
Doctoral Thesis in Information and Communication Technology

Privacy preserving behaviour learning
for the IoT ecosystem
SANA IMTIAZ

Stockholm, Sweden 2021

Privacy preserving behaviour learning
for the IoT ecosystem

sana imtiaz

Doctoral Thesis in Information and Communication Technology
School of Electrical Engineering and Computer Science

KTH Royal Institute of Technology
Stockholm, Sweden

and
Institute of Information and Communication Technologies,

Electronics and Applied Mathematics
Université catholique de Louvain

Louvain-la-Neuve, Belgium
December 2021

Collection Number: 851|2021

Privacy preserving behaviour learning
for the IoT ecosystem

sana imtiaz

Doctoral Thesis in Information and Communication Technology
School of Electrical Engineering and Computer Science

KTH Royal Institute of Technology
Stockholm, Sweden

and
Institute of Information and Communication Technologies,

Electronics and Applied Mathematics
Université catholique de Louvain

Louvain-la-Neuve, Belgium
December 2021

Collection Number: 851|2021

TRITA-EECS-AVL-2021:78
ISBN: 978-91-8040-067-1
UCLouvain Collection Number: 851|2021

School of Electrical Engineering
and Computer Science

KTH Royal Institute of Technology
SE-164 40 Kista

SWEDEN

Academic Dissertation which, with due permission of the KTH Royal Institute of
Technology, is submitted for public defence for the Degree of Doctor of
Philosophy on Friday the 17th December 2021, at 14:00 in Sal C, Electrum,
Kungliga Tekniska Högskolan, Kistagången 16, Kista.

© Sana Imtiaz, December 2021

Printed by Universitetsservice US-AB

To my dear family, Chooza, and Choozi.

iv

Abstract

IoT has enabled the creation of a multitude of personal applications and services
for a better understanding and improvement of urban environments and our
personal lives. These services are driven by the continuous collection and analysis
of sensitive and private user data to provide personalised experiences. Among the
different application areas of IoT, smart health care, in particular, necessitates the
usage of privacy preservation techniques in order to guarantee protection from
user privacy-breaching threats such as identification, profiling, localization and
tracking, and information linkage. Traditional privacy preservation techniques
such as pseudonymization are no longer sufficient to cater to the requirements
of privacy preservation in the fast-growing smart health care domain due to the
challenges offered by big data volume, velocity and variety. On the other hand, there
is a number of modern privacy preservation techniques with respective overheads
that may have a negative impact on application performance such as reduced
accuracy, reduced data utility, and increased device resource usage. There is a need
to select appropriate privacy preservation techniques (and solutions) according to
the nature of data, system performance requirements and resource constraints, in
order to find proper trade-offs between providing privacy preservation, data utility,
and acceptable system performance in terms of accuracy, runtime, and resource
consumption.

In this work, we investigate different privacy preservation solutions andmeasure
the impact of introducing our selected privacy preservation solutions on the
performance of different components of the IoT ecosystem in terms of data utility
and system performance. We implement, illustrate, and evaluate the results of
our proposed approaches using real-world and synthetic privacy-preserving smart
health care datasets. First, we provide a detailed taxonomy and analysis of the
privacy preservation techniques and solutions which may serve as a guideline
for selecting appropriate techniques according to the nature of data and system
requirements. Next, in order to facilitate privacy preserving data sharing, we present
and implement a method for creating realistic synthetic and privacy-preserving
smart health care datasets using Generative Adversarial Networks and Differential
Privacy. Later, we also present and develop a solution for privacy preserving data
analytics, a differential privacy library PyDPLib, with health care data as a use case.

In order to find proper trade-offs between providing necessary privacy preser-
vation, device resource consumption and application accuracy, we present and
implement a novel approach with corresponding algorithms and an end-to-end
system pipeline for reconfigurable data privacy in machine learning on resource-
limited computing devices. Our evaluation results show that, while providing the
required level of privacy, our proposed approach allows us to achieve up to 26.21%
memory, 16.67% CPU instructions, and 30.5% of network bandwidth savings as
compared to making all the data private. Moreover, we also present and implement

abstract v

an end-to-end solution for privacy-preserving time-series forecasting of user health
data streams using Federated Learning and Differential Privacy. Our proposed
solution finds a proper trade-off between providing necessary privacy preservation,
application accuracy and runtime, and at best introduces a decrease of ≈ 2% in the
prediction accuracy of the trained models.

vi

Sammanfattning

IoT har möjliggjort skapandet av en mängd personliga applikationer och tjänster
för en bättre förståelse och förbättring av stadsmiljöer och våra personliga liv.
Dessa tjänster drivs av kontinuerlig insamling och analys av känslig och privat
användardata för att ge personliga upplevelser. Bland de olika applikationsom-
rådena för IoT, kräver i synnerhet smart hälsovård användningen av tekniker för
bevarande av integritet för att garantera skydd mot användarnas integritetsintrång,
såsom identifiering, profilering, lokalisering och spårning och informationskopp-
ling. Traditionella tekniker för bevarande av integritet som pseudonymisering är
inte längre tillräckliga för att tillgodose kraven på bevarande av integritet i den
snabbväxande smarta hälsovårdsdomänen på grund av de utmaningar som stora
datamängder, hastighet och variation forcerar. Å andra sidan finns det ett antal
moderna tekniker för bevarande av integritet med respektive omkostnader som
kan ha en negativ inverkan på applikationsprestanda såsom minskad noggrannhet,
minskad datanytta och ökad resursanvändning på enheten. Det finns ett behov av att
välja lämpliga sekretessskyddstekniker (och lösningar) i enlighet med datas natur,
systemprestandakrav och resursbegränsningar, för att hitta korrekta avvägning-
ar mellan tillhandahållande av integritetsbevarande, dataverktyg och acceptabel
systemprestanda i form av av noggrannhet, körtid och resursförbrukning.

I detta arbete undersöker vi olika lösningar för bevarande av integritet och
mäter effekten av att introducera våra utvalda lösningar för bevarande av integritet
på prestandan hos olika komponenter i IoT-ekosystemet när det gäller datanytta
och systemprestanda. Vi implementerar, illustrerar och utvärderar resultaten av
våra föreslagna tillvägagångssätt med hjälp av verkliga och syntetiska integritets-
bevarande smarta hälsodatauppsättningar. Först tillhandahåller vi en detaljerad
taxonomi och analys av tekniker och lösningar för bevarande av integritet som kan
fungera som en riktlinje för att välja lämpliga tekniker i enlighet med typen av
data och systemkrav. Därefter, för att underlätta integritetsbevarande datadelning,
presenterar och implementerar vi en metod för att skapa realistiska syntetiska
och integritetsbevarande smarta hälsovårdsdatauppsättningar med hjälp av Ge-
nerative Adversarial Networks och Differential Privacy. Senare presenterar och
utvecklar vi också en lösning för integritetsbevarande dataanalys, ett differentiellt
integritetsbibliotek PyDPLib, med sjukvårdsdata som ett användningsfall.

För att hitta korrekta avvägningarmellan tillhandahållande av nödvändig integri-
tetsbevarande, enhetsresursförbrukning och applikationsnoggrannhet presenterar
och implementerar vi ett nytt tillvägagångssätt med motsvarande algoritmer och en
end-to-end systempipeline för omkonfigurerbar datasekretess i maskininlärning
på resursbegränsade datorenheter. Våra utvärderingsresultat visar att, samtidigt
som vi tillhandahåller den nödvändiga integritetsnivån, tillåter vårt föreslagna
tillvägagångssätt oss att uppnå upp till 26,21% minne, 16,67% CPU-instruktioner
och 30,5% av besparingar på nätverkets bandbredd jämfört med att göra all data

sammanfattning vii

privat. Dessutom presenterar och implementerar vi också en helhetslösning för
integritetsbevarande tidsserieprognoser för användarhälsodataströmmar med hjälp
av Federated Learning och Differential Privacy. Vår föreslagna lösning finner en
lämplig avvägning mellan att tillhandahålla nödvändig integritetsbevarande, ap-
plikationsnoggrannhet och körtid, och introducerar i bästa fall en minskning med
≈ 2% i prediktionsnoggrannheten för de tränade modellerna.

viii

Résumé

L’IoT a permis la création d’une multitude d’applications et de services personnels
pour une meilleure compréhension et amélioration des environnements urbains
et de nos vies personnelles. Ces services sont alimentés par la collecte et l’analyse
continues de données sensibles et privées des utilisateurs afin de fournir des
expériences personnalisées. Parmi les différents domaines d’application de l’IoT,
les soins de santé intelligents, en particulier, nécessitent l’utilisation de techniques
de préservation de la vie privée afin de garantir la protection contre les menaces
d’atteinte à la vie privée des utilisateurs, telles que l’identification, le profilage,
la localisation et le suivi, et la mise en relation des informations. Les techniques
traditionnelles de préservation de la vie privée, telles que la pseudonymisation, ne
suffisent plus à répondre aux exigences de préservation de la vie privée dans le
domaine en plein essor des soins de santé intelligents, en raison des défis posés par
le volume, la vitesse et la variété des données. D’autre part, il existe un nombre de
techniques modernes de préservation de la confidentialité avec des frais généraux
respectifs qui peuvent avoir un impact négatif sur les performances de l’application,
comme une précision réduite, une utilité réduite des données et une utilisation
accrue des ressources du système. Il est nécessaire de sélectionner des techniques
(et des solutions) appropriées de préservation de la confidentialité en fonction de la
nature des données, des exigences de performance du système et des contraintes de
ressources, afin de trouver des compromis appropriés entre la préservation de la
confidentialité, l’utilité des données et une performance acceptable du système en
termes de précision, de temps d’exécution et de consommation de ressources.

Dans ce travail, nous étudions différentes solutions de préservation de la vie
privée et mesurons l’impact de l’introduction de nos solutions de préservation
de la vie privée sélectionnées sur les performances de différents composants de
l’écosystème IoT en termes d’utilité des données et de performances du système.
Nous mettons en œuvre, illustrons et évaluons les résultats de nos approches
proposées en utilisant des ensembles de données de soins de santé intelligents réels
et synthétiques préservant la confidentialité. Tout d’abord, nous fournissons une
taxonomie et une analyse détaillées des techniques et solutions de préservation de
la vie privée qui peuvent servir de ligne directrice pour sélectionner les techniques
appropriées en fonction de la nature des données et des exigences du système.
Ensuite, afin de faciliter le partage de données préservant la vie privée, nous
présentons et mettons en œuvre une méthode pour créer des ensembles de données
synthétiques réalistes et préservant la vie privée dans le domaine des soins de santé
intelligents en utilisant des réseaux adversariaux génératifs et la confidentialité
différentielle. Par la suite, nous présentons et développons également une solution
pour l’analyse de données préservant la confidentialité, une bibliothèque de confi-
dentialité différentielle PyDPLib, avec des données de soins de santé comme cas
d’utilisation.

résumé ix

Afin de trouver des compromis appropriés entre la préservation nécessaire
de la confidentialité, la consommation de ressources du dispositif et la précision
de l’application, nous présentons et mettons en œuvre une nouvelle approche
avec les algorithmes correspondants et un pipeline système de bout en bout pour
la confidentialité des données reconfigurable dans l’apprentissage automatique
sur des appareils à ressources limitées. Nos résultats d’évaluation montrent que,
tout en assurant le niveau de confidentialité requis, l’approche proposée permet
d’économiser jusqu’à 26,21% de mémoire, 16,67% d’instructions CPU et 30,5% de
bande passante réseau par rapport à la confidentialité de toutes les données. En
outre, nous présentons et mettons en œuvre une solution de bout en bout pour la
prévision de séries temporelles préservant la confidentialité des flux de données
de santé en utilisant l’apprentissage fédéré et la confidentialité différentielle. La
solution que nous proposons trouve un compromis approprié entre la préservation
de la confidentialité, la précision de l’application et le temps d’exécution, et introduit
aumieux une diminution de≈ 2% de la précision de prédiction des modèles formés.

x

Acknowledgements

The acknowledgements Section is perhaps themost difficult to write in a doctoral
thesis, simply because a doctoral thesis is the fruit of collective efforts from a large
group of people (supervisors, mentors, colleagues, administrative staff, friends and
family) over a long period of typically 4-6 years. All this hard work and support
can not possibly be summed up in a small chapter but here goes a small effort to
thank all the wonderful people who have been a part of my doctoral journey.

My foremost gratitude goes to my primary supervisors, Vladimir Vlassov (Vlad)
and Ramin Sadre. In my culture, a teacher is considered to be a spiritual father. And
professors like Vlad go the extra mile to not only be an academic advisor but also
be a good adviser at life for his students. Vlad created a very healthy atmosphere in
our research group that allowed us to become not only colleagues who support each
other’s research but also be an academic family that thoroughly enjoys their group
meetings! At the end of 3 years of my stay at KTH, I can say that Vlad has become
my academic dad who is always available to support my work in both technical
and administrative capacities, and is always there to give me the right amount of
push to keep myself motivated at work and to meet my deadlines in time. Your
ideas and recommendations have shaped and improved the most of my research
work. I thank you for the super useful brainstorming and problem-solving sessions,
and for encouraging me to collaborate with colleagues. I also thank you, Vlad, for
believing in me at times when I myself could not, particularly when I hit hurdles
during my research. I will miss your energy, your valuable ideas and insights into
research, your unique collection of proverbs, and our lively group meetings.

My primary supervisor at UCLouvain, Ramin Sadre, thank you for your very
valuable ideas, guidance, patience and cooperation throughout my doctoral journey.
Your support at the beginning of my doctoral research was vital to my whole
academic journey. Your ideas and recommendations have always shaped my
research direction and improved the presentation of my research work. Thank you
for always being there for the quick reviews and editing right at the submission
deadlines, most importantly, for always helping me with the French translations.

My co-supervisor at KTH, Sarunas Girdzĳauskas, you have always been very
supportive and available whenever I needed help with the research ideas or even
computing resources for master thesis students. I thank you for the brainstorming
sessions and your valuable ideas and feedback regarding my research. My doctoral
support committee, Peter Van Roy (UCLouvain) and Sonja Buchegger (KTH), I am
truly grateful for your support and very valuable ideas for shaping my research.
Peter, thank you for your valuable suggestions for improving my work, for asking
the right questions that helped me shape my research pitch, and for always being a
source of positive energy and support. Sonja, thank you for welcoming me to your
weekly group meetings on privacy that gave me the perfect exposure to a wide
spectrum of privacy preservation solutions I that ended up applying in my work. I

acknowledgements xi

also thank you for always being available for analyzing the privacy aspects of my
research works, for asking the right questions that make me think and analyze my
work better, for providing useful suggestions to improvemy experiments, evaluation
and presentation; and for the positive energy you impart in every interaction.

My internal thesis reviewer at KTH, Elena Troubitsyna, thank you for your timely
and detailed comments that helped in improving my thesis. Anne Håkansson, my
evaluator for 80% doctoral seminar at KTH, thank you for your in-depth feedback
and very valuable suggestions for improving the presentation of my thesis. Thank
you to all the committee members at my private doctoral defence, Yao Guo (Peking
University, China), Monowar Bhuyan (Umeå University, Sweden), Siegfried Nĳssen
and Charles Pecheur (UCLouvain), and Sonja Buchegger. Your in-depth feedback
and valuable suggestions have greatly improved my thesis.

I would also like to thank my collaborators and co-authors Zainab Abbas,
Muhammad Arsalan, Hassan Nazeer Chaudhry, Philipp Matthies, Francisco Pinto,
and Frida Schain, it was a pleasant and great learning experience working with you
all. Special thanks to my talented master thesis students Sonia-Florina Horchidan,
Zannatun Tania and Stefano Fedeli for their hard work and collaboration. Thank
you for contributing to my work!

I would also like to thank the administrative teams at KTH and UCLouvain
for their support. Thank you to our head of department, Thomas Sjöland, for
his kindness and immense support with my doctoral career at KTH, for always
providing a positive outlook on research, and for encouraging us to participate in
research events during my stay at KTH. Thomas, your open door policy makes
all of us at the department feel welcome and cared for. I will miss our coffee
breaks and in-depth discussions on academia, administration, and life in general. I
would like to thank Christian Schulte for helping me integrate smoothly when I
first arrived at KTH. Thank you for introducing me to so many good colleagues
from other divisions that I ended up having a great time with during my stay
at KTH. I also thank you for always being my go-to translator for Swedish for
academic matters and everyday things like insurance matters for my rabbits. Your
kindness and positive energy will never never be forgotten. Special thanks to Susy
Matthew and Madeleine Printzsköld at KTH for handling all my administrative
matters swiftly and smoothly. Special thanks to Vanessa Maons and Sophie Renard
for their magically swift and efficient support on the administrative matters at
UCLouvain, and for the positive energy that you ladies radiate. I thank all you
ladies for facilitating the administrative parts of my doctoral journey.

Special token of thanks to a lovely friend and the coolest office mate ever,
Zainab Abbas. Your singing made the otherwise gloomy winters in Stockholm
very enjoyable :) Thank you for your wisdom and kindness, for the productive
brainstorming sessions supported by tea breaks, your ideas and collaboration at
research, for co-supervising themaster theses, for your immense support throughout

xii acknowledgements

my doctoral thesis, for making my office a happy place to work at, for providing me
24/7 logistics support (Thank you, Mudassir!), and for all the memorable trips we
did together during our doctoral thesis. You have simply been the best part of my
stay at KTH! Another special token of thanks to my dear friend and collaborator,
Muhammad Arsalan. Thank you for your valuable ideas and contributions to my
research, for your active collaboration, the hectic yet productive pair-programming
sessions, and the near-submission deadline editing sessions on Overleaf. I thank
you for your kindness, patience, and immense support throughmy doctoral journey,
and mostly, for your sense of humour that always lightened up our meetings with
master thesis students.

My research group members, Sina, Tianze, Klas, David, and Desta, thank you
for the fruitful discussions in group meetings and for the wonderful memories at
KTH. Special thanks to my EMJD-DC friends Bilal, Igor, Khulan, and Jawad, for
inspiring me and encouraging me during my work, and for their research ideas
and support during the initial years of my doctoral journey. To my mentors Amira
Soliman, Shatha Jaradat, and Leila Bahri, thank you for inspiring and mentoring me
during my doctoral studies. My dear friends Shazem, Nancy, Freya, Mehar ul Nisa,
Hadi, Farah, Asra, Hira, Hira, Anum, Anum (yes there are two Hira’s and Anum’s),
Sanna, Saleha, and Mona, thank you for your support and encouragement. To my
teachers from Pakistan, Saira Aziz, Abdul Wadood, and Irfan Ahmed, I owe it all to
the exceptional teachers like you. Thank you for your wisdom, for your belief in me
and the never-ending support through the 12+ years of my academic life.

My dear parents, thank you ammi and abbu for your constant love, prayers,
belief, patience, and support. I surely would not have come this far without you. I
am grateful to have you as my parents, for you have always provided a very happy,
loving and healthy environment at home. Thank you for the never-ending hard
work you put in for raising your daughters. You have challenged the norms of
our society by raising us siblings as strong and educated women; and have always
given us all the best, be it at education or quality of life. My lovely sisters Sahar,
Hira and Tooba, you are my constant source of love, laughter, inspiration and hope.
Sahar, thank you for being my pillar of support during my stay in Sweden, for
the yummy food, and for taking care of my bunnies. My wonderful sisters, thank
you for your support in my academic career, your patience during my all-nighters
throughout my academic life, for the laughter and entertainment you provide on
a daily basis, for your love and support, and for always being there for me. My
bunnies, Chooza and Choozi, thank you for your constant companionship and love
during my academic journey in Europe. I wish you could have lived longer...

Last but not the least, this work was supported by the Erasmus Mundus
Joint Doctorate in Distributed Computing (EMJD-DC) funded by the Education,
Audiovisual and Culture Executive Agency (EACEA) of the European Commission
under the FPA 2012-0030, and FoFu at KTH.

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Preface . 1
1.2 Thesis Statement . 4
1.3 Objectives and Research Questions 4
1.4 Contributions . 6
1.5 Research Methodology . 8
1.6 Publications . 11
1.7 Thesis outline . 12

2 Background 13
2.1 Privacy by Design and Default . 13
2.2 Generative Adversarial Networks . 13
2.3 Differential Privacy . 15
2.4 Anonymization Techniques . 17
2.5 Federated Learning . 17
2.6 Time-Series Forecasting . 18

3 The Case of Privacy in the IoT Ecosystem 21
3.1 Introduction . 21
3.2 Privacy Threats and Attacks in IoT Ecosystem 23
3.3 Taxonomy of Privacy Preserving Techniques 27
3.4 Privacy-aware ML and Data Mining 35
3.5 GDPR and its Implications . 35
3.6 Open Issues and Future Work . 36
3.7 Summary . 36

4 Synthetic and Private Smart Health Care Data Generation using GANs 39
4.1 Introduction . 39
4.2 Data Processing Pipeline . 41
4.3 Proposed GAN Network for Synthetic Smart Health Care Data

Generation . 44
4.4 Experiments, Results and Discussion 45
4.5 Summary . 50

xiii

xiv contents

5 Machine Learning with Reconfigurable Privacy on Resource-Limited
Computing Devices 51
5.1 Introduction . 51
5.2 Proposed Technique for Machine Learning with Reconfigurable

Privacy Preservation . 54
5.3 Experiments and Results . 61
5.4 Discussion . 70
5.5 Related Work . 72
5.6 Summary . 73

6 Privacy Preserving Time-Series Forecasting of User Health Data Streams 75
6.1 Introduction . 75
6.2 User Clustering Using Stream Processing 77
6.3 Privacy Preservation Techniques in Time-series Forecasting 78
6.4 Proposed End-to-end Private Learning Pipeline 79
6.5 Experiments and Results . 82
6.6 Related Work . 96
6.7 Summary . 99

7 PyDPLib: PythonDifferential Privacy Library for PrivateMedicalData
Analytics 101
7.1 Introduction . 101
7.2 Information Flow Control . 103
7.3 Structured Clinical Data Collection 103
7.4 PyDPLib : Differential Privacy Library 104
7.5 Experiments and Results . 109
7.6 Summary . 112

8 Conclusion 115
8.1 Summary of Results . 115
8.2 Generalization to Other Application Domains 118
8.3 Ethical and Social Aspects . 118
8.4 Future Work . 119

Bibliography 121

Appendix A: Additional Results for Clustered Federated Learning for Pri-
vacy Preserving Time-Series Forecasting 139

List of Figures

2.1 GAN model for synthetic data generation 14
2.2 Laplace Distribution Probability Distribution Function 16
2.3 Federated Learning . 18

3.1 IoT Architecture Layers. 22

4.1 Data processing pipeline. 41
4.2 Generator network . 45
4.3 Discriminator network . 46
4.4 Line Plots of Loss and Accuracy for a Stable Generative Adversarial

Network . 47
4.5 Histogram distributions for calories burned per day (kcal). Samples:

Belgium males with RHR=70-75bpm. 48

5.1 Increasingly private features vs. resource consumption for an ML-based
application with data anonymization. 53

5.2 System pipeline with DIGS. 55
5.3 Producer-consumer system model. 56
5.4 Additional resource consumption for increasingly private versions of

Fitbit dataset. 67
5.5 Additional resource consumption for increasingly private versions of

Fitbit GAN dataset. 70

6.1 An overview of the communication round in the FL process with
clustering, assuming grouping into k clusters. 80

6.2 Noisy learning: clustered FL using streaming k-means. Baseline model
is traditional FL setup (not shown separately). 81

6.3 Noisy data: a) Baseline FL. 81
6.4 Noisy data: b) Clustered FL using streaming k-means. 82
6.5 The evolution of the Mean Absolute Error of the baseline model against

clustered model during the training process on the MyFitnessPal dataset. 87
6.6 The evolution of the Mean Absolute Error of the baseline model against

clustered model during the training process on the original Fitbit dataset. 89
6.7 The evolution of the Mean Absolute Error of the baseline model against

clustered model during the training process on the augmented Fitbit
dataset with grid search performed on each group of users. 91

xv

xvi list of figures

7.1 PyDPLib methods and interaction with other modules. 105
7.2 Histograms forpatient agevs. PI-RADSscoreswithdifferentnoise_factor

settings (low – high). Example for x-versus-y plot with noised y-axis,
query_type = 1, is_range = True, and data_type = int. 109

7.3 PI-RADS scores vs. average patient age with different noise_factor
settings (low – high). Example for x-versus-y plot with noised x-axis,
query_type = 2, is_range = True, and data_type = float. 110

7.4 Prostatitis vs. median age with different noise_factor settings (low –
high). Example for x-versus-y plot with noised x-axis, query_type = 3,
is_range = True, and data_type = int. 110

7.5 Age histogramwith noise_factor = 2 (high). Example for query_type
= 1, is_range = True, and data_type = float. 111

1 Evolution of the Mean Absolute Error of the baseline model against
clustered model during the training process on the augmented Fitbit
dataset without grid search performed on each group of users. 139

List of Tables

3.1 Analysis of privacy preserving solutions 34

4.1 Dataset features with ranges (aggregated per day). 43
4.2 Example data samples from Belgium population. Age and Gender are

hidden. 47

5.1 Datasets used for evaluation . 61
5.2 Dataset . 62
5.3 Additional resources required for different versions of the Fitbit dataset 66
5.4 The result of SVM on increasingly private versions of Fitbit dataset,

number of private features, percentage of resources saved and privacy
compromised features . 68

5.5 Resources required for different version of one-eighth sized GAN dataset 69
5.6 The result of SVM on different dataset for one-eighth GAN dataset,

number of private features, percentage of resources saved and privacy
compromised features . 71

6.1 Datasets used for evaluation . 82
6.2 Recorded features for Fitbit dataset . 83
6.3 Synthetic data generated using GAN . 84
6.4 Comparison of statistical models and neural networks 85
6.5 Accuracy of the FL model for the best three configuration of parameters 85
6.6 Comparison between the baseline model and the models trained on

clusters of users for the MyFitnessPal dataset 86
6.7 Prediction accuracy of the baseline model. Dataset: Fitbit 88
6.8 Prediction error obtained by training one model per cluster of users on

the original Fitbit dataset . 90
6.9 Prediction accuracy of the baseline model. Dataset: Fitbit-GAN 90
6.10 Prediction accuracy obtained by training one model per cluster of users.

Dataset: Fitbit-GAN. dataset after the grid search on each cluster . . . 92
6.11 Results for noising the FL process to achieve DP in the baseline scenario. 93
6.12 Results of noising the training data to achieve differential privacy in the

baseline scenario. 94
6.13 Results of noising the training data to achieve differential privacy in the

clustered scenario . 95
6.14 Performance measures of the proposed clustering mechanism 96

xvii

xviii list of tables

7.1 5-point scale of PI-RADS assessment score 104
7.2 PI-RADS dataset . 111

1 Accuracy obtained by training one model per cluster of users on the
augmented Fitbit dataset before the grid search on each cluster 140

2 Results of noising the training data to achieve DP in the clustered FL
scenario. ε = 0.025 noise is added. A decrease in the average observed
error(compared to baseline model) implies an increase in accuracy. . . . 141

3 Results of noising the training data to achieve DP in the clustered FL
scenario. ε = 1 noise is added. A decrease in the average observed
error(compared to baseline model) implies an increase in accuracy. . . 142

List of Algorithms

1 The Greedy Algorithm: Combination of Features of Size 1 58
2 The Greedy Algorithm: Additional Features 59
3 The Greedy Algorithm: Most Optimal Features 60

4 Binary Search for ε . 106

xix

chapter

1
Introduction

1.1 Preface

Current trends in technology show that the use of IoT devices for improving quality
of life is on the rise in a multitude of application domains such as smart buildings
and living, smart healthcare, smart environment, smart city, smart energy, smart
transport and mobility, smart manufacturing and retail, and smart agriculture.
However, the data being generated by IoT devices is generally of a private and
sensitive nature, especially when it comes to health care related applications. Data is
continuously being acquired by a variety of IoT sensors, and this data is transformed
through some edge devices before processing over cloud platforms, which leads
to data integrity and privacy concerns. Privacy preservation is needed in the
data collection, aggregation, storage and retrieval processes. Traditional privacy
preservation techniques such as pseudonymization are not able to cater to the
challenge of velocity, variety and volume that comes with big data. Therefore, novel
techniques and solutions are required to address the problem of user privacy
preservation. Although each IoT domain possesses unique challenges in ensuring
user privacy, smart health care is one of the most challenging IoT domains as it deals
with the collection and processing of highly sensitive and private data. In this thesis,
we aim to improve user privacy preservation by applying privacy preservation
solutions to different components of the IoT ecosystem, within the context of the
smart health care domain.

The first step towards privacy preservation in the IoT ecosystem is to develop an
understanding of the different components of the IoT ecosystem.

IoT Ecosystem. Internet of Things is a term coined originally by Kevin Ashton
in 1999 [1]. It denotes the set of interconnected sensors and devices which are
fundamental units for collecting data that drives modern day applications and

1

2 1 introduction

services. Broadly speaking, any sensor that is capable of collecting data, processing
it using built-in circuitry and transmitting it qualifies as a smart sensor. This
interconnected set of sensors, coupled with the ability to connect to the internet,
collectively form the Internet of Things. The term IoT ecosystem encompasses all
the software and hardware components that collectively provide big data-driven
services. Mazhelis et al. [2] observe that “Since the essence of the IoT is the
interconnection of the physical world of things with the virtual world of Internet,
the software and hardware platforms, as well as the standards commonly used for
enabling such interconnection, may become a core of an IoT ecosystem”. In the
context of this thesis, we focus on the following components of the IoT ecosystem:
data, resource-constrained edge devices, ML applications, and data analytics and
visualization.

Privacy Preservation. When it comes to privacy preservation techniques, a wide
variety of solutions is available. Typically, all privacy preservation techniques
employ mechanisms like information flow control [3], data or model obfuscation
via noise addition [4], use of cryptography [5, 6], anonymization via generalization
and suppression of attributes [7–9], and use of private computation units [10]. As
observed in [11], all these techniques have their respective performance overheads
such as increased resource usage, reduced model accuracy and longer processing
times. Therefore, lightweight, scalable and efficient privacy preservation techniques
should be applied to the components of the IoT ecosystem that can cater to
the requirements of volume, velocity and variety. Doing so will allow finding
proper trade-offs between preserving necessary user privacy, retaining data utility,
acceptable application performance and model accuracy, and low overhead on
device resource usage.

Smart Health Care. Smart health care is a fast-growing IoT domain with an impact
on two user groups: individuals and society. Individuals focus on the ability to track
physical activities and diet patterns by means of wearable trackers and diet logging
applications, whereas the societal goal is to increase the quality of medical treatment
while reducing healthcare costs, andprovide better andpersonalized health care [12].
The smart health care industry relies on the availability of large-scale health datasets
in order to benefit from machine learning-based services. However, this health data
should be collected and processed according to local privacy laws like EU’s General
Data Protection Regulation (GDPR) [13]. Therefore, the smart health care domain
possesses additional challenges in user privacy provision: 1) there is a lack of freely
available data to experiment with, as the data is of a highly sensitive and private
nature, 2) there are limitations on sharing data with protected health information
due to the threat of misuse or re-identification, 3) smart health care data possesses
highly diverse data types and formats, and bounded ranges, 4) health care data

1.1 preface 3

requires high utility and offers low tolerance towards data perturbance, and 5)
there is low tolerance towards loss of accuracy on the developed applications and
services due to the sensitive nature of health care data. All these unique challenges
make smart health care a particularly challenging IoT domain for ensuring privacy
preservation.

Resource-constrained Edge Devices. Edge devices are vital components of the
IoT ecosystem that are responsible for collecting and aggregating the data from
sensor nodes before sending it to the cloud platforms for processing. Traditionally,
an edge device is an embedded system with a small microcontroller unit (MCU) for
processing. The MCUs in edge devices are resource constrained due to their limited
memory footprint, fewer computation cores, and low clock speeds. Moreover, these
devices often have limited battery power and access to physical memory. These
limitations constrain the deployment and execution of complex privacy preservation
techniques and also, the machine learning models on MCUs [14]. As we stated
earlier, privacy preservation techniques require increased resource usage. Therefore,
there is a need to find appropriate trade-offs between necessary privacy provision
and increased device resource usage on these resource-constrained edge devices.

Streaming Data and Stream Processing. Streaming data is the continuous flow
of data generated by various sources. The data collected by IoT devices often comes
in the form of data streams which are aggregated and processed in batches or
as real-time data streams. The past decades have witnessed a dramatic increase
in the real-time data processing needs which has led to the popularity of high
performance distributed stream processing systems, such as Apache Flink [15],
Apache Storm [16], and Spark Streaming [17]. In terms of privacy preservation on
data streams and stream processing systems, there is a rather narrow spectrum
of privacy preserving techniques that offer minimal negative impact on system
efficiency. Particularly, in the context of smart health care data streams, there is
a two-fold constraint of low loss of accuracy and system efficiency apart from
providing necessary user privacy preservation.

Private Data Analytics. As observed by Wieringa et al. [18], the conventional wis-
domassumes that the goals of data analytics andprivacyprotection are contradictory.
However, privacy preserving techniques such as anonymization, perturbation and
obfuscation can enable privacy-preserving data analytics. Common privacy threats
in data analytics include re-identification, attribute and information disclosure,
profiling, linkage and data inference. Since the privacy preserving techniques tend
to adversely affect data utility, there is a need to find a proper trade-off between
data utility and risk of information disclosure for private data analytics systems.

4 1 introduction

1.2 Thesis Statement

Sharing and processing data with sensitive information raises privacy concerns and
hence, requires privacy preservation. Finding a proper trade-off between preserving
necessary user privacy and achieving (best-effort) acceptable system performance by
means of applying (combinations of) appropriate privacy preservation techniques,
allows to reduce (if not avoid) the potential negative impact of applying privacy
preservation techniques on the Machine Learning-based systems performance
including reduced model accuracy, slower runtimes, and increased device resource
usage.

