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Abstract

Machine learning algorithms are now being deployed in practically all areas of
our lives. Part of this success can be attributed to the ability to learn complex
representations from massive datasets. However, computational speed increases
have not kept up with the increase in the sizes of data we want to learn from,
leading naturally to algorithms that need to be resource-efficient and parallel. As
the proliferation of machine learning continues, the ability for algorithms to adapt to
a changing environment and deal with uncertainty becomes increasingly important.

In this thesis we develop scalable machine learning algorithms, with a focus on
efficient, online, and distributed computation. We make use of approximations to
dramatically reduce the computational cost of exact algorithms, and develop online
learning algorithms to deal with a constantly changing environment under a tight
computational budget. We design parallel and distributed algorithms to ensure that
our methods can scale to massive datasets.

We first propose a scalable algorithm for graph vertex similarity calculation
and concept discovery. We demonstrate its applicability to multiple domains,
including text, music, and images, and demonstrate its scalability by training on
one of the largest text corpora available. Then, motivated by a real-world use case
of predicting the session length in media streaming, we propose improvements
to several aspects of learning with decision trees. We propose two algorithms to
estimate the uncertainty in the predictions of online random forests. We show
that our approach can achieve better accuracy than the state of the art while
being an order of magnitude faster. We then propose a parallel and distributed
online tree boosting algorithm that maintains the correctness guarantees of serial
algorithms while providing an order of magnitude speedup on average. Finally,
we propose an algorithm that allows for gradient boosted trees training to be
distributed across both the data point and feature dimensions. We show that we can
achieve communication savings of several orders of magnitude for sparse datasets,
compared to existing approaches that can only distribute the computation across
the data point dimension and use dense communication.



Sammanfattning

Algoritmer f6r maskininldrning anvédnds i allt hogre grad i praktiskt taget alla
delar av vara liv. En anledning till deras framgang dr férmagan att ldra sig komplexa
representationer fran enorma dataméngder. Datorers berdkningshastighet 6kar inte
lika snabbt som de volymer av data vi vill ldra oss fran, vilket naturligt leder till
algoritmer som maste vara resurseffektiva och parallella. I och med att anvindandet
av maskininldrning fortsétter att breda ut sig blir formégan att anpassa sig till en
foranderlig varld och att hantera osdkerhet allt viktigare.

I denna avhandling utvecklar vi skalbara algoritmer f6r maskininldrning med ett
fokus pa effektiva distribuerade online-berdkningar. Vi anvander oss av approximatio-
ner for att dramatiskt reducera berdkningskostnaden jamfort med exakta algoritmer,
utvecklar algoritmer {or inkrementell inldrning som hanterar foranderliga miljoer
med begrdnsad berdkningsbudget, samt utvecklar parallella och distribuerade
algoritmer som garanterar att vara algoritmer kan hantera massiva dataméngder.

Avhandlingen borjar med att beskriva en skalbar algoritm for att berdkna likhet
mellan noder i en graf och for att upptiacka begrepp. Vi visar dess anvandbarhet
i flera olika doméner och dess skalbarhet genom att trdna pa en av de storsta
tillgdngliga textsamlingarna pa ett fatal minuter. Baserat pd en praktisk tillimpning
inom prediktion av langden pa sessioner i media-stromning foreslar vi sedan ett
flertal forbéttringar pé sitt att trdna beslutstrad. Vi beskriver tva algoritmer for att
skatta osdkerheten for prediktioner gjorda av sa kallade “online random forests”.
Var metod uppvisar bittre tréaffsidkerhet dn de bést presterande metoderna inom
forskningsfiltet, samtidigt som den tar avsevirt mindre tid att kora.

Avhandlingen foreslar sedan en parallell och distribuerad algoritm for s
kallad “online tree boosting” som ger samma garantier gidllande korrekthet som
seriella algoritmer samtidigt som den i genomsnitt &r flera storleksordningar
snabbare. Slutligen foreslar vi en algoritm som tillater gradientbaserad traning av
beslutstrad att distribueras 6ver bade datapunkts- och attributs-dimensioner. Vi
visar att vi kan reducera mdangden kommunikation avsevirt for glesa dataméangder
ijamforelse med existerande metoder som bara distribuerar berdkningarna lings
datapunktsdimensionen och anvinder tédta representationer av dataméangder.
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CHAPTER

Introduction

Machine learning (ML) is now being introduced into more and more areas in our
lives. What once was mostly used in the realm of computer science for tasks such
as digit recognition [152] is now being used in medicine [229, [80], energy [181]
219, agriculture [173,[160], climate science [172], structural engineering [83], and
finance [64]. This explosive growth of machine learning has originated to a large
part from the dramatic decrease in the cost of storing and processing data. The
accuracy gains for machine learning models these days are made possible by this
abundance of data in combination with sophisticated models.

However, “more” data means “more” computation which leads to the need
for machine learning algorithms that can be trained efficiently on massive datasets.
Efficiency can be interpreted in different ways. One aspect is the ability of an
algorithm to take full advantage of modern hardware architectures. As CPU clock
speed increases have stalled, developers and algorithm designers have turned to
parallelism as a means of extracting more performance out of existing hardware.
For gathering and processing the massive datasets available today, clusters of
commodity machines have risen to be the dominant choice in the industry due to
both locality in terms of taking the computation to an already distributed dataset,
as well as cost-effectiveness. These distributed architectures introduce additional
challenges on top of learning in parallel on a single machine.

Another efficiency factor is learning under a tight computational budget.
Whether that is learning at the edge on internet of things devices, or federated
learning with the intent of protecting user privacy, there has been an increasing
demand for algorithms that can be trained with bounded computation and memory
resources. These use-cases also highlight another challenge which is learning in a
constantly evolving environment. Traditional batch models trained on historical
data can perform sub-optimally as the relationships between the features and
dependent evolve.
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Many systems and algorithms have been developed in the past to tackle these
issues. The popularity of deep learning [103] in particular has led to a deluge
of research on efficient algorithms and systems. These include systems like
Tensorflow [1], MXNet [56], and PyTorch [192] and have expanded to support
heterogeneous hardware with recent projects like TVM [57] and Glow [208]. While
these systems are optimized for the gradient descent optimization that neural
networks are commonly trained with, this thesis is focused instead on two other
models, graphs and decision trees.

The first problem we deal with originates from the data mining domain and
tackles the problem of determining the similarity between nodes (vertices) in a
graph, based on structural information, and uncovering semantic concepts from
related nodes. For this purpose algorithms like SimRank [125] and its variants
have been proposed, however due to their at least quadratic complexity in the
number of nodes, their scalability suffers for graphs with billions of nodes. In
our approach we instead approximate the problem by focusing our computation
on local neighborhoods, dramatically reducing the computational cost to arrive
at an approximate solution, and perform the secondary step to uncover semantic
concepts from the similarity graphs.

The second model we focus on in this thesis are decision trees, both in the batch
and online domain, which we motivate through our work on a real-world application
for session length prediction in music streaming. In the batch domain we investigate
gradient boosted trees, whose popularity has also led to the development of multiple
scalable systems like XGBoost [55], LightGBM [135], and CatBoost [195]. What all
these systems have in common is that they only allow scale-out across the data point
dimension. This means that in order to scale learning for high-dimensional data we
need to scale up to bigger, more expensive machines, a limitation which we address
in our research. Apart from batch decision trees, online decision trees have been
proposed to bring the accuracy and interpretability of decision trees to the online
domain [75]. However, the concessions made to bring the learning algorithm to the
online domain have led to decreased accuracy in practice and do not allow us to
estimate the uncertainty in the predictions. In our research we tackle the accuracy
problem for large-scale streaming data by developing efficient online boosted trees,
and propose online algorithms to estimate the uncertainty in the predictions of tree
ensembles.

These challenges set the stage for this thesis: We propose scalable algorithms for
learning from massive data efficiently. We utilize different techniques to deal with
the data size: 1) designing efficient parallel and distributed algorithms, 2) making
use of approximations to reduce the computational cost, 3) using approximate
data structures to bound the memory and computational cost of continuously
updating the models. Throughout the development of this thesis the guiding
principle has been to design algorithms that can scale regardless of data size. This is



realized through algorithms that exhibit linear scale-out characteristics, bounding
the memory and computational costs through approximations, and designing
algorithms that are optimized for distributed settings through communication-
efficient learning.

Open Challenges in Scalable Machine Learning

The open challenges we tackle are:

* Scalable vertex similarity and concept discovery. All-to-all vertex similarity
methods like SimRank [125] do not scale to massive graphs. Domain-specific
alternatives, such as word2vec [178] for text do not provide a principled way
to uncover concepts, relying on parametric clustering methods like k-means
clustering to group related concepts. The similarity calculation for such
embedding methods involves the calculation of a dot product for all pairs,
making the process computationally costly.

* Uncertainty estimation for online tree models. As ML models are being deployed
in areas where mistakes can be costly, e.g. in autonomous driving and finance,
the ability to quantify the uncertainty in predictions becomes key. The
constantly changing environment and real-time demands of such applications
indicate that online learning methods can be of great use. Existing online
learning methods that can provide uncertainty estimates, such as online
quantile linear regression [142]], do not provide the necessary accuracy and
cannot deal with highly non-linear problems. Flexible models such as online
decision trees do not currently provide a way to estimate the uncertainty in
their predictions.

* Scalable tree boosting in high dimensions. Boosted decision trees are one of
the most successful models in both industry and academia [55] 111} [159].
Their success can be attributed to their scalability, ease of use, and accuracy.
However, the current state of the art in boosted trees has two open challenges
in terms of their scalability. First, for online decision trees, all existing boosting
algorithms are sequential, meaning that they cannot take advantage of modern
parallel systems, severely limiting their applicability to large-scale streaming
datasets. For batch decision trees on the other hand, current approaches
can only parallelize their training along the data point dimension. For high-
dimensional data scale-out is currently not possible, requiring bigger and
more expensive hardware to speed up training per feature. In addition,
current distributed approaches use dense communication that can be highly
inefficient for sparse, high-dimensional data [55} [135].

Given these limitations of the state of the art, we formulate our research question
and goals for this thesis.
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1.1 Research Question & Objectives

The objective of this dissertation is to create scalable algorithms for machine learning,
specifically for learning with graphs and decision trees. Our approach has been
to use two aspects to ensure scalability: approximation from the algorithmic side,
and parallelism from the system side. By approximation we mean either reducing
an expensive problem to a more easily solved one that provides a useful answer,
or by producing online models which can be trained on datasets of arbitrary size
using bounded computation and memory. From the system side we develop
algorithms that are parallel or are specifically optimized for the distributed setting.
Our approach is to design solutions and provide implementations in popular
open-source frameworks like Apache Spark [247], MOA [63], and XGBoost [55],
ensuring the reproducibility of our work, and further contributing to the open-source
community (see Section [1.3.1).

In order to create algorithms that scale to large-scale datasets and are able to do
so efficiently in a distributed setting, we can identify three objectives that can lead
to efficient solutions [131]:

1. O1: Reduce the amount of computation.
2. 02: Reduce the amount of communication.
3. O3: Bound the space cost.

Chapters|[6}[8] and [f]are examples where approximation has been used to make
a computationally expensive approach tractable, reducing the total amount of
computation (O1). In Chapter [6|for example, we provide an approximate solution
to the all-to-all graph node similarity problem by using the structure of the graph to
limit the computational cost. While the produced result cannot give us a similarity
score between any two arbitrary nodes in a graph, the result captures much of the
relevant information and provides results that can be of use to practitioners.

Chapters [6] and [J] describe learning algorithms that are designed from the
ground up with the distributed setting in mind. As network communication is
a sparse resource in shared cluster environments [8], our algorithms minimize
communication cost while providing valid solutions for the problems of graph
node similarity calculation and boosted tree learning (02).

Chapter 8| and Section [9.2) are examples of online learning models that were
explicitly designed to use bounded compute and memory regardless of the dataset
size (O3). For example, Chapter [§|provides online learning approaches for methods
that previously only existed in a batch setting, where the data were assumed to be
static and bounded, making it possible to train the algorithms on infinite streams
of data. Approximations are made in this setting as well, as we replace exact data
structures with approximate sketches, and trade-off consistency guarantees for the
ability to train the models online.
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1.1.1 Research Question

This thesis taken as a whole constitutes an effort of finding appropriate uses of
approximation in order to make exact methods scale to datasets with up to billions
of datapoints and millions of features. In all our work we take full advantage of
current computing capabilities, whether that is providing parallel implementations
of our algorithms, or by designing algorithms from the ground up to be efficient in
a distributed setting.

The research question that summarizes this dissertation is:

How can we use approximations and parallelism to develop scalable learning
algorithms?

Based on this research question, we formulate our research statement as:

Approximations allow us to make otherwise computationally costly approaches
scalable. By carefully designing our trade-offs, we can extract useful results
using a fraction of the resources exact approaches require. These approximations
combined with utilizing parallel and distributed computation lead to efficient,
scalable solutions.

1.2 Methodology

The research strategy for this dissertation is to perform quantitative, empirical
research. Our approach has been to perform a literature review to identify the
open challenges in the state-of-the-art, identify areas where approximation and
parallelism can be applied to optimize performance, and proceed with the design
and implementation of the algorithms.

The algorithm design is guided by the research objectives. Specifically, once
we identify a problem to work on, e.g. uncertainty estimation in online decision
trees, we use the three objectives (O1, O2, O3) as a guide for our optimizations.
When exact solutions exist for a particular problem or for a different domain, e.g. a
solution exists for batch learning but not for the online domain, we look to identify
the approximations that will make the approach scale to massive data efficiently. In
particular we identify different kinds of optimizations:

1. Replacing exact data structures with approximate ones. This approach can be taken
to improve both the computational and memory cost of existing approaches.
Depending on the level of accuracy necessary for a particular estimator,
approximate data structures can often deliver similar accuracy to exact ones,
at a fraction of the computational cost. One example in our research described
in Chapter|8|is replacing a dense array of dependent values for the estimation
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of quantiles at tree leaves with efficient quantile sketches [133], thereby
bounding the memory cost of the algorithm.

2. Using a proxy problem to tackle an intractable one. Instead of trying to tackle
an intractable problem directly, we can instead try to solve a tractable proxy
problem that can inform us about the true solution, as we have done in
Chapter[6| There we provide an approximate efficient algorithm for the node
similarity problem by localizing the computation to two-hop neighborhoods,
dramatically reducing the amount of computation necessary to produce an
approximate but informative answer.

3. Adapting the algorithm to the data to improve accuracy and efficiency. In many
problems we have prior information about the data properties. For example
many real-world graphs exhibit power-law degree distribution [239} 4], many
user interaction metrics are power-law distributed [216} 182} [17] or exhibit
extreme sparsity [110]. These properties can be exploited to reduce the
computational and memory cost of learning algorithms as well as improve
their accuracy. In Chapter|[6] we rely on the power-law degree distribution of
many real-world graphs to provide approximations with measurable error,
making an otherwise intractable computation efficient. In Chapter[7]we adapt
the objective function of our predictive model to better fit the power-law
distribution of the dependent. In Chapter 9| we make use of data sparsity to
dramatically reduce the communication cost of distributed algorithms for
gradient boosted trees.

1.2.1 Delimitations

The extent to which we try to answer the research question is of course limited by
a number of factors. First, the two models we focus on are graphs and decision
trees. We find graphs to be powerful data structures that can encode complex
relationships and are therefore worthy of further study in terms of scalability.
Decision trees have been shown to perform well for a wide variety of tasks [84].
They have distinct advantages like interpretability, although that is limited for large
ensembles, and have the ability to deal with missing data in a principled manner,
both important aspects in an industrial setting. Comparing decision trees with deep
learning models, the space of architecture search in a deep network, i.e. designing
a network that best fits a particular problem, is much larger compared to tuning
hyperparameters for decision trees.

Second, although we develop online learning methods that can deal with concept
drift, i.e. the relationship between the features and dependent can change over
time, we do not propose any new concept drift adaptation mechanism. Instead we
rely on existing concept drift adaptation mechanisms provided by the underlying
online learning algorithms in our ensembles.
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Third, for our decision tree algorithms, our comparisons focus on competing
decision tree approaches. For example, for the online uncertainty estimation
problem in Chapter 8} online linear models can also be used to determine prediction
intervals. In our evaluation we focus on the state of the art decision tree algorithms
as most real-world problems are highly non-linear.

Finally, as we mentioned previously, our evaluation is experimental and focuses
on empirical results drawn from quantitative and qualitative experiments. For
example in Chapter (8| we trade-off theoretical consistency guarantees for efficient
computation and only demonstrate empirically that the algorithms are able to
maintain validity.

1.2.2 Methodological Challenges

During the development of this thesis we have encountered several methodological
challenges where a choice had to be made that delineates the extent to which our
research tackles the original research question. We list these challenges here in
order to make clear the limitations of this dissertation.

1. Evaluation of unsupervised models. In Chapter [f| we present our work on graph
vertex similarity and uncovering concepts. The main methodological challenge
for this work is the evaluation of the model’s quality, as the vertex similarity
task is unsupervised, because establishing the ground truth similarity would
require extensive user studies, and it is impossible for the scale of the problems
we are trying to tackle [125]. Instead, to provide a quantitative evaluation
of the algorithm we need to rely on proxy tasks, such as determining the
similarity of words using the Wordsim-353 dataset [85] and our model’s
agreement with other established similarity models like GloVe [194].

