
Partition Tolerance and Data Consistency in
Structured Overlay Networks

TALLAT MAHMOOD SHAFAAT

Doctoral Thesis in
Electronic and Computer Systems

KTH – Royal Institute of Technology
Stockholm, Sweden, June 2013

TRITA-ICT/ECS AVH 13:09 KTH School of Information and
ISSN 1653-6363 Communication Technology
ISRN KTH/ICT/ECS/AVH-13/09-SE SE-100 44 Stockholm
ISBN 978-91-7501-725-9 Sweden

SICS Dissertation Series 63 Swedish Institute of Computer Science
ISSN 1101-1335 SE-164 29 Kista
ISRN SICS-D–63–SE Sweden

©Tallat Mahmood Shafaat, April 2013

i

Abstract

Structured overlay networks form amajor class of peer-to-peer
systems, which are used to build scalable, fault-tolerant and self-
managingdistributed applications. This thesis presents algorithms
for structured overlay networks, on the routing and data level, in
the presence of network and node dynamism.

On the routing level, we provide algorithms for maintaining
the structure of the overlay, and handling extreme churn scenar-
ios such as bootstrapping, and network partitions and mergers.
Since any long lived Internet-scale distributed system is destined
to face network partitions, we believe structured overlays should
intrinsically be able to handle partitions and mergers. In this the-
sis, we discuss mechanisms for detecting a network partition and
merger, and provide algorithms for merging multiple ring-based
overlays. Next, we present a decentralized algorithm for estimat-
ing the number of nodes in a peer-to-peer system. Lastly, we dis-
cuss the causes of routing anomalies (lookup inconsistencies), their
effect on data consistency, and mechanisms on the routing level to
reduce data inconsistency.

On the data level, we provide algorithms for achieving strong
consistency and partition tolerance in structured overlays. Based
on our solutions on the routing and data level, we build a dis-
tributed key-value store for dynamic partially synchronous net-
works, which is linearizable, self-managing, elastic, and exhibits
unlimited linear scalability. Finally, wepresent a replication scheme
for structured overlays that is less sensitive to churn than existing
schemes, and allows different replication degrees for different key
ranges that enables using higher number of replicas for hotspots
and critical data.

Keywords: structured overlay networks, distributed hash ta-
bles, network partitions and mergers, size estimation, lookup in-
consistencies, distributed key-value stores, linearizability, dynamic
reconfiguration, replication.

iii

Acknowledgements

I am highly indebted to Professor Seif Haridi for giving me the oppor-
tunity to work under his supervision. His expanse of knowledge and
methodology of supervision is remarkable. Not only did I learn a lot
from him, I also tremendously enjoyed my time as a student. I am also
extremely grateful to Ali Ghodsi for providing me enormous help and
encouragement during this thesis. His intellect, enthusiasm and ap-
proach to solving problems has been, and will always be, a source of
inspiration for me. I would like to thank Prof. Vladmimir Vlassov as
well, for providing valuable feedback in general and this thesis in par-
ticular. I would also like to show my gratitude to Sverker Janson for
offering me the chance to be a member of CSL at SICS.

During my time as a graduate student, I had the pleasure to visit in-
dustrial labs to get a different perspective on real-world problems and
research environments. I feel extremely privileged to haveworkedwith
GaneshVenkitachalam (VMware, Inc., PaloAlto, 2010), AlexMirgorod-
skiy (VMware, Inc., Palo Alto, 2011), Phil Bernstein and Sudipto Das
(Microsoft Research, Redmond, 2012), and Sergey Bykov (Microsoft Re-
search, Redmond, 2013). I have learnt a lot from them. Their insights
during our discussions have greatly influenced my way of reasoning.

I would also like to thank my colleagues, both at KTH and SICS, for
a lot of fruitful and conducive discussions; Ahmad Al-Shishtawy, Cos-
min Arad, Amir Payberah, Fatemeh Rahimian, Daniela Bordencea, Jim
Dowling, Niklas Ekström, Sarunas Girdzijauskas, and Joel Höglund. I
had a great experience collaborating with Cosmin towards the end of
my thesis. Special thanks to my friends in Sweden, for making my stay
in Sweden cherishable for the rest of my life: Kashif, Waseem, Tahir,
Umair, Magnus, Hedvig, Rick, Anton, Simon, Sarah, Chris, Peggy, Jeff,
Britta, Francious, Maria, Haseeb, and Salman.

Finally, I would like to dedicate this work to my parents, my sis-
ters and brother. Their continuous support and belief in me has been a
tremendous source of inspiration.

To my parents

Contents

Contents vii

1 Introduction 1
1.1 Peer-to-peer Systems . 2

1.1.1 Unstructured Overlay Networks 4
1.1.2 Structured Overlay Networks 4
1.1.3 Gossip/Epidemic Algorithms 6
1.1.4 Modern uses of Peer-to-peer Systems 7

1.2 Research Objectives and Contributions 8
1.2.1 Handling Network Partitions and Mergers 9
1.2.2 Bootstrapping, Maintenance, and Mergers 10
1.2.3 Network Size Estimation 10
1.2.4 Lookup Inconsistencies 11
1.2.5 Data Consistency 11
1.2.6 Replication . 11

1.3 Organization . 12

2 Preliminaries 13
2.1 The Routing Level . 14

2.1.1 A Model of a Ring-based Overlay 14
2.1.2 Maintaining Routing Pointers 15

2.2 The Data Level . 18
2.2.1 Replication . 18
2.2.2 Consistency and Quorum-based Algorithms . . . 19

3 Network Partitions, Mergers, and Bootstrapping 21
3.1 Handling Network Partitions and Mergers 21

3.1.1 Detecting Network Partitions and Mergers 24
3.2 Ring-Unification: Merging Multiple Overlays 26

3.2.1 Ring Merging . 26
3.2.2 Simple Ring Unification 27
3.2.3 Gossip-based Ring Unification 28

vii

viii Contents

3.2.4 Discussion . 31
3.2.5 Evaluation . 32
3.2.6 Related Work . 38

3.3 Recircle: Bootstrapping, Maintenance, and Mergers . . . 40
3.3.1 Merging multiple overlays 45
3.3.2 Bootstrapping . 46
3.3.3 Termination . 46
3.3.4 Evaluation . 46
3.3.5 Related work . 58

3.4 Discussion . 59

4 Network Size Estimation 61
4.1 Gossip-based Aggregation 62
4.2 The Network Size Estimation Algorithm 64

4.2.1 Handling dynamism 65
4.3 Evaluation . 68

4.3.1 Epoch length . 69
4.3.2 Effect of the number of hops 70
4.3.3 Churn . 71

4.4 Related Work . 75

5 Lookup Inconsistencies 77
5.1 Consistency Violation . 78
5.2 Inconsistency Reduction 80

5.2.1 Local Responsibility 80
5.2.2 Quorum-based Algorithms 84

5.3 Evaluation . 88
5.4 Discussion . 93

6 A Linearizable Key-Value Store 95
6.1 Solution: CATS . 97

6.1.1 Replica Groups Reconfiguration 99
6.1.2 Put/Get Operations 107
6.1.3 Network Partitions and Mergers 110
6.1.4 Correctness . 115

6.2 Evaluation . 117
6.2.1 Performance . 118
6.2.2 Scalability . 119
6.2.3 Elasticity . 120
6.2.4 Overhead of Atomic Consistency and Consistent

Quorums . 121
6.2.5 Comparison with Cassandra 123

Contents ix

6.3 Discussion . 124

7 Replication 127
7.1 Downsides of Existing Schemes 128
7.2 ID-Replication . 130

7.2.1 Overview . 130
7.2.2 Algorithm . 131

7.3 Evaluation . 135
7.3.1 Replication groups restructured 135
7.3.2 Nodes involved in updates 137

7.4 Related work . 137
7.5 Discussion . 138

8 Conclusion 141
8.1 Future work . 144

Bibliography 147

CHAPTER 1
Introduction

With the advent of the Internet, applications provide services to re-
mote client machines over the network. These applications build a dis-
tributed system where one or more computers, also known as nodes,
provide some service to other computers over the Internet. This ser-
vice paradigm presents great challenges. One such challenge is to build
scalable systems such that the service quality of an application does not
degrade as the number of clients using the service increases. Further-
more, as the Internet is spread geographically, and it uses various net-
work components being managed by independent administrators, fail-
ure of nodes and network links is a norm in such systems. Thus, achiev-
ing fault-tolerance is vital.

One of the first approaches to built distributed systems was a client-
server paradigm. While the client-server paradigm is still popular and
effective, it has its drawbacks. The main disadvantage of server-based
systems is dependence on one (or a few) server(s) to provide a service to
a large number of clients. Using a single server leads to a single point of
failure and is not scalable. Furthermore, the machines used as servers
have to be tremendously powerful in terms of network connectivity,
storage capacity, and processing power to handle growing number of
clients, and their data. Thus, using high end servers is an expensive
approach. This lead to finding alternate paradigms, one of them being
peer-to-peer systems.

This thesis focuses on achieving fault-tolerance in peer-to-peer sys-
tems. In this chapter, we give a brief introduction to the peer-to-peer
approach for building large-scale distributed systems. Although this

1

2 Chapter 1. Introduction

approach can be used on any network infrastructure over which en-
tities/nodes can communicate, such as an adhoc wireless system, we
use the Internet as a reference in our discussions. After providing an
overview of various peer-to-peer systems, we present the research ob-
jectives of this thesis work, and our contributions to meet the research
objectives. Thereafter, we discuss the outline of the thesis.

1.1 Peer-to-peer Systems

With the advancement of technology, network connectivity, storage,
and processing power have become cheaper. As a result, computers
at the edge of the network, e.g. personal computers, are more power-
ful. This has lead to the vision of using resources available at the edge
of the network, resulting in the realization of systems known as peer-to-
peer systems. Peer-to-peer (P2P) systems are decentralized and a node
may act as both, a server and a client. Thus, a node can use services pro-
vided by other nodes, while it also provides services to other nodes.

Sincemany of the edgemachines are less reliable compared to dedi-
cated servers, achieving fault-tolerance becomes a non-trivial challenge
in peer-to-peer systems. Furthermore, since there is no single point of
control, edge machines can join and leave the system as they please.
Thus, another crucial challenge is that the system should provide easy
management, with machines coming up and going down at any time.
This lead to the development of another attractive feature of P2P sys-
tems, namely self-management, where the system requiresminimumman-
ual configuration and management.

One of the first peer-to-peer systems, calledNapster [113], appeared
in 1999. Napster was mainly used for sharing music files. While Nap-
ster removed the burden of hosting the shared files on the servers, it still
used dedicated servers for the indexing service. The next challengewas
to make a decentralized, scalable, and fault-tolerant indexing service.
This would enable a node to publish information about a data item,
e.g. file, in a decentralized fashion. Similarly, a node would be able
to find/lookup information about an item published earlier in the sys-
tem. To achieve this, nodes that are part of the system are connected to
each other over the Internet instead of connecting to the server(s). Thus,
nodes have network connection information about some other nodes,
called neighbours of the node, participating in the system. The informa-
tion about neighbours of a node are stored locally in a data-structure
called the routing table of the node. The routing table includes names
and network connection information about neighbours, thus enabling a

1.1. Peer-to-peer Systems 3

Underlay – The Internet

Overlay – Routing level1 4

32

a
g

e
d

cb

f

Overlay – Data level

Figure 1.1: An overlay network built on top of an underlay network.
The overlay consists of nodes 1, 2, 3 and 4, while the underlay consists
of components (nodes/routers/switches etc.) a, b, c, d, e, f and g. The
overlay consists of a routing level and data level. The routing level is
used for sending messages between nodes, e.g., 1 can send a message
to a neighbour 2. Such a message travels through the underlay compo-
nents a, c, and d. The data level is concerned with storing items in the
overlay nodes.

node to route messages to other nodes. In essence, the routing tables of
all nodes create a routing system on top of the existing network infras-
tructure, e.g. the Internet. The overall network routing view created by
routing tables of all the nodes is known as an overlay network. Since an
overlay uses the Internet to route messages, the Internet is referred to
the underlay network. This is shown in Figure 1.1.

It is often convenient to view a peer-to-peer system as a graph. In
the graph, the nodes in the overlay are represented as vertices. Sim-
ilarly, the neighbourhood relation of any two nodes in the overlay is
represented as an edge in the graph. The shape of the graph depends
on how the neighbours of a node are selected in the overlay. Based
on the shape of the graph, peer-to-peer systems are classified into two
broad categories: unstructured overlay networks and structured overlay
networks. Figure 1.2 depicts this classification, which is explained in
the following sections.

4 Chapter 1. Introduction

(a) An Unstructured Overlay Network (b) A Structured Overlay Network

Figure 1.2: An unstructured overlay network, and a structured overlay
network with a ring geometry.

1.1.1 Unstructured Overlay Networks

As the name suggests, in unstructured overlay networks, there is no
particular structure of the overlay, i.e. the graph induced by the nodes
is unstructured. Gnutella and Kazaa are two popular examples of un-
structured overlay networks currently being used on the Internet. In
Gnutella, a node has randomneighbours in the network that are chang-
ing all the time. To search for a data item, a node floods the network
with the query by sending it to all its neighbours. Each node receiving
the query forwards it to all its neighbours. Once the query reaches a
node that has the requested target data item, the data item is transfered
to the querying node. Normally, a query contains a time-to-live entry
so that the flooding process terminates after a number of steps/hops.

The main disadvantages of this approach are hampered scalabil-
ity and guarantees on finding the data item. The scalability is ham-
pered because flooding the network with messages is costly, especially
when there are millions of nodes. Similarly, when using a time-to-live,
itmight happen that the query terminates before reaching the node that
had the sought data item.

1.1.2 Structured Overlay Networks

In structured overlay networks, a structure is induced by the edges of
the graph representing the overlay, i.e. neighbour links of nodes. The
structure is called the geometry of the structured overlay network. A
structured overlay network utilizes an identifier space. Nodes are as-
signed identifiers from this space, and each node is responsible for cer-

1.1. Peer-to-peer Systems 5

tain identifiers. The basic operation that structured overlay networks
offer is a lookup for an identifier. The result of a lookup for an identifier
is the node responsible for the identifier. Structured overlay networks
are the focus of this thesis; hence, we present more details of a struc-
tured overlay network with ring geometry in Chapter 2.

Structured overlay networks have the attractive property that start-
ing from any node in the network, any other node is reachable in few
steps (usually O(log(N)), where N is the number of nodes in the sys-
tem). Structured overlay networks have the additional desirable fea-
tures of scalability and better guarantees of finding a published data
item compared to unstructured overlay networks, while requiring a few
number of neighbours per node.

Distributed Hash Tables (DHTs) are a popular data-structure built
on top of structured overlay networks. As the name suggests, DHTs
provide an abstraction to store data items under a key in the network.
The data item can later be retrieved through the key that was used to
store it. To achieve this, DHTs provide two operations; put(k, v), to store
a data item with value v under key k, and get(k), to retrieve a data item
stored with key k. Both put and get operations use the overlays lookup
operation to reach the node responsible for serving the key k. The data
item is then stored on/retrieved from the responsible node.

Routing Table Size Lookup Steps Examples

O(log N) O(log N) Chord [153] (ring),
Pastry [127] (hybrid of ring & tree)

O(d) O(log N) Koorde [73] (de Bruijn),
Viceroy [103] (butterfly)

2d O(N
1
d) CAN [124] (d-torus)

O(
√

N) O(1) Kelips [61]

Table 1.1: Comparison of properties of selected structured overlays.
Here, N is the size of the network.

Since structured overlay networks can have various geometries, dif-
ferent approaches emerged to build a structured overlay. These ap-
proaches differed in their geometry, sizes of routing tables, number of
routing steps needed for a lookup, and number of steps required to
incorporate changed in the network. Some of the popular structured
overlay networks, with their properties, are listed in Table 1.1.

6 Chapter 1. Introduction

1.1.3 Gossip/Epidemic Algorithms

Gossiping is an important technique used in large-scale distributed sys-
tems to solve many problems. It has gained tremendous popularity
in P2P systems because it is scalable, yet simple to use and robust to
failures. In gossiping, information is spread in the network similar to
the way a rumor is spread, where continuous exchange of a rumor be-
tween pairs of people results in its global spread. Gossip algorithms
are also referred to as epidemic algorithms since in gossiping, informa-
tion is spread in the system in a manner similar to the spread of a viral
infection in a community.

Gossip algorithms are periodic, where in a period, each node chooses
a random node in the system to gossip with. This gossip can be send-
ing information only (push), receiving information only (pull) or an ex-
change of information (push-pull). It has been shown that given each
node has access to random nodes in the system, gossiping can be used
to spread an information to all nodes in O(log N) steps, where N is the
size of the network [120].

Gossip algorithms were first used by Demers et. al. [39] in 1987.
They employed gossiping with a technique called anti-entropy to main-
tain a replicated database. In their solution, whenever a replica receives
any changes, it starts to gossip the changes with other replicas. This
gossip spreads like an epidemic in the network. On receiving such a
gossip, a replica can use anti-entropy to update its local state based on
the changes mentioned in the gossip, and resolve any inconsistencies.
Thus, the replicated database remains updated and consistent.

Gossip algorithms have since been used for solving various prob-
lems. We employ gossip techniques in this thesis for spreading infor-
mation. Some of its usage in other P2P systems are:

1. Disseminating information to all nodes in the system, such as
broadcasting a message [18].

2. Managing membership in an overlay to provide a node with con-
tinuous access to random nodes in the system [160, 69].

3. Computing aggregates of values locally stored at all nodes, such
as average, summation, maximum, and minimum [70].

4. Fast bootstrapping [109] and maintaining routing tables in struc-
tured overlay networks [89, 61].

5. Clustering/ranking nodes with similar properties or preferences
[129, 161]

1.1. Peer-to-peer Systems 7

1.1.4 Modern uses of Peer-to-peer Systems

Peer-to-peer systems are decentralized, which makes them scale bet-
ter. Similarly, such systems are designed to self-manage under failures
and joins of new nodes. Due to their scalability, self-management, and
fault-tolerance, applications built using the peer-to-peer paradigm are
extremely popular on the Internet. This is evident from a recent study
which showed that peer-to-peer applications dominate the Internet us-
age [154], and are likely to continue to do so [44]. Content distribution,
including file sharing and media streaming, are the main contributors
to the peer-to-peer bandwidth usage.

File sharing systems, such as BitTorrent [28], eMule [41], andGnutella,
are widely used on the Internet. The Kad network, an implementation
of the Kademlia structured overlay [106], provides the base of most of
these file sharing systems and is estimated to have at least 2–4 million
active users [150, 151]. Similarly, media streaming through peer-to-peer
mechanisms is also very common since it does not require expensive
servers. PPLive [122] and Sopcast [148] are such popular live video
streaming peer-to-peer systems, with a reported 3.5 million daily ac-
tive users of PPLive [65].

Modern web applications generate and access prodigious amounts
of data, which requires the data storage to be scalable. This has led peer-
to-peer mechanisms to be used inside data centers. Data center envi-
ronments are more stable than the open Internet, as the machines and
networking equipment are managed by the data center owners. Nev-
ertheless, since data centers can contain hundreds of thousands of ma-
chines, features such as fault-tolerance and self-management are highly
desirable which are the basis of peer-to-peer systems. Data stores, such
as Dynamo [38], Cassandra [81], Voldemort [43], and Riak [13], employ
peer-to-peer techniques and are widely used in the industry today, e.g.
Amazon.com Inc. uses Dynamo, and NetFlix. Inc. uses Cassandra.

One of themostwidely used Internet phone application, Skype [147],
uses peer-to-peer principles as well. Skype has over 650 million regis-
tered users [149], with a record of 36 million concurrent active users [4].
Since peer-to-peer systems are decentralized, supporting such scales
becomes easier. Another recent peer-to-peer system gaining attraction
is Bitcoin [112]. Bitcoin is a peer-to-peer digital currency, with no cen-
tral currency issuer, and nodes in the network regulate balances and
transactions.

8 Chapter 1. Introduction

1.2 Research Objectives and Contributions

While structured overlay networkswere designed for dynamic environ-
ments, and to be fault-tolerant, some issues pertaining to fault tolerance
remained unsolved. This thesis focuses on fault tolerance on the routing
level and the data level in structured overlay networks. The routing level
is concerned with the routing tables of the nodes in the peer-to-peer
system, which need to be updated due to any network or node failures.
The data level is related to any data stored within the peer-to-peer sys-
tem. Next, we list the research issues and contributions that are the
focus of this thesis.

Routing level: On the routing level, we address the following prob-
lems:

• Anunderlying networkpartition canpartition an overlay into sep-
arate independent overlays. Once the partition ceases, the over-
lays should bemerged as well. We address the problem of detect-
ing such underlying network partitions and mergers, and merg-
ing multiple overlays into one.

• To be able to bootstrap, maintain the overlay, and merge multiple
overlays, separate algorithms are needed to handle each scenario.
While using multiple algorithms to achieve a single goal can be
complicated, it is also error prone as the effects of one algorithm
on the others have to be properly understood. At this end, we
attack the challenge of having a single algorithm for bootstrap-
ping, overlay maintenance, and handling network partitions and
mergers.

• Overlays operate over dynamic environments, where nodes join
and leave the system all the time. An estimate of the network
size is useful in many scenarios, such as load-balancing, adjust-
ing routing table sizes, and tuning the rate of routing table main-
tenance. We solve the problem of estimating the current network
size in ring-based structured overlay networks.

• Due to the dynamic set of participating nodes, and asynchronous
networks, multiple requests (lookups) to find an item in an over-
lay can end upwith different results. We explore the frequency of
such lookup inconsistencies, and propose mechanisms to reduce
them in structured overlay networks.

1.2. Research Objectives and Contributions 9

Data level: On the data level, we address the following research chal-
lenges:

• For fault tolerance amid network and node failures, data storage
systems built on top of overlays replicate each data item on a set
of nodes (replicas). Such storage systems do not guarantee strong
data consistency across the replicas. In this thesis, we address the
problem of achieving data consistency and partition tolerance in
a scalable and completely decentralized setting using overlays.

• Existing replication schemes for structured overlays are sensitive
to node joins, leaves, and failures, resulting in a high number of
reconfigurations of replication groups. We discuss the shortcom-
ings of existing replication schemes for overlays, and propose a
solution.

Next, we provide a summary of our contributions for each problem
area addressed in this thesis work. These contributions have been pub-
lished [134, 136, 137, 135, 140, 141, 139, 22, 133, 138], and are the focus
of the next chapters.

1.2.1 Handling Network Partitions and Mergers

In our work, we motivate that handling underlying network partitions
and mergers is a core requirement for structured overlays. We argue
that since fault-tolerance, scalability, and self-management are the ba-
sic properties of overlays, they should tolerate network partitions and
mergers.

Our contribution is two-fold [134, 136]. First, we propose a mecha-
nism for detecting a scenario where a partition occurred and later, the
underlying network merged. Second, we propose two algorithms for
merging overlays, simple ring unification and gossip-based ring unification.
Simple ring unification is a low-cost solution with respect to the num-
ber ofmessages sent (message complexity), yet it suffers from two prob-
lems: (1) slow convergence time (O(N) time for a network size of N),
and (2) less robustness to churn.

Gossip-based ring unification addresses both short-comings of sim-
ple ring unification, i.e. it has a high convergence rate (O(log N) time
for a network size of N), and is robust to churn, yet it is a high-cost so-
lution in terms of message complexity. In our solution, we provide a
fanout parameter that can be used to control the trade-off between mes-
sage and time complexity in gossip-based ring unification.

10 Chapter 1. Introduction

1.2.2 Bootstrapping, Maintenance, and Mergers

Our ring unification algorithms act as add-ons to an overlay mainte-
nance algorithm. They are started when a network merger is detected,
and terminate once the overlays are merged into a single overlay. We
argue that apart from dealing with normal churn rates, handling ex-
treme scenarios – such as bootstrapping, network partitions and merg-
ers, and flash crowds – is fundamental to providing a fault-tolerant and
self-managing system, and thus, structured overlay networks should
intrinsically be able to handle them.

In this thesis, we present ReCircle [138], an overlay algorithm that
other than being able to perform periodic maintenance to handle churn
like any other overlay, can merge multiple structured overlay networks.
We show how such an algorithm can be used for decentralized boot-
strapping, which is an important self-organization requirement that
has been ignored by structured overlay networks. ReCircle does not
have any extra cost during normal maintenance compared to an iso-
lated overlay maintenance algorithm. Furthermore, the algorithm is
tunable to trade bandwidth consumption for lower convergence time
during extreme events like bootstrapping and handling network par-
titions and mergers. We designed ReCircle to be reactive to extreme
events so that it can converge faster when such events occur.

1.2.3 Network Size Estimation

Gossip-based aggregation [71] is known to be a highly accuratemethod
of estimating the current network size of an overlay [107]. In our work,
we discuss the shortcomings of gossip-based aggregation for network
size estimation. We argue that the main disadvantage of gossip-based
aggregation is that a failure of a single node early on, can severely af-
fect the final estimate. Furthermore, gossip-based aggregation requires
predefining the convergence time t for the estimation. This may lead to
inaccurate estimation of the network size if t is shorter than necessary,
or delay the estimate from being used if t is longer than necessary.

Our contribution is an aggregation-based solution [135] that pro-
vides an estimate of the current network size for ring-based overlays,
anddoes not suffer the shortcomings of aggregation by Jelasity et. al. [71].
We evaluate our solution extensively and show its effectiveness under
churn and for various network sizes.

1.2. Research Objectives and Contributions 11

1.2.4 Lookup Inconsistencies

In our work, we argue that it is nontrivial to provide consistent data
services on top of structured overlays since key/identifier lookups can
return inconsistent results. We study the frequency of occurrence of
such lookup inconsistencies. We propose a solution to reduce lookup
inconsistencies by assigning responsibilities of key intervals to nodes.
As a side effect, our solution may lead to unavailability of keys. Thus,
we present our results as a trade-off between consistency and availabil-
ity [140, 141, 139].

Since many distributed algorithms employ quorum techniques, we
extend our work by analyzing the probability that majority-based quo-
rum techniques will function correctly in overlays in spite of lookup
inconsistencies. We present a theoretical model of measuring the num-
ber of lookup inconsistencies while using replication. We show that
apart from inconsistencies arising from churn, a major contributor to
lookup inconsistencies is the inaccuracy of failure detectors. Hence,
special attention should be paid while designing and implementing a
failure detector.

1.2.5 Data Consistency

Due to the scalability and self-management features of structured over-
lay networks, large-scale data stores, e.g. Cassandra [81], and Dynamo
[38], are built on top of overlays. These storage systems target applica-
tions that do not require strong data consistency, but instead focus on
availability. While such data stores are scalable and easy to manage,
there are numerous applications that require strong data consistency
guarantees.

Our contribution is consistent quorums [22]; an approach to guaran-
tee linearizability [63] – the strongest form of data consistency – in a de-
centralized, self-organizing, and dynamic asynchronous environment.
As a showcase, we use consistent quorums to build CATS, a partition-
tolerant, scalable, elastic, and self-organizing key-value store that pro-
vides linearizability. We evaluate CATS under various workloads, and
show that it is scalable and elastic. Furthermore, we evaluate the cost
of achieving linearizability in CATS, which shows that the overhead is
modest (5%) for read-intensive workloads.

1.2.6 Replication

We discuss popular replication techniques in structured overlay net-
works, including successor-list replication [153] and symmetric replication

12 Chapter 1. Introduction

[48], and their drawbacks. We show that successor-list replication is
highly sensitive to churn; a single node join or failure event results
in updating multiple replication groups. Furthermore, successor-list
replication is inherently difficult to load-balance. Finally, successor-
list replication is less secure and presents a bottleneck since there is a
master replica of each replication group and all requests for that group
have to go through the master replica. Similarly, symmetric replication
requires a complicated bulk operation [47] for retrieving all keys in a
given range when a node joins or fails.

Our contribution is ID-Replication [133], a replication scheme for
structured overlays that does not suffer from the aforementioned draw-
backs. It does not require requests to go through a particular replica.
ID-Replication givesmore control to an administrator and allows easier
implementation of policies, without hampering self-management. Fur-
thermore, ID-Replication allows different replication degrees for dif-
ferent key ranges. This allows for using higher number of replicas for
hot spots and critical data. Our evaluation shows that ID-Replication is
less sensitive to churn, thus better suited to be used for asynchronous
networks where false failure detections are the norm. Since we use a
generic design, ID-Replication can be used in any structured overlay
network.

1.3 Organization

This thesis is organized as follows. Chapter 2 provides a background
to the thesis. Chapters 3 and 4 present solutions on the routing level.
Chapter 3 presents the motivation for handling network partitions and
mergers in overlays, and discusses a mechanism of detecting when a
network partition heals. It then provides various algorithms for merg-
ing multiple ring-based overlay networks into one. In Chapter 4, we
present an algorithm for estimating the number of nodes in a peer-to-
peer network, amid continuous churn.

Chapter 5 can be viewed as a bridge between the routing level and
the data level. It discusses anomalies in routing pointers that can result
in inconsistencies on the data level. It then presents techniques on the
routing level to reduce data inconsistencies.

Chapters 6 and 7 deal with the data level. Chapter 6 presents a key-
value store that is both, strongly consistent and partition tolerant. Next,
we present a replication scheme for structured overlays in Chapter 7.

We conclude and present potential future directions in Chapter 8.

CHAPTER 2
Preliminaries

This thesis focuses on ring-based structured overlay networks. Next,
we motivate this choice. Thereafter, we briefly discuss a model for
a ring-based overlay used in this thesis. As an example, we discuss
the Chord [153] overlay, which has a ring geometry. We describe how
Chordmaintains a ring topology amid node joins and failures. We then
discuss techniques used in overlays on the data level, including repli-
cation schemes and maintaining consistency amongst the replicas.

Motivation for theUnidirectionalRingGeometry In this thesiswork,
we confine ourselves to unidirectional ring-based overlays, such asChord
[153], SkipNet [62], DKS [47], Koorde [73],Mercury [15], Symphony [104],
EpiChord [90], and Accordion [92]. We believe that our algorithms can
easily be adapted to other ring-based overlays, such as Pastry [127]. For
a more detailed account on directionality and structure in overlays, we
refer the reader to Onana et al. [8] and Aberer et al. [2].

The reason for confining ourselves to ring-based overlays is twofold.
First, ring-based overlays constitute a majority of the existing overlays.
Second, Gummadi et al. [58] diligently compared the geometries of dif-
ferent overlays, and showed that the ring geometry is most resilient to
failures, while it is just as good as the other geometries when it comes
to proximity. To simplify the discussion and presentation of our algo-
rithms, we use notation that indicates the use of the Chord [153] over-
lay. But the ideas are directly applicable to all unidirectional ring-based
overlays.

13

14 Chapter 2. Preliminaries

0

4

13

9

Figure 2.1: A ring-based overlay, with an identifier size of 16. Node 13 is
the predecessor of 0, and it has 0 as its successor. Node 0 is responsible
for the identifiers between 13 (exclusive) and 0 (inclusive), i.e. 14, 15,
and 0.

2.1 The Routing Level

This section gives a model of a structured overlay used in this thesis,
which is based on the principles of consistent hashing [76], and discusses
routing level techniques.

2.1.1 A Model of a Ring-based Overlay

A ring-based overlay makes use of an identifier space, which for our pur-
poses is defined as a set of integers {0, 1, · · · ,N − 1}, whereN is some
apriori fixed, large, and globally known integer. This identifier space
is perceived as a ring that wraps around at N − 1. This is shown in
Figure 2.1, where N = 16.

Every node in the system has a unique identifier from the identi-
fier space. Node identifiers are typically assumed to be uniformly dis-
tributed on the identifier space. Each node keeps a pointer, succ, to its
successor on the ring. The successor of a node with identifier p is the
first node found going in clockwise direction on the ring starting at p.
Similarly, every node also has a pointer, pred, to its predecessor on the
ring. The predecessor of a node with identifier q is the first node met
going in anti-clockwise direction on the ring starting at q. A successor-

2.1. The Routing Level 15

list is also maintained at every node r, which consists of r’s c immediate
successors, where c is typically set to log2(N), where N is the network
size.

The identifier space is also used for partitioning tasks among nodes
in the overlay. For instance, in key-value stores and Distributed Hashta-
bles (DHTs) that use an overlay to store data items, the identifier space
is used to partition the data items amongst nodes. Each data item is
assigned an integer/identifier from the identifier space, called the key
of the data item. Nodes in the overlay are responsible for storing data
items that have keys in the vicinity of the node’s identifier. For instance,
in Chord, a node with identifier p is responsible for storing data items
with keys k ∈ (p.pred, p], i.e. all keys between p’s predecessor (exclu-
sive) and p (inclusive) going clockwise. We use the notation k(a, b] to
denote the key range (a, b], i.e., all keys ∈ (a, b].

2.1.2 Maintaining Routing Pointers

In this thesis, we use event-based notation for presenting our algorithms
since it models an asynchronous distributed system closely. In event-
based notation, an algorithm is specified as a collection of event handlers.
An event handler is defined by: an event type, parameters that define
the contents of the event, the sender, and recipient of the event. Upon
receiving an event of a certain type, its event handler is executed. While
processing an event in the event handler, a node can communicate with
other nodes by sending events.

As discussed in Section 1.1, each node in an overlay has a set of rout-
ing pointers, called routing table. Since overlays operate over dynamic
environments, routing pointers get outdated upon node joins and fail-
ures. The goal of an overlay maintenance algorithm is to handle and
incorporate any dynamism in the system. This goal is achieved by up-
dating routing pointers to reflect the changes in the system.

Chord [153] handles joins and leaves/failures using an overlaymain-
tenance protocol called periodic stabilization, shown as Algorithm 1 in
event-based notation. The essence of the protocol is that each node p
periodically attempts to find and update its successor to a nodewhich is
closer (clock-wise) to p than p’s current successor. Similarly, each node
sets its predecessor to a node closer (anti-clockwise) than its current
predecessor. In Algorithm 1, this is done as follows.

Each node periodically (every γ time units) sends a WhoIsPred event
to its successor (line 2). Upon receiving such an event (line 4), a node
replies by sending an event of type WhoIsPredReply, with its predeces-
sor as a parameter of the event. When a node p receives an event of

16 Chapter 2. Preliminaries

Algorithm 1 Chord’s Periodic Stabilization [153]
1: every δ time units at n
2: sendto succ : WhoIsPred〈〉
3: end event

4: receipt of WhoIsPred〈〉 from m at n
5: sendto m : WhoIsPredReply〈pred〉
6: end event

7: receipt of WhoIsPredReply〈succPred〉 from m at n
8: if succPred ∈ (n, succ) then
9: succ := succPred
10: end if
11: sendto succ : Notify〈〉
12: end event

13: receipt of Notify〈〉 from m at n
14: if pred = nil or m ∈ (pred, n) then
15: pred := m
16: end if
17: end event

type WhoIsPredReply with parameter succPred (line 7), p sets succPred
as its successor if succPred is closer to p than p.succ when going clock-
wise starting at p. Thereafter, p notifies its successor about its presence
by sending a Notify event (line 11). Upon receiving such a notification
(line 13) from a sender s, a node q sets s as its predecessor if either s
is closer to q than q.pred, q’s current predecessor, going anti-clockwise
from q, or if q does not have a valid predecessor.

Leaves and failures are handled by having each node periodically
check whether its predecessor pred is alive, and setting pred := nil (in-
valid predecessor) if it is found dead. Moreover, each node periodically
checks to see if its successor succ is alive. If it is found to be dead, it is
replaced by the closest alive successor in the successor-list.

Joins are also handled periodically. A joining node makes a lookup
to find its successor s on the ring, and sets succ := s. The rest is taken
care of by periodic stabilization as follows. Each node periodically asks
for its successor’s pred pointer, and updates succ if it finds a closer suc-
cessor. Thereafter, the node notifies its current succ about its own exis-
tence, such that the successor can update its pred pointer if it finds that
the notifying node is a closer predecessor than pred. Hence, any joining

2.1. The Routing Level 17

node is eventually properly incorporated into the ring.

Lookup

A lookup for an identifier id initiated at any node in the system is a re-
quest to find the node responsible for id, i.e. node p such that id ∈
(p.pred, p]. Here, we say that the lookup(id) resolves to p. Applications
built on top of overlays can use the lookup service provided by the over-
lay. For instance, DHTs use the lookup service to store data and provide
a put/get interface for scalable distributed storage. A put(key, value)

operation initiates lookup(key), and stores value on the node that the
lookup resolves to. Similarly, a get(key) operation initiates lookup(key),
and returns the data stored against the key at the node that the lookup
resolves to.

Using successor pointers, a lookup request can be resolved in O(N)
hops, where N is the number of nodes in the system, by forwarding
the lookup clockwise. This is shown in Algorithm 2, where Closest-
PreceedingNeighbour(id) returns the successor. Ring-based overlays
maintain additional routing pointers on top of the ring to enhance such
routing requests. These additional routing pointers constitute the rout-
ing table of nodes and are used to perform greedy routing to reduce
the number of hops when resolving lookups. For instance, in Chord,
nodes maintain additional routing pointers, called fingers, that are ex-
ponentially spread on the identifier space. Concretely, each node p
keeps a pointer to the successor of the identifier p + 2i (mod N) for
0 ≤ i < log2(N). Nodes use these fingers to resolve lookups for iden-
tifiers by performing greedy routing. In Algorithm 2, greedy routing
is achieved by ClosestPreceedingNeighbour(id) returning the closest
finger that precedes identifier id. Our algorithms in this thesis are in-
dependent of the scheme for placing these additional routing pointers.

Algorithm 2 A Lookup Operation
1: receipt of Lookup〈id〉 from m at n
2: if id ∈ (n, succ) then
3: sendto m : LookupResult〈succ〉
4: else
5: f orwardTo := ClosestPreceedingNeighbour(id)
6: sendto f orwardTo : Lookup〈id〉
7: end if
8: end event

18 Chapter 2. Preliminaries

2.2 The Data Level

In this section, we provide an overview of techniques used on the data
level. First, we introduce various replication schemes proposed for over-
lays. Next, we introduce a class of algorithms used for maintaining
consistency amongst the replicas.

2.2.1 Replication

Similar to other distributed systems, data fault-tolerance and reliability
in structured overlays is achieved via replication. Various strategies for
replication in overlays have been proposed, such as successor-list repli-
cation [153], symmetric replication [48], and using multiple hash func-
tions [124, 164]. In themultiple hash functions scheme, a data itemwith
key k is stored under multiple keys, which are calculated by hashing k
using different hash functions. Such a scheme is known as key-based
replication. Next, we discuss successor-list replication and symmetric
replication.