1.3 Objectives and Research Questions

Provision of user privacy preservation is inevitable for all the emerging domains in
the IoT ecosystem. Traditional privacy preservation mechanisms such as removing
identifiable information are no longer sufficient for privacy preservation due to the
volume, variety and velocity of the collected data. Moreover, each privacy preservation
technique comes with its limitations and impact on the data utility, application
accuracy and system efficiency. Therefore, it is important to not only systematically
classify the privacy preservation techniques applicable to the IoT ecosystem, but also
analyze the impact of introducing privacy preservation techniques on the system
performance. Moreover, there is a need to design efficient solutions for privacy
preserving data sharing in order to minimize the impact of privacy breaching
attacks and to encourage the development and improvement of big-data driven
ML-based services. In this thesis, we focus on privacy preservation with the smart
health care domain as a use case as it is a fast-growing domain possessing its own
unique and complex challenges, as presented in 1.1 (Smart Health Care).

This thesis has the following objectives with the associated corresponding
research questions. Our first objective is to taxonomize and analyze the privacy
preservation techniques applicable to the IoT ecosystem (O1) and the second
objective is to design solutions for privacy preserving data sharing and analytics
(O2). The third objective is to find a proper trade-off between privacy preservation,
data utility and acceptable system performance (O3), and lastly, to evaluate the
impact of introducing privacy preserving solutions on the performance of different
components of the IoT ecosystem (O4).

O1 Analysis of the state of the art and taxonomy of privacy preserving tech-
niques for the IoT ecosystem. There is a multitude of privacy preservation
techniques that may not all be applicable to the unique nature of big data
and corresponding processing systems. There is a need to develop a de-
tailed taxonomy of privacy preservation techniques (and respective solutions)
which may serve as a guideline to select appropriate solutions for privacy

1.3 objectives and research questions 5

preservation according to their strengths and limitations. There is also a
need to analyze the potential trade-offs of using these privacy preservation
solutions such as the provision of necessary user privacy, achieving acceptable
application accuracy and system efficiency, so that one may make the best
choice according to the system design requirements. We describe more about
the systematic classification of privacy preservation techniques in Chapter 3
and Paper [11].
Research Question. How to select appropriate privacy preservation tech-
niques and solutions for different components of the IoT ecosystem?

O2 Design and evaluation of effective and efficient solutions for privacy-
preserving data sharing and analytics. Data is a key component of all
IoT-based applications and services. In the context of smart health care,
the nature of collected data is extremely sensitive as the volume of this data
may create unique user profiles. Therefore, traditional solutions for privacy
preservation such as pseudonymization are not sufficient to guarantee user
privacy. On the other hand, the smart health care industry relies on the
availability of these large scale datasets for the provision of useful applications
and services. There is a need to investigate and evaluate newer and more
complex privacy preservation techniques in order to design efficient solutions
for privacy-preserving data sharing and to allow third parties to perform
privacy-preserving data analytics without breaching user privacy. Details
on how we designed these solutions are presented in Chapters 4 and 7 and
Papers [19] and [20].
Research Question. How to share useful data and analytics in an efficient
and privacy-preserving manner?

O3 Finding a proper trade-off between user privacy, data utility, acceptable
system performance and increased device resource usage. The IoT-driven
applications and services require user privacy preservation but some privacy
preserving techniques may negatively impact data utility or the system
performance goals. Moreover, ensuring user privacy while learning from
the acquired IoT sensor data, using limited available compute resources on
edge devices, is a challenging task. Ideally, it is desirable to make all the
features of the collected data private but due to the system performance
goals (efficiency and accuracy), resource limitations or the potential negative
impact on data utility, it is not always possible as doing so may affect the
performance of the whole system. Therefore, there is a need to find a proper
trade-off between preserving a necessary level of user privacy, data utility and
achieving acceptable system performance in IoT-driven ML systems, and on
resource-constrained edge devices. Chapters 5, 6 and 7, and Papers [20–22]
describe how we fulfill this objective in detail.

6 1 introduction

Research Questions. How to find a proper trade-off between preserving
necessary user privacy and achieving acceptable system performance? How
to find this trade-off in the case of resource-constrained devices?

O4 Evaluating the impact of applying privacy preservation solutions on the
performance of different components of the IoT ecosystem. Once we find
a proper trade-off between preserving necessary user privacy, data utility
and achieving acceptable system performance, we can measure the impact of
introducing the privacy preservation solutions on the performance of different
components of the IoT ecosystem. Factors to be considered are: retained
data utility (how far off are the noisy or perturbed data distributions from
the original distributions), impact on device resource usage and application
accuracy, and the impact on system efficiency (in terms of application runtime).
Chapters 4, 5 and 6 and papers [19,21,22] describe the measured impact of
introducing the privacy preservation solutions on the data utility and system
performance in detail.
Research Question. How do privacy preservation solutions impact the
performance of the IoT-driven systems? Apart from the potential negative
impacts, are there any benefits on the system performance (in terms of
application accuracy or runtime)?

1.4 Contributions

We perform an empirical study of the impact of introducing privacy preservation
techniques on the system performance and contribute to the different aspects of
the IoT ecosystem with the smart health care domain as a use case. The main
contributions of this dissertation addressing the aforementioned objectives are as
follows.

C1 The IoT ecosystem. An analysis and taxonomy of privacy preserving tech-
niques and solutions. We survey the state of the art of privacy preservation
techniques that are applicable to the IoT ecosystem. We also develop a
taxonomy of these techniques and respectively designed solutions for pri-
vacy preservation, and analyze the IoT ecosystem levels at which privacy is
addressed by each solution as well as their robustness to privacy breaching at-
tacks as part of our objectiveO1. An analysis of functional and non-functional
limitations of each solution is presented, and the impact of the application
of each solution to the IoT ecosystem is analyzed in terms of the offered
performance trade-offs. We also identify open issues in the privacy preserving
solutions when used in IoT environments.

C2 Data. A novel method for synthetic private data generation. Representative
synthetic datasets are a promising solution for privacy preserving data

1.4 contributions 7

sharing. We design and implement a novel method for synthetic and private
data generation to generate realistic non-sensitive datasets from the sensitive
datasets, in accordancewith our objectiveO2. Generative adversarial networks
(GANs) [23] have emerged as the most impressive generative models for
synthetic data generation. We propose a GANmodel coupledwith differential
privacy mechanisms for generating a realistic and private smart health care
dataset. Our proposed approach is not only able to generate realistic synthetic
data samples but also the differentially private data samples under different
settings: learning from a noisy distribution or noising the learned distribution.
We tested and evaluated our proposed approach using a real-world Fitbit
dataset. Our results indicate that our proposed approach is able to generate a
quality synthetic and differentially private dataset that is enriched and also
preserves the statistical properties of the original dataset (objectives O2 and
O4).

C3 Resource-constrained edge devices. Algorithms and end-to-end systempipeline
for reconfigurable privacy preservation. Ensuring user privacy on the IoT
sensor data using resource-limited edge devices is a challenging task. Re-
gardless of the resource availability, some data features must be essentially
private. All other data features that may pose low privacy threats are
termed non-essential features. We use the generalization techniques for data
anonymization and provide customized injective privacy encoder functions to
make data features private. We proposeDynamic Iterative Greedy Search (DIGS),
a novel approach with corresponding algorithms to select the set of optimal
data features to be private for machine learning applications provided device
resource constraints. DIGS selects the necessary and the most private version
of data for the application, where all essential and a subset of non-essential
features are made private on the edge device without resource overutilization.
Our evaluation results show that, while providing the required level of privacy,
DIGS allows to achieve up to 26.21% memory, 16.67% CPU instructions, and
30.5% of network bandwidth savings as compared to making all the data
private (objective O3). Moreover, our chosen privacy encoding method has
a positive impact on the accuracy of the classification model for our chosen
application (objective O4).

C4 MLapplication. Anend-to-endpipeline forprivacypreserving forecastingof
data streams. Privacy preservation plays a vital role in health care applications
as the requirements for privacy preservation are very strict in this domain.
Federated learning (FL) facilitates private training of ML models as it does
not directly access the raw data. However, FL alone does not guarantee
sufficient privacy. Differential privacy (DP) is a well-known solution for
privacy preservation but DP needs to make a trade-off between privacy and
accuracy due to noise addition. We design and implement an end-to-end

8 1 introduction

pipeline using DP and FL for the first time in the context of health data
streams. We propose a clustering mechanism to leverage the similarities
between users to improve the prediction accuracy as well as significantly
reduce the model training time. Depending on the dataset and features, our
predictions are no more than 0.025% far off the ground-truth value with
respect to the range of values. Moreover, our clustering mechanism brings
a significant reduction in the training time, with up to 49% reduction in
prediction accuracy error in the best case, as compared to training a single
model on the entire dataset. Our proposed privacy preserving mechanism at
best introduces a decrease of ≈2% in the prediction accuracy of the trained
models (objective O4). Furthermore, our proposed clustering mechanism
reduces the prediction error even in highly noisy settings by as much as 38%
as compared to using a single federated private model (objective O3).

C5 Data analytics and visualization. A library for private data analytics and
visualization. Pharmaceutical and medical technology companies accessing
real-world medical data are not interested in personally identifiable data but
rather in statistical aggregates, patterns, and trends. We present PyDPLib,
a Python Differential Privacy library for private medical data analytics to
facilitate the medical institutions to share data for analytics in accordance with
objectiveO2. We illustrate the results of using PyDPLib for visualizing private
statistics on a database of prostate cancer patients. Our experimental results
show that PyDPLib allows creating statistical data plotswithout compromising
patients’ privacy while preserving underlying data distributions (objective
O4). Moreover, PyDPLib is designed to be general enough for providing
differential privacy on data in any data analytics and visualization platform,
service or application.

1.5 Research Methodology

This Section presents an overview of the research methods used in our study. We
first describe our general approach, followed by our implementation choices, and
our methods for experimental evaluation. Finally, we present a brief account of the
challenges we faced during our research.

1.5.1 General Approach

This work performs exploratory research for privacy preservation in the smart
health care IoT domain in different settings: data sharing without information
disclosure, privacy preservation with limited device resources, privacy preservation
in near real-time applications, and privacy preservation in data analytics. We first
performed a literature survey and developed a taxonomy of privacy preservation

1.5 research methodology 9

techniques and analyzed them qualitatively for strengths, weaknesses, functional
and non-functional limitations, and potential trade-offs they offer (Chapter 3).
Afterwards, we ventured into the acquisition of a smart health care dataset for
testing our hypotheses regarding the impacts of privacy preservation techniques
on the performance of different components in the IoT ecosystem. We collected a
smart health care dataset using Fitbit [24] devices with the help of 25 volunteers
(who gave their full consent for usage) distributed geographically around Belgium
and Sweden. This data collection process took almost a year. We started working
on our streaming application in parallel and developed an end-to-end pipeline
for time-series forecasting health care data streams. Afterwards, we designed and
implementedaGAN-basedmethod for generating synthetic andprivate smart health
care datasets and used it to enrich, augment and synthesize a large dataset based
on our collected Fitbit dataset (Chapter 4). We performed experiments to quantify
the impact of introducing privacy preservation techniques on the performance
of the system for time-series forecasting in terms of accuracy and application
runtime (Chapter 6). We then considered the case of resource-constrained edge
devices and how the privacy preservation techniques would perform in those
settings. Hence, we developed a set of algorithms to enable reconfigurable privacy
preservation given the device resource constraints (Chapter 5). We also performed
an industrial internship for private analytics on medical data and developed
PyDPLib, a differential privacy library for private medical data analytics, and tested
it on medical data collected across hospitals and clinics in Germany (Chapter 7).
All these contributions are published as publications P1–P5.

1.5.2 Implementations

All the implementations in this research are done in Python. The volunteers
provided us with data collected by Fitbit devices using the Fitbit platform. We
used Fitbit API to understand and aggregate the different data fields, and used
translation software to convert some of the logged data to English. Afterwards,
we used Nutritionix API to impute the missing values for a caloric breakdown
of meals, and our Python scripts to fix other inconsistencies in data. Keras was
used to implement the smart health care data generation method using GANs.
Afterwards, Tensorflow and Apache Flink were used to implement the pipeline
for time-series forecasting of health data streams. The algorithms and supporting
pipeline for reconfigurable privacy preservation was designed using a combination
of Python libraries (NumPy, SciPy, scikit-learn, guppy and more). Google Colab,
Jupyter notebook and PyCharm were used as the development environments. The
remaining implementations as part of the industrial internship are confidential
apart from the usage of Python libraries.

10 1 introduction

1.5.3 Experimental Evaluation

We used the latest stable versions of the aforementioned open-source platforms.
Our major dataset sources were volunteers distributed across Belgium and Sweden,
for the work done in Chapters 4–6. Moreover, we used a freely available dataset
with data collected from MyFitnessPal platform [25, 26] for part of our work in
Chapter 6. The work in Chapter 7 was done during a research internship at Health
Data Pioneers (now a part of Smart Reporting GmbH) and the dataset provided
was anonymised for privacy preservation and kept for private use only by the
organisation. The machines used throughout the course of our research consist
of both on-premises devices and virtualised environments. In both cases, we
installed the necessary software and carefully performed all the experiments to
avoid interference from other applications running in parallel.

1.5.4 Challenges

During the first two years of our research, we made extensive efforts for acquiring
smart health care datasets that contained private information. We experienced
huge public interest in knowing the results of our research during our interactions
and presentations in industrial events, conferences and summer schools, but a
lack of willingness to contribute towards data sharing and availability. We also
contacted Fitbit in an effort to acquire data for collaborative research, but they
could only offer a discount on the mass purchase of (> 50) devices. Obtaining
fully informed consent of participating individuals in data collection was a major
concern. Hence, we purchased 12 Fitbit devices and found volunteers around the
campus and through personal/professional connections who agreed to willingly
share their data for research. The participant pool consisted of users with varying
levels of motivation and we had to continuously keep them engaged and motivated
for the data collection process. Some of the participants used different languages for
logging data, which required additional effort in translating particularly the meals
to nearest-matching variant in English with correct proportions in order to record
accurate nutritional activity for all the users. Since the smart health care domain
is rather new in research for privacy preservation, it was difficult to find related
work for some of our works. There is plenty of research available on the privacy
preservation of electronic health records, but there is a huge room for research in
privacy preservation in the smart health care domain. We are truly thankful to the
volunteers who provided the data for this study, and to our peers and collaborators
for always keeping us informed of the recent research in the smart health care
domain.

1.6 publications 11

1.6 Publications

The results presented in this thesis are published in conference and workshop
papers as following:

P1 On the Case of Privacy in the IoT Ecosystem: A Survey, Sana Imtiaz, Ramin
Sadre, and Vladimir Vlassov. 2019 International Conference on Internet of
Things (iThings), IEEE, Atlanta, Georgia, USA, July 14-17, 2019. [11]
Contribution The author of this dissertation brainstormed, developed a
taxonomy of privacy preservation techniques and analyzed corresponding
privacy preservation solutions, identified the merits and limitations of each
technique/approach, and wrote the entire paper.

P2 Privacy Preserving Time-Series Forecasting of User Health Data Streams,
Sana Imtiaz, Sonia-Florina Horchidan, Zainab Abbas, Muhammad Arsalan,
Hassan Nazeer Chaudhry and Vladimir Vlassov. 2020 IEEE International
Conference on Big Data (Big Data), Atlanta, Georgia, USA [virtual], December
10-13, 2020. [21]
Contribution The author of this dissertation brainstormed, helped in design
and development of the forecasting pipeline, provided the datasets (2/3) for
experimentation, identified the appropriate privacy preservation techniques
to apply on the pipeline as well as their parametric settings, analyzed the
results of the experiments, and majorly participated in the paper writing.

P3 Synthetic and Private Smart Health Care Data Generation using GANs,
Sana Imtiaz, Muhammad Arsalan, Vladimir Vlassov and Ramin Sadre. 2021
International Conference on Computer Communications and Networks (IC-
CCN), IEEE, Athens, Greece [virtual], July 19-22, 2021. [19]
Contribution The author of this dissertation collected, cleaned and organized
the real-worlddataset for thiswork. The author also brainstormed, helpedwith
design and development of the GAN pipeline, performed the experiments,
and wrote the majority of text in the paper.

P4 PyDPLib: Python Differential Privacy Library for Private Medical Data
Analytics, Sana Imtiaz, PhilippMatthies, Francisco Pinto, MátéMaros, Holger
Wenz, Ramin Sadre and Vladimir Vlassov. IEEE International Conference
on Digital Health (ICDH), IEEE, Chicago, USA [virtual], September 5-11,
2021. [20]
Contribution The author of this dissertation brainstormed, designed and
developed PyDPLib with all its functionalities, performed the experiments,
analyzed the results and wrote all the paper except the Section on Structured
Clinical Data Collection.

12 1 introduction

P5 Machine Learningwith Reconfigurable Privacy onResource-LimitedCom-
puting Devices, Sana Imtiaz, Zannatun Tania, Hassan Nazeer Chaudhry,
Muhammad Arsalan, Ramin Sadre and Vladimir Vlassov. 14th IEEE Inter-
national Conference on Security, Privacy, and Anonymity in Computation,
Communication, and Storage (IEEE SpaCCS 2021), New York, USA [virtual],
September 30-October 3, 2021 (to appear). [22]
Contribution The author of this dissertation brainstormed, helped design
and develop the algorithms and supporting pipeline, provided datasets for
experimentation, analyzed the results, and wrote the majority of the paper.

1.6.1 Other Papers

Other works done during the doctoral studies but not included in this thesis are as
follows.

1. Privacy Preserving Survival Prediction, Stefano Fedeli, Frida Schain, Sana
Imtiaz, Zainab Abbas and Vladimir Vlassov. 2021 IEEE International Confer-
ence on Big Data (IEEE BigData), Orlando, Florida, USA [virtual], December
14-17, 2021 (to appear). [27]

1.7 Thesis outline

The rest of this thesis is organized as follows. Chapter 2 provides background
on privacy preservation by design and default, generative adversarial networks,
differential privacy, anonymization, federated learning and time-series forecasting.
In Chapter 3 we present a taxonomy and analysis of privacy preservation techniques
for the IoT ecosystem along with the privacy threats addressed by each solution,
their limitations, and their known resistance to attacks on user privacy. Chapter 4
showcases an approach for generating realistic synthetic and privacy-preserving
smart health care datasets with fine-grained nutritional and activity user profiles by
using GANs. In Chapter 5, we explore the domain of machine learning with privacy
preservation on the resource-limited IoT devices, and propose and present a novel
approach with corresponding algorithms and an end-to-end system pipeline for
reconfigurable1 data privacy in machine learning on resource-limited computing
devices. In Chapter 6 we present the design and implementation of an end-to-end
pipeline for time-series forecasting of health data streams in a federated learning
environment. We also integrate state-of-the-art privacy preservation solutions in
the designed pipeline and evaluate their impact on the time-series forecasting.
Chapter 7 presents a differential privacy library PyDPLib for computing private
statistics with medical data as a use case. Finally, we present our conclusions and
future work in Chapter 8.

1We use the words reconfigurable and tunable data privacy as synonyms.

chapter

2
Background

This chapter presents the necessary background by first introducing privacy preser-
vation by design and default as specified in GDPR. Afterwards, this chapter
overviews the generative adversarial networks used for synthetic data generation,
followed by an overview of the privacy preservation solutions employed in this
work such as differential privacy, anonymization and federated learning. Finally,
we provide some background information on technologies used for time-series
forecasting.

2.1 Privacy by Design and Default

In accordance with the EU’s GDPR, all services employing any collection or usage
of user data must provide data protection by design and by default [13]. Here
The term “Privacy by Design” means nothing more than “data protection through
technology design” [13]. This implies that by default the system should only collect
and process data that is absolutely necessary as well as provide strict data protection
guarantees. In the context of resource constrained devices as discussed in Chapter 5,
this implies that it is vital to determine the most optimal set of features to be made
private in order to provide the strictest possible privacy preservation on user data.

2.2 Generative Adversarial Networks

Generative adversarial networks (GANs) [28] is a unique kind of generative archi-
tecture that is inspired by the zero-sum game in game theory. It consists of two
deep learning models, a generator and a discriminator, trained against each other
as shown in Fig. 2.1. The goal of the generator is to capture or learn the distribution
of the actual data and generate new data samples. The discriminator aims to detect
whether the data is coming from the actual data distribution or is it a fake one

13

14 2 background

generated by the generator, hence acting as a binary classifier. The two models
compete with each other to improve their performance until they reach a Nash
equilibrium where the discriminator model is fooled about half the time, meaning
the generator model is generating plausible examples.

Figure 2.1: GAN model for synthetic data generation.

TheGANworks as follows: LetG andD be differentiable functions that represent
the generator and the discriminator respectively. G takes random variable z as
input and generates a data record G(z) and learns the distribution pg over data x
with a prior on input noise variables pz(z). The generated record is then fed toD
which also receives the real data record x from real data distribution pdata(x) and
tests for their authenticity. The discriminator, when shown both the x and G(z)
data, assigns probabilities D(x) to the record where 1 represents a prediction of the
record coming from the real data distribution and 0 represents the data as fake.
With time, the discriminator D is trained to maximize the probability of assigning
correct labels to both the training examples and the samples generated by G. G is
trained simultaneously to minimize the log(1−D(G(z))). In short,D and G play a
two-player minimax with value function V(G,D) given by [28]:

min
G

max
D
V(D,G) = Ex∼pdata(x)[logD(x)]+ (2.1)

Ez∼pz(z) [log(1−D(G(z)))].

As shown in [28], the optimal discriminator D∗G(x) is given by:

D∗G(x) =
pdata(x)

pdata(x) + pg(x)
. (2.2)

2.3 differential privacy 15

Boundary-seeking GAN. Rearranging the equation (2.2) we get:

pdata(x) = pg(x)
D∗G(x)

1−D∗G(x)
. (2.3)

From the above equation we can see that even if G is not optimal, the true data
distribution can still be found by scaling pg(x). Furthermore, the optimal generator
pdata(x) = pg(x) can also be obtained by making the discriminator ratio equal to 1,
which means that D(x) must be equal to 0.5 and then D(x) = 0.5 is nothing but the
decision boundary. For a perfect G,D(x) cannot differentiate between real and fake
data, or the real and the fake data are equally likely. Since D(x) has two outputs,
each with probability of 0.5, the objective function of G can be modified to force
the discriminator outputting 0.5 for every generated data. This can be achieved
by minimizing the distance between D(x) and 1−D(x) for all x. Since D(x) is the
probability function, the minimum will be achieved atD(x) = 1−D(x) = 0.5 and
hence the generator G loss is given as [29]:

min
G

Ez∼pz(z)

[
1

2
(logD(x) − log(1−D(x)))2

]
. (2.4)

We use the Boundary-seeking GAN in our proposed approach for generating
synthetic private smart health care data as it offers stable and efficient training.

2.3 Differential Privacy

Differential privacy (DP) is a privacy preservation technique that aims to maximize
the accuracy of queries from statistical databases while minimizing the chances
of identifying the underlying data records. Differential Privacy offers a provable
and quantifiable amount of privacy protection by means of a privacy-loss budget
ε. The most popular mathematical tool used to express DP is as follows [30]: A
randomized algorithmA is ε-differentially private (ε-DP), if for the set of all datasets
D and D ′ that differ on at most one row (i.e. the data of one individual), and any
subset S ⊆ range(A),

Pr[A(D) ∈ S] ≤ eεPr[A(D ′) ∈ S]. (2.5)

The loss of privacy is quantified using ε, which is used to determine the noise
addition for ensuring DP. As can be noted, absolute privacy is obtained when ε = 0,
where the inclusion of an individual’s data has almost no impact on the output
of the randomized algorithm A. Achieving higher levels of privacy preservation
(small ε) involves adding more noise to the data which leads to a decrease in the
output accuracy of the algorithm and vise versa. In other words, decreasing the
parameter ε means increasing the output accuracy at the cost of loss of privacy.

16 2 background

Therefore, a trade-off must be found between keeping the information private and
achieving meaningful results, depending on the data and nature of the randomized
algorithm. When an algorithm requires multiple additive noise mechanisms, the
privacy guarantee follows from the basic composition theorem [31, 32] or from
advanced composition theorems and their extensions [33–35].

Post-Processing Theorem in DP. The post-processing theorem in DP [4] states:

Theorem 2.3.1. If a mechanism M satisfies ε-DP, and g be any function, then
g(M(X)) also satisfies ε-DP.

DP mechanisms leverage this theorem as they mostly focus on perturbing
the distribution by noise addition. This perturbation is done either on the input
data points or on the output of the querying statistical function. Applying the
post-processing theorem, any data drawn from a noisy distribution that satisfies DP
will also be ε-DP. We leverage this theorem to provide differentially private visual
representations of statistics on protected health information.

Laplacian Differential Privacy. The Laplacian mechanism is one of the most
popular noise addition mechanisms in DP [36]. The probability density function
of Laplace distribution is shown in Figure 2.2 1. A standard approach is adding
random noise with the Laplacian distribution proportional to the sensitivity Sf of
the queried function to ensure DP-queries. Random noise is drawn from a Laplacian
distribution with mean 0 and variance Sf/ε to achieve ε-differential privacy [4].
Mechanisms employing different privacy with Laplacian noise addition are referred
to as the Laplacian Differential Privacy mechanisms in this thesis.

Figure 2.2: Laplace Distribution Probability Distribution Function.

1Source: https://valelab4.ucsf.edu/svn/3rdpartypublic/boost/libs/math/doc/
sf_and_dist/graphs/laplace_pdf.png

https://valelab4.ucsf.edu/svn/3rdpartypublic/boost/libs/math/doc/sf_and_dist/graphs/laplace_pdf.png
https://valelab4.ucsf.edu/svn/3rdpartypublic/boost/libs/math/doc/sf_and_dist/graphs/laplace_pdf.png

2.4 anonymization techniques 17

Sensitivity. According to [4], sensitivity Sf captures the magnitude by which a
single individual’s data can change the output of the function f in the worst case.
It helps to quantify the uncertainty in the response that needs to be introduced
in order to hide the participation of a single individual. Mathematically, for any
function f over the set of all datasets D and D ′ that differ on at most one row,

Sf = max||f(D) − f(D ′)|| (2.6)

where ||.|| denotesManhattan distance or L1 norm [30]. We use Laplacian differential
privacy by adding noise directly to the data records (with aggregated or non
aggregated data points) in order to ensure easy integration into any data analytics
system using any data visualization software. Each data point x is individually
noised as x ′ by picking a random noise sample from a Laplacian distribution given
by:

x ′ = x+ Lap(0,
Sf

ε
) (2.7)

where Sf represents the sensitivity of the statistical query.

2.4 Anonymization Techniques

Anonymization is one of the easy to integrate privacy preservation techniques and
also offers the low computational complexity as compared to other techniques.
Anonymization techniques commonly employ the principles of generalization
and suppression. Generalization implies replacing a value with a less specific but
semantically consistent value, while suppression involves not releasing a value at
all [37]. Common practice in anonymization includes removal or modification of
sensitive attributes such as names, gender, postal codes, and identification numbers.
More sophisticated methods such as k-anonymization [7, 37], l-diversity [8] and
t-closeness [9], are employed for better privacy preservation guarantees.

2.5 Federated Learning

Federated learning (FL) is a novel approach in distributed machine learning with
two highly appealing characteristics: the gains in privacy and performance [38, 39].

The FL mechanism is shown in Figure 2.3. The FL mechanism learns from all
participants’ data without actually seeing it. The actors of the FL algorithm are the
clients and a central coordinator (often called the server). Each client holds a local
dataset which contains only their data. The server shares a central model with all
the clients. Then, each client improves the current model using information from
their local data and sends the update back to the server. The server aggregates the

18 2 background

updates from multiple users and an improved central model is created and shared
with the clients. The process repeats as the clients’ devices collect more data.

FL caters to a variety of features suited to distributedML onmobile client devices,
such as catering to non-independent and identically distributed data, unbalanced
and massively distributed datasets, and high capability to function in scenarios
with limited communication.

Figure 2.3: Federated Learning.

2.6 Time-Series Forecasting

We now provide a brief background on technologies used in time-series forecasting.

Time-series data. Time-series are sequences of observations ordered by some
temporal information. Time-series analysis is done to extract meaningful trends
in data. It has applications in numerous fields such as recommender systems,
personalized shopping, or targeted advertising. Time-series forecasting is an
active field of research since it plays a fundamental role in the decision-making
process. For example, data collected from various traffic sensors can help predict
traffic conditions to help the drivers avoid traffic jam in future [40]. Time-series
analysis is helpful in various domains, such as signal detection, anomaly detection,
classification, query, clustering, and forecasting.

In this thesis, we focus on time-series forecasting and discuss how time-series
clustering can improve the predictions. More specifically, we exploit the similarities
between time-series to build better models. We use a raw-data-based approach [41]
for time-series clustering in our work as it is best suited to the requirements of
the health care use case, as this approach discovers groups of users with similar

2.6 time-series forecasting 19

time-series directly from raw data.

Distributed k-means algorithm. The k-means algorithm works by finding k
centroids corresponding to k clusters such that the distance between each point
and its closest center gets minimized. In this thesis, we will focus on the scalable
variant of k-means for big datasets that parallelize the algorithm by distributing
the computation to multiple workers and provide a good approximation of the
solution. [42] tackles the problem by proposing a parallel k-means algorithm based
on the Single Program Multiple Data (SPMD) model, using message-passing. Our
implementation adapts the SPMD message passing model [42] to work on the
streaming data.

Pattern matching. In time-series clustering, the pattern matching process is
employed to discover groups of series that exhibit similar patterns. In the case of
symbols sequences, the simplest method is to compare each symbol of the series at
a given time in pairs. Techniques such as Hamming and Levenshtein distance are
mostly used for measuring distance. We cluster the users’ time-series to capture
similar trends in user data using Hamming distance.

Neural Networks for Time-Series Data. Recurrent Neural Networks (RNNs)
are particularly employed for sequential data as their output is constructed using
both the input and the previous state. The previous state of the network is referred
to as memory and is the key element in the architecture of an RNN. As RNN output
is constructed using both the input and the previous state, the update rule is a
recurrence relation:

ht = f(h(t−1); xt; θ)

where ht is the hidden state at step twhich is a function f of the previous hidden
stateh(t−1) and the current input xt, and θ represents the parameters of the function.
It can be noted, the internal state at step t depends on the internal state at step
t − 1, which in turn depends on the internal state at step t − 2 and so on. These
loops allow the information to persist inside the network, meaning that the output
will use historic data for each prediction. The RNNs are very effective when the
prediction requires only information from the recent past. However, when the
needed information for a prediction is at a considerable distance in the past, RNNs
do not perform very well the gradient of the loss functions decays drastically over
time, causing the long-term dependencies to be lost [43]. A variant of RNNs,
Long-Short Term Memory network, is used to solve the vanishing gradient issue.

Long Short-Term Memory networks (LSTMs) [44] are well suited for learning
order dependence in sequence prediction or classification problems including text
[45] and speech recognition, anomaly detection, and time-series data forecasting [40].

20 2 background

The only difference between LSTMs and Recurrent Neural Networks (RNNs) is the
computation of the hidden state of the network. While in RNNs hidden state is
represented by only one vector, in LSTMs the hidden state is split into two vectors
h(t) and c(t), which act as a short-term state and a long-term state, respectively.

The main idea of LSTMs is making the network decide which information is
relevant and which information can be forgotten. Three special gates control which
information is kept or forgotten at each step: the forget gate which decides which
information should be thrown away, the input gate determines what new input
information xt is useful and should be added to the state, and the output gate builds
the output. We use LSTMs for time-series forecasting in this thesis, as explained
later in Chapter 6.

chapter

3
The Case of Privacy in the IoT
Ecosystem

3.1 Introduction

With the increasing popularity of the Internet of Things (IoT), the past decade has
seen the appearance of a plethora of smart devices. According to Cisco’s Visual
Networking Index (VNI) 2021 forecast report, there will be 3.5 networked devices
for every human on Earth by the end of 2021 [46]. Broadly speaking, any sensor that
is capable of collecting data, processing it using built-in circuitry and transmitting
it qualifies as a smart device. Typically, these devices upload the data to the cloud
where it is further processed and stored in order to offer personalized services to
the end users. An advanced variant of this approach includes offloading further
processing and analytic capabilities to the devices, commonly referred to as edge
computing.

Several models for the architecture of the IoT have been proposed in literature.
Figure 3.1 shows a widely accepted general model with three layers [47]:

• L1: perception layer – consisting of the sensory devices collecting data.

• L2: network layer – responsible for collecting, aggregating, processing, and
transmitting the data from the perception layer.

• L3: application layer – consisting of all the applications and solutions driven by
the sensory data that are available to the users.

Based on this three-layer model, Chen [48] proposed that the IoT ecosystem
is composed of four major components: sensors (in L1), communication (in L2),
computation (in L2) and service (in L3). We will use both models interchangeably in
this work.

21

22 3 the case of privacy in the iot ecosystem

Figure 3.1: IoT Architecture Layers.

For example, awearable sensor, such as a fitness tracker, is part of L1. The network
infrastructure as well as the supporting technologies that store, aggregate and
process this data (commonly in the cloud) are part of L2. Finally, users interact with
fitness applications using their smart phones in L3.

Obviously, privacy is a major concern in IoT. In our above example, the fitness
tracker collects information about the user’s location with respective timestamp,
heart rate, daily activities, etc. This data is then collectively analyzed by recom-
mender systems to give users personalized health advises. In many cases, such
recommender systems are driven by models created by machine learning (ML)
algorithms. Unfortunately, these models are often sensitive towards specific train-
ing samples: Due to the nature of the datasets and the uniqueness of the data
points, some of the training samples are implicitly memorized [49, 50]. Research
has shown that it is possible for attackers to replicate or recover the details of the
recommender’s underlying model, referred to as model stealing [51–53]. Moreover,
private and sensitive training data can be recovered from the models by performing
model inversion attacks [50, 54, 55].

When it comes to IoT devices and solutions available commercially, privacy is
often confused with security, and secure solutions are often marketed as privacy
preserving. Moreover, existing solutions and techniques mainly focus on securing
the communication channel aswell as authentication and authorizationmechanisms.
Much less consideration is given to the preservation of privacy in the data collection,
aggregation, storage and retrieval processes [56]. There is an imminent need to
introduce privacy in all components, which requires better understanding of privacy
threats in the IoT ecosystem. Furthermore, it is important to analyze the impact of
privacy preservation techniques on data analysis and quality of service in terms of
trade-offs between accuracy, privacy and efficiency.