2. Fair comparison of learning systems. As our research has focused on opti-
mizations, a major factor in evaluating the performance of an approach is
the execution time. One challenge in assuring the fair comparison of our
methods against existing algorithms and systems is to isolate the source of
any potential gains in performance. For instance, in Chapter [8| we present
a comparison of our approach with the current state-of-the-art algorithm,
Mondrian Forests. Due to the complexity of Mondrian Forests we did not
re-implement them from scratch in the same framework we used to develop
our algorithm, introducing possible uncertainties in the runtime comparison.
However, we make sure to demonstrate through the theoretical computational
cost of the algorithm that our method scales much better as the number of
instances grow. In subsequent work presented in Section[9.3|we implemented
every algorithm from scratch to eliminate such discrepancies.
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3. Reliance on underlying frameworks. To ease development and ensure our work
can have a wider impact we have used established ML frameworks to develop
our work. While using such frameworks can speed up development, it also
introduces possible inefficiencies in our learning pipeline [174]. For example,
our use of Apache Spark [247] in Chapter [p|required configuration and tuning
of system parameters to achieve high performance. Similarly, the use of MOA
for Chapter|[8land SAMOA for Section[9.2)introduces possible inefficiencies as
these frameworks are meant to provide generic algorithm development plat-
forms, and therefore lack optimizations for specific algorithms. Implementing
our algorithms from the ground up in a low-level language would potentially
bring further runtime optimizations, but would introduce many sources of
error and slow down development, especially for error-prone distributed
algorithms.

1.3 Contributions

The main contributions of this dissertation, along with the papers they appear in,
are listed below:

* Paper I: Knowing an object by the company it keeps: A domain-agnostic scheme for
similarity discovery. Olof Goérnerup, Daniel Gillblad, and Theodore Vasiloudis.
2015. Proceedings of the 2015 IEEE International Conference on Data Mining
(ICDM ’15), pages 121-130, 2015.

Paper II: Domain-Agnostic Discovery of Similarities and Concepts at Scale. Olof
Gornerup, Daniel Gillblad, and Theodore Vasiloudis. In Knowledge and
Information Systems 51(2), pages 531-560, 2017.

In these works we deal with the following research questions:
How to create a scalable way to calculate the similarity between nodes in a graph?
How can we uncover semantic concepts from the resulting graphs?

All-to-all graph node similarity approaches, like the established SimRank
algorithm [125], cannot scale to massive graphs due to the computational cost
scaling with at least a quadratic factor in the number of nodes. Our approach
is to approximate the all-to-all problem by limiting the similarity calculation to
two-hop neighbors, following the notion of context similarity as stated by Firth
in [86] as “You shall know a word by the company it keeps”. By limiting the
amount of computation we introduce approximations with controllable error
allowing for similarity calculations on massive data. Our implementation
is optimized for the distributed setting, with its most expensive operation
being a self-join operation that has linear speed-up and constant scale-up, with
limited communication.
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Contribution: The author of this dissertation actively contributed in the
design of this work, designed and implemented the scalable algorithm, and
contributed in the paper writing and experiments.

* Paper III: Predicting session length in media streaming. Theodore Vasiloudis,
Hossein Vahabi, Ross Kravitz, and Valery Rashkov. In Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR "17), pages 977-980, 2017.

In this work we deal with the following research questions:

What are the characteristics of session length distributions in media streaming?
Can we use that information to effectively predict the amount of time a user will spend
using a music streaming application at the moment they start it?

While session length distribution has been investigated for search queries and
post-ad click behavior, the behavior of users in a media streaming service
is likely to differ greatly. In this work we first provide an analysis of the
session length distribution of a major online music streaming service using
tools from survival analysis. We then develop an appropriate model to
predict session length from a number of features including user-based and
contextual, session-based features. We demonstrate the differences in the way
that user sessions evolve and end, and illustrate the importance of selecting
an appropriate objective function for a non-negative, power-law distributed
dependent value. This work acts as a use-case for our follow-up work, as it
motivates the use of uncertainty estimation, online learning, and large-scale
distributed learning with gradient boosted trees, topics we subsequently
worked on in Papers IV, V, and VI respectively.

Contribution: The author of this dissertation designed and implemented the
work presented the paper, performed the experiments, and contributed most
of the text plus all visualizations.

* Paper IV: Quantifying Uncertainty in Online Regression Forests. Theodore
Vasiloudis, Gianmarco De Francisci Morales, and Henrik Bostrom. Under
Review.

In this work we deal with the following research question: How can we estimate
the uncertainty in the predictions of online tree ensemble methods?

Uncertainty estimation is of paramount importance when applying learn-
ing methods to domains where mistakes can be costly, like finance and
autonomous vehicles. In addition, in these domains we have a constantly
changing environment, and learning algorithms need to be able to constantly
adapt. While ensembles of decision trees have been shown to be accurate
estimators [84], their online counterparts lack any way to estimate the uncer-
tainty in their predictions. In this paper we develop two general algorithms
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for uncertainty estimation from online random forest ensembles, adapting
batch methods to the online domain through approximate computation.

Contribution: The author of this dissertation designed and implemented the
work presented the paper, performed the experiments, and contributed most
of the text plus all visualizations.

Paper V: BoostVHT: Boosting Distributed Streaming Decision Trees. Theodore
Vasiloudis, Foteini Beligianni, and Gianmarco De Francisci Morales. 2017.
In Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management (CIKM "17), pages 899-908, 2017.

In this work we deal with the following research question: How can we make
use of modern hardware to parallelize and distribute the computation of otherwise
serial online boosting algorithms?

While online decision trees allow us to maintain an up-to-date scalable model
using bounded memory and computation, the approximations they make can
lead to decreased accuracy. Boosting is one of the most successful ensemble
techniques to increase the accuracy of weak learners. However, existing
online boosting approaches are strictly sequential, making parallelization
challenging, while existing batch parallel boosting algorithms require the
data points to be processed simultaneously, breaking the assumptions of the
online algorithms. In this paper we bridge this disconnect between online and
parallel boosting, by introducing online distributed boosting. We parallelize
learning across the features while keeping the algorithm sequential, thereby
maintaining the guarantees of online boosting algorithms, while at the same
time providing significant speedups.

Contribution: The author of this dissertation designed and implemented the
work presented the paper, contributed to the experimentation, and contributed
the majority of the text.

Paper VI: Block-distributed Gradient Boosted Trees. Theodore Vasiloudis, Hyunsu
Cho, and Henrik Bostrom. To appear in Proceedings of the 42nd International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR '19), 2019.

In this work we deal with the following research questions: How can we improve
the scalability of distributed gradient boosted tree learning in high dimensions?
Can we add another scale-out dimension while keeping the communication costs
manageable?

Gradient boosted decision trees (GBT) are one of the most popular algorithms
in use in industry and research alike. Their popularity stems from their ability
to deal with massive datasets, and several systems for distributed learning of
GBTs have been developed. However one common aspect of these systems is
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Publication O1 (Computation) O2 (Communication) O3 (Memory)

Paper I v v -
Paper II v v -
Paper III - - -
Paper V - v v
Paper IV v - v
Paper VI - v v

Table 1.1: Contributions by publication.

that they only enable scale-out across the data point dimension, meaning that
in order to speed-up learning per-feature we need to scale up using bigger
and more expensive machines. In this work we demonstrate how to enable
scale-out across both the data points and feature dimensions, thereby allowing
for scale-out across both, and by taking advantage of the structure of sparse
datasets, enable faster and more cost-efficient training.

Contribution: The author of this dissertation designed and implemented the
work presented the paper, performed all the experiments, and contributed
most of the text and all visualizations.

An illustration of how each of the papers listed above covers the objectives listed
in Section[1.1]is given in Table[I.1} We note that Paper III is an exploratory study
that acts as motivation to our follow-up work.

1.3.1 Software Contributions

As part of this dissertation we have contributed to the following open-source
software:

* XGBoost [55] is the most popular gradient boosted trees library, used across
academia and industry. As part of our work we have used XGBoost as the
learning tool for Paper III, and have worked directly to extend XGBoost
to support block-distribution for Paper VI. As both of these works were
performed during internships in private companies (Pandora Media and
Amazon AWS respectively), we have not been able to release the code as
open-source at the time of this writing. However, as a result of this work we
have become actively involved in the wider development efforts of XGBoost
and plan to integrate our block-distributed work in the future.

* MOA [24] is one of the most popular online learning library and includes
support for training, evaluation and data generation for online/streaming
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learning. We have used MOA as a baseline comparison for Paper V and ex-
tended it with support for uncertainty estimation among other improvements
in Paper IV, which we plan to contribute back to the project.

* Apache SAMOA [63] is a library and framework that enables the development
of distributed online learning algorithms, that can then be run on top of
multiple stream processing engines like Apache Flink [49] and Apache Storm
[230]. Our work on Paper V has been developed on top of SAMOA and has
been contributed back to the project.

Other software developed during our PhD studies that is not included in this
thesis, is the distributed machine learning library for Apache Flink, FlinkML, which
is the official ML library for Apache Flink since the 0.9 releasd]

1.4 Thesis Organization

The rest of this dissertation is organized as follows: In Part[[| of the dissertation we
provide background information and related work relevant to the topics covered.
Chapter[introduces some basic building blocks for parallel and distributed machine
learning, Chapter [3|describes the problem of graph node similarity and existing
approaches, Chapter [facts as a brief introduction in decision tree learning in the
context of this dissertation, and we end the first Part with Chapter [5|that presents
an overview of online learning.

Part [II| presents the results of the work developed for this dissertation. We
have tried to make each chapter self-sufficient, providing brief explanations of
the approaches along with the most significant results. Our work on graph node
similarity from Papers I and II is presented in Chapter [} the motivating example on
media streaming session length prediction from Paper III is presented in Chapter 7]
The final two chapters of this Part focus on decision tree learning, with Paper IV on
uncertainty estimation for online tree ensembles described in Chapter|8|and Papers
V and VI being presented in Chapter[J} describing our work on distributed online
boosted trees and block-distributed gradient boosted trees respectively.

We conclude in Part[[l| with a conclusions and discussion chapter.

Thttps://flink.apache.org/news/2015/06/24/announcing-apache- flink-0.9.0-release.html
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CHAPTER

Parallel and Distributed Machine
Learning

As the size of the datasets to learn from have grown, so has the need for methods
that can scale and learn from massive data, with billions of data points and millions
of features. With the slowdown of CPU frequency growth, the main avenue for
better utilizing modern hardware is to make use of parallelism, whether that is in a
single-worker, or distributed, making use of a cluster of computers to train models.
In this chapter we will provide an introduction to the systems that make parallel
learning possible and efficient. We start by presenting the different parallelization
paradigms available in Section 2.1} continue by presenting the different methods
of communicating in distributed machine learning in Section and finish the
chapter by highlighting some challenges in distributed learning in Section[2.3} For
an in depth look into parallel and distributed Machine Learning (ML) system design
we refer the reader to [243].

2.1 Parallelization Paradigms

In an abstract representation of any machine learning problem, we can separate two
functional items: the data, and the model. The data refers to the set, or stream, of
data from which we try to learn, be that a labeled dataset for supervised learning,
or an unlabeled dataset from which we try to extract structure in unsupervised
learning. The model refers to the approximate representation of the real-world
process that we use to encode the information about the world, through the available
data.

These two items provide us with a clean separation of how to perform parallel
learning: we can either try to parallelize our learning over the set of data, known
as data-parallel learning, or over different parts of our model, known as model-

15
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parallel learning. Certain kinds of models may be more amenable to data or model
parallelism. For example, training linear models using stochastic gradient descent
lends itself well to data-parallel approaches [69], while random forest (RF) models
allow for easy model-parallel learning, since every tree in an RF can be grown
independently.

Finally, it is also possible to employ data and model parallelism simultaneously,
often referred to as block-parallelism, as done by the Latent Dirichlet Allocation
model of [242].

In our work we employ data-parallel learning for Papers I-III, model-parallel
learning for Papers IV and V, and block-parallel learning for Paper VI. In the
following sections we describe and provide examples of each learning approach.

Data-parallel Learning

Data-parallel learning is the most commonly applied form of parallelism in machine
learning models due to the base assumption of many ML models that the training
data are independent and identically distributed (i.i.d.) [243]. When performing
data-parallel training, we distribute the data over a set of workers, each of which
trains the model on its own partition of the data. At the end of each iteration there
is commonly one communication step to synchronize the models of each worker to
avoid diverging models, although this requirement can be relaxed, for example for
asynchronous gradient descent algorithms like Hogwild [200] or through the use
of stale-synchronous communication [114].

As Xing et al. [243] note, practically any ML algorithm that makes the i.i.d. data
assumption and has an objective function that sums over the data indices, can be
made into a data-parallel algorithm. As a result, almost every model available in
ML now has multiple data-parallel versions available. Data-parallel optimization
algorithms include stochastic and batch gradient descent [69]255], L-BFGS [58] 3],
ADMM [37, 249]], and coordinate descent [202) [204]. Data-parallel models exist
for deep learning [65], Latent Dirichlet Allocation (LDA) [221], gradient boosted
trees [55] [135]], collaborative filtering [143} 252], Support Vector Machines [105, 253,
227], and Gaussian processes [112} 68] among others, see [12] for a collection of
approaches.

Model-parallel Learning

While developing data-parallel versions of existing algorithms is relatively straight-
forward due to the i.i.d. assumption, the same cannot be said for model-parallel
algorithms. In this setting, we parallelize the problem by working on different parts
of the model in parallel, rather than different partitions of data. The motivation is
often high-dimensional data [38], or memory limitations. In order to learn complex
representations, some models, like LDA and deep networks, require models with
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up to trillions of parameters [246|65] that cannot fit into the memory of one machine
or a single Graphics Processing Unit (GPU).

The main challenge becomes that, unlike i.i.d. data, the parameters of most
models are dependent on each other, often through an explicit structure like a
neural network or Bayesian network, or a sequential dependence, for example in
additive models like gradient boosting [110]. Care needs to be taken therefore to
ensure that models are kept consistent and do not diverge due to the limited view
of the model each worker possesses.

Commonly, the approach taken is to determine parts of the model that are
indeed independent and can be optimized in parallel. For example, Bradley et al.
[38] present a parallel Coordinate Descent algorithm that updates at each iteration
a random number of coordinates in parallel. The authors prove that the number of
coordinate updates that can occur in parallel without divergence can be derived
from the data and is therefore highly problem specific. This approach of making
use of the structure of the problem to avoid updates that interfere with each other,
can also be applied to other models, see Lee et al. [154] for a principled approach
to the problem. Modeling this structure explicitly, Graphlab [163} [164] presented
a learning framework where models and data are represented in a graph-like
structure that can reside in different workers and updated in parallel, requiring
communication only as the graph structure indicates. This approach has the
limitation however that the models need to be possible to be represented in a graph
structure, something which is not possible for many categories of algorithms.

Finally, we mention approaches that are both data and model parallel. These
are cases where models with trillions of parameters are needed to be trained over
datasets with trillions of examples, for example in LDA or deep learning models
[65] 246]. This kind of optimization requires a flexible communication paradigm
that allows for efficient updates of parts of the model that may reside in different
workers, from data that are also distributed. The Parameter Server architecture [158]
allows for such flexible interactions and we describe it in the next section that focuses
on the different communication patterns used in large-scale ML.

2.2 Distributed Communication in Machine Learning

Initial distributed ML approaches like parallel Stochastic Gradient Descent [255]
eschewed communication until the very last step of the algorithm, however as
Dekel et al. [69] show, this comes at a cost of the optimality of the solution. |[Dekel
et al.|instead suggest a method that communicates the gradients for each batch
and uses their average to update the weights, leading to an asymptotically optimal
algorithm for smooth convex loss functions. What this example demonstrates is
the need for synchronization in ML models, which in a distributed setting means
communicating model updates over the network. In this section we will examine
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some of the approaches for distributed communication that have been employed in
machine learning.

Efficient distributed communication has been a focus in the HPC and distributed
systems communities since their inception, we refer the reader to the monographs
[234}1225,/47,231] for thorough introductions. In the context of machine learning, the
focus has been on ways to synchronize sets of parameters, commonly represented
as vectors or matrices, over a network of computers. The dominant paradigms
have been the use of collective communications like Allreduce [228], the MapReduce
programming paradigm [66], and the Parameter Server [158].

Allreduce is a high-level communication primitive provided by distributed
communication systems like the Message Passing Interface (MPI) protocol [236]
and the GPU-targeted NCCI[} At the highest level, an allreduce operation on a
vector of objects will apply an aggregation function on the copy of the vector on
each worker in a cluster and communicate the results between workers. At the
end of the operation all workers end up with the same, aggregated, copy of the
vector. Allreduce is a high level operation and as a result there have been many
different implementations proposed, like the binary tree reduction algorithm, ring
reduce, and butterfly reduce [228]. One of the main advantages of the allreduce
operation is that it offers developers a simple “interface”, as the developers only
need to provide an aggregation function, and all workers share the same role. This
simplifies the programming burden significantly, however limits the expressivity
of the algorithm. For algorithms where the computational load cannot be easily
divided between workers, for example the existence of high-frequency words in
LDA [246], allreduce can result in imbalances between the workers, leading to
increased runtime [109] 114].

Another important drawback of allreduce is that its implementations (like MPI)
make use of dense communication. That is, it is currently not possible to utilize the
sparsity of data when communicating, because the implementations require that the
maximum byte size of the object to be known in advance, which is typically number
of elements x size of single element. For sparse data where the number of
non-zero values can be very small, this can lead to orders of magnitude higher
communication cost than is necessary. We demonstrate this issue in the context
of distributed Gradient Boosted Tree learning and provide a solution in Paper
VI. We note that multiple research efforts exist to make sparse allreduce possible
[203} 250} 116]] but none that can be considered ready for production.

The MapReduce programming paradigm [66] offered some flexibility in terms
of the programming model, in which the base primitives are a map operation that is
applied locally at each worker on the input, and a reduce operation that aggregates
the results from workers that correspond to the same key. Developers can assign
custom partitioners to have more flexible communication, however the aggregation

Thttps://github.com/NVIDIA/nccl


https://github.com/NVIDIA/nccl

2.3 DISTRIBUTED LEARNING CHALLENGES 19

pattern is still rigid. The use of disk-based aggregations for MapReduce are not a
good fit for the iterative nature of most ML algorithms and often leads to increased
runtime [254]. In-memory data processing systems based on MapReduce-like
computation, like Apache Spark [247] suffer from similar issues [174], although
systems like Apache Flink have proposed native iterations in a distributed stream
processing system [81]].