Successor-list replication

As discussed in Section 2.1.1, each node q is responsible for storing
keys between q’s predecessor and q. For a replication degree of r in
successor-list replication, a key k is stored on the node q that is respon-
sible for storing k, and r − 1 immediate successors of q. In Figure 2.2,
node 30 is responsible for storing keys k ∈ (20, 30], and k are replicated
on {30, 35, 40}, which is called the replica group for k. As nodes join
and leave the system, the successor, predecessor and successor-lists are
updated, leading to changes in the replica groups and respective trans-
fer of data between nodes. Since the responsibility range of a node is
the unit of replication, successor-list replication is an instance of a node-
based replication.

Symmetric replication

Symmetric replication is an instance of key-based replication, where
each identifier is related to r other identifiers based on a certain rela-
tion. Such a relation is symmetric, i.e., if an identifier i is related to j,
then j is related to i as well. Since each identifier is symmetrically re-
lated to r identifiers, it creates identifier groups of size r that can be
used for replication. In essence, the identifier space is partitioned into
N
r equivalence classes, and identifiers/keys in an equivalence class are
related to each other. Each equivalence class is a replication group, and

2.2. The Data Level 19

35
40

45

(20, 30]
(30, 35]

(35, 40]

(40, 45]

(15, 20]

(10, 15]
(20, 30]

(15, 20]

(30, 35]

(20, 30]

(35, 40]

(30, 35]

(10, 15]

(5, 10]

r1
r2

r3

(15, 20]

20

30

Figure 2.2: Successor-list replication with replication degree 3. The
replication group for keys ∈ [21, 30] is {30, 35, 40}. Similarly, respon-
sibility of node 35, i.e. (30, 35], is replicated on 3 nodes encountered
clockwise from 35, i.e. 35, 40 and 45.

each replica can be located by making a lookup for the identifier of the
replica.

2.2.2 Consistency and Quorum-based Algorithms

While replication provides fault-tolerance, and possibly improved per-
formance, it introduces the problem of achieving consistency of the
data stored on the replicas. Many consistency models have been pro-
posed over the years, ranging fromweaker consistencymodels, such as,
eventual consistency [157], read-your-ownwrites, causal consistency [85],
sequential consistency [83], to stronger consistencymodels, such as lin-
earizability [84, 63], one-copy serializability, and strict-serializability [117]
transactions.

To achieve fault-tolerance and consistency, quorum-based algorithms
aremostwidely used, e.g. for replicated data [50], consensus [86], repli-
cated state machines [132], concurrency control [158], atomic shared-
memory registers [11], and non-blocking atomic commit [56]. The basic
idea of quorum-based algorithms is that conflicting operations acquire
a sufficient number of votes from different replicas such that they have
at least one intersection at one replica. Gifford introduced an algorithm
for the maintenance of replicated data that uses weighted votes [50].
Every replica has a certain number of votes. Each read operation has
to collect r votes and each write operation has to collect w votes, where
r + w exceeds the number of votes assigned to a data item. Thus, every
read quorum and every write quorum overlap in at least one replica.

Without loss of generality, we focus on quorum-based algorithms
where a quorum constitutes of a majority of replicas, and each replica
is assigned exactly one vote. Here, each operation has to be performed
on a majority of replicas. For instance, a put(key, value) is considered

20 Chapter 2. Preliminaries

incomplete until the value has been stored on amajority of the replicas.
If the set of replicas remains static, all operations overlap on at least one
node, thus guaranteeing that all operations will use/see the latest data.

Eventual consistency: Themost popular consistencymodel provided
by key-value stores built on top of overlays is eventual consistency [157,
39, 159]. For instance, Dynamo [38], Cassandra [81], and Riak [13], all
provide eventual consistency. Eventual consistency means that for a
given key, data values may diverge at different replicas, e.g., as a result
of operations accessing less than a quorumof replicas or due to network
partitions [19, 51]. Eventually, when the application detects conflicting
replicas, it needs to reconcile the conflict. The merge mechanisms for
resolving conflicts is dependent on the application semantics.

Linearizability: The strongest form of consistency for a single data
item read/write operations is linearizability [63], also known as atomic
consistency. For a replicated storage service, linearizability provides the
illusion of a single storage server: each operation applied at concurrent
replicas appears to take effect instantaneously at some point between its
invocation and its response. Linearizability guarantees that a read op-
eration (get(k) for a key in overlays) always returns the value updated
by the most recent write/update operation (put(k, v) in overlays), or
the value of a concurrent write, and once a read returns a value, no
subsequent read can return an older/stale value. Such semantics give
the appearance of a single global consistent memory. Attiya et al. [11]
present a quorum-based algorithm that satisfies linearizability in a fully
asynchronous message-passing system. Linearizability is composable.
In a DHT, this means that if operations on each individual key-value
pair are linearizable, then all operations on the whole key-value store
are linearizable, and the DHT as a whole can be termed as linearizable.

Consistency, Availability, andPartition-tolerance: TheCAP theorem
[19, 51], also known as Brewer’s conjecture, states that in a distributed
asynchronous network, it is impossible to achieve consistency, availabil-
ity and partition tolerance at the same time. Hence, system designers
have to chose two out of the three properties. Such a choice depends on
the target application. Network partitions are a fact of life, hence appli-
cations in general chose between consistency and availability. For some
applications, availability is of utmost importance, while weaker consis-
tency guarantees suffice. Yet other applications sacrifice availability for
strong consistency.

CHAPTER 3
Network Partitions,

Mergers, and
Bootstrapping

An underlying network partition can partition an overlay into separate
independent overlays. Once the partition ceases, the overlays should be
merged as well. In this chapter, we discuss the challenges of handling
network partitions and mergers in overlays on the routing level. We
provide a solution that merges multiple overlays into one, and termi-
nates after wards. We extend our solution to provide a non-terminating
algorithm that can bootstrap an overlay efficiently, maintain the overlay,
and handle extreme scenarios such as network partitions and mergers.

3.1 Handling Network Partitions and Mergers

Structured overlay networks and DHTs are touted for their ability to
provide scalability, fault-tolerance, and self-management, making them
well-suited for Internet-scale distributed applications. As these appli-
cations are long lived, they will always come across network partitions.
Since overlays are known to be fault-tolerant and self-manage, they
have to be resilient to network partitions.

Network partitions are a fact of life. Although network partitions
are not very common, they do occur. Hence, any long-lived Internet-
scale system is bound to come across network partitions. A variety of

21

22 Chapter 3. Network Partitions, Mergers, and Bootstrapping

reasons can lead to such partitions. A WAN link failure, router failure,
router misconfiguration, overloaded routers, congestion due to denial
of service attacks, buggy software updates, and physical damage to net-
work equipment can all result in network partitions [116, 21, 118, 156].
Similarly, natural disasters can result in Internet failures. This was ob-
served when an earthquake in Taiwan in December 2006 exposed the
issue that global trafficpasses through a small number of seismically ac-
tive “choke points” [115]. Several countries in the region connect to the
outside world through these choke points. A number of similar events
leading to Internet failures have occurred [21]. On a smaller scale, the
aforementioned causes can disconnect an entire organization from the
Internet [116], thus partitioning the organization.

Apart from software and hardware failures, political and service
provider policies can also result in network partitions. For instance, the
disputation between two Tier-1 ISPs, Level 3 andCogent, lead to inacces-
sibility across the two networks for three weeks [27]. A similar instance
lead to network breakage for a large number of customers across the
Atlantic when Cogent and Telia had a twoweek disagreement [67]. Sim-
ilarly, due to government policies, the Internet was cut-off in Egypt for
more than 24 hours resulting in the network of thewhole country being
partitioned away [16].

The importance of the problem of handling network partitions has
long been known in other domains, such as those of distributeddatabases
[37] and distributed file systems [157]. Since the vision of structured
overlay networks is to provide fault-tolerance and self-management at
large-scale, we believe that structured overlay networks should be able
to deal with network partitions and mergers. On the same lines, while
deploying an application built on top of a structured overlay, the first
major problem reported and strongly suggested to be solved by Mislov
et al. [108] was:

“A reliable decentralized systemmust tolerate network par-
titions.”

While deploying ePOST [108], a decentralized email service build
on top on the Pastry [128] structured overlay, on PlanetLab, Mislove et.
al. recorded the number of partitions experienced over a period of 85
days. Figure 3.1 shows their results, which clearly suggests that parti-
tions occur all the time over the Internet. Thus, as any other Internet-
scale system, structured overlays should be able to handle underlying
network partitions and mergers.

Apart from network partitions, the problem of merging multiple
overlays is interesting and useful in itself. Decentralized bootstrapping

3.1. Handling Network Partitions and Mergers 23

Figure 3.1: Number of connected components observed over an 85 day
period on PlanetLab. Figure taken from ePOST [108].

of overlays [34] can be done by building overlays separately and inde-
pendently, regardless of existing overlays. Later, these overlays can be
merged into one. Also, it might be that overlays build independently
later have to be merged due to overlapping interests.

Consequently, a crucial requirement for practical overlays is that
they should be able to deal with network partitions and mergers.

Some overlays copewith network partitions, but none can deal with
network mergers. This is because a network partition, as seen from
the perspective of a single node, is identical to massive node failures.
Since overlays have been designed to cope with churn (node joins and
failures), they can self-manage in the presence of such partitions. For
instance, as periodic stabilization in Chord can handle massive fail-
ures [96], it also recovers from network partitions, making each compo-
nent of the partition eventually form its own ring. We have confirmed
such scenarios through simulation. However,most overlays cannot cope
with network mergers.

The merging of overlays gives rise to problems on two different lev-
els: routing level and data level. The routing level is concernedwith heal-
ing the routing information after a partition ceases. The data level is
concerned with the consistency of the data items stored in the overlay.
In this thesis, we address issues at both, routing and data, levels as fol-
lows:

• In Section 3.1.1, we discuss how nodes in an overlay can detect a

24 Chapter 3. Network Partitions, Mergers, and Bootstrapping

network merger after the network partition has ceased. Once a
node detects a network merger, it can trigger an overlay merger
algorithm.

• On the routing level, we show how to merge multiple ring-based
overlays into one overlay, effectively fixing the successor and pre-
decessor pointers. Our solution, known as Ring-Unification [134,
136] and presented in Section 3.2, can be triggered once a node
detects a network merger or an administrator initiates a merger
of independent overlays, and terminates once the overlays have
been merged.

• In Section 3.3, we extend ideas from Ring-Unification and Peri-
odic Stabilization, and present a non-terminating overlay mainte-
nance algorithm, calledReCircle [138]. ReCircle can be used as the
sole overlay algorithm for maintaining the geometry of the over-
lay under normal levels of churn as well as extreme levels, e.g.
that arise due to network partitions and mergers. Furthermore,
ReCircle can be used for efficiently bootstrapping an overlay.

• On the data level, we show how to achieve consistency amid net-
work partitions and mergers. We present a key-value store built
on top of ReCircle, called CATS, in Chapter 6. CATS provides
linearizability [63], the strongest form of consistency, and is parti-
tion tolerant. Since CATS is built on top of an overlay, it is scalable,
self-managing, completely decentralized, and works in dynamic
asynchronous environments.

3.1.1 Detecting Network Partitions and Mergers

A network partition results in the overlay to be divided into multiple
independent overlays. We confirmed this behaviour via simulations
for the Chord overlay. After a network partition, each partitions forms
its own ring. The problem unsolved is that once the partition ceases,
the overlay remains divided and each overlay ring continues to operate
independently. In this section, we discuss how to detect that a prior
network partition has ceased. Once the system detects that the par-
tition has healed, it can trigger an overlay merger algorithm, such as
Ring-Unification (Chapter 3.2) and Recircle (Chapter 3.3), to merge the
overlays into a single overlay. Without loss of generality, we consider
the case where an overlay is partitioned into two overlays for simplicity.

For two rings to be merged, at least one node needs to have knowl-
edge about at least one node in the other ring. This is facilitated by

3.1. Handling Network Partitions and Mergers 25

the use of passive lists. Whenever a node detects that another node has
failed, it puts the failed node, with its routing information1 in its pas-
sive list. Every node periodically pings nodes in its passive list to de-
tect if a failed node is alive again. When this occurs, it can trigger a
ring merging algorithm. A network partition will result in many nodes
being placed into passive lists. When the underlying network merges,
nodes will be able to ping nodes in their passive list. Thus, the merger
will be detected and rectified through the execution of a ring merging
algorithm.

The detection of an alive node in a passive list does not necessar-
ily indicate the merger of a partition. It might be the case that a single
node is incorrectly detected as failed due to a premature timeout of a
failure detector. Thus, the ring merging algorithm should be able to
cope with this by trying to ensure that such false-positives will termi-
nate the algorithm quickly. It might also be the case that a previously
failed node rejoins the network, or that a node with the same overlay
and network address as a previously failed node joins the ring. Such
cases are dealt with by associating with every node a globally unique
random nonce, which is generated each time a node joins the network.
Hence, if the algorithm detects that a node in its passive list is again
alive, it can compare the node’s current nonce value with that in the
passive list to avoid a false-positive, as that node is likely a different
node that coincidentally has the same overlay and network address.

An alternative mechanism to avoid adding nodes to the passive list
when the network has not partitioned is by using a network size es-
timation algorithm, such as the one given in Chapter 4. If the size of
the network changes abruptly, it is an indication that a partition has oc-
curred. In such cases, even if one partition is larger than the other, it is
sufficient for the nodes in the smaller partition to record the partition
by populating their passive lists with failed nodes. Using the sudden
change in the estimated network size as an indication of a network par-
tition can reduce false positives.

A ring merging algorithm can also be invoked in other ways than
described above. For example, it could occur that two overlays are cre-
ated independently of each other, but later their administrators decide
tomerge themdue to overlapping interests. It can also be that a network
partition lasts very long. Since the size of passive lists are bounded, if
a partition lasts long enough, nodes in passive lists from other parti-
tions might be evicted/replaced. If the partition lasts long enough, it

1By routing information we mean a node’s overlay identifier, network address, and
nonce value (explained shortly).

26 Chapter 3. Network Partitions, Mergers, and Bootstrapping

can also happen that all nodes in the rings have been replaced, making
the contents of the passive lists useless. In cases such as these, a system
administrator can manually insert an alive node from another ring into
the passive list of any of the nodes. The ringmerger algorithmwill take
care of the rest.

3.2 Ring-Unification: Merging Multiple Overlays

This section focuses on the routing level, and presents mechanisms for
merging multiple ring-based structured overlays. The routing level is
concerned with fixing the routing information after a merger. Overlay
merger algorithms presented in this chapter can be triggered by mech-
anisms discussed in Section 3.1.1. Given a solution to the problem at
the routing level, it is generally known how to achieve weaker types of
data consistency, such as eventual consistency [157, 39]. We present a
solution for achieving strong consistency amid network partitions and
mergers, at the cost of availability, in Chapter 6.

3.2.1 Ring Merging

Due to the large number of nodes involved in a peer-to-peer system, an
overlay merging algorithm should be scalable, and avoid overloading
the nodes and congesting the network. It should also be able to handle
churn (node joins, failures, and leaves) as dynamism is common in such
systems. Furthermore, an efficient solution for merging multiple over-
lays should minimize two metrics: (1) the time taken to converge the
overlays into one (time complexity), and (2) the bandwidth consump-
tion (message and bit complexity).

In this section, we present two algorithms for merging ring-based
overlays. The first algorithm is low-cost, in terms of bandwidth con-
sumption, yet has slow convergence rate and less resilient to churn.
Our second algorithm is more robust to churn and allows the system
designer to adjust, through a fanout parameter, the tradeoff between
bandwidth consumption and time it takes for the algorithm to com-
plete. Through evaluation, we show typical fanout values for which
our algorithm completes quickly, while keeping the bandwidth con-
sumption at an acceptable level.

For two or more rings to be merged, at least one node needs to have
knowledge about at least one node in another ring. This is facilitated
by the use of passive lists (Section 3.1.1). The detection of an alive node
in a passive list does not necessarily indicate the merger of an underly-
ing network partition. Thus, a ring merging algorithm should be able

3.2. Ring-Unification: Merging Multiple Overlays 27

to cope with this by trying to ensure that such false-positives will ter-
minate the algorithm quickly. Apart from using passive lists to detect
partitions and mergers, a system administrator can manually initiate
merger of multiple overlays by inserting an alive node from another
ring into the passive list of any of the nodes. The ringmerger algorithm
takes care of the rest.

3.2.2 Simple Ring Unification

In this section, we present the simple ring unification algorithm (Algo-
rithm 3). As we later show, the algorithm will merge the rings in O(N)
time for a network size of N. Later, we show how the algorithm can be
improved to make it complete the merger in substantially less time.

Algorithm 3 Simple Ring Unification Algorithm
1: every γ time units and detqueue 6= ∅ at p
2: q := detqueue.dequeue()
3: sendto p : mlookup〈q〉
4: sendto q : mlookup〈p〉
5: end event

6: receipt of mlookup〈id〉 from m at n
7: if id 6= n and id 6= succ then
8: if id ∈ (n, succ) then
9: sendto id : trymerge〈n, succ〉
10: else if id ∈ (pred, n) then
11: sendto id : trymerge〈pred, n〉
12: else
13: sendto closestprecedingnode(id) : mlookup〈id〉
14: end if
15: end if
16: end event

17: receipt of trymerge〈cpred, csucc〉 from m at n
18: sendto n : mlookup〈csucc〉
19: if csucc ∈ (n, succ) then
20: succ := csucc
21: end if
22: sendto n : mlookup〈cpred〉
23: if cpred ∈ (pred, n) then
24: pred := cpred
25: end if
26: end event

Algorithm 3 makes use of a queue maintained at each node called

28 Chapter 3. Network Partitions, Mergers, and Bootstrapping

detqueue, which will contain any alive nodes found in the passive list.
The queue is periodically checked by every node p, and if it is non-
empty, the first node q in the list is picked to start a ringmerger. Ideally,
p and q will be on two different rings. But even so, the distance between
p and q on the identifier space might be very large, as the passive list
can contain any previously failed node. Hence, the event mlookup(id)
is used to get closer to id through a lookup. Oncemlookup(id) gets near
its destination id, it triggers the event trymerge(a, b), which tries to do
the actual merging by updating pred and succ pointers to a and b re-
spectively.

The event mlookup(id) is similar to a Chord lookup, which tries to
do a greedy search towards the destination id. One difference is that it
terminates the lookup if it reaches the destination and locally finds that
it cannot merge the rings. More precisely, this happens ifmlookup(id) is
executed at id itself, or at a nodewhose successor is id. If anmlookup(id)
executed at n finds that id is between n and n’s successor, it terminates
the mlookup and starts merging the rings by calling trymerge. Another
difference between mlookup and an ordinary Chord lookup is that an
mlookup(id) executed at n also terminates and starts merging the rings
if it finds that id is between n’s predecessor and n. Thus, the merge will
proceed in both clockwise and anti-clockwise direction.

The event trymerge takes as parameters a candidate predecessor, cpred,
and a candidate successor csucc, and attempts to update the current
node’s pred and succpointers. It alsomakes two recursive calls tomlookup,
one towards cpred, and one towards csucc. This recursive call attempts
to continue the merging in both directions. Figure 3.2 shows the work-
ing of the algorithm.

In summary, mlookup closes in on the target area where a potential
merger can happen, and trymerge attempts to do local merging and ad-
vancing themerge process in bothdirections by triggering newmlookups.

3.2.3 Gossip-based Ring Unification

The simple ring unification presented in the previous section has three
disadvantages. First, it is slow, as it takes O(N) time to complete the
ring unification. Second, it cannot recover from certain pathological
scenarios. For example, assume two distinct rings in which every node
points to its successor and predecessor in its own ring. Assume further-
more that the additional pointers of every node point to nodes in the
other ring. In such a case, an mlookup will immediately leave the initi-
ating node’s ring, and hence may terminate. We do not see how such a
pathological scenario could occur due to a partition, but the gossip-based

3.2. Ring-Unification: Merging Multiple Overlays 29

1:mlookup(q)

2:mlookup(p)

3:trymerge

3a:csucc
3b:cpred

4:trymerge

4b:cpred
4a:csucc

P

q

clockwise progress
anti-c

lockwise
 progress

anti-c
lockwise progress

clockwise progress

Figure 3.2: Filled circles belong to overlay 1 and empty circles belong to
overlay 2. The algorithm starts when p detects q, p makes an mlookup
to q and asks q to make an mlookup to p.

ring unification algorithm (Algorithm 4) rectifies both disadvantages of
the simple ring unification algorithm. Third, the simple ring unification
is less robust to churn, as we discuss in the evaluation section.

Algorithm 4 is, as its name suggests, gossip-based. The algorithm
is essentially the same as the simple ring unification algorithm, with a
few additions. The intuition is to have the initiator of the algorithm im-
mediately start multiple instances of the simple algorithm at random
nodes, with uniform distribution. But since the initiator’s pointers are
not uniformly distributed, the process of picking random nodes is in-
corporated into mlookup. Thus, mlookup(id) is augmented so that the
current node randomly picks a node r in its current routing table and
starts a ring merger between id and r. This change alone would, how-
ever, consume too much resources.

Two mechanisms are employed to prevent the algorithm from con-
suming too many messages, which could give rise to positive feedback
cycles that congest the network. First, instead of immediately triggering
an mlookup at a random node, the event is placed in the corresponding
node’s detqueue, which is only checked periodically. Second, a constant

30 Chapter 3. Network Partitions, Mergers, and Bootstrapping

Algorithm 4 Gossip-based Ring Unification Algorithm
1: every γ time units and detqueue 6= ∅ at p
2: 〈q, f 〉 := detqueue.dequeue()
3: sendto p : mlookup〈q, f 〉
4: sendto q : mlookup〈p, f 〉
5: end event

6: receipt of mlookup〈id, f 〉 from m at n
7: if id 6= n and id 6= succ then
8: if f > 1 then
9: f := f − 1
10: r := randomnodeinRT()
11: at r : detqueue.enqueue(〈id, f 〉)
12: end if
13: if id ∈ (n, succ) then
14: sendto id : trymerge〈n, succ〉
15: else if id ∈ (pred, n) then
16: sendto id : trymerge〈pred, n〉
17: else
18: sendto closestprecedingnode(id) : mlookup〈id, f 〉
19: end if
20: end if
21: end event

22: receipt of trymerge〈cpred, csucc〉 from m at n
23: sendto n : mlookup〈csucc, F〉
24: if csucc ∈ (n, succ) then
25: succ := csucc
26: end if
27: sendto n : mlookup〈cpred, F〉
28: if cpred ∈ (pred, n) then
29: pred := cpred
30: end if
31: end event

3.2. Ring-Unification: Merging Multiple Overlays 31

number of random mlookups are created. This is regulated by a fanout
parameter called F. Thus, the fanout is decreased each time a random
node is picked, and the random process is only started if the fanout
is larger than 1. The detqueue, therefore, holds tuples, which contain
a node identifier and the current fanout parameter. Similarly, mlookup
takes the current fanout as a parameter. The rate for periodically check-
ing the detqueue can be adjusted to control the rate at which the algo-
rithm generates messages.

3.2.4 Discussion

Ring-unification is a terminating algorithm, i.e. it terminates once the
overlays have been merged into one. Thus, it has been designed such
that it can be used as an add-on to an existing overlay maintenance al-
gorithm, e.g. Chord. In Section 3.3, we present a non-terminating al-
gorithm that is responsible for fast and efficient bootstrapping, overlay
maintenance, and handling network partitions and mergers.

Lookups made after the merge is complete perform normally. An
interesting issue is the behaviour of lookups made during the merger
of the overlays. Such lookupsmay not always succeed in finding the re-
lated data item. For instance, say there are two overlays to be merged,
O1 andO2, and a data item is storedwith key k inO1. Consider a node n
initially part of O1, and a node m initially part of O2. During themerger
of O1 and O2, a lookup made from n may end up on m as nodes may
have updated their routing pointers/fingers to point to the other over-
lay. Though m is responsible for key k, it may not have yet received the
data item for k as the merger has not completed at m. Thus, the data
item for k will appear unavailable to node n. After the merge is com-
plete, n will again be able to access k. A trivial solution to this problem
is that when n learns that the key is currently unavailable, it retries the
lookup after a while.

For some applications, availability may be critical. Thus, using re-
tries after a while may not be a feasible solution. To provide higher
availability guarantees when the overlays merger is in-progress, a node
should store both its old routing pointers (that it originally had in its
overlay) and new routing pointers (assigned by the merge process).
Whenever a node receives a lookup, it routes the lookup through both,
the old and new pointers. Thus, lookups will succeed even during the
merge process. This approach, originally proposed by Datta [34], has
somedrawbacks. First, it increases themessage complexity for lookups.
Second, it may be difficult to keep track ofwhich overlay a node belongs
to, especially when more than one overlays are merged. Finally, since

32 Chapter 3. Network Partitions, Mergers, and Bootstrapping

knowledge of the completion of the merge process is not locally avail-
able to nodes, it is not knownwhen to drop the old pointers. Neverthe-
less, we believe this to be valuable approach as it increases availability
during merger.

3.2.5 Evaluation

In this section, we evaluate the two algorithms from various aspects
and in different scenarios. There are two measures of interest: message
complexity, and time complexity. We differentiate between the comple-
tion and termination of the algorithm. By completion we mean the time
when the rings have merged. By termination we mean the time when
the algorithm terminates sending anymore messages. Unless specified
otherwise, message complexity is until termination, while time com-
plexity is until completion.

The evaluations are done in a stochastic discrete event simulator [144]
in which we implemented Chord. The simulator uses an exponential
distribution for the inter-arrival time between events (joins and fail-
ures). To make the simulations scale, the simulator is not packet-level.
The time to send amessage is an exponentially distributed randomvari-
able. The values in the graphs indicate averages of 20 runs with differ-
ent random seeds.

We first evaluate themessage and time complexity of the algorithms
in a typical scenario where after merger, many nodes simultaneously
detect alive nodes in their passive lists. Next, we evaluate the perfor-
mance of the algorithm for a worst case scenario when only a single
node detects the existence of another ring. The worst case scenario is
similar to a case where an administrator wants to merge two overlays
and triggers the ring unification algorithm on only a single node. Next,
we assess the algorithms for a loopy ring. Thereafter, we evaluate the
performance of the algorithms while node joins and failures are taking
place during the ring merging process. Next, we compare our algo-
rithm with a self-stabilizing algorithm. Finally, we evaluate the mes-
sage complexity of the algorithms when a node falsely believes that it
has detected another ring.

For the first experiment, the simulation scenario had the following
structure. Initially nodes join and fail. After a certain number of nodes
are part of the system, we insert a partition event, upon which the sim-
ulator divides the set of nodes into as many components as requested
by the partition event, dividing the nodes randomly into the partitions
but maintaining an approximate ratio specified. For our simulations,
we create two partitions. A partition event is implemented using lot-

3.2. Ring-Unification: Merging Multiple Overlays 33

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7

T
im

e
un

its

Fanout

256
512

2048
4096
8192

10240

(a) Time complexity

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1 2 3 4 5 6 7

M
es

sa
ge

s
til

l t
er

m
in

at
io

n
(lo

g)

Fanout

256
512

2048
4096
8192

10240

(b) Message complexity

Figure 3.3: Evaluation for various network sizes and fanouts of a typ-
ical scenario where multiple nodes detect the merger and trigger the
algorithm.

tery scheduling [163] to define the size of each partition. The simulator
then drops all messages sent from nodes in one partition to nodes in an-
other partition, thus simulating a network partition in the underlying
network and therefore triggering the failure handling algorithms. Fur-
thermore, node join and fail events are triggered in each partitioned
component. Thereafter, a network merger event simply allows mes-
sages to reach other network components, triggering the detection of
alive nodes in the passive lists, and hence starting the ring unification
algorithms.

We simulated the simple ring unification algorithm and the gossip-
based ringunification algorithm for partitions creating two components,
and for fanout values from 1 to 7. For all the simulation graphs to fol-
low, a fanout of 1 represents the simple ring unification algorithm.

34 Chapter 3. Network Partitions, Mergers, and Bootstrapping

Figure 3.3 shows the time and message complexity for a typical sce-
nario where after a merger, multiple nodes detect the merger and thus
start the ring-unification algorithm. The number of nodes detecting the
merger depends on the scenario; in our simulations, it was 10–15% of
the total nodes. The simple ring unification algorithm (F = 1) con-
sumes minimum messages but takes maximum time when compared
to different variations of the gossip-based ring unification algorithm.
For higher values of F, the time complexity decreases while the mes-
sage complexity increases. Increasing the fanout after a threshold value
(around 3− 4 in this case) will not considerably decrease the time com-
plexity, but will just generate many unnecessary messages.

To proper understand the performance of the proposed algorithm,
we generated scenarios where only one node would start the merger of
the two rings. We randomly select, with uniform probability, the two
nodes that are involved in the merger, i.e. the node p that detects the
merger and the node that p detects from its passive list. Hence, the
distance between them on the ring varies. For our experiments, each of
the two rings had approximately half of the total number of nodes in the
system before the merger. We choose the rate of checking detqueue to
be every five time units and the rate of periodic stabilization (PS) to be
every ten time units. The motivation for choosing a lower PS rate is to
study the performance of the ring unification algorithmwithminimum
influence from PS.

We simulated ring unification for various network sizes of powers
of 2 to study its scalability. Figure 3.4(a) shows the time complexity for
varying network sizes. The x-axis is on a logarithmic scale, while the y-
axis is linear. The graph for the gossip-based algorithms is linear, which
suggests a O(log n) time complexity. In contrast, the simple ring unifi-
cation graph (F=1) is exponential, indicating that it does not scale well,
i.e. ω(log n) time complexity. In Figure 3.4(b), we plot the number of
ring unification messages sent by each node during the merger, i.e. the
total number of messages induced by the algorithm until termination
divided by the number of nodes. The linear graph on a log-log plot in-
dicates a polynomial messages complexity. As expected, the number of
messages per node grows slower for simple ring unification compared
to gossip-based ring unification.

Figure 3.5 illustrates the tradeoff between time and message com-
plexity. It shows that the goals of decreasing time and message com-
plexity are conflicting. Thus, to decrease the number of messages, the
time for completion will increase. Similarly, opting for convergence in
lesser timewill generatemoremessages. A suitable fanout value can be

3.2. Ring-Unification: Merging Multiple Overlays 35

 20

 30

 40

 50

 60

 70

 80

 90

 256 512 1024 2048 4096 8192 16384
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

T
im

e
un

its

T
im

e
un

its

Network size (log2)

F 1
F 2
F 3
F 4
F 5
F 6
F 7

(a) Time complexity (only F = 1 is plotted against the
right y-axis)

 1

 10

 100

 1000

 10000

 256 512 1024 2048 4096 8192 16384

M
es

sa
ge

s/
no

de
 ti

ll
te

rm
in

at
io

n
(lo

g)

Network size (log2)

F 1
F 2
F 3
F 4
F 5
F 6
F 7

(b) Message complexity

Figure 3.4: Evaluation for various network sizes and fanouts when only
one node starts the merger.

used to adapt the ring unification algorithm according to the require-
ments and network infrastructure available.

For the rest of the evaluations, we use a worst case scenario where
only a single node detects the merger.

Next, we assess the ability of our solution to converge to a strongly
stable ring from a loopy state of two cycles. As defined by Liben-Nowell
et al. [96], aChordnetwork isweakly stable if, for all nodes u, (u.succ).pred =
u and strongly stable if, in addition, for each node u, there is no node v
such that u < v < u.succ. A loopy network is one which is weakly but
not strongly stable. The scenario for the simulationswas to create a loop
of two cycles fromone-fifth of the total number of nodes. Thereafter, we
generated events of node joins for the remaining four-fifth nodes at an
exponentially distributed inter-arrival rate. As in all experiments, the
identifiers of the joining nodes were generated randomly with uniform

36 Chapter 3. Network Partitions, Mergers, and Bootstrapping

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 30 40 50 60 70 80 90 100

M
es

sa
ge

s
til

l t
er

m
in

at
io

n
(lo

g)

Time units

256
512

1024
2048
4096
8192

Figure 3.5: Tradeoff between time and message complexity.

probability. Thus, the nodes joined at different points in the loop. We
then made one random node detect the loop by discovering a random
node from the other cycle, triggering the ring unification algorithm.
In all cases, for various network sizes and fanouts, the algorithm con-
verged to a strongly stable ring, and the time and message complexity
followed the same trend as for merging two overlays.

We evaluate ring unification under churn, i.e. when nodes join and
fail during the merger. Since we are using a scenario where only one
node detects the merger, with low probability, the algorithm may fail
to merge the overlays (especially simple ring unification). The reason
being intuitive: for simple unification, the two mlookups generated by
the node detecting themergerwhile traveling through the networkmay
fail as the node forwarding the mlookup may fail under churn. With
higher values of F and in typical scenarios where multiple nodes detect
the merger, the algorithm becomes more robust to churn as it creates
multiple mlookups.

In our simulations, after a merge event, we generate join and failure
events until the unification algorithm terminates and observe howoften
the overlays do not converge to a ring. We ran experimentswith 200 dif-
ferent seeds for sizes ranging from 256 to 2048 nodes. We considered an
execution successful if 95% of the nodes had correct successor pointers,
as all successor pointers can not be correct while nodes are joining and
failing. Thereafter, the remaining pointers are updated by Chord’s pe-
riodic stabilization. For the 200 executions, we observed only 1 unsuc-
cessful execution for network size 1024 and 2 unsuccessful executions
for network size 2048. The unsuccessful executions happened only for
simple ring unification, while executions with gossip based ring uni-

3.2. Ring-Unification: Merging Multiple Overlays 37

 100

 1000

 10000

 100000

 256 512 1024 2048 4096 8192

T
im

e
til

l s
ta

bi
liz

at
io

n
(lo

g)

Network size (log2)

Ring network
F 1
F 2
F 3
F 4
F 5

(a) Time complexity

 1

 10

 100

 1000

 256 512 1024 2048 4096 8192

M
es

sa
ge

s
pe

r
no

de
 ti

ll
st

ab
ili

za
tio

n
(lo

g)

Network size (log2)

Ring network
F 1
F 2
F 3
F 4
F 5

(b) Message complexity

Figure 3.6: Comparison of Ring Unification and SSRN [142].

fication were always successful. Even for the unsuccessful executions,
given enough time, periodic stabilization updates the successor point-
ers to correct values.

Next, we compare our algorithm with a Self-Stabilizing Ring Net-
work (SSRN) [142] protocol. The results of our simulations comparing
time and message complexity for various network sizes are presented
in Figure 3.6, depicting that ring unification consumes lesser time and
messages compared to SSRN. The main reason for the better perfor-
mance of our algorithm is that it has been designed specifically for
merging rings. On the other hand, SSRN is a non-terminating algo-
rithm that runs in the background like PS to find closer nodes. As eval-
uated previously, simple ring unification (fanout=1) does not scale well
for time complexity (Figure 3.6(a)).

Finally, we evaluate the scenariowhere a node falsely detects amerger.
In such cases, the algorithm should terminate quickly, without sending
a lot of messages as they are unnecessary. Figure 3.7 shows the mes-
sage complexity of the algorithm in case of a false detection. As can be
seen, for lower fanout values, the message complexity is less. Even for
higher fanouts, the number of messages generated are acceptable, thus
showing that the algorithm is lean. We believe this to be important as
overlays do not have perfect failure detectors, and hence can give rise
to inaccurate suspicions.

In conclusion, our simulations show that a fanout value of 3-4 is
good for a system with several thousand nodes, even with respect to
churn and false-positives.

38 Chapter 3. Network Partitions, Mergers, and Bootstrapping

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1 2 3 4 5 6 7

M
es

sa
ge

s
til

l t
er

m
in

at
io

n

Fanout

2000 nodes
4000 nodes
6000 nodes
8000 nodes

10000 nodes

Figure 3.7: Evaluation of message complexity in case a node falsely de-
tects a merger for various network sizes and fanouts.

3.2.6 Related Work

Much work has been done to study the effects of churn on a structured
overlay network [102], showing how overlays can cope with massive
node joins and failures, thus showing how overlays are resilient to par-
titions. Datta et al. [35] have presented the challenges of merging two
overlays, claiming that ring-based networks cannot operate until the
merger operation completes. In contrast, we show how unification can
work under churn while the merger operation is not complete. In a fol-
lowup work, Datta et al. [34] show how to merge two P-Grid [3] struc-
tured overlay networks. Their work differs from ours as P-Grid is a
tree-based overlay, while we focus on ring-based overlays.

The problem of constructing a structured overlay from a random
graph is, in some respects, similar to mergingmultiple structured over-
lays after a network merger, as the nodes may get randomly connected
after a partition heals. Shaker et al. [142] have presented a ring-based
algorithm for nodes in arbitrary state to converge into a directed ring
topology. Their approach is different from ours, in that they provide
a non-terminating algorithm which should be used to replace all join,
leave, and failure handling of an existing overlay. Replacing the topol-
ogy maintenance algorithms of an overlay may not always be feasible,
as overlays may have intricate join and leave procedures to guarantee
lookup consistency [101, 94, 47]. In contrast, our algorithm is a termi-
nating algorithm that works as a plug-in for an already existing ring-
based overlay.

Kunzmann et al. [79] have proposed methods to improve the ro-
bustness of structured overlays. They propose to use a bootstrapping

3.2. Ring-Unification: Merging Multiple Overlays 39

server to detect a merger by making the peer with the smallest identi-
fier to send periodic messages to the bootstrap server. As soon as the
bootstrap server receives messages from different peers, it will detect
the existence of multiple rings. Thereafter, all the nodes have to be
informed about the merger. While their approach has the advantage
of having minimum false detections, it depends on a central bootstrap
server. They lack a full algorithm and evaluation of how the merger
will happen. Evaluation of the merge detection process and informing
all peers about the detection is also missing.

Montresor et al. [109] show how Chord [153] can be created by a
gossip-based protocol [68]. However, their algorithm depends on an
underlying membership service like Cyclon [160], Scamp [45] or News-
cast [69]. Thus the underlyingmembership service has to first copewith
networkmergers (a problemworth studying in its own right), where af-
ter T-Chord can form a Chord network. We believe one needs to investi-
gate further how these protocols can be combined, and their epochs be
synchronized, such that the topology provided by T-Chord is fed back
to the overlay when it has converged. Though the general performance
of T-Chord has been evaluated, it is not known how it performs in the
presence of network mergers when combined with various underlying
membership services.