This chapter presents an overview of privacy preserving techniques for IoT
along with the privacy threats addressed by each solution, their limitations, and

3.2 privacy threats and attacks in iot ecosystem 23

known resistance to attacks on user privacy. For this work, we focus on IoT
devices and services used for personal applications such as health care and smart
home solutions. Moreover, we focus on the three components sensors, computation
and service since, since they have received much less attention so far than the
communication component, as mentioned above. Consequently, we consider privacy
in communication protocols to be outside the scope of this work.

Contributions: Our main contributions can be summarized as follows:

• We propose and present a taxonomy of privacy preserving techniques and
solutions for IoT ecosystem;

• We provide a comparison of privacy preserving techniques and solutions that
we have observed in this work;

• We analyze the techniques in the light of the EU’s General Data Protection
Regulation (GDPR);

• We identify some open issues in privacy preserving techniques that should
be addressed.

3.2 Privacy Threats and Attacks in IoT Ecosystem

According to [57], privacy is “the claim of individuals, groups, or institutions to
determine for themselves when, how, and to what extent information about them is
communicated to others". A definition of privacy concerns is proposed by Smith et
al. [58]: concerns for collection of personal information, concerns for unauthorized
secondary use (internally in organizations and externally), concerns for improper
(unauthorized) access to personal data and concerns for errors in collected personal
information.

In order to categorize privacy preservation solutions, we first identify privacy
threats in the IoT ecosystem and the architecture layers associated with them.
Afterwards, we provide an overview on attacks on privacy and the respective
threats associated with them.

3.2.1 Privacy threats

Ziegeldorf et al. [59] categorize the most common privacy threats in IoT. In the
following, we give a short overview on the threats and we attribute them to
the different layers of the IoT architecture. Note that the threats often occur in
combination in IoT solutions, depending on the type of service offered.

24 3 the case of privacy in the iot ecosystem

3.2.1.1 Identification

Denotes the threat of associating a persistent identifier with an individual or their
data. For example, a name, pseudonym, an image or voice, or an address can be
associated with an individual from a database or collection. Classified as the most
common threat.
Affects: information processing in the network layer (L2).

3.2.1.2 Localization and tracking

With a notion of identification, this denotes the threat of determining an individual’s
physical location and recording it over time without authorization or consent.
Location based services (LBS) commonly suffer from this threat as they can enable
GPS stalking [60], though internet traffic can also be exploited for this purpose.
Moreover, IoT-based LBS in indoor environments require additional constraints on
data sharing and authorization, e.g., they can enable stalking and unintended bias
in work environments.
Affects: all layers of IoT architecture, though it is more visible on the network (L2)
and application layer (L3).

3.2.1.3 Profiling

Users are profiled for the sake of personalization but this often results in unwanted
advertisements, price discrimination or biased automatic decisions. In an IoT-based
environment, this threat is more imminent due to the availability of multiple
information sources which potentially allow compiling complete information
dossiers about individuals and inferring user preferences by correlation with other
profiles.
Affects: information processing in the network layer (L2), especially in scenarios
that require data dissemination or sharing with third parties.

3.2.1.4 Interaction and presentation

Similar to shoulder surfing, this refers to the threat of violating user privacy by
conveying some private information intended for a specific user over a public
medium. For example, one may get recommendations through the speaker or
screen of a smart thing and people in the vicinity can also observe that information.
Affects: application layer (L3). Also occurs on the perception layer if the solutions
offered are presented using peripherals of the sensory devices (e.g., speaker or
screen).

3.2 privacy threats and attacks in iot ecosystem 25

3.2.1.5 Lifecycle transitions

This threat occurs upon change of ownership of the IoT devices. Most IoT devices
are sold with the assumption of buy-once-use-forever, and log huge amounts
of personal data throughout their lifetime history. This data (and its impact on
personalization offered by the IoT device) may not be completely removed upon a
memory wipe before transfer of device ownership.
Affects: information collection in the network layer (L2).

3.2.1.6 Inventory attacks

This threat mainly occurs due to communication capability of the sensor devices,
which enables unauthorized access or collection of data. Unauthorized parties
can also observe the communication pattern (and other distinguishable properties)
and deduce the presence of devices as well as their type and model. Moreover,
inventories can give information on user preferences which may be exploited by law
enforcement agencies to conduct unwarranted searches or by burglars for targeted
break-ins.
Affects: information collection in the network layer (L2). May be enabled using ap-
plication layer (L3) by exploiting security flaws in the application (L3) or perception
layer (L1).

3.2.1.7 Linkage

Users consent to sharing different attributes of personal data with each IoT service
they use. However, the combination of data collected from independent sources
can reveal information about individuals that they originally did not consent to
reveal [61]. Moreover, data maybe be incorrectly inferred due to loss of context as a
result of the combination of different permissions (data access restrictions).
Affects: Information dissemination in the network layer (L2).

3.2.2 Attacks on user privacy

Here, we briefly describe some of the common attacks on user privacy. Note that it
is not an exhaustive list of possible privacy attacks. Descriptions of more attacks
targeting IoT ecosystem components (e.g. databases and ML models) that in turn
compromise user privacy, can be found in [62, 63] and other works.

3.2.2.1 Membership inference attack

With this attack, the adversary can reveal whether or not a specific data record was
used to train the ML model, given that the adversary has knowledge of the ML
model and the individual data record [64,65]. Privacy is violated in this attack if

26 3 the case of privacy in the iot ecosystem

inclusion of an individual in a training set is itself sensitive. For example, inclusion
as a data record in a health-related ML model leaks information about the health
of that individual. In terms of privacy threats, this attack directly threatens the
identification of a person, can aid in profiling, and can make use of linkage and
inventory attacks.

3.2.2.2 Data inference attack

As observed by [66], this attack is commonly associated with encryption-based
privacy preserving solutions. It tries to recover some information about a given data
record by using Linkage (with publicly known information) and making tailored
queries to the system and observing the responses to see if any information about
underlying records is leaked. A classical example of this attack is using frequency
analysis to break ciphers.

3.2.2.3 Attribute disclosure

Attribute disclosure occurs when some released data records make it possible to
infer characteristics of an individual more accurately than is generally known about
that individual [9]. In other words, new information about some individuals is
revealed by the data release. This attack commonly uses linkage from multiple data
sources to infer user information.

3.2.2.4 Fingerprinting and Impersonation attacks

Using Inventory attacks, an adversary might observe the communication pattern of
a device and try to mimic it [67,68]. If the privacy is compromised, the adversary
might be able to access credentials of the device to alter privacy preferences of the
user and inject fake data into the system.

3.2.2.5 Re-identification attacks

In this attack, an adversary can use linkage to combine data frommultiple collections
to re-identify a record from outsourced, published or open data records [69]. Re-
identification is a very commonly observed attack, with the classic example of a
voter list used for re-identification of a government official’s health record from the
records released by a health insurance company in 1997 [70].

3.2.2.6 Database reconstruction attacks

As observed in [71], confidential data may be vulnerable to database reconstruction
attacks when statistical data is published by agencies for research or information
purposes. This enables partial or full reconstruction of the original database records,

3.3 taxonomy of privacy preserving techniques 27

which may lead to identification or unintended profiling of some users based on
their association with some attributes in the targeted database.

3.2.2.7 Model stealing

Similar to database reconstruction, it is also possible to reconstruct or reveal the
internal training parameters and other sensitive details of ML or recommender
models using model stealing techniques [51–53, 72]. This reveals sensitive informa-
tion about the training data used for these models and can result in unintended
profiling of users.

3.2.2.8 Model inversion

By observing ML model predictions, model inversion attacks enable adversaries
to extract underlying training data of the individuals, as observed in [50, 54, 55].
A specific training record may not always be extracted as a result of this attack.
Instead, the adversary will extract an average representation of inputs that are
similarly classified. However, this can be a huge privacy threat if the exposed classes
are sparsely populated, i.e., a class may correspond to a single individual in the
records [54].

3.3 Taxonomy of Privacy Preserving Techniques

We present a taxonomy of privacy preserving techniques that eliminate the risk of
privacy threats (presented in Section 3.2.1) and prevent the attacks on user privacy
(described in Section 3.2.2).

Terminologies

Techniques represent the general principle(s) and methodology employed for privacy
preservation, e.g., anonymization. Solutions represent algorithms designed using
these principles. Functional limitations refer to design limitations on where the
solutions can be applied depending on the data or the nature of the algorithm. Non-
functional limitations include issues such as performance, scalability and accuracy.

3.3.1 Anonymization techniques

The industry and health care sectors have been employing data de-identification
for years as a privacy preserving measure [73–75]. Common practice includes
removal of some sensitive attributes like names, gender, state codes, or identification
numbers – commonly referred to as personally identifiable information (PII). Moreover,
more sophisticated methods such as k-anonymization [7, 37] and l-diversity [8] and
t-closeness [9], are employed for better privacy preservation guarantees.

28 3 the case of privacy in the iot ecosystem

3.3.1.1 k-anonymity

k-anonymity provides privacy protection by guaranteeing anonymity between
k entries – each released data record will relate to at least k individuals in the
collection even if the records are directly linked to external information [7,37]. It
uses generalization (replacing or re-coding a valuewith less specific but semantically
consistent value) and suppression of records (not releasing a value at all) to achieve
privacy goals. However, these might skew the characteristics of the original dataset.
Functional limitations include data diversification to ensure there are at least k
similar records in the database. k-anonymity has been shown to perform well for
location based services (LBS) to prevent fake data injection attacks [76] and for
privacy-preserving publishing of Electronic Health Records (EHR) [77]. However,
it has been shown that k-anonymity is susceptible to data inference attacks [78], as
well as attribute disclosure [9], re-identification attacks and database reconstruction
attacks [79]. Improved versions such as (α, k)-anonymity model [79], have been
proposed in literature to mitigate re-identification and database reconstruction
attacks.

3.3.1.2 l-diversity

This solution improves upon k-anonymity and provides protection against attribute
inference attacks [8]. Each anonymized group of (generally k) users has at least
l “well represented" sensitive attribute (SA) values. Another improved version
requires to have at least l distinct SA values in each group, called distinct l-diversity [9].
Similar to k-anonymity, functional limitations include diversification in dataset, as
we need to ensure presence of well distributed SA values. However, in some cases,
attackers are still able to associate an individual’s record to have a certain SA when
that value appears more frequently than other values in the group [77].

3.3.1.3 t-closeness

This solution improves upon its precedents and aims at limiting the distance be-
tween the probability distributions of SA values within an anonymized group and
SA values in the entire dataset [9]. This method provides better privacy guarantees
against attribute disclosure as the attacker can not learn any information about an
individual’s SA value other than what is already available from the entire dataset.
Some practical implementations have found t-closeness to be resistant to attribute
disclosure attacks, however, its resistance to membership inference attacks still
needs to be investigated [80].

Researchers have also combined these solutions for better privacy guarantees.
For example, Yin et al. [81] propose using k-anonymity and l-diversity in combination
to prevent imbalanced sensitive attribute distribution in datasets to prevent attribute

3.3 taxonomy of privacy preserving techniques 29

disclosure attacks. Moreover, there are many versions of all the aforementioned
techniques proposed in literature, each focusing on protecting against a specific
type of attack depending on the use case.

3.3.2 Model or output obfuscation techniques

User re-identification by model inversion attacks can be prevented by obfuscating
the output of ML models within a provided range. Differential privacy is a
solution that aims to maximize the accuracy of queries from statistical databases
while minimizing the chances of identifying its records [4]. A function ensuring
ε-differential privacy adds appropriately chosen random noise (with Laplacian
distribution) to the true answer of an ML model to produce the response. This
implies a fixed uncertainty in all measurements, implicating less probability of
exposing a specific record. However, differential privacy alone cannot provide
privacy guarantees for all scenarios due to certain functional limitations: a) it is
designed for low sensitivity data queries, and b) using statistical inference and
adaptive querying, one can infer the form of the underlying data distribution.

Differential privacy can be regarded as the most widely researched and adopted
solution for privacy preservation in the current era. It is highly effective against
model inversion and inference attacks, and is being used heavily in combination
with other techniques to develop privacy preserving applications and services
[49, 64, 82–84].

3.3.3 Multi-tier Machine Learning as a privacy preservation mechanism

Training openly available ML models on sensitive user data directly allows for data
memorization. This technique proposes introduction of multiple training levels,
which can reduce the footprint of distinct and sensitive training data on output
models. Semi-supervised knowledge aggregation and transfer [49] is a multi-tier
ML solution that proposes a teacher and student models hierarchy. Teacher models
train directly on partitions of sensitive data, and afterwards apply an aggregation
mechanism as privacy preserving layer to train a student (openly available) model
on non-sensitive data using the teacher models. This technique uses differential
privacy to define privacy-preserving properties of student models during the
training phase. As only student models are published, using model inversion
attacks cannot compromise the original training samples given the fact that noisy
voting is used in the training procedure instead of considering the absolute majority
of classification decisions of teacher models. This is a relatively new distributed
solution with strong privacy guarantees and applicable to a wide range of ML
models. However, its utility with respect to quality of recommendations needs to
be researched.

30 3 the case of privacy in the iot ecosystem

3.3.4 Decentralized machine learning

Decentralized machine learning solutions offer a new computing paradigm for
better privacy preservation. Instead of transmitting (potentially sensitive) user data
to computation, a part of the computation is offloaded to end-user devices and
each device contributes partial updates to the system model. Doing so eliminates
the risk of exposing sensitive and private raw data to the service provider as
well as other honest-but-curious adversaries present in the environment. Federated
machine learning [85,86] has become an increasingly popular solution based on this
technique in the past few years and is increasingly being researched and used in ML
models and recommender systems [87–90]. It proposes creation of a global model as
a result of learning attributes from updates pushed by users. Since it is a relatively
new technique, it caters well to the nature of distributed computing systems used
in the IoT ecosystem – it is highly scalable and efficient – although there is a need to
investigate how different applications and use cases can be ported to this solution.
Federated machine learning can, however, be susceptible to inference attacks [91]
as it exposes intermediate results which may actually leak important information
about user data [88].

3.3.5 Cryptography-based solutions

It is believed that if data is encrypted during analysis, user privacy can not be
compromised. Homomorphic Encryption [92] is a cryptographic solution that
allows computation to be executed directly on encrypted data. It supports addition,
multiplication, and quadratic functions. Moreover, homomorphic encryption offers
privacy-preserving capabilities in both training and classification phases of ML
models, unlike most of the existing works that only focus on the training phase.
Homomorphic schemes are further classified as fully or partially homomorphic.

3.3.5.1 Partially or Somewhat Homomorphic schemes

These solutions support limited operations like addition and multiplication as well
as other operations on ciphertexts, but do not support arbitrary computation on
ciphertexts. These schemes perform relatively well in practice and have better
performance due to lower computational complexity as compared to fully homo-
morphic schemes [93]. However, fewer algorithms can be implemented using the
restricted set of operations [6].

3.3.5.2 Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) schemes not only support multiplication
and addition, but also support quadratic function and arbitrary computation on
ciphertexts. Classifiers designed using this schema are privacy preserving by nature

3.3 taxonomy of privacy preserving techniques 31

and are better suited for real world applications in terms of privacy guarantees,
because they support arbitrary computation. However, few fully homomorphic
encryption schemes exist, and they are often computationally expensive, i.e., around
2-5 seconds per operation [6]. Some efficient FHE schemes have been proposed [94],
but they have been found susceptible to data inference attacks like encryption key
recovery and data decryption in both known message (broadcast) and unknown
message (secret) scenarios [95].

Other popular solutions include garbled circuits and Secure Multi-Party (SMP)
computation protocols. Originally proposed by Yao in the 1980s [96] as a secure way
of computation, garbled circuits are now used extensively for providing privacy
guarantees. Similarly, SMP solutions are also being investigated for providing
privacy guarantees in information processing.

3.3.6 Data summarization techniques

Exposing raw user data not only poses communication overhead but also puts user
privacy at risk. This technique proposes creation of aggregated and summarized
versions of datasets for efficient creation of ML models as well as providing user
privacy. This poses the trade-off between accuracy of data and privacy preservation.
The data summarization solution proposed by [97] uses this technique for improving
performance and potentially enhancing privacy preservation in recommender
systems. It marks portions of the data as private and summarizes the rest of the data
from all users to create a representative training dataset. Further implementations
have combined the use of data summarization with differential privacy for stronger
privacy preservation [98].

When it comes to non-functional limitations, similar to decentralized ML, data
summarization is a relatively new technique, is scalable and efficient to cater to the
nature of distributed platforms and systems used by IoT services. However, the
privacy guarantees achieved by using this solution need to be investigated.

3.3.7 Ensuring privacy with dataflow models

This technique proposes creation of data flow models with respective permissions
at each level to ensure user privacy and transparent accountability.

3.3.7.1 Blockchain to ensure privacy and verifiability

Researchers have proposed the use of blockchain for verifiability and accountability
of data collection, storage and access in IoT environments [99–102]. For example,
blockchain-based data provenance can provide tamper-proof records and enable
data accountability in the cloud [100]. Moreover, blockchains are being extended

32 3 the case of privacy in the iot ecosystem

for use in the context of IoT for healthcare, as surveyed in [103]. However, there is
room for research for introducing scalability in blockchains so they can adapt well
to IoT environments.

3.3.7.2 Privacy-centric programming languages and platforms

These solutions require information flows and privileges to be declared beforehand,
so all the data elements are attached to respective policies [67, 104–106]. For
example, Jeeves [106] is a privacy centric programming language, used as an add-on
library with Java. HomePad [104] applications are implemented as directed graphs
of elements (instances of functions that process data in isolation). It allows for
automatic verification of the application’s flow graph against user-defined privacy
policies with low computational overhead by modeling these elements and the
information flow graph. In addition to that, [107] outlines some guidelines for
privacy preservation while designing IoT applications.

3.3.8 Personalized data stores

Personalized data stores offer a flipped environment for privacy preservation, where
the users collect and maintain their data from multiple sources in one place, e.g. an
encrypted data store, and authorize its informed use. The Hub-of-All-Things project
(HAT) is a solution that proposes total control of data by the user and monetizing
this data [108,109]. Instead of storing data on different platforms, it is aggregated
in the data store and users can offer their data to interested parties in exchange for
personalized services.

3.3.9 Privacy preservation at processing level

This technique proposes secure and private compute/processing units to ensure
that no data or computation is exposed in the entire information flow. Intel®
introduced Software Guard Extensions (SGX) [10] as a solution that proposes
the use of “enclaves", protected areas of execution, to protect selected code and
data from disclosure or modification. A huge merit of this solution is that it is a
hardware-assisted execution environment with the smallest possible attack surface:
the CPU boundary. It also provides specific architecture instructions to mark
portions of data and code as private, which makes it similar to sandbox concepts in
the security domain. In principle, it is a privacy-preservation solution for both users
and corporations – users may execute analytic codes locally without moving their
data anywhere, and corporations can analyze data on user-end without exposure
of their algorithms. However, recent research has shown that it is susceptible to
some data inference attacks using side-channel information like cache-timing [110]
when working with weaker versions of encryption algorithms. It also requires

3.3 taxonomy of privacy preserving techniques 33

designing application complying with a specific programming model, which may
be inefficient for adapting private implementations of algorithms currently in use
by large organizations.

Table 3.1 summarizes the results of our analysis and classification of privacy
preservation techniques and solutions, affected IoT layers and their known resistance
towards attacks. For each of the privacy preservation solutions in the table, we
indicate a level of privacy, namely strong/mediocre/weak resistance, based on the
assessments provided in the literature (for selected reviewed papers).

34 3 the case of privacy in the iot ecosystem
Ta

bl
e
3.
1:

A
na

l y
si
so

fp
riv

ac
y
pr
es
er
vi
ng

so
lu
tio

ns

te
ch

ni
q u

e
pr

es
er
vi
ng

Pr
iv
ac
y

So
lu
tio

n
M

er
its

la
ye

r
Io
T

A
ff
ec
te
d

th
re
at
(s
)

pr
iv
ac
y

R
el
ev

an
t

Li
m
ita

tio
ns

-o
ff
s

Tr
ad

e
at
ta
ck

s
R
el
ev

an
t

re
si
st
an

ce
K
no

w
n

k-
an

on
ym

ity
lo
w

co
m
pl
ex
ity

Ea
sy

to
im

pl
em

en
t,

ag
gr
eg

at
io
n)

(in
fo
rm

at
io
n

L2

pr
ofi

lin
g,

lin
ka

ge
an

d
tr
ac
ki
ng

,
lo
ca
liz

at
io
n

Id
en

tifi
ca
tio

n,

da
ta

di
ve

rs
e

Re
qu

ire
s

pr
iv
ac
y

ac
cu

ra
cy

/

A
ttr

ib
ut
e
di
sc
lo
su

re
D
at
a
in
fe
re
nc

e,
D
at
ab

as
e
re
co
ns
tr
uc

tio
n
,

Re
-id

en
tifi

ca
tio

n,

[9
,7
8]

(s
om

e
im

pl
em

en
ta
tio

ns
)

W
ea
k
re
si
st
an

ce

A
no

n y
m
iz
at
io
n

l-d
iv
er
si
ty

co
m
pl
ex
ity

Lo
w

pr
oc
es
si
ng

)
(in

fo
rm

at
io
n

L2

ab
ov

e
sa
m
e
as

di
ve

rs
e
da

ta
Re

qu
ire

s
pr
iv
ac
y

ac
cu

ra
cy

/
di
sc
lo
su

re
A
ttr

ib
ut
e

[9
,7
7]

re
si
st
an

ce
M
ed

io
cr
e

t-c
lo
se
ne

ss
at
tr
ib
ut
es

Pr
o t
ec
ts

se
ns

iti
ve

pr
oc
es
si
ng

)
(in

f o
rm

at
io
n

L2

ab
ov

e
sa
m
e
as

da
ta
se
td

iv
er
si
fic

at
io
n

Re
qu

ire
ss

tr
on

g
pr
iv
ac
y

ac
cu

ra
cy

/
di
sc
lo
su

re
A
ttr

ib
ut
e

[8
0]

re
si
st
an

ce
St
ro
ng

ob
fu

sc
at
io
n

or
ou

tp
ut

M
od

el

pr
iv
ac
y

D
iff
er
en

tia
l

w
ith

so
lu
tio

ns
Ea

sy
to

in
te
gr
at
e

L2
,L

3
lin

ka
ge

pr
ofi

lin
g,

Id
en

tifi
ca
tio

n,

se
ns

iti
vi
ty

da
ta

qu
er
ie
s

W
or
ks

fo
rl
ow

pr
iv
ac
y

ac
cu

ra
cy

/
In
fe
re
nc

e
at
ta
ck

s
M
od

el
In
ve

rs
io
n,

[6
4,
82

,8
4]

re
si
st
an

ce
St
ro
ng

M
ul
ti-
tie

r M
L

tr
an

sf
er

kn
ow

le
dg

e
Se

m
i-s

up
er
vi
se
d

an
y
M
L
m
od

el
ap

pl
ic
ab

le
to

D
is
tr
ib
ut
ed

,
L2

,L
3

lin
ka

ge
Pr
ofi

lin
g,

is
un

kn
ow

n
of

M
L
m
od

el
s

A
ffe

ct
on

ac
cu

ra
cy

pr
iv
ac
y

ac
cu

ra
cy

/

In
fe
re
nc

e
at
ta
ck

s
an

d
in
ve

rs
io
n,

M
od

el
st
ea
lin

g

[4
9]

re
si
st
an

ce
St
ro
ng

M
L

D
ec
en

tr
al
iz
ed

M
L

F e
de

ra
te
d

an
d
effi

ci
en

t
H
ig
hl
y
sc
al
ab

le
L2

,L
3

lin
ka

ge
,p

ro
fil
in
g

In
ve

nt
or
y
at
ta
ck

s,

le
ak

ag
e

in
fo
rm

at
io
n

Po
te
nt
ia
l

pr
iv
ac
y

effi
ci
en

cy
/

In
fe
re
nc

e
at
ta
ck

s
im

pe
rs
on

at
io
n
at
ta
ck

s,
Fi
ng

er
pr
in
tin

g
an

d

[9
1]

re
si
st
an

ce
M
ed

io
cr
e

C
r y
pt
og

ra
ph

y
en

cr
yp

tio
n

H
om

om
or
ph

ic
Fu

lly

cl
as
si
fic

at
io
n

tr
ai
ni
ng

an
d

Pr
iv
at
e
M
L
m
od

el
s

L2
at
ta
ck

s
in
ve

nt
or
y

ov
er
he

ad
la
rg
e
co
m
pu

ta
tio

na
l

pr
iv
ac
y

effi
ci
en

cy
/

(d
at
a/

ke
y
re
co
ve

ry
)

D
at
a
in
fe
re
nc

e

[9
5]

re
si
st
an

ce
m
ed

io
cr
e

St
ro
ng

/

en
cr
yp

tio
n

H
om

om
or
ph

ic
Pa

rt
ia
lly

/
So

m
ew

ha
t

ov
er
he

ad
co
m
pu

ta
tio

na
l

Re
la
tiv

el
y
lo
w
er

L2
at
ta
ck

s
In
ve

nt
or
y

to
al
lM

L
m
od

el
s

M
ay

no
tb

e
ap

pl
ic
ab

le
pr
iv
ac
y

ac
cu

ra
cy

/
at
ta
ck

s
In
fe
re
nc

e

[9
3]

re
si
st
an

ce
M
ed

io
cr
e

su
m
m
ar
iz
at
io
n

D
at
a

su
m
m
ar
iz
at
io
n

da
ta

Pu
bl
ic
-p
riv

at
e

ac
cu

ra
cy

m
in
im

al
lo
ss

of
so
lu
tio

n
w
ith

H
ig
hl
y
effi

ci
en

t

L2
Id
en

tifi
ca
tio

n
gu

ar
an

te
es

Pr
iv
ac
y

U
nq

ua
nt
ifi
ed

pr
iv
ac
y

ac
cu

ra
cy

/
at
ta
ck

s
In
fe
re
nc

e
U
nk

no
w
n

m
od

el
s

D
at
a
flo

w
pr
iv
ac
y

bl
oc
kc

ha
in

fo
r

pr
iv
ac
y

Ve
rifi

ab
le

L2
at
ta
ck

s
In
ve

nt
or
y

sc
al
ab

ili
ty

ov
er
he

ad
,l
ow

C
om

pu
ta
tio

na
l

pr
iv
ac
y

effi
ci
en

cy
/

im
pe

rs
on

at
io
n
at
ta
ck

s
Fi
ng

er
pr
in
tin

g
an

d

[1
00

]
re
si
st
an

ce
St
ro
ng

pl
at
f o
rm

s
la
ng

ua
ge

sa
nd

pr
og

ra
m
m
in
g

pr
iv
ac
y-
pr
es
er
vi
ng

ve
rifi

ab
le

pr
iv
ac
y

Lo
w

ov
er
he

ad
w
ith

L2
,L

3
at
ta
ck

s
In
ve

nt
or
y

be
fo
re
ha

nd
to

be
de

cl
ar
ed

In
fo
rm

at
io
n
flo

w
s

(in
so
m
e
ca
se
s)

pr
iv
ac
y

effi
ci
en

cy
/

(s
om

e
ca
se
s)

im
pe

rs
on

at
io
n
at
ta
ck

s
Fi
ng

er
pr
in
tin

g
an

d

[6
7]

re
si
st
an

ce
St
ro
ng

da
t a

st
or
es

Pe
rs
on

al
iz
ed

H
A
T

m
on

et
iz
es

he
rd

at
a

U
se
rc

on
tr
ol
sa

nd
L1

,L
2

(u
nd

er
co
ns

en
t)

Li
nk

ag
e

pa
y
fo
rs

to
ra
ge

Re
qu

ire
su

se
rs

to
pr
iv
ac
y

co
st
/

di
sc
lo
su

re
A
ttr

ib
ut
e

U
nk

no
w
n

U
ni
ts

C
om

pu
te

Pr
iv
at
e

pr
oc
es
so
rs

SG
X

In
te
l®

is
ex
po

se
d

or
co
m
pu

ta
tio

n
en

vi
ro
nm

en
t;
no

da
ta

Pr
ot
ec
te
d
ex
ec
ut
io
n

co
m
pu

ta
tio

n)
pr
oc
es
si
ng

,
(in

fo
rm

at
io
n

L2

at
ta
ck

s
In
ve

nt
or
y

SG
X
pr
og

ra
m
m
in
g
m
od

el
ap

pl
ic
at
io
n
de

si
gn

fo
r

Re
qu

ire
ss

pe
ci
fic

pr
iv
ac
y

effi
ci
en

cy
/

ca
ch

e-
tim

in
g
[1
10

])
in
fo
rm

at
io
n
an

d
(u
si
ng

si
de

-c
ha

nn
el

D
at
a
in
fe
re
nc

e

[1
10

]
re
si
st
an

ce
m
ed

io
cr
e

St
ro
ng

/

3.4 privacy-aware ml and data mining 35

3.4 Privacy-aware ML and Data Mining

A number of privacy preserving implementations of machine learning and data
mining algorithms can be found in literature. Papernot et al. [111] survey the
state of the art of privacy preserving ML algorithms. Moreover, differential
privacy is used extensively in ML models for protection against model inversion
attacks [49, 112–114].

Chiron [115] is an interesting implementation of privacy-preserving ML-as-a-
service, designed particularly for cloud environments which form a major part of
the IoT ecosystem. It uses private compute units (with SGX) to enhance privacy
guarantees. Moreover, implementations of k-anonymity in combination with ML
algorithms [116] and cryptography techniques with ML [117] also exist in literature.

When it comes to data mining, as mentioned in Section 3.3.4, various implemen-
tations of recommender systems use federated learning as a privacy preservation
measure [87–90]. Collaborative filtering is used extensively in recommender
systems [118]. Some privacy-preserving implementations include [119], which
combines k-anonymity with collaborative filtering; [5], which applies obfuscation;
and [120], which uses differential privacy in combination with homomorphic en-
cryption to ensure private recommendations. Also, [89] proposes a federated ML
version of collaborative filtering for personalized recommendations.

3.5 GDPR and its Implications

The GDPR law enforces all organizations that collect and process data from users
to include Privacy by Design and Privacy by Default (originally explained in [121]).
Privacy by Design dictates that organizations should design all their services
involving processing of personal data while considering data protection and privacy
measures at every step. Privacy by Default dictates that all public services should
apply the strictest privacy settings by default, without any manual input from
the end-user. The GDPR also grants some basic rights to end-users: right to
(give and withdraw) consent, right to be forgotten and right to access (personal)
information [122]. Veale et al. [123] analyze the impact of incorporating the GPDR
law inMLmodels for protection against model inversion andmembership inference
attacks. They conclude that some ML models may need to be legally classified as
personal data as a result of this law.

Relatively new privacy preserving techniques proposed in literature are GDPR-
compliant by design. For example, personalized data stores are directly based on
the principles of user consent and the right to access. The right to be forgotten can
also be exercised by removing the data access from organizations that fail to comply
with the user’s privacy preferences. Also, for private compute units, since user
data can potentially always stay on the device, the right to access data is respected.

36 3 the case of privacy in the iot ecosystem

However, organizations need informed consent of the users for analyzing their data.
Similarly, data flowmodels (solutions using blockchain and pre-defined information
flows) are also GDPR-compliant by design. Moreover, for these solutions, the user
defines privacy preferences and is able to verify if they are respected by the service.
For solutions based on data summarization, users may not be able to exercise their
right to access information, as the information is used in a modified (summarized)
form. Moreover, cryptography-based techniques may also hinder the right to access
collected information although they may ensure privacy by design and by default.
Other techniques based on multi-tier and decentralized ML might also not be able
to comply with the right to access information as it might give out sensitive details
about how the organizations are training their ML and recommender models. We
believe that, in principle, it is hard to enforce the right to forget in ML algorithms
once user data has already been used to train an ML model (though the effects of
data point on the trained model might disappear eventually), which in turn implies
that they should be classified as personal data as proposed by [123].

3.6 Open Issues and Future Work

In the light of our analysis of privacy preserving techniques and the discussion
on GDPR presented above, we identify some open issues and suggestions for
future work. First, it is advised to use synthetic or representative datasets for
where exact computations are not needed [124]. Moreover, there is a need to
find an optimal trade-off between data utility and privacy preservation when
generating the representative datasets. Solutions for data summarization should be
combined with other privacy preserving techniques for better privacy guarantees.
However, the effect of combining different techniques on accuracy and efficiency
of solutions needs to be investigated. Also, there is a strong need to formulate
guidelines for publishing privacy preserving open datasets, ML and recommender
models. Additionally, blockchains solutionsmight be a good candidate for verifiable
privacy preservation on user-end. In general, there is no clear winner among the
privacy preservation techniques – depending on the use case, some techniques
will outperform others in terms of robustness towards attacks. Another interesting
observation is that industry and healthcare organizations have often found the
relatively weaker solutions to be strong candidates for privacy preservation.

3.7 Summary

In this chapter, we identified privacy threats on different layers of the IoT ecosystem
as well as associated attacks on user privacy. We presented a taxonomy of state of
the art privacy preservation techniques along with their limitations, susceptibility
to privacy threats and their proved robustness towards attacks on privacy. There is

3.7 summary 37

no clear winner among the privacy preservation techniques. Instead, depending
on the use case, some techniques will outperform others in terms of robustness
towards attacks, or in terms of efficiency or better accuracy. Similarly, depending
on the use case, model obfuscation techniques, multi-tier and decentralized ML,
private compute units and data flow models using blockchains and pre-defined
information flows emerge as relatively strong candidates for privacy preservation.
However, not all of these solutions can guarantee the rights granted by the GDPR to
users. Moreover, it is recommended to use synthetic representative datasets where
exact computations are not needed. Solutions from different privacy preservation
techniques should be combined for better guarantees on privacy preservation.
Moreover, the resulting impact of combining privacy preservation techniques on
the system accuracy and efficiency needs to be investigated.

chapter

4
Synthetic and Private Smart Health
Care Data Generation using GANs

4.1 Introduction

The Internet of Things (IoT) paradigm as we know it today is a fruition of the
technological advancements in the area of computer networks and communication,
that ensure the functionality of these services driven by highly interconnected
components. The mass adoption of IoT devices and services creates a plethora of
valuable data pools that have applications in areas such as smart health care [125],
smart cities [126], smart farming [127] and personalized medicine [128]. These
applications are often driven bymachine learning (ML) algorithmswhich ensure the
provision of continuously improving personalized services. However, ML-based
algorithms and services require access to huge amounts of sensitive and private
data, which might not always be reasonable and in some cases, impossible to obtain
and share due to local data protection laws. In particular, the advancements in the
health care sector are hindered due to the curse of limited data access.