A more flexible paradigm is the Parameter Server (PS) [158, 157]. In the PS
programming paradigm, machines assume the role of workers or servers. Workers
are responsible for the computation of parameter changes, for example by iterating
through their local partition of the data to collect gradient updates. Servers are
responsible for the storage and update of the parameters. Similarly to a distributed
key-value store [67], the workers in the PS programming model have two operations
available, push that allows them to push a set of parameters to the servers, and
pull, that retrieves a set of parameters. These push and pull operations take as
input a key that transparently determines the server that is responsible for that
set of parameters, thereby allowing one-to-one communication between servers
and workers. However, worker to worker communication is not allowed in this
paradigm. By allowing the parameters to be distributed over a cluster of computers,
PS allows for intuitive implementation of model-parallel and block-parallel solutions
as shown by Li et al. [158]], Yuan et al. [246].

The flexibility of the PS comes at cost of more complex programming on the
developer side, compared to an allreduce operation, as the developer needs to keep
track of the keys that correspond to the parameters of interest they would like to
update or retrieve, and do additional housekeeping for the aggregation functions,
or broadcasting updates to all workers. The PS architecture lends itself very well
to cases where updates to the model are local, i.e. they only touch small parts of
the model. This ensures that the communication necessary for the model updates
remains small.

2.3 Distributed Learning Challenges

The challenges in distributed learning stem from the need to synchronize the
solutions of different workers after each iteration, as mentioned in Section[2.1] This
model is commonly referred to as Bulk Synchronous Parallel (BSP) [114]. In a
shared cluster environment a common issue arising is the existence of “stragglers”,
that is, workers that fall behind in their computation of a particular iteration of an
algorithm, causing the whole system to stall as other workers have to wait for them
to finish. Depending on the reliance of the model on a synchronized solution, this
can have more or less adverse effects, see Harlap et al. [109] for background on the
problem and proposed solutions.

The Hogwild optimization algorithm [200] and to a larger degree the stale-
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synchronous parameter server (SSP) [114] were designed to counter-act the effect
of stragglers. SSP allows for some slack between the iterations at which different
workers can be. In an iterative learning algorithm, this would mean that as workers
work through their partition of the data and move on to the next iteration, they
are allowed to fall behind, with the constraint that the fastest worker is at most
S iterations ahead of the slowest worker, where S is called the staleness threshold.
Compared to asynchronous solutions like Hogwild, Ho et al. [114] are able to give
stronger convergence guarantees for SSP and show how asynchronous algorithms
can lead to slow convergence in the presence of stragglers.

Another consideration for the design of distributed learning systems is the
limited network communication available, a problem attenuated in shared clusters,
where many applications are competing for resources, and in cloud environments.
Since network communication is necessary to synchronize the models, creating
communication-efficient algorithms has attracted significant research. We refer
the reader to Arjevani and Shamir [§] for an in-depth look at the communication
costs of distributed optimization algorithms. Systems like the parameter server
have been developed with the aim of reducing communication [158] at the systems
level, while specialized algorithms like CoCoA [124] focus on local computation
in order to reduce the amount of communication necessary. Other approaches
include making use of information theory and codes to speed up learning [153] and
gradient compression [161]]. In our work in Papers V and VI, we take advantage of
data sparsity to create efficient representations and reduce the communication cost
of distributed boosted tree training by several orders of magnitude.



CHAPTER

Graph Vertex Similarity

The problem of computing the similarity between nodes in a graph has been
well-studied under the context of link prediction [167], anomaly detection [190],
recommendation [88], and information retrieval [180]. Therefore a number of
algorithms have been proposed to tackle the issue. In this chapter we provide
an introduction to the problem and highlight some of the established approaches
as well as recent research focused on scalability. We divide the approaches into
local and global based on their ability to determine the similarity of nodes based
on local information or by looking into the entire graph, as proposed by Lii and
Zhou [167]. In this chapter we focus on measures that use the structure of the
graph to determine the similarity, however for specific applications there exist
similarity measures based on content or curated databases such as utilizing the
graph structure of the Wordnet databaset [193) 44, [85].

As the problem is closely related to link prediction, we point the interested
reader to the survey by Lii and Zhou [167] or the more recent survey by Martinez et
al. [170] on the subject, that include vertex similarity algorithms.

Preliminaries

We denote the graph G(V, E) where V is the set of vertices and E the set of edges.
When discussing computational cost, we denote the average degree of the graph as
d. To ease notation we assume undirected graphs, however most of the methods
mentioned here can apply to directed graphs as well. For a node v € V, N(v)
denotes the set of nodes in v's neighborhood, that is, all the nodes that are reachable
from v within a single hop. We denote the adjacency matrix of the graph by A.

21
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3.1 Local Similarity Measures

Local similarity measures generally determine the similarity between nodes by
examining structural properties between nodes that are two hops apart in the graph.
While this limits their ability to model long-range similarities, they have been shown
to have accurate results, and are computationally efficient [167]. In the following
section we present some of the most popular local similarity measures.

Common Neighbors. This method makes the assumption that nodes that share
many common neighbors will be similar themselves. The complexity of the method
is O([V|d?). For two nodes 1, Vv it is simply denoted as:

Scn = IN(w) N N(v)] 3.1

Jaccard Coefficient. The Jaccard coefficient [123] measures the similarity between
sets, defined as the size of the intersection of the two sets, divided by the size of
their union. Its definition is the following, and has the same complexity as Common
Neighbors:
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Serensen-Dice coefficient. The Serensen-Dice measure [72)223] is analogous to
the Jaccard index through a monotonic transform and is defined as:

(3.2)
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where d,,, d, denote the degrees of nodes u and v respectively.
Adamic/Adar index. This measure relies on shared neighbors to determine the

similarity of nodes, and was originally proposed for the task of link prediction [2].

It is defined as:

Ssp (3.3)
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Resource Allocation. This measure was also developed for the link prediction
task [251]], and has a definition similar to the Adamic/Adar measure:

1
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3.2 Global Similarity Measures

Global methods use information from the complete graph to determine the similarity
between nodes that can be more than two hops apart. These methods are commonly
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iterative and have a much higher computational cost than local measures, as they
calculate all-to-all rather than local similarities. The general approach is to calculate
the similarity in a recursive manner: Two nodes are considered similar if their
neighbors are also similar. The algorithms listed below all use some variation of
this principle.

Katz index. The Katz index [155] is based out the Katz centrality measure [134]
that determines the centrality of a node based on the number of paths between two
nodes. The measure can be defined as:

SKatz = [I - BA]il (36)

where (3 is an attenuation (damping) factor,and 0 < 3 < 1.
SimRank. In SimRank [[125] vertices are considered to be similar if they are
related to similar objects. It is defined in a recursive manner as:

2 yeN(u) 2yeN() Ssr(Y,Y)
du - dy

where C is a decay factor. Compared to the Katz measure described above, SimRank
only includes paths of even length, which can affect the similarity calculation,
and can result to invalid results for bipartite graphs [155]. SimRank is also very
computationally intensive with cubic runtime cost with respect to the number of
nodes. Optimized versions like [245] have been proposed to alleviate this drawback.
The measure proposed in Blondel et al. [34] is also closely related to SimRank and
has the same drawbacks.

Average Commute Time. This metric makes use of random walks to determine
the average number of steps required to reach node v from node u and return. The
assumption this method makes is that two nodes are more similar if they have a
smaller average commute distance, and is defined in terms of elements 1 of the
pseudoinverse of the graph Laplacian, L as defined in [167].

Ssr(u,v) =C- (3.7)
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3.3 Applications

As a general graph problem the applications of node similarity are as varied as the
problems that we can model using a graph representation. In this section we will
describe a few applications that exemplify the importance of the problem.

One of the areas where node similarity has been most successful is link prediction.
In the link prediction task, we try to predict missing edges in a graph, which might
represent real connections that are encoded in the graph, or connections which
are yet to happen in the real world. In the taxonomy of link prediction methods
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proposed by Martinez et al. [170], node similarity is one of the four major categories
of algorithms, along with probabilistic and statistical methods, algorithmic methods
and pre-processing methods. Node similarity methods are used for link prediction
by ranking node pairs by the similarity score given by the algorithm and the
top-ranked pairs of nodes that are currently not connected are considered the
most likely to form a connection. In the paper describing the Resource Allocation
measure, Zhou et al. [251] consider the probability of a true missing link being given
a higher score than a randomly chosen missing link to evaluate the accuracy of their
method.

Node similarity has also been explored in the context of recommendation. The
Average Commute Distance [89] metric mentioned above, uses the distance required
by a random walker to move between two nodes as an indication of the similarity
between nodes. The authors make use of this score to provide recommendations,
either using a direct approach, where the similarity between users and items
is calculated on the same graph, or indirectly, by first measuring the similarity
between users in a graph, and then determining the preference of said user for an
item given the preferences of their top-k neighbors for that particular item. Hang
and Singh [108] use vertex similarity to recommend trustworthy nodes to a query
node that belongs in the same trust network. The similarity is calculated this time
between nodes in two graphs, the structure graph and the trust network, using
again structural information between the graphs.

Vertex similarity methods have also been used in natural language processing,
to determine the similarity between words and documents. Kandola et al. [132]
make use of a diffusion process on a lexicon graph where nodes are terms in the
text and edges represent co-occurrence. This allows them to discover semantic
relationships between nodes that are not directly connected in the graph, but can
however be semantically related. Ramage et al. [198] on the other hand calculate
similarities using random walks between words in the Wordnet [179] graph to
estimate their semantic similarity. A similar approach is taken by Alvarez and Lim
[6], where the authors use the distance between the common ancestors of words
in WordNet. More recently, Recski et al. [201]] use a combination of the WordNet
graph, embedding methods like GloVe [194] and a concept dictionary to determine
the semantic similarity between words.



CHAPTER

Decision Trees

Decision trees is one of the most important and successful algorithms in machine
learning. They have seen widespread adoption in practically every area of machine
learning, from their original domain in classification and regression, to ranking [45],
semi-supervised learning [136], survival analysis [122], quantile regression [175],
and unsupervised learning [33]. In this chapter we will provide a brief review of
the literature on decision trees in areas that are relevant to our work, starting with
a short introduction in Section and focusing on ensembles of decision trees
in Section .2} For a comprehensive review of decision tree literature we refer the
reader to the monograph by Rokach and Maimon [206] or the extended survey by
Criminisi et al. [62].

4.1 Learning Algorithms

The two original tree-learning algorithms, the Classification and Regression Trees
(CART) [42] algorithm and the ID3 algorithm [196], were developed in parallel. In
our description we will focus on the CART regression algorithm, following the
description from Hastie et al. [110].

Decision trees create recursive binary partitions of the input space, with axis
parallel cuts. Let Ry,...,Rm denote the M regions created by the model. The
model predicts the same value ¢, for all data points that fall under the same
region in the partitioned space. For regression, using the sum of squared errors
as the objective function, the best possible ¢,, is the average of the label values
in that region. Finding the optimal partitioning for decision trees is known to be
NP-complete [119]. Consequently a common choice is to use a greedy algorithm
to select the splits [147]. In the regression case, CART achieves that by selecting
splits that minimize the squared error of the created binary split, selecting for
each region the average value of the labels. In the classification case, the splitting
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criterion is an information-theoretic node impurity measure like the Gini index or
the cross-entropy, defined as:

K
Gini Index = Z Pmr (1 —Pmx),
k=1
) 4.1)
Cross-entropy = — Z Pmk log Pmx,
k=1

where k is the class, m the node and Pmx the proportion of the observations for
class k in the node m.

While one could keep growing a decision tree until it perfectly fits the data, that
will lead to overfitting and bad generalization. Therefore it is common to employ
some form of pruning strategy to limit the complexity of the model. This can be done
by introducing some form of complexity penalty to the tree, limiting the number of
terminal nodes, or having a minimum number of examples in each terminal node
[42]. This process is also important in limited memory settings where deleting and
merging nodes can lead to models that take up less space in memory, especially
in ensemble approaches mentioned in the next section. A creative approach to
reducing model size are the so called decision jungles [220] that change the data
structure being learned from a tree to a Directed Acyclical Graph (DAG), allowing
nodes in the DAG to have more than one parent, providing the same learning
capability as a tree, while using fewer nodes.

4.2 Ensembles of Decision Trees

The success and popularity of decision trees comes in large part from their use
in model ensembles. The two dominant paradigms in ensemble learning are
bagging [39] and boosting [214] 92]. Both methods can be interpreted using a
resampling procedure. Bagging is based on the bootstrap resampling method
[78] and re-uses samples to train the members of the ensemble, and average their
predictions. Boosting methods on the other hand assign increased weights to the
hardest instances in the data. In the “AdaBoost.M1” version of the algorithm, a new
weak learner is trained at each iteration, and a weighted sum of the decisions of
each learner is taken to produce the final prediction. Further work by Breiman [40]
established a statistical framework for boosting and formalized gradient boosting as
gradient descent in function space.

Decision trees have been used as parts of either bagging or boosting ensembles
with great success [84] 55]. Their characteristics as a fast non-linear learner with
high flexibility fit well both the bagging and boosting paradigms. The random forest
algorithm uses bagging to train an ensemble of randomized trees and combine their
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predictions, while gradient boosted trees uses a combination of trees and gradient
boosting to produce accurate learners. In the following we give a brief overview
for each method, and refer the reader to [20, 62] and [18] for recent surveys on
random forests and gradient boosting respectively, or the introductory monograph
by Hastie et al. [110].

4.2.1 Random Forests

Random Forests (RF), originally proposed by Breiman [41] based on the work of
Amit and Geman [7], have been shown to be one of the most versatile algorithms
in machine learning [84]. They are an ensemble method the combines multiple
randomized trees, each trained with a sample of the original dataset, and averages
their predictions to produce the final outcome. Random forests can deal with
classification or regression tasks and provide estimates of the importance of variables,
aiding in their interpretability.

Following the notation in Biau and Scornet [20], the algorithm works by growing
M randomized trees, each on a sample a,, from the original dataset, with p features.
The sample a,, can be taken with or without replacement, although usually it is
a boostrap sample [78] with a size equal to the original dataset. In the original
algorithm by Breiman, the trees are grown using the CART criteria, with the
difference that they limit the number of features being considered for the splits,
with Breiman|selecting a either single feature or log,p + 1 features, while|Biau and
Scornet|recommend using [p/3]; see [71] for an investigation of the RF parameter
settings. For the regression task, the predictions of the forests are calculated by
taking the average prediction of all trees, while for classification they take a majority
vote among all trees.

The random sampling and independent growing of each tree provides two
distinct advantages to the RF algorithm. First, because the trees are grown inde-
pendently, unlike the boosted trees discussed in the next section, parallelizing their
learning is trivial. In the parallel setting where we have access to the complete
dataset, or if the complete dataset fits in memory, parallelization is as simple as
training a different tree on each bootstrap sample. The situation changes however
for distributed data because of the nature of the bootstrap: depending on the sample
selection there might be the need for data points to be communicated over the
network, with a resulting high communication cost. Chawla et al. [52] propose
instead training the trees independently and merging their votes, or one can use of
the “bag of little bootstraps” [141] to train the models, to avoid shuffling the com-
plete dataset. Alternatively, we can create split histograms on data partitions and
communicate those over the cluster to determine the best split for each leaf, similar
to how trees are grown for distributed gradient boosted tree methods [55] [135],
which we expand up in Section [4.2.2]
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Figure 4.1: Example of growing a boosted tree ensemble. At each iteration we add
a new tree, that is trained using the errors (gradients) of the previous ensemble.

Second, the fact that for each tree some samples from the dataset are not used
to train it, known as out-of-bag (OoB) samples, creates opportunities to use those
data points to extract useful information about the performance of the tree. We
can use the OoB samples to adjust the hyper-parameters of the algorithm without
the need to use a validation dataset. We can also use the out-of-bag sample to
estimate variable importance. Breiman proposed the Mean Decrease Accuracy
measure of variable importance, where using the OoB instances for a tree, we
randomly permute the values a feature, and make predictions for the permuted
and original data. We take the average of the difference of the OoB error between
the permuted and original data and use that as an estimate of the importance of the
variable. Biau and Scornet [20] note that this approach has issues with correlated
variables, because the algorithm tests variables in isolation rather than conditional
to each other. Finally, Johansson et al. make use of the OoB samples to provide
uncertainty estimates in inductive conformal prediction, without the need for a
validation set, a property we exploit in Paper IV as well.

4.2.2 Gradient Boosted Trees

Gradient boosted trees have risen to be one of the most popular algorithms in
machine learning due to their speed, scalability, and accuracy. As a result, they are
being used in mission-critical production use-cases such as Web search ranking
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[159) [195] and click-through rate prediction [111]]. Efficient implementations like
XGBoost [55] and LightGBM [135] are now widely deployed and further emphasis
is being given to efficient training [126] and inference [168] 226]9]. In this section
we will describe the training and prediction process of GBTs, with a focus on
the scalability aspect of the algorithm. We provide an in-depth description of
the histogram construction algorithm which we have found to be missing from
most relevant literature. We refer the interested reader to a recent overview of the
optimization process of GBTs by Biau and Cadre [18] for details on GBT training.

Model

The gradient boosted tree model consists of an ensemble of decision trees, which are
trained in an additive manner. At each iteration a new tree is added to the ensemble,
chosen so that it minimizes an objective function. Figure4.1|shows the ensemble
growing process at a high level. At each iteration we use the errors (gradients) of
the previous step to train a new tree, and add it to the ensemble. This process is
iterated for a pre-determined number of steps.

We use the regularized objective formulation given by Chen and Guestrin [55]],
and follow their notation throughout our description of the algorithm. The objective
function is shown in Eq.