Aswe showbelow, itmight happen that an initially connected graph
can be split into two separate components by the Chord [153] and SSRN
[142] protocols. This scenario is a counter-proof of the claim that SSRN
is self-stabilizing. Consider a network which consists of two perfect
rings, yet the nodes have fingers pointing to nodes in the other ring.
This can easily happen in case of unreliable failure detectors [23] or
networks partitions. Normally, the PS rate is higher than fixing fingers,
thus due to a temporary partition, it might happen that nodes update
their successor pointers, yet before they fix their fingers, the partition
heals. In such a scenario, SSRN splits the connected graph into two
separate partitions, thus creating a partition of the overlay, while the
underlay remains connected. An example of such a scenario is shown
in Figure 3.8, where the filled circles are nodes that are part of one ring
and the empty circles are nodes that are part of the other ring. Each
node has one finger pointing to a node in the other ring. The fix-finger
algorithm inChord updates the fingers bymaking lookups. In this case,
a lookup will always return a node in the same ring as the one making
the lookup. Consequently, the finger pointing to the other ring will be
lost. Similarly, the pointer jumping algorithm used by SSRN to update
its fingers will also drop the finger pointing to a node in the other ring.

40 Chapter 3. Network Partitions, Mergers, and Bootstrapping

Figure 3.8: A case where Chord and the Ring Network protocol would
break a connected graph into two components. Lines represent succes-
sor pointers while dashed lines represent a finger.

On the contrary, the ring-unification algorithm proposed in this section
will fix such a graph and converge it to a single ring.

Some overlays employ the ring based identifier space, which they
mix with a prefix-based tree [121]. For example in Pastry [127], a re-
sponsible node for an identifier is the node with numerically closest
identifier and the lookups are forwarded to nodes sharing the longest
prefix with the identifier being looked up. Our algorithm can be mod-
ified for use by such overlays by replacing the closestpreceedingnode-
procedure with the equivalent for the employed overlay. The trymerge-
procedure does not have to be changed since updating the predecessor
and successor is similar to recording nodes with identifiers closest to a
node.

3.3 Recircle: Bootstrapping, Maintenance, and Mergers

In this section, we present an overlay algorithm, called ReCircle, that is
capable of (i) bootstrapping an overlay, (ii)maintaining the overlay un-
der churn, and (iii) handling underlying network partitions and merg-
ers. The algorithm builds and maintains a structured overlay with a
uni-directional ring geometry. It allows a system designer to trade-
off between bandwidth consumption and time taken for bootstrapping
and merging overlays. During normal operation, i.e. after bootstrap-
ping and without underlying network partitions and mergers, the al-
gorithm behaves similar to a general overlay maintenance algorithm
without any overhead. We designed ReCircle using principles taken
from Ring-Unification and Periodic Statbilization.

3.3. Recircle: Bootstrapping, Maintenance, and Mergers 41

Motivation Efficient bootstrapping - creating a populated structured
overlay network from scratch - is a challenge that has not been addressed
by overlays. Overlays are limited in the rate atwhich newnodes can join
the overlay [95], hence the time duration needed to create an overlay of
a large size may be long. This approach has two drawbacks. First, the
system users may have to wait for a long duration, depending on the
size of the overlay, before they can use the overlay. This is undesirable
for example when resources are allocated for limited duration of time,
or when an overlay has to be created in an ad hoc or temporary setting.
Second, limiting the rate of joins may be complicated or require central
coordination, which defies the ideology of structured overlay networks
as they are decentralized peer-to-peer systems. Hence, given the goal of
structured overlays to be self-managing and self-organizing, we believe
that they should be able to bootstrap efficiently without constraints on
the size of the overlay or the rate of joins.

As argued in Chapter 3.1, network partitions are a fact of life, and
hence, overlays should be able to cope with them. We strongly believe
that if structured overlay networks are to realize their goal of being scal-
able, fault-tolerant, self-managing and self-organizing, they should in-
herently be able to bootstrap efficiently, and handle network partitions
and mergers other than only being able to deal with moderate rates of
churn. The goal of ReCircle is to provide such an overlay maintenance
algorithm.

Solution

Bootstrapping, network partitions and mergers, and flash crowds rep-
resent extreme rates of churn. Bootstrapping and overlay mergers are
similar to a large number of nodes joining the overlay simultaneously,
where as network partitions are akin of massive failures. Flash crowds
can be either huge number of nodes joining or leaving the overlay. Pe-
riodic stabilization (PS) can handle massive failures [96] as long as no
node looses all its successor-list. Hence, if no node has its successor-
list partitioned away, PS can handle network partitions, making each
component of the partition eventually form its own ring. Furthermore,
overlays cannot intrinsically bootstrap efficiently, handle flash crowds
of joins, or deal with overlaymergers. To handle all these cases, we pro-
pose ReCircle, an overlaymaintenance algorithm that runs periodically
for normal overlaymaintenance, and reacts to extreme events and starts
sendingmessages other than the periodic messages. Periodic messages
are exchanged between a node, its successor and predecessor to main-
tain the geometry in the node’s immediate vicinity only, while the re-

42 Chapter 3. Network Partitions, Mergers, and Bootstrapping

active messages can navigate further in the identifier space, similar to
Ring-Unification. These reactivemessages remedy the anomalies in the
geometry and the overlay converges to a ring. Once the overlay con-
verges, the reactive messages die out and the algorithm returns to act
as a normal periodic maintenance algorithm.

Our methodology is different from overlay maintenance algorithms
such as Chord’s periodic stabilization in two aspects. First, ReCircle is
reactive to extreme events, while Chord is always periodic. Being re-
active is desirable for extreme events since such events invalidate sev-
eral pointers simultaneously. Second, in Chord, a node periodically
attempts to fix any possible anomalies in the geometry only with its im-
mediate successor. On the other hand, as extreme events may quickly
make the immediate neighbourhood of a node on the ring outdated,
ReCircle is able to traverse farther away, using an operation similar to
an overlay’s lookup and Ring-Unification’s mlookup.

Our solution is given asAlgorithm 5. Periodically, every δ time units
(line 1), each node n attempts to set it’s succ to a node clockwise closer
to n than n’s current successor. n accomplishes this by retrieving its
successor’s pred pointer, and updates succ if it finds a closer successor.

Each node maintains a queue, which contains a list of node identi-
fiers that represent possible (problematic) areas on the identifier space
that violate the geometry of the overlay and can be fixed. These areas
can arise, for example, due to churn, bootstrapping, and flash crowds.
If the queue is nonempty at any node, it implies that the overlay may
not be in a converged state. Later in this section, we discuss all cases in
which node identifiers should be added to the queue.

ReCircle uses an event called mlookup(id) (similar to Section 3.2.1)
for fixing a possible problematic area id on the identifier space. An
mlookup(id) does the following. First, it performs a greedy routing,
similar to a Chord lookup, to the problem area defined by the iden-
tifier id. Once it routes to id, it fixes the geometry there by triggering
the same afore-mentioned mechanism that is periodically carried out
every δ time units. The mlookup then continues to fix the ring in the
clockwise direction (Figure 3.10). Second, anmlookup spreads the fixing
process by generating newmlookups for random identifiers on the ring;
hence triggering the fixing mechanism at random places on the iden-
tifier space. This is accomplished by enqueuing id into random nodes
from the nodes routing table (lines 25–26). This is shown in Figure 3.9.
Third, as an optimization, an mlookup attempts to optimistically fix any
wrong successor and predecessor pointers while routing by calling the
Updatemethod (line 35).

3.3. Recircle: Bootstrapping, Maintenance, and Mergers 43

15

2b. Enqueue (90,f-1)

2a. Mlookup(90,f)

[+]

50

90

99

10

Figure 3.9: White nodes belong to an overlay O1, while black nodes
belong to another overlay, O2. The merger starts when 15 is added to
the queue of 90. (1a) 90 makes an mlookup(15) to fix the ring geometry
around identifier 15, and also asks 15 (1b) to make an mlookup for 90,
which will result in fixing the ring around 90 (2a). While routing the
mlookup(15), 99 shares the merger information with a random node, 50,
from its routing table (2b). This will eventually result in anmlookup(50)
from 15 that will fix the ring around 50 (not shown in figure). Details
of mlookup(15) ending at 10, denoted as [+], are shown in Figure 3.10.

Periodically, after every γ time units (line 15), each node tries to
fix the geometry of the overlay by generating mlookups to identifiers in
its queue. Furthermore, whenever p makes an mlookup(q), then q also
makes an mlookup(p).

ReCircle provides knobs to tradeoff bandwidth consumption and
the time taken to converge to a ring geometry. This tradeoff can be
achieved by controlling the amount and rate of spreading the fixing
procedure. The number of times the fixing procedure is spread is equiv-
alent to the number of new mlookups generated. As mentioned earlier,
new mlookups are generated while routing an mlookup (lines 25–26).
Here, we employ a fanout parameter f that controls how many new
mlookups are generated (line 23). Higher values of the fanout will re-
sult in more concurrent mlookups, hence consuming more bandwidth
but converging in lesser time. Similarly, the rate of spreading the fix-
ing procedure is equivalent to the rate at which mlookups are started.
Since newmlookups are started periodically by dequeuing, this rate can
be controlled via the time period γ, and the number of mlookups gen-
erated in each period, denoted as Mlkups_Per_Period (line 16).

44 Chapter 3. Network Partitions, Mergers, and Bootstrapping

Algorithm 5 ReCircle
1: every δ time units at p
2: sendto succ : GetPred〈succ〉
3: end event

4: receipt of GetPred〈psucc〉 from m at n
5: sendto m : GetPredRes〈pred, sl〉
6: if psucc 6= n then
7: queue.enqueue(〈psucc, f 〉)
8: end if
9: Update(m)
10: end event

11: receipt of GetPredRes〈succp, succsl〉 from m at n
12: Update(succp)
13: UpdateSuccessorList(succsl)
14: end event

15: every γ time units and queue 6= ∅ at p
16: for i← 1:Mlkups_Per_Period and queue 6= ∅ do
17: 〈q, F〉 := queue.dequeue()
18: sendto p : MLookup〈q, F〉
19: sendto q : MLookup〈p, F〉
20: end for
21: end event

22: receipt of MLookup〈id, F〉 from m at n
23: if F > 1 then
24: F := F− 1
25: r := randomnodeinRT()
26: at r : queue.enqueue(〈id, F〉)
27: end if
28: if id 6= n and id 6= succ then
29: if id ∈ (n, succ) then
30: sendto id : GetPred〈succ〉
31: else
32: sendto closestpreceding(id) : MLookup〈id, F〉
33: end if
34: end if
35: Update(id)
36: end event

37: procedure Update(candidate) at n
38: if candidate ∈ (n, succ) then
39: succ := candidate
40: else if pred = nil or candidate ∈ (pred, n) then
41: pred := candidate
42: end if
43: end procedure

3.3. Recircle: Bootstrapping, Maintenance, and Mergers 45

1. Mlookup(15)

4. Mlookup(30)

10

7. Mlookup(35)

35

2a. GetPred(30)

8

7

30
31

33

25
22 20 18 15

2b. Set succ:=155b. Set succ:=30

5a. GetPred(35)

3. Enqueue(30)6. Enqueue(35)

Figure 3.10: White nodes belong to an overlay O1, while black nodes
belong to another overlay, O2. The figure depicts how new mlookups
are generated when an mlookup(15) terminates at 10; where 10 ∈ O1
and 15 ∈ O2. Here, the newmlookups enable the algorithm to continue
merging the ring clock-wise.

3.3.1 Merging multiple overlays

Two independent overlays can be merged into a single overlay using
Algorithm 5. The merger can be triggered via connecting the overlays
by adding the identifier of any node from one overlay to the queue of
any node from the other overlay2 either by the passive lists mechanism
(Section 3.1.1), or an administrator. An mlookup will be generated for
the node in the queue. As noted earlier, anmlookup(m) first routes to the
problematic area m, terminating at a node n such that m ∈ [n, n.succ].
Then, the geometry is fixed by setting n.succ := m, and the two overlays
are merged on the identifier space around identifier m. The merger
process is continued by issuing new mlookups.

Consider Figure 3.10, where n = 10 and m = 15. An mlookup, to
propagate the merger, is needed between 10 and 10.succ = 30 because
a merger between overlays O1 and O2 can result in several nodes from
O2 to be placed between a node 10 in O1 and 10’s successor. 10 accom-
plishes this propagation by asking 15 (step 2a) to enqueue 30 (line 7)
as it represents a problematic area. Such a mechanism enables Re-
Circle to continue merging the overlays clock-wise. Furthermore, as
new mlookups are generated for random identifiers while routing an
mlookup, the overlays concurrentlymerge clock-wise starting at random
positions in the identifier space and eventually, converge into one over-
lay (Fig. 3.9). Note that ideally, the new mlookups are generated such
that the source and destination nodes belong to different overlays.

2The higher the number of connections between the two overlays, the faster the over-
lay will converge.

46 Chapter 3. Network Partitions, Mergers, and Bootstrapping

3.3.2 Bootstrapping

The ideas for merging two overlays apply to merging more than two
overlays as well; an extreme case of which is bootstrapping where each
node can be considered an overlay in itself. Bootstrapping is achieved
by creating a structured overlay froma randomconnected overlay, where
each node has some random nodes as neighbours. In our algorithm,
each node can be considered an independent structured overlay of size
one by pointing to itself as its successor and predecessor. To start boot-
strapping, each node adds its neighbours to its queue. The algorithm
then triggers the merger mechanism by generating mlookups to nodes
in the queue, resulting in a single converged overlay.

3.3.3 Termination

An important requirement for a unified algorithm is that under nor-
mal scenarios (i.e. no churn), the maintenance cost should be low, for
instance, similar to Chord’s periodic stabilization. To achieve this, we
designed the algorithm to be reactive such that it starts generatingmore
messages than the periodicmaintenancemechanism to handle rare events
such as bootstrapping or network partitions and mergers. Once such
events are catered and the overlay converges, the algorithm stops send-
ing extra messages and the number of messages drops to the only peri-
odic maintenance messages. This property is achieved by not generat-
ing new mlookups when the possible problematic area is already fixed
(lines 28 and 6). When the overlay is converged, there will not be any
problematic areas and hence, the queues on all nodes will eventually
be emptied and no new mlookups will be started.

3.3.4 Evaluation

In this section, we evaluate ReCircle by both simulations and experi-
ments on Planetlab3. We implemented the algorithm in Kompics [10]
and for simulations, we used the King latencies [59] for network delays.
The focus of the evaluation is on overlay mergers and bootstrapping as
normal scenarios are handled similar to Chord. The two main metrics
used are bandwidth consumption and time taken for convergence. The
simulations were repeated with 20 different random seeds, and we plot
average and 95% confidence intervals in our graphs.

3http://www.planet-lab.org

3.3. Recircle: Bootstrapping, Maintenance, and Mergers 47

Parameter Values
Fanout f 1 – 5
mlookups per period m 1 – 5, ∞
Queue interval γ 1, 2 (secs)
Periodic maintenance interval δ 10, 30, 60 (secs)

Table 3.1: Range of parameter values used for simulations.

Same size networks merge

We first consider the performance of the algorithm when two overlays
of same sizemerge. As the simulation scenario, we created two separate
overlays of the same size, and then started the merger algorithm by
creating one link between the overlays.

Algorithm 5 uses four parameters:

• f: The fanout f used to control the spread of mlookups (line 7).

• m: The number of mlookups generated in each period γ, shown as
Mlkups_Per_Period on line 16.

• γ: The interval after which mlookups are generated to identifiers
stored in the queue (line 15).

• δ: The interval after which a node performs periodic stabilization
(line 1).

To study the affect of all four parameters, we employed aperformance-
vs-cost model [93] where we used ranges of values for each parameter.
The ranges for parameter values we chose for evaluation are shown in
Table 3.1. We used higher values of δ, compared to γ, in line with Li’s
study [91] on comparing range of values of periodic interval formainte-
nance in various overlays. In Table 3.1, m = ∞ means that themlookups
are not queued but are instead generated instantly. Each combination
of the parameter values was simulated for 20 different random number
generation seeds. For each simulation, the combination of parameters
had some cost and performance associated with it. For our work, the
cost of the algorithm is the bandwidth used per peer during the merge
process, and the performance is the time taken by the algorithm to con-
verge the overlays into one overlay.

Figure 3.11 shows the results of various combinations of the param-
eters for a total network size of 2048. Each dot in the graph represents
the result of a single experiment for a parameter combination. As is
evident from the figure, when the cost is more (higher bandwidth),

48 Chapter 3. Network Partitions, Mergers, and Bootstrapping

the performance is better (lower time to convergence). Similarly, less
cost (lower bandwidth) results in lower performance (high convergence
time). Furthermore, there is a point after which more cost does not in-
crease performance. Similarly, there is a limit to the minimum cost.

Further analysis of the performance-vs-cost experiment (Fig 3.11)
shows that δ does not influence the results much. Similarly, increasing
γ from 1 second to 2 seconds does not help much either. Hence for the
next evaluations, we use δ = 60 seconds and γ = 1 second.

Affect of Fanout (f) and mlookups per period (m)

Next, wediscuss the affect of f andm on the cost andperformance of the
algorithm. Figure 3.12 shows the convergence time, while Figure 3.13
shows the bandwidth consumption, for different values of f and m. For
f = 1, the convergence time is high, yet ReCircle consumes minimum
bandwidth. This is an expected behaviour as concurrent mlookups are
not generated when f = 1 at line 25 and the merge process continues
linearly. Similarly, as we increase the value of f , the convergence time
drops slower, while the bandwidth increases exponentially. This trend
applies to all simulated values of m, which implies that after a certain
value of f , increasing f will only increase cost without significant im-
provement in performance.

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

Bandwidth (bytes/peer/sec)

C
on

ve
rg

en
ce

 ti
m

e
(s

ec
s)

Experiment

Figure 3.11: A performance vs cost comparison when two networks,
each of size 1024, merge.

3.3. Recircle: Bootstrapping, Maintenance, and Mergers 49

Figure 3.14 and 3.15 plot the performance and cost respectively for
various values of m. The bandwidth consumption increases logarith-
mically with m, while time to convergence drops slowly.

An important aspect of the algorithm is that in case there is no churn,
ReCircle only sends the periodic maintenance messages. As soon as a
rare event that results in churn occurs, such as merger of multiple over-
lays, the algorithm reacts to it by consumingmore bandwidth. Once the
overlay converges, the overhead messages die out and the bandwidth
consumption drops back. This is shown in Figure 3.16, where two over-
lays are merged after 10 seconds. The Y-axis denotes the bandwidth
consumed per peer in every 200 milliseconds. As evident from the fig-
ure, bandwidth consumption increases to merge the overlays. Once the
overlays converge into a single overlay, the bandwidth consumption re-
duces to the level of before the merger.

Set successor calls during merger

Distributed applications build on top of a structured overlay network
assign responsibilities to participating nodes based on the region of the
identifier space between a node, and its successor and predecessor in
the overlay. A change in the successor or predecessor pointers of a node
n re-assigns responsibilities between nodes in n’s vicinity, which re-
quires action on behalf of the application. For instance, in DHTs built
on overlays e.g. Cassandra, a node is responsible for storing all data
items with keys between it’s identifier and it’s immediate neighbour’s
identifiers. Here, whenever a successor pointer changes, responsibili-
ties are re-defined and data has to be transferred from one node to an-
other. Hence, it is desirable to have aminimum number of unnecessary

1 2 3 4 5
1

10

100

1000

Fanout, f

C
on

ve
rg

en
ce

 ti
m

e
(s

ec
s)

m=∞
m=1
m=2
m=3
m=4
m=5

Figure 3.12: Convergence time for various values of f , where n = 2048,
delta = 60 secs, and γ = 1 sec.

50 Chapter 3. Network Partitions, Mergers, and Bootstrapping

1 2 3 4 5
0

20

40

60

80

100

120

Fanout, f

B
an

dw
id

th
 (

by
te

s/
pe

er
/s

ec
)

m=∞
m=1
m=2
m=3
m=4
m=5

Figure 3.13: Bandwidth consumption for various values of f , where
n = 2048, delta = 60 secs, and γ = 1 sec.

1 2 3 4 5 \infty
1

10

100

1000

MLookups per interval, m

C
on

ve
rg

en
ce

 ti
m

e
(s

ec
s)

f=1
f=2
f=3
f=4
f=5

Figure 3.14: Convergence time for various values of m.

calls to set the successor of a node, for instance, during merging mul-
tiple overlays to avoid unneeded data transfers. In this experiment, we
merged two overlays and measured the number of set successor calls,
s, and compared it to the number of incorrect successors w at the point

1 2 3 4 5 \infty
0

20

40

60

80

100

120

MLookups per interval, m

B
an

dw
id

th
 (

by
te

s/
pe

er
/s

ec
)

f=1
f=2
f=3
f=4
f=5

Figure 3.15: Bandwidth consumption for various values of m.

3.3. Recircle: Bootstrapping, Maintenance, and Mergers 51

0 10 20 30 40
10

15

20

25

30

35

40

Time (secs)

B
an

dw
id

th
/p

ee
r

fo
r

20
0

m
s

bi
ns

Merger initiated

Figure 3.16: Bandwidth consumption for 200 milliseconds bins, show-
ing termination of reactive messages after convergence.

the overlays started to merge. Ideally, s should be equal to w, but is dif-
ficult to achieve due of decentralization. Figure 3.17 shows the ratio s

w
for a range of values of f (1–5) and m (1–5, and ∞). The graph shows
that f = 1 has the minimum ratio, and hence would result in mini-
mum data transfer. This shows that if an overlay stores huge data items
under keys, the overall time (time for correcting routing pointers and
moving data items to new responsible nodes) for f = 1 might be lesser
than for larger values of f . In the light of this experiment, when higher
values of f are used, instead of immediately transferring data when the
responsibility of a node changes, a periodic or delayed data exchange
mechanism should be used to transfer data among nodes. Using such a
technique will avoid transferring data unnecessarily when the merger
is under progress.

1 2 3 4 5 \infty
0.95

1

1.05

1.1

1.15

1.2

1.25

Mlookups per interval, m

of

 in
co

rr
ec

t s
uc

ce
ss

or
s/

se
t s

uc
ce

ss
or

s

Experiment

f = 1

Figure 3.17: Ratio, during the merger process, of the number of times
successor is set versus the number of incorrect successors when the
merger started.

52 Chapter 3. Network Partitions, Mergers, and Bootstrapping

1 2 3 4 5
1

10

100

1000

Fanout

C
on

ve
rg

en
ce

 ti
m

e
(s

ec
s)

256
512
1024
2048
4096
8192

Figure 3.18: Convergence time for various network sizes, where m = ∞,
t = 60 secs, and r = 1 sec.

1 2 3 4 5
0

20

40

60

80

100

120

Fanout

B
an

dw
id

th
 (

by
te

s/
pe

er
/s

ec
)

256
512
1024
2048
4096
8192

Figure 3.19: Bandwidth consumption for various network sizes, where
m = ∞, t = 60 secs, and r = 1 sec.

1/2 1/4 1/8 1/16
0

20

40

60

80

100

120

Size (ratio) of smaller overlay

C
on

ve
rg

en
ce

 ti
m

e
(s

ec
s)

m=∞, f=1
m=5, f=2
m=∞, f=5

Figure 3.20: Convergence time when overlays of different size merge.

3.3. Recircle: Bootstrapping, Maintenance, and Mergers 53

1/2 1/4 1/8 1/16
0

20

40

60

80

100

120

Size (ratio) of smaller overlay

B
an

dw
id

th
 (

by
te

s/
pe

er
/s

ec
)

m=∞, f=1
m=5, f=2
m=∞, f=5

Figure 3.21: Bandwidth consumption when overlays of different size
merge.

1 1% 5% 10% 20%
0

20

40

60

80

100

120

Links between overlays

C
on

ve
rg

en
ce

 ti
m

e
(s

ec
s)

m=∞, f=1
m=5, f=2
m=∞, f=5

Figure 3.22: Convergence time when multiple links trigger the merge
process.

1 1% 5% 10% 20%
0

100

200

300

400

500

600

Links between overlays

B
an

dw
id

th
 (

by
te

s/
pe

er
/s

ec
)

m=∞, f=1
m=5, f=2
m=∞, f=5

Figure 3.23: Bandwidth consumption when multiple links trigger the
merge process.

54 Chapter 3. Network Partitions, Mergers, and Bootstrapping

Varying network size

Next, we studied the effect of f on the algorithm for different network
sizes, while using m = ∞. Figure 3.18 and 3.19 show the convergence
time and bandwidth consumption for various network sizes, depicting
that the trend remains the same. The convergence time for f = 1 is
high, while for higher values of f , it drops to a certain level after which
further increasing f does not reduce convergence time (Fig. 3.18). On
the other hand, the cost only grows logarithmically with increase in f
even for larger network sizes (Fig. 3.19).

Different size networks merge

In this section, we evaluate the cost and performance of the algorithm
when overlays of different sizes merge, which is a common scenario as
network partitions are usually of unequal sizes [108]. We expect that the
cost should be proportional, and the performance should be inversely
proportional, to the size of the smaller network. The reason is that at
the start of the merger, when using uniformly random identifiers, the
number of wrong successor pointers depends on the size of the smaller
network. For instance, for a total network size of 100 nodes, the cost of
merging two overlays of sizes 80 and 20 should be lesser than merging
overlays of sizes 60 and 40.

In our simulations, we created two overlays of different sizes, and
then started the merger by creating a single link between the overlays.
Figure 3.20 and 3.21 show the results for a total network size of 2048.
The x-axis depicts the ratio of the smaller network out of the total net-
work size. We plot results for three combinations of m and f : m =
2, f = 1 (high convergence time, low bandwidth consumption), m =
4, f = 3 (medium convergence time and bandwidth consumption), and
m = ∞, f = 5 (low convergence time, high bandwidth consumption).
The results confirm that when a smaller network merges into a larger
network, the algorithm consumes resources relative to the smaller net-
work. Hence, as the size of the smaller network decreases, the algo-
rithm requires lesser time for convergence and bandwidth.

Multiple links start merger

Next, we evaluate a scenario where the merger between two overlays is
triggered by creating multiple links between the two overlays instead
of a single link. This can happenwhenmultiple nodes detect a network
partition and merger. In such a scenario, the merger will be started si-
multaneously at multiple positions on the identifier space. Intuitively,

3.3. Recircle: Bootstrapping, Maintenance, and Mergers 55

for higher number of inter-overlay links, the overlays should converge
faster while consuming higher bandwidth because the algorithm re-
acts to the merger concurrently for all the inter-overlay links. This was
confirmed in our simulations, as shown in Figures 3.22 and 3.23. The
x-axis represents the number of links created between the two overlays
for triggering the merger. The percentage on the x-axis is out of the to-
tal network size of 2048. The figures depict that, while multiple links
can reduce the time to convergence, it results in higher bandwidth con-
sumption. Higher percentages of links make f = 1 behave like f > 1
since the merger happens concurrently at different areas on the identi-
fier space even for f = 1.

Bootstrapping

As discussed in Section 3.3.2, Algorithm 5 can be used for bootstrap-
ping an overlay by considering each node as an overlay of size one and
connecting the nodes randomly. In this section, we evaluate the perfor-
mance of our solution for bootstrapping an overlay of size 2048. We cre-
ate a randomErdős-Rényi graph G(n, p), where n = 2048 and p = ln(n)

n ,
and ensure that the graph is connected. The graph dictates the layout
of the initial overlay that has to be bootstrapped into a converged struc-
tured overlay. Each node sets itself as its successor and predecessor,
and the bootstrapping process is triggered by making each node add
its neighbours to its queue.

We compare our solution to T-Man [72], a well-known gossip-based
approach for creating arbitrary structured overlays froma randomgraph.
In T-Man, the last few pointers take time to converge [68], hence, we
measure statistics until 99% of the successor pointers are converged.
To perform an extensive comparison for bootstrapping between T-Man
and our solution, and not to depend on parameter tuning, we again
employ a performance-vs-cost model. We use a range of parameter
values and repeat each experiment for different seeds. For T-Man, we
use the values specified in Table 3.2. The results are plotted in Fig-
ure 3.24, which shows that for the same cost (bandwidth consump-
tion), both algorithms have similar performance in terms of conver-
gence time. A disadvantage of using a specialized bootstrapping algo-
rithm, such as T-Man, is that it requires handing off the bootstrapped
overlay to the maintenance protocol which is non-trivial. In compari-
son, ReCircle does not require such a hand off as it embeds the overlay
maintenance logic as well. We discuss such differences and benefits of
using ReCircle in detail in Section 3.3.5.

56 Chapter 3. Network Partitions, Mergers, and Bootstrapping

Parameter Values

Omega, ω 1 – 5
Message size 10, 20, 30, 40, 50
Gossip time period 0.2, 0.5, 1, 1.5, 2 (seconds)
Storage size 2048

Table 3.2: Range of parameter values used for T-Man [68].

0 500 1000 1500 2000
0

5

10

15

Bandwidth (bytes/peer/sec)

T
im

e
(s

ec
s)

T−Man experiment
ReCircle experiment

Figure 3.24: A comparison with T-Man [68] for creating a ring-
structured overlay from a randomErdős-Rényi graph for a network size
of 2048

PlanetLab

Next, we evaluate the solution for merging multiple overlays and boot-
strapping on a real environment by running experiments on PlanetLab.
Due to limited number of physical machines available on PlanetLab, we
ran 5 nodes on each machine. We used a single server to gather statis-
tics about howmany nodes have a correct successor pointer. Whenever
a node updated its successor, it sent a message to the statistics server
with the new value of its successor. We compute the fraction of correct
successor pointers overtime on the statistics server as it has the identi-
fiers of all the nodes in the system and the values of each node’s current
successor.

In the first set of experiments, we evaluated the performance ofmerg-
ing two equal-sized overlays. We created two independent overlays and
triggered the merger process by creating a link between the overlays.
This was done by adding a random node from one overlay to the queue
of a random node in the other overlay. The results for network sizes of

3.3. Recircle: Bootstrapping, Maintenance, and Mergers 57

0 50 100 150 200

0.5

0.6

0.7

0.8

0.9

1

Time (secs)

F
ra

ct
io

n
of

 c
or

re
ct

 s
uc

ce
ss

or
 p

oi
nt

er
s

n=500, f=1
n=500, f=3
n=500, f=5
n=1000, f=1
n=1000, f=3
n=1000, f=5

Figure 3.25: Evaluation on PlanetLab for merging two overlays.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (secs)

F
ra

ct
io

n
of

 c
or

re
ct

 s
uc

ce
ss

or
 p

oi
nt

er
s

n=500, f=1
n=500, f=3
n=500, f=5
n=1000, f=1
n=1000, f=3
n=1000, f=5

Figure 3.26: Evaluation on PlanetLab for bootstrapping an overlay.

500 and 1000 are shown in Figure 3.25. Analogous to the simulation
results, the convergence rate for f = 1 is slower compared to higher
values of fanout. Furthermore, with f = 3 and 5, most of the successor
pointers converge within 10 to 15 seconds.

Finally, we evaluated the performance of bootstrapping an overlay
on PlanetLab. We started the nodes as single node overlays by mak-
ing each node point to itself as its successor and predecessor. As in the
simulations, in this experiment we created an Erdős-Rényi graph at the
statistics server using the identifiers of the nodes. Then, the statistics
server initiated the bootstrapping process by sending messages to all
nodes containing their neighbours as dictated by the generated graph.
On receiving such a message, each node added the neighbours to their

58 Chapter 3. Network Partitions, Mergers, and Bootstrapping

queue, which triggered the bootstrapping mechanism. Figure 3.26 de-
picts the results for this experiment, which shows that an overlay of
size 1000 can be created within 10 to 15 seconds. In the figure, f = 1
performs the same as higher values of f because all nodes are already
participating in the merger process.

3.3.5 Related work

A variety of overlay maintenance algorithms have been proposed over
the years [153, 62, 104, 91], andmuch work has been done to show their
resilience to handle churn [96, 102]. These systems can cope with mas-
sive failures, thus being able to cope with network partitions as long
as a node doesn’t loose all its successor-list. Yet, these systems are not
intrinsically designed for fast bootstrapping, and cannot merge multi-
ple overlays. In this chapter, we show an overlay algorithm that can
deal with such extreme events, while being able to perform periodic
maintenance like any overlay algorithm. We believe that the underly-
ing principles can be used in other overlays as well.

Bootstrapping a structured overlay is done by constructing a geome-
try, such as a ring in Chord, from a randomly connected overlay. Shaker
et al. [142] have presented an algorithm, called Ring Network (RN), for
nodes in arbitrary state to converge into a ring topology. While their al-
gorithm can be used for overlaymaintenance aswell, it cannot converge
from certain scenarios [136]. Furthermore, since their algorithm is not
reactive to extreme events, it suffers from the same problems as other
overlays where the time for convergence when two overlays merge is
huge [136].

Montressor et al. show how any topology [68], such as a ring [109],
can be created from a randomly connected overlay using a gossip-based
protocol. However, in their algorithm, it is difficult to detect when the
overlay has converged due to decentralization, and thus it depends on
heuristics to detect termination. Hence, we believe that further investi-
gation is required to study how these algorithms can be synchronized
such that once the topology is built, it can be handed over to the over-
laymaintenance protocol. On the other hand, ReCircle does not require
any such handover.

Datta et al. [35, 34] show how to merge multiple P-Grid [3] over-
lays. P-Grid is a tree-based overlay; in contrast, we focus on ring-based
overlays. Furthermore, Similar to Ring-Unification, their algorithm is
triggered for performing the merger, and then terminates after conver-
gence, thus giving the control back to the overlay maintenance proto-
cols. This can lead to two problems. First, the implications of such

3.4. Discussion 59

a terminating algorithm on the overlay maintenance algorithm is not
well studied. Coupled with a separate bootstrapping protocol further
complicates the interaction between the algorithms. Second, a system
developer has to implement and maintain separate mechanisms to ad-
dress each problem, which can lead to unnecessary complexities. Re-
Circle provides a single algorithm that covers all such scenarios.

3.4 Discussion

Structured overlay networks are designed for dynamic environments
and touted to be scalable, fault-tolerant and self-organizing. Therefore,
apart from dealing with normal churn rates, we argue that they should
intrinsically be able to handle rare but extreme events such as bootstrap-
ing, flash crowds, and network partitions and mergers. We have pre-
sented a mechanism to detect when a network partition seizes.

We have presented various algorithms tomergemultiple ring-based
overlays into one overlay. We have proposed, Ring-Unification, an over-
laymerger algorithm that terminates once the separate overlays are dis-
solved into one. We have also proposed a unified non-terminating algo-
rithmReCircle. Under normal execution, ReCircle algorithm exchanges
messages periodically like any other overlay maintenance protocol. On
the other hand, ReCircle is reactive to extreme events, such as boot-
strapping and merger, so that it can converge faster when such events
occur. We have designed Ring-Unification and ReCircle such that they
provide tunable knobs to tradeoff between cost (bandwidth consump-
tion) and performance (time to convergence) while handling extreme
scenarios.

CHAPTER 4
Network Size Estimation

In this chapter, we present a gossip-based [119] aggregation-style [70] net-
work size estimation algorithm for ring-based structured overlay net-
works. We demonstrate how our solution is robust to node failures
compared to existing aggregation solutions.

Motivation Structured overlay networks are highly scalable and the
number of nodes in the system fluctuates all the time due to churn. The
network size is, however, a global variable which is not accessible to in-
dividual nodes in the system as they only know a subset of the other
nodes. This information is, nevertheless, of great importance to many
structured P2P systems, as it can be used to tune the rates at which
the topology is maintained. Moreover, an estimate of the network size
can be used in structured overlays for load-balancing purposes [55], de-
ciding successor-lists size for resilience to churn [95], choosing a level
to determine outgoing links [103], and for designing algorithms that
adapt their actions depending on the system size [15].

Since knowledge of the size of the overlay is a core requirement for
many systems, estimating the size in a decentralized manner is a chal-
lenge taken up by recent research activities. Out of these, gossip-based
aggregation algorithms [71], though having higher overhead, provide
the best accuracy [107]. Consequently, we focus on gossip-based ag-
gregation algorithms in our work. While aggregation algorithms can
be used to calculate different aggregates, e.g. average, maximum, min-
imum, variance etc., our focus is on counting the number of nodes in
the system.

61

62 Chapter 4. Network Size Estimation

Although Aggregation [71] provides accurate estimates, it suffers
froma fewproblems. First, Aggregation is highly sensitive to the overlay
topology that it is used with. Convergence of the estimate to the real
network size is slow for non-random topologies. On the contrary, the
majority of structured P2P overlays have non-random topologies. Thus,
it is not viable to directly use Aggregation in these systems. Second,
Aggregationworks in rounds, and the estimate is considered converged
after a predefined number of rounds. As we discuss in section 4.3.1,
this can be problematic. Finally, Aggregation is highly sensitive to node
failures.

In this chapter, we propose a gossip algorithm based on Aggrega-
tion to be executed continuously on every node to estimate the total
number of nodes in the system. The algorithm is aimed to work on
structured overlay networks. It is robust to failures and adaptive to the
network delays in the system.

4.1 Gossip-based Aggregation

In this section, we describe the original Aggregation algorithm sug-
gested by Jelasity et. al. [71]. The algorithm is based on push-pull
gossiping, shown in Algorithm 6.

Each node p has a local state, denoted as sp in Algorithm 6. A node
has two threads, an active thread, and a passive thread. The active thread
is responsible for initiating push requests to other nodes, essentially
starting an exchange of local states between two nodes. The passive
thread acts as the pull mechanism; replyingwith local state to any push
requests from other nodes.

ThemethodGetRandomNeighbour returns a uniformly randomsam-
pled node over the entire set of nodes. Such a continuous and updated
list of random nodes can be provided by an underlying peer sampling
service, such as Newscast [69] or Cyclon [162]. The method Update
computes a new local state based on the node p’s current local state sp
and the remote node’s state sq. The goal for such a method is to reduce
the variance in the states, a mechanism known as anti-entropy [119].

The time interval δ after which the active thread initiates an ex-
change is called a cycle. Given that all nodes use the same value of δ,
each node roughly participates in two exchanges in each cycle, one as an
initiator and the other as a recipient of an exchange request. Thus, the
total number of exchanges in a cycle are roughly equal to 2× n, where
n is the network size.