Data access is limited mainly because of the presence of highly sensitive medical
information that not only arises concerns for personal privacy but also the threat
of misuse or re-identification. Data protection laws like the EU’s General Data
Protection Regulation (GDPR) ensure higher public trust in data sharing, and
informed use of collected user data by the companies. Realistic synthetic datasets
offer the benefits of a) enhanced user privacy with reduced risk of re-identification,
b) reduced risk of exposure due to privacy-breaching attacks on ML models such
as model inversion [54, 123], and c) removal of data that could potentially expose
competitive advantage for the data providers; all while maintaining fidelity to the
real-world data. Therefore, realistic synthetically generated datasets are poised to
accelerate the technological advancements in ML, as these datasets do not suffer

39

40 4 synthetic and private smart health care data generation using gans

from the curse of limited availability and can facilitate wide-scale data sharing and
usage by industry and researchers without privacy concerns [11, 124, 129–132].

Generativemodeling is a popularway tomodel synthetic datasets. Thesemodels
learn the probability distributions of the given data and are capable of generating
very realistic sample distributions from the same data. Hence, generative models
are commonly employed for synthetic data generation as well as data augmentation.
Generative adversarial networks (GANs) [28] and their variants have recently
become awidely adopted approach for synthetic dataset generation [29,131,133–136].
However, generating tabular data with GANs, particularly smart health care data,
poses unique challenges [133]. The first challenge is the presence of mixed data
types, as the real-world data contains both discrete and continuous variables. The
second challenge is to accommodate static and behavioral data types. For example
age, height and weight are considered static variables as compared to the activity
data, as the latter has a higher frequency of recorded changes in observation.
Moreover, the data distributions might not always be Gaussian, which makes
them harder to normalize or model with GANs. Finally, the major challenge in
real-world data comes from highly imbalanced categorical data, as the individuals
may possess widely diverse categorical attributes. Moreover, the frequency of
logged measurements differs from individual to individual.

GANs can also be combined with different privacy preservation solutions
to ensure strong user privacy in the synthesized datasets. Differential privacy
(DP) is one of the most popular solutions used in combination with GAN. This
approach relies on noise addition to either the learning mechanism or directly
to the data. Research shows several variants of differentially private GANs that
employ the noisy learning mechanism [131,133,136–141]. These DP-strategies are
also applied in combination with different variants of GANs depending on the use
cases. Moreover, GANs are being extensively used to generate Electronic Health
Records (EHRs) [129, 131, 140, 142]. Esteban et al. [140] use a Recurrent Conditional
GAN (RCGAN) to generate synthetic time-series EHRs with the noisy learning
process. Similarly, Baowaly et al. [131] generate EHRs by using Wasserstein GAN
with gradient penalty (WGAN) and boundary-seeking GANs (BGANs). Their
evaluations show BGANs to be more suitable for EHR generation.

We address the problem of generating smart health care records using BGANs.
Our smart health care dataset is not only more diverse in nature but also possesses
the 3 V’s of big data (volume, velocity, and variety) as compared to the EHRs. We
also used WGANs in our initial set of experiments in comparison with BGANs.
Our findings suggest that BGANs are more suitable for synthetic smart health care
dataset generation, due to the faster convergence of the BGANs and higher quality
of the generated dataset. Moreover, our proposed approach provides additional
privacy preservation by integrating DP in different settings. Our results show that
the proposed approach is able to generate realistic smart health care data samples

4.2 data processing pipeline 41

with user privacy guarantees.
Our contributions can be summarized as follows:

• We collect and refine a real-world smart health care dataset from geographi-
cally distributed users.

• We augment the collected smart health care dataset to represent diverse
nutritional and activity patterns based on age, ethnicity, geolocation, dietary
preferences, and other factors.

• We propose a method based on GANs for generating synthetic and tabular
time-series data, containing categorical and numerical values, as well as the
methods to generate the privacy-preserving versions of the synthesized data
samples.

• We have created realistic synthetic and privacy-preserving smart health care
datasets with fine-grained nutritional and activity user profiles for open use
in research.

4.2 Data Processing Pipeline

This section presents ourmethod for data collection, imputation, and transformation.
Moreover, we present our approaches for privacy-preserving model training,
followed by the data inverse-transformation mechanism. The proposed pipeline is
shown in Figure 4.1.

Figure 4.1: Data processing pipeline.

42 4 synthetic and private smart health care data generation using gans

4.2.1 Data collection and imputation

For this work, we used Fitbit Charge 2 HR smartwatches for automated data
collection in combination with the Fitbit App for manually logging user meals. A
total number of 25 subjects were observed during this study, distributed across
Belgium and Sweden. 12 devices were used for dataset collection, with 2 continual
participants (male and female), and 10 users in circulation. The users were asked to
record a minimum of 60 days of observations. The participants’ pool consisted of 6
coarsely defined ethnicities to represent the overall health and diet patterns of the
residing communities.

We collected more than 17M measurements related to the users’ meal logs,
calorie intake, heart rate, calories burned, steps taken, activity profile during the
day, and sleep. Apart from the numeric data collection, the platform also collects
categorical user data, such as age, gender, height, and weight. Since the users were
not provided with smart scales, the weight measurement is logged manually. All
these logs and measurements were then exported from the Fitbit platform. The
collected data had many inconsistencies and user errors such as: 1) users forgetting
to wear the watch on some days, 2) incorrectly recording very large portion sizes
of meals, 3) manually recording the meals without caloric breakdown, and 4)
incorrectly wearing the watch which resulted in inconsistencies between recorded
activities, steps and (sometimes) heart rate. Moreover, some users logged their data
using languages other than English, e.g., French or Italian. We spent huge amount
of additional effort in translating the recorded meals with respective proportions to
English, cleaning the user data, and identifying and fixing the inconsistencies in
logged measurements. Afterwards, we aggregated and imputed the time-series
data as follows.

4.2.1.1 Time-series data aggregation and imputation

Since this time-series data collection requires partial manual data logging, there
are natural gaps in the time-series caused by these factors: users forgetting to wear
the device or wearing incorrectly, users forgetting to log the meals, and meals
not present in food database or customized meals with unavailable nutritional
breakdown.

For the gaps in time-series, the days without any meal log entries were omitted.
The remaining entries were analyzed for correctness in the recorded measurements.
In case of a missing activity profile or a mismatch between the burned calories
versus activity profile during that particular day, the user behavior pattern was
analyzed to find the closest matching activity profile or the burned calories recorded
in the past. A similar approach was used to remove the mismatch between the
recorded resting heart rate (RHR) and the steps taken versus the activity profile.

4.2 data processing pipeline 43

4.2.1.2 Meal logs imputation

Imputation for missing nutritional breakdown for meals is more complex as
compared to other missing attributes. When it comes to the available food databases
from Fitbit, the United States (US) database is the most largely populated but
specialized to the foods available in the US region. On the other hand, the Belgian
(French) food database is partially populated. However, since there is no specialized
database available for the users in Sweden, the users either recorded the closest
matching entry in the US food database or in some cases, the users manually
logged the nutritional breakdown for customized meals. A translation API was
used to convert logs from other languages to English, replacing the log with either
the closest match in the US food database or by using an external nutrition API.
Nutritionix API [143] was used to impute the missing nutritional breakdown for
meals. Initially, the measurements were aggregated into 3 records. Each contained
the nutritional breakdown for a meal (breakfast/lunch/dinner), calories burned
during the mealtime, RHR from the previous day, and steps taken as well as the
activity records for that day. These records were later aggregated to form one
record per day for the nutritional breakdown of all meals, activity profile, steps
taken, calories burned, and RHR. The users exhibited all kinds of natural behavior,
ranging from very sedentary to highly active users. The complete spectrum of data
features (and ranges) is shown in Table 4.1.

Table 4.1: Dataset features with ranges (aggregated per day).

Features Type Unit Range

Age static yrs median: 28
Gender static - 0: male, 1: female
Height static cms private
Weight static kgs private
Fat behavioural gm 0.08 – 90
Fiber behavioural gm 0.06 – 34
Carbs behavioural gm 0.06 – 150
Sodium behavioural mg 1.92 – 2745
Protein behavioural gm 0.14 –75
Calories_burned behavioural kcal 1025 – 4331
Resting_heart_rate behavioural bpm 49 – 83
Lightly_active_minutes behavioural mins 2 – 481
Moderately_active_minutes behavioural mins 0 – 211
Very_active_minutes behavioural mins 0 – 253
Sedentary_minutes behavioural mins 254 – 999
Steps behavioural - 162 – 32871

44 4 synthetic and private smart health care data generation using gans

4.2.2 Data Transformation

For preparing the data for training, we first remove theDate and Gender information.
Next, the remaining features are normalized and fed to the model for training.
Depending on the selected privacy setting (noisy input), we can provide DP-input
data to the GAN, which will enable the generation of DP-synthetic samples, as
stipulated by the post-processing theorem. Since the data contains categorical or
static attributes, which require higher privacy settings, we add Laplacian noise with
ε = 0.2 to ensure high noise addition and consequently, stronger privacy settings.
On the other hand, behavioral attributes possess a lower risk of re-identification.
So we add Laplacian noise with ε = 0.5 to ensure sufficiently high noise addition
without losing data utility.

4.2.3 Model Training

As mentioned earlier in the Section 2.2, we use BGAN for synthetic data sample
generation. We trained the BGAN by sampling the population based on gender and
geographical location. Moreover, we trained the model in three different privacy
settings (non-DP, noisy input, and noisy output) as will be briefly explained in Sec.
4.4.

4.2.4 Data Inverse-transformation

Once the training is complete and the data is generated by the generator, we first
de-normalize the features to better reflect the original data ranges. Afterwards, the
columns Date and Gender are appended to the generated data to make a complete
record. Moreover, depending on the chosen privacy setting (noisy output), we
add Laplacian noise with ε = 0.2 to the static and with ε = 0.5 to the behavioral
variables.

4.3 Proposed GAN Network for Synthetic Smart Health Care Data
Generation

4.3.1 Generator Network

The generator network is shown in Fig. 4.2. The network takes an input of 15× 1
signal followed by 2 dense layers with 64 and 32 neurons, appended with a Leaky
ReLU activation with a rate of 0.2. The last dense layer acts as the output layer
which takes tanh as an activation function.

4.4 experiments, results and discussion 45

Figure 4.2: Generator network.

4.3.2 Discriminator Network

The discriminator network is shown in Fig. 4.3. The network takes an input of
15× 1 signal followed by 2 dense layers with 512 and 256 neurons. Both the layers
take Leaky ReLU as an activation function with a rate of 0.2. The last layer of the
Discriminator network is a dense layer with 1 output and applies sigmoid as an
activation function.

4.3.3 Learning rule

We use adaptive moment estimation (Adam) optimizer for both the Discriminator
Network and the final GAN network, which computes the adaptive learning rate for
each network weight over the learning process from estimates of first and second
moments of the gradients. For the configuration parameters, the learning rate α is
set to 0.0002 and the exponential decay rate for the first β1 and second β2 moment
estimates are set to 0.5 and 0.999 respectively. The epsilon that counters the divide
by zero problem is set to 1e− 8.

4.4 Experiments, Results and Discussion

We now present our experiments with different additional privacy settings, the
respectively generated samples and their histogram distributions.

46 4 synthetic and private smart health care data generation using gans

Figure 4.3: Discriminator network.

4.4.1 Experiments

As shown in Fig. 4.1, our pipeline offers multiple points for Laplacian noise addition
for differential privacy, enabling 3 experimental settings. The GAN network is able
to learn the distribution and to produce plausible examples in each case.

4.4.1.1 Synthetic Data Generation with no Noise Addition

In this setup, the original data is taken as input by the GAN network and the aim is
to generate plausible results close to the original data (non-DP).

4.4.1.2 Synthetic Differentially Private Data Generation

In this setup, the network is trained on differentially private data i.e., DP is applied
prior to sending it to the discriminator (noisy input). This allows the GANmodel to
generate differentially private synthetic samples. This approach may be beneficial
for settings where synthetic data generation is offloaded to a third party, or when
the threat model includes the server node.

4.4.1.3 Applying Differential Privacy to the Synthetic Data

In this setup, we apply DP to the generated synthetic data to observe the effect
of noise addition on the quality of generated data (noisy output). This approach
offers the advantage in terms of control on the noise addition in generated data,

4.4 experiments, results and discussion 47

depending on the sensitivity of the data features. However, it requires the additional
computation of noise that is added to each generated data point individually.

0 200 400 600 800
Epochs

0

5

10

15

Lo
ss

D-real
D-fake
Gen

0 200 400 600 800
Epochs

0.0

0.5

1.0

Ac
cu

ra
cy

Real
Fake

Figure 4.4: Line Plots of Loss and Accuracy for a Stable GAN.

Table 4.2: Example data samples from Belgium population. Age and Gender are
hidden.

Dataset Height Weight Fat Fiber Carbs Sodium Protein Calories Resting Active Minutes StepsBurned HR Lightly Moderately Very Sedentary

Original
169 66.18 39.0 11.0 33.0 1189.0 4.0 2308.08 59.526 121 6 28 731 9706
169 66.18 39.0 7.0 125.0 1125.0 34.0 2707.35 61.99 166 13 56 732 14070
169 66.18 33.0 8.0 96.0 1361.0 66.0 2485.35 58.45 99 22 60 774 12008

BGAN
175 87.09 29.20 7.80 73.46 1192.83 41.48 2556.28 63.44 157 63 78 768 12222
175 87.09 41.32 10.71 49.00 1072.10 33.07 2873.35 64.92 195 49 84 772 14374
175 87.09 60.82 11.69 98.62 1447.21 31.67 3286.82 64.77 253 56 73 889 14877

BGAN w/ DP output
177 93.62 30.51 13.55 70.19 1191.99 42.48 2555.69 66.29 154 60 71 772 12222
177 93.62 37.94 9.63 50.15 1071.65 34.7 2875.86 70.71 195 48 81 772 14374
177 93.62 62.06 9.84 94.18 1447.51 32.17 3286.16 70.32 252 49 73 892 14875

Original DP
161 66.78 39.04 10.02 33.97 1195.83 5.42 2308.34 57.32 121 8 26 732 9704
161 66.78 38.06 7.31 125.42 1122.46 32.66 2706.42 67.77 164 9 56 732 14074
161 66.78 29.79 2.82 99.02 1360.55 65.02 2485.37 57.75 97 23 62 777 12005

BGAN w/ DP input
181 80.74 33.14 4.12 99.12 1020.8 39.5 3099.14 58.69 213 51 23 757 9769
181 80.74 22.25 11.02 38.29 1416.57 4.838 2611.83 58.09 137 2 3 754 9944
181 80.74 58.99 11.19 104.60 483.94 41.96 2593.24 59.56 190 48 106 732 12004

4.4.2 Results and Discussion

Our proposed approach generates synthetic and private smart health care data
using BGAN in combination with DP. The GAN network is stable, and able to

48 4 synthetic and private smart health care data generation using gans

1000 1500 2000 2500 3000 3500 4000 4500
Calories burned per day

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

1e−3 Orignal Calories

(a)

1000 1500 2000 2500 3000 3500 4000 4500
Calories burned per day

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

1e−3 Synthetic Calories

(b)

1000 1500 2000 2500 3000 3500 4000 4500
Calories burned per day

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

1e−3 Synthetic noisy output Calories

(c)

1000 1500 2000 2500 3000 3500 4000 4500
Calories burned per day

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

1e−3 Original noisy Calories

(d)

1000 1500 2000 2500 3000 3500 4000 4500
Calories burned per day

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

1e−3 Synthetic noisy Calories

(e)

Figure 4.5: Histogram distributions for calories burned per day (kcal). Samples:
Belgium males with RHR=70-75bpm.

generate plausible results. Figure 4.4 shows the stability of the proposed GAN
where the top subplot shows line plots for the discriminator loss for real samples
(blue), the discriminator loss for generated fake samples (orange), and the generator
loss for generated fake samples (green). It can be seen that the three losses are
somewhat unstable early in the run before stabilizing around epoch 420 to epoch
600. Losses remain stable after that, showing the stable behavior of the GAN,

4.4 experiments, results and discussion 49

although the variance increases. The discriminator loss for real samples and fake
samples is around 0.5, and loss for the generator is slightly higher between 0.5 and
1.0. It is expected the model will generate plausible samples between epochs 420
to 600. The bottom subplot shows a line plot of the discriminator accuracy on real
(blue) and fake (orange) samples during training. Similar behavior can be seen as
seen in the subplot of loss i.e., the accuracy starts off quite different between the
two sample types, then stabilizes between epochs 420 to 600 at around 60% to 70%,
and remains stable beyond that, although with increased variance.

Table 4.2 shows an example of few rows from the real dataset, and the synthetic
rows were generated by the trained GANs. Here, Original and GAN represent
datasets samples with no noise addition (non-DP). GAN with DP output shows
generated data samples with DP-noise addition (noisy output). Similarly, Original
DP and GAN with DP input represent the original DP-input and the generated
synthetic samples respectively (noisy input). As can be seen, all the generated
examples look realistic in all the selected privacy settings.

In order to see if the generated data and the real data both come from the same
distribution, we show a visualization of the respective histograms. As an example,
we only consider the distribution of the burned calories from the logs of male
participants belonging to Belgium. It can be seen from Fig. 4.5 that the original
(Fig. 4.5 (a)) and the synthesized (Fig. 4.5 (b)) burned calories follow more or less
the same kind of distribution indicating the good performance of the proposed
BGAN network. We also perform the Kolmogorov–Smirnov (KS) goodness of fit
test [144] on the samples taken from original and synthetic calories distributions,
which gives a p-value of 0.98, indicating a high probability that these samples are
from the same distribution and showing that the proposed BGAN is indeed able to
learn the diverse categorical and numerical features and generates realistic synthetic
samples.

The distribution of original DP data samples (noisy input) is depicted in
Fig. 4.5(d), which exhibits a similar distribution as the DP data generated by BGAN
shown in Fig. 4.5(e). Moreover, the KS test on original noisy calories distribution
(DP input) and the synthetically generated noisy calories distribution gives a p-
value of 0.97, indicating a high probability that the samples come from the same
distribution and the proposed BGAN is able to generate differentially private sample
distributions.

Using DP input allows us to generate differentially private data instead of
explicitly applying DP to all the synthesized data samples. On the other hand,
applying DP-mechanism after synthetic data generation allows for more control in
terms of noise addition, and consequently, data utility. As can be seen in Fig. 4.5(c),
the distribution of the samples is retained although the records are noised and
differentially private.

All our experiments and results demonstrate that although the proposed GAN

50 4 synthetic and private smart health care data generation using gans

architecture is quite simple, yet it achieves very high performance in terms of
generating both synthetic and differentially private synthetic data. The Fitbit-based
smart health care dataset possesses highly diverse features and the proposed
DP-mechanism with BGAN is stable and generates high utility synthetic data.

4.5 Summary

We have proposed a system for creating synthetic and private smart health care
datasets using BGANs and differential privacy. Using a real-world collection of
Fitbit-based smart health care datasets, we tested our proposed approach in three
privacypreservation settings. Ourproposed approach is able to learn categorical and
numerical values for highly diverse tabular data distributions, and we obtain stable
GANs trained for dataset generation. As a result, we generate realistic synthetic
smart health care datasets that possess similar (and enriched) distributions as the
real data while preserving user privacy. Our proposed method for smart health
care data generation also allows control for different privacy settings and paves
way for the publication of open smart health care datasets for sharing and use in
research and industry.

Our proposed approach has some limitations that arise from usage of GANs for
data generation. Just like many ML methods, GANs need a huge amount of data to
produce useful results. For example, we need a large amount of samples for each
category of users (based on gender and location) to generate diverse examples of new
users and to not have a bias towards a particular user (generating more examples
that resemble a particular user). Moreover, GANs require constant optimization of
the generator and discriminator because if the network is not tweaked properly, it
will result in producing data similar to each other.

Acknowledgment

We are truly grateful to the anonymous participants who volunteered to provide
their data for this study. I would like to thank Muhammad Arsalan from Otto-von-
Guericke-Universität Magdeburg, Germany, for his support, constant feedback and
the pair programming sessions. I would also like to thank Sonia-Florina Horchidan
from KTH for helping with the data imputation.

chapter

5
Machine Learning with Reconfigurable
Privacy on Resource-Limited
Computing Devices

5.1 Introduction

With the increasing popularity of the Internet of Things (IoT), a tremendous amount
of data is continuously being acquired by a variety of intelligent sensor nodes. This
data is then processed over central cloud platforms or is transformed through some
edge devices before reaching the central processing node [145]. Although this
strategy enables data storage management and big data processing while utilizing
a distributed computing paradigm, however, distributed processing and storage
also lead to data integrity and privacy concerns. Firstly, cloud-based platforms
may misuse data due to monetary goals such as product marketing. In such
cases, the privacy contracts are designed underhandedly to conceal such privacy
breaches [146]. Secondly, cloud-based platforms undergo security and privacy
breaching attacks from time to time [147], [148]. Thirdly, the end-user might not be
comfortable sharing his private information or publicly disclose some of his data. In
a nutshell, although cloud-based distributed platforms enable big data processing
and storage with certain guarantees of the quality of service, however, privacy
preservation of such data is vital from the user privacy perspective [149], [11].

Privacy should be preserved on the data acquisition site i.e. mobile device or
embedded edge device attached to some sensors nodes (SN) before the data is
transmitted to the central cloud-computing resource [150]. In all cases, mobile
devices or embedded edge devices have limited battery, memory and processing
resources. Moreover, theway devices utilize the available bandwidth effectively, also
known as spectrum efficiency, is a critical performance metric in 5G communication

51

52 5 machine learning with reconfigurable privacy on resource-limited computing devices

with a large number of devices [151]. Therefore, privacy preservation in resource
constraint data acquisition devices becomes a bottleneck in data processing pipelines.

The SN acquires a particular set of data features depending on the application or
usage scenario. For example, in the case of a fire alert system, the features would be
temperature, humidity, and presence of smoke. In the best-case scenario, the system
would like to preserve the privacy of all possible features. However, preserving
some features may not be essential or does not influence the privacy of the user
even if they are not preserved, such features are called non-essential features (NEF).
On the other hand, the application might have some features whose privacy must
be preserved at all costs, known as the essential features (EF). In the optimal case,
the embedded devices should preserve the privacy of EF as well as the NEF if the
resources such as storage, bandwidth, and processing capability of the devices
permit. In order to adequately utilize the system resources, the crucial question of
which subset of NEF must have privacy preservation should be addressed to best
utilize the storage, bandwidth, processing and memory resource of the embedded
edge device without significantly compromising the accuracy of the algorithm.

Another important issue concerning the machine learning (ML) applications is
the application accuracy, since privacy may affect the performance of the training
and utility of the ML system model [5, 152, 153]. Therefore, the accuracy of the
resulting ML training model is a significant constraint while selecting the optimal
subset of NEF.

One way to design such a system involves application-specific feature selection
by performing different trials or by using application design experience. The
handpicked feature selection may work in some application scenarios, however,
they are challenging to design, are unscalable and unadaptable. Instead of having
handpicked feature selection, a scalable approach would be to dynamically choose
NEFs adequately suited to the constrained resources of the devices. To avoid
rewriting privacy encoders for varying scenarios, a microservice architecture may
provide privacy as a service approach.

Although it might be tempting to apply privacy preservation measures on all
the input data features to ensure maximum provision of privacy, privacy comes at
the cost of increased resources and very often, a negative impact on accuracy and
efficiency of the system [5,152,153]. Figure 5.1 shows the trendof increasingly private
features with device resource constraints for an edge device, Raspberry Pi model
A for a simple machine learning application using anonymization techniques for
privacy preservation (more details to be presented in Section 5.2.4). As can be seen,
adding privacy preservation requires a significant increase in resource consumption.
Moreover, depending on the privacy preserving technique employed, the system
could use up to twice the resources with a significant drop in efficiency and accuracy
of the system. For example, cryptography-based privacy preserving solutions could
consume up to 2-5 seconds per operation [6,154], which is undesirable for IoT-driven

5.1 introduction 53

(a) Memory consumption (b) Processor Instructions

Figure 5.1: Increasingly private features vs. resource consumption for an ML-based
application with data anonymization.

systems.
On the other hand, using low levels of privacy may not only violate the rights

of users, expose the system to privacy-breaching attacks, but also may violate the
data protection laws such as EU’s General Data Protection Regulation (GDPR).
Therefore, it is important to find optimal operating conditions offering a good
trade-off between system performance and the level of privacy preserved. Moreover,
in the case of resource constrained devices, it becomes vital to employ efficient
privacy preserving practices on selected features to ensure the best functionality and
quality of service. In summary, the privacy preservation must be done dynamically
in a way that the privacy of all EFs is preserved and the most optimal set of NEFs is
selected constrained to memory consumption, processing requirements, bandwidth
consumption and accuracy of the algorithm. Moreover, the additional processing
time required for privacy preservation should not cause violation of the service-level
agreement between the service provider and the clients.

The contributions of this work are as follows.

• We propose and present a novel approach with corresponding algorithms and
an end-to-end system pipeline for reconfigurable1 data privacy in machine
learning on resource-limited computing devices.

• We present and have developed a novel greedy search algorithm, DIGS, to
find the optimal selection of privacy-preserved input data features provided
device resource constraints for a given machine learning algorithm with its
input and output data features.

1Here we use the words reconfigurable and tunable data privacy as synonyms.

54 5 machine learning with reconfigurable privacy on resource-limited computing devices

• We propose an end-to-end system pipeline with our proposed DIGS algo-
rithm, as well as injective privacy preservation functions using generalization
anonymity techniques for reconfigurable privacy.

• We have implemented, illustrated and evaluated the results of our proposed
approach using a real-world smart health care dataset and machine learning
application on a resource-constrained edge device.

Evaluation of our proposed approach for reconfigurable privacy in machine
learning on resource-limited devices shows significant resource savings, with up
to 26.21% memory, and 16.67% CPU instructions, and 30.5% network bandwidth
savings as compared to making all input data features private.

The rest of the chapter is organized as follows. The proposed technique and
the DIGS algorithm are presented in Section 5.2. Our experiments and results
are presented in Section 5.3 and discussed in Section 5.4. Finally, we present
related work in Section 5.5 followed by summary of conclusions and future work in
Section 5.6.

5.2 Proposed Technique forMachine Learningwith Reconfigurable
Privacy Preservation

Given an ML application with its set of input data features (both EF and NEF),
we first calculate the cost for the NEF and pass these costs to the optimization
algorithm. The algorithm creates a cost matrix using the input and selects the most
optimal features within the range of device resource constraints. We then apply
privacy preservation to the selected NEF additionally with the EF. This new privacy
encoded dataset is used for the ML application. The complete system pipeline is
shown in Figure 5.2. We now explain the systemmodel followed by the explanation
for each component of the proposed system pipeline.

5.2.1 System Model

Consider a system of P producers and A consumers (applications and services),
where P is set of N producers and A is set ofM consumers respectively, as shown
in formulas below.

P = {P1, P2, ..., PN}

A = {A1, A2, ..., AM}

Each P consists of a certain number of features associated with the producer, for
each ith producer the set Σi is shown in formula below. To preserve the privacy of

5.2 proposed technique for machine learning with reconfigurable privacy preservation 55

Device Resource
Constraints

DIGS

CCM
EF,NEF

Injective Privacy Functions

ML
Application

Feature
space O

utput

Cost of
Privacy Layer

Figure 5.2: System pipeline with DIGS.

the user, the σ’s of each Pi are encoded in a certain format before they reach the
consumer, as shown in the following formula.

Σi = Piσ = {iσ1, iσ2, ..., iσx}

where x is the total number of features and iσ1 represents the feature 1 produced
by ith producer and so on. Now, these features are collected at the edge node such
that the feature set becomes:

Σ = {σ1, σ2, ..., σx}

where σ1 represents all the instances of feature 1 collected from N producers and
so on.

However, encoding all Σ is not efficient in terms of certain constraints Γ such
as: memory constraints Γm, bandwidth constraints Γbw, processing constraints Γp
(number of instructions or operations), prediction accuracy constraints Γa, and
storage constraints Γs. In simple words, Γ contains the maximum threshold for all
these constraints:

Γ = {Γm, Γbw, Γp, Γa, Γs} (5.1)

Therefore, the subset of Σ (Σopt) is selected to meet the given Γ using a certain
optimization function F(Σ, Γ), where Σopt ⊂ Σ. We use set notation to represent the
features and constraints because there can only be one occurrence of each feature
and its respective constraint, and the initial order of the set denotes the feature
numbers and constraint type which help define the order of the cost matrix in the
following Section. The complete producer-consumer system model is depicted in
Figure 5.3, where the users are shown on the left hand side.

56 5 machine learning with reconfigurable privacy on resource-limited computing devices

Σ1

(Σ, Γ)

Σ

Σ���

P1

Σ2
P2

Σ3
P3

Σ3
P3

ΣNPN

Γ

...

Figure 5.3: Producer-consumer system model.

The major goal of F(Σ, Γ) is to find a function which maps Σ to Σopt constrained
by Γ . The function F(Σ, Γ) is tunable in the sense that each time the constraints are
updated, new Σopt can be generated.

5.2.2 Greedy Optimization Algorithm - DIGS

We present a greedy approach to selecting a set of optimal features for provided
system constraints, Dynamic Iterative Greedy Search (DIGS) for privacy preservation.

Assumptions: We make the following assumptions for this algorithm. The
features are assumed to be independent as the feature similarity or correlation
is not catered to in the algorithm. Moreover, the service provider should specify
the essentially private features as EF and the optional features as NEF as this is
orthogonal to the functionality of the DIGS algorithm.

EF ∩ NEF = ∅

DIGS: Consider that C represents the cost matrix of all constraints for each
feature in Σ, as shown in the following formula.

C = {Cm, Cbw, Ca, Cs, Cp} (5.2)

Where, each element in C corresponds to the type of constraint (such as Cm) which
in turn has x elements, the σ corresponding to the total number of features. For
example, the memory cost constraints can be represented as:

Cm = {Cmσ1, Cmσ2, ..., Cmσx
}

Moreover, the cost of making a feature private on the embedded edge device
is calculated collectively for all the producers. For a set of features to be optimal,
all its subsets should be optimal. This implies that the optimality has a property
of monotonicity. In order to select the optimal features for the provided device
resource constraints, DIGS performs a breadth-wise iterative search on the NEF.
That is, we first check if the cost of each feature is within the maximum resource

5.2 proposed technique for machine learning with reconfigurable privacy preservation 57

consumption allowance and afterwards, we check the combinations of features and
their respective costs against the maximum resource consumption allowance.

The DIGS algorithm works as follows. Consider a cost matrix C with the 3
rows corresponding the the constraints Cm, Cbw, and Cp. We first represent each
element of each row (containing constraints Cm, Cbw, Cp) in C as a key-value pair
such that key represents the feature number (same as column number) and value
contains the cost of making that feature private. For example,

Cm = {(σ1 : Cmσ1), (σ2 : Cmσ2), ..., (σx : Cmσx)} (5.3)

Then we sort each row in ascending order to minimize the calculation time.
Sorting each row in ascending order helps minimize the calculation time as we
would like to make as many features private as possible, which means the features
that consume less resources should be combined first for Σopt. As we mentioned
earlier, for a set of features to be optimal, all its subsets should be optimal. Therefore,
we generate a list of subsets for the set of viable features at each step. Starting from
subsets of cardinality 1 in Algorithm 1 assuming all the features as viable (optimal),
we rule out all the subsets of features of cardinality 1 that violate any of the resource
consumption constraints. This gives us the list of subsets with optimal features of
cardinality 1, the opt_feature.

Next, we generate all possible subsets of features from opt_feature growing in
cardinality at each step in Algorithm 2, and rule out (block) all the subsets of features
that violate any of the resource consumption constraints. In other words, for each
category of performance constraints (memory, bandwidth and so on) as represented
by Γ , we select the set of features Σopt represented as Copt that are optimal for
a particular constraint (locally optimal) as well as optimal for the total constraints
(globally optimal). The resultant global_optimal contains the list of all possible
globally optimal subsets which are then passed on to Algorithm 3. Algorithm
3 selects the subset(s) of the highest cardinality (containing the most number of
features) and afterwards, sorts them by their overall resource consumption in
ascending order. The subset of features with the highest cardinality having the
lowest resource consumption is the most optimal combination of features to make
private. A greedy algorithm is any algorithm that follows the problem-solving
heuristic of making the locally optimal choice at each stage. We call the DIGS
algorithm greedy because the algorithm makes the optimal choice at each step
(with increasing cardinality) as it attempts to find the largest overall optimal subset
of features to make private provided the resource consumption constraints.

The current version of DIGS is written in Python. It must be noted that Σopt
contains only the optimal NEF that can be made private under the given device
resources constraints for a target ML application.

58 5 machine learning with reconfigurable privacy on resource-limited computing devices

Algorithm 1 The Greedy Algorithm: Combination of Features of Size 1
Function DIGS(C, Γ) : opt_feature

Represent each element x in the cost matrix C as a key-value pair:
x← (key : val), where key is feature number (same as column number) and
val is the cost of making that feature private
sortedC← sort elements of each row in C by val in ascending order so that
features with the lowest costs appear first
subset← generate a list of subsets of keys of cardinality 1 in sortedC
Initialize empty lists opt_feature and blck_feature
foreach y in subset do

suby = y
foreach i in Γ do

forall key in blck_feature do
if key ⊆ suby then

blck_feature.append(suby)
break

end
foreach j in suby do

sum← the cost of making feature j private for given constraint i
if sum > Γ [i] then

blck_feature.append(suby)
break

end
end
opt_feature.append(suby)

end
return opt_feature

end

5.2.3 Calculating the feature costs - CCM

An important supporting component of DIGS is the cost calculation module,
CCM. The programming logic consisting of the application code as well as the
programming language, and the Σ (containing both EF and NEF) are provided as
an input to the CCM. The presented version of CCM currently supports Python
programming language and can be easily extended to support other programming
languages.