L(d) =) 10uyd)+ ) Qlf)
i k] (4.2)
where Q (fi) =yT + 32 [w]?

where 1(-,-) is a differentiable loss function and Q is a regularization term that
penalizes complex models, with A and y being regularization factors. The regular-
ization term takes into consideration the number of leaves T and the norm of the
weights at the leaves w. This helps smooth the weights to avoid overfitting. This
objective defined in XGBoost has then been used in follow-up GBT learning systems
like LightGBM and DimBoost [135][126]. A note here is that XGBoost assumes that
the loss function is twice differentiable in order to calculate the Hessian analytically
for each loss function, in order to reach the optimum quickly. However, as shown
recently in [19] [165] it is possible to use Nesterov’s first-order accelerated gradient
descent method [184] to produce gradient boosting models of similar accuracy,
utilizing far fewer trees (iterations), and hence speeding up training and inference.
In distributed training this has the added benefit of reducing the amount of data
being communicated by half, as we would only need to communicate first-order
gradients and not Hessians, as we explain in the following section.
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Index Featurel Feature2 Feature3 ‘ Gradient
1 13 0 488 1.5

3 3.5 0 122 2

Table 4.1: Example dataset. Each color-coded data point has its feature values,
along with a gradient value, for a squared error objective function, this would be
the ensemble’s residual for the data point.

Training

The training process for a single gradient boosted tree can be roughly divided into
three stages: First, we use the existing ensemble to make predictions for every data
point in the training set. Second, we use the approximated objective function to
determine the first and second order gradients for each data point. Finally, we use
the calculated gradients to greedily determine the optimal split for every leaf in the
tree. When we mention gradients here we are referring to both the first order and
second order gradients of the loss function for x;, denoted as g; and h; respectively.

We will focus on the third part of the training stage in our description, as that
entails the most computationally intensive part of GBT learning, the construction of
the gradient histograms. Throughout our examples we’ll be using the dataset from
Table which we have color-coded to correspond to the figures used later.

As a tree grows, we partition the complete training set into smaller parts, with
each data point ending up in one leaf as we drop it down the tree. In order to
determine the best split for every leaf, we need to iterate through the data partition
of each leaf and create a gradient histogram for each feature for that leaf.

In its simplest form, a gradient histogram gives us the sum of gradients at a
leaf, given a feature value, thatis, ) j (Gilxi(f) = fj), where x; is a data point that
belongs to the current leaf, G; is the gradient value of x; and j is an indicator
over the unique values of the feature f. In other words, it gives us the sum of the
gradients of all data points in the leaf for a specific value of a given feature f.

Enumerating every gradient-feature value combination requires that we calculate
a gradient sum for each unique value of a feature. This can quickly become
computationally impractical for real-valued features, as we might have millions
or billions of unique feature values. Systems like XGBoost and LightGBM instead
use quantized histograms, where we accumulate gradients for ranges of values in
histogram buckets for every feature.

To determine the bucket ranges we can use quantile sketches thatapproximate
the Cumulative Distribution Function (CDF) of each feature. We select a number
of equi-weight buckets, that is, the ranges are selected such that every bucket



4.2 ENSEMBLES OF DECISION TREES 31

4.5

~

Data
Point

B
B

Gradient Sum
N @

[

10.5) 5, 12) 112, 20)
Feature Range Bucket

Figure 4.2: Gradient histogram for Feature 1 of the Table data. The first bucket
is the sum of the data points with index 3 and 4, since both their Feature 1 values
fall in the [0,5) bucket.

has approximately the same weight-sum of data points. In the simplest case all
instances have the same weight, and regular quantile sketch algorithms can be
used, otherwise specialized, weighted sketches like the ones used by XGBoost
have to be employed. The number of buckets to use is a parameter of the quantile
sketch algorithm and depends on the type of sketch. There exist sketches where we
select the number of buckets that will be used to represent the CDF, like the ones
proposed by Ben-Haim and Yom-Tov [13]. Alternatively, the number of buckets is
derived from the approximation error we choose for the sketches, for example for
the sketches used by XGBoost or by the state-of-the-art KLL sketch which we
used in our own work in Papers IV and V1.

The selection of bucket ranges can be done either at the beginning of training,
taking the overall feature CDF, or at every leaf taking the CDF of each feature using
only the partition for that leaf. Chen and Guestrin [55] show that by selecting
the buckets for every leaf separately, we can achieve the same level of accuracy,
while using histograms with a higher approximation error, and hence reducing the
memory footprint of the algorithm.

Once the bucket ranges have been determined for each feature, we use them to
create the gradient histograms. After the prediction step, we have a gradient value
for each data point, so we go through each feature and add the data point’s gradient
value to the gradient histogram bucket that corresponds to the feature value. In our
example data in Table for Feature 1 we use the buckets [0,5), (5,12], (12, 20).
Then, for the data point x; with a feature value f; : 13, we would add its gradient
value to the the bucket (12,20] of the gradient histogram for f;, and do this for
every data point, adding the point’s gradient to the corresponding bucket given
the feature value. The gradient histogram for Feature 1 is shown in Figure
In the Figure we use color to identify the contribution of each data point to each
bucket. When we are done iterating, each feature will have a corresponding gradient
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Figure 4.3: Gradient histograms for all features of the Table 4.1{data.

Splitpoint 1 ~ Splitpoint 2

Feature 1 36 21
Feature 2 35 30
Feature 3 26 30

Table 4.2: Potential gains for each possible split point, given the gradient histograms

of Figure

histogram, whose sum is equal to the sum of gradients for the leaf. For the data of
Table 4.1} the complete gradient histograms are shown in Figure [£.3]

Once we have all the gradient histograms, we can use them to determine the
optimal split point for the leaf, by calculating the potential gain of each feature and
split point combination using the following equation [55]:

2 2 2
Gt = 1 (Zier, 91) " (Zicr, 9¢) C (Zia9) —y
P 2 ZiEIL hi +A ZiEIR hi +A Zielhi—’_}\

(4.3)

where It , Iz determine the data points that end up to the left and right side of
the split respectively, I is the complete set of data for the leaf partition, and v, A
are regularization parameters. At this point, to determine the best split we need
to simply iterate through all the feature-splitpoint combinations and rank every
candidate according to their loss reduction (or gain) and select the best one. In our
example we have three buckets, and hence two possible split points for each feature.
The result for our example data is shown in Table[4.2] where we have simplified the
problem to only include the first order gradients. From that example we can see
that the best feature-split combination would be choosing the first split point for
the first feature (i.e. Feature 1 < 5) as the split condition.

In the case of millions of features and a large bucket count B this can also be
computationally heavy operation, as we need to evaluate |F| x B split candidates.
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To mitigate this, we can apply efficient boosting approaches that try to reduce
the number of features being examined. Examples include LazyBoost [79] that
uniformly subsamples the set of features, bandit methods [46] that use information
from previous iterations, or other adaptive methods like Laminating [76] that
determines the best feature in multiple rounds, by incrementally halving the
number of features being considered and doubling the number of examples being
included in the gradient calculations.






CHAPTER

Online Learning

In this chapter we will provide an introduction to online learning, which is the
learning setting for Papers IV and V. We start by providing a brief overview of the
kinds of models available for online learning in Section[5.1] Since our work focuses
on decision trees and ensemble methods we present an overview of the state of
the art in Sections[5.2|and [5.3| respectively. We identify issues and solutions for the
evaluation of online models in Section[5.4} and conclude the chapter with a look at
the available open-source software for online learning in Section

5.1 Models

As with batch learning, a wide range of models exists in the online learning domain.
Commonly, these are models that were first developed for the batch setting and
subsequently adapted to online learning. In this section we focus on supervised
learning methods for classification and regression, and explore different learning
representations to demonstrate the variety of models available for online learning,
following the classification in [14]. For a comprehensive introduction to the various
models available in streaming learning we refer the reader to [24]. An important
aspect of online learning that we do not cover in this chapter is learning under
concept drift, that is, when the underlying distribution of the data changes during
learning. We refer the reader to the surveys [256, 95] for in-depth looks at the topic.

Instance Based Learning

One of the simplest and most intuitive methods in machine learning is Instance
Based Learning (IBL), which usually takes the form of a nearest neighbor model. In
Instance Based Learning, we make predictions based on the instances themselves,
unlike model-based approaches that try to extract a model (function) from the

35
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data. IBL exemplifies many characteristics that make it a good candidate for online
learning, and the IBLStreams work of Shaker and Hiillermeier [217] demonstrates
how these can be put to use to create an efficient online learning model. IBL
algorithms are inherently incremental, and can be faster to update compared to
a model-based approach, but they suffer from two distinct disadvantages: First,
they need to store the data points themselves, which in a massive streaming data
scenario can be infeasible. To deal with this issue IBLStreams will evict the oldest
examples once an upper limit on the number of data points stored is reached.
Second, inference can be much slower as it requires finding the k nearest neighbors
to the incoming dataset, which even when using efficient indexing structures (like
Locality Sensitive Hashing [121},99]) can be very costly compared to a model-based
prediction, e.g. from a linear model. Shaker and Hiillermeier| suggest that IBL
makes more sense in scenarios where updates are often but queries infrequent.

In terms of drift adaptation, IBLs can have the advantage that removing the
effect of older data points is easy compared to say an ANN model, but it is still
highly model-dependent. The authors suggest different ways to deal with concept
drift in IBLStreams. They mention the limitations of a non-adaptive, window-based
approach and suggest that IBL methods are good candidates for learning under
drift because of their locality property, that is, that introducing a new example will
only affect the predictions made around that region. In theory, an example should
only be included in the model if it improves the accuracy, but that is impossible to
know ahead of time. However, one can use heuristics to determine when to discard
examples. These include the temporal and/or spatial relevance, or consistency
of the examples to the current concept. In IBLStreams, the contents and size of
the “case base”, i.e. the examples that form the nearest neighbor representation, is
updated automatically. IBLStreams tries to maintain a balance between maintaining
few examples in the case base in order to be able to deal easier with concept drift,
while keeping the set large enough so that predictions under a single concept are
accurate. To that end, they use statistical change detection mechanisms and also
provide ways to update the parameters of the algorithm, e.g. the number of nearest
neighbors to examine, based on the observed error.

Linear Models

In terms of model-based approaches, linear models are popular for online learning
due to their simplicity, efficiency and interpretability. For regression these models
have the general form [110]:

P
f(X) = Bo+D_X;B; (5.1)

j=1
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where p is the number of features in the dataset, where a linear relationship is
assumed between the dependent and independent predictors.

One of the earliest examples of an online linear classification model is the
seminal Perceptron algorithm [207] that tries to find a separating hyperplane
between two classes based on the distance of the misclassified points to the decision
boundary [110]. In the online setting, linear models are typically trained using
a form of stochastic gradient descent, that moves the coefficients of the model
according to the gradient of a single data point and a step size parameter. The
Perceptron is a simple algorithm that however has many drawbacks noted by Hastie
et al. [110], regarding the stability of the algorithm for perfectly separable data, its
dependence on correctly setting the step size, and the fact that the algorithm does
not converge when the data are not separable. Another important family of linear
algorithms designed for the online domain are Passive-Aggressive (PA) algorithms
[60]. These are margin-based algorithms for classification, regression and sequence
prediction that solve a constrained optimization problem. For every incoming
example, PA algorithms try to achieve a margin between the predicted value and
true label by either not changing the model (passive) when the margin is satisfied,
or by applying the necessary correction to the model coefficients to enforce a zero
loss when the margin is not satisfied (aggressive). While being a linear model, PA
algorithms can make use of the kernel trick to employ non linear predictors, as done
by the seminal work on Support Vector Machines (SVM) by Vapnik [233] described
next.

Support Vector Machines

Support Vector Machines, similar to the Perceptron, are algorithms for determining
optimal separating hyperplanes, but unlike the Perceptron, they can deal with cases
where the data are not linearly separable. They achieve that by using the “kernel
trick” to transform the data and determining a linear boundary in the transformed
space [110]. SVMs have also been extended to work in the online domain [139]
where the main challenge is the need to maintain a set of support vectors in memory,
as they grow linearly with the number of prediction errors [61]. The work of
Crammer et al. [61]] deals with this issue by providing an online learning algorithm
that enforces sparsity through an insertion and deletion phase. Once an example
with an erroneous prediction is inserted, the algorithm will look for past examples
that are made redundant by the new point, and remove those to save memory.
Another approach is taken by the Forgetron [70] which, for every mistake made
by the algorithm, runs the standard Perceptron update, shrinks the support vector
coefficients, and removes the support vectors with the smallest coefficients. The
Pegasos algorithm [218] trains SVM models using Stochastic Gradient Descent,
employing subgradients to deal with the non-linearity of the hinge loss. The
Passive-Aggressive algorithm has also been modified to perform kernel learning
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on a budget [238], i.e. with a bounded model size, by introducing an additional
constraint to the original problem that removes one old support vector for every
new one once the budget is met. One key drawback of these methods is the need to
determine a budget for the model size beforehand. More recently, new methods
have been proposed to scale up online kernel learning to massive datasets while
maintaining a bounded model size, by transforming the feature space, and then
performing linear learning [166] or by approximating new instances by “core points”
scattered across the input domain [151].

Rule-based Learning

Decision rules [205] and decision trees [42] are two closely related learning methods
that make predictions in terms of a set of if-then rules. Since online decision
trees play a central role in our research we dedicate a separate section to review
them (Section and focus on online decision rules here. Decision rules use
conjunctions of conditions on the attribute values to make predictions of the form
if <conditions> then <prediction>. This structure makes them some of the
more easily interpretable models available. In the classification task these are
typically learned by maximizing the information gain of introducing a rule for a
given outcome. Gama and Kosina [93] provided one of the first decision list learning
algorithms aimed at the streaming domain, which updates its rules by maintaining
an up-to-date set of sufficient statistics for each rule. Rules are expanded by selecting
the condition, for example a threshold on a numerical feature, that minimizes the
entropy of the class labels of the example that are covered by that rule [93]. The
method uses the Hoeffding bound [115] to determine when it is time to update a
rule, either by expanding an existing one or introducing a new rule. The process
was later expanded to handle cases of concept drift [144] and regression [5].

5.2 Online Decision Trees

As we mentioned in Section 4.1} decision trees are trained by recursively splitting
the complete training set as we introduce more leafs. This process is incompatible
with the online learning scenario where data points arrive sequentially and we
never have access to the complete dataset. To tackle such a scenario, a number of
online decision tree alternatives have been proposed.

Hoeffding Trees

By far the most popular online decision tree algorithm for classification is the
Hoeftding Tree (HT) [75], which has served as the basis for most of the follow up
work on online decision trees. The aim of the HT is to create an online decision tree
algorithm that will converge to its batch equivalent given enough samples. The
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learning in an HT, or as Domingos and Hulten [75] name it, the Very Fast Decision
Tree (VEDT), happens only at the leaves, and every data point is only utilized once,
i.e. the HT is a single-pass algorithm. The leaves accumulate statistics with the
purpose of probabilistically determining the best split. The Hoeffding tree got its
name from the use of the Hoeffding bound to determine if we have accumulated
enough information at a leaf to trigger a split with high confidence.

Following the description from Domingos and Hulten [75], the Hoeffding bound
[115] is a probability inequality that allows us to probabilistically bound the true
mean of a random variable r for which we have made n independent observations
and computed their sample mean, ¥. Given the range of the variable, R, the
Hoeffding bound states that with probability 1 — 9, the true mean of the variable r
will be at least ¥ — €, where ¢ is defined as:

~[R2In(1/3)
€= o (5.2)

In VEDT, the Hoeftfding bound is used to determine with a high degree of
certainty when it is time to split a leaf. Let G(X;) be the measure used to choose
the feature to split on. As we mentioned in Section this can be information
theoretic measures like the cross-entropy or the Gini index. Ideally we want the
feature we select given a limited sample of n examples, to be the same as would
be chosen given infinite examples. The Hoeffding bound allows us to achieve that
with high probability by applying it to determine the maximum possible difference
between the best and second best features to split on. Specifically, let G(X,) be the
heuristic value for the current best feature, after having observed n instances, and
G(Xp) the second best. The difference between these two is AG = G(Xq) — G(Xp).
We can then use the Hoeffding bound to determine that G(Xq) is indeed the best
feature to split on with probability 1 — §, if AG > e.

The process of learning at each leaf is then the following: For every incoming
sample that ends up in a leaf, we update the sufficient statistics for that leaf, which
we use to calculate the heuristic for the split, e.g. the Gini index. Theoretically, one
could check if it has gathered enough information to split a leaf after each incoming
sample, but that would introduce a large computational overhead. What is often
done instead, for example in the implementation of the algorithm in the MOA
library [26], is to only check if the Hoeffding bound is satisfied periodically, for
example every 200 samples. Another parameter of the algorithm is the probability
of an error, . This parameter can have a large effect on the final tree, as setting it
too high can lead to early splits being taken that end up being sub-optimal, and as a
result, values in the order of 10~ are often used [30].

HT was designed for the classification setting, where handling discrete attributes
is straightforward: we can just keep a table of frequencies for classes and feature
values. The situation is different for continuous attributes however, where we need
to maintain per-class information about the values. In the worst case we would need
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to maintain the class frequencies for every unique value in a continuous feature,
something that is impractical for online learning, where datasets are potentially
unbounded and the memory footprint of the algorithms should remain as small as
possible. For features with many repeated values it is possible to use a binary tree
structure with counters that allows for fast storage of the values, however this again
has a large memory cost. Alternatives include using online histograms or quantile
sketches [106] to maintain approximations of the Cumulative Distribution Function
of each feature, or approximating the distribution of each continuous feature using
a Gaussian. We refer the interested reader to Chapter 4 of Bifet and Kirkby [30] for
details on these methods.

The Hoeffding Tree has served as the starting point for most of the follow up work
on online decision trees. Jin and Agrawal [127] use a “Normal” test to improve upon
the statistical efficiency of the Hoeffding bound. The proposed method achieves
the same probabilistic bound with a reduced sample size, by taking advantage of
properties of the Gini index and entropy. More recently, Manapragada et al. [169]
propose an algorithm that uses the Hoeffding bound but will re-visit nodes that
have already been split and evaluates if their split decision should be updated. This
leads to a large improvement in accuracy compared to the base HT, at the cost of
added computation and memory necessary to maintain the sufficient statistics for
internal nodes and re-evaluate split decisions.