4.1. Gossip-based Aggregation 63

Algorithm 6 Push-pull gossip in Aggregation [71]

1: every δ time units at p
2: q := GetRandomNeighbour()
3: sendto q : ExchangeState〈sp〉
4: sq ← ReceiveState(q) . wait for q’s state
5: sq := Update(sp, sq)
6: end event

(a) Active thread

7: receipt of ExchangeState〈sp〉 from p at q
8: sendto p : Reply〈sq〉
9: sq := Update(sp, sq)
10: end event

(b) Passive thread

For network size estimation, one random node sets its local state
to 1 while all other nodes set their local states to 0. Hence, initially, the
global sum is 1 and average is 1

n , and the variance in local states is large.
Executing the aggregation algorithm for a number of cycles decreases
the variance of local states but keeps the global sum and average the
same. Thus, after convergence, a node p can estimate the network size as
1
sp
. For network size estimation, Update((sp, sq)) returns

sp+sq
2 .

Aggregation [71] achieves up-to-date estimates byperiodically restart-
ing the protocol, i.e. local values are re-initialized and aggregation
starts again. This is done after a predefined number of cycles γ, called
an epoch. The states are assumed to have converged at the end of an
epoch. Jelasity et. al. also propose mechanisms on how a single node
initializes its state to 1 while others initialize their state to 0 in an epoch
in a decentralized fashion.

The main disadvantage of Aggregation is that a failure of a single
node early in an epoch can severely effect the estimate. For example,
if the node with local state 1 crashes after executing a single exchange,
50% of the value will disappear, giving 2× n as the final size estimate.
This issue is further elaborated in Section 4.3.3. Another disadvantage,
as we discuss in section 4.3.1, is the requirement of predefining the
epoch length γ.

64 Chapter 4. Network Size Estimation

4.2 The Network Size Estimation Algorithm

A naïve approach to estimate the network size in a ring-based overlay
would be to pass a token around the ring, starting from, say node i and
containing a variable v initialized to 1. Each node increments v and for-
wards the token to its successor, i.e. the next node on the ring. When the
token reaches back at i, v will contain the network size. While this so-
lution seems simple and efficient with respect to number of messages,
it suffers from multiple problems. First, it is not fault-tolerant as the
node with the token may fail. This will require complicated modifica-
tions for regenerating the token with the current value of v. Second,
the naïve approach will be quite slow, as it will take O(n) time to com-
plete. Since peer-to-peer systems are highly dynamic, the actual size
may have changed by the time the algorithm finishes. Lastly, at the end
of the naïve approach, the estimate will be known only to node i which
will have to broadcast it to all nodes in the system. Our solution aims
at solving all these problems at the expense of a higher message com-
plexity than the naïve approach.

Our goal is to make an algorithm where each node tries to estimate
the average inter-node distance, ∆, on the identifier space, i.e. the aver-
age distance between two consecutive nodes on the ring. Given a cor-
rect value of ∆, the number of nodes in the system can be estimated as
N
∆ , N being the size of the identifier space.

Every node p in the system keeps a local estimate of the average
inter-node distance in a local variable dp. Assuming P is the set of all
nodes, our goal is to compute ∑i∈P di

|P| at each node. The philosophy un-
derlying our algorithm is the observation that at any time, the following
invariant should be satisfied: N = ∑i∈P di.

We achieve our goal by letting each node p initialize its estimate
dp to the distance to its successor on the identifier space. Concretely,
we initialize the local state as dp = succ(p) 	 p, where 	 represents
subtraction modulo N. Note that if the system only contains one node
p, then dp = N. Clearly, a correctly initialized network satisfies the
afore-mentioned invariant as the sum of the estimates (local states) is
equal to N.

We employ a modified gossip-based aggregation algorithm for the
exchange of initial local states and convergence of ∆. Since nodes in a
structured overlay do not have access to random nodes, we implement
the GetRandomNeighbour method in Algorithm 6 by returning a node
reached bymaking a randomwalk of length h. For instance, to perform
an exchange, p sends an exchange request to one of its neighbours, se-

4.2. The Network Size Estimation Algorithm 65

lected randomly from the routing table, with a hop value h. Upon re-
ceiving such a request, a node r decrements h and forwards the request
to one of its own neighbours, again selected randomly. This process is
repeated until h reaches 0, after which the exchange of local states takes
place between p and the last node receiving the request.

Given that GetRandomNeighbour returns random nodes, after a
number of exchanges (logarithmic number of steps, to the network size,
as show in [71]), every node will have dp = ∑i∈P di

|P| . Since the variance
in the initial local states on all nodes is lower in our case compared to
[71], our solution converges in lesser number of exchanges.

In each cycle, on average, each node initiates an exchange once, which
takes h hops, and replies to one exchange. Consequently, the number
of messages for our modified aggregation algorithm are h× n + n per
cycle. While this is higher than the cost of basic Aggregation (2× n),
our solution does not require a sampling service such as Cyclon [162],
which has its own overhead.

4.2.1 Handling dynamism

Theprotocol described so far does not take into account the dynamic be-
haviour of large-scale peer-to-peer systems. In this section, we present
our solution as an extension of the basic algorithm described in Sec-
tion 4.2 to handle dynamism in the network. Furthermore, our solution
does not require predefining an epoch length for re-initialization.

The basic idea of our solution is that each node keeps different levels
of estimates, each with a different accuracy. The lowest level estimate
is the same as dn in the basic algorithm. As the value in the lowest
level converges, it is moved to the next/higher level. While this helps
by having high accuracy in upper levels, it also gives a continuous ac-
cess to a correct estimated value while the lowest level is re-initialized
and converges. Furthermore, the solution uses the lowest level to de-
tect convergence and restart the protocol adaptively, instead of after a
predefined interval.

Our solution is given in Algorithm 7 and 8. Each node n keeps track
of the current epoch in epochn and stores the estimate in a local variable
stn instead of dn in the basic algorithm. st is a tuple of length l, i.e.

st = (stl−1, stl−2, · · · , st0)

The tuple values are levels corresponding to the accuracy of the esti-
mate at that level. The value at level 0 is the same as dn in the basic
algorithm and has the most recent updated estimate but with high er-

66 Chapter 4. Network Size Estimation

ror, while level ‘l − 1’ has the most accurate estimate but incorporates
updates slowly.

Algorithm 7 Network size estimation (Part I)
1: every δ time units at n
2: if Converged() and IAmStarter() then
3: SimpleBroadcast(epochn + 1)
4: else
5: sendto randNeighbour() : ReqExchange〈n, epochn, stn, hops〉
6: end if
7: end event

8: receipt of ReqExchange〈i, ei, sti, h〉 from m at n
9: if h > 1 then
10: h := h− 1
11: sendto randNeighbour() : ReqExchange〈i, ei, sti, h〉
12: else
13: if epochn > ei then . initiator i is in an older epoch
14: sendto i : ResExchange〈 f alse, epochn, stn〉
15: else
16: trigger 〈 MoveToNewEpoch | ei 〉
17: sendto i : ResExchange〈true, epochn, stn〉
18: stn := Update(stn, sti)
19: UpdateSlidingWindow(stn)
20: end if
21: end if
22: end event

When a node moves to a new epoch (Algorithm 8, line 13), it pro-
motes the estimates for each level one level up, and then initializes
the lowest level (0) using the afore-mentioned technique. The method
LeftShiftLevels() moves the estimate of each level one level up, e.g.
left shifting a tuple e = (el−1, el−2, · · · , e0) gives (el−2, el−3, · · · , e0, nil).
Thereafter, the node p initializes its estimate via InitializeEstimate() by
setting the level 0 value to succ(p)	 p.

When two nodes exchange their states, they update their local states
by taking average of their own state and the received state. We ex-
tend the same anti-entropy principle to tuples. Here, the method Up-
date(a, b) operates on tuples and returns an average of each level, i.e.
(

al−1+bl−1
2 , al−2+bl−2

2 , · · · , a0+b0
2).

To incorporate changes in the network size due to churn, we restart
the algorithm by moving to a new epoch. Instead of restarting after

4.2. The Network Size Estimation Algorithm 67

Algorithm 8 Network size estimation (Part II)
1: receipt of ResExchange〈updated, em, stm〉 from m at n
2: if updated = false then
3: trigger 〈 MoveToNewEpoch | em 〉
4: else
5: if epochn = em then
6: stn := Update(stn, stm)
7: end if
8: end if
9: end event

10: receipt of DeliverSimpleBroadcast〈em〉 from m at n
11: trigger 〈 MoveToNewEpoch | em 〉
12: end event

13: upon event 〈MoveToNewEpoch | e 〉 at n
14: if epochn < e then . join new epoch if in an older epoch
15: LeftShiftLevels()
16: InitializeEstimate()
17: epochn := e
18: end if
19: end event

a predefined number of cycles (as in [71]), we do so adaptively by an-
alyzing the variance of a history of estimates. We let the lowest level
converge such that the change in estimate is negligible for consecutive
cycles, and then restart. This duration may be larger than a predefined
epoch length γ or less, depending on the system-wide variance of the
value being estimated, and the actual network size. We achieve adap-
tivity by using a sliding window at each node. Each node stores multi-
ple values of the lowest level estimate for consecutive cycles in a sliding
window, replacing estimates of older cycles by newer cycles. If the coef-
ficient of variance of the sliding window is less than a desired accuracy,
e.g. 10−2, the value is considered converged. This logic is embedded in
the method Converged() in Algorithm 7.

Once the estimate at the lowest level is considered to have converged
based on the sliding window, a new epoch can be started. There are
different mechanisms of deciding which node should restart the proto-
col, denoted by the method IAmStarter(). One way is, as used in [71],
that each node restarts the protocol with probability 1/n̂, where n̂ is
the current estimated network size. Given a reasonable estimate in the

68 Chapter 4. Network Size Estimation

previous epoch, this will lead to one node restarting the protocol with
high probability. Multiple nodes starting an epoch does not effect the
correctness of the estimate, and only results in redundant messages. 1

An alternate mechanism is that the node p which has 0 ∈ [p, p.succ)
restarts the protocol by starting a new epoch. In our evaluation, we use
the first method.

Once a new epoch starts, all nodes should join it quickly. Aggrega-
tion [71] achieves this by the logarithmic epidemic spreading property
of random networks. Since we do not have access to random nodes
in structured overlays, we use a simple broadcast scheme [47] for this
purpose, which is both inexpensive (O(n)messages) and fast (O(log n)
steps). The broadcast is best-effort, as even if it fails, the new epoch
number is spread through exchanges.

When a new node joins the system, it starts participating in the size
estimation protocol when the next epoch starts. This happens either
when it receives the broadcast, or its predecessor initializes its estimate.
Until then, it keeps forwarding any requests for an exchange to a ran-
domly selected neighbour.

Handling churn in our protocol is simpler and less expensive, in
terms of bandwidth consumption, than Aggregation [71]. Instead of
running multiple epochs concurrently (as in [71]), we rely on the fact
that a crash in our system does not effect the end estimate as much as in
[71]. The reason is as follows. In our protocol, since node identifiers are
uniformly distributed in structured overlays, the variance of the initial
local states – distance between a node and its successor – is low. Thus, a
failure of a node in the beginning of an epochwill not have severe affect
on the final estimate. Furthermore, since the variance is low to begin
with after initialization of local states, our algorithm converges in fewer
number of cycles. The effect of failures on our algorithm is explored in
detail in Section 4.3.3.

4.3 Evaluation

To evaluate our solution, we implemented the Chord [152] overlay in an
event-based simulator [144]. We simulate two network sizes, 5000 and
105. The simulations for network size of 5000 use the King dataset [59]
formessage latencies between nodes. Since theKingdataset is not avail-
able for a 5000 node topology, we derive the 5000 node pair-wise la-

1On the contrary, multiple nodes starting an epoch in [71] is problematic since only
one node should set its local estimate to 1 in an epoch. Consequently, an epoch has to be
marked with a unique identifier.

4.3. Evaluation 69

tencies from the distance between two random points in a Euclidean
space [92]. The mean round trip time remains the same as in the King
dataset. For simulating a larger network size, we start 105 nodes anduse
random message latencies between nodes with exponential distribu-
tion and mean of 5 simulation time units. In the figures, δ = 8 ∗mean-
com means the cycle length is 8× 5.

Themain idea behind our size estimation algorithm is for each node
to estimate the average inter-nodedistance d on the ring identifier space.
In the first set of experiments, we measure the error in the estimate of d
on all nodes versus the actual inter node distance (N

n). Concretely,

error = 1
n ∑n

i=1 |di − N
n |

We initialize the local states on all nodes andmeasure the error over
cycles. We evaluate the number of cycles needed for convergence, i.e.
the error to be small, when using various values of δ, and number of
hops.

In the second set of experiments, we compare the estimate of the
network size by our algorithm to the actual network size under different
churn scenarios. We also compare the robustness of our solution to
Aggregation.

4.3.1 Epoch length

In this section, we evaluate the effect of the time period for initiating
an exchange, δ, on the convergence of the algorithm and hence, the
epoch length. We measure the error periodically after every cycle. Fig-
ure 4.1 shows the results when using King latencies and a network size
of 5000, and Figure 4.2 shows results for exponentially distributed la-
tencies with mean 5 and a network size of 105.

Our results show that when the ratio between the communication
delay and δ is high, e.g. δ = 0.5 secs (Fig. 4.1) and 8 ∗mean-com (Fig. 4.2),
the aggregate converges slowly and to a value with higher error. For
cases where the ratio is low, e.g. δ = 5 secs (Fig. 4.1) and 24 ∗mean-com
(Fig. 4.2), the convergence rate is faster and the converged value has
lower error. The reason is that when δ is short, the expected number of
exchanges per cycle do not occur. This problem is further aggravated
in our solution since we use a random walk to find a random node in
the network.

Since δ effects convergence rate and accuracy, using a predefined
number of cycles as the epoch length (as in [71]) can lead to an estimate

70 Chapter 4. Network Size Estimation

 0.001

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60

E
rr

or
 (

lo
g)

Cycle

δ=0.5sec
δ=1sec

δ=5secs

(a) hops = 0

 0.001

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60

E
rr

or
 (

lo
g)

Cycle

δ=0.5sec
δ=1sec

δ=5secs

(b) hops = 3

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60

E
rr

or
 (

lo
g)

Cycle

δ=0.5sec
δ=1sec

δ=5secs

(c) hops = 6

Figure 4.1: Error for the estimate of inter-node distance d in the system
for a network size of 5000 nodes.

with large error. Hence, our solution uses adaptive epoch lengths. An-
other benefit of using an adaptive approach as ours is that the protocol
may converge much before a predefined epoch length, thus sending
messages in vain between the time the algorithm converged and the
end of the epoch. If the protocol is restarted as soon as the estimate
has converged (as in our solution), these extra cycles are used to get
updated aggregate value, hence reflecting churn effects in the estimate
faster.

4.3.2 Effect of the number of hops

In this section, we discuss the effect of the number of hops taken to find
a random node to exchange states. Figure 4.3 shows convergence of the
algorithm for different values of number of hops, h. Our results show
that when h > 0, the error converges to a smaller value, and the con-
vergence rate is faster compared to h = 0. The reason being that when

4.3. Evaluation 71

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60

M
ax

 E
rr

or
 (

lo
g)

Cycle

δ=8*mean-com
δ=24*mean-com

(a) hops = 0

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60

M
ax

 E
rr

or
 (

lo
g)

Cycle

δ=8*mean-com
δ=24*mean-com

(b) hops = 4

Figure 4.2: Error for the estimate of inter-node distance d in the system
for a network size of 105 nodes.

h = 0, nodeswill exchange their local states onlywith their neighbours,
which slows down the diffusion process. On the other hand, using
h > 0 gives better access to random nodes in the overlay to spread local
states. Furthermore, using very large values of h might not be helpful
either as it can prevent the expected number of exchanges to take place
in each cycle.

4.3.3 Churn

Flash crowds

The basic idea behind aggregation is to reduce the variance in local
states of all nodes over cycles by exchanging values, while keeping the
total sum of local states the same as when local states were initialized
in the beginning of the epoch. The main reason why the total summay
change at the end of the epoch from the beginning is node failures.
When a node fails, its local state is lost, reducing the total sum. This
affects the converged local states and hence, the estimate of the network
size. On the other hand, a node join can be prevented from influencing
the aggregation process by preventing it from joining an in-progress
epoch.

The variance in local states in the beginning of an epoch, i.e. in the
first few cycles after local states are initialized, is high in [71] compared
to our solution. Thus, a failure of a node early in an epoch can result in
a worse estimate when using [71] than our solution. We simulate and
compare such a scenario in this section.

72 Chapter 4. Network Size Estimation

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60

E
rr

or
 (

lo
g)

Cycle

0 hop(s)
1 hop(s)
2 hop(s)
3 hop(s)
4 hop(s)
5 hop(s)
6 hop(s)

(a) n = 5000, δ = 5 seconds

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60

M
ax

. E
rr

or
 (

lo
g)

Cycle

0 hop(s)
1 hop(s)
2 hop(s)
3 hop(s)
4 hop(s)

(b) n = 105, δ = 24 ∗mean-com

Figure 4.3: Comparison of the error in the estimate of inter-node dis-
tance d for various values of the number of hops.

To mimic extreme situations, e.g. a network partition, we evaluate a
scenario where a massive number of nodes fail simultaneously. In each
experiment, we fail 50% of the nodes at a given cycle of an epoch and
measure the network size estimated at the end of the epoch. Our re-
sults, when the simultaneous failure occurs at various cycles, is shown
in Figure 4.4. The x-axis shows the cycle at which the massive failure
occurred, and the y-axis shows the converged estimate. Our modi-
fied aggregation solution (Figure 4.4(a)) is not as severely affected by
the sudden massive failure as the original Aggregation algorithm (Fig-
ure 4.4(b)). In fact, in some of the Aggregation experiments, the es-
timate converged to infinity (not shown in the figure). This happens
when all the nodes with non-zero local estimates fail. For our solution,

4.3. Evaluation 73

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 1 2 3 4 5 6 7

E
st

im
at

ed
 S

iz
e

Cycle

Experiment

(a) Our modified aggregation

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 0 1 2 3 4 5 6 7

E
st

im
at

ed
 S

iz
e

Cycle

Experiment

(b) Aggregation by Jelasity et. al. [71]

Figure 4.4: Estimated size when 50% of the nodes out of 5000 fail sud-
denly. X-axis gives the cycle at which the sudden failure occurred in
the epoch.

the effect of a sudden simultaneous failure is already negligible if the
nodes crash after the third cycle.

Continuous churn

In this section, we evaluate churn scenarios where nodes join and fail
throughout the duration of the experiment. We simulate churn cases
where the total network size gradually decreases and then increases,
and measure the estimated network size. We keep track of the esti-
mate at 2 levels (see Section 4.2). Figure 4.5 and 4.6 show the results
when 50% nodes fail within a few cycles and afterwards, 50% nodes
join within a few cycles. The graphs show how the estimation follows
the actual network size, with some delay before the actual network size
is reflected in the estimate. The standard deviation of the estimated
network size at level 2 is shown as vertical bars, which depicts that all
nodes estimate roughly the same size. The standard deviation is high
only when a new epoch starts, because while evaluating the mean and
standard deviation, some nodes have moved to the new epoch, while
others are still in the previous epoch. The estimate at level 1 converges
to the actual size faster than level 2, but the estimate has higher variance
as the standard deviation for level 1 (omitted) is higher than for level 2.

Next, we evaluate the affect of the hop count h on how fast the esti-
mate follows the actual network size. Figure 4.7 shows the results when
the network size is halved in a few cycles. Compared to h = 0, higher
values of h follow the trend of the actual size faster.

74 Chapter 4. Network Size Estimation

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 20 40 60 80 100 120 140 160 180 200

N
et

w
or

k
si

ze

Cycle

Actual size
Est. level 2
Est. level 1

(a) hops = 0

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 20 40 60 80 100 120 140 160 180 200

N
et

w
or

k
si

ze

Cycle

Actual size
Est. level 2
Est. level 1

(b) hops = 1

Figure 4.5: Mean estimated size by each node with standard deviation
using King dataset latencies.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 50 100 150 200 250

N
et

w
or

k
si

ze
 (

10
5)

Cycle

Actual size
Est. level 2
Est. level 1

(a) hops = 0

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 50 100 150 200 250

N
et

w
or

k
si

ze
 (

10
5)

Cycle

Actual size
Est. level 2
Est. level 1

(b) hops = 1

Figure 4.6: Mean estimated size by each node with standard deviation
using exponentially distributed latencies with mean 5 time units.

Finally, we simulate a network of size 4500 and evaluate our algo-
rithm under continuous churn, with a mix of joins and failures. In
each cycle, we fail some random nodes and join new nodes. Figure 4.8
shows our results. The plotted dots correspond to the converged mean
estimate after 15 cycles for each experiment. The x-axis gives the per-
centage of churn events, including both failures and joins, that occur in
each cycle. For instance, 10% means that 4500× 10

100 × 15 churn events
occurred before the plotted converged estimated network size. Our
results show that the algorithm handles continuous churn reasonably
well as the estimate is close (5− 10%) to the actual network size..

4.4. Related Work 75

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 20 40 60 80 100

N
et

w
or

k
si

ze

Cycle

Actual size
0 hops
1 hops
2 hops
3 hops
4 hops
5 hops

Figure 4.7: Mean estimated size for different values of h for level 2. The
figure compares how fast the size estimation follows the real network
size for various h.

4.4 Related Work

Network size estimation in the context of peer-to-peer systems is chal-
lenging as these systems are completely decentralized. Furthermore,
nodesmay fail anytime, the network sizemayvarydrastically over time,
and the estimation algorithm should continuously update the estima-
tion to reflect the current number of nodes.

Merrer et. al. [107] have compared three existing size estimation
algorithms, Sample & Collide [105], Hops Sampling [78] and Aggrega-
tion [71], which are representative of three main classes of network size

 4200

 4300

 4400

 4500

 4600

 4700

 4800

 0 5 10 15 20

E
st

im
at

ed
 S

iz
e

%-age nodes substituted per cycle

Experiment

Figure 4.8: Estimated network size for 4500 nodes under continuous
churn. X-axis gives the percentage of churn events (joins+failures) that
occur in each cycle.

76 Chapter 4. Network Size Estimation

estimation algorithms. Their study yields that although Aggregation is
expensive, it produces the most accurate results. Aggregation also has
the additional benefit that the estimate is available on all nodes com-
pared to only at the initiator in the case of Sample & Collide and Hops
Sampling. Our work can be seen as an extension of Aggregation, to
handle its shortcomings and extend it to non-random topologies, such
as structured overlay networks.

The work by Horowitz et. al. [64] is similar to ours in the sense that
they also utilize the structure of the overlay for the estimation. They
use a localized probabilistic technique to estimate the network size by
maintaining a structure: a logical ring. Each node estimates the net-
work size locally based on the estimates of its neighbours on the ring.
While their technique has less overhead, the estimates are not accurate,
the expected accuracy being in the range n

2 · · · n. Their work has been
extended byAndreas et. al. [17] specifically for Chord, yet the extended
work also suffers similar inaccuracy range for the estimated size. Ma-
hajan et. al. [102] also estimate the network size through the density of
node identifiers in Pastry’s leafset, yet they neither prove any accuracy
range, nor provide any simulation results to show the effectiveness of
their technique.

Kempe et. al. [77] have suggested a gossip-based aggregation scheme,
yet their solution focuses only on push-based gossiping. Using push-
based gossiping complicates the update and exchange process as a nor-
malization factor needs to be kept track of. On the same, as noted by
Jelasity et. al. [71], push-based gossiping is problematic when the un-
derlying directed graph used is not strongly connected. Thus, we build
our work on push-pull gossip-based aggregation. Similarly, to estimate
the network size, Kempe et. al. also propose that one node should
initialize its weight to 1, while the other nodes initialize to weight 0,
making it highly sensitive to failures early in the algorithm.

The authors of Viceroy [103] andMercury [15] mention that a nodes
distance to its successor can be used to calculate the number of nodes in
the system, but provide no reasoning that the value always converges
exactly to the correct value, and thus that their estimate is unbiased.

CHAPTER 5
Lookup Inconsistencies

Structured overlays networks provide a lookup service (see Section 2.1.2)
for Internet-scale applications, where a lookup maps a key to a node in
the system. The node mapped by the lookup can then be used for data
storage or processing. Distributed Hash Tables (DHTs) [32, 40] use an
overlay’s lookup service to store data and provide a put/get interface
for distributed systems. Since the lookups are “best-effort”, DHTs built
on overlays typically guarantee eventual consistency [81, 38]. In con-
trast, many distributed systems, such as distributed file systems [131]
and distributed databases [166], require stronger consistency guaran-
tees. These systems generally rely on services such as consensus [87]
and atomic commit [100].

In this chapter, we discuss how anomalies in the routing level, caus-
ing lookup inconsistencies, result in inconsistencies at the data level. We
study the causes, and frequency of occurrence, of lookup inconsisten-
cies under different scenarios in a DHT.We discuss techniques that can
be used to decrease the effect of lookup inconsistencies at the cost of
reduced availability.

Introduction Ring-based overlays use consistent hashing [74] to map
keys to nodes under churn. Existing nodes take over key responsibil-
ities of inaccessible/failed nodes, and newly joined nodes take over a
fraction of the responsibilities of existing nodes (see Section 2 for de-
tails). While the overlay updates its routing pointers to cater for churn,
routing anomalies can arise temporarily. Apart from churn, incorrect

77

78 Chapter 5. Lookup Inconsistencies

routing pointers can also arise due to incorrect behaviour of failure de-
tectors.

Failure detectors A failure detector is a module used by a node to
determine if another node is alive or has failed. Failure detectors are
defined by two properties: completeness and accuracy [23]. In a crash-
stop process model, completeness requires the failure detector to even-
tually detect all crashed/failed nodes. Accuracy relates to the mistake
a failure detector can make to decide if a node has crashed or not. A
perfect failure detector is accurate all the times, i.e., it never detects an
alive node as failed. Failure detectors are generally implemented using
heartbeats, where a node periodically sends heartbeat messages to an-
other node. If a node p does not receive a heartbeat from another node q
within a certain time period, the failure detector at p detects q as failed.

Structured overlays are aimed to operate on asynchronous networks.
Informally, a network is asynchronous if there is no bound on the time
taken by a message to be delivered to the destination node. Thus, no
timing assumptions can be made in such networks. Due to the absence
of timing restrictions in an asynchronous model, it is impossible for a
failure detector to determine if another node has actually crashed or
is very slow to respond to heartbeats. This may violate the accuracy
property of a failure detector, giving rise to inaccurate detection of node
failures.

For our work, we assume an imperfect failure detector that is com-
plete but only probabilistically accurate. Anode p sends a pingmessage
to its neighbours at regular intervals. If p receives an acknowledgment
of the ping message from a neighbour before a timeout, the neighbor
is considered to be alive. Not receiving an acknowledgment within the
timeout implies the neighbor has crashed. The timeout is chosen to be
much higher than the typical round-trip time between the two nodes.
This model of failure detector is similar to the baseline algorithm used
by Zhuang et. al [165]

5.1 Consistency Violation

Temporary anomalies on the routing level can lead to lookup inconsis-
tencies. In this section, we define a consistent configuration of an over-
lay, and discuss howviolating a consistent configuration can give rise to
lookup inconsistencies. In turn, we show how lookup inconsistencies
can lead to inconsistencies on the data level.

5.1. Consistency Violation 79

10
lo

ok
up

(2
2)

lo
ok

up
(2

2)

result: 25

result: 30

2220

25 30

successor
predecessor

Figure 5.1: An inconsistent configuration. Due to imperfect failure de-
tection, 10 suspects 20 and 25, thus pointing to 30 as its successor.

A configuration of an overlay is a set of all nodes and their pointers
to neighboring nodes, including successor, predecessor and fingers. An
overlay, and thus its configuration, evolves by either changing a pointer,
or adding/removing a node. For our purposes, we define a consistent
configuration of the overlay as follows.

Definition 1. A configuration of the system is consistent if, in that config-
uration, lookups made for the same key from different nodes, return the same
node.

In a configuration where consistency is violated, we can have incon-
sistent lookups i.e. multiple lookups for the same key may be resolved to
different nodes in that configuration. In other words, multiple nodes
are deemed responsible for the same key. Lookup consistency may be
violated if some node’s successor pointers do not reflect the current ring
structure1.

Figure 5.1 illustrates an inconsistent configuration where key re-
sponsibilities are not well-defined, and hence, multiple lookups for key
22 can return different results. The figure shows a part of the ring iden-
tifier space with nodes and their successor and predecessor pointers.
Such a configuration may arise when, due to inaccuracy of the failure
detector, 10 falsely suspects 20 and 25 to have failed. Thus, node 10 be-
lieves that the next (clockwise) alive node on the ring is 30, and points to
it as its successor. Subsequently, a lookup for key 22 arriving at 10 will
return 30 as the responsible node for key 22, whereas a lookup arriving
at 20 will return 25.

1For our purposes, we define a consistent configuration based on lookup results. A
possible alternate definition can be based on correct successor and predecessor pointers.
We do not use such a definition as it may or may not lead to inconsistent lookups and
inconsistencies on the data level

80 Chapter 5. Lookup Inconsistencies

Lookup inconsistencies can give rise to data inconsistencies. For in-
stance, assume the value stored under key 22 is v in the inconsistent
configuration shown in Figure 5.1. Next, an update operation is initi-
ated to store value v′ against key 22. Such an update uses a lookup to
find the node responsible for key 22. The lookup can result in either
node 25 or 30, hence the updated value v′ will be stored at either node
25 or 30. Assume the update is stored at node 25. Now, a read opera-
tion for data with key 22 can potentially return inconsistent/old value
v, instead of value v′, if the lookup reaches the node that didn’t receive
the update, i.e. node 30.

Network partitions can cause imperfect failure detections, where
nodes in one partition falsely suspect the nodes in the other partition as
failed. As false failure detections can lead to overlapping responsibili-
ties, network partitions lead to overlapping responsibilities as well. An
example of such a scenario iswhen a network partition leads the overlay
to the divided into two overlays. Here, nodes from one partition will
falsely detect nodes in the other partition as failed. Each partitioned
overlay will define responsibilities for the whole identifier space, hence
leading to an overlap of the entire set of keys.

Apart from inaccurate failure detectors, an inconsistent configura-
tion can also arise due to high churn rates. Some such scenarios are
discussed in [47].

5.2 Inconsistency Reduction

In this section, we present a notion, called local responsibility, for reduc-
ing lookup inconsistencies. Furthermore, we discuss how the effect of
lookup inconsistencies is reduced in quorum-based algorithms.

5.2.1 Local Responsibility

In this section, we define local and global responsibility for keys, and
discuss how using the notion of local responsibility can reduce incon-
sistencies.

Definition 2. A node n is said to be “locally responsible” for a key k if the key
k is in the range between its predecessor and itself, i.e. k ∈ (n.pred, n].

Definition 3. A node n is said to be “globally responsible” for a key k if n is
the only node in the overlay configuration that is locally responsible for key k.

It follows from Definition 2 that the local responsibility of a node
(and indirectly keys) changeswhenever its predecessor pointer is changed.

5.2. Inconsistency Reduction 81

This is different from the notion of responsibility based on lookups (as
described in Section 2.1.2 and used in Section 5.1), which uses succes-
sor pointers only. We modify the lookup operation of an overlay such
that a lookup for key k always terminates at and returns the locally re-
sponsible node n for k, i.e. k ∈ (n.pred, n]2. Thus, before returning the
result of a lookup, the node checks if it is locally responsible for the key
being looked up. In case the node is not locally responsible, it can either
forward the request clockwise or anti-clockwise, or ask the initiator of
the lookup to retry.

Using ourmodified lookup operation that uses local responsibilities
in Definition 1, it follows that a configuration is consistent if there is a
globally responsible node for each key 3. Similarly, the local responsi-
bility for a key k is consistent if there is a node globally responsible for
k. This implies that if a node is globally responsible for k, then lookup
inconsistencies cannot occur with our modified lookup operation. The
reason being that a lookup for k will either fail (due to node failures),
or end up at the node that is globally responsible for k. Since there is
only one such node, multiple lookups will end up at the same node,
and thus, there will be no lookup inconsistencies.

Although the configuration depicted in Figure 5.1 is inconsistent ac-
cording to Definition 1, yet it is consistent with respect to lookups with
local responsibilities. The reason being that the local responsibilities
do not overlay in the configuration. Here, when a lookup for key 22
arrives at 20, instead of replying, it will forward the lookup to node 30
due to our modified lookup operation. Since 30 is not locally respon-
sible for 22, it will either notify the lookup initiator to retry or forward
the lookup to its predecessor 25. Since node 25 is locally responsible for
key 22, it will reply to the lookup as resolved to 25. If a lookup arrives
at node 20, it will also forward the lookup to node 25. Thus, multiple
lookups will always return the same result. This will lead data oper-
ations (read/write) to operate on the same node, and hence, achieve
data consistency.

If a node has an incorrect predecessor pointer, the range of keys it
is locally responsible for can overlap with another node’s key range.
In such a case, there will be multiple nodes locally responsible for the
same key leading to inconsistency. An example of such a configuration
is shown in Figure 5.2. Here, both node 25 and 30 are locally responsible
for 22. Such a configuration may arise if node 10 falsely suspects node
20 to have failed, while both nodes 20 and 30 falsely suspect node 25.

2instead of terminating at a node m such that k ∈ (m, m.succ], and returning m.succ
3Ensuring that there is only one globally responsible node for each key is non-trivial,

and is the focus of Chapter 6

82 Chapter 5. Lookup Inconsistencies

10
lo

ok
up

(2
2)

lo
ok

up
(2

2)

result: 25

result: 30

2220

25 30

successor
predecessor

Figure 5.2: An inconsistent configuration with respect to local respon-
sibilities. Due to imperfect failure detection, node 10 suspects node 20
while node 20 suspects node 25.

A lookup for key 22 that arrives at node 10 will be forwarded to node
25, which will return the result of the lookup as 25 since it is locally re-
sponsible for key 22. On the other hand, a lookup for key 22 that arrives
at node 25 will be forwarded to 30, which is also locally responsible for
key 22. Hence, even when using local responsibilities, configurations
can be inconsistent as multiple lookups for the same key can resolve to
different nodes. As we showed before, inconsistent configurations can
lead to data inconsistency as well.

Figure 5.2 shows that the method of local responsibilities does not
completely solve the problem of inconsistencies, but it decreases incon-
sistencies. This is mainly because without local responsibility, only one
node doing inaccurate failure detections is enough to introduce incon-
sistencies. This can easily happen on the Internet as a node may have a
transient link failure, slow connection to some other nodes, or be over-
laded. On the other hand, when using local responsibilities, multiple
nodes have to do simultaneous inaccurate failure detections to result in
routing and data inconsistencies. We measure and discuss decrease in
lookup inconsistencies when using local responsibilities in Section 5.3.

Key Availability

Brewer’s conjecture [19, 51] states that it is impossible for a web ser-
vice to provide all the three properties of consistency, availability and
partition-tolerance. The same principle applies to our technique of lo-
cal responsibility as well. While using local responsibilities can reduce
inconsistencies, it can potentially results in keys becoming unavailable.
Section 5.3 elaborates, via simulation, that using the method of local
responsibilities increases consistency at the cost of availability. In this

5.2. Inconsistency Reduction 83

section, we first define availability of a key and then show how a key
becomes unavailable when using local responsibilities.

Definition 4. In a configuration, a key k is available if there exists a reachable
node n such that n is locally responsible for k.

Here, a node n is reachable in a configuration if there exists a node
m such that n is the successor of m, i.e. m.succ = n and n 6= m4. The
notion of a node n being reachable captures the fact that a lookup can
resolve to n.

Availability of a key in an overlay is affected by both churn and inac-
curate failure detectors. When a node joins the system, it changes the re-
sponsibility key range of its successor. This leads to temporary unavail-
ability of some keys. Figure 5.3(a) shows a configurationwhere node 25
joins the overlay. Node 30 points to 25 as its predecessor, thus making
key 22 unavailable as no node is locally responsible for 22. Key 22 re-
mains unavailable until 20 runs periodic stabilization and sets 20.succ =
25, and node 25 sets 25.pred = 20. In Chapter 6, we reduce such key
unavailability by keeping the responsibility of keys with a node until
another node explicitly asks for a handover of the keys.

Failure of a node leads to temporary unavailability of keys until the
failure is detected, and pointers are updated. Such a case is shown in
Figure 5.3(b) where node 25 crashes. Key 22 remains unavailable until
node 20 detects the failure of 25, sets 20.succ = 30, and runs periodic
stabilization with node 30 resulting in setting 30.pred = 20.

Inaccuracy of failure detectors may also lead to unavailability of
keys. This occurs when a node falsely suspects its successor and re-
moves its pointer to the suspected node. Keys for which the suspected
node is locally responsible will temporarily become unavailable as it
becomes unreachable. Such a scenario is shown in Figure 5.3(c) where
node 20 suspects 25 leading to unavailability of key 22 as node 25 be-
comes unreachable.

Systems that implement atomic join and graceful leaves such asDKS
[7] and CATS (Chapter 6) will alleviate unavailability in the join cases
(e.g. Figure 5.3(a)), but not in failure cases (e.g. Figure 5.3(b) and 5.3(c)).
To handle failures, the data has to be replicated on multiple machines,
which leads to the requirement of keeping the replicas consistent. We
address such cases in more detail in Chapter 6 and Chapter 7.

4or m has a finger pointing to n. We ignore reachability due to a finger pointer as
lookups are resolved through successor pointers

84 Chapter 5. Lookup Inconsistencies

22

20

25

30

(a) 25 joins

22

20

25

30

(b) 25 fails

22

20

25

30

successor
predecessor

(c) 20 falsely suspects 25

Figure 5.3: Unavailability of a key with respect to local responsibilities
for various scenarios.

5.2.2 Quorum-based Algorithms

In this section, we show that using quorum-based algorithms can re-
duce the effect of lookup inconsistencies, thus increasing the probabil-
ity of data consistency. While such a usage increases the chances of
data consistency, the probability of data inconsistency is still non-zero.
To achieve absolute data consistency, we need additional mechanisms
for maintaining group membership. This is the topic of Chapter 6.

Like any distributed systems, overlays/DHTs replicate data on dif-
ferent nodes to increase availability and prevent loss of data. In this
chapter, we assume key-based replication, e.g. symmetric replication
[48], where an item is replicated by storing it against various keys (see
Chapter 2 for details). The replicas of a data item can be found by mak-
ing lookups for the keys of the data item.

Current implementations of overlays and replication schemes in over-
lays rarely provide linearizability [63] on their replicas, e.g. Dynamo [38],
Cassandra [81]. As overlays are dynamic systems, data maintenance
mechanisms have to cope with failures and temporary unavailability
of nodes. Quorum-based algorithms seem to be well suited as they can
cope with unavailability of a number of replicas as long as a quorum
of replicas is available. Owing to these properties, quorum-based algo-
rithms are widely used in overlays (e.g. in Dynamo, and Cassandra),
and are considered in this section. Without loss of generality, we focus
on majority-based quorum algorithms.