5.2.3.1 Memory consumption

We calculated the memory consumption of each feature in the dataframe after
applying the injective privacy function andwealso calculated thememory consumed
while running the respective injective privacy function. For the dataframe memory,

5.2 proposed technique for machine learning with reconfigurable privacy preservation 59

Algorithm 2 The Greedy Algorithm: Additional Features
Function DIGS_add_feature(sortedC, Γ, opt_feature) :(add_opt_feature,
global_optimal)

Initialize add_opt_feature, add_blk_feature and global_optimal
foreach x in range(2, len(opt_feature) + 1) do

subset← list of subsets of opt_feature of size x
Initialize gt_sum and gt_cons to 0
foreach y in subset do

suby = y
foreach i in Γ do

forall key in add_blck_feature do
if key ⊆ suby then

add_blck_feature.append(suby)
break

end
Initialize sum to 0
foreach j in suby do

sum← add to the previous sum, the cost of making feature j
private for given constraint i

end
if sum > Γ [i] then

add_blck_feature.append(suby)
break

else
gt_sum += sum
gt_cons +=Γ [i]

end
end
if suby is not in add_blck_feature then

add_opt_feature += suby
global_optimal.append([suby, gt_sum, gt_cons])

end
end
return add_opt_feature, global_optimal

end

60 5 machine learning with reconfigurable privacy on resource-limited computing devices

Algorithm 3 The Greedy Algorithm: Most Optimal Features
Function most_optimal(global_optimal) : most_opt_set

Select the sets of features with the most number of elements from
global_optimal
most_opt_set← Sort the sets by their overall resource consumption in
ascending order and select the set that has the least total resource consumption
returnmost_opt_set

end

we simply used Python’s memory_usage() function and derived the memory for
all the input data features. For calculating the memory consumed by the functions,
we used a Python library called guppy() [155] which provides the current heap
memory. First, we cleared the heapmemory with setrelheap(). Then we executed
the injective privacy functions with different input data features and printed the
heap memory again. We took the difference and added this memory usage (in
kilobytes) to the dataframe memory to obtain the overall memory consumption.

5.2.3.2 Bandwidth consumption

The bandwidth cost is calculated by dividing the dataframe memory with the
network speed of the selected edge device in a certain network, such as 4G. It is
calculated in kbps.

5.2.3.3 Computational processing cost

The computational cost is device-specific. We calculated the computational process-
ing cost by translating injective privacy functions into processor instructions via the
lookup table of the selected edge device. For each injective privacy function, we
tokenize the code to identify instances of operations such as if, else, and, or
statements. These statements are translated to number of processor instructions
using the lookup table from the device instruction set.

All the computed costs are normalized depending on the type of resource
constraint. This allows DIGS to make fair comparisons between the resource
consumption costs for each data feature for different type of resource constraints.

5.2.4 SVM Classification Model - ML application

Another important component of our system pipeline is the target ML application.
For this work, we use a supervised classification model using SVM in order to
evaluate the effect of our privacy preserved data on the application accuracy
and resource consumption. Our dataframe contains these features: nutritional

5.3 experiments and results 61

value intake (calories, fat, fiber, protein, carbs, sodium), activity data (lightly
active minutes, sedentary minutes, very active minutes, moderately active minutes,
calories burned, steps count), heart rate, height, weight, age, and gender. We
created custom “labels" based on the data values in the features. We followed the
guidelines from [156] and [157] to label each day of the user as healthy or unhealthy.
For example, on a specific day if a user was consuming more than 2000 calories
and not being active, and if the user’s BMI is over the average range, we labeled
this day as being unhealthy (1), otherwise healthy (0). We used standard scaler
in order to have similar distribution of the dataset as we noticed there were more
records with one label than the other. We ran the model on different versions of
data, such as all non-private data, all privacy encoded data, dataset with only the
EF being private, and the dataset containing DIGS selected private features and
essential private features. We compare the accuracy of these datasets to see the
effect of added privacy on the performance of ML application.

5.3 Experiments and Results

5.3.1 Dataset

For the evaluation of our proposed system, we used two datasets: a first-hand
collected Fitbit dataset and GAN-augmented Fitbit dataset. Table 5.1 shows an
overview of the datasets in terms of scale. The dataset collection and processing are
described in next Sections.

Table 5.1: Datasets used for evaluation

Fitbit FitBit-GAN

of Users 25 500
of Days 60 60

of raw Records ≈17 M ≈340 M
Size 3.2 GB ≈64 GB

5.3.1.1 Fitbit dataset collection and privacy concerns

We use the first-hand collected Fitbit dataset as described in Section 4.2.1 using Fitbit
Charge 2 HR devices with 25 subjects with some additional data processing steps
as follows. The missing entries for nutritional breakdown of consumed meals we
imputed using Nutritionix API [143]. The body-mass-index (BMI) was calculated
from the user weight and height using the BMI formula [158]:

BMI = kg/m2 (5.4)

62 5 machine learning with reconfigurable privacy on resource-limited computing devices

Moreover, the calorie intake is calculated by converting the macronutrients
(grams) in into calories as:

Calories_in = fat× 9+ protein× 4+ carbs× 4+ fiber× 1.5 (5.5)

These conversions are done according to [159] and recommendations by Food and
Drug Administration (FDA), USA.

The naming convention used for the features is the same as feature names
imported from the Fitbit API, and other features like height, weight, gender and
BMI are user-defined. The records are aggregated per day and the complete
spectrum of the dataset features is presented in Table 5.2. Here, the less frequently
updated variables are termed as static variables.

Table 5.2: Dataset

Feature Name Type Description

Date Static Data log date
Age Static Age of the user
Gender Static Male or female
Height Static Height of the user
Weight Static Weight of the user
Fat Behavioral Fat (gm) consumed from each food
Fiber Behavioral Fiber (gm) consumed from each food
Carbs Behavioral Carbohydrates (gm) consumed from each food
Sodium Behavioral Sodium (mg) consumed from each food
Protein Behavioral Protein (gm) consumed from each food
Calories_in Behavioral Calculated calorie intake
Calories_burned Behavioral Calories burnt
Resting_heart_rate Behavioral Resting heart rate on the day before Date
Lightly_active_minutes Behavioral Minutes of light activity
Moderately_active_minutes Behavioral Minutes of moderate activity
Very_active_minutes Behavioral Minutes of high activity
Sedentary_minutes Behavioral Minutes spent sedentary
Steps Behavioral Steps taken
BMI Static The BMI of user
labels Target Indicates whether the user diet and activity

on Date is healthy/unhealthy

On one side, the amount of sensitive information is quite huge making the active
collection of data hard as it requires fully informed consent for data disclosure.
On the other side, experimenting on such dataset demonstrates the capabilities of
privacy preservation techniques because of the highly private information present
in the dataset. However, we removed the sensitive individually identifying data
(using anonymization) for the actual processing.

5.3 experiments and results 63

5.3.1.2 GAN for Synthetic Data Generation

We used Bi-directional GANs [160] with no noise addition settings (similar to the
network shown in Section 4.3) to extend the collected dataset. The data generation
was done separately on the 4 different dataset splits based on location and gender.
As shown in Table 5.1, we generated 60 days of data for 500 users, which amounted
to 33120 aggregated daily records in total.

5.3.2 Device Resource Constraints

We employed Raspberry pi RPi 1 Model A for evaluating the DIGS algorithm. RPi
is installed as an edge device which collects data frommultiple sensors. RPi has 256
MiB of memory; however, on average, approximately 56MiB is used by the device
itself for its system operations. Besides system memory usage, typically, around
40% of the memory is used by other applications and processes. Therefore, effective
available and usable RPi memory is around 120MiB. Consider a scenario where 100
devices are connected to the edge device, which is a reasonable sensor node size
assumption. Our experimentation has revealed that encoding of EF with the load of
a hundred sensors consumes almost 20% of the memory. In our experiments, four
EF, i.e., weight, height, age, and gender, are always considered private. In a nutshell,
the device has limited operational memory left, and the algorithm has to decide the
selection of NEF. The situation becomes further complicated with more complex
injective privacy functions or more sensors. Similar constraints can be observed for
the device’s processing capabilities; for the available 700MHz, mostly 20% of the
available computing power is typically used for system operations. Furthermore, in
our observations, on an average 40% is utilized for other processes of the machines.
So effectively, around 250 MHz clocking power is available for 100 devices. We
have employed simple injective privacy functions during the experiments, which
worked easily for EF with available device resources. Increasing the complexity
of the injective privacy functions revealed that computational resources are much
more relaxed than memory in terms of feature encoding and selection. Finally, the
bandwidth required to transmit private EF over the network for all devices was
accommodated in 40% of the available bandwidth. However, several unnecessary
features might cause congestion over a network, or in the case of other traffic
bandwidth, over 40% of the bandwidth might not be available. Nevertheless, in
our experiments, DIGS could dynamically negotiate required NEF for available
bandwidth, memory, and computational power.

5.3.3 Privacy Encoder Functions

The proposed pipeline uses user-defined injective privacy encoder functions to
preserve the privacy of processed user features. For our experiments with both the

64 5 machine learning with reconfigurable privacy on resource-limited computing devices

Fitbit and Fitbit-GAN datasets, we used injective privacy encoder functions employ-
ing generalization-based anonymity techniques. As mentioned in Section 3.3.1.1,
generalization involves replacement of specific values with more general ones for
an attribute [7]. For example, the numeric feature (or attribute) is generalized by
partitioning the attribute domain into intervals, similar to a binning approach.

EF. Since we assume that the edge device always has sufficient resources for making
the EF private, the injective privacy encoder functions are always applied to the EF
before passing them to the ML application. For example, Age is assumed to be an
EF for our experiments and its respective privacy encoder function is as follows
(applied to individual data records, as an injective function):

• if Age < 25, replace the age record with Young

• else if 25 <= Age < 30, replace the age record with Below_30

• else, replace the age record with Above_30

NEF. Each NEF has one respective injective privacy encoder function for our
experiments. However, these functions may or may not be eventually applied in the
Privacy Layer depending on the NEF selection done by the DIGS algorithm. For
example, Resting_heart_rate is considered to be an NEF for our experiments, and its
respective (injective) privacy encoder function is as follows:

• if Resting_heart_rate >= 100, replace with High

• else if 60 <= Resting_heart_rate < 100, replace with Normal

• else, replace with Good

Similar generalization transformations are applied to all the NEF. For example,
the caloric intake and active minutes are generalized as Low/High, and the macronu-
trients intake is generalized as Low/Normal/High. Afterwards, we calculate the
resource consumption for making an NEF private by measuring the total resource
consumption for transforming all the data records through that NEF’s injective
privacy encoder function. The following Section presents our results for the Fitbit
dataset.

5.3.4 Results for Fitbit Dataset

We first calculate the cost measures such as memory consumption, bandwidth
requirements and the processor instructions on the edge device for the non-private
version of the Fitbit dataset. The total memory consumed by the non-private data
was 247.0 KB. Due to small size of the dataset, the bandwidth required for this

5.3 experiments and results 65

dataset on a 100 Mbps 4G network was 0.0198 Mbps. The additional processor
instructions required for this dataset were 0 since the dataset is not private.

Afterwards, we transformed every feature from this dataset to private feature
using the privacy encoder injective functions customized for each feature. We
calculated the memory required for processing of each feature through relevant
injective privacy functions. The total memory consumed through this privacy
preservation process for all features was 533.378KB. After converting the features to
privacy encoded features the total private dataframe memory was 1750.369 KB. So
if we made all the features of the Fitbit dataset private the total additional memory
required is 2283.747KB. The bandwidth required to transfer this data on a 100Mbps
LAN network would be 0.1827Mbps. The total processor instructions required to
convert the non-private features to private feature was 252 instructions in Raspberry
pi RPi 1 Model A.

Due to the sensitive nature of our data there are four features that we decided to
make private to protect our users, denoted as EF. These EF are: Age, Gender, Height
and Weight, which must be private regardless of resource constraints. We then
calculated the resources required by the dataset that contained these four EF as
private. In this case we only converted these four EF through their own injective
privacy encoder functions, and all other features were kept with their original
values. The total memory consumption through the injective function for these
features was 103.395 KB. The memory consumed by the dataframe after enforcing
privacy only on the EF was 528.727 KB. After adding both memory usage through
the injective privacy encoder functions and the dataframe itself, we got a total of
632.122 KB of memory consumption. The bandwidth requirement would be then
0.0506Mbps and the processor instructions required to make only the EF private
was 85.

In order to provide additional data privacy, now we want to select more features
to be private apart from the user-defined EF. Moreover, we would like to not exceed
the maximum resources available to us while encoding the data to preserve user
privacy. The available resources for our application on the Raspberry Pi device
was 2516.584 KB of memory, after deducting the required memory for making
the essential features private we had 1884.462 KB of memory available so we can
select additional NEF to be private within our allocated memory. We had enough
bandwidth and processor to allocate the processing of making our full dataframe
private. We applied DIGS to select the additional features that could be private
by using the available resources we have in terms of memory, bandwidth and
processor instructions. For Fitbit dataset, DIGS selected a set of combination with
9 NEF features that could be private in addition to the 4 private EF. There were
715 different combinations of features from the 13 NEF. After calculating the total
resources required by all the 715 combinations, DIGS selected the most optimal set
in terms of the number of features and resource consumption. With these additional

66 5 machine learning with reconfigurable privacy on resource-limited computing devices

9 NEF we can now encode a total of 13 features including the EF and provide more
privacy.

After converting the DIGS selected NEF to private features including the EF,
the total memory required by the 13 private features through the injective privacy
encoder functions was 409.241 KB. The memory consumed by the dataframe after
the privacy encoding was 1340.657. Adding the two required memories, we got a
total of 1749.898 KB of memory required to make the DIGS selected features private.
The bandwidth requirement was 0.1400Mbps and the total number of additional
processor instructions required were 216.

We name these four different versions of the dataset as:

• Version 1: Non-private data

• Version 2: Only ΣEF private

• Version 3: DIGS selected Σopt,EF private

• Version 4: All ΣEF,NEF private

Table 5.3: Additional resources required for different versions of the Fitbit dataset

Dataset Memory (KB) Bandwidth (Mbps) Processor (Instructions)

V1 247.0 0.0198 0
V2 632.122 0.0506 85
V3 1749.898 0.1400 216
V4 2283.747 0.1827 252

Figure 5.4a displays the increase of memory requirement in KBwith the increase
of more features being private, Figure 5.4b and 5.4c represents the bandwidth
requirement in Mbps and the processor requirements in terms of processor instruc-
tions respectively.

We assumed total available memory in the Raspberry pi device after all other
factors considered was 2516.584 KB, the available bandwidth was 40000 kbps and
available processor instructions were 4.2M. DIGS had a great impact on memory,
as the device’s available memory was smaller. However, we noticed that the
privacy encoding process did not have a notable impact on network bandwidth
and processor instructions. The selected bandwidth speed was very high for the
required bandwidth speed to convert the features to privacy encoded features,
as well the processing power of the RPi device was also a lot higher than what
was required to run all the injective privacy encoder functions. Hence the major
resource saved by DIGS here was in terms of memory.

To validate the effect of our privacy preservation method, we ran our ML
application on all four versions of the Fitbit dataset. We use one-hot encoding

5.3 experiments and results 67

(a) Memory (b) Network Bandwidth

(c) Processor Instructions

Figure 5.4: Additional resource consumption for increasingly private versions of
Fitbit dataset.

mechanism for representing all the private versions (V2, V3 and V4) of the dataset.
We observe that the classification accuracy on each dataset was very close, hence
privacy encoding did not adversely affect the application accuracy. Moreover, for
the all private versions of data, we gained a higher accuracy as more variables
became categorical which favoured the SVM learning mechanism.

Table 5.4 shows the prediction accuracy of different SVM models trained using
the four different versions of dataset, the number of private features on each version,
the additional memory requirements in order to make the features private, the
resources saved when we select the DIGS selected features to be private, and the
privacy compromised in terms of number of exposed NEF. For each dataset version,
SVM was trained using a train/test split of 80/20 with 10-fold cross validation sets.

68 5 machine learning with reconfigurable privacy on resource-limited computing devices

We can see that DIGS effectively selected 9 NEF to be private which provides more
privacy and also can save 26.21% of memory, 30.5% of network bandwidth, and
16.67% of CPU instructions as compared to making all the features private and
overutilizing the resources.

Table 5.4: The result of SVMon increasinglyprivate versions of Fitbit dataset, number
of private features, percentage of resources saved and privacy compromised features

Dataset Accuracy
on SVM

Number
of private
features

Additional
memory
required
(KB)

Resources
saved (%)

Number of
compromised
private features

V1 96.41% None 0 100% All
V2 96.35% 4 385.122 81% 13
V3 96.79% 13 1502.898 26.21% 4
V4 99.62% All 2036.747 0% None

5.3.5 Results for GAN Dataset

We discuss the results for GAN dataset in this section. The data processing steps
for Fitbit-GAN dataset are the same as that of Fitbit dataset. This dataset is quite
large than the Fitbit dataset as it contains 500 users with 33120 aggregated records.
The non-private version of the dataset required total 5299.2 KB of memory, the
bandwidth required was 0.423Mbps and the processor instructions required was 0
as we did not run any injective functions on the non-private dataset. We calculated
the additional resources required for this dataset in order to make only the EF
private and also to make all the features private. The total memory required for the
EF being private only was 11169.24 KB. We ran DIGS with each individual feature’s
resource cost and noticed that as our current edge device has a low capacity for
memory as this large dataset could not be accommodatedwith the required resource
allocation in terms of memory. We still ran our ML application to classify the user’s
day as “healthy" or “unhealthy" in order to compare the result on this dataset with
the original dataset. The accuracy of the SVM on the complete non-private dataset
was 98.07% and the accuracy on all private dataset was 98.54%.

In order to verify the scalability of our selected edge device’s capacity of memory
allocation we ran our experiments on three more different sample sizes of the
Fitbit-GAN dataset. The first dataset we selected was half the size of the GAN
dataset. The dataset now contained 16560 rows of records selected from the large
GAN dataset. This dataset required 2649.6 KB of memory for the non-private
version of the dataset and the available memory we have for our application was

5.3 experiments and results 69

2516.584 KB. So this dataset was also large for the edge device and we did not
continue further with our experiments for the half sized of the GAN dataset.

We further downsized to one-quarter of the GAN dataset and the dataset now
contained 8280 rows of records that were selected from the large GAN dataset. The
memory required for processing this dataset also exceeded the device resource
constraints, so we further scaled down to processing one-eighth of the Fitbit-GAN
dataset on the edge device.

As can be seen in Figure 5.5, for the one-eighth size of the GAN dataset, the
non-private version required 662.24 KB of memory. This dataset contained 4140
rows of records and was a lot smaller than the original GAN dataset. The additional
memory requirement for the injective functions to make the four EF private was
1416.19 KB. Moreover, the required bandwidth for the non-private dataset was
0.0529Mbps and the additional bandwidth for only the private EF was 0.113. The
processor instructions required for the non-private and essential features being
private was 0 and 85 respectively. So now we have 1100.394 KB to allocate the
memory requirement for additional features to be private by DIGS. We ran DIGS to
select additional features to be private within our allocated resources. DIGS selected
three additional features to be private, Fat, Carbs and Protein among the thirteen
additional NEF. These three features consumed the lowest resources altogether. We
present all the different resource requirements for different versions of this dataset
in Table 5.5.

Table 5.5: Resources required for different version of one-eighth sized GAN dataset

Dataset Memory (KB) Bandwidth (Mbps) Processor (Instructions)

V1 662.24 0.053 0
V2 1416.19 0.113 85
V3 2065.832 0.165 216
V4 4428.896 0.354 252

We tested the different GAN dataset versions as we did for the original Fitbit
data by running the SVM and the results are displayed in Table 5.6. For each
dataset version, SVM was trained using a train/test split of 80/20 with 10-fold
cross validation sets. We notice the trade-off between providing more privacy and
resource consumption. If we want to make more private features then we have
to allocate more resources such memory in our experiments. If we only make
the EF private, then we are compromising privacy for thirteen NEF which would
be undesireable as well. By applying DIGS, we were able to select an optimal
combination of features to be made private within our available resources while
saving extra cost for resources. We were able to save 62.74% memory compared
to making all the features private. Also the accuracy on the private versions of

70 5 machine learning with reconfigurable privacy on resource-limited computing devices

(a) Memory (b) Network Bandwidth

(c) Processor Instructions

Figure 5.5: Additional resource consumption for increasingly private versions of
Fitbit GAN dataset.

the essential features of the data was higher than the non-private version, and the
more private DIGS selected private features were a little better than the only EF
being private and we got the highest accuracy on the all-private features dataset.
One possible reason could be the nature of the supervised classification model
combined with the use of one hot encoding for the categorical values, as the SVM
only takes numbers as training and test data. The more privacy we enforced, the
more categorical values were created for each feature which give better accuracy
for more private data.

5.4 Discussion

Our proposed algorithm provides a solution for reconfigurable privacy to make
more data features private along with the private EF in order to provide maximum

5.4 discussion 71

Table 5.6: The result of SVMondifferent dataset for one-eighthGANdataset, number
of private features, percentage of resources saved and privacy compromised features

Dataset
SVM
on

Accuracy

features
private

Number of

required (KB)
memory

Additional

saved (%)
Resources

features
private

compromised
Number of

V1 96.83% None 0 100% All
V2 97.6% 4 753.95 79.98% 13
V3 97.65% 7 1403.592 62.74% 10
V4 98.80% All 3766.656 0% None

privacy to the user. The more privacy, the better it is for any kind of personal data,
as data can contain very sensitive information. DIGS performs very well with the
real life users’ data collected from Fitbit dataset. It has successfully selected 9 NEF
to make private in addition to the 4 EF. Out of the 17 features that we have excluding
the target feature, “labels", we are only compromising privacy for 4 NEF. Moreover,
by using the optimal combination of private features selected through DIGS, we can
save 26.21% memory, 16.67% processor instructions and 30.5% network bandwidth
in comparison with the resources required by all the features being private. In terms
of the impact of privacy preservation on ML application accuracy, we noticed that
the accuracy of our SVM classification has improved while applying more privacy
to the data. This SVMmodel can help our user to check if the user had a healthy
day or unhealthy day and can asses the nutrients value that they consumed and the
physical activities that they had done on that specific day to plan a better or healthier
lifestyle. Our results prove that ourML application provides more user data privacy
while respecting available device resource consumption constraints. Moreover, we
observe higher prediction accuracy of the SVMmodel for the all-private data due
to the usage of one-hot encoding on all the input data features.

In order to check the scalability of our application, we experimented with the
GAN dataset which contained 500 users and 33120 rows of records. As this dataset
was very large as compared to our edge device, Raspberry Pi’s available resources
were not able to process the privacy preservation for this dataset. The non-private
dataset itself was large enough not to fit in the device. Then we decided to test on
different sizes of this dataset to check the limit of the device’s capacity.

We divided the GAN dataset to its one-eighth size and this dataset was small
enough to fit within the resource constraints. However, it was still more than 2×
the size of our original Fitbit dataset as it contained 4140 records and the Fitbit
dataset had 1663 records. For this dataset, DIGS was able to select 3 additional NEF
features to be private in addition to the 4 EF which provided more privacy to the
user data. We also could save 62.74% of memory if we compare with all the features
being private, even though we are compromising privacy for 10NEF. But compared

72 5 machine learning with reconfigurable privacy on resource-limited computing devices

to the non-private dataset and only EF being private dataset, with the help of DIGS
we were able to make more features private while using the available resources.

The accuracy of the SVM had a similar trend as on our original Fitbit dataset.
The SVM trained on the most private dataset version exhibited the highest accuracy
due to the one-hot encoding of all the features as they all were categorical after
privacy encoding and accuracy gradually improved with more privacy. However in
an ideal situation we want all our data to be private and have the highest level of
privacy if sufficient device resources were available.

The reason that DIGS could not be applied on a large dataset like Fitbit-GAN
was not due to the ML application, but rather it was device specific. We have
selected a low-memory edge device and it was not able to handle large memory
consumption required for processing the Fitbit-GAN dataset. For edge devices with
more resources, our algorithm would work fine as it worked on the two smaller
dataset Fitbit dataset and the one-eighth size of the GAN dataset.

5.5 Related Work

Fitness trackers are gaining popularity as they help to maintain user’s health and
well-being. But in order to provide a fully personalized user experience, these
trackers require the users to share their personal information. Sharing personal
information becomes a huge concern for the users, as they need to decide whether
the tracking devices are a safe platform to share sensitive personal information or
not [161]. Data privacy in similar applications and devices has become the biggest
concern due to the pervasive nature of huge data collection through different IoT
devices and the lack of data security [162]. Various data privacy techniques have
been applied to address these concerns and researchers are continuouslyworking on
inventing new techniques to provide better protection for the user data throughout
the data mining process [161].

Commonly used data protection techniques in the health care sector include
k-anonymity [7], l-diversity [8] and t-closeness [9]. The k-anonymity method
involves arranging specific columns of quasi-identifiers that are altered or removed,
resulting in k rows in the dataset with similar attributes [7]. l-diversity [8] and
t-closeness [9] are extensions of the same concept with stronger privacy guarantees.
The required modifications are implemented before publishing the data to tackle
privacy threats. This is also known as privacy-preserving data publishing. These
privacy-preserving techniques work well in general, however, with the increased
learning abilities of artificial intelligence-based algorithms, these data protection
methods are not enough to reduce various privacy-breaching attacks and threats,
as noted in [11, 163].

In the study [21, 164] by Horchidan et al., differential privacy [4] was applied to
add noise to the dataset in order to provide privacy to a similar Fitbit dataset. This

5.6 summary 73

techniquewas effectivewhen applied on a large dataset, whereas on a smaller dataset
it might produce incorrect results [21,164]. Orlosky et al. [165] studied accelerometer
and pulse rate of 24 users from Fitbit Blaze devices. Their study showed that the
accuracy on the Fitbit Blaze is not good compared to the medical grade devices and
the users’ concern about data privacy is valid due to the intervention of third-party
applications.

Providing data privacy has some trade-offs. Dong et al. [166] conducted a
research to measure the trade-off between smart grid operations and adversarial
inferences about consumer conduct, by considering direct load monitoring of
thermostatically regulated loads and investigating how its output degrades as it
receives less samples. By providing less samples they wanted to protect the privacy
of the data. Their work provided a framework to evaluate the trade-off between
utility of the collected data and its privacy preservation.

Reconfigurable or tunable privacy provides user control over the trade-off
between the user privacy and other factors such as: access to services [167],
data sharing to trusted parties in collaborative computing environments [168],
system performance [169] and efficiency [170, 171], model accuracy [172], and data
utility [166,173] and deniability-utility (in case of location-based services) [170].

In our study, we used users’ food and activity data and our goal was to make
user data as private as possible constrained to device resource consumption. We
used generalization techniques in order to provide user data privacy. We also
studied the trade-off between provision of privacy preservation and the required
additional resource consumption for privacy preservation in a resource constrained
environment.

5.6 Summary

We propose DIGS (Dynamic Iterative Greedy Search), a novel mechanism for
reconfigurableprivacypreservation forML features on the resource constrained edge
devices. DIGS provides reconfigurable privacy by choosing an optimal set of data
features to make private provided the device resource constraints. DIGS employs
user-defined privacy injective functions to make the data private. We demonstrate
DIGS using privacy injective functions employing the anonymization based privacy
preservation solutions. Moreover, our privacy preservation mechanism based on
user-defined privacy injective functions is flexible as it can cater to any privacy
preservation solution as long as each data point is processed individually and the
cost for each operation can be computed. Results of our experiments on health
care datasets show that for the studied ML application with 17 data features,
DIGS is able to select up to 9 additional (non-essential) features apart from the 4
user-defined essential features that must be private and provided additional privacy
to the user data, with significant memory savings as well as CPU instructions

74 5 machine learning with reconfigurable privacy on resource-limited computing devices

and network-bandwidth savings as compared to making all the features private.
Moreover, the privacy encoded data used in ML applications provides minimal
impact on the performance of the model, and in our case, provides even better
prediction accuracy due to the use of the one-hot encoding mechanism.

In this chapter, we have implemented and evaluated a proof-of-concept prototype
of our proposed mechanism for reconfigurable privacy in ML. Limitations of our
work include: the DIGS algorithm is currently tested with scenarios having only
one injective privacy encoder function per feature. Moreover, it can only work with
privacy preservation techniques that can be represented as injective functions. Our
research can be extended in multiple directions as it is a novel approach towards
privacy provision. The algorithm can be tested on other edge devices such as
micro-controllers like Arduino Uno, smartphones, and also advanced variants
of Raspberry Pi that have more resources. We can also extend our system by
applying ML-based optimization solutions for selecting the most optimal feature
set to be private provided the device resource constraints. Furthermore, we can
incorporate other techniques for privacy preservation in the injective functions such
as k-anonymity, l-diversity, t-closeness, and even stronger techniques for privacy
preservation such as differential privacy. Lastly, we can demonstrate the impact
of using our system for other kinds of ML applications performing regression or
classification while employing different versions of the same dataset with different
user privacy preservation levels.

Acknowledgment

This work is done in collaboration with Zannatun Tania at KTH and Hassan Nazeer
Chaudhry at Politecnico di Milano, Italy. I would like to thank Tania for her
persistent hard work on the implementation of DIGS and to Hassan for his great
ideas, constant feedback and active participation in group programming sessions.

chapter

6
Privacy Preserving Time-Series
Forecasting of User Health Data
Streams

6.1 Introduction

Advancements in cloud computing and the Internet of Things (IoT) paradigms
inspired the creation of highly interconnected heterogeneous computing environ-
ments that are capable of generating and processing tremendous volumes of data.
Consequently, the past decades witnessed a notable growth in the adoption of
wearable smart devices, which further enabled the development of applications
and services employing the collected data. For instance, numerous health appli-
cations are adopting cloud platforms for real-time health monitoring, achieving
fitness goals, disease diagnostics, and medical data analysis leading to personalized
medicine. Modern health trackers such as Fitbit are equipped with multiple sensors
capable of recording complex health metrics like the caloric burn, sleep quality, or
the wearer’s activity level [24]. Besides, health-tracking mobile applications, such as
MyFitnessPal, are freely accessible to users and can be paired with wearable devices
to provide an intricate glimpse into user health [25]. Typically, health and fitness
applications require processing enormous amounts of personal user data. In some
cases, this data is handled by an untrusted third party for data analytics or machine
learning (ML) based services. In light of this discussion, it can be stipulated that
personal health information is not absolutely private. Moreover, the General Data
Protection Regulation (GDPR) demands to enforce privacy preservation policies,
particularly in the health care domain, as this data could be potentially maltreated.

Real-time or low-latency systems and services, such as wearable smart device
services, continuously process an enormous influx of data streams. In the tradi-

75

76 6 privacy preserving time-series forecasting of user health data streams

tional health care domain, data anonymization and de-identification are usually
employed as the privacy preservation practices. This is owing to their relatively
lower complexity, although they lack effective privacy guarantees [11,174]. An alter-
native approach utilizes synthetic but representative datasets for improved privacy
guarantees [124, 136]. On the contrary, privacy preservation solutions based on
cryptography, blockchains, and private compute units are often compute-intensive,
and hence, not suitable for distributed low-latency environments [11]. On the
other hand, decentralized privacy-preserving ML-based solutions like federated
learning (FL) facilitate collaborative training of models without exposing raw data
and can be acclimated to real-time environments [175]. Moreover, solutions based
on differential privacy (DP) can be integrated into ML systems to provide strong
privacy guarantees. However, these solutions may introduce computational and
performance overheads in the system, such as accuracy loss and degraded quality
of service. These overheads become critical in time-series forecasting, particularly
in the health care domain, as a small error in the forecast may lead to dire con-
sequences. Moreover, devices may experience connectivity issues in distributed
environments, so the system necessitates catering to asynchronous learning and
service provisioning. All these issues make privacy-preserving forecasting of health
data streams a challenging problem. The investigation of privacy preservation
trade-off for low-latency environments is a significant research problem, particularly
in the context of health data streams, as they demand strong privacy guarantees.

This work proposes a novel technique for privacy preservation on real-time
predictions. In particular, an end-to-end pipeline for time-series forecasting is
implemented. Furthermore, the impact of applying several privacy preservation
solutions on the application performance in terms of prediction accuracy andmodel
training time is studied.

Our contributions can be summarized as follows:

• Design and implementation of an end-to-end pipeline for time-series forecast-
ing of health data streams in a federated learning environment.

• Design and implementation of a clustering mechanism using streaming
k-means algorithm and pattern matching.

• Integration of state-of-the-art privacy preservation solutions in the designed
pipeline and evaluating their impact on the time-series forecasting.

• Collection and refinement of a real-world dataset from geographically dis-
tributed users.

• Creation of a privacy-preserving smart health care dataset employing Genera-
tive Adversarial Networks (GANs).

6.2 user clustering using stream processing 77

6.2 User Clustering Using Stream Processing

Our end-to-end health forecasting pipeline is implemented in Apache Flink [15].
It has two main components: (1) the clustering mechanism, which includes the
streaming k-means subsystem and the pattern matching subsystem, and (2) the FL
system with privacy preservation mechanism.

Our proposed pipeline consumes a stream of time-series diet and health logs
from several users and attempts to predict the next logs by leveraging the history
of each individual and the similarities between users. Due to the volume and
velocity of the ingested data, the system has to be highly scalable. Besides, the
streaming nature of the problem imposes strict requirements in terms of latency, as
the system should be able to provide real-time predictions. And most importantly,
the proposed pipeline has to ensure a strict level of privacy preservation because
we are dealing with sensitive data.

First, we cluster the users according to their meal logs (by discovering patterns
in breakfast, lunch, and dinner) and use this information to build separate feder-
ated models for each group. In this way, we ensure that the prediction caters to
individuals with unique dietary patterns and lifestyles, thus offering personalised
forecasts. We introduce our two-step clustering mechanism, that is able to group
multidimensional time-series data based on common characteristics.

Clustering mechanism. We cluster the users’ meal logs over a period of 7 days
using the streaming k-means clustering algorithm. Fitbit allows users to specify the
meal times in the logs as morning snack, breakfast, afternoon snack, lunch, evening
snack, and dinner. We group these meal times for each day into 3 major meals
so that each user’s meal log for a day consists of breakfast, lunch and dinner. We
assign the meals in the stream into three groups/clusters that represent breakfast,
lunch and dinner.