In a contrasting view, Rutkowski ef al. [212] claim that the assumptions made
by the Hoeffding bound-based algorithms are commonly violated as the bound
assumes real-valued data, and the fact that measures like the Gini index and
information gain cannot be expressed as sums of elements. As an alternative they
propose using McDiarmid’s inequality of which Hoeffding’s inequality is a special
case. Their use of the McDiarmid bound is however computationally intensive.
This drawback is mitigated in their follow-up work [211] which follows in part the
work from Jin and Agrawal [127] and provides a bound on the information gain
difference between two potential split attributes based on the Gaussian distribution.

One of the few online decision tree algorithms that is aimed at regression is the
Fast Incremental Model Tree (FIMT) algorithm by Ikonomovska et al. [120], also
based on the HT. FIMT is a model tree, i.e. instead of simply using the average of
the labels in its leaves to make predictions, it maintains a linear model, which is fit
on the samples arriving at the leaf, and is then used for prediction. The merit of a
split is calculated based on the Standard Deviation Reduction (SDR), similarly to
batch regression trees like the M5 model [197], defined as:
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where h 4 is the proposed split on feature A, and St , Sg the resulting data partitions
on the left and right side of the split.

SDR is possible to be calculated online, by maintaining only three statistics
per leaf, making the learning of these trees efficient. However, the base FIMT
uses a binary tree to store feature values, leading to a potentially high memory
cost, for which the authors provide solutions like disabling non-promising split
points and dropping parts of the tree. To determine the probability of a split being
optimal, the authors again use the Hoeffding bound on the SDR ratio of the two best
splits which will be in [0, 1] range. The linear models at the leaves are perceptron
models, updated using stochastic gradient descent. Finally, FIMT includes a change
detection system in order to adapt to concept drift based on the Page-Hinckley
change detection test [188)[183].

Finally, we mention online tree ensemble methods, like the online random forests
developed by Saffari et al. [213] and Gomes et al. [101], and the online boosting
tree developed by Beygelzimer et al. [15] and Son et al. [222]. We focus on online
ensemble methods in Section5.3]

Mondrian Forests

All the methods we mentioned so far in this section have made use of the same base
tree building algorithm that was first proposed for VFDT: each data point is only
evaluated once, the statistics are maintained only at the leafs, with the exception
of [169], and heuristics that take into consideration the conditional distribution of
the features given a class are used to determine the splits. Lakshminarayanan et al.
[149] proposed a new class of algorithm based on Mondrian processes [209] that
provides a new way to train decision trees online.

Mondrian processes are a continuous-time Markov process that form hierarchical
partitions of the feature space RP. The partitions are nested and each subsequent
partition refines its parent. While these processes are non-parametric and define
infinite partitions, Mondrian trees restrict them using a lifetime parameter A. This
parameter is however hard to tune, so the the authors choose instead to stop splitting
nodes when the data points within them all have the same class value. Compared to
regular decision trees, Mondrian trees have two main differences: The split decisions
are always within the range of observed data, i.e. the split decisions create “boxes”
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in feature space and not axis parallel cuts, and similar to the Extremely Randomized
Tree algorithm [98], the splits positions are chosen uniformly at random. The main
property that makes Mondrian trees possible to train online is projectivity. We
can grow a new tree by sampling from a restricted distribution of Mondrian trees
that have already been trained, extending the tree to include the new data. The
Mondrian tree distribution is in this sense “self-consistent” [149] which allows us
to grow them from the previously sampled tree in an online manner. The original
Mondrian trees are aimed at classification and follow up work extends them to
handle regression as well [148].

One main characteristic of Mondrian trees is that they are able to determine
the full predictive posterior distribution of the dependent. This means that they
are able to produce a distribution of the form pr(ylx, P1.n), wherey € 1, ..., K for
the multi-class classification scenario, or y € R for regression. For classification
the posterior is modeled as a hierarchy normalized stable processes [240], while
for regression a hierarchical Gaussian is used. The algorithm uses an ensemble of
Mondrian trees to create a Mondrian Forest and combine their predictions for a
final output.

The main disadvantage of Mondrian forests is their computational cost. The
model requires that learning happens at all levels of the tree, unlike most of the
HT algorithms where learning only occurs at the leaf level. Because a complicated
model of the posterior needs to be updated, the computational cost of the algorithm
increases with each incoming data point and is O(logn) for the n’th data point, or
in other words it has a cost of O(log N!) to train N data points. In addition, the
online version of the algorithm needs to maintain all data points at the leafs in order
to be able to update the distributions. This makes its memory cost prohibitive for a
streaming setting with limited resources or unbounded data.

In our work we use Mondrian Forests as the state-of-the-art comparison in
Paper IV and show that we are able to achieve similar accuracy with an order of
magnitude reduction in runtime and bounded computational cost.

5.3 Online Ensemble Methods

Due to their approximate nature, online learning models often demonstrate limited
accuracy compared to their batch counterparts. Ensemble methods have been
shown to vastly improve the bias & variance characteristics of a wide range of
models [73] and have therefore also been a focus in the online learning literature. In
this section we will provide an introduction to some of the more established online
ensemble methods that we have also used in our work, along with related recent
work. We refer the interested to the survey by Gomes et al. [102] for a more in-depth
look at online ensemble methods.

The two main paradigms in ensemble algorithms are bagging [39] and boosting
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[90, 214]. In this section we will review how each of these algorithms has been
adapted to the online setting. We will focus our descriptions on the first, and more
established, work that deals with both online bagging and boosting proposed by
Oza [186].

5.3.1 Online Bagging

Briefly, bagging works by training an ensemble of learners in parallel, each trained
on a bootstrap sample [78] of the original dataset. The predictions of each learner
are averaged to produce the final outcome.

The online bagging model proposed by Oza [186] and further explored in [187]
is an intuitive algorithm, listed in Algorithm|l} We make use of this algorithm in
Paper IV.

Algorithm 1: OzaBag(h, L,, (x,y))

input :h, the ensemble, a set of s hypotheses h; Lo, an online learning algorithm;
(x,y), a labeled training instance.

output :Prediction y.

foreach hy € h do // in order t € [1,s]

L k « Poisson(A = 1)

Assign weight k to (x,y)
hy & Lo (he, (x,y))

return §

The main insight of the algorithm, commonly referred to as OzaBag, is that for
large N, we can approximate the binomial distribution used to determine whether
a sample will be included in the bootstrap sample using a Poisson distribution. The
distribution of bagging sample sizes, K, tends to a Poisson(A = 1) as the number
of samples N — co. To use bagging online then, for each incoming example and
for each member of the ensemble h, we draw a sample from a Poisson(A = 1). We
use the drawn scalar k to modify the weight of the incoming instance, and train the
algorithm using the updated weight. |Oza| proves that as the number of samples N
grows to infinity, the distribution of the online training set will converge to that of
the batch algorithm.

This algorithm has been adapted and extended in multiple online bagging
methods. Wang et al. [237] make use of this strategy to deal with the class imbalance
problem in online manner. Their strategy is to adjust the A parameter of the Poisson
distribution so that data points with underrepresented classes have a larger effect
on the training. Bifet et al. [29] provide two alternative bagging methods with the
purpose of dealing with concept drift, one that uses trees of different sizes, and
one that makes use of the ADWIN [25] change detection method on top Oza’s
bagging algorithm to detect when a concept drift has occurred. Leveraging Bagging



44 5 ONLINE LEARNING

€ X, €1 X,
W, :0.33 W, :0.25 W, :0.25
W,,:0.33 W,,: 0.5 W,,: 0.25
W .:0.33 W .:0.25 W . 0.5

Figure 5.1: Example of batch boosting. After the ensemble makes an error for an
instance, we increment the weight for that instance, and train the new learner using
the updated weights.

[27] is an improvement to the previous model, where the authors increase the A
parameter of the Poisson distribution to “increase the diversity of the weights” and
use the method of Dietterich and Bakiri [74] to handle multi-class cases as binary
classification using error correcting codes.

5.3.2 Online Boosting

Boosting works by combining the predictions of many weak learners to produce
a strong learner. The process adjusts the weight distribution of the data points
at each iteration, assigning more weight to “difficult” instances that the current
ensemble mis-predicts, forcing subsequent iterations to focus on those examples.
An example is given in Figure There, after L; mispredicts the class of x;,
we increase its weight in the following iteration, and train the new learner using
the updated weights. The difficulty in online boosting is that instances arrive
sequentially, making it challenging to maintain a distribution of weights.

Online boosting has found more widespread use compared to online bagging
ensembles, as it has been used successfully in many computer vision applications,
with a focus on object tracking [244] [10, [248| [137| 156, 104, 222]. As a result
many different boosting algorithms have been proposed, some aimed at a specific
application like object tracking, and others that are general learning algorithms.

We will focus on the original algorithm proposed by Oza, which we also make
use of in Paper V, and the more recent general online boosting algorithms that
improve upon the theoretical guarantees and performance of the original.

The original online boosting algorithm by [Oza) referred to as OzaBoost, is listed
in Algorithm 2} The learning process is similar to that of OzaBag (Algorithm [},
but now the algorithm is strictly sequential, and the weight the example takes
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Figure 5.2: Example of online OzaBoost. The instance x, passes through each
learner in sequence. Its weight is drawn from a Poisson distribution, whose A
parameter is increased when a learner makes an error, and decreased otherwise.
Here L1 makes an error, while L, correctly classifies the instance.

depends on whether the previous member of the ensemble was able to correctly
classify the example. Specifically, the algorithm tries to assign half the total weight
to the misclassified examples on the next stage, and the other half to the correctly
classified ones. This is done by keeping track of the A parameter sums for the two
cases, correct and incorrect classification. We update the weight of an example
before it passes on to the next member of the ensemble accordingly, increasing
the weight every time is incorrectly classified, and decreasing it every time it is
correctly classified. One thing to note about OzaBoost is that it requires that we
set the number of boosting rounds from the beginning, unlike the batch AdaBoost
algorithm. A simplified illustration of the algorithm is given in Figure

Despite its popularity, OzaBoost lacks rigorous theoretical guarantees. The first
attempt to formalize online boosting was made by Chen et al. [54]. They re-visit
the assumption made about the performance of the weak learners, namely that any
weak learner will be able to do better than random guessing, as it is not a realistic
assumption for the online setting where learner accuracy is more limited. They also
provide a way to not have to set the number of learners in the ensemble beforehand,
by dynamically assigning voting weights to learners. However, doing so requires
the setting of another parameter vy, for which it is hard to determine good values.
Their algorithm, OSBoost, extends the batch SmoothBoost [215] algorithm, which
was designed as a boosting algorithm robust to noise, to the online setting. They use
the weighting scheme from that algorithm to assign larger weights to incorrectly
predicted examples, and prove that their ensemble can use the set of weak learners
to achieve a small error.

The work of Beygelzimer et al. [16] improves upon OSBoost, by providing
an optimal algorithm in terms of “the number of weak learners and the sample
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complexity needed to achieve a specified accuracy”, and also provides a parameter-
free algorithm that does away with the need to set the y parameter of OSBoost. The
optimal algorithm, Online.BBM, is based on the Boost-by-majority batch algorithm
[91] and relaxes the assumptions made by OSBoost, while the parameter-free
algorithm, AdaBoost.OL, makes use of online loss minimization where Beygelzimer
et al.|choose to minimize logistic loss in order to avoid large weights which could
adversely affect the error rate of the algorithm. We should note that all the above
algorithms are strictly sequential and are therefore hard to parallelize. Our work in
Paper V is able to make use of any online boosting algorithm to perform parallel
online boosting, while maintaining their guarantees.

Algorithm 2: OzaBoost(h, L, (x,y))

init AL AV 0, VEe(l,s] // cumulative weight of instances with
correct and wrong predictions

input :h, the ensemble, a set of s hypotheses ht; Lo, an online learning algorithm;
(x,y), a labeled training instance.

output :prediction .

// prequential evaluation: first test...

y=argmax,, ) ;_,log (if‘) [(he(x) =1)
// ...then train

A1
foreach hy € hdo // in order t € [1,s]
k < Poisson(A)
while k > 0 do // give weight k to the instance
h & Lo (hy, (x,y))
ke—k—1
if y = h¢(x) then // correct prediction
AL AL+ A
et reinE
t t
N (aker)
else // wrong prediction
AV =AY A
A (%)

return §
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5.4 Evaluation

The evaluation of online learning algorithms differs from the batch case, not only
because of the potential for a concept drift occurring, but also due to considerations
about the computational cost of the methods themselves. The research on valid
evaluation methods for streaming methods is somewhat limited however, with
the notable exception of the work by Gama et al. [94], further expanded in [97]. In
this section we provide a brief overview of the challenges and proposed solutions
for the evaluation of online learning algorithms and refer the reader to [97] for an
in-depth look into these issues.

Gama et al. [97] identify three areas that become important in the evaluation
of streaming learning algorithms: Space in terms of the memory requirement of
the algorithm, learning time, and generalization power. Each of these aspects is
important in the online learning scenario, and we will discuss here the space and
generalization power aspects, since learning time is a more intuitive concept.

Online learning algorithms are commonly designed for limited resource envi-
ronments, and as such, the space requirements of the algorithm are an important
consideration. Apart from the theoretical analysis of the space cost of the algorithms,
their empirical costs should also be analyzed, as the empirical differences between
algorithms with the same theoretical memory cost can be significant. Bifet et al. [28]
introduced the concept of RAM-hours for this purpose, with the aim of estimating
the cost-efficiency of an algorithm in a cloud environment where instances are
charged according to the time taken to use them, and instances with higher memory
capacities are usually more expensive. RAM-hours measure the empirical memory
consumption of an algorithm, with one GB of RAM deployed for an hour equaling
one RAM-hour. Domingos and Hulten [75] make specific mention of the memory
requirements of the online decision tree algorithm they develop, and provide
solutions that make the algorithm memory bounded. However as Gama et al. [97]
mention, this is an aspect often overlooked in the evaluation of online learning
algorithms.

In terms of evaluating the generalization power of online learning algorithms,
one aspect that requires special attention is the fact that the learner evolves as we
train it with more samples, so its performance in the early stages of learning can
be very different to later stages. The two strategies proposed as viable evaluation
strategies for the online setting in [97] are holdout testing and prequential evaluation.
Holdout testing refers to the established evaluation method from batch learning,
where we train our algorithm on a subset of the data, the training set, and evaluate
its performance on a set of unseen data, the test set or holdout set. This requires us to
set a specific interval at which we check the performance of the algorithm on the
test set, although theoretically we could also perform this test after each example,
introducing however a large computational overhead if the test set is large.

An alternative is to use predictive sequential (prequential) evaluation where
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we present an example to the algorithm, make a prediction, update our metric,
and finally reveal the example’s label and proceed to train the algorithm with it.
This method can also be used in situations where the label is available for only
few of the points in the data set. However, because the model will exhibit worse
performance in the early learning stages, it is recommended to apply a forgetting
factor to the metric, so that large errors made in the start do not severely affect the
overall evaluation of the algorithm. This can be done using sliding windows, i.e.
evaluating the error using overlapping subsets of the incoming dataset, or using
fading factors which discount the error for older examples [94]. These have the
added advantage of being faster to compute and memory-less compared to using
sliding windows.

One common issue in classification, in the batch as well as the online setting, is
class imbalance. For example, on a dataset where 90% of the instances belong to a
single class, a simple majority classifier will achieve 90% accuracy, although no real
learning is taking place. To deal with this problem in the online setting, Bifet and
Frank [23] proposed the Kappa statistic, and its extension k., [21],which is a robust
estimator that takes into consideration the probability that a classifier will produce
the correct prediction by chance. The metric has also been expanded to deal with
temporal dependence in the labels of subsequent examples [257]. More recently,
Brzezinski and Stefanowski [43] proposed an online adaptation of the area under
the ROC curve metric (AUC) [87], called prequential AUC which can deal with the
class-imbalance problem also in the presence of concept drift, and performed an
evaluation against metrics like the Kappa statistic to show that each metric captures
a different aspect of the algorithm’s performance.

5.5 Software

Compared to the multitude of options available for batch learning, the availability
of open-source software for online learning is relatively limited. In this section we
mention the most popular libraries for online learning, and point out the ones we
have have used and extended as part of this dissertation.

Perhaps the first online learning library released was the Very Fast Machine
Learning (VFML) framework which was developed by Domingos and Hulten [75]
as part of their work on the Very Fast Decision Tree (VFDT) algorithm (which we
describe in Chapter[5.2). It includes the VFDT and its variations, as well as data
pre-processing tools.

One of the most established open-source frameworks for online learning is
MOA, which stands for Massive Online Analysis [26]. MOA includes a collection of
learning algorithms, evaluation methods and metrics, data generators as well as
a graphical interface to perform repeatable experiments. MOA is designed in the
vein of WEKA [107] and includes interfaces that allow inter-operability between
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the algorithms available in WEKA and MOA. Like WEKA, MOA has an extensible
design that allows developers to re-use parts of the existing algorithms to develop
new methods, and easily evaluate new methods using the evaluation strategies
mentioned in Section[5.4] by adhering to a simple APL In our work, we have used
MOA to implement the algorithms of Paper IV and as a baseline comparison in
Paper V. Other single-worker online learning libraries include LIBOL [118] and
more recently scikit-multiflow [182].

One drawback of these libraries is that they are designed to run on a single
machine and therefore can have issues with massive, distributed streams. Apache
SAMOA [63] is an effort to bring the design principles of MOA into the distributed
setting, utilizing a platform-independent design that allows it to run on top of many
distributed stream processing engines like Apache Flink [49], Apache Storm [230]
and Apache Samza [185]. Similarly to MOA, it provides learning algorithms and
evaluation methods, and its design makes it easy to extend with new algorithms.
We have used SAMOA as the development framework for Paper V.