5.2. Inconsistency Reduction 85

n1 n3

n2’

n2

n1 n3

n2’

n2

(a) Overlapping majority sets.

n1 n3

n2’

n2

(b) Disjoint majority sets.

Figure 5.4: Using key-based replication, a data item is stored under 3
different keys for a replication degree of 3. Assuming n1 and n3 are re-
sponsible for two such keys, while due to an inconsistent configuration,
both n2 and n′2 are responsible for the third key. The majority sets may
then overlap or not.

Key-based Consistency with Majority-based Algorithms

In a DHT, data is accessed by making a lookup for the key of the data.
As shown before, the responsibility for a certain key might be inconsis-
tent in the system. Without using replication (replication degree=1), if
there is a lookup inconsistency, there will be inconsistency in data. For
instance, in a configuration shown in Figure 5.2, an update for item to
be stored under key 22might end on 25, while a subsequent read for the
same key may access node 30 due to lookup inconsistency. Such a read
will return old data, thus leading to data inconsistency and violating
linearizability [63]. On the other hand, in key-based replication, even
with lookup inconsistencies, there is a high probability that consistency
of data is maintained.

Consider a system with replication degree three, where a data item
to be stored with key k is stored under keys {k1, k2, k3} 5. Nodes n1
and n3 are responsible for k1 and k3, while due to lookup inconsis-
tency, two nodes n2, n′2 are responsible for k2

6. Any operation (read
or write/update) for k has to operate on a majority i.e. two nodes. Con-
sistency in the afore-mentioned case depends on the waymajorities are
chosen. Figure 5.4(a) shows caseswheremajorities formultiple updates
overlap, thus data remains consistent. On the other hand, Figure 5.4(b)
shows a case where the majorities do not overlap, hence operations will
happen on different non-overlappingmajority sets, thus leading to data
inconsistency.

Using majority-based quorum algorithms increases the chances of
data consistency in DHTs since even with lookup inconsistencies, mul-
tiple overlapping majorities exist that will lead to data consistency.

5in general, k = k1
6just like nodes 25 and 30 are responsible for 22 in Figure 5.2

86 Chapter 5. Lookup Inconsistencies

Modeling the Probability for Disjoint Majority Sets As discussed
in Section 2, the correctness condition for quorum-based algorithms is
that all operations overlap on at least one node. In this section, we ana-
lytically derive the probability that twooperationswork ondisjoint/non-
overlappingmajority sets given the system configuration is the same for
the two operations. Such a probability directly translates into violation
of the quorum requirement, thus leading to data inconsistency.

Wemodel the probability for disjointmajority sets byusing the count-
ing principle. The probability of disjoint majority sets is the ratio be-
tween the number of possible disjoint majority sets and the number
of all combinations of majority sets that two operations in one config-
uration can include. For the sake of simplicity, we assume that for a
responsibility inconsistency in the configuration, only two nodes are
responsible for the inconsistency, i.e., for an inconsistency of a key, two
nodes are responsible for the key.

Consider an overlay with replication degree r (where r > 0), size
of the smallest majority set denoted by m (where m = b r

2c + 1), and
a configuration with i number of responsibility inconsistencies (where
i > 0). Equation (5.1) gives the number of all possible combinations
for two majority sets, denoted as Ti,r. Here, j is the number of inconsis-
tencies included in a majority set. Since each inconsistency creates two
possibilities to select a node, we multiple with 2j.

Equation (5.2) gives, Ai,r, the number of possible combinations for
two disjoint majority sets m1 and m2. We compute Ai,r by choosing a
majority set m1 and calculating every possible majority set m2 that is
disjoint from m1. Here, j denotes the number of inconsistencies that
are included in m1. m2 can share a subset of these j inconsistencies, and
additionally include up to i− j remaining inconsistencies. The derived
formula is similar to a hyper-geometric distribution.

If p is the probability of an inconsistent responsibility, and assuming
inconsistencies are independent, pir in Equation (5.3) gives the prob-
ability that two subsequent operations in one configuration work on
disjoint majority sets.

Figure 5.5 plots the probability of having disjoint majority sets, P ,
for two operations calculated by Ai,r

Ti,r
. It shows how P depends on the

system’s replication factor r and on the number of inconsistencies i in
the replica set. An important observation is that an even replication
degree reduces P considerably. The reason for such a behaviour is that
formajority-based quorumswith even replication degree, any two quo-
rums overlap over at least two replicas (say r1 and r2). Due to lookup
inconsistencies, even if quorums do not overlap at r1, there is a signifi-

5.2. Inconsistency Reduction 87

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 2 3 4 5 6 7 8 9 10
P

ro
ba

bi
lit

y
of

 d
is

jo
in

t m
aj

or
iti

es
Number of replicas

1 Inconsistency
2 Inconsistencies
3 Inconsistencies
4 Inconsistencies
5 Inconsistencies
6 Inconsistencies

Figure 5.5: Probability of getting disjoint majority sets (y-axis) for a
replica set given replica degree (x-axis) and the number of lookup in-
consistencies for the keys in the replica set.

cant chance that they will overlap at r2. This reduces the probability of
getting disjoint majority sets.

Ti,r =

 min(i,m)

∑
j=max(m−r+i,0)

(
r− i
m− j

)(
i
j

)
2j

2

(5.1)

Ai,r =
min(m,i)

∑
j=max(m−r+i,0)

min(m,i−j)

∑
k=max(2m+i−r−2j,0)

2k+j ×

(
r− i
m− j

)(
i
j

)
× (5.2)(

r−m− i + 2j
m− k

)(
i− j

k

)
pir =

r

∑
i=1

(1− p)r−i pi Ai,r

Ti,r
(5.3)

As lookup consistency cannot be guaranteed in a overlay, even with
using local responsibilities and quorum techniques, it is impossible to
ensure data consistency. However the violation of lookup consistency
when using the afore-mentioned techniques is a result of a combination
of very infrequent events. In the following section we present simula-
tion results that measure the probability of lookup inconsistencies and
the affects of using local responsibilities and quorums on lookup incon-
sistencies.

88 Chapter 5. Lookup Inconsistencies

5.3 Evaluation

In this section, we evaluate the frequency of occurrence of lookup in-
consistencies, overlapping responsibilities and unavailability of keys
resulting from unreliable failure detectors and churn. The metrics of
interest are the fraction of nodes that are correct, i.e. do not contribute
to inconsistencies, and the percentage of keys available.

For our simulations, the accuracy of a failure detector is defined by
its probability of working correctly. The probability of a false positive
(detect an alive node as dead) is the probability of inaccuracy of failure
detectors. A failure detector with probability of false-positive equal to
zero is a perfect failure detector. In our experiments, we implemented
failure detectors in two styles: independent and mutually-dependent. For
independent failure detectors, two separate nodes falsely suspect the
same node as dead independently. Thus, if a node p is a neighbor of
both q and r, the probability of q detecting p as dead is independent of
the probability of r detecting p as dead. Formutually-dependent failure
detectors, if a node p is suspected dead, all nodes doing detection on
p will detect p as dead with higher probability, representing a positive
correlation between suspicions of different failure detectors. This may
be similar to a realistic scenario where due to p, or the network link to
p, being slow, nodes do not receive ping replies from p thus detecting
it as dead. In the afore-mentioned case, if p is suspected, both q and
r will detect it as failed with higher probability than the probability of
false-positive. Unless specified, we use independent failure detectors.

Our simulation scenario had the following structure: Initially, we
successively joined nodes into the system until we had a network with
1024 nodes. We then started to gather statistics by regularly taking
snapshots of the system after every 100 time units. A snapshot is equiv-
alent to freezing the system state. In each snapshot, we counted the
number of nodes contributing to lookup inconsistency and overlapping
responsibilities. For the experiments with churn, we introduced node
joins and failures between taking the snapshots. We varied the accu-
racy of the failure detectors from 95% to 100%, where 100% means a
perfect failure detector. This range seems reasonable, since failure de-
tectors on the Internet are usually accurate 98% of the time [165]. The
results presented in the graphs are averages of 1800 snapshots and 30
different seeds.

Lookup inconsistencies We varied the accuracy of the failure detec-
tors, and measured the fraction of nodes that have consistent respon-
sibilities. The results are shown in Figure 5.6(a), which illustrates that

5.3. Evaluation 89

lookup inconsistency increases when the failure detector becomes inac-
curate, i.e. when it returns more false positives. The plot denoted ‘Total
inconsistencies’ shows the maximum over all possible lookup inconsis-
tencies in a snapshot, whereas ‘random lookups’ shows the number of
consistent lookups when – for each snapshot – lookups are made for
20 random keys, where each lookup is made from 10 randomly cho-
sen nodes. If all lookups for the same key result in the same node, the
lookup is counted as consistent. As can be seen, changing the periodic
stabilization rate does not effect the lookup inconsistency in this case.
This is due to the fact that there is no churn in the system.

Next, we evaluate lookup inconsistencies in the presence of churn.
We varied the churn rate with respect to the periodic stabilization (PS)
rate of Chord. For the simulations presented here, we choose the inter-
arrival time between events of churn (joins/fails) to be one half of the
PS delay for ‘high churn’, the same as the PS delay for ‘moderate churn’
and 1.5 times the PS rate for ‘low churn’. These churn rates correspond
to extreme conditions as in reality, the churn rate is very low compared
to the PS rate [155]. Figure 5.6(b) shows the results for our experiments
when only new nodes join the system. We ignore failures in this ex-
periment as they only affect availability. The y-axis gives a count of the
number of lookup inconsistencies per snapshot. As the figure shows,
churn does not effect lookup inconsistencies much. In our experiments
with a perfect failure detector (probability of false positive = 0), there
was non-zero, though extremely low, number of lookup inconsistencies
under churn (2.79x10−7 for a high churn system).

The reason for lookup consistencies to be almost the same for ex-
periment with and without churn is as follows. An inconsistency in a
scenario with perfect failure detectors and churn only happens if mul-
tiple nodes join between two old nodes m, n (where m.succ = n) before
m updates its successor pointer by running PS [47]. The likelihood of
this happening in a large system with moderate rate of joins and uni-
form distribution of node identifiers is low. This effect of node joins on
lookup inconsistency can be reduced to zero if we allow lookups to be
generated only from nodes that are fully in the system. A node is said
to be fully in the system after it is accessible from any node that is already
in the system. Once a node is fully in the system, it is considered to be
in the system until it crashes. For initialization, we define the first node
which creates the ring as fully in the system.

Local Responsibilities Next, we evaluate the effect of unreliable fail-
ure detectors and churn on consistency dictated by local responsibili-

90 Chapter 5. Lookup Inconsistencies

 0.993

 0.994

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 0 0.01 0.02 0.03 0.04 0.05

F
ra

ct
io

n
of

 C
on

si
st

en
t r

es
ul

ts

Probability of false positives

Random Lookups, PS Period: 10s
Random Lookups, PS Period: 20s

Total Inconsistencies, PS Period: 10s
Total Inconsistencies, PS Period 20s

(a) Without churn

 0.993

 0.994

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 0 0.01 0.02 0.03 0.04 0.05 0.06

F
ra

ct
io

n
of

 C
on

si
st

en
t l

oo
ku

ps

Probability of false positives

No churn
Low churn

Moderate churn
High churn

(b) With node joins

Figure 5.6: Measurement of lookup inconsistency for various accuracy
levels of failure detectors.

 0.99993

 0.99994

 0.99995

 0.99996

 0.99997

 0.99998

 0.99999

 1

 0 0.01 0.02 0.03 0.04 0.05 0.06

F
ra

ct
io

n
of

 C
on

si
st

en
t r

es
po

ns
ib

ili
tie

s

Probability of false positives

No churn
Low churn

Moderate churn
High churn

Figure 5.7: Measurement of lookup inconsistencieswith respect to local
responsibilities, without churn, and with joins-only churn.

ties. Here, we count an inconsistency if the local responsibility (see Sec-
tion 5.2.1) ofmultiple nodes overlaps. The results of our simulations are
presented in Figure 5.7, which follows our earlier results, showing that
the effect of churn on lookup inconsistencies is negligible compared to
the accuracy of the failure detectors.

We compare lookup inconsistencies (left y-axis) and lookup incon-
sistencies with respect to local responsibility (right y-axis) in Figure 5.8.
The comparison shows that given a lookup inconsistency, the proba-
bility of overlapping responsibilities is approximately only 0.01. This
can be seen by the scale of the lookup inconsistency (left y-axis) and
lookup inconsistencies due to overlapping local responsibility (right y-
axis). The trend of both curves is the same as we reduce the accuracy
of the failure detectors (x-axis).

5.3. Evaluation 91

Mutually-dependent Failure Detectors We repeat our previous ex-
periments with mutually dependent failure detectors. In our simula-
tions, if a node n is suspected, the probability of nodes doing accurate
detection on n drops to 0.7. This leads to a higher probability for mul-
tiple nodes to incorrectly suspect n as failed. In the scenario for the
simulations, we suspect 32 random nodes out of 1024 nodes, and do
not introduce churn during the experiment. The results are shown in
Figure 5.9. While the trend remains the same compared to independent
failure detectors, mutually dependent failure detectors produce higher
lookup inconsistencies, but still low.

Key Availability Next, we evaluate the percentage of keys available
in a system under churn and with inaccurate failure detectors. Exper-
imental studies [130, 57, 155] show that lifetime of nodes staying in a
peer-to-peer system ranges from tens of minutes to more than an hour.
Further, experiments show that where node’s mean lifetime is 1 hour,
the optimal freshness threshold for periodic stabilization is approxi-
mately 72 seconds [91]. Consequently, for our experiments, we choose
a stabilization rate of 1 minute and vary the lifetime of nodes in tens of
minutes.

For each snapshot, we count the percentage of keys that are avail-
able (see Definition 4). The results of our experiments are shown in
Figure 5.10. Availability of keys (the data level) is effected by both in-
accuracy of failure detectors and churn. This is different from previ-
ous experiments, which showed that lookup inconsistency (the routing
level) is effected mainly by the inaccuracy of failure detectors. Even

 0.993

 0.994

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 0 0.01 0.02 0.03 0.04 0.05 0.06
 0.99994

 0.99995

 0.99996

 0.99997

 0.99998

 0.99999

 1

F
ra

ct
io

n
of

 c
on

si
st

en
t r

es
ul

ts

F
ra

ct
io

n
of

 n
on

-o
ve

rla
pi

ng
 r

es
po

ns
ib

ili
tie

s

Probability of false positives

Non-overlapping responsibilities
Lookup consistencies

Figure 5.8: Comparison of lookup inconsistency (left y-axis) and
lookup inconsistencies with respect to local responsibilities, titled
‘Non-overlapping responsibilities’ (right y-axis).

92 Chapter 5. Lookup Inconsistencies

 0.98

 0.982

 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0 0.01 0.02 0.03 0.04 0.05 0.06
 0.9995

 0.99955

 0.9996

 0.99965

 0.9997

 0.99975

 0.9998

 0.99985

 0.9999

 0.99995

F
ra

ct
io

n
of

 c
on

si
st

en
t l

oo
ku

ps

F
ra

ct
io

n
of

 c
on

si
st

en
t r

es
po

ns
ib

ili
tie

s

Probability of false positives

Consistent lookups
Consistent responsibilies

Figure 5.9: Comparison of lookup inconsistency (left y-axis) and lookup
inconsistencies with respect to local responsibilities, titled ‘Consistent
responsibilities’ (right y-axis), while using mutually dependent failure
detectors.

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

 0 0.01 0.02 0.03 0.04 0.05

%
-a

ge
 k

ey
s

av
ai

la
bl

e

Probability of false positives

No churn
30 mins
40 mins
50 mins

Figure 5.10: Evaluation of percentage of keys available under various
levels of churn and inaccurate failure detectors.

with perfect failure detectors (probability of false positive = 0 in Fig-
ure 5.10), churn results in unavailability of keys. This is expected as a
failure can result in temporary unavailability of keys.

The effect of node joins on key availability can be reduced by using
atomic ring maintenance algorithms [40, 49, 126]. These algorithms
give a consistent view of the ring in the presence of node joins and
leaves by transferring responsibilities of keys before a join or leave com-
pletes. Similarly, the effect of node failures on key availability can be
reduced by using replication. Such techniques for handling both joins
and failures atomically in an overlay are the focus of Chapter 6.

Affect of using Quorums By substituting the probability of an incon-
sistency, p, in Equation 5.3 with the results of our simulation, shown in
Figure 5.7, we get the results plotted in Figure 5.11. The figure shows

5.4. Discussion 93

the probability for two overlapping majority sets in a certain config-
uration of an overlay, and its dependence on the probability of false-
positives of failure detectors. Our simulation results show that the prob-
ability of overlapping majority quorums is high, but declines with de-
grading failure detectors. Reflecting the results shown in Figure 5.5, the
probability that two majority sets are disjoint in a system with an even
number of replicas is almost zero. However, lesser unavailable replicas
can be tolerated in a system with an even replication degree, since the
majority consists of more replicas. The effect of the number of repli-
cas involved in each operation on consistency and performance as been
further studied by Bailis et. al. [12].

5.4 Discussion

There has been work done on studying lookup inconsistencies under
churn. Rhea et. al. [125] have explored lookup inconsistencies for
Chord. Their approach differs from ours as they define a lookup to
be consistent if a majority of nodes concurrently making a lookup for
the same key get the same result. For our work, we require all results of
making the lookup for the key to be the same. This is an important re-
quirement for guaranteeing data consistency. Furthermore, their work
overlooks the fact that imperfect failure detectors mainly cause incon-
sistent lookups. Zhuang et. al. [165] studied various failure detection
algorithms in overlay networks. Our work is extended to provide tech-
niques to reduce the effect of lookup consistencies.

Atomic ring maintenance algorithms [40, 49, 126] provide lookup
consistency guarantees amid node joins and leaves, ignoring failures
and inaccurate failure detectors. As we have shown, themain contribu-

 0.99996

 0.999965

 0.99997

 0.999975

 0.99998

 0.999985

 0.99999

 0.999995

 1

 0 0.01 0.02 0.03 0.04 0.05

P
ro

ba
bi

lit
y

fo
r

no
n-

di
sj

oi
nt

 m
aj

or
ity

 s
et

s

Failure detector: Probability of false positives

r=1
r=2
r=3
r=4
r=5

Figure 5.11: Probability of overlap for twomajority-based quorumoper-
ations in an overlay configuration, for various accuracy levels of failure
detectors.

94 Chapter 5. Lookup Inconsistencies

tors to lookup inconsistency are inaccurate failure detectors. Therefore,
merely using atomic join and leave operations is insufficient for guar-
anteeing lookup and data consistency, and choice of a failure detection
algorithm is of crucial importance in asynchronous networks.

We have discussed and evaluated two techniques to reduce the af-
fects of lookup inconsistencies: local responsibilities and quorum tech-
niques. While effects of lookup inconsistencies can be reduced by using
local responsibilities, we show that using responsibility of keys may af-
fect availability of keys. This is a trade-off between availability and con-
sistency. We have shows that using quorum-based techniques amongst
replicas of data items further reduce lookup inconsistencies. Sincemajority-
based quorum techniques require a majority of the replicas to make
progress, these algorithms may still make progress even with unavail-
ability of some keys/nodes. Thus, using a combination of local respon-
sibilities and quorum techniques is attractive in scalable applications
where consistency is more important than availability.

Data consistency is an important requirement formany applications.
Since overlays and DHTs are aimed to operate in asynchronous net-
works and tolerate node dynamism, guaranteeing data consistency in
such systems is non-trivial. The problem of providing data consistency
in overlays can be attacked on two levels: routing level and data level.
In this chapter, we have focused on the routing level by providing tech-
niques to reduce the effect of lookup inconsistencies, and hence, data
inconsistencies. In the following chapter, we focus on the data level.
Augmenting to the routing techniques introduced thus far, we build a
distributed key-value store that guarantees the strongest form of data
consistency for single item operations.

CHAPTER 6
A Linearizable Key-Value

Store

Chapter 5 shows that lookup inconsistencies can lead to data inconsis-
tencies. Weaker consistency guarantees, such as eventual consistency
[157, 39, 159], suffice for certain applications [38, 81]. Yet, there is a sig-
nificant class of application that requires stronger consistency guaran-
tees, e.g., financial record applications, servicesmanaging criticalmeta-
data for large cloud infrastructures [20, 66], or more generally, applica-
tions in which the results of data-access operations have external ef-
fects. We target such applications, and aim to provide linearizability
[63] on top of overlays. In this chapter, we present CATS, an elastic
and linearizable key-value store that utilizes the properties of overlays,
such as incremental scalability and self-management. These properties
make CATS an ideal storage system for modern web-scale applications,
as they generate and accessmassive amounts of semi-structured data at
very high rates. Thework presented in this chapter has been performed
in collaboration with Cosmin Arad.

Introduction It has been shown that a web-service can provide only
twoof the following three properties simultaneously: consistency, avail-
ability, and partition tolerance [19, 51]. As any long-lived distributed
system will come across network partitions (see Section 3.1), applica-
tions generally have to choose between consistency and availability. Sec-
tion 3.2 and 3.3 present solutions for handling network partitions and

95

96 Chapter 6. A Linearizable Key-Value Store

mergers on the routing level. Here, we focus on data level issues as we
build CATS on top of Recircle, which takes care of routing level issues.

In Chapter 5, we discuss the trade off where increasing consistency
guarantees decreased availability of keys. We showhowquorum-based
algorithms increase consistency guarantees, yet fall short of providing
consistencywith probability one. In this chapter, we aim to provide lin-
earizability/atomic consistency (see Section 2.2.2); the strongest formof
consistency for single item read and write operations.

Achieving linearizability in static systems Attiya et al. [11] present
a quorum-based algorithm, called ABD, to achieve linearizability for a
static set of nodes replicating a data item. In ABD, a data item has a se-
quence/version number associated with it. A write operation fetches
the sequence number from amajority of replicas, selects the highest se-
quence number s, and sends a write message to all replicas with the
new value v and sequence number s + 1. Upon receiving such a mes-
sage, a replica updates its locally stored value (and associated sequence
number) of the data item if the received sequence number is larger than
the locally stored sequence number for that data item. The replica then
responds with an acknowledgment message. Ties for sequence num-
bers are broken using process identifiers. A write operation is consid-
ered complete once thewriter receives acknowledgments from amajor-
ity of replicas. A read operation fetches values with sequence numbers
from amajority of replicas, and returns the valuewith highest sequence
number h. To avoid consistency violations due to concurrent incom-
plete operations, a read operation writes the value read to majority of
nodes (using sequence number h) before returning. Using the second
phase of write before returning a read is known as read-impose. A read-
impose is not required if all replies to the read request contain the same
sequence number.

Majority-based quorum algorithms block if a majority of the nodes
fail, or become unreachable due to network partitions, giving rise to
unavailability1. A quorum-based algorithm, such as ABD, guarantees
linearizability as long as operations overlap on at least one replica.

Problem Statement A naïve approach to achieving linearizability in
an overlay is to consider each key-value pair as a data item, and use

1Applications that require high availability, and low consistency guarantees, use
hinted-handoff [38] in such cases. In hinted-handoff, if a replica is unavailable, a temporary
replacement replica is created where new writes are stored (thus the term ‘hint’). Once
the original replica is accessible again, the temporary replica hands over the hints to it.

6.1. Solution: CATS 97

5

15 20
25

predecessor

10

Replica group according to 10 Replica group according to 15

Figure 6.1: Replication groups for key range k(5,10] using SL-replication
with replication degree three. Due to inaccuracy of failure detectors,
node 15 points to 5 as its predecessor. The replication group for k(5,10]
is {10, 15, 20} according to node 10, and {15, 20, 25} according to node
15. Multiple non-overlappingmajority quorums exist, e.g. {10, 20} and
{15, 25}.

ABD reads and writes over the replicas of the data item/key-value pair
to implement the overlay’s get(k) and put(k, v) operations, respectively.
Unfortunately, such an approach is incorrect. Chapter 5 discusses how
non-overlapping quorums can exist due to routing anomalies in key-
based replication. Hence, ABDoperationsmayoperate onnon-overlapping
quorums andviolate linearizability. This is not an error ofABD, but due
to the breach of the assumption of ABD, i.e. a static set of replicas.

In this chapter, we use SL-replication, which is a node-based repli-
cation scheme. We chose SL-replication as it is widely used, and sim-
pler than key-based replication since it does not require bulk operations
[40]. Yet, the problem of non-overlapping quorums because of routing
anomalies still exists. This is shown in Figure 6.1, where the replica-
tion degree is three. Here, due to false failure detection of node 10 by
node 15, both 10 and 15 are responsible for the key range k(5,10], i.e.,
keys ∈ (5, 10]. The replication group for k(5,10] is {10, 15, 20} according
to node 10, and {15, 20, 25} according to node 15. Non-overlappingma-
jorities exist here, e.g. {10, 20} and {15, 25}. This can lead to quorum
operations to perform on non-overlapping set of replicas, and thus, vi-
olation of data consistency.

6.1 Solution: CATS

In this section, we first provide the intuition and high-level overview of
our solution, called CATS, and then, provide its details.

The correctness condition for quorum-based algorithms is that all
operations should overlap on at least one node. This is violated in Fig-
ure 6.1 because two replication groups exist for k(5,10]. To prevent such

98 Chapter 6. A Linearizable Key-Value Store

an execution, we need to fulfill two requirements: (1) replicas should
agree, and know, when the replication group changes, and (2) once the
replication group changes, the older replication group should not par-
ticipate in any quorum operations. Fulfilling requirement 1 ensures
that a replica will know whether it is a member of the latest replication
group. Fulfilling requirement 2 ensures that quorum operations will
only operate on the latest replication group. Satisfying both require-
ments simultaneously will prevent multiple non-overlapping operable
replication groups to exist, thus preventing problematic scenarios that
may lead to inconsistencies.

Requirement 1 necessitates achieving agreement in a distributed en-
vironment, which is what consensus algorithms, e.g., Paxos [86], are de-
signed for. Informally, multiple nodes can propose different values in an
instance of a consensus algorithm. The algorithm ensures that the par-
ticipating nodes agree on one final decision, which is a value selected
from the proposals. In our case, when a replication group changes, the
new replication group can be proposed in a consensus instance. Once
consensus decides, the next replication group is installed.

Requirement 2 demands a mechanism to distinguish between the
older and newer replication group. A trivial and common technique for
achieving this is to have a version/sequence number associated with a
replication group. A newer replication group can then have a higher se-
quence number than an older replication group. Requirement 2 states
that replicas from the older replication group should not participate in
quorumoperations. Thus, we need amechanism for a replica to know if
it should reply to a quorum operation or not. We achieve this by oblig-
ing all quorum operation requests sent to the replicas to include the
replication group, and the group’s sequence number, that the request
is operating on. Upon receiving such a request, a replica should not re-
ply to the request if it (1) is not in the replication group specified in the
request, or (2) does not have the same group sequence number as the
one specified in the request. Similarly, the quorum operation requester
should ignore a reply from a replica if the reply contains a replication
group sequence number older than the one the requester is operating
on.

Next, we discuss the afore-mentioned techniques in detail, along
with algorithmic specification. In our discussions, the view of a repli-
cation group is represented as 〈 k(a, b], G, i 〉, where G is the set/group
of replica nodes, i is the sequence number, and k(a, b] is the keys being
replicated by the view. In short-hand notation, for a view v, vG denotes
the group of replica nodes of v, vi denotes its sequence number, and vk

6.1. Solution: CATS 99

denotes its key range.

6.1.1 Replica Groups Reconfiguration

Algorithms such asABDare designed for a static set of replicas. Chang-
ing the replica set requires a reconfiguration operation [88, 99, 26], with
special mechanisms to handle on-going read/write operations. In this
section, we discuss (1) when and who initiates the reconfiguration, (2)
what should be the new replication group upon reconfiguration, (3)
how the reconfiguration works, and (4) how the result of the recon-
figuration is applied. The reconfiguration algorithms are presented in
Algorithms 9, 10 and 11. We discuss the read/write operations in the
next section.

Initiator of reconfiguration: Consistent hashing [76] maps respon-
sibility of key ranges to nodes. We use the same principle to decide
which node should initiate a reconfiguration operation. A node p is re-
sponsible for initiating a reconfiguration if the replication group for a
key range in (p.pred, p] has to be changed. As per SL-replication, when
a node p joins or fails, it affects r replication groups: the group for
k(p.pred, p], and r − 1 replication groups that are the responsibilities of
r− 1 nodes going counter-clockwise from p.

When a new node p joins, the replication group for k(p.pred, p] needs
to be reconfigured. Since p is responsible for k(p.pred, p], it should initiate
the reconfiguration operation. For instance, in Figure 6.2(b), node 7 is
responsible for initiating the reconfiguration, as the replication group
of its responsibility range (5, 7] has to change. Note that the key range
responsibility of node 10 is also changing (decreasing). In such cases, to
avoid multiple nodes initiating the same reconfiguration, a node initi-
ates the reconfiguration only if it notices an increase in its responsibility
range. Thus, node 10 will not initiate the reconfiguration upon 7’s join,
only 7 will.

In Algorithm 9, a new node joining the system attempts to join the
replication group that overlaps with its responsibility. The new node
searches for the current replication group of its responsibility range by
sending a GetGroupRequest message. Upon receiving a reply (line 16),
the new node initiates the reconfiguration to indicate that it wants to
join the replication group.

Apart from k(p.pred, p], when a node p joins the overlay, it should
replicate the responsibilities of r − 1 nodes going counter-clockwise
from p. For instance, if a node 17 joins in Figure 6.2(a), it should replace
node 20 as a replica for k(5, 10]. Since the replication group of node 10’s

100 Chapter 6. A Linearizable Key-Value Store

responsibility has to change, it is responsible for initiating the reconfig-
uration. Node 10 will discover the presence of 17 when 10’s successor-
list gets updated (or optionally, 17 can notify 10). At this point, node
10 initiates the reconfiguration to replace the farthest node, 20, in the
replication group, with 17. We show such a reconfiguration initiation
in Algorithm 9 on lines 25–30.

When a node fails, the responsibility of its successor increases (Fig-
ure 6.2(c)). The successor of the failed node takes over the responsibility
by initiating a reconfiguration to replace the failed node with an alive
node in the successor-list. This is shown in Algorithm 10 on lines 7–16.
Note that in the absence of checking whether a node’s responsibility
increased (line 9), the NewPredecessor event would trigger reconfigura-
tions for node joins as well.

A node failure also affects the replication groups of r− 1 nodes go-
ing counter-clockwise. For instance, if node 20 failed in Figure 6.2(a), it
should be replaced by node 25 for replication group of k(5, 10]. For this
purpose, each node does failure detection on nodes in the replication
group of its responsibility. As soon as the failure detector notifies of a
failure (Algorithm 10, line 1), the node initiates a reconfiguration.

New replication view: Replication groups changewhen a node joins,
fails, or does a false failure detection. When a new node joins, it takes
over responsibility for some keys from its successor according to the

5

15
20

25

10

(5, 10] s=1
(5, 10] s=1

(5, 10] s=1

(a) A stable configuration showing the replication group for k(5, 10].

5

15
20

25

10

(7, 10] s=2
(7, 10] s=2

(7, 10] s=2

7

(5, 7] s=2
(5, 7] s=2

(5, 7] s=2

(b) A joining node 7 breaks the range into two sub-ranges, k(5, 7] and
k(7, 10], thus creating two replication groups.

5

15
20

25

10

(5, 15] s=2

(5, 15] s=2
(5, 15] s=2

(c) A failure of node 10 increases the range. Essentially, node 10 is re-
placed by 25 in the replication group.

Figure 6.2: Reconfiguration for key range k(5, 10].

6.1. Solution: CATS 101

consistent hashing principle. Hence, a join essentially splits a key range,
creating two replication groups in-turn. The new views of the replica-
tion groups are chosen using the successor-lists and incrementing the
sequence number. Consider the overlay configuration and replication
group of k(5, 10] shown in Figure 6.2(a). The view of the replication
group is v = 〈 k(5, 10], {10, 15, 20}, 1 〉. Suppose a node with identifier 7
joins the system (Figure 6.2(b)). The new node will break the key range
into two key ranges, k(5, 7] and k(7, 10]. Using the SL-replication scheme,
and incrementing the sequence number, v is split into two new views:
〈 k(5, 7], {7, 10, 15}, 2 〉 and 〈 k(7, 10], {10, 15, 20}, 2 〉.

In case of a failure, or false failure detection, the failed/suspected
node has to be replaced in the replication group with an alive node.
Using the SL-replication scheme, this has to be the next alive node met
going clockwise. Starting from the configuration in Figure 6.2(a), the
failed node 10 is replaced in the replication group by node 25 in Figure
6.2(c). Thus, the view from Figure 6.2(a) should evolve into the new
view 〈 k(5, 10], {15, 20, 25}, 2 〉. In case node 10 was falsely detected as
failed, it can become part of the replication group again by replacing
25 in the new replication group. This requires a new reconfiguration
operation, and is similar to the join process.

In essence, when a replication view changes, it evolves into a set
of view(s) of size two if the reconfiguration was triggered by a join,
and one if the reconfiguration was triggered by a failure or false fail-
ure detection. In a long running system, it may happen that, due to
several joins, key ranges for each view become small. Eventually, each
view may represent a key range of size one since join operations split
a key range. Such a state is completely legal, as each key-value pair
is essentially a shared memory register. For reducing the overhead of
maintaining a view for each key, consecutive keys can be merged into
a single view once the system stabilizes (no churn) for long enough.
Such merger of key ranges can be done optimistically (or via a special
reconfiguration operation), when replicas notice an opportunity for a
merger. We solicit such optimizations to focus on the core problem.

Reconfiguration operation: Changing the set of replicas dynami-
cally, while operations like read andwrite are occurring, is known as re-
configuration. Reconfiguration is a well-known problem as it is required
by many online systems, for instance, to replace failed machines, up-
grade out-of-date machines, and move replicas from one network loca-
tion to another. Most of the reconfiguration approaches2 use consen-

2A tutorial on various reconfiguration techniques was written by Aguilera et. al. [5].

102 Chapter 6. A Linearizable Key-Value Store

Algorithm 9 Reconfiguration (Part 1): Handling joins
Notation: at node n for views stored on n:

lView⇒ view where n ∈ viewk
aViews⇒ all views where n ∈ views

1: upon event 〈 Join | pred, succ 〉 at n
2: sendto succ : GetGroupRequest〈n, pred, n〉
3: end event

4: receipt of GetGroupRequest〈initiator, begin, end〉 fromm at n
5: f orward := true
6: for all view ∈ aViews do
7: if viewk ∩ (begin, end] not ∅ then . ranges overlap
8: sendto initiator : GetGroupResponse〈view〉
9: f orward := f alse
10: end if
11: end for
12: if f orward = true then
13: sendto succ : GetGroupRequest〈initiator, begin, end〉
14: end if
15: end event

16: receipt of GetGroupResponse〈view〉 fromm at n
17: trigger 〈 Propose | view : (JOIN, n) 〉
18: end event

19: upon event 〈 Decide | view : (JOIN, j) 〉 at n
20: if n ∈ viewG then
21: Install(view, JOIN, j)
22: end if
23: CheckIfProposed(view, JOIN, j)
24: end event

. Check if a new node joined that should be in n’s replica group
25: upon event 〈 SuccessorListUpdated | sucessor-list 〉 at n
26: last := LastReplica(lViewG)
27: if ∃p ∈ sucessor-list such that p /∈ lViewG and

ModDistance(p, n) < ModDistance(last, n) then
. starting from n, p is closer than last

28: trigger 〈 Propose | lView : (REPLACE, last, p) 〉
29: end if
30: end event

6.1. Solution: CATS 103

Algorithm 10 Reconfiguration (Part 2): Handling failures
Init: at a node joining a replica view v
installAcks[v] = ∅⇒ to gather acks for install

. Monitor nodes in the replica group of (pred, n]
1: upon event 〈 Failed | f 〉 at n
2: if f ∈ lViewG then
3: alive := ReplaceWith(f) . Next alive node in successor-list
4: trigger 〈 Propose | lView : (REPLACE, f , alive) 〉
5: end if
6: end event

. An increase in responsibility implies failure of predecessor
7: upon event 〈 NewPredecessor | oldPred, newPred 〉 at n
8: alive := ReplaceWith(f) . next alive node in successor-list
9: if oldPred ∈ (newPred, n] then . responsibility increased
10: for all v ∈ aViews do
11: if vk ∩ (newPred, oldPred] not ∅ then . ranges overlap
12: trigger 〈 Propose | v : (REPLACE, f , alive) 〉
13: end if
14: end for
15: end if
16: end event

17: upon event 〈 Decide | view, (REPLACE, f , a) 〉 at n
18: Install(view, REPLACE, f , a)
19: CheckIfProposed(view, REPLACE, f , a)
20: end event

21: receipt of Install〈view〉 fromm at n
22: installAcks[view] := installAcks[view] ∪ {m}
23: if | installAcks[view] | = b r

2c+ 1 then . acks from majority
24: if n ∈ viewk then
25: lView := lView ∪ view
26: else
27: aViews := aViews ∪ view
28: end if
29: DataTransfer(view)
30: end if
31: end event

. Check if n is not in the replica group of its responsibility
32: every γ time units at n
33: if (pred, n] /∈ lViewk then
34: sendto succ : GetGroupRequest〈n, pred, n〉 . periodically

retry
35: end if
36: end event

104 Chapter 6. A Linearizable Key-Value Store

Algorithm 11 Reconfiguration (Part 3): Install
1: procedure Install(view : (JOIN, j)) at n
2: (start, end] := viewk . split key range
3: v1k := (start, j]
4: v2k := (j, end]
5: v1i := viewi + 1 . increment version number
6: v2i := viewi + 1
7: last := LastReplica(viewG)
8: v1G = viewG − {last} ∪ {j} . create new groups
9: v2G = viewG
10:
11: lView := lView− view . remove old configuration
12: aViews := aViews− view
13: if n = last then . add v1 if needed
14: MarkDataForDeletion(v1k) . delete after sent to j
15: else
16: aViews := aViews ∪ v1
17: end if
18: if n ∈ v2k then . add v2
19: lView := lView ∪ v2
20: else
21: aViews := aViews ∪ v2
22: end if
23: sendto j : Install〈v1〉
24: end procedure

25: procedure Install(view, (REPLACE, f , a)) at n
26: v := view
27: vi := vi + 1 . increment version number
28: vG := vG − { f } ∪ {a} . replace node in group
29: lView := lView− view . remove old configuration
30: aViews := aViews− view
31: if n = f then . current node should leave the group
32: MarkDataForDeletion(viewk) . delete after sent to a
33: else . add back new view v
34: if n ∈ vk then
35: lView := lView ∪ v
36: else
37: aViews := aViews ∪ v
38: end if
39: end if
40: sendto a : Install〈v〉
41: end procedure

6.1. Solution: CATS 105

sus3, e.g. [88, 99, 26, 143]. We denote a reconfiguration request of view
v by (v : O), where the operation O can be either:

• 〈JOIN, j〉 for a node j joining v such that j ∈ vk, or

• 〈REPLACE, f , a〉 where node f ∈ vG has to be replaced by a node
a, e.g., due to failure of f .