At the beginning of k-means clustering, first unique meals that appear in the
stream are chosen as centroids for each meal group. We have taken three centroids
for the k-means clustering to represent our meal groups, i.e. breakfast, lunch and
dinner. We chose k = 3 after experimenting over a range of k from 2 to 32, and k = 3

displayed the best results in terms of managing to cluster the most meals together.
Each user’s meal is mapped to the closest centroid value during processing. Once
the user meals are mapped to clusters for a period of 7 days, pattern matching is
done on the clustered data. In pattern matching, the centroid IDs are considered as
numbers of sequences. For example, for simplicity, we have a pattern for each user
for one day, user 1 has a meal pattern (1,2,1) and user 2 has a meal pattern (1,3,1).
Here the numbers indicate the centroid ID of the group/cluster to which the meals
(breakfast, lunch, dinner) belonged to. For pattern matching, Hamming distance is
computed over the given sequences of centroid IDs or patterns. In the end, we get
groups of users with closest meal patterns. These groups are then used to train a

78 6 privacy preserving time-series forecasting of user health data streams

separate FL model for each group. It is to be noted that the pattern matching for
meals might find a different number of clusters than the already specified k. This
clustering approach whilst simple and intuitive, comes with a drawback in terms
of implementation, as it has to be performed by a central entity. However, this
approach is not only efficient in terms of improvements in training performance
but also beneficial in terms of privacy preservation. This is because the central
coordinator stores patterns, which are essentially sequences of centroid IDs, and
not the raw data, and can not be exploited to extract a specific user from the system.

We now overview the privacy preserving techniques used in the proposed
time-series forecasting pipeline.

6.3 Privacy Preservation Techniques in Time-series Forecasting

Since stream processing requires low latency and real-time response, we select the
techniques that ensure strong privacy guarantees with low performance overhead
in terms of model training time and with a minimal loss in prediction accuracy.

6.3.1 Categorical Data Anonymization

As defined in [176], Individually Identifiable Data (IID) is “data that identifies
the person that the data is about, or that can be used to identify that individual".
This may contain uniquely identifiable data such as identification number of any
kind, be it social, cultural or economical. The GDPR and other related regulatory
requirements for privacy generally apply (only) to this IID. We study the impact of
sensitive Individually Identifiable Data (IID) on user clustering by using k-modes
for categorical data clustering [177] and k-means for numerical data clustering. We
performed an initial clustering of users with the private categorical data to inspect
its effect on the quality of clustering. k-modes was used as the expert clustering
mechanism to validate the correctness of our streaming k-means approach. We
observed that our proposed approach can cluster similar users using non-private
data. As this work strongly advocates user privacy, we removed all the IID from
users’ data except gender and location (country). The latter were retained only for
the synthetic data generation with GANs, as both attributes have a major impact on
diet patterns; and to observe the correctness of the clustering patterns. However,
our proposed pipeline does not make use of any IID in any mechanism.

6.3.2 Differential Privacy for Federated Learning

TensorFlow-Federated (TFF) is used for our implementation [178,179]. We employ
twowell-establishedmechanisms for DP: Gaussian and Laplacianmechanisms [175].
We use the Laplacian mechanism for adding noise to user data - noisy data - and
Gaussian mechanism from TensorFlow privacy library for adding noise to learned

6.4 proposed end-to-end private learning pipeline 79

gradients for federated learning - noisy learning.

Noisy learning. Gaussian noise addition to the output of a function f of
sensitivity Sf on database D is defined by:

M(D) , f(D) +N(0, S2fσ
2), (6.1)

where N(0, S2fσ
2) is the normal distribution with mean 0 and standard deviation

Sfσ [175].
TensorFlow Privacy mainly uses a differentially private version of stochastic

gradient descent (DP-SGD) to modify the learned gradients. Models trained with
DP-SGD provide provable DP guarantees for their input data. It uses two additional
hyperparameters with the stochastic gradient descent optimizer: the clip and the
noise_multiplier. The former is used to clip each gradient computed on each
training point in a mini-batch. Then, random noise from a Gaussian distribution is
sampled and added to the clipped gradients to make it statistically impossible to
know whether or not a particular data point was included in the training dataset. A
differentially private query DPQuery is responsible for clipping gradients computed
by the optimizer, accumulating them, and returning their noisy average to the
optimizer [180].

Noisy data. For this approach, we use the Laplacian differential privacy by
adding noise directly to the aggregated data records. Traditionally, for Laplace
mechanism, random noise is drawn from a Laplacian distribution with mean 0
and variance Sf/ε to achieve ε-differential privacy [4]. In this work, all the data
points in an aggregated data record are individually noised as we pick random
noise samples for each point from a Lap(0, 1/ε) distribution.

6.4 Proposed End-to-end Private Learning Pipeline

This section presents the proposed pipeline and describes the interaction of each
subsystem in the noisy learning and noisy data approaches for privacy preservation.

6.4.1 System Overview

First, raw data points are aggregated as individual user data records. As explained
in the background Section 2, the central coordinator uses updates from the clients to
improve a global model. The global model is described using a set of hyperparame-
ters. We use Adam optimizer for both client and server, and Standard Federated
Averaging algorithm [39] as the aggregation method. Moreover, a random sample
of 10% users is used in each round of FL as this fraction achieves a good trade-off
between model convergence and computational efficiency [39].

80 6 privacy preserving time-series forecasting of user health data streams

The records are forwarded to the clusteringmechanism, where we use streaming
k-means algorithm with pattern matching to find similar users as explained in
Section 6.2. Afterwards, the central coordinator in FL stores these cluster patterns,
which are essentially the sequences of centroid IDs, and not the aggregated raw
data records.

Based on the clustered patterns, the server maintains k federated models, where
k is the number of groups. Figure 6.1 depicts the process in one communication
round for a randomly sampled client. clientp sends its updates (step 1). Then, the
coordinator looks up clientp and finds that this client belongs to cluster k− 1 (step
2). The coordinator finds the model that corresponds to cluster k− 1 (modelk−1)
and updates it using the information received from clientp (step 3). In the final
step, the coordinator shares the updated model with the client.

Figure 6.1: An overview of the communication round in the FL process with
clustering, assuming grouping into k clusters.

6.4.2 Client Confidentiality with DP

We now explain the proposed pipeline in noisy learning and noisy data settings.
Both approaches achieve the goal of noising the updates that are sent to the co-
ordinator so that no sensitive information canbe leakedby exchanging these updates.

Noisy learning. The weights are noised and sent to the federated aggregator
with the mechanisms provided in TensorFlow Privacy. As depicted in Figure 6.2,
each client adds noise to the true update, in both baseline and clustered scenarios
and the amount of added noise is controlled by the clip and noise multiplier param-
eters, as explained in Section 6.3.2. The standard deviation of the added noise is
computed by multiplying these two parameters. Moreover, aggregated user records

6.4 proposed end-to-end private learning pipeline 81

are also sent separately to the clustering mechanism, as can be seen in Figure 6.2.

Figure 6.2: Noisy learning: clustered FL using streaming k-means. Baseline model
is traditional FL setup (not shown separately).

Noisy data. In this setup, the FL process remains very similar to the standard
process, with the small modification that the clients noise their local datasets before
trying to improve the federated model. Thus, the weights of each model sent as
updates to the coordinator implicitly contain noise. Figures 6.3 and 6.4 show a high
level image of the process. It should also be noted that the clustering mechanism
receives noised aggregated data records, meaning that the quality of clustering will
be affected. It should be noted that the prediction is performed locally and on clean
data.

Figure 6.3: Noisy data: a) Baseline FL.

Researchers state that an epsilon higher than 1 does not give good privacy
protection in general. However, Apple MacOS’s DP has an epsilon as large as
6 and Google’s version of DP claims to achieve an epsilon value of 2 in certain
scenarios [181]. We will use these values as a guideline in our study and strive to

82 6 privacy preserving time-series forecasting of user health data streams

Figure 6.4: Noisy data: b) Clustered FL using streaming k-means.

achieve a compromise between the achieved level of privacy and the performance
of the system.

6.5 Experiments and Results

This section presents the impact of introducing our clustering mechanism and DP
techniques on the systemperformance in termsofmodel training time andprediction
accuracy. In terms of privacy, we study the impact of introducing differential privacy
as noisy data and learning. Since categorical data anonymization is a one-time
process with negligible performance overhead, our measurements do not include
the impact of anonymization. Moreover, all the measurements are taken in the FL
settings, so the impact of using FL for privacy is not separately measured. We first
explain the datasets used in our experiments.

6.5.1 Datasets

We used 3 datasets for our evaluation: MyFitnessPal [26], collected Fitbit dataset
and Fitbit-GAN dataset. An overview of the datasets in terms of scale is shown in
Table 6.1.

Table 6.1: Datasets used for evaluation

Dataset # of users # of days # of raw records Size

MyFitnessPal 9.9K 207 1.9M 2.1GB
Fitbit 25 60 ≈17M 3.2GB

Fitbit-GAN 630 60 ≈435M ≈ 83GB

6.5 experiments and results 83

Table 6.2: Recorded features for Fitbit dataset

Features Unit Granularity Range
Recorded Aggregated

Fat gm food meal 0.03 – 25
Macro- Carbs gm food meal 0.01 – 105
nutrients Protein gm food meal 0.04 – 55
Calories Burned kcal food meal 416 – 1435
Heart rate Resting bpm 7.5s day 49.5 – 83.4

Activity

Light mins day day 2 – 481
Moderate mins day day 0 – 211

High mins day day 0 – 253
Sedentary mins day day 600 – 998

MyFitnessPal. MyFitnessPal [25] contains records from 9900 users who logged
their foods for almost 207 days. Each entry contains an anonymized user ID, logging
date, name of the food, and respective macronutrients’ breakdown: carbohydrates,
protein, and fat. The dataset was analyzed to drop the users with missing or
inconsistent logs. Only the users who logged at least one meal per day over a
consistent period of time are included. Afterwards, all the meals were aggregated
into 3 categories: breakfast, lunch, and dinner. The snacks were summed up with
their corresponding meal category (for example, the morning snacks were added to
breakfast). After preprocessing, the dataset contained 89 users who concurrently
recorded their meals for 151 days. This dataset is used as the best case scenario (no
missing values) for our multivariate time-series forecasting experiments.

Fitbit. As described in Section 4.2.1, this dataset collected with Fitbit Charge 2
HR devices had 25 subjects distributed across Belgium and Sweden, with additional
data processing steps as follows. Users logs and measurements were exported
from the Fitbit platform and Nutritionix API [143] was used to impute the missing
nutritional breakdown for meals. The recorded measurements were aggregated
into 3 records per day for each user. Each aggregated record contained the
nutritional breakdown for a meal (breakfast/lunch/dinner), calories burned during
the mealtime, resting HR from the previous day, and activity records for that day.
The complete spectrum of data ranges is shown in Table 6.2. It must be noted here
that sedentary minutes do not include sleep time, estimated with the recorded sleep
activity. As can be seen, the users exhibit all kinds of natural behaviour, ranging
from very sedentary to highly active users.

As mentioned in the earlier Chapters, a huge amount of individually identifiable
data is collected by the Fitbit platform, therefore the number of participants is

84 6 privacy preserving time-series forecasting of user health data streams

relatively small as it requires fully informed consent for data disclosure. However,
the biggest advantage of experimenting on this dataset is the private information
available for each user. Moreover, as discussed in 6.3.1, all the IID were removed
for actual processing.

Fitbit-GAN.We employed conventional Generative Adversarial Network [23]
(Section 2.2) to generate augmented Fitbit data for training our models, similar
to the network described in Section 4.3 with no noise addition. We refer to this
dataset as Fitbit-GAN. A sample of synthetically generated data records for two
days for a user is shown in Table 6.3. It can be seen that the GAN is able to learn
the macronutrients breakdown for meals, calories burned, resting HR and daily
activities.

Table 6.3: Synthetic data generated using GAN

Meal Fat Carbs Protein Calories Resting Active Minutes
Burned HR Lightly Moderately Very Sedentary

Breakfast 2.97 35.04 10.56 515.27 64.21 170 22 10 768
Lunch 11.97 47.83 25.64 655.85 8 64.21 170 22 10 768
Dinner 12.73 46.46 21.06 679.38 64.21 170 22 10 768
Breakfast 3.30 28.92 10.76 505.71 64.67 171 23 12 723
Lunch 13.92 49.80 14.40 665.38 64.67 171 23 12 723
Dinner 13.61 54.84 15.91 869.65 64.67 171 23 12 723

6.5.2 Results - Federated Learning without Privacy

In all the experiments, we predict the health data streams for the next day (3
meals’ breakdown, calories burned, HR and activities) based on the previous day
(3 meals’ breakdown, calories burned, resting HR and activities). Moreover, for
all the experiments, we train the individual models for each user using 80% of
the recorded data streams and use 20% of data streams for testing purposes. We
discuss our findings and highlight the contributions they bring in the context of
these research questions:

• How accurately can we predict the dietary and health-related behaviour of a
user?

• Does grouping similar users bring any benefit in terms of accuracy and/or
model training time?

• What impact do privacy preservation methods have on the accuracy of the
forecasting?

6.5 experiments and results 85

6.5.2.1 Choosing the right model

We first compared the frequently used statistical models for multivariate time-series
forecasting with popular NN architectures to choose the best configuration for this
task. For statistical models, we used Vector Autoregression (VAR), Vector Autore-
gression Moving-Average (VARMA), and Vector Autoregression Moving-Average
with Exogenous Regressors (VARMAX). For NN architectures, we experimented
with FNNs, LSTMs and GRUs. We used a sample of 10% of the MyFitnessPal
dataset to perform our study. Our results showed that neural networks are better
candidates when it comes to our use case, as shown in Table 6.4.

Table 6.4: Comparison between the observed error of various statistical models
against NN architectures.

MAE RMSE

VAR 3.230 4.105
VARMA 7.160 9.051
VARMAX 3.535 4.460

FNN 0.461 0.530
LSTM 2.035 2.621
LSTM-2 1.690 2.151
GRU 1.670 2.102

Next, we performed a grid search for the following hyperparameters using the
learning rate (η = 0.001) for the NN architectures: batch size (b) and the number
of neurons on each layer l. Table 6.5 shows the results of the best three models
obtained, tested for a different number of epochs e and rounds r in a federated
learning (FL) process. We chose the LSTM-2 architecture, i.e. LSTM with two
hidden layers with 5 epochs per round for our following experiments as it offers
the best prediction accuracy.

Table 6.5: Accuracy of the FL models using a grid search

Best
models Parameters Federated 40e - 5r Federated 20e - 10r Federated 10e - 20r Federated 5e - 40r

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

FNN-2
η = 0.001
b = 32
l = 10

14.351 17.94 9.238 10.717 4.77 5.525 1.33 1.603

LSTM-2
η = 0.001
b = 32
l = 200

11.278 14.398 6.391 7.965 2.35 2.69 0.655 0.853

GRU-2
η = 0.001
b = 32
l = 200

10.226 12.703 16.11 18.473 4.104 5.064 1.289 1.621

86 6 privacy preserving time-series forecasting of user health data streams

6.5.2.2 MyFitnessPal dataset

We now present and analyze our results for the MyFitnessPal dataset.

Baseline FL model. We analyze the accuracy of the model trained on the whole
dataset and refer to it as the baseline FL model in this case. Table 6.6 shows the
achieved performance by training the model with parameters discovered using the
grid search in terms of Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE). As can be noted, our model can forecast the next time-series with an MAE
equal to 0.246, meaning that each predicted value will be at most 0.246 gms higher
or lower than the ground truth. Given that the macronutrients in this dataset have
a minimum value of 0.5 and a maximum of 609, we believe our system is capable of
making highly accurate predictions.

Clustered FL models. Next, we analyze the performance of training a separate
model for each cluster of users. Our clustering method identified 4 user clusters
in this dataset. Table 6.6 shows the prediction accuracy of the FL models. It is
important to remember that all the models in this comparison were trained using
the same hyperparameters and number of epochs as the baseline FL model. Our
results show that most of the clustered models are able to achieve high accuracy,
though not as high as the baseline model. In particular, cluster 3 shows the highest
increase in observed error. However, cluster 3 contains only 8 users and the least
amount of data. So, we believe the data might not be enough for the model to learn
from in this case.

Table 6.6: Comparison between the baseline model and the clustered FL models.
Dataset: MyFitnessPal.

FL Model MAE RMSE Change in observed error Training time (sec)
Baseline 0.246 0.319 - 5966

Cluster 1
(14 users) 0.712 0.811 +2.89× 1082

Clustered Cluster 2
(43 users) 0.536 0.642 +2.18× 3036

Cluster 3
(8 users) 1.298 1.521 +5.28× 691

Cluster 4
(10 users) 0.436 0.548 +1.77× 822

We now analyze the training time needed for each model. Even though the
clustered models did not outperform the baseline model, it is noteworthy that we
are still able to achieve accurate predictions with a drastic decrease in training time.
For example, cluster 4manages to predict the macronutrients with an MAE equal to

6.5 experiments and results 87

only 0.436 after training for a period which is around 7× smaller than the baseline
model.

Figure 6.5 shows the evolution of the MAE on the training dataset. It can be
noted that clusters 1 and 4 seem to learn at the same pace as the baseline model. As
expected, themodel struggles to learn from the data on cluster 3. As for cluster 2, the
model showcases a slower decrease in MAE over the training rounds. However, it
should be noted that the evolution of the error is depicted using a logarithmic y-axis.

Figure 6.5: The evolution of the Mean Absolute Error of the baseline model against
clustered model during the training process on the MyFitnessPal dataset.

Discussion. This set of experiments leads to the following conclusions: (1) we
can accurately predict the macro-nutrient breakdown of meals, (2) clustering similar
users does not improve the prediction accuracy with small clusters, but (3) we are
still able to achieve high performance in terms of significantly less training time.

It is challenging to say why the clustering mechanism failed to improve accuracy.
One possible reason could be the small number of users available for each cluster for
the clustering mechanism to actually exhibit its benefits. Another plausible cause
could be the homogeneity of the dataset. In this case, even if our method managed
to discover some groups, the similarity between members of the same group might
not be high enough for the model to benefit from. A third cause might reside in the
process of choosing an appropriate model for our data. As mentioned before, we
ran a grid search to find the parameters that would perform the best on our entire
dataset. However, doing so optimizes the model for the entire dataset. Using the
same configuration for the clusters might train an overfitted model, which in turn
becomes a potential source of performance drop.

88 6 privacy preserving time-series forecasting of user health data streams

6.5.2.3 Fitbit dataset

The Fitbit dataset serves as a real-world example for our specific use-case, as it
exhibits gaps in the time-series. This dataset contains 25 users and more private in-
formation, such as resting HR and active minutes throughout the day. Similar to the
previous dataset, we performed a grid search to find the optimal hyperparameters.

Baseline FLmodel. We first investigate the performance of our FL procedure on
the entire dataset. Table 6.7 shows the accuracy of our baseline FL model. It should
be noted that the number of training rounds needed to be adjusted due to the size of
the dataset. Training for a longer period led to overfitting. Here we notice an overall
accuracy drop as MAE is higher as compared to the MyFitnessPal dataset results.
While the MyFitnessPal dataset achieved a prediction with MAE equal to 0.246
(Table 6.6 for the baselinemodel, the samemethodology on the original Fitbit dataset
achieves a much higher MAE in prediction accuracy, 3.27. This is probably caused
by two factors: a considerably smaller amount of training data and gaps in the
time-series. Nonetheless, predicting the next macronutrients intake with a precision
of±3.27 gms is still remarkable. The same reasoning can be applied to other features.

Table 6.7: Prediction accuracy of the baseline model. Dataset: Fitbit

Predicted MAE RMSE Training time (sec)
Macronutrients 3.27 4.047

245Calories burned 11.831 15.261
Resting HR 0.859 1.044

Active minutes 4.495 5.320

Clustered FL models. We cluster our users based on their similarities. Our
method found 4 clusters of various sizes. We trained a separate FL model for each
cluster. Table 6.8 contains the prediction accuracy of these models. The average
change in observed error is in comparison to the model trained on the entire dataset.
An increase in average observed error suggests a decrease in the model prediction
accuracy. Figure 6.6 shows the evolution of the train error throughout the learning
process. Three out of four models seem to have a learning curve similar to the
baseline model. However, it is obvious that cluster 1 struggles to learn the patterns
in its data. On a deeper analysis, we notice that, even thought cluster 1 and cluster 2
have the same number of users, cluster 1 contains the least amount of data, meaning
that the logs of the users that belong to cluster 1 are very scarce.

Discussion. As expected, the clusters with the less training data show a
considerable decrease in accuracy (clusters 1 and 2). Groups that have more training

6.5 experiments and results 89

Figure 6.6: The evolution of the Mean Absolute Error of the baseline model against
clustered model during the training process on the original Fitbit dataset.

data manage to achieve better predictions. For these reasons, the baseline model
outperforms all clustered models in this case. Although this dataset contains very
interesting yet sensitive data, we believe that the amount of data in this dataset
is a major impediment to drawing relevant conclusions. Hence, we focus on the
Fitbit-GAN dataset for further experiments.

6.5.2.4 Fitbit-GAN dataset

The experiments performed on the Fitbit-GAN dataset aim to investigate whether
a higher amount of data influences the outcome as compared to our previous
experiments. The hyperparameters for the baseline model in this section have been
chosen using a grid search. We now evaluate the performance of the FLmechanism.

Baseline FL model. Firstly, we focus on determining how well we can predict
the features of our dataset. We perform multi-step forecasting and compute the
MAE and RMSE as before. Table 6.9 shows the performance achieved by the
model trained on the entire dataset. Similar to the MyFitnessPal dataset results,
we conclude that our model can predict user behaviour very accurately, as our
prediction is at most 0.025% as far from the ground truth value with respect to the
range of each feature.

Clustered FL models. We cluster the users and train separate models for each
group. Again, the baseline model outperforms the clustered models for all features.

90 6 privacy preserving time-series forecasting of user health data streams

Table 6.8: Prediction error obtained by training clustered FL models. Dataset: Fitbit

FL Model Predicted MAE RMSE Average change in
observed error Training time (sec)

Cluster 1
(3 users)

Macronutrients 7.776 9.429

+5.63× 64Calories burned 57.544 77.070
Resting HR 9.462 12.321

Active minutes 19.303 23.290

Cluster 2
(3 users)

Macronutrients 6.651 7.780

+3.08× 62Calories burned 38.816 51.437
Resting HR 5.269 6.754

Active minutes 12.923 15.459

Cluster 3
(9 users)

Macronutrients 4.119 4.933

+1.9× 110Calories burned 21.791 28.054
Resting HR 2.447 3.093

Active minutes 7.555 9.120

Cluster 4
(6 users)

Macronutrients 3.571 4.293

+1.84× 88Calories burned 28.165 33.643
Resting HR 2.012 2.566

Active minutes 7.093 8.612

Table 6.9: Prediction accuracy of the baseline model. Dataset: Fitbit-GAN

Predicted MAE RMSE Training time (sec)
Macronutrients 0.806 1.054

9891Calories burned 11.395 14.460
Resting HR 0.044 0.058

Active minutes 2.365 2.983

We note that optimizing the hyperparameters for the entire dataset might lead to
overfitting for smaller chunks of the dataset as the data distribution for the groups
will be different than the one for the entire dataset. We ran a grid search for optimal
parameters for each cluster and found a less complex model configuration to be
appropriate for the groups. Moreover, it has been found that the same model
configuration can cater to all groups (a small FNN-2 and the same hyperparameters).
This will also lead to a major improvement in training time.

Figure 6.7 shows that the clustered models with optimized parameters seem to
learn faster and more efficient than the baseline model. It can be noted that, after
100 rounds, each clustered model achieves a smaller training error than the baseline

6.5 experiments and results 91

model.

Figure 6.7: The evolution of the Mean Absolute Error of the baseline model against
clustered model during the training process on the augmented Fitbit dataset with
grid search performed on each group of users.

Table 6.10 shows a significant increase in prediction accuracy for three out of four
clusters as compared to the baseline performance. Moreover, the highest training
time, which has been recorded for cluster 4, is 20× faster than the training time of
the baseline model.

Discussion. In order to address the impact of the cluster size on the overall
performance of the system, it should be noted that the clusters discovered by our
mechanism are imbalanced. Our results might give the impression that the accuracy
is directly proportional to the size of the dataset. However, this assumption is
incorrect. The cluster size influences the results only when the NN does not have
enough data to learn from. As long as the group contains enough data, the similarity
between the members of each group can be leveraged to improve the prediction
accuracy. We can, for example, consider the unclustered version to be a considerably
larger cluster. The model trained on this group achieves poorer performance than
the ones trained on real but smaller clusters. This proves that the similarity between
users is the only factor that determines the increase in accuracy, and not the size of
the dataset. It should also be noted that clustering improves the prediction accuracy
as well as significantly improving the training time.

92 6 privacy preserving time-series forecasting of user health data streams

Table 6.10: Prediction accuracy for training one model per cluster of users. Dataset:
Fitbit-GAN

FL Model Predicted MAE RMSE Average change in
observed error Training time (sec)

Cluster 1
(167 users)

Macronutrients 0.458 0.553

-49% 374Calories burned 4.359 5.369
Resting HR 0.031 0.037

Active minutes 0.829 1.017

Cluster 2
(63 users)

Macronutrients 0.639 0.788

-17% 199Calories burned 6.296 7.792
Resting HR 0.04 0.0485

Active minutes 2.459 2.822

Cluster 3
(44 users)

Macronutrients 1.199 1.467

+57% 167Calories burned 12.152 14.65
Resting HR 0.088 0.107

Active minutes 4.101 4.884

Cluster 4
(213 users)

Macronutrients 0.527 0.63

-47% 478Calories burned 5.493 6.8
Resting HR 0.02 0.031

Active minutes 1.18 1.468

6.5.3 Results - Differentially Private Federated Learning

The impact of adding privacy preservation methods in the FL mechanism is
evaluated by investigating the performance of the system by first noising the
learning process and then noising the data itself. We again use a train/test split of
80/20 for all our experiments and predict the health data streams for the next day (3
meals’ breakdown, calories burned, HR and activities) based on the previous day (3
meals’ breakdown, calories burned, resting HR and activities). The average results
for each configuration are obtained by running each experiment at least 3 times.

6.5.3.1 Noisy learning

In this case, noise is added to the updates and sent to the federated aggregator
using TensorFlow Privacy mechanisms.

Baseline private FL model. First, a baseline FL model for all users is trained.
The results are presented in Table 6.11. Adding Gaussian noise with a higher
standard deviation decreases the prediction accuracy of the model but increases
the achieved privacy level. Even for the lowest level of privacy, with ε = 10.3

6.5 experiments and results 93

corresponding to the standard deviation (sd) of 0.225, the model performance is
approximately 35× poorer than the non-private baseline model.

Table 6.11: Results for noising the learning process to achieve DP in the baseline
scenario. clip and noise specify the clip and noise applied to the gradients, with
sd standard deviation. sd increases from left to right, suggesting that more noise
is added. Contrarily, ε decreases from left to right, suggesting that better privacy
levels are achieved as we add more noise.

clip = 0.3
noise = 0.75
(sd = 0.225)

clip = 0.5
noise = 0.75
(sd = 0.375)

clip = 0.75
noise = 1.2
(sd = 0.9)

clip = 1
noise = 1.3
(sd = 1.3)

clip = 1.5
noise = 2
(sd = 3)

Macronutrients MAE 25.899 24.637 36.308 37.176 77.838
RMSE 26.835 25.325 37.62 38.457 79.022

Calories
burned

MAE 678.038 423.555 698.392 818.229 881.288
RMSE 687.112 437.704 709.221 837.541 900.358

Resting Heart
Rate

MAE 1.133 2.065 3.089 3.859 4.129
RMSE 1.208 2.115 3.1581 3.939 4.194

Active
minutes

MAE 45.942 77.553 104.254 116.546 176.347
RMSE 49.342 80.0 107.647 121.102 180.743

Epsilon (ε) 10.3 10.3 4.27 3.8 2.2

Clustered private FL models. When applying noise to the clustered scenario,
our results showed that the models became unable to learn anything from the data,
as they showcased an MAE higher than 1000 in some cases. Therefore, the results
are not presented in this work.

Discussion. Themain reasons behind the drastic decrease in prediction accuracy
is the number of participants in the federated averaging algorithm which plays
a major role on the achieved model performance [182]. Since our dataset is very
small as compared to the one used by [182], our results are justifiable. Moreover,
the fact that clustering the users caused an even greater performance drop in our
experiments is also to be expected in this context, as the number of participants
decreases even more when the model is trained for each separate cluster. This
analysis shows that the noisy learning method is not appropriate for our use-case.

6.5.3.2 Noisy data

In this scenario, we add noise to the data itself. Each participant in the learning
process learns from the noised data and tries to improve the FL model. It should
also be noted that, when training on clusters of users, the clustering mechanism
also receives noised data, hence, the clusters change for each experiment.

94 6 privacy preserving time-series forecasting of user health data streams

Table 6.12: Results of noising the training data to achieve DP in the baseline scenario.

ε = 2 ε = 1 ε = 0.5 ε = 0.1 ε = 0.025 ε = 0.01

Macronutrients MAE 0.743 0.715 0.752 0.874 0.984 1.336
RMSE 0.969 0.943 0.995 1.135 1.378 1.843

Calories
burned

MAE 11.596 11.937 12.231 14.383 14.891 19.634
RMSE 14.687 15.451 16.116 18.482 19.903 27.392

Resting Heart
Rate

MAE 0.048 0.055 0.058 0.067 0.077 0.122
RMSE 0.065 0.07 0.077 0.088 0.108 0.161

Active
minutes

MAE 2.483 2.246 2.293 2.344 2.832 3.832
RMSE 3.012 2.953 2.768 3.159 3.941 5.438

Average increase in observed error 2% 3% 7% 21% 37% 94%

Baseline private FL model. We study the baseline scenario with only one
private FL model for all the clients. Table 6.12 shows the effect of various levels
of data privacy on the model performance. Google can achieve DP with ε = 2

in certain conditions [181], and this is taken as a starting point for our experi-
ments. Laplacian noise with 0 mean and 1

ε
variance is added to the data. With

ε = 2, we see an average increase in prediction error of only 2%. Moreover, the
best trade-off between privacy and accuracy is obtained for ε = 0.1 where ε is
ranging from 1 to 0.025. With this setting, we observe an increase in prediction
error of around 21%,with good accuracy and a very high level of privacy is observed.

Clustered private FL models. We now focus on the clustering mechanism and
its impact in the FL context. Firstly, as expected, clustering users with noised data
alters the clusters. It can be noted that adding more noise to the data has two effects:
(1) overall, fewer users are assigned to clusters, and (2) the algorithm discovers a
higher number of smaller clusters (the k remains the same but the pattern matching
mechanism discovers more clusters than the non-noisy data). As the noise increases,
the similarity between users decreases. Hence, the users that were previously
very similar might still be clustered together, but the overall size of the groups is
expected to decrease. The increased number of found clusters can be observed
when applying privacy levels of 0.025, where the pattern matching algorithm finds
5 clusters, instead of 4.

We examine the results obtained with the best ε value we discovered in the
baseline case, 0.1. Table 6.13 shows that unlike the noisy learning case, clustering
the users can still improve the quality of prediction, even if the data is noised. The
clusters show that several users maintain some degree of similarity that can be used
to boost the accuracy of the model.

Discussion. Noising the data improves prediction accuracy without any mea-
surable effect on the training time. Adding noise to the data has been popularly

6.5 experiments and results 95

Table 6.13: Results of noising the training data to achieve DP in the clustered
FL scenario. ε = 0.1 noise is added. A decrease in the average observed error
(compared to baseline model) implies an increase in accuracy.

FL Model Predicted MAE RMSE Average change in
observed error Training time (sec)

Cluster 1
(73 users)

Macronutrients 0.982 1.131

-20% 222Calories burned 9.897 12.379
Resting HR 0.039 0.049

Active minutes 1.869 2.283

Cluster 2
(37 users)

Macronutrients 1.025 1.209

-6% 150Calories burned 11.96 14.961
Resting HR 0.052 0.061

Active minutes 2.218 2.68

Cluster 3
(161 users)

Macronutrients 0.593 0.715

-38% 392Calories burned 7.56 9.43
Resting HR 0.031 0.038

Active minutes 1.842 2.208

Cluster 4
(97 users)

Macronutrients 0.587 0.712

-34% 262Calories burned 9.653 11.463
Resting HR 0.033 0.04

Active minutes 1.861 2.225

used as a regularization technique for deep NN to avoid overfitting and improve
accuracy. This could explain the very high accuracy we obtain, and a relatively
small performance drop compared to the non-noised model. Composing the overall
ε experienced at the user end is outside the scope of this work. In principle,
removing a user’s data has no measurable impact on the overall clusters as well as
the prediction accuracy of the system, althoughmore data is shared in the clustering
scenario. So, we believe that the overall experienced ε or privacy loss at the user
end is also very small as the data is highly noised. Additional results for clustered
FL are shown in Appendix A.

6.5.4 Performance measures of the proposed clustering pipeline

Lastly, we include some brief performance measures of the clustering mechanism
that was proposed in this work. We acknowledge that, given the streaming context
of our application, the total execution time cannot be measured since we expect the
data to be unbounded. However, all the components of our pipeline rely on the
use of tumbling windows of data. Because of this, we present performance metrics

96 6 privacy preserving time-series forecasting of user health data streams

measured for various windows.
The following experiments on the proposed online algorithm have parallelism

equal to 8, meaning the computation is distributed among 8 different threads. The
results are obtained by averaging the execution time of running the algorithm
on the fixed-sized windows for each step of the pipeline. The design has been
implemented in Apache Flink. For comparison, we also include the execution time
obtained by an offline library implementation in Python with one execution thread.

Table 6.14 shows the results of this study. The offline version is a single-threaded
Python implementation. Themeasurements for our online versions are approximate
because, at the time of conducting this study, the tumbling windows cannot be
configured to use the event time in the Iterative Data Stream model of Apache
Flink. Thus, the amount of data entering the window cannot be precisely controlled.
For the pattern matching step, the observed decrease in execution time is to be
expected in the online version, since the execution is mainly distributed among
different workers. However, we notice that the execution time of the k-means
online implementation is much higher than the offline version. In this case, we are
paying the price of using a Bulk Synchronous Processing model. The workers have
to be synchronized after each iteration. Moreover, the workers reach consensus
by exchanging messages, which also introduce a communication overhead in the
system.