Another library aimed at distributed stream learning is the StreamDM library [31]].
StreamDM also inherits some of the design aspects of MOA, providing similar
interfaces to access learning algorithms and run evaluations, but unlike SAMOA is
built to run on top of only the Apache Spark [247] streaming engine. While running
on top of a distributed stream engine can make the development of distributed
algorithms easier, it can have a negative effect on the performance of the library,
due to the overhead introduced by the engine. To tackle this is issue, an optimized
version of StreamDM was proposed in [32]. An earlier attempt at developing a
distributed streaming learning framework was Jubatus [113].

Finally, one of the most successful frameworks that relies on online learning,
albeit to deal with batch problems, is Vowpal Wabbit (VW) [3]. VW makes use
of parallel and distributed Stochastic Gradient Descent [36] as its main learning
algorithm and has been extended to provide a number of online learning mod-
els, including online boosting [16]], online Latent Dirichlet Allocation [117], and
contextual bandits [77].
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CHAPTER

Graph Vertex Similarity And Concept
Discovery

In this chapter we provide a summary of our work on scalable graph vertex similarity
calculation and concept discovery, described in Papers I and II. We describe the
problem and some related work in Section [6.1|and present our approach in Section
We give our findings in Section [6.3 where we also present an experiment that
was not part of our original work, that bridges deep learning with our work to
extract visual concepts from images. We close the chapter with a discussion relating
this work to our overall research question in Section

6.1 Background

This work tackles the general problem of determining the similarity between
objects in a data set, which can take the forms of cosine similarity between items
embedded in a low-dimensional representation [178], or, as done in this work, by
modeling the problem as graph vertex similarity calculation. We use the generic
term object to emphasize the generality of our approach, made possible by the graph
representation. In the papers we present examples from the linguistic, music, and
molecular biology domains, and in this dissertation provide an additional example
using generated image tags as input, in Sectionm

In our approach we model the objects as nodes in graph and their interactions
as edges, initially weighted by a simple measure of correlation between the objects.
In text for example, the nodes would be words and the edges could be weighted by
their pointwise mutual information [59].

The computation of all-to-all similarities in a graph can quickly become in-
tractable for large graphs. The popular SimRank algorithm developed by Jeh and
Widom [125] for this purpose, has a cubic time complexity with respect to the

53
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number of nodes in the graph. Clearly then for large-scale graphs some form of
approximation needs to be used to make the computation feasible.

6.2 Scalable Vertex Similarity and Concept Discovery

We deal with the scalability problem by using a two-step process to calculate
similarities. We first create a correlation graph that models simple correlations
between objects. These correlations are easy to extract and do not necessarily hold
semantic information. For example, given a corpus of text we can use a co-occurence
measure, like pointwise mutual information, between any two pairs of words and
use that as the edge weight between the two in the correlation graph. We then
compute the similarities between nodes by applying a transformation on this graph,
to produce a graph which surfaces deeper, semantic interactions which we term the
similarity graph. In order to determine the similarity between objects in a graph, we
examine their agreement in correlations to other objects: if two nodes are highly
correlated to many common nodes, they are more likely to be similar themselves.

However, computing these all-to-all similarities can be challenging for correlation
graphs with billions of nodes. As in other works in this thesis, we apply a
combination of using approximations to limit the computational cost of the method,
and develop a distributed algorithm that allows us to scale-out learning and take
advantage of modern computing clusters.

The first approximation we employ makes use of a characteristic that many
real-world datasets exhibit, that is that most objects are uncorrelated and the graph
is therefore sparse. These type of graphs, appear in areas like gene co-expression
[130], semantic networks [224], word co-occurrences [48] and social networks (see
[4] for further examples). This allows us to prune the input correlation graph
significantly before transforming it, while maintaining a controllable and small
approximation error.

The second approximation has to do with the locality of the computation. Instead
of trying to solve the computationally intractable all-to-all similarity problem, we
instead only look at nodes that are two hops apart, keeping the computation local
and dramatically reducing the cost per node in the graph. This approximation is
what makes the distributed implementation of the algorithm efficient. In order to
compute, for each pair of nodes in a neighborhood, their common sets of correlated
nodes, we need only examine the common sets of incoming edges per node. By
distributing our graph using the id of the incoming nodes as a key we can perform
this computation using a self-join operation, which involves no communication
of data in the cluster. As a result we are able to scale the computation to massive
datasets, as we demonstrate by training on the Google Books n-gram dataset, which
corresponds to approximately 4% of all the books ever printed [177] (24.5 billion
rows), in a few minutes.
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Once we have built the similarity graph, we can go one step further in order to
extract groups of inter-similar objects that we call concepts. These correspond to
groups of objects that belong to the same semantic group, based on their appearances
in the context of other objects. In the language example these could be words
that describe the same concept such as “cities”, or words with the same syntactic
and semantic purpose, like groups of adverbs. To create these groups we apply a
community detection method on top of the similarity graph. Because the similarity
graph itself can be large, we develop a scalable approach which is based on the
speaker-listener label propagation algorithm (SLPA) [241].

6.3 Main Findings

In the paper we provide examples of the output produced by the algorithm, and
perform a quantitative evaluation of the similarities produced using a gold standard
dataset, WordSim-353 [85]. Here we provide a summary of some of the experiments
presented in the paper, and a new set of results using images as input.

6.3.1 Billion words corpus

In the paper we perform an evaluation on the Billion word corpus [53] which contains
approximately one billion tokens and was scraped from online news sources. We
create the correlation graph by using the relative co-occurrence frequency of word
pairs, that is the (directed) correlation between the words i and j, py,;, will be ¢y 5/cq
where c; ; the number of times the words co-occur within a window, and c; the
frequency of word 1 in the corpus. For this experiment we select a window size
of two, meaning we only take into account bigrams. We can see some example
concepts uncovered by the algorithm in Figure

6.3.2 Music

We also perform experiments on a music listening dataset created by Celma from
the Last.fm music service [51]. The dataset contains 19 million track plays from 992
users, which we use to create a correlation graph between artists. The correlation
measure p; ; is the number of times artist i was followed by artist j, divided by the
total number of plays for artist i. Some example artist concepts which correspond
to music genres can be seen in Figure

6.3.3 Uncovering Visual Concepts

In this experiment we make use of a combination of deep neural networks and our
algorithm to uncover visual concepts from images. Deep neural networks can be
trained on labeled datasets of images to recognize multiple objects in an image
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Figure 6.1: Example concepts extracted from the Billion word corpus

[103]. The networks” accuracy creates a unique opportunity to generate visual
concepts out of raw images: A network trained on labeled dataset like ImageNet
can be used to generate labels from unlabeled raw images thus generating a
“silver-standard” dataset which we can use as input for our algorithm.

In our experiments we have used the Openlmages dataset which uses
multiple image classifiers to annotate images with labels from 19,794 different
classes. The complete training dataset contains 9,011,219 images scraped from the
Flickr servicd} of complex scenes annotated with 8.4 objects per image on average.

We use the Openlmages data to create a correlation graph of objects: We form a
clique for every set of objects that exists together in one image, creating a graph that

Twww.flickr.com
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Figure 6.2: Example concepts extracted from the music listening dataset.

represents how objects commonly appear together in real images. Take for example
the annotated image shown in Figure The image is annotated with both the
horse and cowboy hat labels. All the labels in the image will form a clique in our
graph. Looking at another image, [.3b|we can now extend this graph, by connecting
the cowboy hat label with the guitar label, creating a second degree link between
the horse and guitar labels. By incorporating all such images, our correlation graph
will have a representation of objects that tend to appear together in the real world.
Using this graph as input, we can apply our similarity transformation to group
together objects that belong to semantically similar classes, based on the similarity
between the contexts in which they appear in, in the real world. Finally we can
apply our community detection algorithm to group together items to form visual
concepts in the similarity graph.

To illustrate the uncovered concepts, we take the 30,000 most similar pair-wise
object similarities and present the output similarity graph in Figure where
the colors indicate the uncovered concepts. To ease presentation we provide
two zoomed-in parts in Figure where we can see objects that can roughly be
described as “uniformed people” are grouped together in Figure[6.5a} and objects
that relate to cameras grouped together in Figure

Using our algorithm in combination with deep learning models, we can use the



58 6 GRAPH VERTEX SIMILARITY AND CONCEPT DISCOVERY

wealth of unlabeled images that exist in services like Flickr to create visual concepts.

6.3.4 Quantitative evaluation

To provide a quantitative evaluation of the method we made use of the WordSim-353
(WS-353) dataset. This dataset includes 353 word pairs that are rated by humans for
their similarity. This dataset includes unrelated words which presents a problem
for our approach that by design does not calculate similarities for words that are
unrelated, as using the graph structure is one of the main ways we can make the
computation scale. For that reason we use the word pairs that appear both in the
evaluation dataset and exist in our similarity graph. We use the Google n-grams
data with a corpus of 361 billion tokens, which in under 10 minutes produces a
similarity graph that contains 60% of the word pairs present in WS-353.

The produced similarities have a Spearman rank correlation of 0.76, which
is exactly what the inter-annotator agreement is for this dataset. Finally we
compare the WS-353 and our produced similarities with the cosine similarities of
the GloVe [194] embedding vectors, which was at the time of publication the state of
the art language embedding method. We train our method on a smaller corpus and
smaller window than the GloVe vectors, but are still able to generate similarities
comparable to GloVe (0.71 Spearman rank correlation).

6.4 Discussion

In this chapter we presented our work on scalable vertex similarity and concept
discovery. We made use of approximations to dramatically reduce the amount
of computation, first by using locality in our computations, and then by taking
advantage of the structure of the graphs to dramatically reduce the number of edges
that are involved in our similarity calculations, further decreasing the computational
cost. We designed the algorithm for a distributed setting, and through careful
design of the similarity calculation step, we are able to minimize the amount of
network communication necessary. Thus, in this work we cover two of the three
objectives defined in Section [I.1|and tackle our original research question in the
context of vertex similarity.
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(b) An image that contains a cowboy hat and a guitar.

Figure 6.3: Examples of annotated images from the Openlmages dataset.
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Figure 6.4: The concepts uncovered by using the Openlmages data as input to our
algorithm. The labels are legible through zooming in the electronic version. See
Figure|[6.5] for zoomed-in crops of the graph.
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(a) A concept that brings together uniformed professions and military objects.

mirrorless i geable-lens

(b) A concept that groups together camera equipment.

Figure 6.5: Two visual concepts from the top-right corner of Figure






CHAPTER

Use-case: Session Length Prediction

In this chapter we provide a real-world use-case that serves as motivation for the
rest of the work described in this dissertation. After giving an introduction to
the problem and related work in Section[7.1} we describe the methods we used to
analyze the data and make predictions in Section|/.2|and summarize our findings
in Section[7.3} Finally, in Section[7.4 we provide desiderata for a real-world system
and identify gaps in the current state-of-the-art research. We provide solutions to
each of the specific problems identified here in the following chapters.

7.1 Background

Asmedia streaming services have proliferated it has become important for streaming
companies to analyze their users’ behavior to optimize their offering and meet their
business goals. One important factor in user satisfaction is the length of users’
sessions [138], which we define as the the complete interaction of a user starting up
the service, consuming a number of items, and ending their interaction after some
elapsed time. This kind of interaction has been studied in the web search [138} 35]
and ad click [150} [11] domains, but no study had investigated the media streaming
domain before.

Streaming services can use the length of user sessions to optimize their recom-
mendations, for example providing exploratory and more “risky” recommendations
for long sessions, versus exploitation and more “safe” recommendations for short
sessions. In ad-supported services, having an indication of the session length can
also help with scheduling ads, allowing the provider to meet their revenue target,
while minimizing the annoyance to the user [100].

Predicting the length of user sessions in a mobile streaming service can be
challenging, because user interaction lengths typically exhibit long-tail distributions
[11,1162,1216], and the external factors that can influence the length of the session
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can be hard to model, like users commuting, taking phone calls, or connectivity
issues. Media streaming sessions also differ from dwell time after ad clicks and web
search. In music specifically, which is the domain we are examining, users typically
consume multiple items in one session and have different behaviors depending on
the type of session as we show in our results (Section [7.3).

In our paper we provide an analysis of the session length distribution using
tools from survival analysis and build a predictive model using gradient boosted
trees with specialized loss functions to place the probability mass correctly in the
presence of a skewed dependent distribution.

7.2 Analysis and Prediction of Media Streaming Session Length

In this section we describe the methods we have used to analyze the data and create
a predictive model for session length.

7.21 Weibull Analysis of Session Length

To analyze the user length behavior of the users we use tools from survival
analysis [140], and specifically the Weibull distribution [50]. The Weibull distribution
is a flexible parametric distribution, commonly used in survival analysis because
it allows to model different kinds of failure rates, where the probability of a unit
failing changes over time. Its probability density function is:

k—1
f(t) = k (t) e (/M £ >0 (7.1)

and provides two parameters: the shape k and the scale A. The shape k determines
the evolution of the failure rate over time, while the scale, A, determines the spread
of the distribution. The effect of k is best shown through an illustration of the
hazard rate for the Weibull function, that gives us the failure rate for an item that
has survived until time t, shown in Figure

The failure rate increases with time for k > 1.0, which is called the “positive-
aging” effect, and decreases with time for k < 1.0, an effect called “negative-aging”.
Positive aging is what we commonly associate with web sessions and is indeed
observed in 98.5% of post-click behavior [162]: as time goes on users become more
likely to quit the session at any point. On the other hand, negative aging means that
sessions become less likely to end as time goes on. This behavior is also described as
“infant mortality” where defective units may fail early on, but as time goes on they
become less likely to fail. For k = 1 the failure rate is constant and the distribution
becomes equivalent to the exponential distribution.
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Figure 7.1: The failure rate of the Weibull distribution for different values of the

shape parameter, k. We set A = 1.

7.2.2 Prediction

For prediction, in order to tackle the issue of the long-tail distribution of the sessions
and to extract as much power as possible from the predictive features, we choose
the gradient boosted tree (GBT) algorithm. GBTs allow us to customize the loss
function to better fit the long-tail distribution of the dependent, and are flexible
enough to discover patterns in the large data we have available, and can readily
handle missing data which are common in industrial settings and our dataset in
particular.

We extracted a set of features for each user, like their gender, age, subscription
status (paid or free user), and a set of contextual features for each session, like the
device type the session is on, the type of network (mobile, WiFi), or the duration of
the last session.

Our dependent is non-negative and long-tail distributed. One common solution
in these cases is to log-transform the dependent and then fit using a squared loss,
but we often want to use a loss function that is better suited to the task. To that end
we try fitting the GBT both on the log-transformed data with a mean squared error
objective, as well as fitting on a log-likelihood objective of a Gamma function with
a log link function, which can explicitly model non-negative data with a positive
skew. We also test two versions of each model: One where all data are aggregated
and we build a single model, and one where we build a personalized model for
each user.
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Figure 7.2: Histogram plot of session length. The x-axis has been normalized to the
1-1000 range.

7.3 Main Findings

7.3.1 User session distribution characteristics

We use a dataset of user interaction from the Pandora music streaming service,
which is a major US-based music streaming service, and mainly ad supported. We
define sessions as periods of listening activity that are demarcated by breaks or
pauses of 30 minutes or more. We gather data from a random subset of users for
the months of February to April 2016, resulting in 4,030,755 sessions. We plot the
normalized duration data in Figure

We analyze the session length distribution by fitting a Weibull distribution to
each user’s data, and plot the resulting Empirical Cumulative Distribution Function
for the shape parameter in Figure We can see that unlike the web site visits
after a search, that had a negative aging effect (k < 1) for 98.5% of the users, only
44% of the users exhibit this behavior for music streaming. The behavior of the
users is then split roughly down the middle, with some users having sessions that
become more likely to end as time goes on, and others whose sessions become less
likely to end as they grow longer.

7.3.2 Predictive model performance

In our analysis of the performance of the predictive model we use two metrics.
We use the normalized Root Mean Squared Error which is a common choice for
regression problems, but also employ the normalized mean absolute error, a metric
that is robust to outliers, to account for the long-tail distribution of the dependent.
For a baseline predictor we use the mean session length per user, a heuristic that is
simple, but personalized. We present the results in Table
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Figure 7.3: The empirical cumulative distribution for the shape parameter per user.
The x axis has been truncated at x = 4 for readability ( 99.5 % of data points shown).

Table 7.1: Performance metrics for length prediction task. We report the mean value
across the 10 CV folds, and the standard deviation in parentheses.

Method (Objective) Normalized MAE nRMSE

Baseline 1(0.001) 1.16 (0.005)
Aggregated (MSE) 0.71 (0.008) 1.23 (0.008)
Aggregated (Gamma)  0.93 (0.007) 1.10 (0.005)
Per-user (MSE) 0.83 (0.002) 1.29 (0.004)
Per-user (Gamma) 0.86 (0.001) 1.31 (0.003)

From the results we can see that the aggregated models perform better overall,
something that can be explained by the fact that the per-user models are trained on
a few data points for most users, leading to over-fitting. The models using the MSE
objective place most of their probability mass closer to the origin and as a result
perform better in terms of MAE, but miss many of the longer sessions and as a
result perform worse in terms of RMSE.

7.4 Discussion

In this chapter we presented our work on the analysis of session length distribution
in media streaming, and presented a specialized predictive model. Through this
work we are able to identify several limitations in the current state-of-the-art in
decision tree learning.

First, this work demonstrated the need for algorithms that are able to learn
online and adapt to a constantly changing environment. When providing estimates
of users’ session length, we want the predictions of the algorithms to adapt to the
patterns exhibited throughout the day, such as day/night and work /home cycles,
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and be able to adjust to drifting distributions. In order to be able to continuously
adapt our models, we have focused on online learning methods in Papers IV
and V that are both scalable and can continuously update tree models with new
information about the world.