For (v : O), the operation O is proposed via consensus in our so-
lution. To distinguish between various instances of consensus, we use
the old view v to denote the instance of consensus. The nodes in the
old view vG act as the acceptors and decide on the operation that leads
to the next view. For liveness [82], a majority of nodes in the old view
should be alive for consensus to terminate. The nodes in the old view
also act as learners for the outcome of consensus. When the nodes in
the old view decide, they learn about the decision andmove to the new
view by applying the decided operation; a process called installing the
new view (discussed in the next section). Thereafter, the next view is
installed on the node that became part of the replication group, i.e., j
for 〈JOIN, j〉, and a for 〈REPLACE, f , a〉. Here, a majority of nodes in
a view should be accessible for the view to be reconfigured. Note that
such an approach of reconfiguration fulfills our Requirement 1 because
nodes in the old view act as learners, and install the new view.

The reason consensus is required for reconfiguration is that under
high churn, it may happen that two different next view reconfigura-
tions are proposed concurrently. For instance, consider the replication
group {10, 15, 20} for keys k(5, 10] in Figure 6.2(a). If node 7 joined and
node 20 failed simultaneously, two different evolution of the replica-
tion group will be initiated: 7 will attempt to create a replication group
G1 = {7, 10, 15} for k(5, 7], while for the same keys, 10 will attempt to
evolve the replication group into G2 = {10, 15, 25} as it maybe unaware
of 7’s join. Such evolutions will result in non-overlapping quorums on
G1 and G2: quorum {7, 10} in G1 and quorum {15, 25} in G2, potentially
leading to violation of linearizability. Using consensus, only one of the
two reconfiguration attempts will succeed as a consensus instance de-
cides on one value.

Using consensus ensures that nodes in the old view v agree on the
next view v′, and will install the same new view. When a reconfig-
uration proposer p finds out that the operation decided in instance v
is different than what it proposed, it evaluates whether its reconfigu-
ration proposal is still needed. If so, it builds a new reconfiguration

3Dynastore [6] is one system that does not use consensus for reconfiguring an atomic
register.

106 Chapter 6. A Linearizable Key-Value Store

operation, reflecting the new view v′. Node p then proposes in con-
sensus instance v′, thus evolving the view sequentially (one change at a
time). For instance, in the afore-mentioned example where (v : 〈JOIN,
7〉) and (v : 〈REPLACE, 20, 25〉) are proposed simultaneously, assume
〈REPLACE, f , a〉 was decided in the consensus instance v. Upon instal-
lation, the nodes in vG will move to view v′ = 〈 k(5, 10], {10, 15, 25}, 2
〉. When node 7 learns that its proposal was not chosen in instance v,
it notices that it still needs to join the replication group. Hence, node 7
initiates (v′ : 〈JOIN, 7〉).

InAlgorithm9 and 10, we use consensus as a black-box. The consen-
sus abstraction uses two events, Propose and Decide. As noted earlier,
we use a replication group’s view as the consensus instance identifier.
To propose a value p in a consensus instance v, a node triggers an event
〈 Propose | v : p〉. Here, the nodes vG act as the acceptors for instance
v. Once a value d is decided for a consensus instance v, a node receives
the event 〈 Decide | v : d〉. We assume that the proposer and acceptors
are the learners as well, i.e., the Decide event for instance v is triggered
on all nodes in vG and the proposer. If an acceptor receives a consensus
request for an instance that had already been decided, it can reply to the
proposer with the decision for that instance. Similarly, if an acceptor in
view v1 receives a consensus request for instance v2 such that v2i > v1i,
it does not participate in the consensus algorithm until it has installed
view v2. This is required to fulfill Requirement 2.

Upon receiving the Decide event, we use the method CheckIfPro-
posed(v, decision) (line 23 in Algorithm 9, and line 19 in Algorithm 10)
to check if n had proposed a reconfiguration p for view, but the decision
is not p. If not, the call should evaluate if the node’s reconfiguration is
still needed, and propose another reconfiguration operation if so.

Configuration installation: Once a reconfiguration (v : O) is de-
cided, nodes n ∈ vG install/apply the operation O. Applying an opera-
tion on the view is done as discussed in 6.1.1, and outlined inAlgorithm
11. Say applying (v : O) leads to view v′. The installation means that
nodes vG locally store v′, thus promising that they will not participate
in any quorum operation (read/write) request that does not contain
v′. Similarly, after installing v′, a node always attaches v′ with any re-
sponses to quorum requests. A node n, where n ∈ vG but n /∈ v′G, is no
longer in the replication group, and thus, does not reply to any requests
for the key range v′k. Installing a view on a node is a promise that the
node will obey Requirement 2.

Once a majority of nodes in vG install the new view(s) for k(a, b], the

6.1. Solution: CATS 107

installation is done at the new node that became a replica of the key
range. The new node p fetches data from nodes in vG, and can start
replying to requests for the key range once it has received the data.
To maintain linearizability when the new replica p fetches the data, p
should perform an ABD read on nodes vG for all keys vk. This means
that for each key, p should get the value with the highest time stamp
from a majority in vG. Otherwise, linearizability would be violated as
follows. Consider a key k = 〈A, 1〉, where A is the value for k, and
1 is k’s ABD time stamp. Say vG = {l, m, n}, and node p is replacing
node n in the view. Assume a put(k, B) terminates on vG by updat-
ing majority {m, n}, i.e., the local values stored at m and n are now
k = 〈B, 2〉. Instead of the data transfer performing an ABD read on vG,
if p transfered the data from only one replica, it may get the older value
k = 〈A, 1〉 from node l. After installation, a majority ({m, p}) exists
with the older value A at the nodes in the new view v′G = {l, m, p}. An
ABD read may thus return the older value A, hence violating lineariz-
ability. Therefore, to transfer data, the new node p should perform an
ABD read for all keys vk.

To optimize the data transfer, we use a bulk transfer for a key range.
Before transferring values, each replica first transfers keys and their
timestamps to the new node. Based on the timestamps, the new node
retrieves the latest value from the node with the highest timestamp for
each key. This avoids unnecessary transfers of values from existing
replicas to the new replica, thus lowering bandwidth usage. Further-
more, the new node transfers data in parallel from existing replicas,
by splitting the requested data among all replicas. This results in bet-
ter bandwidth utilization, fast data transfer due to parallel downloads,
and avoids loading a single replica. If a replica fails during data trans-
fer, the requesting node reassigns the requests sent to the failed node
to the remaining alive replicas.

6.1.2 Put/Get Operations

Operations in quorum-based algorithms like ABD assume a static set
of replicas. To emulate such a static set in a dynamic environment, we
need to cater for two cases. First, if the set of replicas does not change
during an operation (i.e., all requests of the operation operate on the
same view), the operation should succeed. Second, if the set of repli-
cas changes during an operation (i.e., some requests of the operation
operated on the old view, while some operated on the new view), the
operation should detect such cases, abort, and retry the operation from
scratch.

108 Chapter 6. A Linearizable Key-Value Store

The critical correctness condition is to ensure that all requests of an
operation occur on the same view. Our solution to achieve this condi-
tion is to use consistent quorums.

Definition 1. For a given replication group G, a quorum Q is a consistent
quorum of G if all nodes in Q have the same view v of G when the quorum is
assembled.

In a static system, all quorums are consistent quorums since the
view does not change. In a dynamic system, to ensure that a quorum is
a consistent quorum, when an algorithm assembles a quorum, it only
counts replies/acknowledgments from replicas that are in the same
view. To accomplish this, a replica includes its view of the replication
groupwith every response/acknowledgment of a quorum request. If a
consistent quorum cannot be assembled, it implies that the replication
group changed during the operation.

Certain quorum-based algorithms, such as ABD, use two phases.
To emulate a static system over a dynamic environment, the view of
the consistent quorum of the first phase should be the same as the view
of the consistent quorum of the second phase. To achieve this, when
the operation initiator assembles a consistent quorum with view v in
the first phase, it includes v with all requests in the second phase to
replicas in v. Upon receiving such a request, a replica replies (acknowl-
edges) only if its view of the replication group is the same as the view
in the request. If the view of the replication group was reconfigured
between the first and second phases of a put/get operation, the consis-
tent quorum from first phase cannot be assembled in the second phase,
and thus, the operation has to be retried from scratch.

In our solution, we modify the put and get operations of ABD to
use consistent quorums. Next, we present our solution, along with al-
gorithmic details.

The node carrying out the ABD protocol with the replicas is called
the coordinator node. Algorithm 12 shows the interface of the coordi-
nator to the client. Upon receiving a request for key k from the client,
the coordinator starts theABDalgorithmby sendingReadAmessages to
the replicas of k. The replicas can be found either via lookups, or locally
if the coordinator has the information cached. Such information about
the replicas is allowed to have lookup inconsistencies. Furthermore,
our put/get algorithms are independent of the replication scheme, and
how the replicas are found.

Algorithms 13 and 14 showourmodifiedABDalgorithmaugmented
with consistent quorums. At the core of the algorithm is our method,

6.1. Solution: CATS 109

v := ConsistentQuorum(V), where V is a list of views. If a consistent
quorum exists in V, the method returns the view v of the consistent
quorum. This implies that the number of views in V that are equal to
v is at least b r

2c+ 1, i.e. a majority, where r is the replication degree. If
a consistent quorum does not exist, the method returns a nil(⊥) value.
Compared to stock ABD, whenever the ABD client assembles a quo-
rum, wemake sure that the quorum is in fact a consistent quorum. This
is done in Algorithm 13 on lines 3-4 and 17-18.

As noted earlier, when a replica receives a quorum request in the
secondphase, it has to ensure that the replication grouphas not changed
since the first phase. This is accomplished in Algorithm 14 on line 5,
where the replica compares its local view to the view included in the
request. The replica only replies if the two views are the same.

Algorithm 12 Operation coordinator (Part 1): Client interface
Init: for all keys k:

writeValue[k]:=⊥, reading[k]:= f alse, client[k]:=⊥

1: receipt of GetRequest〈k〉 from Client at n
2: reading[k]:=true
3: client[k]:=Client
4: replicas := GetReplicas(k)
5: sendto ∀p ∈ replicas : ReadA〈k〉
6: end event

7: receipt of PutRequest〈k, v〉 from Client at n
8: reading[k]:= f alse
9: client[k]:=Client
10: writeValue[k] := v
11: replicas := GetReplicas(k)
12: sendto ∀p ∈ replicas : ReadA〈k〉
13: end event

14: upon event 〈 OperationResponse | k, v 〉 at n
15: if reading[k]:=true then
16: sendto client[k] : GetResponse〈k, v〉
17: else
18: sendto client[k] : PutResponse〈k〉
19: end if
20: end event

To keep the algorithmic specification simple, we omit details about
negative acknowledgments (NACK). Here, if a replica is in a different

110 Chapter 6. A Linearizable Key-Value Store

Algorithm 13 Operation coordinator (Part 2): Actions as ABD client
Init: for all keys k:

readAcks[k]:=∅, writeAcks[k]:=∅
readValue[k]:=⊥, group[k]:=∅

1: receipt of ReadB〈k, timestamp, value, view〉 from Replica at n
2: readAcks[k] := readAcks[k] ∪ {(timestamp, value, view)}
3: group[k] := ConsistentQuorum(readAcks[k])
4: if group[k] not ⊥ then . if consistent quorum exists
5: (t, v, vw) := HighestTimestampValue(readAcks[k])
6: if reading[k] = true then
7: readValue[k] := v
8: sendto ∀p ∈group[k] : WriteA〈k, t, v, group[k]〉
9: else
10: sendto ∀p ∈group[k] : WriteA〈k, t + 1, v, group[k]〉
11: end if
12: readAcks[k]:=∅ . reset ACKs
13: end if
14: end event

15: receipt of WriteB〈k, view〉 from Replica at n
16: writeAcks[k] := writeAcks[k] ∪ {view}
17: group[k] := ConsistentQuorum(writeAcks[k])
18: if group[k] not ⊥ then
19: trigger 〈 OperationResponse | k, readValue[k] 〉
20: writeAcks[k]:=∅ . reset ACKs
21: end if
22: ResetLocalState(k) . as done in Init
23: end event

view than the view attached in the request, it can send back a NACK.
SuchNACKs do not count towards assembling a quorum. When a node
receives NACKs and cannot assemble a consistent quorum, it needs
start the operation again.

6.1.3 Network Partitions and Mergers

An underlying network partition can cause nodes to be split into dis-
connected components, where nodes in one component cannot com-
municate with nodes in another component. Consequently, a network
partition results in false failure detections, where nodes in one compo-
nent detect nodes in the other component to have failed.

6.1. Solution: CATS 111

Algorithm 14 Replication group member
Init: for all keys k:

version[k]:=0, value[k]:=⊥
view← (As assigned by reconfiguration protocol)

1: receipt of ReadA〈k〉 from Coordinator at Replica
2: sendto Coordinator : ReadB〈k, version[k], value[k], view 〉
3: end event

4: receipt of WriteA〈k, timestamp, valuen, viewconsistent〉 from Cor at R
5: if timestamp > version[k] and viewconsistent = view then
6: value[k] := valuen . update local copy
7: version[k] := timestamp
8: sendto Cor : WriteB〈k, view〉
9: end if
10: . else, send a NACK
11: end event

On the routing level, Recircle ensures that each component con-
verges into its own overlay. This results in updates of successor and
predecessor pointers, such that overlays in each component cover the
whole identifier space (shown in Figure 6.3). Therefore, node respon-
sibilities overlap across components. Using stock ABD read and write
operations would succeed in each component for the same key, thus vi-
olating linearizability. On the other hand, consistent quorums do not
exist for the same key in different components simultaneously. Con-
sistent quorums only exist for view v =〈 k(a, b], G, i 〉 in a partitioned
component C if a majority of vG is in C. Since a majority can only be ac-
cessible in at most one component, consistent quorums may only exist
in one component.

In each component, inaccessible replicas should be replaced by alive
nodes to preserve the replication degree. Thus, replication views need
to evolve from the views prior to the partition. As inaccessible nodes
are detected as failures, the evolution of views is triggered by our re-
configuration algorithms.

Quorum-based algorithms, such as Paxos and ABD, make progress
as long as a quorum (majority in our case) is reachable. When a parti-
tion occurs, nodes issue reconfiguration operations to replace inacces-
sible nodes. A reconfiguration operation succeeds only if a majority of
replicas in the current view are accessible. Since only one partition can
contain a majority for a view, reconfiguration for a view will only suc-

112 Chapter 6. A Linearizable Key-Value Store

ceed in one component. This preserves our invariant that views evolve
sequentially, and multiple non-overlapping quorums do not exist.

In Figure 6.3, the reconfiguration for k(5, 10] will succeed in compo-
nent O (Figure 6.3(c)), while any reconfiguration for k(5, 10] will fail in
component E (Figure 6.3(b)) as the majority in k(5, 10]’s current view be-
fore the partition, {10, 15, 25}, is not accessible in component E . Even-
tually, key ranges that have a majority of nodes accessible will evolve
into replication groups where all replicas are alive and accessible. In
other components, reconfiguration operations for the same key ranges
will be tried but will fail.

Even if a reconfiguration operation fails in a component, the node
initiating the operation should retry it periodically. As we discuss in
the next section, periodic retries are required once the network partition
ceases and the components merge.

SinceABD is a quorum-based algorithm, its operations succeed only
if a quorum is accessible. Thus, operations for a key k succeed in com-
ponents where a majority, using consistent quorums, of replicas for k
is accessible. The keys become unavailable in the components where
a majority of replicas is inaccessible. For instance, put/get operations
for key 7 will fail in component E in Figure 6.3(b); thus, key 7 is un-
available in that partition. On the other hand, operations for key 7 will
succeed in component O (Figure 6.3(c)) as a majority of nodes from 7’s
replication group before the partition exits inO. This tradeoff between
availability and consistency amid network partitions is in line with the
design space of CATS.

Network Mergers

Anunderlying networkmerger results in the disconnected components
to be able to communicate again. On the routing level, Recircle guar-
antees that the routing pointers, including successor and predecessor
pointers, will be fixed to depict a single ring. The updated successor
and predecessor pointers trigger reconfigurations operations to reflect
the replication groups on the routing level, dictated by successor-list
replication, on the data level.

If a network partitions into more than r
2 components, where r is the

replication degree, itmay happen that none of the components contains
a majority of replicas for a key range. For instance, a network may par-
tition into r components such that each component contains only one
replica. The view for such a key range cannot change as any reconfig-
uration request for the key range will fail. Periodically retrying failed
reconfiguration operations ensures that once the network merges, or

6.1. Solution: CATS 113

0

35

15

30

25

10

5

(0, 5] s=1

(0, 5] s=1(0, 5] s=1
successor
predecessor

(a) A stable overlay showing the replication group for k(5, 10].

0

30 10 (0, 5] s=1

(b) A partition E containing nodes
{0, 10, 30}.

35

1525

5

(0, 5] s=2(0, 5] s=2

(0, 5] s=2

(c) A partition O containing nodes
{5, 15, 25, 35}.

Figure 6.3: Reconfiguration for key range k(5, 10] before and after a net-
work partition. Figure (a) shows the original overlay before the network
partition. Figures (b) and (c) show the independent overlays when the
underlying network partition splits the nodes into two components: (b)
E = {0, 10, 30}, and (c) O = {5, 15, 25, 35}. E does not contain a major-
ity of nodes from the replication group for k(5, 10] before the partition,
hence, the view for k(5, 10] cannot be reconfigured in this partition. The
view for k(5, 10] can be reconfigured in O as it contains a majority from
the view before the partition.

114 Chapter 6. A Linearizable Key-Value Store

the network partially merges such that some of the components can
communicate, the reconfiguration will succeed.

Retrying a failed reconfiguration operation is also necessary to han-
dle the following case. Due to a partition, the replicas may get divided
into components such that the node with the lowest identifier in the
replication group gets evicted. For instance, consider the replication
group k(5, 10] with view v = 〈 k(5, 10], {10, 15, 25}, 1 〉 in Figure 6.3(a).
Due to a network failure, node 10 gets partitioned into component E ,
while nodes 15 and 25 into componentO. Since the responsibility range
increases for node 15 and it detects that 10 has failed (as 10 is no longer
accessible), node 15 will initiate a reconfiguration operation to replace
10, with the next alive node 35 in its successor-list. Such a reconfigu-
ration will succeed as a majority of replicas from v, {15, 25}, are acces-
sible. The result of the successful reconfiguration is shown in Figure
6.3(c), where s = 2. On the other hand, when node 10 will detect the
failure of 15 and 25, its reconfiguration attempt will fail, and the view
will remain stuck in 10’s component (Figure 6.3(b)). In such cases, node
10 should retry the reconfiguration periodically since after merger, it is
the responsible node for k(5, 10] as per consistent hashing. Hence, the
retrial will make sure that 10 will take over responsibility of k(5, 10] after
merger. Note that a node n initiates reconfigurations for only key range
(n.pred, n], thus each node keeps vying to be included in the replication
group of its responsibility as dictated by consistent hashing.

False failure suspicions are similar to transient network partitions
and mergers. A false failure suspicion can lead to an alive node being
evicted from a replication group, which is similar to a node eviction
due to a partition. A reconfiguration due to a false failure suspicion is
rectified in a similar manner as when a network partition heals, where
the responsible node attempts to become part of the replication group.
This can be seen in Figure 6.2(c), where node 10mayhave been removed
from the replication group due to a false suspicion by node 15.

Crash-recovery, while using persistent storage, is akin to the node
being partitioned away for a while. In both cases, when a node recovers
or the partition heals, the node has the same view and data as it had
before the failure/partition. Hence, our algorithms already support
crash-recovery since they are partition tolerant.

Garbage Collection

If a network remains partitioned for a long duration, replicas may exist
that are no longer needed. Consider a replication group G for k(a, b], and

6.1. Solution: CATS 115

a node n ∈ G, where n is the furthest replica as per SL-replication4. If n
gets partitioned away, G may still have a majority quorum in the other
partition P (such that n /∈ P). G can then be reconfigured, and thus
evolve into subsequent new groups. While the network is partitioned,
new nodes may join partition P . Depending on their identifiers, such
new nodes can become part of G. Assume a node m joins P such that
the identifier m is closer to k(a, b] clockwise than n. Therefore, even after
the merger, n would not become part of the replication group G. The
data on n for k(a, b] is thus unnecessary. Such useless copies of data
should be detected and removed.

A garbage collection mechanism is required to avoid unnecessary
copies of data lingering around in the system as a result of transient
network partitions. We employ a periodic garbage collector for this pur-
pose. The garbage collector identifies useless copies and removes them.
Consider a view v = 〈 k(a, b], G, i 〉. For a node n, in view v, to identify
if it is storing an unnecessary copy for k(a, b], n periodically searches for
replicas of k(a, b] by making lookups for keys a and b. A node initiates
such searches only if notices that a majority in vG has failed. As a result
of the search, if n finds a node with view v′ = 〈 k(a, b], H, j 〉, such that
n /∈ v′G and v′j > vi, it implies that v has evolved/been reconfigured.
To ensure availability of data, n contacts all nodes in v′G to confirm that
they have the data for k(a, b]. Upon receiving acknowledgments from a
majority in v′G, n can safely remove the data.

A network partition can lead to data copies becoming unnecessary.
Nevertheless, in a distributed asynchronous environment, a node can-
not be sure if its copy is unnecessary until the partition has ceased.
Thus, even if a copy is unnecessary given an oracle/global view, our
periodic garbage collectorwill not remove any data unless it can reach a
majority in the newer view. In thisway, we distinguish between a group
that has evolved during a partition (data can be garbage collected) than
one where neither partition contained a majority (the data is essential).

6.1.4 Correctness

Linearizability is violated if two operations use non-overlapping quo-
rums. For a static system, correctness can be proved by showing that
quorums for all operations always (from time zero, till eternity) over-
lap. For a dynamic system such as CATS, correctness can be proven
by showing that (1) at any time, any two quorums will overlap, and (2)
linearizability is preserved when data is copied to a new replica. Our

4e.g., node 25 in the replication group of k(5, 10] in Figure 6.3(a)

116 Chapter 6. A Linearizable Key-Value Store

mechanism of data transfer ensures that linearizability is preserved.
Thus, to prove correctness, we have to show that for any key range, two
non-overlapping quorums do not exist simultaneously. In other words,
at any point in time, consistent quorums will overlap.

In this section, we consider a key range k(a, b] in view v = 〈 k(a, b], G,
i 〉, that reconfigures into view v′ = 〈 k(a, b], H, i+1 〉. At any time, the
replication group can be in three states: (1) before reconfiguration, (2)
during reconfiguration, and (3) after reconfiguration. Since the replica-
tion degree r is constant, andwe reconfigure one change at a time, there
may exist only one node n ∈ vG such that n /∈ v′H , and there exists only
one node m ∈ v′H such that m /∈ vG.

Case 1: Before reconfiguration, i.e., in v, a consistent quorum is simi-
lar to a regular quorum. Any consistent quorumwill contain amajority
from vG. From the majority principle, we know that any two majorities
from vG will overlap on at least one node. Hence, any two consistent
quorums will always overlap before reconfiguration, where all replicas
are in view v.

Case 2: A reconfiguration is in-progress until a majority in vG has
installed (moved to) v′. Here, m cannot install (become part of) v′ until
a majority in vG has installed (moved to) v′. During reconfiguration,
some nodes from vG are in view v, while some are in v′. If a majority
is still in vG, any two consistent quorums for v will overlap, while a
consistent quorum does not exist for v′ since only a minority from vG is
in v′. Once a majority from vG has moved to v′, no consistent quorum
exists for v since only a minority of vG is in view v. Here, any two
majority consistent quorum in v′ will overlap.

Some quorum algorithms, such as ABD, have two phases. It may
happen that in the first phase, an operation gets a consistent quorum
for v, yet a majority has moved to v′ before the second phase. In such a
case, the operation will fail in the second phase since it will attempt to
gather a consistent quorum for v, which does not exist anymore. Failing
such an operation is required to give a quorum-based algorithm the
impression that it is operating on a static set of nodes 5.

Disjoint majorities may exist if the number of active replicas exceeds
the replication degree r. To ensure that only r replicas exist at any point,
the new replica groupmember m does not become part of v′ until v′ has
been installed on a majority in vG. Once v′ is installed on a majority of

5Due to this property, we believe the idea of consistent quorums can be used in other
quorum-based algorithms.

6.2. Evaluation 117

nodes in vG, it implies that the outgoing node n can no longer be part of
any consistent quorum. Say vmaj is the majority in vG that installed and
moved to view v′. If n ∈ vmaj, then upon installing v′, n will notice that
it is no longer part of the replication group. Hence, it will not reply
to in any quorum operation requests. If n /∈ vmaj, then n will attach
view v with its replies to quorum operation requests. Yet, a consistent
quorum for v cannot be assembled because amajority in vG has already
installed v′. Hence, n can no longer be part of any consistent quorum
once a majority in v installs the new view v′. At this point, the number
of nodes that can be part of a consistent quorum for view v′ is r − 1.
Thus, it is safe for the incomingnodem to install v′, and reply to quorum
requests with v′.

Case 3: Once the reconfiguration terminates, a minority of nodes can
be in v and amajority is in v′. There onwards, it is impossible to assem-
ble a consistent quorum with view v. Since | v′H |≤ r, any two majority
consistent quorums with view v′ will overlap. The number of nodes in
v′ equals r as soon as all nodes in v′H have installed the new view v′.

If a consistent quorum exists for a view 〈 k, X, j 〉, then no consistent
quorum can exist for any view for keys k with a sequence number less
than j. For instance, assume reconfiguration r1 evolves view v into view
v′. Thereafter, another reconfiguration r2 happens which changes view
v′ to v′′. The completion of r1 ensures that only a minority of nodes are
in view v. Similarly, completion of r2 ensures that only a minority of
nodes are in view v′. Hence, once v′′ is installed on a majority of nodes,
no consistent quorum can exist for any view with sequence number
than v′′. For example, there cannot be a consistent quorum with view
v.

6.2 Evaluation

In this section, we evaluate the performance, in terms of throughput
and operation latencies, as well as the scalability and elasticity of our
implementation of the CATS system. Furthermore, we evaluate the per-
formance overhead of achieving consistency, and we perform a com-
parison with Cassandra 1.1.0, a system with an architecture similar to
CATS. CATS was implemented (in Java) using the Kompics message-
passing component framework [10], which allows the system to readily
leverage multi-core hardware by executing concurrent components in
parallel on different cores. To avoid being side-tracked, and for efficient

118 Chapter 6. A Linearizable Key-Value Store

lookups (resolved in O(1) hops [60]), wemaintained a full-view at each
node, e.g., by using the Cyclon [162] peer-sampling service.

We ran our experiments on the Rackspace cloud infrastructure, us-
ing 16GBRAMserver instances. Weused theYCSB [30] benchmark as a
load generator for our experiments. We evaluated two workloads with
uniform distribution of keys; a read-intensive workload comprising of
95% reads and 5% updates, and an update-intensive workload com-
prising of 50% reads and 50% updates. We chose to perform updates
instead of inserts in theworkload to keep the data set constant through-
out the experiment. Such a choice does not have side-effects since the
protocol for an update operation is the same as the one for an insert op-
eration. Unless otherwise specified, we used data values of size 1 KB.
Weplaced the servers at equal distance on the consistent hashing ring to
avoid being side-tracked by load-balancing issues. CATS supports per-
sistent storage through the Java Edition of BerkeleyDB (SleepyCat) [14],
LevelDB [46], and Blsm (blsm). For our experiments reported here, we
used an in-memory sorted map.

6.2.1 Performance

In the first set of experiments, we measured the performance of CATS
in terms of the average latency per operation and the throughput of
the system. We increased the load, i.e. the dataset size and the opera-
tions request rate, proportionally to the number of servers, by increas-
ing the number of keys initially inserted into CATS, and the number
of YCSB clients, respectively. For instance, we load 300 thousand keys
and use 1 client for generating requests for 3 servers, 600 thousand keys
and 2 clients for 6 servers, and so on. For each system size, we varied
the request load by varying the number of threads in the YCSB clients.
For low number of client threads, the request rate is low and thus the
servers may be under-utilized, while a high number of client threads
can overload the servers. We started with 4 threads, and doubled the
thread count each time for the next experiment until 128 threads.

Figure 6.4 shows the results, averaged over three runs, for various
number of servers. For each server count, as the request load increases,
the throughput also increases till a certain value after which, only la-
tency increases without an increase in throughput. Such a state depicts
that the system is saturated and cannot offermore throughput. In other
words, when the system is underloaded (few client threads), the laten-
cies are low yet server resources are not fully utilized. As the request
rate is increased by increasing the number of client threads, the latency
and throughput also increase until a certain throughput is offered. For

6.2. Evaluation 119

0 10 20 30 40
0

5

10

15

20

25

30

35

Latency [ms]

T
hr

ou
gh

pu
t [

10
00

 o
ps

/s
ec

]

24 servers

12 servers

6 servers

3 servers

Reads (95%)
Updates (5%)

0 10 20 30 40 50
0

5

10

15

20

25

Latency [ms]

T
hr

ou
gh

pu
t [

10
00

 o
ps

/s
ec

]

24 servers

12 servers

6 servers

3 servers

Reads (50%)
Updates (50%)

Figure 6.4: Performance for a read-intensive (left) and an update-
intensive (right) workload.

instance, for 3 servers and a read-intensive workload, the system sat-
urates at approximately 4000 operations/sec with an average latency
of 8 milliseconds (and 32 YCSB client threads). Further increasing the
request rate does not increase the throughput, while the latency keeps
increasing. This depicts an overloaded system, where the current num-
ber of servers cannot serve all incoming requests, leading to queueing
effects. This behavior is same for both workloads.

6.2.2 Scalability

In our next experiments, we evaluated the scalability of CATS. We in-
creased the dataset size and requests rate proportionally to the num-
ber of servers, as we did in the performance experiments. Figure 6.5
shows the throughput of the system as we vary the number of servers
for both workloads. The figure shows that CATS scales linearly with
a slope of one. With small number of servers, it is more likely that re-
quests already arrive at one of the replicas for the requested key. Thus,
the number of messages sent over the network is smaller. This explains
the slightly higher throughput for 3 and 6 servers. The reason for lin-
ear scaling is that CATS is completely decentralized and all nodes are
symmetric. Owing to linear scalability, the number of servers needed
to achieve a certain throughput or to handle a certain rate of requests,
can be calculated easily when deploying CATS in a cloud environment,
provided the load is balanced across the servers. Such a decision can
be made actively by either an administrator, or a feedback control loop
that monitors the rate of client requests [110].

120 Chapter 6. A Linearizable Key-Value Store

3 6 12 24 48 96
3

6

12

24

48

96

Number of servers (log)

T
hr

ou
gh

pu
t [

10
00

 o
ps

/s
ec

] (
lo

g)

32 Client threads
16 Client threads
8 Client threads

3 6 12 24 48 96
2

4

8

16

32

64

Number of servers (log)

T
hr

ou
gh

pu
t [

10
00

 o
ps

/s
ec

] (
lo

g)

32 Client threads
16 Client threads
8 Client threads

Figure 6.5: Scalability for a read-intensive (95%, left) and an update-
intensive (50%, right) workload.

6.2.3 Elasticity

Ahighly desirable property for systems running in cloud environments
is elasticity, the ability to add or remove servers while the system is run-
ning. When a system is overloaded, i.e. latency per operation is so high
that it violates a service-level agreement (SLA), the performance can be
improved by adding new servers. Similarly, when the load is very low,
one can reduce running costs by decreasing the number of serverswith-
out violating any SLA. A system with good elasticity should perform
better as servers are added, with a short disruption while the system
reconfigures to include the new servers. The length of the disruption
depends on the amount of data that needs to be transfered for the re-
configuration. A well-behaved system should have low latencies dur-
ing this disruption window so that the end clients are not affected. In
this experiment, we evaluated the elasticity of CATS. We started the
system with 3 servers, loaded 2.4 million 1 KB values, and injected a
high operation request rate via the YCSB client. While the workload
was running and keeping the request rate constant, we added a new
server every 10 minutes until the server count doubled to 6 servers. Af-
terwards, we started to remove servers every 10 minutes until we were
back to 3 servers. We measured the average of operation latencies in
1 minute intervals throughout the experiment. The results of our ex-
periment are presented in Figure 6.6. These results show that CATS in-
corporates changes in the number of servers with short windows (1–2
minutes) of disruptionwhen the reconfiguration occurs, while the aver-
age latencies remain bounded by 2× x where x is the latency before the
reconfigurationwas triggered. Furthermore, since CATS is scalable, the
latency approximately halves when the number of servers doubles to 6

6.2. Evaluation 121

0 10 20 30 40 50 60 70 80

2

3

4

5

6

7

8

9

Time [min]

R
ea

d
la

te
nc

y
[m

s]

3 servers

4 servers

5 servers

6 servers
5 servers

4 servers

3 servers

Figure 6.6: Elasticity for a read-only workload.

between 30–50 minutes compared to 3 servers between 0–10 minutes.
As nodes are removed after 50 minutes, the latency starts increasing as
expected.

6.2.4 Overhead of Atomic Consistency and Consistent
Quorums

Next, we evaluated the overhead of atomic consistency compared to
eventual consistency. For a fair comparison, we implemented even-
tual consistency in CATS, enabled through a configuration parameter.
Here, read and write operations are always performed in one phase,
and read-impose (read-repair in Cassandra terms) is never used. When
a node n performs a read operation, it sends read requests to all repli-
cas. Each replica replies with a timestamp and value. After n receives
replies from a majority of replicas, it returns the value with the highest
timestamp as a result of the read operation. Similarly, when a node m
performs a write operation, it sends write requests to all replicas, us-
ing the current wall clock time as a timestamp. Upon receiving such
a request, a replica stores the value and timestamp only if the received
timestamp is higher than the replica’s local timestamp. The replica then
sends an acknowledgment to the writer m. Node m considers the write
operation complete upon receiving acknowledgments from a majority
of the replicas.

We also measured the overhead of consistent quorums. For these
measurements, we modified CATS such that nodes did not send the
replication group view in the read and write messages. Removing the
replication group frommessages reduces the size ofmessages, andhence

122 Chapter 6. A Linearizable Key-Value Store

16 64 256 1024 4096
2.5

3

3.5

4

Value size [bytes] (log)

T
hr

ou
gh

pu
t [

10
00

 o
ps

/s
ec

]

Eventual consistency
CATS without CQs
Atomic consistency

16 64 256 1024 4096
1.5

2

2.5

3

3.5

4

Value size [bytes] (log)

T
hr

ou
gh

pu
t [

10
00

 o
ps

/s
ec

]

Eventual consistency
CATS without CQs
Atomic consistency

Figure 6.7: Overhead of Atomic consistency and Consistent quorums
for a read-intensive (95%, left) and an update-intensive (50%, right)
workload.

requires less bandwidth.
For these experiments, we varied the size of the stored values, and

we measured the throughput of a system with 3 servers. Our results,
averaged over five runs, are shown in Figure 6.7. The results show that
as the value size increases, the throughput drops. This implies that the
network becomes a bottleneck for larger value sizes. The same trend is
observable in bothworkloads. Furthermore, as the value size increases,
the cost of using consistent quorums becomes negligible. For instance,
the loss in throughput for both workloads when using consistent quo-
rums is less than 5% for 256 bytes values, 4% for 1KB values, and 1%
for 4KB values.

Figure 6.7 also shows the cost of achieving atomic consistency by
comparing the throughput of regular CATSwith the throughput of our
eventual consistency implementation. The results show that the over-
head of atomic consistency is negligible for a read-intensive workload
but as high as 25% for an update-intensive workload. The reason for
this difference in behavior between the twoworkloads is that for a read-
intensiveworkload, the secondphase for reads (read-impose/read-repair)
is rarely needed, since the number of concurrent writes to the same key
are very low due to the large number of keys in the workload. For an
update-intensive workload, due to many concurrent writes, the read
operations often require to impose the read value. Hence, in compar-
ison to an update-intensive workload, the overhead of achieving lin-
earizability is very low (less than 5% loss in throughput for all value
sizes) for a read-intensive workload. We believe that this is an impor-
tant result. Applications that are read-intensive can opt for atomic con-
sistency without a significant loss in performance, while avoiding the

6.2. Evaluation 123

16 64 256 1024 4096
2

4

6

8

10

12

Value size [bytes] (log)

La
te

nc
y

[m
s]

Reads (Eventual consistency)
Updates (Eventual consistency)
Reads (Cassandra)
Updates (Cassandra)

16 64 256 1024 4096
2

4

6

8

10

12

14

Value size [bytes] (log)

La
te

nc
y

[m
s]

Reads (Eventual consistency)
Updates (Eventual consistency)
Reads (Cassandra)
Updates (Cassandra)

Figure 6.8: Comparison of latencies for Cassandra and CATS with
Eventual Consistency for a read-intensive (95%, left) and an update-
intensive (50%, right) workload.

complexities of using eventual consistency.

6.2.5 Comparison with Cassandra

The architecture of Cassandra [81] andDynamo [38] are closest to CATS
as both use consistent hashing with successor-list replication. Since
Cassandra is available openly, here we compare the performance of
CATS with that of Cassandra. We are comparing our research system
with a system that leverages half a decade of implementation optimiza-
tions and fine tuning. Our aim is to give readers an idea about the rela-
tive performance difference, which, taken together with our evaluation
of the cost of consistency, may give an insight into the cost of atomic
consistency if implemented in Cassandra. We leave the actual imple-
mentation of consistent quorums in Cassandra to future work.

