbone, even on modestly semi-metric graphs,
reduces the size of the original graph enough to allow for runtime speedups of up to 6x.

We have proposed an algorithm that computes the metric backbone, avoiding the com-
putation of APSP. We have showed that we can closely approximate the metric backbone
by removing only 1st-order semi-metric edges. Computing the approximation is a scalable
step that make the application of the backbone practical in large-scale scenarios.

We have shown that the metric backbone can be used to compute exact values or ap-
proximations of graph metrics. Algorithms that depend on the weighted shortest paths can
be executed on the metric backbone without any change and provide exact results. The
backbone also preserves the graph connectivity and provides exact answers to reachabil-
ity queries. Further, we have shown that the metric backbone can also be used to speed
up algorithms that do not explicitly depend on the shortest paths. We have evaluated the
computation of PageRank on the backbone and we have shown that the results are highly
correlated to the exact ranking. Previous work has also demonstrated that the backbone
provides good results in the case of community detection algorithms [169]. We have veri-
fied this result by using the metric backbone in the context of the web tracker classification
of Chapter 4. We found the hosts-projection graph to be highly semi-metric. We were
able to remove 71% of its edges, while preserving the classification accuracy of our data
pipeline.
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Chapter 7

Conclusion

In this thesis, we have proposed performance optimization techniques and tools for
distributed graph processing. Our goal is to improve the performance of distributed graph
processing, both on general-purpose and specialized platforms. To that end, we aim to
reduce the size of datasets to be processed while getting accurate results. We also aim to
reduce the amount of total computation to be performed and the amount of communication
required. We have accomplished these objectives by designing transparent and system-
independent optimizations for distributed graph processing applications.

7.1 Summary of Results

We have reviewed the evolution of distributed graph processing in recent years and
we have examined how shared-nothing clusters and high-level programming abstractions
have emerged as popular design choices. We have studied the evolution the MapReduce
programming model and we have provided an overview of recent research that proposed
enhancements and extensions to the popular computing paradigm.

Next, we have presented a survey of programming abstractions and platforms for dis-
tributed graph processing. We have analyzed and compared high-level programming mod-
els that have been recently used to build distributed graph applications. For each model, we
have identified representative applications and we have reviewed proposed performance op-
timizations. We have categorized recent distributed graph processing systems, with respect
to their programming and execution models. Further, we have reviewed graph analysis
applications and we have identified open issues and future research directions in the area.

Following, we have presented a real-world application of large-scale graph processing.
We have used web traffic log data to build an end-to-end graph processing pipeline that uses
an iterative community detection algorithm to automatically classify web trackers. We have
shown how web log data can be modeled as a graph and we have demonstrated how such a
graph can be transformed and analyzed to provide highly accurate classification results. We
have drawn inspiration by this use-case and we have proposed two optimization methods
to improve the performance of similar graph processing pipelines.

Our first optimization method fulfills the objective of reducing computation and com-
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munication in large-scale iterative graph processing. We have presented a unified frame-
work for fixpoint applications and we have implemented template execution plans for fix-
point iteration techniques, using common dataflow operators. We have built a declarative
API and a cost model that can automatically exploit the asymmetrical convergence of fix-
point algorithms. Our framework leverages the cost model to choose the best iterative
execution plan during runtime. Using our framework we achieve up to 1.7x speedup on
iterative applications and up to 54% communication savings, as compared to using the
naive bulk execution technique. We have further evaluated our framework and we have
demonstrated that our cost-based optimization is close to ideal.

Our second optimization method fulfills the objective of reducing the size of the data
sets to be processed, while it also reduces communication overhead in several cases. We
have used the concepts of semi-metricity and the metric backbone to significantly reduce
the sizes of weighted graphs. We have proposed a scalable algorithm that computes an
approximation of the backbone and we have implemented it in a popular specialized graph
processing system. We have evaluated the application of the backbone and we have shown
that we can achieve remarkable speedup in distributed graph processing and graph database
queries. Our results show that, even on modestly semi-metric graphs, we can reduce the
size of the original graph enough to allow for runtime speedups of up to 6x. Further, we
have applied our technique on the web tracker classification graph and we were able to
remove 71% of its edges, while preserving the classification accuracy of our data pipeline.

7.2 Results Generality

Even though we have used the web trackers classification as a specific application for
inspiration, our proposed optimization methods are general and can be applied in a wide
range of distributed graph processing scenarios. The fixpoint optimization method is appli-
cable to any iterative value-propagation graph algorithm with a complex update function.
Such algorithms include update functions that are not combinable, associative-commutative
or cannot be expressed as an incremental computation, functions whose properties are not
easy to reason about, and "black box" update functions to which the user application has no
access. Further, our optimization framework, including the fixpoint API and the cost-based
optimizer, can be easily implemented on top of general-purpose or specialized data pro-
cessing engines. By using common relational operators and dataflow plans, we have made
the design independent of the underlying processing engine.

The concept of semi-metricity and the metric backbone are also general and can be
applied in a variety of scenarios that are not considered in this thesis. The distributed three-
phase algorithm for the backbone calculation can be implemented in any graph processing
system that supports the vertex-centric programming model. Examples of such systems are
provided in Table 3.2 of Chapter 3. The metric backbone technique can be integrated in
batch graph processing systems or graph databases as a pre-processing optimization step to
improve the performance of a variety of queries and analysis jobs. Algorithms that depend
on the shortest paths, , and connectivity queries can be computed on top of the metric
backbone or the approximate backbone and return exact results. Further, the backbone can
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be used to speed up community detection, page rank, and recommendations, in which cases
it provides approximate results.

7.3 Future Work

In the future, we would like to refine the proposed cost model and also extend it to
support complex iterative algorithms beyond value-propagation. We are particularly inter-
ested in working towards support for efficient iterations on graphs with a dynamic edge
set and iterative processing of continuous graph streams. We envision building a fixpoint
iteration optimizer able to extract the update function properties and decide on an itera-
tion strategy with full independence. We plan to refine our fixpoint cost model, by adding
a more sophisticated estimation of graph properties. While we currently use the average
node degree to estimate how many vertices will be active in the following iteration, this
might not be a good metric for all types of graphs. For example, clustering coefficient
might provide a better estimation. Computing such metrics can be challenging, especially
if no the graph properties are known beforehand. We would like to investigate solutions
such as sampling and gathering statistics during the initial bulk iterations to approximate
the graph properties. Considering the metric backbone, we plan to further use the concept
to re-design certain algorithms explicitly on top of the backbone. For instance, we could
possibly compute shortest paths more efficiently by intelligently choosing which nodes to
traverse. We believe that the metric backbone and distance backbones, in general, offer a
framework for the design of such algorithms and we plan to investigate this in the future.
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