Second, we were able to identify the importance of quantifying the uncertainty
in predictions. For a quantity such as session length, exact predictions can be of
little value. The ability to quantify the uncertainty in a prediction can be more
useful as it allows us to make decisions with confidence and avoid giving users
a bad experience. For example, if we know with a high degree of certainty that
the true value of the session length will be between 30 and 45 minutes we can
optimize recommendations and ad scheduling for a long running session. While
there exist methods that are able to provide uncertainty estimates from decision
trees for static datasets, no methods exist for online decision trees. Paper IV fills
this gap in research and provides online decision trees models with the ability to
produce uncertainty estimates.

Finally, during this study we were able to get first hand experience with the
accuracy, flexibility and scalability that boosted decision trees provide. The success
of boosted trees has been well-documented, from winning data mining competitions
[55], to being the model of choice for mission-critical applications such as ad targeting
at major enterprises [159, [111]]. What’s common in these applications is the need to
deal with potentially very high-dimensional data at scale. In our follow-up work, we
have focused on expanding the area of scalable boosted trees for high-dimensional
data in Paper V in the online domain, and Paper VI in the batch domain.



CHAPTER

Uncertainty Quantification In Online
Decision Trees

In this chapter we present our work on estimating the uncertainty in the predictions
of online decision trees. We define the problem and present some related work in
Section describe the two algorithms developed for this purpose in Section|8.2]
and present our empirical evaluation results in Section[8.3] We close the chapter
with a discussion placing the work in the context of our original research question
in Section[8.4

8.1 Background

As machine learning methods mature and become increasingly popular, they are
more often being deployed in critical scenarios where mistakes can be costly. Such
domains include autonomous vehicles, and the medical and financial sector. In
order for critical decision-making to be done by learning algorithms in these areas,
we need to have a notion of uncertainty in the algorithms’ predictions. Some of
these critical domains also include the requirement that critical decisions be made
in real-time in a constantly evolving environment, and under a tight computational
budget. Examples include the financial domain [96] and autonomous vehicles [171].

These examples demonstrate the need for highly accurate algorithms that can be
trained online, adapt to an evolving environment, and quantify the uncertainty in
their predictions. Most of the online learning methods available today do not offer
quantification in their predictions, while most methods that provide uncertainty
estimates are designed for the batch domain where the data are static and bounded.
In this work we aim to provide highly accurate algorithms that can be trained online,
on a sequentially arriving and potentially unbounded dataset, that also provide
uncertainty estimates for their predictions.
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We develop two algorithms, one based on conformal prediction [235] and one
based on quantile regression forests [175]. The two algorithms are general random
forest learners that enable high accuracy [84], are computationally bounded and
adapt to concept drift through the use of online base learners [120], and provide
uncertainty estimates at an accuracy level equal to or better than the state-of-the-art
[149], while being an order of magnitude faster to run.

8.2 Uncertainty Estimation for Ensembles of Online Decision Trees

In this section we provide an overview of the methods developed for this work. We
provide a brief description of the batch algorithms that we base our algorithms
on, and proceed to explain how we make use of approximations to transfer them
to the online domain. We target regression problems, and our task is to develop
algorithms that exhibit what is called conservative validity in conformal prediction
literature. This refers to algorithms that produce predictive intervals such that the
probability of the true value not being part of the interval is less than or equal to
o, which is referred to as the significance level. This task is different from quantile
regression [142] where the objective is for the error level to be exactly «.

8.2.1 Inductive Conformal Prediction

Conformal prediction (CP) is a meta-algorithm that can add the ability to produce
prediction regions, that is, sets of classes for classification or intervals for regression,
to any point-prediction algorithm. It works by quantifying how surprising or
non-conforming an instance is compared to what the learner has observed and
producing a region that is guaranteed to contain the true value at a requested
degree of certainty. CP is rigorously proven to be valid [235], that is, the probability
of error is bounded by the pre-selected significance level.

While CP was originally proposed as an online learning framework, its com-
putational requirements made it impractical for large scale data, as it required
to re-train the model from scratch with the complete dataset for each incoming
example. Papadopoulos et al. [191] proposed Inductive Conformal Prediction (ICP) as
a way to bound the computational cost of the method in the batch setting. Instead
of constantly re-training the learner, it sets aside a subset of the training examples
referred to as the calibration set, and uses this to determine the non-conformity
scores of the examples and determine the intervals.

However, ICP is an offline method designed for the batch setting and assumes
that the complete dataset is available at training time, in addition to requiring a
external validation set to use as the calibration set. As such it cannot be applied to
the online domain.
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8.2.2 Quantile Regression Forests

Quantile Regression Forests (QRF) [175] are an extension to the random forest [41]
algorithm that enables estimation of the full conditional cumulative distribution
function (CDF) instead of only the conditional mean. Using the conditional CDF
we can estimate prediction intervals for a given significance level by computing the
quantiles at the edges of that interval. For example, for a significance level of 0.1,
we can take the 0.05 and 0.95 conditional CDF values to produce the interval.

QRF works by maintaining at the leafs not just the mean label value of all the
data points that get routed to that leaf, but maintaining a mapping from every
instance to its label in its leafs. Otherwise, it grows trees like a regular random
forest model. QRF uses a weighted sum of all the label values to determine the CDF
estimates.

However because QRF requires access to the complete dataset and needs to
maintain a mapping from each instance to its label value, it can cannot be used in
an online setting where instances arrive in sequence, and memory is bounded.

8.2.3 Conformal Prediction with Online Regression Forests

Our algorithm adapts ICP to the online setting by using online tree learners to
always maintain an up-to-date model, and uses a bounded FIFO queue of instances
as its calibration set to keep the memory requirements of the algorithm bounded.
We make use of out-of-bag examples from the bagging process in order to remove
the need for a separate calibration set, as done in [129]. We make use of the online
bagging algorithm by Oza [186] and the online regression trees by Ikonomovska et
al. [120] to develop online regression forests that produce confidence intervals.

The algorithm works by maintaining a bounded FIFO queue of examples that are
used as the calibration set for the CP algorithm. This set gets populated whenever
an example is out-of-bag for at least one tree in the ensemble. In the online bagging
algorithm we are using, a draw from a Poisson distribution is made for a each
incoming instance, for each learner in the ensemble. If the drawn sample is not
larger than zero, that example is out-of-bag for the learner and we add it to the
calibration set. We maintain a sorted list of predictions for the examples that are
out-of-bag which give us the non-conformity scores for the set.

At prediction time, we use these non-conformity scores to produce the intervals:
After aregular ensemble prediction is made for the incoming instance, we determine
the interval boundaries by moving through the sorted list of non-conformity scores,
and pick the value ¢ = C[| (1 — «) - |C|]] to be half the length of the interval, where
C the sorted set of non-conformity scores and « the requested significance level.
We call this meta-algorithm CPExact.
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Approximations

The map of predictors to out-of-bag predictions needs to be up-to-date with the latest
version of the predictors. That is, whenever an online learner is modified, we need
to update all its predictions in the calibration set. In the worst case, it is possible that
we will need to make |C] - [L| predictions for a single incoming instance, where L is
the set of learners. For a calibration set with thousands of instances and hundreds of
trees in the ensemble, this can quickly become computationally intractable. For this
purpose we propose an approximate version of the algorithm that only updates the
predictions of the new data points that have entered the calibration set since the last
prediction. This allows for significant computation savings, while still providing an
up to date representation of the data points” non-conformity, by constantly adding
new instances to the set and removing older ones. We call this meta-algorithm
CPApproximate.

8.2.4 Online Quantile Regression Forests

The batch QRF algorithm cannot be applied to the online setting as it requires
a mapping from the the complete set of instances to their labels to be stored in
memory at the leafs. The main idea for our algorithm is to use an approximate data
structure to store a sketch of the labels cumulative distribution at each leaf, making
it possible to estimate the quantiles from them.

To that end we use the state-of-the-art KLL quantile sketch [133], that gives a
memory and computation-efficient way to approximate the CDF from a stream
of data. An important characteristic of the KLL sketch is that it is mergeable, that
is, we can apply the sketch to different partitions of a stream, and subsequently
merge them, and the result should be the same as if we had applied the sketch to
the complete stream. We use this property to make the predictions in our ensemble
which are trained with samples of the data.

We maintain one of these sketches at every leaf in the trees of the ensemble.
For every incoming instance that gets filtered to a leaf, we update its sketch with
the label, thereby maintaining an up-to-date sketch of the CDF for every leaf. At
prediction time, we drop the instance down every tree in the ensemble, and retrieve
every sketch. We can then merge those sketches together to extract the overall
estimate of the CDF for the ensemble.

8.3 Main Findings

We evaluate our algorithms against a simple baseline and a state-of-the-art algorithm,
Mondrian Forests (MF) [149]. We use 20 small-scale datasets gathered from the
OpenML repository [232], as well as 10 large scale datasets that exhibit concept drift.
We note that while the approaches we developed are model-parallel, i.e. every tree
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Dataset MF  OnlineQRF CPApprox CPExact
Small-scale data  41.6 5.4 5.7 102.3
Flight delays 6340 836 899 27863
Friedman 2380 114 213 2011

Table 8.1: Average running times for all algorithms (seconds).

can be trained independently in parallel, the results listed are single-threaded to
ensure fair comparison with MF.

Evaluating interval prediction algorithms entails two aspects: The error rate
and the width of the intervals. The algorithms should maintain an error rate that is
below the significance level set by the user. However, this can be easily achieved
by producing very wide intervals that are uninformative. For this reason we also
need to take into account the width of the intervals when evaluating the quality of
the predictions. We measure the actual error rate using Mean Error Rate (MER)
which is the mean of the 0-1 loss of the algorithm, and for interval size we compute
the Relative Interval Size (RIS) that is the normalized mean size of the intervals
produced.

To ease presentation we use two different metrics that combine both aspects: the
quantile loss [142] and Utility, based on the time-utility functions used in real-time
systems [199]. Unlike quantile loss, Utility will only penalize methods that go above
the requested error rate, and as such is a better fit for our conservative validity task.

We can see the results in terms of Utility for the small-scale data in Figure
and for the large-scale drifting datasets in Figure We can see that our methods
are able to outperform the Mondrian Forest baseline in terms of Ultility, while at the
same time being computationally more efficient. The runtimes for each category of
dataset are listed in Table|8.1} where we can see that our algorithms are up to an
order magnitude faster than Mondrian Forest.

We also provide an evaluation for different significance levels. Depending on
the cost of making a mistake, we might require different levels of confidence in our
predictions. Thereby it’s important to measure the performance of the algorithms
over a range of different significance levels. The results are listed in Table
where we can see that Mondrian Forests cannot maintain the error guarantees
above 80% confidence, and that OnlineQRF provides the best compromise between
maintaining the error rate below the requested level, while keeping the produced
intervals informative.
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Method Metric ©
03 02 01 005 0.01
MondrianForest MER 0.28 020 0.13 0.094 0.062

RIS 019 023 029 0349 0.460
MER 023 0.14 0.07 0.036 0.015

OnlineQRF RIS 020 023 031 0345 0510
CPADDIOX MER 022 013 006 0.032 0.006

PP RIS 021 031 048 0785 1.130
CPExact MER 025 016 0.08 0.039 0.009

RIS 028 037 057 0.622 0944

Table 8.2: MER and RIS for different significance levels. The MER should be at most
o where « the significance level.

8.4 Discussion

In this chapter we have presented our work on uncertainty estimation for online
decision trees. We developed two algorithms for this purpose, and demonstrated
their accuracy and efficiency compared to a state-of-the-art algorithm.

Connecting this work to our original goals in Section|I.1} we have dramatically
reduced the computation necessary for online conformal prediction by maintaining
up-to-date online models. For both OnlineCP and OnlineQRF we have bounded the
memory use of the algorithms by using approximate and bounded data structures,
that are able to provide the estimates we need at a fraction of the memory cost,
compared to exact data structures. The approximations made however create
a tradeoff, as we can no longer guarantee the consistency and validity of the
algorithms. In terms of communication cost, as the trees in a random forest are
trained independently there is no need to communicate model updates when
running the algorithms in parallel. However, for OnlineQRF in a distributed setting
we would need to merge the histograms of each tree to provide a quantile prediction.
Through our use of the near-optimal KLL sketch we ensure that the communication
cost is minimal. The optimizations listed cover two of the three objectives listed
in Section[I.1]and this work investigates an aspect of our research question in the
context of uncertainty estimation.






CHAPTER

Scalable Boosted Trees for
High-dimensional Data

In this chapter we provide an overview of our work on scaling boosted tree learning.
We tackle the problem in two different domains: online boosting (Paper V) and
batch gradient boosting (Paper VI). We develop algorithms that are optimized
for the distributed setting by being communication efficient and exhibiting good
scaling characteristics.

9.1 Background

Boosting algorithms are some of the most successful and widely used algorithms
in machine learning, due to their simplicity and excellent accuracy. As a result, a
wide array of research has been proposed with the aim of improving the scalability
of boosting, either through parallelizing the base algorithm, or by developing
algorithms that can perform boosting online.

However, when it comes to high dimensional data, current approaches fall short
in terms of scalability. In the online domain, due to the sequential nature of online
boosting algorithms, current online methods do not make use of parallelism for
training [15) [186,54]. On the other hand, existing methods for the batch domain
provide parallelism along only the data point dimension, limiting their scale-out
capabilities. As a result, for high-dimensional data with millions of features, we are
left with few choices: In the online domain there exist no parallel algorithms, while
in the batch domain the existing feature-parallel algorithms make the assumption
that the entire dataset can fit in the memory of each worker, severely limiting the
size of the problems we can tackle [135} 55]].

In our work we tackle each domain separately: In Paper V, we enable parallelism
in the online learning setting, while maintaining the guarantees of existing online
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boosting algorithms. To achieve that, we use a sequential ensemble of model-
parallel learners that train on different parts of a single data point in a distributed
environment. In the batch domain we enable scalability across both the data
point and feature dimensions by developing a block-distributed gradient boosted
tree algorithm. We show how to make block-distributed training feasible and
communication-efficient.

9.2 Online and Distributed Boosted Trees

In Paper V we make parallel online boosting possible, while maintaining the
correctness of the online boosting algorithms, by using model-parallel learning
instead of the data-parallel approaches used in the batch setting. We make use
of the Vertical Hoeffding Tree (VHT) algorithm [145] which is a model-parallel
extension of the online Hoeffding tree algorithm [75]], often referred to as Very Fast
Decision Tree (VFDT). We call our algorithm BoostVHT.

We provided a description of the VFDT algorithm in Section[5.2] Briefly, the
VFDT algorithm will sort instances down the tree and update the statistics for the
leaf the instance ends up in. This separation of duties allows for the scalable design
of VHT: the algorithm uses two components, one called the model aggregator that is
responsible for sorting instances to leafs and maintaining the model, and one called
the local statistics, which are potentially many workers responsible for maintaining
the statistics for the leaves of the tree. The model aggregator is responsible for
breaking up each instance into its constituent features, and sending them, along
with the label, to the local statistics workers. The model aggregator will periodically
query the local statistics to check if we have collected enough information to split
each leaf with high confidence, as done in the original VFDT.

Optimizations

Our method proposes optimizations that make the learning process efficient in a
distributed setting. We use a design that is similar to the original VHT in that we
maintain two main components, one model aggregator and local statistics. However,
our model aggregator hosts a sequential chain of VHT models, through which
we pass each example. This design allows us to maintain the sequential nature
of the boosting algorithm, and as a result the guarantees of any online boosting
algorithm, while performing the training in parallel and asynchronously in a set of
local statistics workers.

We propose three optimizations over the original VHT algorithm to improve
its characteristics for distributed boosting. First, we design our local statistics so
that the same worker can host statistics from multiple members of the ensemble.
This enables to decouple the level of parallelism from the number of learners in
the ensemble, separating the algorithm’s functional (speedup) and non-functional
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(accuracy) aspects. Second, this enables us to host the statistics for a range of
features on the same worker, across the ensemble. This makes our communication
pattern efficient: We only need to send p messages per instance, where p is the
chosen parallelism level, compared to sending m messages, where m the number of
features. This will dramatically reduce the number of messages sent, since m >> p in
the high-dimensional settings we are focusing on. In addition, compared to existing
parallel boosting methods like AdaBoost.PL [189] that needs to communicate the
complete models between each update, we only need to communicate the split
decisions which are much more compact (3 floating point values instead of a
complete tree data structure). Finally, our approach allows us to send each attribute
slice only once to each worker, as it suffices for each subsequent learner after the
first to only send their updated weight. This brings a communication reduction of
a factor s, where s is the ensemble size, which can often be hundreds of trees [84].

9.3 Block-distributed Gradient Boosted Trees

In Paper VI we extend distributed gradient boosted trees, by parallelizing their
training across both the data point and feature dimensions, making use of block-
distribution. Here we provide a summary of each part of the training algorithm
that we had to adapt to the block-distributed setting. We provided an explanation
of the training process for GBTs in Section[4.2.2] and we briefly re-iterate here: The
training process can be roughly divided into three stages: First comes the prediction
part, in which we use the existing ensemble to make a prediction for each point
in the dataset. We use these predictions to get the gradient value for each data
point. Second comes the gradient histogram creation. In this stage we use the
computed gradients to create gradient histograms for every feature, one for each
leaf in the tree. A gradient histogram for a feature contains in each bucket the sum
of the gradients that corresponds to that feature range. Finally, given the gradient
histograms for each feature, we have a final step of split selection, where we use
these histograms to greedily select the optimal split for each leaf.

9.3.1 Block-distributed prediction

In the row-distributed setting, each worker has access to all the features for the
horizontal slice of the data they are responsible for. This allows us to determine the
exit node for each local data point without any communication. That is not the case
however for block-distributed data where each worker only has access to parts of each
data point. In this case, when the model contains internal nodes that correspond to
features that are not present in one worker, they will need to communicate with the
other workers responsible for the same horizontal slice to determine the exit nodes.
What we want to avoid in this scenario is shuffling the data between workers, as we
could have millions of features leading to impractical communication costs. In our
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Index Featurel Feature2 Feature3 ‘ Gradient
1 13 0 488 1.5

3 3.5 0 122 2

Table 9.1: Example dataset.

approach we develop a novel use of the Quickscorer algorithm that gives us
provably correct and efficient block-distributed predictions.