We used Cassandra 1.1.0 for our experiments, and used the QUORUM

consistency level for a fair comparison with CATS. We chose the initial
data size such that the working set would fit in main memory. Further-
more, since CATS only stores data in main memory while Cassandra
uses disk, we set commitlog_sync: periodic in Cassandra for a fair com-
parison to minimize the effects to disk activity on operation latencies.
Figure 6.8 shows a comparison of average latencies, averaged over five
runs, for the same workloads for Cassandra and Eventual consistency
implemented in CATS. The trend of higher latencies for large value
sizes remains the same for both systems and workloads as the network
starts to become a bottleneck. For CATS, read and write latencies are
the same since both involve the same message complexity (one phase)
and the same message sizes. On the other hand, Cassandra writes are

124 Chapter 6. A Linearizable Key-Value Store

faster than reads, which is a known fact since writes require no reads
or seeks, while reads may need to read multiple SSTables6. The re-
sults show that the operation latencies in CATS are approximately three
times higher than in Cassandra (except reads in an update-intensive
workload, where the effects of commit log disk accesses affect Cassan-
dra’s performance).

Given our comparison betweenCassandra andEventual consistency
in CATS, and the low loss in throughput for achieving atomic consis-
tency compared to eventual consistency (Section 6.2.4), we believe that
an implementation of consistent quorums in Cassandra can provide
linearizable consistency without considerable loss in performance (e.g.
less than 5% loss for a read-intensive workload).

6.3 Discussion

Given the restrictions outlined by Brewer’s Conjecture, different sys-
tems optimize for different aspects. At one extreme, there are systems
like Cassandra, and Dynamo, that only guarantee eventual consistency
but are always available (unless the whole system fails). On the other
extreme, there are systems like CATS, Bigtable [25], Spinnaker [123],
Spanner [31], and Scatter [53], that guarantee strong consistency. In the
middle of this spectrum, several systems have been proposed that pro-
vide weaker consistency guarantees than strong consistency, yet still
stronger than eventual consistency. Such systems aim to overcome the
performance degradation (e.g., high latency) that comes with guaran-
teeing strong consistency [1]. These systems include PNUTS [29] (guar-
antees time-line consistency), and COPS [97] (guarantees causal con-
sistency). Choosing which system to use depends on the application
requirements. We aim to support applications that require strong con-
sistency (yet scale linearly).

While systems such as Bigtable [25], and HBase [9], support consis-
tency, they rely on a central server for coordination and data partition-
ing. Similarly, Spinnaker [123] uses Zookeeper [66] for coordination
and data partitioning. Since these systems are centralized, their scal-
ability is limited. In contrast, CATS is decentralized and all nodes are
symmetric, allowing for unlimited scalability.

Similar to CATS, Scatter [53] is a scalable and consistent distributed
key-value store. Scatter requires a distributed transaction across three
adjacent replication groups for reconfiguration operations to succeed.
In contrast, CATS has a simpler and more efficient, both in number of

6http://wiki.apache.org/cassandra/ArchitectureOverview

6.3. Discussion 125

messages and message delays, reconfiguration protocol that does not
need a distributed transaction. In CATS, each reconfiguration opera-
tion only operates on the replication group that is being reconfigured.
Therefore, the period of unavailability to serve operations ismuch shorter
(almost non-existent) in CATS, compared to Scatter. Furthermore, we
focus on consistent-hashing at the node level, which makes our ap-
proach directly implementable in existing key-value stores like Cassan-
dra [81]. Lastly, since we build CATS on top of ReCircle, our solution is
able to handle network partitions and mergers.

Determining the set of replicas for a given object, or set of objects, in
a dynamic setting is known as maintaining the group membership. Con-
sensus is generally used to maintain, and make changes, to the replica-
tion set [99, 24]. Similarly, to handle dynamic environments, atomic reg-
isters were extended by protocols such as RDS [26] andDynaStore [6] to
be reconfigurable. In ourwork, we employ consensus to reconfigure the
replication groups. Compared to the afore-mentioned systems, which
are not scalable as they do not partition the data across machines, we
explore the complexities of, and propose a solution for, a scalable self-
managing system.

In our work, we have shown that it is non-trivial to achieve lineariz-
able consistency in dynamic, scalable, and self-organizing key-value
stores which distribute and replicate data according to the principle of
consistent hashing. We introduce consistent quorums as a solution to
this problem for partially synchronous network environments prone to
message loss, network partitioning, and inaccurate failure suspicions.
We have built CATS, a distributed key-value store that leverages con-
sistent quorums to provide linearizable consistency and partition tol-
erance. Our evaluation shows that it is feasible to provide linearizable
consistency for those applications that do indeed need it, e.g., with less
than 5% throughput overhead for read-intensive workloads.

CHAPTER 7
Replication

This chapter deals with the data level in overlays, i.e., how to man-
age data items stored in the overlay amid node joins and failures. We
present a replication scheme, called ID-Replication. ID-Replication al-
lows varied replication degrees in the system, and requests do not need
to go through a master replica. It gives more control to an administra-
tor and to implement policies, without hampering self-management.
Furthermore, ID-Replication is less sensitive to churn compared to ex-
isting schemes, thus being well-suited for building consistent services
in asynchronous networks where false failure detections are a norm.
Since we use a generic design, ID-Replication can be used in any struc-
tured overlay network.

Introduction Structured overlay networks provide the infrastructure
used to build scalable and fault-tolerant key-value stores, e.g. Cas-
sandra [80], Dynamo [38], and Riak [13]. While scalability and self-
management derives from consistent hashing [76], data fault-tolerance
is achieved by replication. There are different strategies for replica-
tion in overlays, such as successor-list replication [153], using multi-
ple hash functions [124, 164], and symmetric replication [48]. Out of
these, successor-list replication is the most popular and widely used
in ring-based overlays. For instance, overlays including Chord [153],
Pastry [127] (with a minor modification), Accordion [92], Dynamo [38],
and Cassandra [80], all use successor-list replication.

127

128 Chapter 7. Replication

20

30
35

40

45

(20, 30]
(30, 35]

(35, 40]

(40, 45]

(15, 20]

(10, 15]
(20, 30]

(15, 20]

(30, 35]

(20, 30]

(35, 40]

(30, 35]

(10, 15]

(5, 10]

(15, 20]

33

(30, 33]

(20, 30]

(15, 20]

G3

G2
G1

Figure 7.1: A new node 33 joins in a system using successor-list repli-
cation and degree 3. 6 nodes are involved in making changes, and 4
replication groups have to be updated.

7.1 Downsides of Existing Schemes

We introduced successor-list (SL) replication and symmetric replica-
tion in Section 2.2.1. In this section, we discuss short-comings of these
schemes, thus motivating the need for another replication scheme.

Replica groups affected by churn: Churn - node joins and failures -
is considered a norm in P2P systems. A desirable behaviour is that a
churn event should not affect the configuration of an overlay greatly.
In SL-replication, the unit of replication is a node’s assigned key space,
also known as the node’s responsibility. For instance in Figure 2.2, the
key space assigned to node 30 is (20, 30], which is replicated on 35 and
40. Consequently, for a replication degree of r, each node replicates r
node responsibilities going anti-clockwise.

When a new node joins the overlay, it divides a node responsibil-
ity range into two ranges. Similarly, a node failure results in merger of
two node responsibilities. Since each node responsibility range is repli-
cated on r nodes, and each node replicates r ranges, a single churn event
results in reconfiguration of r replication groups. Furthermore, a join
event involves action on behalf of 2× r nodes, and a failure involves ac-
tion on behalf of (2× r)− 1 nodes. This is shown in Figure 7.1 where a
new node 33 joins the system in a state shown in Figure 2.2. Replication
groups G1, G2, and G3 need to be updated, and nodes 20, 30, 33, 35, 40,
45 are involved in such updates.

This approach hasmultiple drawbacks. First, a single churn event is
overly complicated, involving many nodes. Second, consistent services
built on top of overlays require consistent views of replication groups.
For instance, Scatter [52], Etna [111], and CATS [22] require consensus
whenever a replication group changes. A high number of reconfigu-
rations for a single churn event is undesirable. We came across such

7.1. Downsides of Existing Schemes 129

complexities with SL-replication while implementing CATS 6. Second,
since a node replicates multi node responsibilities, it becomes difficult
to implement different replication policies, e.g. replica placement, for
different key ranges.

Load-balancing: We argue that SL-replication is complicated to load-
balance. Consider an unbalanced system, such as the one depicted in
Figure 2.2. It is unbalanced in-terms of keys since node 30 is responsible
for storing 10 keys while all other nodes are responsible for storing 5
keys. A simple load-balancing mechanism, such as [75], would move
node 30 counter-clockwise to handover responsibility of some keys to
35, or move 20 clockwise so that 20 takes over responsibility of some
keys from 30. Since keys ∈ (20, 30] are replicated on 3 nodes, such a
movement will reduce load from one replica node only. Hence, r node
movements on the identifier ring are needed to balance the load of one
key range.

Security: In SL-replication, all requests for a key k end up on the node
p responsible for k. This has two drawbacks. First, it is difficult to load-
balance requests since all requests for k pass through p before they can
be routed to a replica. Hence, p becomes a bottleneck. Second, if p is an
adversary, it can launch a malicious attack against requests for k [146].

Bulk operations: Symmetric replication [48] is an alternate replica-
tion scheme for overlays. In Symmetric replication, the identifier space
is partitioned into N

r equivalence classes, and keys are stored symmet-
rically using equivalence classes. However, such a placement requires
a complicated bulk operation [47] for retrieving replicas of all keys in
a given range. Node failure handling has to use such a bulk opera-
tion to find data to be replicated. Such a bulk operation is complex,
requires extra messages, and induces a delay before the churn event is
completely catered.

Replicationdegree: SL-replication and Symmetric replication assume
that the replication degree is constant throughout the system. For in-
stance, the equivalence classes in Symmetric replication are created based
on the system-wide replication degree r. This restricts popular/hot
data or critical data from having more replicas than unpopular or less
critical data.

We faced most of these downsides while using SL-replication to
build a scalable key-value store in Chapter 6. For instance, for each

130 Chapter 7. Replication

churn event or false failure suspicion by the failure detector, the number
of reconfigurations were high, making it difficult to debug and analyze
the system. Thismade it complicated to keep track of things happening
in the system. Similarly, while using our key value store for an applica-
tion, it was difficult to load-balance and configure replication policies,
such as locality of replicas. This led to the design of ID-Replication.

7.2 ID-Replication

In this section, we describe a replication scheme for ring-based overlays,
called ID-Replication. We first provide an overview of ID-Replication,
give a detailed algorithmic specification, and then discuss its desirable
properties.

7.2.1 Overview

We set out to design a replication scheme that is less sensitive to churn
in terms of the number of replication groups that need to be reconfig-
ured. In ID-Replication, we use sets of nodes, called groups, instead of
individual nodes, as the building block for the overlay. Instead of par-
titioning the identifier space amongst nodes, we partition the identifier
space among groups. Thus, compared to the simple structured overlay
model where nodes are responsible for key ranges (Section 2.1.1), we
assign responsibility ranges to groups. Consequently, groups are as-
signed identifiers from the identifier space. The idea of using groups
instead of nodes as the building block of an overlay can be applied to
the majority of the overlays. For the sake of simplicity, we use the ring-
based Chord-like notation in this chapter.

All nodes within a group have the same identifier as the group. To
distinguish nodes within a group, each node also has a group-local
identifier. The group-local identifiers of nodes only need to be unique
within the group. For efficient routing, each nodemaintains long range
links, such as fingers in Chord.

The model of ID-Replication is shown in Figure 7.2. There are five
groups on the identifier space: 20, 30, 35, 40 and 45. The successor of a
group is the first group encountered going clockwise from that group,
e.g. group 40 is the successor of group 35. Similarly, the predecessor of
a group is the first group encountered going anti-clockwise, e.g. 30 is
the predecessor of 35. A group is responsible for the key range from its
predecessor to itself, e.g. group 35 is responsible for keys ∈ (30, 35].

Each group is composed of a number of nodes, e.g. group 30 con-
tains nodes {1, 2, 3}. The nodes of a group are the replicas for the keys

7.2. ID-Replication 131

(20, 30] (30, 35]
(35, 40]

(40, 45](15, 20]

1
2

3

20

1
2

3

1
2

3
1

2
3 1

2
330

35
40

45

Figure 7.2: A configuration of ID-Replication. Replica groups are de-
noted by a single identifier on the identifier space ring. Nodes in a
replica group G1 are responsible for storing keys between G1’s prede-
cessor replica group’s identifier and G1. Nodes within a replica group
are differentiated by using group-local identifiers (1, 2, and 3 in the fig-
ure).

that the group is responsible for. The size of each group is specified us-
ing two parameters: rmin and rmax. Thus, the replication degree of keys
is always between rmin and rmax. Instead of having a lower and upper
bound, we discuss how to achieve a particular replication degree for a
group in Section 7.5.

To maintain the ring under dynamism, we employ a modified ver-
sion of periodic stabilization [153] that operates on groups instead of
nodes. Furthermore, we use gossiping between nodes in a group to syn-
chronize the view of the group among the group members.

We use two operations for reconfiguring groups: Merge and Split.
When the size of a group G1 drops below rmin, we need to merge G1’s
memberswith another group G2 such that the size of themerged group
should be less than rmax. The merged group G = G1 ∪ G2 retains the
identifier of G2.

When the size of a group G becomes larger than rmax, we need to
split it into two groups, G1 and G2, such that the size of each split group
is larger than or equal to rmin. The identifiers of G1 and G2 are calcu-
lated in a way to increase the load-balance in the system.

A failure of a node can trigger a merge. Similarly, a new node joins
an existing group, which can result in a split.

7.2.2 Algorithm

We give a full specification of ID-Replication as Algorithm 15 and 16.
Each node stores a group-local identifier lid, a group identifier id, and a
set of nodes in its group, group. The successor succ of a node is a tuple
containing the identifier of the successor group, denoted as succ.id, and

132 Chapter 7. Replication

the set of nodes in the successor group, denoted as succ.group. Simi-
larly, the predecessor is a tuple of an identifier and group.

A new node p joins the system by attempting to become a member
of a group of size less than rmax to avoid a split operation. Ideally, p
should join the lowest-sized group. Such a group can be found in a
best-effort manner by a random walk, gossiping, or by maintaining di-
rectories that store such information (as in [54]). Directories in a overlay
are well-known identifiers/keys under which meta-data can be stored.
The node through which p joins a group is denoted as seed in the algo-
rithm. If the seed does not allow p to join the group, then p retries by
searching for a different seed belong to a different group. If p is unable
to find a group with less than rmax members after a number of retries,
then p can join any group causing it to split into two.

Nodes maintain successor-lists to preserve the ring-geometry amid
churn. Thedifference betweenChord [153] and ID-Replication successor-
lists is that the lists are composed of successive groups instead of suc-
cessive nodes. If all nodes in the successor group of G fail or merge
with another group, G points to the next group in the successor-list
(Algo. 15, line 14). For ring and successor-lists maintenance, we use an
algorithm similar to Chord’s periodic stabilization (see Section 2.1.1),
where nodes belonging to a group periodically stabilize the ring with
nodes in their successor group (Algo. 15, lines 17–34).

Consider a group G with size, |G|, larger than rmin. Here, even if
|G| − rmin nodes leave the group, it will neither violate the replication
degree, nor require a merge operation. These nodes 1 are called standby
nodes. The standby nodes can potentially leave their group and join
another group, e.g., to become part of a group in which a node has
failed. To be used for such purposes, standby nodes advertise them-
selves (Algo. 16, lines 25–26) by either gossiping, or periodically up-
dating their address information into directories (as in [54]). When us-
ing directories, a standby node s can randomly choose a key k from
the well-known set of directory keys and advertise itself by storing s
under k. The node in the overlay responsible for key k stores all such
addresses of standby nodes that attempted to store their information
under k, garbage collecting stale entries.

Each node p periodically checks if the size of its group, |G|, is be-
tween rmin and rmax. If |G| is smaller than rmin, then the replication
degree has dropped below the specified value. To maintain a repli-
cation degree of at least rmin, either a node should join the group, or

1nodes that can leave the groupwithout violating the replication degree or requiring
a merge operation

7.2. ID-Replication 133

Algorithm 15 ID-Replication(Part I): Joins and failures
1: upon event 〈 Join | seed 〉 at n . retried with new seed
2: sendto seed : JoinRequest〈〉
3: end event

4: receipt of JoinRequest〈〉 from m at n
5: if |group| < rmax then . if n’s replica group has space
6: group := group ∪ {m}
7: sendto m : Move〈id, group, succ, pred〉
8: end if
9: end event

10: upon event 〈 NodeFailure | f 〉 at n . Node f failed
11: group := group− { f }
12: pred.group := pred.group− { f }
13: succ.group := succ.group− { f }
14: if succ.group = ∅ then
15: succ := nextInSuccessorGroups()
16: end if
17: end event

. Periodically check for new successor and predecessor groups
18: every δ time units at n
19: rs := selectRandom(succ.group)
20: spx := rs.GetPredecessor() . fetch remotely
21: if spx.id ∈ (id, succ.id) then
22: 〈succ.id, succ.group〉 := 〈spx.id, psx.group〉
23: end if
24: ru := selectRandom(succ.group)
25: succ.group := ru.GetGroup() . fetch remotely
26: for all p ∈ succ.group do
27: sendto p : Notify〈id, group〉
28: end for
29: end event

30: receipt of Notify〈idm, groupm〉 from m at n
31: if idm ∈ (pred.id, id) or m ∈ pred.group then
32: 〈pred.id, pred.group〉 := 〈idm, groupm〉
33: end if
34: end event

134 Chapter 7. Replication

Algorithm 16 ID-Replication(Part 2): Split and Merge operations
. Periodically attempt to keep rmin < |group| < rmax

1: upon |group| > rmax at n . Split operation
2: split := getTop(sort(group), rmin) . get rmin nodes with lowest lid
3: retain := group− split
4: for all p ∈ split do
5: sendto p : Move〈newGroupKey, split, retain, pred〉
6: end for
7: for all p ∈ retain do
8: sendto p : Move〈id, retain, succ, split〉
9: end for
10: end event

11: upon |group| < rmin at n . due to failures
12: node := SearchStandbyNode()
13: if node = nil then . search failed,Mergewith successor group
14: idnew := succ.id
15: groupnew := succ.group ∪ group
16: succnew := succ.GetSuccesor() . fetch remotely
17: for all p ∈ groupnew do
18: sendto p : Move〈idnew, groupnew, succnew, pred〉
19: end for
20: else . make the standby node part of n’s group
21: sendto node : Move〈id, group ∪ {node}, succ, pred〉
22: end if
23: end event

24: every δ time units at n
25: if indexO f (n, sort(group)) > rmin then
26: AvertiseAsStandbyNode(n)
27: end if
28: GossipView(group) . sync view (& data) with group members
29: end event

30: receipt of Move〈idx, groupx, succx, predx〉 from m at n
31: HandoverData()
32: id := idx
33: group := groupx
34: succ := succx
35: pred := predx
36: end event

7.3. Evaluation 135

the group should merge with another group. p searches for a standby
node by gossiping or contacting a directory, and tries to include the
found standby node in its (p’s) group. If a standby node cannot be
found, p triggers a merge operation for its group to become part of
another group (Algo. 16, lines 11–23). Similarly, if |G| is larger than
rmax, p initiates a split operation by dividing the group into two groups
(Algo. 16, lines 1–10). Different policies can be employed for determin-
ing the identifier of the newly created group. One such policy is use an
identifier which will split the load equally amongst the two groups.

Due to joins, failures, false failure detection, and standbynodesmov-
ing to new groups, the view of a group may diverge at the nodes in a
group. To over come such differences, each node p periodically gossips
with its group members to synchronize their view of the group [162].
Furthermore, the gossiping can potentially use anti-entropy [119, 157]
to update data items within the group.

7.3 Evaluation

In this section, we evaluate ID-Replication, and compare it to successor-
list replicationusing stochastic discrete-event simulation inKompics [10].
We use the King dataset [59] formessage latencies between nodes. Each
experiment has the following structure: we initialize the overlay with
2000 nodes. Once the overlay converges, we subject it to 2000 churn
events (1000 joins and 1000 failures), and measure various metrics till
the topology converges. The rate of churn is governed by the lifetimes
of the nodes. In our experiments, the lifetimes of the nodes had a pois-
son distribution, and each node failure was followed by a join event to
maintain a network size of 2000. We evaluate both replication schemes
under various levels of churn by changing the median of poisson dis-
tribution for the lifetimes. Here, a higher median lifetime results in
a lower churn rate. We performed simulations for periodic stabiliza-
tion periods of 30 and 60 seconds, but only present graphs for 60 sec-
onds since the experiment results for both stabilization rates were the
sameWe simulate 3 directories for nodes to publish/advertise and find
standby nodes, and use a value of rmax = (2× rmin)− 1. We repeated
each experiment for 10 different seeds and report the averages.

7.3.1 Replication groups restructured

To evaluate the effectiveness of ID-replication, we measure and com-
pare the number of replication groups that need to be reconfigured
due to churn events. The results are shown in Figure 7.3. The x-axis

136 Chapter 7. Replication

shows the median lifetime used for nodes, and the y-axis depicts the
number of replication groups restructured per churn event (Rc). As
analyzed earlier, the figure shows that for SL-replication, r = Rc, while
for ID-Replication, the value ofRc is close to one. Hence,Rc is depen-
dent on the replication degree in SL-replication. On the other hand,
ID-Replication does not depend on r because a churn event effects one
or two groups regardless of the replication degree. Only one replication
group restructuring is needed when: (1) a new node p joins a group G
such that |G ∪ {p}| ≤ rmax, i.e., the join does not require splitting the
group, or (2) a node p ∈ G fails such that |G−{p}| ≥ rmin, i.e., the fail-
ure does not require merging the group. Two replication groups have
to restructured when a Split or Merge is required, or when a standby
node has to be moved from one group to another.

Next, we measure the number of Split, Merge, and standby node
movements required per churn event. While this is interesting to eval-
uate since these operations result in the reconfiguration of two replica
groups, they also affect the amount of data that needs to be transferred.
A Split operation does not require anydatamovement as all the nodes in
the newly created groups already have the data for both groups. Here,
the data responsibility of each node is merely reduced after the split. A
Merge operation is costly in terms of data transfer as it results in data ex-
change of two responsibility ranges by all members of the two groups
being merged2. On the other hand, the movement of a standby node
requires data transfer of one responsibility range only once to the node
being moved. The number of splits, merges, and standby node move-

2In a well-managed system, the number of merge operations can be reduced by hav-
ing multiple routing virtual servers (see Section 7.5) in each group.

10 20 30 40 50 60

1

2

3

4

5

6

7

Nodes median lifetime [mins]

G
ro

up
s

re
st

ru
ct

ur
ed

/c
hu

rn
 e

ve
nt

SL-rep, r=7
SL-rep, r=5
SL-rep, r=3
ID-rep, r

min
=7

ID-rep, r
min

=5

ID-rep, r
min

=3

Figure 7.3: Number of replication groups restructured per churn event.

7.4. Related work 137

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

Nodes median lifetime [mins]

O
pe

ra
tio

n
ty

pe
/c

hu
rn

 e
ve

nt

Move standby node
Merge
Split

Figure 7.4: The number of standby node movements increases with de-
creasing churn rate, thus reducing group merges.

ments per churn event is shown in Figure 7.4, which illustrates that the
ratio of Split andMerge operations is low.

7.3.2 Nodes involved in updates

Each churn event requires action on behalf of a certain number of nodes.
In this experiment, we count the number of nodes involved in recon-
figuration operations. This count is shown in Figure 7.5, normalized
against the number of churn events (Rn). As analyzed in Section 7.1,
for SL-replication, Rc approaches 2× r. Since the number of groups
reconfigured in ID-Replication is close to one for a churn event, Rn is
close to r. It is noteworthy that the value ofRn for ID-Replication drops
as the mean life time of nodes increases, which is the opposite for SL-
replication. At lower churn rates when using ID-Replication, the num-
ber of splits andmerges is reduced because each group canhave standby
nodes, and new nodes can take better decisions about which group to
join. This reduces splits and merges, thus resulting in fewer nodes in-
volved at low churn rates. Such a characteristicmakes ID-Replicationwell-
suited for managed environments, such as data-centers, where the rate
of churn is low.

7.4 Related work

Scatter [52] uses a similar scheme to ID-Replication for achieving con-
sistency in DHTs. Compared to our scheme, they further sub-divide
the groups to differentiate between key responsibilities of each node.

138 Chapter 7. Replication

10 20 30 40 50 60

4

6

8

10

12

Nodes median lifetime [mins]

N
od

es
 in

vo
lv

ed
/c

hu
rn

 e
ve

nt

SL-rep, r=7
SL-rep, r=5
SL-rep, r=3
ID-rep, r

min
=7

ID-rep, r
min

=5

ID-rep, r
min

=3

Figure 7.5: Number of nodes involved in updates for each churn event.

Furthermore, they do not evaluate or argue for the usefulness of their
scheme. We provide algorithmic specification of our work, backed by
design decisions and evaluation with comparison to SL-replication.

Agyaat [145] proposes to use groups of nodes, called clouds, to pro-
videmutual anonymity in structured overlays. Compared to ID-replication,
Agyaat maintains an R-Ring and an overlay with the clouds, which is
more complicated and requires some nodes to be part of two overlays.
A similar approach is taken by Narendula et al. [114], where nodes
form sub-overlays with trusted nodes for better access control in P2P
data management.

7.5 Discussion

Aswediscuss in Section 7.2.1 and evaluate in Section 7.3, ID-Replication
requires less replication group reconfigurations per churn event com-
pared to SL-replication. This makes ID-Replication ideal for building
a consistent key-value store. Each replication group can be considered
as a replicated state machine [132] and operations are performed on
the data in a total order within the group. To handle dynamism, we
need to support the merge and split operations where the view of a
group changes. For this, we can use a reconfigurable replicated state
machine [88], such as SMART [98]. Using SMART with SL-replication
is both complicated and expensive as replicated state machines are im-
plemented using consensus [86]. Since ID-Replication requires fewer
replication group reconfigurations per churn event, itwill require fewer
instances of consensus. The amount of data that needs to transfered
per churn event, however, remains the same, though the coordination
becomes simpler and cheaper. Apart from joins and failures, false fail-

7.5. Discussion 139

ure suspicions are common in asynchronous networks, which will trig-
ger much more unnecessary reconfiguration requests in SL-replication
than in ID-Replication3.

ID-Replication allows the system user to have different replication
degrees for different key ranges. We use two parameters, rmin and rmax,
to control the replication degree, which can be different for different
replication groups. For a given key range, the number of replicas is
at least rmin and at most rmax. Thus, popular or critical data can have
more copies than other data by setting higher values of rmin and rmax
for the corresponding key range. We propose using virtual servers [33]
for maintaining a certain replication degree r instead of a varying repli-
cation degree between rmin and rmax. Assuming rmin ≤ r ≥ rmax, the
first r nodes with the lowest local identifiers in a group can be used to
replicate the data items. The rest of the rmax − r nodes, if any, can still
participate at the routing level (performing gossiping, periodic stabi-
lization, forwarding lookups) but instead of storing data, they can act
as standby nodes for any failures of replicas storing the data. A node
can host some virtual servers that store data as well as participate in
routing, and some virtual servers that only participate at the routing
level.

Owing to the design of ID-Replication, an administrator has much
more control over the system compared to SL-replication, which sim-
plifies implementing various policies for replication. For instance, the
administrator can control howmany andwhich machines should serve
a particular key-range. This allows the usage of specialized hardware
for handling requests for certain keys, and configuring locality for repli-
cas. On the contrary, a node in SL-replication is responsible for repli-
cating multiple key ranges (r key partitions anti-clockwise), making it
harder to control which nodes replicate some keys as consecutive key
ranges on the ring may have different requirements. For example, con-
sider Figures 2.2 and 7.2. Assume we want to store keys k ∈ (21, 30]
on machines of type (or location) A, and keys j ∈ (31, 35] on machines
of type (or location) B. This is difficult to achieve in SL-replication as
the node responsible for j is also a replica for k. On the other hand,
achieving the afore-mentioned is much simpler in ID-Replication as A
machines can join the group 30 and B machines can join group 35.

Routing tables, e.g. fingers inChord, can also be build using groups.
Each routing pointer can point to a group, containing addresses ofmul-
tiple nodes. Greedy routing can be done on group identifiers, and a

3We came across such issues while building a consistent key-value store on top of an
overlay using successor-list replication (Chapter 6)

140 Chapter 7. Replication

lookup can be routed to a randomnode in the group. For fault-tolerance
and better performance, a lookup can be routed by forwarding in par-
allel to all nodes in the groups at each hop, and considering only the
first reply. While such a mechanism consumes more bandwidth, it (a)
is more reliable as it can tolerate failure of nodes in the path, and (b)
has lower latency as the lookup can exploit multiple paths. Such par-
allel lookup techniques have also been proposed for Chord like over-
lays [90].

ID-Replication maintains groups using a gossip protocol, similar to
Cyclon [160], which adds to the maintenance cost compared to only us-
ing periodic stabilization. Cyclon is inexpensive, especially given that
the group sizes are small in our case and the churn rates are moderate
in cloud environments. If the gossip rate is equal to the periodic sta-
bilization rate, then the maintenance cost for ID-Replication is twice4
than a system using only periodic stabilization. We also confirmed this
via simulations. In data center environments, the maintenance cost can
be reduced by choosing a low rate of gossiping since the churn rate is
low.

4the cost is still moderate and negligible given today’s interconnects

CHAPTER 8
Conclusion

Structured overlay networks are widely used as the building block for
large-scale applications to locate resources. Any long-lived Internet-
scale distributed system is bound to face network partitions. Hence,
apart from dealing with normal churn rates, we argue that structured
overlays should intrinsically be able to handle rare but extreme events
such as networkpartitions andmergers, bootstraping, andflash crowds.

In this thesis, we have proposed techniques for identifying when
a network partition heals, and have presented a simple and a gossip-
based algorithm, calledRing-Unification, formerging similar ring-based
structured overlay networks after the underlying networkmerges. Ring-
Unification is an add-on algorithm, that works in conjunction with an
overlaymaintenance algorithm. To avoid the complexity of havingmul-
tiple algorithms for catering various cases, we have presented ReCircle,
an overlay algorithm that acts as an overlay maintenance algorithm, as
well as deals with all extreme churn events such as bootstrapping, and
network partitions and mergers. Under normal execution, ReCircle ex-
changes messages periodically like any other overlay maintenance pro-
tocol. On the other hand,wedesignedReCircle to be reactive to extreme
events so that it can converge fasterwhen such events occur. Both, Ring-
Unification and ReCircle, provides tunable knobs to trade-off between
cost (bandwidth consumption) and performance (time to convergence)
while handling extreme scenarios.

The CAP Theorem [19, 51] states that in a distributed asynchronous
network, it is impossible to achieve consistency, availability and parti-
tion tolerance at the same time. Hence, system designers have to chose

141

142 Chapter 8. Conclusion

two out of the three properties. Since network partitions are unavoid-
able in a distributed environment, we believe Ring-Unification and Re-
Circle are pivotal for structured overlay networks. In-line with the CAP
Theorem, the choice between consistency and availability depends on
the target application. For some applications, availability is of utmost
importance, while weaker consistency guarantees (e.g. eventual con-
sistency [38]) suffice. For others, data consistency is a must, even if the
application is temporarily unavailable.

We have shown that in structured overlay networks, data incon-
sistency arises from lookup inconsistencies. We have studied the fre-
quency of lookup inconsistencies, and found that its main cause is in-
accurate failure detectors. Hence, the choice of a failure detection al-
gorithm is of crucial importance in overlays. We have discussed and
evaluated two techniques to reduce the affects of lookup inconsisten-
cies: local responsibilities and using quorum-based algorithms. While the
effects of lookup inconsistencies can be reduced by using local responsi-
bilities, we show that using responsibility of keysmay affect availability
of keys and any corresponding data stored against the keys. This is a
trade-off between availability and consistency. Next, we have shown
that using quorum-based techniques amongst replicas of data items
further reduces lookup inconsistencies. Since majority-based quorum
techniques require a majority of the replicas to make progress, these
algorithms may still make progress even with unavailability of some
nodes/replicas. An application can employ both, local responsibili-
ties and quorum-based algorithms, for reducing inconsistencies and
achieving high availability.

There is a class of applications that require strong consistency guar-
antees and partition tolerance, even if the system becomes unavailable
under certain failure scenarios. In this thesis, we have shown that it
is non-trivial to achieve strong/linearizable consistency in dynamic,
scalable, and self-organizing storage systems built on top of ring-based
structured overlays, i.e., using the principle of consistent hashing [76].
Wehave built a key-value store, calledCATS, employingprinciples from
structured overlay networks, that provides strong consistency and par-
tition tolerance. On the routing level of CATS, we use ReCircle for over-
lay maintenance amid churn, network partitions and mergers, and lo-
cal responsibilities and quorum-based algorithms for reducing inconsisten-
cies and achieving high availability. On the data level, in CATS,we have
introduced consistent quorums for achieving linearizable/strong consis-
tency in partially synchronous network environments prone tomessage
loss, network partitioning, and inaccurate failure suspicions. For this

143

purpose, our solution employs consistent quorums along with various
distributed algorithms, such as Consensus [86], ABD registers [11], and
dynamic reconfiguration [88, 5]. We have described the design, imple-
mentation, and evaluation of CATS, a distributed key-value store that
leverages consistent quorums to provide linearizable consistency and
partition tolerance. CATS is self-managing, elastic, and it exhibits un-
limited linear scalability, all of which are key properties for modern
cloud computing storage middleware. Our evaluation shows that it is
feasible to provide linearizable consistency for those applications that
do indeed need it, e.g., with less than 5% throughput overhead for read-
intensive workloads.

While buildingCATS, a strongly consistent key-value store, we came
across various drawbacks of existing replication schemes used in struc-
tured overlays. In this thesis, we have discussed popular approaches
employed for replication in structured overlays, including successor-list
replication and symmetric replication, and outlined their drawbacks.
Such drawbacks include the huge effect of churn on replication groups,
dynamic load-balancing, and in-ability to have different replication de-
gree for different key ranges (data items). We have presented the de-
sign, algorithmic specification, and evaluation of ID-Replication, a repli-
cation scheme for structured overlays that does not suffer from the afore-
mentioned problems. ID-Replication does not require requests to go
through a particular replica. Furthermore, it allows different replica-
tion degrees for different key ranges. This allows for using higher num-
ber of replicas for hotspots and critical data. Our results show that ID-
Replication is less sensitive to churn than SL-replication, which makes
it better suited for building consistent services, and for usage in asyn-
chronous networks where inaccurate failure detections are a norm.

Knowledge of the current network size of a structured peer-to-peer
system is a prime requirement for many systems, which prompted to
finding solutions for size estimation. Previous studies have shown that
gossip-based aggregation algorithms, thoughbeing expensive, produce
accurate estimates of the network size. Wehavedemonstrated the short-
comings in existing aggregation approaches for network size estima-
tion and have presented a solution for ring-based structured overlays
that overcomes the deficiencies. We have argued for an adaptive ap-
proach to convergence in gossip-based aggregation algorithms, instead
of a predefined duration. Our solution is resilient to massive node fail-
ures and is aimed to work on non-random topologies, such as struc-
tured overlay networks.

144 Chapter 8. Conclusion

8.1 Future work

Webelieve that it is interesting to investigatewhether gossip-based topol-
ogy generators, such as T-man [68] and T-chord [109], can be used to
handle network mergers on the overlay level. These services, however,
make use of an underlying membership service, such as Cyclon [160],
Scamp [45], or Newscast [69]. Hence, one has to first investigate how
well suchmembership services recover from network partitions (we be-
lieve this to be interesting in itself). Thereafter, one can explore how
such topology generators can be incorporated into a structured overlay
network.

Mathematical analysis of gossip-protocols is often done through sim-
ple recurrence relations or by using Markov chains, where the state of
the chain can be the number of infected nodes [42]. The overlay merg-
ing algorithms we have proposed, Ring-Unification and ReCircle, mix
deterministic overlay algorithms with that of gossip protocols. Conse-
quently, we believe that an analysis of our algorithmswill require mod-
eling the routing pointers of every node as part of the chain state. We
solicit such an analysis and believe it is an interesting future direction
for this research.

During the merger of multiple overlays, some keys (and associated
data items) may temporarily become unavailable due to inconsistent
routing pointers. For instance, during merger, the finger pointers from
a node in overlay A may point to a node in the other overlay B. Here,
a lookup request generated inAmay end up on a node in B, hence not
finding the lookup key. While such inconsistencies are rare and short-
lived, we believe an extended analysis of this issue to be a potential
future direction. Such an analysis has been done by Datta [36], and can
potentially be extended to our overlay merging algorithms.

In the context of key-value stores built on top of overlays, amerger of
multiple overlays can result in a large amount of data transfer amongst
nodes from different overlays. One can employ a lazy (background)
data transfer mechanism to avoid congesting the network, while keep-
ing forwarding pointers at each node to be able to access the data before
it has been transferred to the newly responsible node. Such techniques,
including optimizations, require further investigation and are left as fu-
ture work.

We introduced consistent quorums to provide a consistent view of
replication groups. In CATS, we used consistent quorums to build a
key-value store. Instead of only single-item linearizable operations,
such consistent views can be leveraged further to implement distributed
multi-item transactions. This will make CATS attractive for usage by

8.1. Future work 145

many cloud applications that require transactions. Furthermore, CATS
can be extended to be a feature-rich data storage system by supporting
column-oriented APIs, indexing, and search. Lastly, as the underly-
ing key-to-node responsibility mapping mechanism (consistent hash-
ing) used by CATS is the same as Cassandra, we believe our ideas can
easily be implemented in Cassandra. Such an extension of Cassandra
can potentially be extremely valuable for the open source community,
and everyone using Cassandra. The applications using Cassandra do
not need to be changed, and can benefit from linearizability by not wor-
rying about the complexities that come with eventual consistency, at a
small performance cost.

Due to its low sensitivity to churn, a possible step forwardwould be
to build a consistent key-value store using ID-Replication. Each repli-
cation group can act as a replicated state machine, where operations
are performed in a total order on the replicas (one such approach was
attempted in Scatter [53]). Since replica groups changewith dynamism,
wepropose using a reconfigurable replicated statemachine, for instance,
SMART [98]. Such a key-value store will directly support transactions
across all items stored within a group since it orders operations within
a replication group.

The local state initialization mechanism used in our network size
estimation algorithmworks for ring-based structured overlay networks.
An interesting future direction is to extend the algorithm for usagewith
other geometries, e.g., XOR in Kademlia [106], or torus in CAN [124].
Furthermore, our algorithm can be generalized to calculate aggregates
other than network size estimation, e.g., average load in the system. In
our futurework, we aim at extending our size estimation results to non-
uniform distributed identifiers and performing extended costs analysis
of the algorithm.