Table 6.14: Performance measures of the proposed clustering mechanism.

Offline Online (approx.)
1 day

(1890 samples)
7 days

(13230 samples)
1 day

(1890 samples)
7 days

(13230 samples)

Streaming k-means 0.214 sec 1.398 sec 3.297 sec 21.475 sec
Pattern matching 0.366 sec 14.4 sec 0.115 sec 0.278 sec

It might be the case that our datasets are not big enough to capture the increase
in performance brought by parallelizing the computation. We believe further
experiments with larger datasets should be conducted as part of future work.

6.6 Related Work

We discuss similar approaches found in the literature and compare them to our
proposed pipeline. To the best of our knowledge, there is no other work that aims
to investigate the problem of user diet and health forecasting in a streaming context
with privacy guarantees. Thus, in the following subsections, we present works that
are comparable to each of the steps chosen in our pipeline.

6.6 related work 97

6.6.1 Multivariate Time-Series Clustering Mechanism

Our work is inspired by [183] whose clustering technique is composed out of two
logical steps, discretization to univariate time series and clustering the resultant
data. We adapted their framework to implement a streaming variant of for the
first step – discretization, followed by computing the Hamming similarity for the
second step – pattern matching. Since pattern matching is trivial compared to the
discretization process, we focus on the related work for the latter.

Discretization of time-series. Our discretization process is very similar to
the one proposed by [184]. The goal is to map each multivariate data point of a
time-series into a discrete value. According to the authors, the shape of the pattern
is the most important trait of a series instead of actual values. In their study, the
real-valued time-series was split into windows. Each subsequence is clustered
using k-means. Discretized version of the time-series is obtained by using the ID
of the cluster with the closest centroid to each subsequence. Lastly, the series of
symbols are clustered using a suitable similarity measure.

The symbolization method proposed by [184] is suitable for our case for two
main reasons: (1) working with low-dimensional symbols decreases the execution
time of the algorithm, which is crucial in low-latency systems such as streaming
applications, and (2) working with symbols instead of raw data brings benefit in
terms of stronger user privacy.

Our work is also inspired by the work proposed by [185], where the authors
aimed to discover similar patterns in the traveling habits of the subjects over
streaming trajectories. Their approach partitions the stream into windows applies a
clustering algorithm to observe the movements of the individuals in the given time
frame and uses the clusters to detect co-movement patterns. The authors cluster
the locations with respect to a specific threshold and we follow the same principle
with a few tweaks that suit our problem.

6.6.2 Approaches for Federated Learning

We focus on studies that aim to solve two of the drawbacks of FL: the shortcomings
of training only one federatedmodel that should provide accurate predictions for all
the participants, and the need for additional privacy methods so that sensitive data
cannot be inferred from the updates sent to the server. We organize our discussion
around these two problems.

Clustered federated learning. Clustered Federated Learning framework [186]
was introduced to improve the performance of classic federated algorithms by
leveraging natural groups that exist in the client population. The concept has been
adopted by several studies, such as [187], who applied a clustering technique on
patients’ data to boost the performance in predicting the hospitalization time and

98 6 privacy preserving time-series forecasting of user health data streams

mortality using electronic medical records. Moreover, [188] studied time-series
forecasting and showed that training separate global models for different clusters
of time-series improves the performance.

This procedure is not very different from the classic FL. The server clusters
the clients according to a chosen similarity metric. Let us assume it discovers k
groups. Then, the FL algorithm proceeds with the small modification that the
server maintains k models instead of one. When an update from a client arrives,
the server must first check the cluster label of the client to decide which model
the user’s update will contribute to. Also, each client has to download the model
corresponding to its cluster. We adapted this approach for our work.

Differentially private FL. Federated learning made a significant step towards
better privacy protection by offering a trainingmechanism that can learn from clients’
data without having access to the actual data. However, sensitive information can
still be inferred from the updates sent to the central server. Zhu et al. [189] proved
in their study that it is, in fact, possible to obtain such information from shared
gradients.

Other aggregation algorithms only use the weights obtained from training
the local model. Studies show that this technique is not safe either and that
private information of individuals can still be divulged [190, 191]. Regardless of the
parameters chosen to be shared, each new communication round in an FL algorithm
can lead to data leaks, which accumulate in time throughout the process. DP can,
thus, be used to conceal the contribution of each client during the training process.
Similar to the general idea of DP, a trade-off must be found between privacy loss
and model performance.

Geyer et al. [182] address the problem of differentially private FL from a client
point of view. Their algorithm distorts the updates sent at each communication
round by adding Gaussian noise. This method can maintain the privacy of the
clients with only a small decrease in performance, given the dataset size is large
enough. Similarly, [192] tackle the same problem in the context of sensitive health
data. In their work, the authors add noise to the optimization function and prove
this approach offers good data privacy while maintaining an adequate model
performance. We applied this DP technique and studied its effect on the prediction
accuracy of the model.

6.6.3 Noisy Data with LSTMs for Forecasting

We also study the effect of another DP method, which involves disturbing the
training datasets themselves by adding noise. The study that served as our main
inspiration for this DP algorithm has been undertaken by [193], in which the authors
used DP for stock price predictions. Albeit in a non-federated context, this study

6.7 summary 99

is closely related to our work because it noises the data directly to achieve better
privacy preservation.

6.7 Summary

We provide an online system that can forecast the dietary habits and health data
of users of fitness tracking applications and/or wearable devices. To this extent,
we have designed and implemented a pipeline capable of accurately predicting
user behaviour and that can leverage similarities between individuals to improve
model performance while guaranteeing data privacy. Depending on the dataset
and features, our predictions are nomore than 0.025% far off the ground-truth value
with respect to the range of the value. Moreover, our clusteringmechanism leverages
similarity between the users to improve prediction accuracy while reducing the
model training time, with up to 49% error reduction as compared to an FL model
trained for the whole dataset. With high privacy guarantees on user data ε = 0.1, we
show that the baseline model has a small drop in prediction accuracy and that data
noising mechanism benefits from user clustering. Our clustering system manages
to sustain the prediction accuracy and, in most cases, improve it, with a reduction
of 38% error in prediction accuracy as compared to the baseline noisy data model
in the best case. Our work has the following limitations: our clustering mechanism
is currently an offline learning mechanism as it only assigns the k and the user
clusters once. Hence, the clustering mechanism can not accommodate to changes
that might appear in the real-time scenario such as: major changes in the user meal
patterns due to external factors such as seasonal or location changes, addition of
a large number of users that possess a unique meal pattern not well-represented
by the already present meal clusters, or addition of new features to the system; all
these changes might require recomputing the k for streaming k-means clustering
followed by the pattern matching mechanism to find new user clusters. Hence, for
future work, we consider investigating adaptive k-means and onlineMLmodels. We
believe adaptive modeling will help in improving the performance of the system.

Acknowledgment

This work is done in collaboration with Sonia-Florina Horchidan and Zainab Abbas
at KTH. I would like to thank Zainab for her great ideas for implementing the time-
series forecasting pipeline and for co-supervsion of our master student Sonia, and
to Sonia for her hard work in implementing the pipeline for time-series forecasting.
We are also thankful to Asst. Prof. Paris Carbone and Prof. Sonja Buchegger at
KTH for their valuable advice, guidance and support during this research project.

chapter

7
PyDPLib: Python Differential Privacy
Library for Private Medical Data
Analytics

7.1 Introduction

Pharmaceutical and medical technology companies are interested in accessing
real-world medical data for driving their business models and decisions, which aids
in the provision of continuously improving personalized services. However, these
companies are not interested in personally identifiable data or protected health
information (PHI) of the individuals but rather the cohort data. These companies
cooperate with medical institutions who collect the medical data and want to share
it, but they need to protect the privacy of the participating individuals.

Sharing data with PHI raises privacy concerns due to the threat of misuse
or re-identification. Data protection laws like the EU’s General Data Protection
Regulation (GDPR) ensure higher public trust in data sharing, and enforce informed
use of collected user data by the companies. GDPR enforces privacy-by-design, which
means that the technology is designed with data privacy preservation [13]. One
solution is to use information flow control [3] and design privacy-centric platforms
that possess data flow models with respective permissions for every type of user
to ensure user privacy and transparent accountability. However, a privacy-centric
platform alone cannot solve the problem of sharing medical data with medical
technology companies.

Data anonymization is commonly employed for privacy preservation in the
health care industry, although anonymization alone does not guarantee sufficient
privacy preservation due to the risk of re-identification and attribute disclosure [11].
A possible solution could be the use of realistic synthetic datasets for enhanced user

101

102 7 pydplib: python differential privacy library for private medical data analytics

privacy with reduced risk of re-identification. However, generation of mass-scale
synthetic datasets might not always be reasonable due to: 1) the need for continuous
integration and generation of new data, and 2) fixed privacy preservation levels for
all parties. Mechanisms for secure multiparty computation [194] are also proposed
in literature for collectively computing private statisticswithout sharing the sensitive
data. However, these solutions might be computationally expensive and may not
always cater to solving the problem of sharing statistical patterns with third parties.

Differential privacy (DP) [4] allows computing statistical patterns in a dataset
while withholding information about individuals in the dataset. DP provides
provable privacy guarantees and ensures the minimal impact of participation of a
single individual in a database, by adding calculated noise depending on the queried
statistical patterns. DP can also cater to flexible noise addition based on the user
type and privilege. Numerous DP libraries exist in literature such as: Google’s DP
library [195] and its python wrapper PyDP [196], Diffprivlib IBM’s DP library [197]
and open-source implementation [198], dp-stats library for differentially private
statistics and machine learning algorithms [199], mechanisms for DP histogram
publication [200], and OpenDP collection of tools for statistical analysis of sensitive
private data [201]. However, to the best of our knowledge, most of these tools are
end-to-end solutions for computing DP statistical measurements, which makes it
difficult to integrate them in an already-existing system without making significant
changes to the system internals. Using theseDP tools also requires an understanding
of privacy preservation techniques which might be difficult for professionals in the
medical domain. Moreover, these tools cannot often be used in conjunction with
data visualization software, which makes it hard to integrate them in end-to-end
systems that only require implementation of a privacy preservation layer.

We have developed PyDPLib, a platform-independent differential privacy library
in Python. We have also developed a privacy-centric platform for structured data
collection that employs PyDPLib, and we show our results on a database of prostate
cancer patients. Our reporting software SmartReports and a PI-RADS [202] template
was used to collect this dataset. Moreover, by using a software with interactive
visualization such as plotly [203], PyDPLib is used to create interactive and private
statistical plots.

The main contributions of this chapter are as follows.

• We have developed a differential privacy library PyDPLib for computing
private statistics with medical data as a use case.

• PyDPLib provides different levels of privacy preservation with noise addition
guarantees, depending on the user type and privilege.

• Our reporting software SmartReports uses information flow control, and when
used with PyDPLib, ensures 2-layer privacy preservation.

7.2 information flow control 103

• PyDPLib supports a variety of statistical operations on continuous and discrete
data, and can be used in conjunction with any data visualization software.

• We have developed a template for structured clinical data collection and cu-
rated a human expert labeled dataset based on our template. We demonstrate
our results for PyDPLib on this dataset.

7.2 Information Flow Control

Information flow control (IFC) tracks how information propagates through a
program during execution to make sure that the program handles the information
securely [3]. IFC is used as a privacy preservation technique by creating data flow
models and specifying data flow policies. The creation of data flow models with
respective data flow policies (permissions) ensures user privacy and transparent
accountability. Privacy-centric platform is one of the solutions based on IFC. This
solution requires information flows and privileges to be declared beforehand, so all
the data elements are attached to respective data policies [67, 104, 105].

7.3 Structured Clinical Data Collection

SmartReports Reporting Software. SmartReports enables structured reporting
of radiological examinations and procedures evaluated using flexible decision
trees. Furthermore, the underlying data is machine-readable and therefore does
not require reverse-engineering with techniques like natural language processing.
The generated reports are exported to our electronic data capture (EDC) software,
where the data is accessible for processing by PyDPLib.

Electronic Data Capture. Our EDC web application is a privacy-centric plat-
form implementing privacy-by-design principles of the GDPR. State-of-the-art data
protection measures have been adopted based on the Open Web Application Secu-
rity Project (OWASP) Top Ten list, which represents a broad consensus about the
most critical security risks. The clinical report data is imported and stored in this
application and the DP analyses are generated server-side and can be accessed by
users based on their data flow policy.

PI-RADS Template. Clinical report data is captured for prostate cancer patients
who underwent MR-imaging using the Prostate Imaging Reporting & Data System
(PI-RADS) v1 [202]. PI-RADS has several important objectives, among them the
global standardization of acquisition, interpretation and reporting of prostate multi-
parametric MRI (mpMRI), simplification and standardization of report terminology
and content, assistance in selection of patients undergoing biopsy and patient
management, and facilitation of large scale clinical trials for data collection, outcome

104 7 pydplib: python differential privacy library for private medical data analytics

monitoring, and further research. It is designed to improve patient outcomes by
detecting clinically significant prostate cancer and reduce the need for biopsies
and unnecessary treatment. The PI-RADS v1 definition of clinically significant
cancer (based on pathology/histology) is: Gleason score ≥ 7 (including 3+ 4 with
prominent, but not predominant Gleason 4 component) and/or volume ≥ 0.5ml
and/or extra prostatic extension (EPE). Table 7.1 shows the 5-point scale for the
PI-RADS score based on the likelihood of combination ofmpMRI findings correlated
with the presence of a clinically significant cancer. It is applied to each lesion. In
addition to the PI-RADS score, information regarding age, Gleason score, prostatitis,
benign prostatic hyperplasia (BPH), number of lesions and therapy is also collected.

Table 7.1: 5-point scale of PI-RADS assessment score

Score Assessment

1 Very low (clinically significant cancer is highly unlikely)
2 Low (clinically significant cancer is unlikely)
3 Intermediate (clinically significant cancer is equivocal)
4 High (clinically significant cancer is likely)
5 Very high (clinically significant cancer is highly likely)

7.4 PyDPLib : Differential Privacy Library

PyDPLib provides ε-DP with Laplacian noise addition. The most common usages
of DP mechanisms add DP-noise to the output of the computed statistical measures.
However, since our platform provides a visual representation of both the raw and
aggregated statistics, PyDPLib adds noise to the input data points which may or
may not be aggregated. PyDPLib uses Numpy for dependencies, and supports a
wide range of statistical queries and data types.

Figure 7.1 shows a high-level diagram displaying inputs/outputs and the
interactions between different methods in PyDPLib. Input from the database or
reporting system is passed to dp_calculatemethod. The dp_calculate first sets
the noise level based on the input noise_factor. Afterwards, dp_calculate calls
the Binary Searchmethod to find a suitable ε for the desired noise settings and Sf,
by using the Laplace mechanism for noise addition. This binary search is done in
recursion until we find an ε that gives us the appropriate noise percentage. Finally,
ε is used to noise the input data and PyDPLib returns the differentially private data
dp_data, ε, Sf as well as the percentage noise.

7.4.1 Threat Model and Types of Users

In our approach, users are divided into three types:

7.4 pydplib : differential privacy library 105

Figure 7.1: PyDPLib methods and interaction with other modules.

Owner: Hospital that own the data, and possess the full right to information
disclosure;

Collaborator: Collaborating hospitals that access the data for research and other
collaborative services;

Third party: includes commercial partners that need access to the medical data
without information disclosure.

For our threat model, the data owners are trusted parties. They are also data
curators and assign the data flow policies. The collaborators are trusted but can
be honest-but-curious parties in the worst case. Therefore, we recommend using
privacy preservation for collaborators. Third parties should not have access to the
data but could visualize the underlying information to make general observations
on the data patterns. In summary, third parties should not be able to extract the
information of a single user based on the visualizations.

7.4.2 Setting the Appropriate Noise Factor

Depending on the type of user asmentioned earlier, PyDPLib selects respective noise
addition settings. The Laplacian noise addition is controlled by the noise_factor,
which offers three settings for noise addition to input data:

• 0: low. 0− 5% noise addition. Suitable for data owners (privileged users).

• 1: medium. 5 − 10% noise addition. Suitable for collaborators requiring a
low loss of accuracy.

• 2: high. 10− 20% noise addition. Suitable for third parties requiring statistics
without data disclosure.

106 7 pydplib: python differential privacy library for private medical data analytics

PyDPLib sets the appropriate noise level based on noise_factor. Afterwards,
PyDPLib selects the appropriate ε for the Laplacian noise mechanism depending on
the range, data type, and sensitivity of the statistical query Sf. In case of is_range
or categorical data, the data is first fit to the input range and afterwards, noise
percentage is calculated. We use a binary search algorithm for ε selection.

Algorithm 4 Binary Search for ε
Data: epsilons, lowidx, hiidx, noise_level, input_data, is_bool, is_range, Sf
Result: ε
Initialize sum to 0. Set noise_lvl_low and noise_lvl_high depending on
noise_level.
if (hiidx ≥ lowidx) then

mid = (hiidx + lowidx)/2

for 5 times do
for datum in input_data do

Calculate noised data using Laplacian noise with Sf and ε =
epsilons[mid]

end
if is_range then fit noised data to range;
Calculate percentage noise and add to sum.

end
Set noise_mid to the average of sum.
if noise_lvl_low ≤ noise_mid ≤ noise_lvl_high then

return ε = epsilons[mid]; /* found */
else if noise_mid < noise_lvl_low then

Repeat Binary Search in [lowidx,mid]
else

Repeat Binary Search in [mid, hiidx]
else

return 0 ; /* not found */
end

7.4.3 Binary Search Algorithm for ε Selection

We perform a binary search for ε based on the noise_factor and the sensitivity Sf
of the statistical query. lowidx and hiidx are used to query low and high indexes in
the epsilons array respectively. The binary search algorithm also takes additional
parameters for determining data fitting mechanisms and noise calculation: is_bool
and is_range are used for data fitting, and noise_level indicates the noise margins
for selected noise factor. Algorithm 4 shows the complete Binary Search algorithm.
Once an appropriate ε is found, the data points are noised according to Sf of the

7.4 pydplib : differential privacy library 107

selected statistical query, and forwarded to the output along with selected value of
ε.

7.4.4 Supported Data Types

PyDPlib supports a vast variety of data formats as well as continuous and discrete
(or categorical) data. The categorical variables must be mapped to a numeric
format. data_type could be char, string, int, numpy.int, float, numpy.float, bool,
and numpy.bool. is_range (True/False) specifies if data values lie within a specific
range. The output data is fitted to the range of input data after noise addition.

FittingData toRange. PyDPLib features thefit_data_to_range anddata_range
methods to handle categorical variables or range-bound data. The noising mech-
anism must return valid values regardless of the chosen noising levels. When
is_range is True, the range of valid data points is inferred from the input data
(non-noised) using the method data_range. This method returns all the unique
data points as range_values. Afterwards, fit_data_to_range takes the following
input parameters.

• data: noised data to fit to range;

• range_values: unique and valid data point values inferred from input data;

• data_type: could be int, numpy.int, float, numpy.float, bool, and numpy.bool.

The fitted result is interpreted as:

x ′fitted =
(maxr −minr)(x

′ −mindata)

maxdata −mindata
+minr (7.1)

wheremaxr andminr are the maximum and minimum input values inferred from
range_values, and x ′ is a noised data point in data with maximum and minimum
noised values given bymaxdata andmindata respectively.

Continuous data is represented by float or numpy.float, and the fitting mecha-
nism is as in Equation 7.1. fitted_data is used to compute the noise percentage as
compared to the input data. For boolean data, the noised data is fitted as: True if
noised data > 0.5, else False. This is in agreement with the randomized response
for DP in boolean attributes as observed in [204]. An alternative approach for
noising the boolean values independently of the statistical query is to use the coin
flip algorithm, where the reported boolean value is dependent on the outcome
of the successive coin flips. However, repeated queries may expose the original
probabilities of the underlying data.

108 7 pydplib: python differential privacy library for private medical data analytics

7.4.5 Supported Statistical Queries and Sensitivity

PyDPLib offers four statistical query_type: 1) count or histogram, 2) average or
mean, 3) median, and 4) variance. The noise addition mechanism (Equation 2.7)
uses sensitivity Sf of the statistical operation to compute the margin of added noise,
and each data point is individually noised. If the input data is categorical or range-
bound, the noised data point is then fitted to the input range accordingly. Sensitivity
of statistical queries for calibrating the noise addition is a well studied problem
in literature [4,30,205,206]. We now describe the Sf of each statistical query in detail.

Count or Histogram. Count or histogram queries are the simplest of statistical
operations as the addition or deletion of a single individual or record can change
the count by at most 1 [4]. According to Equation 2.6, the sensitivity for count
or histogram query is given as Sf(hist) = 1. Therefore, noise is sampled from
Lap(0, Sf(hist)/ε) distribution.

Average or Mean. For computing the sensitivity of average or mean, we need
to compute the upper and lower bounds of the input data. For n input data points
with lower bound a and upper bound b, the sensitivity is given by [207]:

Sf(avg) = |b− a|/n (7.2)

Each data point is individually noised with a randomly picked sample from
Lap(0, Sf(avg)/ε) distribution, and a noisy average is computed by the data analyt-
ics software.

Median. Although the median and mean queries are statistically different, they
exhibit the same sensitivity. The sensitivity of median query on an input data with
n entries with lower bound a and upper bound b is given by [205]:

Sf(med) = |b− a|/n (7.3)

x ′ is computed by adding a randomly picked sample from Lap(0, Sf(med)/ε)

distribution to x data point.

Variance. Sensitivity of variance for input data with n entries with lower bound
a and upper bound b is given by:

Sf(var) = (b− a)2/n (7.4)

Here x ′ is computed by adding a randomly picked sample from Lap(0, Sf(var)/ε)
distribution to x data point. The noised data is then fitted to the input range, if
applicable.

7.5 experiments and results 109

7.5 Experiments and Results

920 prostate cancer patient reports based on the PI-RADS template have been
collected within the years 2017-18 by board-certified radiologists, and manually
labelled by domain experts. Some of the collected andmanually extracted attributes
are shown in Table 7.2. We illustrate a variety of private statistical plots on the
PI-RADS dataset using PyDPLib and visualized with Plotly [203]. Since PyDPLib
perturbs the data distribution according to the data type, range and desired statisti-
cal query; and is independent of the used plotting mechanism, any data analytics
or visualization software can be used to compute and display these plots.

a) Low b) Medium

c) High

Figure 7.2: Histograms for patient age vs. PI-RADS scores with different
noise_factor settings (low – high). Example for x-versus-y plot with noised
y-axis, query_type = 1, is_range = True, and data_type = int.

query_type 1: Histograms. Figure 7.5 shows the histogram of the patient ages.
Due to privacy concerns, we only illustrate the histogram in high noise settings.
is_range is True as age can only be positive. Ages are directly noised using PyDPLib
and displayed as a histogram. An alternative approach would be to compute the
counts first and pass them to PyDPLib, as we discuss for the following histograms.

Chapter 7.2 shows the histogram plots for age versus PI-RADS score in low,
medium and high privacy settings. Absolute ages are used, and is_range = True

110 7 pydplib: python differential privacy library for private medical data analytics

a) Low b) Medium

c) High

Figure 7.3: PI-RADS scores vs. average patient age with different noise_factor
settings (low – high). Example for x-versus-y plot with noised x-axis, query_type
= 2, is_range = True, and data_type = float.

a) Low b) Medium

c) High

Figure 7.4: Prostatitis vs. median age with different noise_factor settings (low –
high). Example for x-versus-y plot with noised x-axis, query_type = 3, is_range
= True, and data_type = int.

7.5 experiments and results 111

Table 7.2: PI-RADS dataset

Attribute Type Data type

Anonym_ID numerical int
RequestRadiologyDepartmentCode categorical string
ProcedureValidatingPhysicianName free text string
LastModified categorical date
Age numerical float
Year numerical int
Gleason score categorical int
PCA_no_PIRADS_defined categorical bool
Follow up categorical string
PIRADS score categorical int
Number_of_Lesions numerical int/string
Prostatitis categorical string
BPH categorical bool
Primary_TU_LocalRecurrence_or_Progress categorical string
Therapy categorical string
TURP surgery categorical string

Figure 7.5: Age histogramwith noise_factor = 2 (high). Example for query_type
= 1, is_range = True, and data_type = float.

as count can only be positive. Moreover, PI-RADS score can only have valid values
in the range 1− 5 as described in Section 7.3. The counts for PI-RADS score for each
age are computed on raw data, and passed to the PyDPLib. This is an example of
x-versus-y plot, where only y-axis is noised. As can be seen, the overall distribution
of samples is maintained in all noise settings. However, the individual frequencies
recorded in the histograms are noised differently depending on the selected noise

112 7 pydplib: python differential privacy library for private medical data analytics

factor for increased user privacy. This makes it hard to single out an individual
from the visual plot. Prostate cancer occurrence becomes high in ages 50 − 80,
with the highest levels of PI-RADS scores in 60− 70’s. This behaviour is generally
observed regardless of the noise factor.
query_type 2: Average or mean. Chapter 7.3 shows the PI-RADS score versus

the average patient age in low, medium and high privacy settings. Ages are inter-
preted as continuous data with float data type, and is_range is set to True since
the ages can only be positive. Patient ages are individually noised by PyDPLib
and noisy average is computed. This is an example of x-versus-y plot where only
x-axis is noised. As can be seen, the average age for all PI-RADS scores lies in the
60− 70’s range. Addition of a new record with an extreme value will alter the query
sensitivity, and PyDPLib will select an ε that offers the desired noise addition with
low impact on overall distribution.

query_type 3: Median. Chapter 7.4 shows the median patient age versus
Prostatitis. As shown in Table 7.2, Prostatitis is a categorical attribute (is_range
= True) with values: chr (chronic), y (yes), n (no), acute and acute on chronic.
These categorical variables are mapped to numerical values and passed to PyDPLib.
After noising, these numerical values are mapped to original categories and
visualized as a box plot with median bars. The resultant plot is an example of
x-versus-y plot with noised x-axis. Alternatively, we can noise the ages and visualize
them with respect to Prostatitis. Similarly, we can create many interesting statistical
plots for various data types by using PyDPLib with any visualization software.

7.6 Summary

Medical institutions that want to share cohort statistics with external parties, e.g.
pharmaceutical companies, have to protect the privacy of the individual patients
that contributed to the underlying data. We have presented PyDPLib, a differential
privacy library for private medical data analytics that greatly simplifies this task.
PyDPLib offers different common statistical operations, such as histograms and
mean, and noises the input data according to the type of operation, the data type,
and the privilege level of the intended end user. The limitations of PyDPLib include:
the current version requires more testing for handling the boolean data as the test
database did not have many boolean features to experiment with. Moreover, all
the categorical variables must be mapped to a numerical format for processing by
PyDPLib. For future work, the library can be expanded to support more complex
statistical queries and ML models in order to be used for displaying a wider range
of the statistics on large-scale private ML models.

Based on a use case with real data, we have shown that PyDPLib allows creating
statistical data visualizations that preserve the underlying data distributionswithout

7.6 summary 113

compromising the privacy of the individuals. Although developed for concrete
use in our reporting platform, PyDPLib is general enough to be used in any data
analytics or visualization application that requires differential privacy.

Acknowledgment

This work is done during the author’s internship at Smart Reporting GmbH,
Germany. We are thankful to Philipp Matthies and Francisco Pinto at Smart
Reporting for their valuable suggestions, guidance and support during this research
project. Their constant feedback helped us making this work successful. We are
also truly grateful to our collaborators fromMedical Faculty Mannheim, Heidelberg
University, Mannheim, Germany, for providing the data for this study.

chapter

8
Conclusion

In this thesis we have performed an empirical study on the impact of privacy
preservation techniques on the different components of the IoT ecosystem with
the smart health care domain as a use case. First, we presented a taxonomy and
analysis of the privacy preservation techniques for the IoT ecosystem. Second,
we presented a method to generate realistic synthetic and private smart health
care datasets. Third, we presented, implemented and evaluated an end-to-end
pipeline for machine learning with reconfigurable privacy on resource-limited
computing devices which found a trade-off between privacy preservation, device
resource usage and application accuracy. Afterwards, we presented and evaluated
a solution for privacy-preserving forecasting of health care data streams with
trade-offs between preserving user privacy, application runtime and prediction
accuracy. Finally, we presented a solution for private data analytics in the form of a
differential privacy library for private medical data analytics.

8.1 Summary of Results

The first part of this thesis presented in Chapter 3 provided an overview of privacy
preservation techniques and solutions proposed so far in literature along with the
IoT architecture layers (L1: perception, L2: network, L3: application) at which
privacy is addressed by each solution, as well as their robustness to privacy
breaching attacks. An analysis of functional and non-functional limitations of each
solution was done, followed by a short survey of machine learning applications
designed with these solutions. This taxonomymay serve as a guideline for selecting
appropriate privacy preservation techniques according to the nature of data and
the system performance requirements. We also identified open issues in the privacy
preserving solutions when used in IoT environments. In general, there is no clear
winner among the privacy preservation techniques. Depending on the system

115

116 8 conclusion

requirements, model obfuscation techniques, multi-tier and decentralized ML,
private compute units and data flow models using blockchains and pre-defined
information flows emerged as relatively strong candidates for privacy preservation.
Another interesting observation was that industry and health care organizations
often employ the relatively weaker solutions for privacy preservation due to their
smaller negative impact on data utility and ease of use. Moreover, we noted that the
solutions proposed in the recent years are trying to incorporate the GDPR, which
will ensure better privacy guarantees for users.

Next, we designed, implemented and evaluate a solution for generating realistic
synthetic private smart health care datasets from the sensitive non-private datasets
to enable privacy preserving data sharing in Chapter 4. We proposed a generative
adversarial network model coupled with differential privacy mechanisms for
generating realistic and private smart health care datasets. Our solution catered
to the unique challenges of smart health care data: volume, velocity, and variety -
various data types and distributions. Our proposed solution not only enriched
and augmented the input data samples but was also able to generate realistic
synthetic data samples as well as generate the differentially private data samples
under different settings: learning from a noisy distribution or noising the learned
distribution. We tested and evaluated our proposed approach using a real-world
Fitbit dataset. Our results indicated that our approach is able to generate high
quality synthetic differentially private datasets that preserve the statistical properties
of the original dataset.

In our next work presented in Chapter 5, we have designed, implemented
and evaluated a solution for machine learning with reconfigurable privacy on
resource-limited computing devices, complete with corresponding algorithms
and a supporting end-to-end pipeline. The goal was to find a trade-off between
preserving necessary user privacy, device resource usage and application accuracy.
We used the generalization techniques for data anonymization and provided
customized injective privacy encoder functions to make data features private. For
this work, we assumed that regardless of the device resource availability, some data
features must be essentially private. We termed all other data features that may pose
a low privacy threat as the non-essential features. We proposed Dynamic Iterative
Greedy Search (DIGS), a novel approach with corresponding algorithms to select
the set of optimal non-essential data features to be private for machine learning
applications provided device resource constraints. DIGS performed a breadth-wise
iterative search for finding the most private version of data for the application
provided device resource usage constraints, where all the essential features and
a subset of non-essential features were made private on the edge device without
resource overutilization. We evaluated DIGS on a Raspberry Pi model A device for
an SVM-based classification application on real-life health care data. Our evaluation
results showed that, while providing the required level of privacy, DIGS allows

8.1 summary of results 117

to achieve up to 26.21% memory, 16.67% CPU instructions, and 30.5% of network
bandwidth savings as compared to making all the data private. Moreover, our
chosen privacy encoding method demonstrated a positive impact on the accuracy
of the classification model for our chosen application.

Chapter 6 presented the design, implementation and evaluation of an end-to-
end pipeline for privacy preserving forecasting of data streams with a low loss of
application accuracy. Our proposed pipeline used differential privacy and federated
learning for the first time in the context of health care data streams and found a trade-
off between preserving user privacy and achieving acceptable system performance
in terms of application accuracy and runtime. We also proposed a clustering
mechanism to leverage the similarities between users to improve the prediction
accuracy as well as significantly reduce the model training time. Depending on
the dataset and features, our predictions were no more than 0.025% far off the
ground-truth value with respect to the range of value. Moreover, our clustering
mechanism brought a significant reduction in the training time, with up to 49%
reduction in prediction accuracy error in the best case, as compared to training a
single model on the entire dataset. Moreover, our proposed privacy preserving
mechanism at best introduced a decrease of ≈ 2% in the prediction accuracy of the
trained models. Furthermore, our proposed clustering mechanism reduced the
prediction error even in highly noisy settings by as much as 38% as compared to
using a single federated private model.

Finally, Chapter 7 presented the design and implementation of PyDPLib, a
privacy preservation library for private data analytics and visualization with health
care data as a use case. PyDPLib offers different common statistical operations,
such as histograms and mean, and noises the input data according to the type of
operation, the data type, and the privilege level of the intended end user. PyDPLib
used a binary search algorithm to find the appropriate parameters for adding
Laplacian noise to ensure differential privacy on the user data. We illustrated our
results on a platform for visualizing private statistics using a database of prostate
cancer patients. Our experimental results showed that PyDPLib allows creating
statistical data plots without compromising patients’ privacy while preserving
underlying data distributions. Even though PyDPLib has been developed for use in
a specific platform for reporting the radiological examinations and procedures, it is
general enough to be used in any data analytics or visualization application that
requires differential privacy.

We conclude from our aforementioned results that it is possible to find proper
trade-offs between preserving necessary user privacy, retaining data utility and
achieving acceptable system performance by means of applying (combinations of)
appropriate privacy preservation techniques to machine learning based systems.
Efficient and scalable solutions like differential privacy, federated learning and
generalization can be used stand-alone or in combination with other privacy

118 8 conclusion

preservation solutions, in order to design solutions that offer privacy preservation
guarantees with relatively low impact on system performance in terms of reduced
model accuracy, slower runtimes, and increased device resource usage.

8.2 Generalization to Other Application Domains

Although our solutions were designed and tested particularly for the smart health
care IoT domain, they are general enough to be extended to other application
domains such as smart homes and smart cities. The proposed approach for
generating realistic synthetic private datasets is powerful enough to learn a wide
variety of data distributions, and minor changes to the generative adversarial
network model architecture can generate data samples with simpler/more complex
distributions. Moreover, our solution for machine learning with reconfigurable
privacy preservation on resource-limited computing devices is domain agnostic,
and can be used with more complex privacy preservation solutions as long as the
solutions can be expressed as injective functions. Finally, our PyDPLib library for
privacy-preserving data analytics can be used for other IoT application domains and
with other visualization platforms to even create interactive differentially private
plots.