Briefly, in Quickscorer the exit node for a data point dropped down a decision
tree can be determined by applying the bit-wise AND operation between specific
bit-strings for every internal node. These bit-strings are of length |L|, where L the
set of leaves, and every zero indicates that a leaf node becomes impossible to reach
if the node’s condition evaluates to false, and all other elements are one. When
determining the exit node for a particular example, we need to identify all the nodes
in the tree that evaluate to false for that example, and aggregate their bit-strings
into one overall bit-string v. Lucchese ef al. [168] prove that the left-most bit set to
one in v will indicate the exit node for the example.

We provide an illustrative example, re-using the data from Section[4.2.2} which
we reproduce in Table An example decision tree is given in Figure(9.1} along
with the corresponding bit-strings for each internal node. Each bit in the bit-string
corresponds to one of the leafs of the tree, with the left-most bit corresponding to
the left-most leaf. For example, the bit-string for the root is 0011, because if the
root evaluates to false, the two left-most leaves become inaccessible (we move right
when a node evaluates to false), but either of the two right-most leaves could still
be reached.

Let’s take data point 2, which has the feature values f1:7,f2:1,f3: 667. Using
our oracle we can tell that the nodes that evaluate to false are the root, as 7 > 5, and
its right child, as 667 > 500. Their bit-strings are 0011 and 1101 respectively. To
determine the exit node we simply need to perform an AND operation between these
two bit-strings: 0011 A 1101 = 0001. The left-most bit set to one is bit 4 (or 3 if we
are using 0-indexing), hence the exit node corresponds to the fourth leaf from the
left. We can verify that is true by following the tree conditions.

We adapt the above algorithm to work in the block-distributed setting. Each
worker now only has access to particular range of features for a subset of the data
points. So each worker can only evaluate the conditions of the tree that correspond
to its slice of the features. We create local bit-strings at each worker, one for each
example. These bit-strings have the same properties as in the original Quikscorer
algorithm, however can only eliminate leafs that are children of internal nodes that
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0011

0111 1101

F2<1 F3 < 500
‘ D3 \ ‘ D1 \

Figure 9.1: Example decision tree, and the end positions of the data points in Table
When a node condition evaluates to false, we move to the right child of the
node. The bitstring zeros indicate the leafs that become unreachable when a node
evaluates to false.

correspond to the features available at that worker. To fully determine the output
for each data point, the workers that hold data for the same horizontal slice will
need to aggregate their bit-strings for each data point. We do this by utilizing the
parameter server architecture: Each server is responsible for a one horizontal
slice of the data. The workers that hold the different parts of a horizontal slice, all
send their local bit-strings to the same server, for each example in their data block.
The server then aggregates the partial bit-strings using a simple bit-wise AND to
determine the exit node for each data point.

In our example, say data point 2 was split between two workers, Worker 1 and
Worker 2, with Worker 1 responsible for Features 1 & 2, and Worker 2 responsible
for Feature 3. Worker 1 would be able to only evaluate the condition of the root as
false and produce the local bistring 0011 and Worker 2 would evaluate the condition
involving Feature 3, producing the local bistring 1101. Each worker sends their
local bit-strings to the same server, where they are aggregated to produce the final
bit-string 0001.

Because the AND operator is both commutative and associative, the order in which
these aggregations happen does not affect the result, and the overall aggregation
will be equal to the aggregation of the partial aggregations. This ensures that our
predictions will be correct. By using this method we can determine the exit nodes
for each data point, and from that, the corresponding gradients that we need for
the next step of histogram aggregation. By only communicating bit-strings and
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performing bitwise operations that are hardware optimized we ensure that the
communication and computation cost of this step remains low.

9.3.2 Histogram Aggregation

With centralized data the histogram aggregation step requires no communication,
and can be performed by running a simple local aggregation. In the example given
in Section we determined the full gradient histograms for all features and
data points by aggregating the gradient values for each feature range bucket. In
that example we had three buckets per feature, determined by the empirical CDF of
each feature, which we populated by iterating through each feature value in the
current leaf partition. The resulting full histogram was shown in Figure We
again use the data from Table

Now assume that we have a row-distributed dataset, where we assign data
points 1 and 2 to Worker 1, and data points 3 and 4 to Worker 2. To get a complete
picture of the gradient histograms as shown in Figure 4.3, we need to first create
local histograms at each worker, and then aggregate them between the workers,
meaning that the the algorithm involves one communication step.

One drawback of all current row-distributed methods is that they use dense
communication for the aggregation we just described [55] 135, [195] [126]. Dense
communication requires us to communicate |F| - B values for each worker, where F
the set of features, and B the number of histogram buckets. However, many of the
histogram values can be zero as can be seen in Figure 9.2, where we show the local
gradient histograms for each worker. This results in redundant communication
when a dense communication pattern is used. This problem is exacerbated when
we are dealing with sparse datasets with millions of features.

Block-distribution introduces another level of complexity into this operation, as
in that case, no worker has a complete view of any data point. Each worker gets one
block, that is, a horizontal and vertical slice of the data. If we think of the complete
gradient histograms as a tensor of dimensions |L| x |F| x B, each worker will populate
a part of this tensor, across the L (leafs) and B (buckets) dimensions, but limited
to a specific subset of T (features). In Paper VI, we use a sparse representation of
this tensor at each worker which we then send to the servers, which allows us to
eliminate the extraneous communication described above. Our experiments show
that for sparse datasets this brings the communication cost down by multiple orders
of magnitude.

Once each worker iterates through their block of data, they send their partial
tensor to one server. Each server is now responsible for a range of features, so
workers that belong to the same vertical slice of data will send their tensors to the
same server. Each server ends up having a full view of the gradient histograms for a
subset of features. The split finding step can then be performed using an algorithm
similar to the one proposed in Jiang et al. [126].
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(b) Local gradient histogram for Worker 2.

Figure 9.2: Local gradient histograms for row-distributed data. Note the existence
of multiple zero values that would nonetheless need to be communicated using a
dense communication pattern like MPI allreduce.

9.4 Main Findings

In this section we present the evaluation of the online distributed tree boosting
algorithm from Paper V and the block-distributed GBT algorithm from Paper VI

Online and Distributed Boosted Trees

For our online learning experiments of BoostVHT we use 10 artificial and 4 real-
world datasets. The artificial datasets are generated with different numbers of
attributes using one generator from a tree-like structure, one that generates random
tweet text for a sentiment analysis task, and one rotating hyperplane. The baselines
we test against are a single-threaded online boosting algorithm from the MOA
[26] library using the Hoeffding tree as a base learner, and the base VHT tree.
We measure the speedup over the single-threaded algorithm, and use the robust
Kappa [22] statistic to measure accuracy, that considers the probability of agreement



84 9 SCALABLE BOOSTED TREES FOR HIGH-DIMENSIONAL DATA

TextGenerator_50attrs TextGenerator_100attrs TextGenerator_150attrs TextGenerator_500attrs

(WWWWW

20 ' | — BOOStVHT|
MOA

I i e e

sofl"”

60

40

Kappa Statistic (%)

- VHT

T

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 08 1.0
5 : 5

Instances Instances 10 Instances 10 Instances 10

Figure 9.3: Kappa statistic (accuracy) as a function of arriving instances over time
for text generator datasets with an increasing number of attributes.

by chance in the evaluation.

We start by showing that the boosted version of the algorithm performs better
than the base VHT. Figure[9.3|shows an example experiment using different levels
of dimensionality for the text-generator data. We can see that as we increase
the number of features and make the problem more difficult, the accuracy of
the VHT algorithm deteriorates, while BoostVHT is consistently accurate, and is
practically equivalent to the single-threaded boosting algorithm. At the same time,
the concurrent and parallel design of the algorithm provides us with a speedup of
%45 on average, compared to the single-threaded implementation of MOA (shown
in Table 2 of Paper V).

Finally we examine the scalability of the algorithm in terms of strong and weak
scaling. Ideal strong scaling provides linear speed-up: Doubling the amount of
resources while keeping the problem size constant should halve the execution time.
Ideal weak scaling should have linear scale-out: doubling both the problem size
and resources at the same time should not affect the training time significantly.
We illustrate the scaling characteristics of the algorithm in Figures[9.4and 9.5]for
weak and strong scaling respectively. As we can see in the figures, the algorithm
scales almost ideally both in terms of weak scaling, keeping its training time close
to constant as we double resources and the problem size, and provides near-linear
speed-up for our strong scaling experiments.

Block-distributed Gradient Boosted Trees

To determine the performance gains and limitations of our block-distributed
approach and the sparse communication we employ, over the dense row-distributed
approach, we use 4 datasets with different sparsity levels. First we have two highly
sparse datasets, URL and avazu with roughly 3,2 million and 1 million features
respectively. Second, we use the RCV1 dataset with approximately 47 thousand
features and the dense Bosch dataset with 968 features. We implement both
approaches from scratch in C++ to ensure a fair comparison. We use 12 workers for
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Figure 9.5: Strong scaling in the parallel (left) and distributed (right) setting. The
time reported is the average time to train 1,000 instances, each with 1,000 attributes,
in milliseconds. The red straight line indicates ideal linear scaling.
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Figure 9.6: The byte size of the gradient histograms being communicated for the
various datasets.

the row-distributed approach, and 9 workers and 3 servers for the block-distributed
approach.

We measure the communication cost in MiB for the dense histograms of the
row-distributed approach and our sparse block-distributed histograms. We also
evaluate the end-to-end runtime of the histogram aggregation step, divided into
communication and computation stages, to measure the real-world runtime. This
step is the most computationally intensive part of GBT learning [176] and in our
experiments constitutes at least 90% of the total runtime of the training.

In Figure[9.6) we can see the benefits of sparse communication: For the highly
sparse URL and avazu datasets the reduction in communication is five and two
orders of magnitude respectively. The sparse histograms however introduce
additional computational cost: unlike dense data structures that are contiguous
in memory, sparse structures use indirect addressing which makes building and
accessing these histograms cache-unfriendly. This, in combination with the overhead
introduced by the use of the parameter server, leads to increased computation
time. While in the sparse datasets the significant gains made by minimizing the
communication time allows us to compensate for the increased computation, that is
not the case for the dense data, where computation time dominates, as shown in
Figure 0.7}

Finally we demonstrate the communication savings possible in terms of the
feature sketches. As we mentioned in Section {4.2.2} in order to determine the
possible split points for each feature, we need to have an estimate of the CDF for
each feature. These can be calculated once at the beginning of learning, or once
per leaf, to get a more accurate representation of the CDF in every leaf. Chen
and Guestrin [55] show that generating per-leaf (local) split points leads to the
same overall accuracy as using the overall sketches (global) while using much less
accurate sketches, thereby creating potential communication savings: The size of
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Figure 9.7: The communication and computation times for the various datasets, in
seconds.

a quantile sketch is determined by the level of error in the approximation we can
accept [133]], and the values we populate it with.

However, when using dense communication we need to know the size of the
sketch being communicated in advance. In a probabilistic sketch, this is only
possible if we use the maximum theoretical size of a sketch, to ensure the sketches
do not overlap in memory. This of course is a major source of inefficiency, as the
actual size of the sketches can be orders of magnitude smaller. For this reason
current distributed approaches all use the global sketch approach, in order to only
communicate the sketches once at the beginning of learning instead of having to
communicate once for every leaf.

Using our sparse approach however, allows us to only communicate the true size
of the sketches, thereby providing massive savings in communication, as shown
in Figure This would allow the sketches to be communicated for every leaf,
leading to even further savings by using lower accuracy sketches or increased
accuracy in the CDF representation.

9.5 Discussion

In this chapter we have presented our work on scalable boosted trees. We first
developed a model-parallel online algorithm with linear scaling characteristics and
demonstrated its accuracy advantages over single trees and significant runtime
gains compared to serial tree ensembles. We have used efficient communication to
dramatically reduce the number of messages sent.

Second, we developed a block-distributed gradient boosted tree algorithm.
Apart from enabling scale-out across both the feature and data point dimensions,
we took advantage of data sparsity to reduce the communication necessary for



88 9 SCALABLE BOOSTED TREES FOR HIGH-DIMENSIONAL DATA

URL Avazu RCV1 Bosch

100004

10004

104

Sketch Size (MiB)

Block  Row Block  Row Block  Row Block  Row
Method

Figure 9.8: The byte size of the feature sketches being communicated for the various
datasets.

training by several orders of magnitude.

Thus, these studies demonstrated how algorithmic co-design with distributed
systems can lead to optimized runtimes and communication savings, aligning this
work with our objectives and research question defined in Section We note
however that the benefit of both approaches is limited when the dimensionality of
the data is low.
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CHAPTER

Conclusion

In this dissertation we have proposed efficient algorithms for graph node similarity
and decision tree learning. Our goal was to create algorithms that scale out
regardless of input size and to do so we set three design goals: reduce the amount
of computation necessary to produce a result, reduce the amount of communication
during distributed learning, and bound the memory use of the algorithms, making
it possible to train them on unbounded datasets.

In this chapter we conclude this dissertation, by first providing a summary
and critical view of the results, and putting our research in context with the state-
of-the-art. We close the chapter with potential future work directions and open
problems.

10.1 Summary of Results

We first proposed an approximate way to calculate similarities between nodes in a
graph, and discover concepts in the derived similarity graph. Our method reduces
the computational cost by localizing computation in the nodes’ neighborhoods, and
taking advantage of the sparse graph structure to further optimize the computation
with controllable error. We demonstrated the generality of the approach in several
domains and presented qualitative as well as quantitative evidence of its accuracy.
In addition, we demonstrate the scalability of the algorithm by training on one of the
biggest text datasets available in minutes. Compared to other global approaches like
SimRank [125] the computational cost is linear in the number of nodes in the graph
compared to cubic complexity for SimRank. Compared to local approaches like
simply taking the Jaccard coefficient between nodes, our approach has controllable
error, is designed from the ground up with the distributed setting in mind, and we
propose a concept discovery step on top of the similarity calculation.

o1
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We then presented a real-world use case of music streaming session length
analysis and prediction, which demonstrated the unique characteristics of music
streaming listeners, and developed an appropriate predictive model. This work
acts as a motivation for our follow-up work on decision tree learning.

For our first contributions to decision tree learning, we presented two algorithms
to extract uncertainty estimates for the predictions of ensembles of online regression
trees. We use approximate data structures and online learners to adapt two batch
algorithms to the online domain, bounding their computational and memory use
and making it possible to train the algorithms on unbounded streaming data. We
demonstrate the favorable performance of the algorithm against the state of the art
in terms of accuracy, and an order of magnitude improvement in the runtime.

Our next contribution again deals with online decision tree learning, where we
develop an algorithm to learn boosted online decision trees in parallel, achieving
significant learning speedups while maintaining the correctness guarantees of the
underlying online boosting algorithms. Our approach scales almost linearly, for
both weak and strong scalability and we clearly demonstrate the gains in terms of
accuracy over single trees and speed compared to single-threaded approaches.

Finally we presented a new algorithm for distributed gradient boosted tree
learning that enables a new dimension of scalability, allowing for scale-out across
both the data point and feature dimensions. We make use of the Quickscorer
algorithm to achieve efficient block-distributed prediction, and make use of the
parameter server’s flexibility to exploit data sparsity and achieve order of magnitude
improvements in the communication cost of the training process.

10.2 Discussion

We discuss here the extent to which this work answers the research question posited
for our thesis which we reproduce here:

How can we use approximations and parallelism to develop scalable learning
algorithms?

This dissertation has tackled this question by:

* Using approximate solutions and bounded error subsampling of edges to pro-
duce a vertex similarity algorithm with a scalable distributed implementation.

* Using approximate data structures and online learning methods to enable the
estimation of online random forest uncertainty. The approximations made
trade off convergence guarantees for efficient computation.

e Using distributed computation to tackle high-dimensional problems for
boosted decision trees, maintaining the correctness of the algorithms while
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providing significant speedups. We make clear the limitations of the ap-
proaches for low dimensional and dense data.

10.3 Future Directions

We identify several aspects of our work that can be expanded upon and improved,
targeting specific limitations of the model. For our work on graph node similarity
our next targets are to create hierarchical structures of concepts, thereby creating
composable representations in an unsupervised manner. The main challenge for
this task is again the computational cost, as we would need to maintain information
about the role of each node at each hierarchy level as we propagate the relationships.
Another interesting problem is developing a generalized algorithm for evaluating
graph node similarity from a stream of edges, that form the graph in real time.
Finally the calculation of similarities between nodes in the graph that are more
than two hops away is currently, by design, not included in the model. However,
there could be a way to calculate these by following paths in the resulting similarity
graph.

For our work on the estimation of uncertainty in online decision trees, our
foremost priority would be the theoretical justification of the validity of the produced
intervals, i.e. to prove that, like the batch QRF and conformal prediction, the
produced intervals are consistent estimators given the requested significance level.
The ability to deal with concept drift at the meta-algorithm level would also
be welcome, instead of relying on the underlying weak learner to provide this
capability.

Our work on parallel boosted online trees has the drawback that datasets with
a small number of features will limit the potential speedup of the algorithm. An
interesting direction to explore is to create efficient data-parallel or block-parallel
algorithms that might sacrifice the correctness guarantees of our feature-parallel
algorithm for more available parallelism.

Finally for our work on block-distributed gradient boosted trees one priority is to
improve the algorithm’s performance for datasets with low sparsity. The overhead
introduced by the sparse representations and distributed communication systems
we use could be mitigated by, for example, choosing the representation to use
(sparse or dense) based on the characteristics of the data, which can be determined
in the initial pass over the data during the creation of the feature value histograms.
In addition we would like to integrate the approach in an end-to-end learner like
XGBoost to be able to compare its performance with other state-of-the-art systems
like LightGBM.
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