Bibliography

[1] Daniel J. Abadi. Consistency tradeoffs in modern distributed
database system design: CAP is only part of the story. Computer,
45:37–42, 2012.

[2] K. Aberer, L. O.Alima, A. Ghodsi, S. Girdzijauskas, S. Haridi, and
M. Hauswirth. The Essence of P2P: A Reference Architecture for
OverlayNetworks. In Proceedings of the 5th International Conference
on Peer-To-Peer Computing (P2P’05), pages 11–20. IEEE Computer
Society, August 2005.

[3] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic,
M. Hauswirth, M. Punceva, and R. Schmidt. P-Grid: a self-
organizing structured P2P system. SIGMOD Record, 32(3):29–33,
2003.

[4] Skype active users. http://blogs.skype.com/en/2012/03/35_mil
lion_people_concurrently.html, April 2013.

[5] Marcos K. Aguilera, Idit Keidar, Dahlia Malkhi, Jean-Philippe
Martin, and Alexander Shraer. Reconfiguring replicated atomic
storage: A tutorial. Bulletin of the EATCS, 102:84–108, 2010.

[6] Marcos K. Aguilera, Idit Keidar, Dahlia Malkhi, and Alexander
Shraer. Dynamic atomic storage without consensus. J. ACM,
58:7:1–7:32, April 2011.

[7] L. O. Alima, S. El-Ansary, P. Brand, and S. Haridi. DKS(N, k,
f): A Family of Low Communication, Scalable and Fault-Tolerant
Infrastructures for P2P Applications. In Proceedings of the 3rd In-
ternational Workshop on Global and Peer-To-Peer Computing on Large
Scale Distributed Systems (CCGRID’03), pages 344–350, Tokyo,
Japan, May 2003. IEEE Computer Society.

147

148 Bibliography

[8] L. O. Alima, A. Ghodsi, and S. Haridi. A Framework for Struc-
tured Peer-to-Peer Overlay Networks. In Post-proceedings of Global
Computing, volume 3267 of Lecture Notes in Computer Science
(LNCS), pages 223–250. Springer Verlag, 2004.

[9] Apache HBase. http://hbase.apache.org/, 2012.

[10] Cosmin Arad, Jim Dowling, and Seif Haridi. Developing, sim-
ulating, and deploying peer-to-peer systems using the kompics
component model. In Proceedings of the Fourth International ICST
Conference on COMmunication System softWAre and middlewaRE,
COMSWARE ’09, pages 16:1–16:9, New York, NY, USA, 2009.
ACM.

[11] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing mem-
ory robustly in message-passing systems. J. ACM, 42(1):124–142,
January 1995.

[12] Peter Bailis, Shivaram Venkataraman, Michael J. Franklin,
Joseph M. Hellerstein, and Ion Stoica. Probabilistically bounded
staleness for practical partial quorums. PVLDB, 5(8):776–787,
2012.

[13] Basho Riak. http://wiki.basho.com/Riak.html/, 2012.

[14] BerkeleyDB. http://www.oracle.com/technology/products/ber
keley-db/, 2012.

[15] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: Sup-
porting Scalable Multi-Attribute Range Queries. In Proceedings
of the ACM SIGCOMM 2004 Symposium on Communication, Archi-
tecture, and Protocols, pages 353–366, Portland, OR, USA, March
2004. ACM Press.

[16] Egypt’s big Internet disconnect 2011, April 2013.
http://www.guardian.co.uk/commentisfree/2011/jan/31/egypt-
internet-uncensored-cutoff-disconnect.

[17] Andreas Binzenhöfer, Dirk Staehle, , and Robert Henjes. On
the fly estimation of the peer population in a chord-based p2p
system. In 19th International Teletraffic Congress (ITC19), Beijing,
China, Sep. 2005.

[18] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and
Y. Minsky. Bimodal Multicast. ACM Transactions on Computer
Systems (TOCS), 17(2):41–88, 1999.

Bibliography 149

[19] Eric A. Brewer. Towards robust distributed systems (abstract). In
Proceedings of the nineteenth annual ACM symposium on Principles
of distributed computing, PODC ’00, pages 7–, New York, NY, USA,
2000. ACM.

[20] Mike Burrows. The chubby lock service for loosely-coupled dis-
tributed systems. In Proceedings of the 7th symposium on Operating
systems design and implementation, OSDI ’06, pages 335–350, Berke-
ley, CA, USA, 2006. USENIX Association.

[21] F. Jahanian C. Labovitz, A. Ahuja. Experimental Study of Inter-
net Stability andWide-Area Backbone Failures. Technical Report
CSE-TR-382-98, University of Michigan, November 1998.

[22] CATS. http://cats.sics.se, April 2013.

[23] T. D. Chandra and S. Toueg. Unreliable failure detectors for reli-
able distributed systems. Journal of the ACM, 43(2):225–267, 1996.

[24] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone.
Paxos made live: an engineering perspective. In Proceedings of
the twenty-sixth annual ACM symposium on Principles of distributed
computing, PODC ’07, pages 398–407, New York, NY, USA, 2007.
ACM.

[25] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh,
Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew
Fikes, and Robert E. Gruber. Bigtable: A distributed storage sys-
tem for structured data. ACM Trans. Comput. Syst., 26(2):4:1–4:26,
June 2008.

[26] Gregory Chockler, Seth Gilbert, Vincent Gramoli, Peter M. Mu-
sial, and Alex A. Shvartsman. Reconfigurable distributed storage
for dynamic networks. J. Parallel Distrib. Comput., 69:100–116, Jan-
uary 2009.

[27] The Cogent-Level 3 Dispute 2005. http://www.isp-
planet.com/business/2005/cogent_level_3.html, December
2011.

[28] B. Cohen. Incentives BuildRobustness in BitTorrent. In FirstWork-
shop on Economics of Peer-to-Peer Systems, Berkeley, CA, USA, June
2003.

150 Bibliography

[29] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava,
Adam Silberstein, Philip Bohannon, Hans-Arno Jacobsen, Nick
Puz, DanielWeaver, andRamanaYerneni. Pnuts: Yahoo!’s hosted
data serving platform. Proc. VLDB Endow., 1(2):1277–1288, Au-
gust 2008.

[30] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakr-
ishnan, and Russell Sears. Benchmarking cloud serving systems
with ycsb. In Proceedings of the 1st ACM symposium on Cloud com-
puting, SoCC ’10, pages 143–154, NewYork, NY, USA, 2010. ACM.

[31] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes,
Christopher Frost, J. J. Furman, Sanjay Ghemawat, Andrey
Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh,
Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd,
Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, and Dale Woodford. Spanner:
Google’s globally-distributed database. In Proceedings of the 10th
USENIX conference on Operating Systems Design and Implementa-
tion, OSDI’12, pages 251–264, 2012.

[32] F. Dabek. A Distributed Hash Table. PhD dissertation,
Massachusetts Institute of Technology, Cambridge, MA, USA,
September 2005.

[33] F. Dabek, M. F. Kaashoek, D. R. Karger, R. Morris, and I. Sto-
ica. Wide-area cooperative storage with CFS. In Proceedings of the
18th ACM Symposium on Operating Systems Principles (SOSP’01),
pages 202–215, Chateau Lake Louise, Banff, Canada, October
2001. ACM Press.

[34] A. Datta. Merging Intra-Planetary Index Structures: Decentral-
ized Bootstrapping of Overlays. In Proceedings of the First In-
ternational Conference on Self-Adaptive and Self-Organizing Systems
(SASO 2007), pages 109–118, Boston, MA, USA, July 2007. IEEE
Computer Society.

[35] A. Datta and K. Aberer. The Challenges of Merging Two Similar
StructuredOverlays: A Tale of TwoNetworks. InProceedings of the
First InternationalWorkshop on Self-Organizing Systems (IWSOS’06),
volume 4124 of Lecture Notes in Computer Science (LNCS), pages 7–
22. Springer-Verlag, 2006.

Bibliography 151

[36] Anwitaman Datta. Merging ring-structured overlay indices: to-
ward network-data transparency. Computing, 94(8-10):783–809,
2012.

[37] S. B. Davidson, H. Garcia-Molina, and D. Skeen. Consistency
in a partitioned network: a survey. ACM Computing Surveys,
17(3):341–370, 1985.

[38] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: amazon’s highly available key-value store. In Proceed-
ings of 21st ACM SIGOPS symposium on Operating systems princi-
ples, SOSP ’07, pages 205–220, New York, NY, USA, 2007. ACM.

[39] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry. Epidemic Algorithms for
ReplicatedDatabaseMaintenance. In Proceedings of the 7th Annual
ACMSymposium onPrinciples of Distributed Computing (PODC’87),
pages 1–12, New York, NY, USA, 1987. ACM Press.

[40] Distributed k-ary System. http://dks.sics.se, 2006.

[41] eMule. http://www.emule-project.net/, March 2009.

[42] P. Th. Eugster, R. Guerraoui, S. B. Handurukande, P. Kouznetsov,
and A.-M. Kermarrec. Lightweight probabilistic broadcast. ACM
Trans. Comput. Syst., 21(4):341–374, 2003.

[43] Alex Feinberg. Project Voldemort: Reliable distributed storage.
In ICDE 2011, 2011. http://project-voldemort.com.

[44] Cisco Visual Networking Index: Forecast and 2011-2016
Methodology. http://www.cisco.com/en/US/solutions/collat
eral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-48136
0.pdf, November 2012.

[45] A. J. Ganesh, A.-M. Kermarrec, and L Massoulié. SCAMP: Peer-
to-Peer Lightweight Membership Service for Large-Scale Group
Communication. In Proceedings of the 3rd InternationalWorkshop on
Networked Group Communication (NGC’01), volume 2233 of Lecture
Notes in Computer Science (LNCS), pages 44–55, London, UK, 2001.
Springer-Verlag.

[46] Sanjay Ghemawat and Jeff Dean. LevelDB.
http://code.google.com/p/leveldb/, 2012.

152 Bibliography

[47] A. Ghodsi. Distributed k-ary System: Algorithms for Distributed
Hash Tables. PhD dissertation, KTH—Royal Institute of Technol-
ogy, Stockholm, Sweden, December 2006.

[48] A. Ghodsi, L. O. Alima, and S. Haridi. Symmetric Replication for
Structured Peer-to-Peer Systems . In Proceedings of the 3rd Interna-
tional VLDB Workshop on Databases, Information Systems and Peer-
to-Peer Computing (DBISP2P’05), volume 4125 of Lecture Notes in
Computer Science (LNCS), pages 74–85. Springer-Verlag, 2005.

[49] A. Ghodsi and S. Haridi. Atomic Ring Maintenance for Dis-
tributed Hash Tables. Technical Report T2007:05, Swedish Insti-
tute of Computer Science (SICS), 2007.

[50] David K. Gifford. Weighted voting for replicated data. In SOSP
’79: Proceedings of the seventh ACM symposium on Operating systems
principles, pages 150–162, New York, NY, USA, 1979. ACM Press.

[51] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the fea-
sibility of consistent, available, partition-tolerant web services.
SIGACT News, 33(2):51–59, June 2002.

[52] L. Glendenning, I. Beschastnikh, and A. Krishnamurthy. Scalable
Consistency in Scatter. In ACM SOSP, pages 15–28, 2011.

[53] Lisa Glendenning, Ivan Beschastnikh, Arvind Krishnamurthy,
andThomasAnderson. Scalable consistency in scatter. InProceed-
ings of the Twenty-ThirdACMSymposium onOperating Systems Prin-
ciples, SOSP ’11, pages 15–28, New York, NY, USA, 2011. ACM.

[54] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Sto-
ica. Load balancing in dynamic structured P2P systems. In Pro-
ceedings of the 23rd Conference of the IEEE Computer and Communi-
cations Societies, 2004.

[55] P. B. Godfrey and I. Stoica. Heterogeneity and Load Balance in
Distributed Hash Tables. In Proceedings of the 24th Annual Joint
Conference of the IEEE Computer and Communications Societies (IN-
FOCOM’05), pages 596–606, Miami, FL, USA, March 2005. IEEE
Computer Society.

[56] Jim Gray and Leslie Lamport. Consensus on transaction commit.
ACM Trans. Database Syst., 31(1):133–160, 2006.

Bibliography 153

[57] K. Gummadi, R. Dunn, S. Saroiu, S. Gribble, H. Levy, and J. Za-
horjan. Measurement, Modeling, and Analysis of a Peer-to-Peer
File-SharingWorkload. In Proceedings of the 19th ACM Symposium
on Operating Systems Principles (SOSP’03), Bolton Landing, NY,
USA, October 2003. ACM Press.

[58] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker,
and I. Stoica. The impact of DHT routing geometry on resilience
and proximity. In Proceedings of the ACM SIGCOMM 2003 Sympo-
sium on Communication, Architecture, and Protocols, pages 381–394,
New York, NY, USA, 2003. ACM Press.

[59] Krishna P. Gummadi, Stefan Saroiu, and Steven D. Gribble. King:
estimating latency between arbitrary internet end hosts. In IMW
’02: Proceedings of the 2nd ACM SIGCOMM Workshop on Internet
measurment, pages 5–18, New York, NY, USA, 2002. ACM.

[60] Anjali Gupta, Barbara Liskov, and Rodrigo Rodrigues. Efficient
routing for peer-to-peer overlays. In Proceedings of the 1st confer-
ence on Symposium onNetworked SystemsDesign and Implementation
- Volume 1, NSDI’04, pages 9–9, Berkeley, CA, USA, 2004. USENIX
Association.

[61] I. Gupta, K. Birman, P. Linga, A. Demers, and R. van Renesse.
Kelips: Building an Efficient and Stable P2P DHT Through In-
creased Memory and Background Overhead. In Proceedings of
the 2nd International Workshop on Peer-to-Peer Systems (IPTPS’03),
volume 2735 of Lecture Notes in Computer Science (LNCS), pages
160–169, Berkeley, CA, USA, 2003. Springer-Verlag.

[62] N. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman.
Skipnet: A scalable overlay network with practical locality prop-
erties. InProceedings of the 4thUSENIXSymposium on Internet Tech-
nologies and Systems (USITS’03), Seattle, WA, USA, March 2003.
USENIX.

[63] Maurice P. Herlihy and Jeannette M.Wing. Linearizability: a cor-
rectness condition for concurrent objects. ACM Trans. Program.
Lang. Syst., 12(3):463–492, July 1990.

[64] K. Horowitz and D. Malkhi. Estimating network size from local
information. Information Processing Letters, 88(5):237–243, 2003.

[65] G. Huang. Experiences with PPLive. Key note talk at Peer-to-
Peer Streaming and IP-TVWorkshop Invited held with ACM Sig-
comm, Kyoto, Japan, August 2007.

154 Bibliography

[66] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin
Reed. Zookeeper: wait-free coordination for internet-scale sys-
tems. In Proceedings of the 2010 USENIX conference on USENIX
annual technical conference, USENIXATC’10, Berkeley, CA, USA,
2010. USENIX Association.

[67] ISP Quarrel Partitions Internet 2008.
http://www.wired.com/threatlevel/2008/03/isp-quarrel-
par/, April 2013.

[68] M. Jelasity and Ö. Babaoglu. T-man: Gossip-based overlay topol-
ogy management. In Proceedings of 3rd Workshop on Engineering
Self-Organising Systems (EOSA’05), volume 3910 of Lecture Notes
in Computer Science (LNCS), pages 1–15. Springer-Verlag, 2005.

[69] M. Jelasity, W. Kowalczyk, and M. van Steen. Newscast Comput-
ing. Technical Report IR–CS–006, Vrije Universiteit, November
2003.

[70] M. Jelasity and A. Montresor. Epidemic-Style Proactive Aggre-
gation in Large Overlay Networks. In Proceedings of the 24th Inter-
national Conference on Distributed Computing Systems (ICDCS’04),
pages 102–109, Tokyo, Japan, March 2004. IEEE Computer Soci-
ety.

[71] M. Jelasity, A. Montresor, and Ö. Babaoglu. Gossip-based Aggre-
gation in Large Dynamic Networks. ACM Transactions on Com-
puter Systems (TOCS), 23(3), August 2005.

[72] Márk Jelasity, Alberto Montresor, and Özalp Babaoglu. T-Man:
Gossip-based fast overlay topology construction. Computer Net-
works, 53(13):2321–2339, 2009.

[73] M. F. Kaashoek and D. R. Karger. Koorde: A Simple Degree-
optimal Distributed Hash Table. In Proceedings of the 2nd Intera-
tional Workshop on Peer-to-Peer Systems (IPTPS’03), volume 2735 of
Lecture Notes in Computer Science (LNCS), pages 98–107, Berkeley,
CA, USA, 2003. Springer-Verlag.

[74] D. R. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin,
and R. Panigrahy. Consistent Hashing and Random Trees: Dis-
tributed Caching Protocols for Relieving Hot Spots on the World
Wide Web. In Proceedings of the 29th ACM Symposium on Theory of
Computing (STOC’97), pages 654–663, New York, NY, USA, May
1997. ACM Press.

Bibliography 155

[75] D. R. Karger and M. Ruhl. Simple efficient load balancing algo-
rithms for peer-to-peer systems. In IPTPS, pages 131–140, 2004.

[76] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy,
Matthew Levine, and Daniel Lewin. Consistent hashing and ran-
dom trees: distributed caching protocols for relieving hot spots
on the world wide web. In Proceedings of the twenty-ninth annual
ACM symposium on Theory of computing, STOC ’97, pages 654–663,
New York, NY, USA, 1997. ACM.

[77] David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based
computation of aggregate information. In 44th Symp. on Founda-
tions of Computer Science (FOCS), 2003.

[78] D. Kostoulas, D. Psaltoulis, I. Gupta, K. Birman, andA. J. Demers.
Decentralized schemes for size estimation in large and dynamic
groups. In 4th IEEE International Symp. on Network Computing and
Applications (NCA 2005), pages 41–48, 2005.

[79] Gerald Kunzmann andAndreas Binzenhöfer. Autonomically Im-
proving the Security and Robustness of Structured P2P Over-
lays. In Proceedings of the International Conference on Systems and
Networks Communications (ICSNC 2006), Tahiti, French Polynesia,
October-November 2006. IEEE Computer Society.

[80] A. Lakshman and P. Malik. Cassandra: a decentralized struc-
tured storage system. SIGOPSOper. Syst. Rev., 44:35–40, apr 2010.

[81] Avinash Lakshman and Prashant Malik. Cassandra: a decentral-
ized structured storage system. SIGOPSOper. Syst. Rev., 44:35–40,
April 2010.

[82] L. Lamport. Proving the Correctness of Multiprocess Programs.
IEEE Transactions on Software Engineering (TSE), 3(2):125–143,
1977.

[83] L. Lamport. How to make a multiprocessor computer that cor-
rectly executes multiprocess programs. IEEE Trans. Comput.,
28(9):690–691, September 1979.

[84] L. Lamport. On interprocess communication, part I: Basic for-
malism. Distributed Computing, 1(2):77–85, 1986.

[85] Leslie Lamport. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM, 21(7):558–565, July 1978.

156 Bibliography

[86] Leslie Lamport. The part-time parliament. ACM Trans. Comput.
Syst., 16(2):133–169, May 1998.

[87] Leslie Lamport. The part-time parliament. ACM Trans. Comput.
Syst., 16(2):133–169, 1998.

[88] Leslie Lamport, DahliaMalkhi, and Lidong Zhou. Reconfiguring
a state machine. SIGACT News, 41(1):63–73, March 2010.

[89] B. Leong and J. Li. Achieving One-Hop DHT Lookup and Strong
Stabilization by Passing Tokens. In 12th International Conference on
Networks (ICON’04), Singapore, November 2004. IEEE Computer
Society.

[90] B. Leong, B. Liskov, and E. Demaine. EpiChord: Parallelizing
the Chord Lookup Algorithm with Reactive Routing State Man-
agement. In 12th International Conference on Networks (ICON’04),
Singapore, November 2004. IEEE Computer Society.

[91] J. Li. Routing Tradeoffs in Dynamic Peerŋtoŋpeer Networks. PhD
dissertation, MIT—Massachusetts Institute of Technology, Mas-
sachusetts, USA, November 2005.

[92] J. Li, J. Stribling, R. Morris, and M. F. Kaashoek. Bandwidth-
efficient management of DHT routing tables. In Proceedings of
the 2nd USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI’05), Boston, MA, USA, May 2005. USENIX.

[93] J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and T. M. Gil. A per-
formance vs. cost framework for evaluatingDHTdesign tradeoffs
under churn. In Proceedings of the 24th Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM’05),
Miami, FL, USA, March 2005. IEEE Computer Society.

[94] X. Li, J. Misra, and C. G. Plaxton. Brief Announcement: Concur-
rent Maintenance of Rings. In Proceedings of the 23rd Annual ACM
Symposium on Principles of Distributed Computing (PODC’04), page
376, New York, NY, USA, 2004. ACM Press.

[95] D. Liben-Nowell, H. Balakrishnan, and D. R. Karger. Analysis
of the Evolution of Peer-to-Peer Systems. In Proceedings of the
21st Annual ACM Symposium on Principles of Distributed Comput-
ing (PODC’02), pages 233–242, New York, NY, USA, 2002. ACM
Press.

Bibliography 157

[96] D. Liben-Nowell, H. Balakrishnan, and D. R. Karger. Observa-
tions on the Dynamic Evolution of Peer-to-Peer Networks. In
Proceedings of the First International Workshop on Peer-to-Peer Sys-
tems (IPTPS’02), volume 2429 of Lecture Notes in Computer Science
(LNCS). Springer-Verlag, 2002.

[97] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and
David G. Andersen. Don’t settle for eventual: scalable causal
consistency for wide-area storage with cops. In Proceedings of
the Twenty-Third ACM Symposium on Operating Systems Principles,
SOSP ’11, pages 401–416, New York, NY, USA, 2011. ACM.

[98] J. R. Lorch, A. Adya, W. J. Bolosky, R. Chaiken, J. R. Douceur, and
J. Howell. The smart way to migrate replicated stateful services.
In EuroSys, 2006.

[99] Jacob R. Lorch, Atul Adya, William J. Bolosky, Ronnie Chaiken,
John R. Douceur, and Jon Howell. The smart way to mi-
grate replicated stateful services. In Proceedings of the 1st ACM
SIGOPS/EuroSys European Conference on Computer Systems 2006,
EuroSys ’06, pages 103–115, New York, NY, USA, 2006. ACM.

[100] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publish-
ers, 1996.

[101] N. A. Lynch, D. Malkhi, and D. Ratajczak. Atomic Data Ac-
cess in Distributed Hash Tables. In Proceedings of the First Inter-
ational Workshop on Peer-to-Peer Systems (IPTPS’02), Lecture Notes
in Computer Science (LNCS), pages 295–305, London, UK, 2002.
Springer-Verlag.

[102] R. Mahajan, M. Castro, and A. Rowstron. Controlling the Cost of
Reliability in Peer-to-Peer Overlays. In Proceedings of the 2nd Inter-
national Workshop on Peer-to-Peer Systems (IPTPS’03), volume 2735
of Lecture Notes in Computer Science (LNCS), pages 21–32, Berkeley,
CA, USA, 2003. Springer-Verlag.

[103] D.Malkhi,M.Naor, andD. Ratajczak. Viceroy: A scalable anddy-
namic emulation of the butterfly. In Proceedings of the 21st Annual
ACMSymposium onPrinciples of Distributed Computing (PODC’02),
New York, NY, USA, 2002. ACM Press.

[104] G. S. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed
Hashing in a Small World. In Proceedings of the 4th USENIX

158 Bibliography

Symposium on Internet Technologies and Systems (USITS’03), Seat-
tle, WA, USA, March 2003. USENIX.

[105] L. Massoulié, E. Le Merrer, A. Kermarrec, and A. J. Ganesh. Peer
counting and sampling in overlay networks: randomwalk meth-
ods. In Proc. of the 25th Annual ACM Symp. on Principles of Dis-
tributed Computing (PODC), pages 123–132, 2006.

[106] P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-Peer In-
formation System Based on the XOR metric. In Proceedings of the
First Interational Workshop on Peer-to-Peer Systems (IPTPS’02), Lec-
ture Notes in Computer Science (LNCS), pages 53–65, London,
UK, 2002. Springer-Verlag.

[107] E. LeMerrer, A.-MKermarrec, and L.Massoulie. Peer to peer size
estimation in large and dynamic networks: A comparative study.
In Proc. of the 15th IEEE Symposium onHigh Performance Distributed
Computing, pages 7–17. IEEE, 2006.

[108] A. Mislove, A. Post, A. Haeberlen, and P. Druschel. Experiences
in building and operating ePOST, a reliable peer-to-peer appli-
cation. In Willy Zwaenepoel, editor, Proceedings of the 1st ACM
SIGOPS/EuroSys European Conference on Computer Systems. ACM
European Chapter, April 2006.

[109] A.Montresor,M. Jelasity, andÖ. Babaoglu. Chord onDemand. In
Proceedings of the 5th International Conference on Peer-To-Peer Com-
puting (P2P’05). IEEE Computer Society, August 2005.

[110] M. Amir Moulavi, Ahmad Al-Shishtawy, and Vladimir Vlassov.
State-space feedback control for elastic distributed storage in a
cloud environment. In The Eighth International Conference on Au-
tonomic and Autonomous Systems (ICAS), St. Maarten, Netherlands
Antilles, March 2012.

[111] A. Muthitacharoen, S. Gilbert, and R. Morris. Etna: a Fault-
tolerant Algorithm for Atomic Mutable DHT Data. Mit technical
report, MIT, June 2005.

[112] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash Sys-
tem. April 2013. http://bitcoin.org/bitcoin.pdf.

[113] Napster. http://www.napster.com, 2006.

Bibliography 159

[114] R. Narendula, Z. Miklós, and K. Aberer. Towards access control
aware p2p data management systems. In EDBT/ICDTWorkshops,
pages 10–17, 2009.

[115] Taiwan Earthquake on December 2006.
http://www.pinr.com/report.php?ac=view_report&report_id=602,
January 2008.

[116] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why do in-
ternet services fail, and what can be done about it? In USITS’03:
Proceedings of the 4th conference on USENIX Symposium on Inter-
net Technologies and Systems, pages 1–1, Berkeley, CA, USA, 2003.
USENIX Association.

[117] Christos H. Papadimitriou. The serializability of concurrent
database updates. J. ACM, 26(4):631–653, October 1979.

[118] V. Paxson. End-to-end routing behavior in the Internet.
IEEE/ACM Transactions on Networking (TON), 5(5):601–615, 1997.

[119] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Marvin M.
Theimer, and Alan J. Demers. Flexible update propagation for
weakly consistent replication. In Proceedings of the sixteenth ACM
symposium on Operating systems principles, SOSP ’97, pages 288–
301, New York, NY, USA, 1997. ACM.

[120] B. Pittel. On spreading a rumor. SIAM Journal on Applied Mathe-
matics, 47(1):213–223, Feb 1987.

[121] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby
copies of replicated objects in a distributed environment. In Pro-
ceedings of the 9th Annual ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA’97), pages 311–320, New York, NY,
USA, 1997. ACM Press.

[122] PPLive. http://www.pplive.com/, March 2009.

[123] Jun Rao, Eugene J. Shekita, and Sandeep Tata. Using paxos to
build a scalable, consistent, and highly available datastore. Proc.
VLDB Endow., 4:243–254, January 2011.

[124] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.
A Scalable Content-Addressable Network. In Proceedings of the
ACM SIGCOMM 2001 Symposium on Communication, Architecture,
and Protocols, pages 161–172, San Diego, CA, U.S.A., August 2001.
ACM Press.

160 Bibliography

[125] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling Churn
in a DHT. In Proceedings of the 2004 USENIX Annual Technical
Conference (USENIX’04), Boston, MA, USA, June 2004. USENIX.

[126] J. Risson, K. Robinson, and T. Moors. Fault tolerant active rings
for structured peer-to-peer overlays. lcn, 0:18–25, 2005.

[127] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In Pro-
ceedings of the 2nd ACM/IFIP International Conference onMiddleware
(MIDDLEWARE’01), volume 2218 of Lecture Notes in Computer
Science (LNCS), pages 329–350, Heidelberg, Germany, November
2001. Springer-Verlag.

[128] Antony Rowstron and Peter Druschel. Pastry: Scalable, dis-
tributed object location and routing for large-scale peer-to-peer
systems. In Proceedings of the 2nd ACM/IFIP International Con-
ference on Middleware (MIDDLEWARE’01), volume 2218 of Lec-
ture Notes in Computer Science (LNCS), pages 329–350, Heidelberg,
Germany, November 2001. Springer-Verlag.

[129] Jan Sacha and JimDowling. A gradient topology for master-slave
replication in peer-to-peer environments. In Proceedings of the 3rd
International VLDBWorkshop onDatabases, Information Systems, and
Peer-to-Peer Computing (DBISP2P’05), pages 86–97, 2005.

[130] S. Saroiu, P. Gummadi, and S. Gribble. A measurement study of
peer-to-peer file sharing systems. In In Proc. of MMCN, 2002.

[131] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E Okasaki, E.H.
Siegel, and D.C. Steere. Coda: a highly available file system for a
distributed workstation environment. IEEE Transactions on Com-
puters, 39, 1990.

[132] Fred B. Schneider. Implementing fault-tolerant services using
the state machine approach: a tutorial. ACM Comput. Surv.,
22(4):299–319, December 1990.

[133] Tallat M. Shafaat, Bilal Ahmad, and Seif Haridi. Id-replication
for structured peer-to-peer systems. In Euro-Par, pages 364–376,
2012.

[134] TallatM. Shafaat, Ali Ghodsi, and Seif Haridi. HandlingNetwork
Partitions and Mergers in Structured Overlay Networks. In Pro-
ceedings of the 7th International Conference on Peer-to-Peer Comput-

Bibliography 161

ing (P2P’07), pages 132–139. IEEE Computer Society, September
2007.

[135] Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi. A practical ap-
proach to network size estimation for structured overlays. In
Karin Anna Hummel and James P. G. Sterbenz, editors, Proceed-
ings of the Third International Workshop on Self-Organizing Systems
(IWSOS’08), volume 5343 of Lecture Notes in Computer Science,
pages 71–83. Springer-Verlag, 2008.

[136] Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi. Dealing with net-
work partitions in structured overlay networks. Peer-to-Peer Net-
working and Applications (PPNA), 2(4):334–347, 2009.

[137] Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi. Managing Net-
work Partitions in Structured P2P Networks. In X. Shen, H. Yu,
J. Buford, and M. Akon, editors, Handbook of Peer-to-Peer Network-
ing. Springer-Verlag, July 2009.

[138] Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi. Dealing with
bootstrapping, maintenance, and network partitions and merg-
ers in structured overlay networks. In Proceedings of 6th IEEE In-
ternational Conference on Self-Adaptive and Self-Organizing Systems
(SASO), France, pages 149–158. IEEE Computer Society, 2012.

[139] Tallat M. Shafaat, Monika Moser, Ali Ghodsi, Thorsten Schütt,
Seif Haridi, and Alexander Reinefeld. On consistency of data in
structured overlay networks. In Proceedings of the 3rd CoreGRID
Integration Workshop, April 2008.

[140] Tallat M. Shafaat, Monika Moser, Ali Ghodsi, Thorsten Schütt,
Seif Haridi, and Alexander Reinefeld. Poster: key-based consis-
tency and availability in structured overlay networks. In Proc. of
the 17th IEEE Symposium on High Performance Distributed Comput-
ing, pages 235–236. ACM, 2008.

[141] Tallat M. Shafaat, Monika Moser, Thorsten Schütt, Alexander
Reinefeld, Ali Ghodsi, and Seif Haridi. Key-Based Consistency
and Availability in Structured Overlay Networks. In Proceedings
of the 3rd International ICST Conference on Scalable Information Sys-
tems (Infoscale’08). ACM, June 2008.

[142] A. Shaker and D. S. Reeves. Self-Stabilizing Structured Ring
Topology P2P Systems. In Proceedings of the 5th International

162 Bibliography

Conference on Peer-To-Peer Computing (P2P’05), pages 39–46. IEEE
Computer Society, August 2005.

[143] Alexander Shraer, BenjaminReed, DahliaMalkhi, and Flavio Jun-
queira. Dynamic reconfiguration of primary/backup clusters. In
Proceedings of the 2012 USENIX conference on Annual Technical Con-
ference, USENIX ATC’12, pages 39–39, Berkeley, CA, USA, 2012.
USENIX Association.

[144] SicsSim. http://dks.sics.se/p2p07partition/, January 2008.

[145] A. Singh, B. Gedik, and L. Liu. Agyaat: mutual anonymity over
structured p2p networks. Internet Research, 16(2):189–212, 2006.

[146] E. Sit and R. Morris. Security considerations for peer-to-peer dis-
tributed hash tables. In 1st International Workshop on Peer-to-Peer
Systems (IPTPS’02), 2002.

[147] Skype. http://www.skype.com, November 2012.

[148] SopCast. http://www.sopcast.com/, March 2009.

[149] Skype statistics. http://www.telecompaper.com/news/skype-
grows-fy-revenues-20-reaches-663-mln-users, November 2012.

[150] Moritz Steiner, Ernst W. Biersack, and Taoufik En-Najjary. Ac-
tively monitoring peers in kad. In Proceedings of the Sixth Interna-
tional workshop on Peer-To-Peer Systems (IPTPS’07), 2007.

[151] Moritz Steiner, Taoufik En-Najjary, and Ernst W. Biersack. A
global view of kad. In Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement, IMC ’07, pages 117–122, New
York, NY, USA, 2007. ACM.

[152] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakr-
ishnan. Chord: A Scalable Peer-to-Peer Lookup Service for Inter-
net Applications. In Proceedings of the ACM SIGCOMM 2001 Sym-
posium on Communication, Architecture, and Protocols, pages 149–
160, San Deigo, CA, August 2001. ACM Press.

[153] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, andH. Balakrishnan. Chord: a scalable peer-
to-peer lookup protocol for internet applications. IEEE/ACM
Transactions on Networking (TON), 11(1):17–32, 2003.

Bibliography 163

[154] Internet study. http://www.ipoque.com/sites/default/files/me
diafiles/documents/internet-study-2008-2009.pdf, November
2012.

[155] D. Stutzbach and R. Rejaie. Understanding churn in peer-to-peer
networks. In Proceedings of the 6th ACM SIGCOMM conference on
Internet measurement, 2006.

[156] Undersea cable damage 2006. Taiwan earthquake shakes Internet.
http://www.theregister.co.uk/2006/12/27/boxing_day_earthq
uake_taiwan/, April 2013.

[157] D. B. Terry, M. Theimer, K. Petersen, A. J. Demers, M. Spreitzer,
and C. Hauser. Managing Update Conflicts in Bayou, a Weakly
Connected Replicated Storage System. In Proceedings of the 15th
ACM Symposium on Operating Systems Principles (SOSP’95), pages
172–183. ACM Press, December 1995.

[158] Robert H. Thomas. A majority consensus approach to concur-
rency control for multiple copy databases. ACM Trans. Database
Syst., 4(2):180–209, 1979.

[159] Werner Vogels. Eventually consistent, January 2012.
http://www.allthingsdistributed.com/2007/12/eventually_con
sistent.html.

[160] S. Voulgaris, D. Gavidia, and M. van Steen. Cyclon: Inexpensive
membership management for unstructured p2p overlays. Journal
of Network and Systems Management, 13(2), 2005.

[161] S. Voulgaris and M. van Steen. Epidemic-Style Management of
Semantic Overlays for Content-Based Searching. In Proceedings of
the 11th European Conference on Parallel Computing (EUROPAR’05).
Springer-Verlag, 2005.

[162] Spyros Voulgaris, Daniela Gavidia, and Maarten van Steen. Cy-
clon: Inexpensive membership management for unstructured
p2p overlays. J. Network Syst. Manage., 13(2):197–217, 2005.

[163] C. A. Waldspurger andW. E. Weihl. Lottery Scheduling: Flexible
Proportional-Share Resource Management. In Proceedings of the
First Symposium on Operating Systems Design and Implementation
(OSDI’94), pages 1–11. USENIX, November 1994.

164 Bibliography

[164] B. Y. Zhao, L. Huang, S. C. Rhea, J. Stribling, A. D. Joseph, and
J. D. Kubiatowicz. Tapestry: A Global-scale Overlay for Rapid
Service Deployment. IEEE Journal on Selected Areas in Communi-
cations (JSAC), 22(1):41–53, January 2004.

[165] S.Q. Zhuang, D. Geels, I. Stoica, and R.H. Katz. On failure detec-
tion algorithms in overlay networks. In Proc. of INFOCOM, 2005.

[166] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed
Database Systems. Prentice Hall, 1999.

	Contents
	Introduction
	Peer-to-peer Systems
	Unstructured Overlay Networks
	Structured Overlay Networks
	Gossip/Epidemic Algorithms
	Modern uses of Peer-to-peer Systems

	Research Objectives and Contributions
	Handling Network Partitions and Mergers
	Bootstrapping, Maintenance, and Mergers
	Network Size Estimation
	Lookup Inconsistencies
	Data Consistency
	Replication

	Organization

	Preliminaries
	The Routing Level
	A Model of a Ring-based Overlay
	Maintaining Routing Pointers

	The Data Level
	Replication
	Consistency and Quorum-based Algorithms

	Network Partitions, Mergers, and Bootstrapping
	Handling Network Partitions and Mergers
	Detecting Network Partitions and Mergers

	Ring-Unification: Merging Multiple Overlays
	Ring Merging
	Simple Ring Unification
	Gossip-based Ring Unification
	Discussion
	Evaluation
	Related Work

	Recircle: Bootstrapping, Maintenance, and Mergers
	Merging multiple overlays
	Bootstrapping
	Termination
	Evaluation
	Related work

	Discussion

	Network Size Estimation
	Gossip-based Aggregation
	The Network Size Estimation Algorithm
	Handling dynamism

	Evaluation
	Epoch length
	Effect of the number of hops
	Churn

	Related Work

	Lookup Inconsistencies
	Consistency Violation
	Inconsistency Reduction
	Local Responsibility
	Quorum-based Algorithms

	Evaluation
	Discussion

	A Linearizable Key-Value Store
	Solution: CATS
	Replica Groups Reconfiguration
	Put/Get Operations
	Network Partitions and Mergers
	Correctness

	Evaluation
	Performance
	Scalability
	Elasticity
	Overhead of Atomic Consistency and Consistent Quorums
	Comparison with Cassandra

	Discussion

	Replication
	Downsides of Existing Schemes
	ID-Replication
	Overview
	Algorithm

	Evaluation
	Replication groups restructured
	Nodes involved in updates

	Related work
	Discussion

	Conclusion
	Future work

	Bibliography