8.3 Ethical and Social Aspects

Our research work puts the users’ privacy first while designing all the solutions
for the smart health care domain. We have taken proper measures to preserve
the privacy of the volunteers who contributed their data for our study. All the
participant userswere informed beforehand of the data featureswewill be collecting,
where they will be stored and howwewill process them. Moreover, the participants
were asked beforehand for any particular health conditions that might display
unique behaviours in their diet or activity patterns, and therefore, participants with
unique health conditions were not included in this study. Moreover, we tried to
counter the data bias by having as much of gender balance as possible within the
participant pools for each location. However, the exact gender split for participant
pool is not disclosed for privacy preservation reasons. Similarly, the participant
pool was carefully chosen to have an overall population age within a close range
(around 20’s-30’s). None of the user data has been stored on cloud platforms or
storage services, instead, the de-identified data has only been stored on the personal
machine of the writer of this dissertation. We have taken careful measures to
remove any identifiable information from the dataset before sharing with master
thesis students, and have used peer-to-peer data sharing mechanisms that do not
store any data on an intermediate machine during data transfer.

8.4 future work 119

From the social perspective, our solution for smart health care data generation
will enable wide-scale data sharing for open use in research, and encourage
opportunities for research collaborations between the academia and health care
industry. We hope that this work will also contribute to the improvement of
physical health of common users by increasing their participation and trust in
the usage of personal devices and applications for smart health care. During the
course of this study we have also contributed to the improvement of physical health
of participating users, who became more conscious of their dietary and activity
patterns during this study. Most of the volunteers ended up buying smart health
care trackers after this study and resolved to adopt a healthier lifestyle. In summary,
all these solutions have made an effort towards improving user trust in the adoption
of smart health care platforms by finding proper trade-offs between preserving user
privacy and providing good quality of service.

8.4 Future Work

For future work, we would like to test our proposed solutions on bigger large-scale
real-world smart health care datasets to observe the benefits of employing our
solutions in terms of achieved performance and privacy preservation on a large
scale. Our solution for smart health care data generation could be extended to other
domains such as smart homes for generating private realistic synthetic smart home
datasets that may otherwise contain highly sensitive user data in their original form.
Moreover, our solution for privacy preserving time-series forecasting of user health
data streams proposes use of a clustering mechanism that requires partial data
transfer to a central system which may slightly impact the privacy preservation
experienced at the user end. We can look into alternative solutions for clustering
the users with minimal data transfer, and find mechanisms to conceal user cluster
membership at the server end. Moreover, PyDPLib could be extended to support
more statistical operations and data types, and even accommodatemachine learning
models with privacy preservation guarantees.

In summary, smart health care is a fast-growing IoT domain with its unique
challenges such as the requirements for efficient and scalable privacy preservation
techniques that offer high data utility and low loss of application accuracy. There is
a huge room for improvement in solutions for privacy preservation in the smart
health care domain, and many lessons to be learned from the current research in
the traditional health care industry.

Bibliography

[1] K. Ashton, “That ‘internet of things’ thing,” RFID journal, vol. 22, no. 7, pp.
97–114, 2009.

[2] O. Mazhelis, E. Luoma, and H. Warma, “Defining an internet-of-things
ecosystem,” in Internet of Things, Smart Spaces, and Next Generation Networking,
S. Andreev, S. Balandin, and Y. Koucheryavy, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 1–14.

[3] D. Hedin and A. Sabelfeld, “A perspective on information-flow control.”
Software safety and security, vol. 33, pp. 319–347, 2012.

[4] C. Dwork and A. Roth, “The algorithmic foundations of differential privacy,”
Foundations and Trends® in Theoretical Computer Science, vol. 9, no. 3–4, pp.
211–407, 2014.

[5] S. Berkovsky, Y. Eytani, T. Kuflik, and F. Ricci, “Enhancing privacy and
preserving accuracy of a distributed collaborative filtering,” in Proceedings of
the ACM conference on Recommender systems. ACM, 2007, pp. 9–16.

[6] A. Padron and G. Vargas. Multiparty homomorphic encryption. Online:
https://courses.csail.mit.edu/6.857/2016/files/17.pdf. Accessed 28 October
2021.

[7] L. Sweeney, “k-anonymity: A model for protecting privacy,” International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 10, pp.
557–570, 2002.

[8] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam, “l-
diversity: Privacy beyond k-anonymity,” ACM Transactions on Knowledge
Discovery from Data (TKDD), vol. 1, no. 1, p. 3, 2007.

[9] N. Li, T. Li, and S. Venkatasubramanian, “t-closeness: Privacy beyond k-
anonymity and l-diversity,” in 23rd International Conference on Data Engineering.
IEEE, 2007, pp. 106–115.

[10] V. Costan and S. Devadas, “Intel SGX explained.” IACR Cryptology ePrint
Archive, vol. 2016, no. 86, 2016.

[11] S. Imtiaz, R. Sadre, andV. Vlassov, “On the case of privacy in the IoT ecosystem:
A survey,” in International Conference on Internet of Things (iThings). IEEE,
2019, pp. 1015–1024.

121

https://courses.csail.mit.edu/6.857/2016/files/17.pdf

122 bibliography

[12] A. Pekar, J. Mocnej, W. K. G. Seah, and I. Zolotova, “Application domain-based
overview of iot network traffic characteristics,” ACM Computing Surveys,
vol. 53, no. 4, Jul. 2020. [Online]. Available: https://doi.org/10.1145/3399669

[13] Privacy by Design | General Data Protection Regulation (GDPR). Online:
https://gdpr-info.eu/issues/privacy-by-design/. Accessed 28 October 2021.

[14] B. Sudharsan, J. G. Breslin, and M. I. Ali, “Rce-nn: A five-stage pipeline to
execute neural networks (cnns) on resource-constrained iot edge devices,” in
Proceedings of the 10th International Conference on the Internet of Things, ser.
IoT ’20. New York, NY, USA: Association for Computing Machinery, 2020.
[Online]. Available: https://doi.org/10.1145/3410992.3411005

[15] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas,
“Apache Flink: Stream and batch processing in a single engine,” Bulletin of the
IEEE Computer Society Technical Committee on Data Engineering, vol. 36, no. 4,
2015.

[16] A. S. Foundation, “Apache storm,” Online: https://storm.apache.org/, 2021,
accessed 28 October 2021.

[17] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Discretized
streams: Fault-tolerant streaming computation at scale,” in Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles, ser. SOSP ’13.
New York, NY, USA: Association for Computing Machinery, 2013, p. 423–438.
[Online]. Available: https://doi.org/10.1145/2517349.2522737

[18] J. Wieringa, P. Kannan, X. Ma, T. Reutterer, H. Risselada, and
B. Skiera, “Data analytics in a privacy-concerned world,” Journal of
Business Research, vol. 122, pp. 915–925, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0148296319303078

[19] S. Imtiaz, M. Arsalan, V. Vlassov, and R. Sadre, “Synthetic and private smart
health care data generation using GANs,” in 2021 International Conference on
Computer Communications and Networks (ICCCN). IEEE, 2021, pp. 1–7.

[20] S. Imtiaz, P. Matthies, F. Pinto, M. Maros, H. Wenz, R. Sadre, and V. Vlassov,
“PyDPLib: Python differential privacy library for private medical data analyt-
ics,” in 2021 IEEE International Conference on Digital Health (ICDH), 2021, pp.
191–196.

[21] S. Imtiaz, S.-F. Horchidan, Z. Abbas, M. Arsalan, H. N. Chaudhry, and
V. Vlassov, “Privacy preserving time-series forecasting of user health data
streams,” in IEEE International Conference on Big Data (Big Data). IEEE, 2020,
pp. 3428–3437.

https://doi.org/10.1145/3399669
https://gdpr-info.eu/issues/privacy-by-design/
https://doi.org/10.1145/3410992.3411005
https://storm.apache.org/
https://doi.org/10.1145/2517349.2522737
https://www.sciencedirect.com/science/article/pii/S0148296319303078

bibliography 123

[22] S. Imtiaz, Z. Tania, H. N. Chaudhry, M. Arsalan, R. Sadre, and V. Vlassov,
“Machine learningwith reconfigurable privacy on resource-limited computing
devices,” October 2021, to appear in the proceedings of 14th IEEE Interna-
tional Conference on Security, Privacy, and Anonymity in Computation,
Communication, and Storage (IEEE SpaCCS 2021).

[23] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in Neural Information Processing Systems (NIPS), vol. 27,
2014. [Online]. Available: https://proceedings.neurips.cc/paper/2014/file/
5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

[24] Fitbit. Online: https://www.fitbit.com/se/home. Accessed 28 October 2021.

[25] MyFitnessPal. Online: https://www.myfitnesspal.com/. Accessed 28 Octo-
ber 2021.

[26] I. Weber and P. Achananuparp. Myfitnesspal food diary dataset. Online:
https://doi.org/10.13140/RG.2.2.14511.64167. Accessed 28 October 2021.

[27] S. Fedeli, F. Schain, S. Imtiaz, Z. Abbas, and V. Vlassov, “Privacy preserving
survival prediction,” December 2021, to appear in the proceedings of IEEE
International Conference on Big Data (Big Data).

[28] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial networks,” arXiv preprint
arXiv:1406.2661, 2014.

[29] R. D. Hjelm, A. P. Jacob, T. Che, A. Trischler, K. Cho, and Y. Bengio, “Boundary-
seeking generative adversarial networks,” arXiv preprint arXiv:1702.08431,
2017.

[30] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to
sensitivity in private data analysis,” in Theory of Cryptography Conference.
Springer, 2006, pp. 265–284.

[31] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor, “Our
data, ourselves: Privacy via distributed noise generation,” in EUROCRYPT.
Springer, 2006, pp. 486–503.

[32] C. Dwork and J. Lei, “Differential privacy and robust statistics,” in Proceedings
of STOC’09, 2009, pp. 371–380.

[33] M. Bun and T. Steinke, “Concentrated differential privacy: Simplifications,
extensions, and lower bounds,” in Theory of Cryptography Conference. Springer,
2016, pp. 635–658.

https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://www.fitbit.com/se/home
https://www.myfitnesspal.com/
https://doi.org/10.13140/RG.2.2.14511.64167

124 bibliography

[34] C. Dwork, G. N. Rothblum, and S. Vadhan, “Boosting and differential privacy,”
in FOCS’10. IEEE, 2010, pp. 51–60.

[35] P. Kairouz, S. Oh, and P. Viswanath, “The composition theorem for differential
privacy,” in ICML, 2015, pp. 1376–1385.

[36] Q. Geng and P. Viswanath, “The optimal noise-adding mechanism in dif-
ferential privacy,” IEEE Transactions on Information Theory, vol. 62, no. 2, pp.
925–951, 2015.

[37] L. Sweeney, “Achieving k-anonymity privacy protection using generalization
and suppression,” International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, vol. 10, no. 05, pp. 571–588, 2002.

[38] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas, “Federated
learning of deep networks using model averaging,” CoRR, 2016. [Online].
Available: http://arxiv.org/abs/1602.05629

[39] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in AISTATS. PMLR, 2017, pp. 1273–1282.

[40] Z. Abbas, J. R. Ivarsson, A. Al-Shishtawy, and V. Vlassov, “Scaling deep
learning models for large spatial time-series forecasting,” in IEEE Big Data,
2019, pp. 1587–1594.

[41] T. W. Liao, “Clustering of time series data - a survey,” Pattern Recognition,
vol. 38, no. 11, pp. 1857–1874, 2005.

[42] I. S. Dhillon and D. S. Modha, “A data-clustering algorithm on distributed
memory multiprocessors,” in Large-scale parallel data mining, Workshop at
SIGKDD. Springer, 2002, pp. 245–260.

[43] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with
gradient descent is difficult,” IEEE transactions on neural networks, vol. 5, pp.
157–66, 02 1994.

[44] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Com-
putation, vol. 9, no. 8, pp. 1735–1780, 1997.

[45] M. Arsalan and A. Santra, “Character recognition in air-writing based on
network of radars for human-machine interface,” IEEE Sensors Journal, vol. 19,
no. 19, pp. 8855–8864, 2019.

[46] Cisco. Global 2021 Forecast Highlights. Online: https://www.cisco.com/c/
dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/
Global_2021_Forecast_Highlights.pdf. Accessed 28 October 2021.

http://arxiv.org/abs/1602.05629
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf

bibliography 125

[47] K. Zhao and L. Ge, “A survey on the internet of things security,” in 9th
International Conference on Computational Intelligence and Security, Dec 2013, pp.
663–667.

[48] Y.-K. Chen, “Challenges and opportunities of internet of things,” in 17th Asia
and South Pacific design automation conference. IEEE, 2012, pp. 383–388.

[49] N. Papernot, M. Abadi, Ú. Erlingsson, I. Goodfellow, and K. Talwar, “Semi-
supervised knowledge transfer for deep learning from private training data,”
arXiv preprint arXiv:1610.05755, 2016.

[50] N. Carlini, C. Liu, J. Kos, Ú. Erlingsson, and D. Song, “The secret sharer:
Measuring unintended neural network memorization & extracting secrets,”
arXiv preprint arXiv:1802.08232, 2018.

[51] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealingmachine
learning models via prediction apis,” in 25th {USENIX} Security Symposium
({USENIX} Security 16), 2016, pp. 601–618.

[52] B. Wang and N. Z. Gong, “Stealing hyperparameters in machine learning,” in
Symposium on Security and Privacy (IEEE S&P). IEEE, 2018, pp. 36–52.

[53] M. Juuti, S. Szyller, A. Dmitrenko, S. Marchal, and N. Asokan, “Prada: pro-
tecting against DNN model stealing attacks,” arXiv preprint arXiv:1805.02628,
2018.

[54] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit
confidence information and basic countermeasures,” in Proceedings of the CCS.
ACM, 2015, pp. 1322–1333.

[55] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman, “Towards the science of
security and privacy in machine learning,” arXiv preprint arXiv:1611.03814,
2016.

[56] P. P. Jayaraman, X. Yang, A. Yavari, D. Georgakopoulos, and X. Yi, “Privacy
preserving internet of things: From privacy techniques to a blueprint archi-
tecture and efficient implementation,” Future Generation Computer Systems,
vol. 76, pp. 540–549, 2017.

[57] A. Westin, Privacy and freedom. Atheneum New York, 1967, vol. 1.

[58] H. J. Smith, S. J. Milberg, and S. J. Burke, “Information privacy: measuring
individuals’ concerns about organizational practices,” MIS quarterly, pp.
167–196, 1996.

126 bibliography

[59] J. H. Ziegeldorf, O. G. Morchon, and K. Wehrle, “Privacy in the internet of
things: threats and challenges,” Security and Communication Networks, vol. 7,
no. 12, pp. 2728–2742, 2014.

[60] J. Voelcker, “Stalked by satellite-an alarming rise in gps-enabled harassment,”
IEEE Spectrum, vol. 43, no. 7, pp. 15–16, 2006.

[61] N. Madaan, M. A. Ahad, and S. M. Sastry, “Data integration in IoT ecosystem:
Information linkage as a privacy threat,”Computer law& security review, vol. 34,
no. 1, pp. 125–133, 2018.

[62] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami,
“Practical black-box attacks against machine learning,” in Proceedings of the
Asia Conference on Computer and Communications Security. ACM, 2017, pp.
506–519.

[63] G. Kellaris, G. Kollios, K. Nissim, and A. O’neill, “Generic attacks on secure
outsourced databases,” in Proceedings of the SIGSAC Conference. ACM, 2016,
pp. 1329–1340.

[64] J. Hayes, L. Melis, G. Danezis, and E. De Cristofaro, “LOGAN: Membership
inference attacks against generative models,” Proceedings of Privacy Enhancing
Technologies (PoPETs/PETS), pp. 133–152, 2019.

[65] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference
attacks against machine learning models,” in IEEE S&P. IEEE, 2017, pp.
3–18.

[66] M. Naveed, S. Kamara, and C. V. Wright, “Inference attacks on property-
preserving encrypted databases,” in Proceedings of the 22nd ACM SIGSAC
Conference. ACM, 2015, pp. 644–655.

[67] G. Sagirlar, B. Carminati, and E. Ferrari, “Decentralizing privacy enforcement
for internet of things smart objects,” Computer Networks, vol. 143, pp. 112–125,
2018.

[68] N. Apthorpe, D. Reisman, S. Sundaresan, A. Narayanan, and N. Feamster,
“Spying on the smart home: Privacy attacks and defenses on encrypted IoT
traffic,” arXiv preprint arXiv:1708.05044, 2017.

[69] A. Narayanan, J. Huey, and E. W. Felten, “A precautionary approach to big
data privacy,” in Data protection on the move. Springer, 2016, pp. 357–385.

[70] P. Ohm, “Broken promises of privacy: Responding to the surprising failure
of anonymization,” UCLA l. Rev., vol. 57, p. 1701, 2009.

bibliography 127

[71] J. Abowd, L. Alvisi, C. Dwork, S. Kannan, A. Machanavajjhala, and J. Reiter,
“Privacy-preserving data analysis for the federal statistical agencies,” arXiv
preprint:1701.00752, 2017.

[72] S. Milli, L. Schmidt, A. D. Dragan, and M. Hardt, “Model reconstruction from
model explanations,” arXiv preprint arXiv:1807.05185, 2018.

[73] A. Fernandes, D. Cloete, M. Broadbent, R. Hayes, C.-K. Chang, R. Jackson,
A. Roberts, J. Tsang, M. Soncul, J. Liebscher, R. Stewart, and F. Callard, “De-
velopment and evaluation of a de-identification procedure for a case register
sourced from mental health electronic records,” BMC medical informatics and
decision making, vol. 13, p. 71, 07 2013.

[74] C. Kushida, D. Nichols, R. Jadrnicek, R. Miller, J. Walsh, and K. Griffin,
“Strategies for de-identification and anonymization of electronic health record
data for use in multicenter research studies,”Medical care, vol. 50 Suppl, pp.
S82–101, 07 2012.

[75] K. Moselle, S. Robertson, and A. Koval, “‘Real-World" de-identification of
high-dimensional transactional health datasets.” Studies in health technology
and informatics, vol. 257, pp. 319–324, 2019.

[76] P. Zhao, J. Li, F. Zeng, F. Xiao, C. Wang, and H. Jiang, “ILLIA: Enabling
k-Anonymity-Based Privacy Preserving Against Location Injection Attacks
in Continuous LBS Queries,” IEEE Internet of Things Journal, vol. 5, no. 2, pp.
1033–1042, 2018.

[77] A. Gkoulalas-Divanis, G. Loukides, and J. Sun, “Publishing data from elec-
tronic health records while preserving privacy: A survey of algorithms,”
Journal of biomedical informatics, vol. 50, pp. 4–19, 2014.

[78] P. Zhao, H. Jiang, C. Wang, H. Huang, G. Liu, and Y. Yang, “On the perfor-
manceofk-anonymity against inference attackswithbackground information,”
IEEE Internet of Things Journal, vol. 6, no. 1, pp. 808–819, 2019.

[79] R. C.-W. Wong, J. Li, A. W.-C. Fu, and K. Wang, “(α, k)-anonymity: an
enhanced k-anonymity model for privacy preserving data publishing,” in
Proceedings of the 12th ACM SIGKDD. ACM, 2006, pp. 754–759.

[80] R.Wang, Y. Zhu, T.-S. Chen, and C.-C. Chang, “Privacy-preserving algorithms
for multiple sensitive attributes satisfying t-closeness,” Journal of Computer
Science and Technology, vol. 33, no. 6, pp. 1231–1242, 2018.

[81] C. Yin, S. Zhang, J. Xi, and J. Wang, “An improved anonymity model for big
data security based on clustering algorithm,” Concurrency and Computation:
Practice and Experience, vol. 29, no. 7, p. e3902, 2017.

128 bibliography

[82] C.Dwork, “Differential privacy: A surveyof results,” in International Conference
on Theory and Applications of Models of Computation. Springer, 2008, pp. 1–19.

[83] C. Dwork, A. Smith, T. Steinke, and J. Ullman, “Exposed! a survey of attacks
on private data,” Annual Review of Statistics and Its Application, vol. 4, pp.
61–84, 2017.

[84] M. Lecuyer, V.Atlidakis, R.Geambasu, D.Hsu, and S. Jana, “On the connection
between differential privacy and adversarial robustness in machine learning,”
stat, vol. 1050, p. 9, 2018.

[85] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel,
D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation for privacy-
preservingmachine learning,” in Proceedings of SIGSACConference on Computer
and Communications Security. ACM, 2017, pp. 1175–1191.

[86] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon,
“Federated learning: Strategies for improving communication efficiency,”
arXiv preprint arXiv:1610.05492, 2016.

[87] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated multi-
task learning,” in Advances in Neural Information Processing Systems, 2017, pp.
4424–4434.

[88] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept
and applications,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 10, no. 2, 2019.

[89] M. Ammad-Ud-Din, E. Ivannikova, S. A. Khan, W. Oyomno, Q. Fu, K. E. Tan,
and A. Flanagan, “Federated collaborative filtering for privacy-preserving
personalized recommendation system,” arXiv preprint arXiv:1901.09888, 2019.

[90] F. Chen, Z. Dong, Z. Li, and X. He, “Federated meta-learning for recommen-
dation,” arXiv preprint arXiv:1802.07876, 2018.

[91] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy analysis of
deep learning: Stand-alone and federated learning under passive and active
white-box inference attacks,” arXiv preprint arXiv:1812.00910, 2018.

[92] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine learning classification
over encrypted data.” in NDSS, vol. 4324, 2015, p. 4325.

[93] E. L. Cominetti and M. A. Simplicio, “Fast additive partially homomorphic
encryption from the approximate commondivisor problem,” IEEETransactions
on Information Forensics and Security, vol. 15, pp. 2988–2998, 2020.

bibliography 129

[94] H. Zhou and G. Wornell, “Efficient homomorphic encryption on integer
vectors and its applications,” in Information Theory and Applications Workshop
(ITA). IEEE, 2014, pp. 1–9.

[95] S. Bogos, J. Gaspoz, and S. Vaudenay, “Cryptanalysis of a homomorphic
encryption scheme,” Cryptography and Communications, vol. 10, no. 1, pp.
27–39, 2018.

[96] A. C.-C. Yao, “Protocols for secure computations,” in FOCS, vol. 82, 1982, pp.
160–164.

[97] B. Mirzasoleiman, M. Zadimoghaddam, and A. Karbasi, “Fast distributed
submodular cover: Public-private data summarization,” in NIPS, 2016, pp.
3594–3602.

[98] M. Mitrovic, M. Bun, A. Krause, and A. Karbasi, “Differentially
private submodular maximization: Data summarization in disguise,” in
Proceedings of the 34th International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, D. Precup and Y. W. Teh,
Eds., vol. 70. PMLR, 06–11 Aug 2017, pp. 2478–2487. [Online]. Available:
https://proceedings.mlr.press/v70/mitrovic17a.html

[99] G. Ayoade, V. Karande, L. Khan, and K. Hamlen, “Decentralized IoT data
management using blockchain and trusted execution environment,” in Inter-
national Conference on Information Reuse and Integration (IRI). IEEE, 2018, pp.
15–22.

[100] X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat, and L. Njilla, “Provchain:
A blockchain-based data provenance architecture in cloud environment with
enhanced privacy and availability,” inProceedings of the 17th IEEE/ACMCCGrid.
IEEE Press, 2017, pp. 468–477.

[101] G. Zyskind, O. Nathan, and A. S. Pentland, “Decentralizing privacy: Using
blockchain to protect personal data,” in 2015 IEEE Security and Privacy
Workshops. IEEE, 2015, pp. 180–184.

[102] X. Liang, J. Zhao, S. Shetty, and D. Li, “Towards data assurance and resilience
in IoT using blockchain,” inMILCOM. IEEE, 2017, pp. 261–266.

[103] T. McGhin, K.-K. R. Choo, C. Z. Liu, and D. He, “Blockchain in healthcare
applications: Research challenges and opportunities,” Journal of Network and
Computer Applications, 2019.

[104] I. Zavalyshyn,N.O.Duarte, andN. Santos, “Homepad: Aprivacy-aware smart
hub for home environments,” in IEEE/ACM Symposium on Edge Computing
(SEC). IEEE, 2018, pp. 58–73.

https://proceedings.mlr.press/v70/mitrovic17a.html

130 bibliography

[105] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and A. Prakash,
“Flowfence: Practical data protection for emerging IoT application frame-
works,” in 25th USENIX Security Symposium, 2016, pp. 531–548.

[106] J. Yang, K. Yessenov, and A. Solar-Lezama, “A language for automatically
enforcing privacy policies,” in ACM SIGPLAN Notices, vol. 47, no. 1. ACM,
2012, pp. 85–96.

[107] Z. B. Celik, E. Fernandes, E. Pauley, G. Tan, and P. McDaniel, “Program
Analysis of Commodity IoT Applications for Security and Privacy: Challenges
and Opportunities,” arXiv preprint arXiv:1809.06962, 2018.

[108] I. Ng, R. Maull, G. Parry, J. Crowcroft, K. Scharf, T. Rodden, and C. Speed,
“Making value creating context visible for new economic and businessmodels:
Home Hub-of-all-Things (HAT) as platform for multisided market powered
by IoT,” in Panel Session at The Future of Value Creation in Complex Service
Systems Minitrack of Hawaii International Conference on Systems Science (HICSS),
2013, pp. 7–10.

[109] Hub-of-All-Things. Online: https://www.hubofallthings.com/. Accessed 28
October 2021.

[110] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks on intel sgx,”
in Proceedings of the 10th European Workshop on Systems Security. ACM, 2017,
p. 2.

[111] N. Papernot, P. McDaniel, A. Sinha, and M. P. Wellman, “SoK: Security and
privacy in machine learning,” in IEEE EuroS&P. IEEE, 2018, pp. 399–414.

[112] Z. Ji, Z. C. Lipton, and C. Elkan, “Differential privacy and machine learning:
a survey and review,” arXiv preprint arXiv:1412.7584, 2014.

[113] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and
L. Zhang, “Deep learning with differential privacy,” in Proceedings of SIGSAC
Conference on Computer and Communications Security. ACM, 2016, pp. 308–318.

[114] C. Dwork and V. Feldman, “Privacy-preserving prediction,” arXiv preprint
arXiv:1803.10266, 2018.

[115] T. Hunt, C. Song, R. Shokri, V. Shmatikov, and E. Witchel, “Chiron: Privacy-
preserving machine learning as a service,” arXiv preprint arXiv:1803.05961,
2018.

[116] S. Nĳssen and E. Fromont, “Optimal constraint-based decision tree induction
from itemset lattices,” Data Mining and Knowledge Discovery, vol. 21, no. 1, pp.
9–51, 2010.

https://www.hubofallthings.com/

bibliography 131

[117] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” in IEEE S&P. IEEE, 2017, pp. 19–38.

[118] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering techniques,”
Advances in Artificial Intelligence, 2009.

[119] F. Zhang, V. E. Lee, R. Jin, S. Garg, K.-K. R. Choo, M. Maasberg, L. Dong, and
C. Cheng, “Privacy-aware smart city: A case study in collaborative filtering
recommender systems,” Journal of Parallel and Distributed Computing, 2018.

[120] R. Guerraoui, A.-M. Kermarrec, R. Patra, M. Valiyev, and J. Wang, “I know
nothing about you but here is what you might like,” in 2017 47th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
2017, pp. 439–450.

[121] S. Spiekermann and L. F. Cranor, “Engineering privacy,” IEEE Transactions on
Software Engineering, vol. 35, no. 1, pp. 67–82, Jan 2009.

[122] P. Voigt andA. Von demBussche, “The EUGeneral Data Protection Regulation
(GDPR),” A Practical Guide, 1st Ed., Cham: Springer International Publishing,
2017.

[123] M. Veale, R. Binns, and L. Edwards, “Algorithms that remember: model
inversion attacks and data protection law,” Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 376, no.
2133, p. 20180083, 2018.

[124] M. Young, L. Rodriguez, E. Keller, F. Sun, B. Sa, J. Whittington, and B. Howe,
“Beyond open vs. closed: Balancing individual privacy and public accountabil-
ity in data sharing,” in Proceedings of the Conference on Fairness, Accountability,
and Transparency. ACM, 2019, pp. 191–200.

[125] N. Ahmad, R. P. George, and R. Jahan, “Emerging trends in iot for categorized
health care,” in 2019 2nd International Conference on Intelligent Computing,
Instrumentation and Control Technologies (ICICICT), vol. 1, 2019, pp. 1438–1441.

[126] R. Lee, R. Jang, M. Park, G. Jeon, J. Kim, and S. Lee, “Making IoT data ready
for smart city applications,” in 2020 IEEE International Conference on Big Data
and Smart Computing (BigComp), 2020, pp. 605–608.

[127] R. Dagar, S. Som, and S. K. Khatri, “Smart farming – IoT in agriculture,” in
2018 International Conference on Inventive Research in Computing Applications
(ICIRCA), 2018, pp. 1052–1056.

[128] N. Scarpato, A. Pieroni, L. Di Nunzio, and F. Fallucchi, “E-health-IoT universe:
A review,” management, vol. 21, no. 44, p. 46, 2017.

132 bibliography

[129] J. Walonoski, M. Kramer, J. Nichols, A. Quina, C. Moesel, D. Hall, C. Duffett,
K. Dube, T. Gallagher, and S. McLachlan, “Synthea: An approach, method,
and software mechanism for generating synthetic patients and the synthetic
electronic health care record,” Journal of the American Medical Informatics
Association, vol. 25, no. 3, pp. 230–238, 2018.

[130] H. Li, L. Xiong, L. Zhang, and X. Jiang, “DPSynthesizer: Differentially
private data synthesizer for privacy preserving data sharing,” Proc. VLDB
Endow., vol. 7, no. 13, p. 1677–1680, Aug. 2014. [Online]. Available:
https://doi.org/10.14778/2733004.2733059

[131] M. K. Baowaly, C.-C. Lin, C.-L. Liu, and K.-T. Chen, “Synthesizing electronic
health records using improved generative adversarial networks,” Journal of
the American Medical Informatics Association, vol. 26, no. 3, pp. 228–241, 2019.

[132] H. Ping, J. Stoyanovich, and B. Howe, “Datasynthesizer: Privacy-preserving
synthetic datasets,” inProceedings of the 29th International Conference on Scientific
and Statistical Database Management, 2017, pp. 1–5.

[133] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni, “Modeling
tabular data using conditional GAN,” in Advances in Neural Information
Processing Systems, 2019, pp. 7335–7345.

[134] A. Torfi and E. A. Fox, “COR-GAN: Correlation-capturing convolutional
neural networks for generating synthetic healthcare records,” arXiv preprint
arXiv:2001.09346, 2020.

[135] C. Han, H. Hayashi, L. Rundo, R. Araki, W. Shimoda, S. Muramatsu, Y. Fu-
rukawa, G. Mauri, and H. Nakayama, “GAN-based synthetic brain MR image
generation,” in 2018 IEEE 15th International Symposium on Biomedical Imaging
(ISBI 2018). IEEE, 2018, pp. 734–738.

[136] J. Jordon, J. Yoon, and M. Van Der Schaar, “PATE-GAN: Generating synthetic
data with differential privacy guarantees,” in International Conference on
Learning Representations, 2018.

[137] R. Torkzadehmahani, P. Kairouz, and B. Paten, “DP-CGAN: Differentially
private synthetic data and label generation,” in Proceedings of the IEEE CVPR
Workshops, 2019, pp. 0–0.

[138] L. Xie, K. Lin, S.Wang, F.Wang, and J. Zhou, “Differentially private generative
adversarial network,” arXiv preprint arXiv:1802.06739, 2018.

[139] C. Xu, J. Ren, D. Zhang, Y. Zhang, Z. Qin, and K. Ren, “GANobfuscator:
Mitigating information leakage under GAN via differential privacy,” IEEE

https://doi.org/10.14778/2733004.2733059

bibliography 133

Transactions on Information Forensics and Security, vol. 14, no. 9, pp. 2358–2371,
2019.

[140] C. Esteban, S. L. Hyland, and G. Rätsch, “Real-valued (medical) time series
generation with recurrent conditional GANs,” arXiv preprint arXiv:1706.02633,
2017.

[141] Y. Qu, S. Yu, J. Zhang, H. T. T. Binh, L. Gao, and W. Zhou, “GAN-DP:
Generative adversarial net driven differentially privacy-preserving big data
publishing,” in ICC 2019 - 2019 IEEE International Conference on Communications
(ICC), 2019, pp. 1–6.

[142] E. Choi, S. Biswal, B. Malin, J. Duke, W. F. Stewart, and J. Sun, “Generating
multi-label discrete patient records using generative adversarial networks,”
in Machine learning for healthcare conference. PMLR, 2017, pp. 286–305.

[143] Nutritionix API. Online: https://developer.nutritionix.com/. Accessed 28
October 2021.

[144] F. J. Massey Jr, “The Kolmogorov-Smirnov test for goodness of fit,” Journal of
the American statistical Association, vol. 46, no. 253, pp. 68–78, 1951.

[145] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A survey
on the edge computing for the internet of things,” IEEE Access, vol. 6, pp.
6900–6919, 2017.

[146] M. Wedel and P. Kannan, “Marketing analytics for data-rich environments,”
Journal of Marketing, vol. 80, no. 6, pp. 97–121, 2016.

[147] H. Dev, T. Sen, M. Basak, and M. E. Ali, “An approach to protect the privacy
of cloud data from data mining based attacks,” in 2012 SC Companion: High
Performance Computing, Networking Storage and Analysis. IEEE, 2012, pp.
1106–1115.

[148] V. N. Inukollu, S. Arsi, and S. R. Ravuri, “Security issues associated with
big data in cloud computing,” International Journal of Network Security & Its
Applications, vol. 6, no. 3, p. 45, 2014.

[149] D. Puthal, S. Nepal, R. Ranjan, and J. Chen, “Threats to networking cloud
and edge datacenters in the internet of things,” IEEE Cloud Computing, vol. 3,
no. 3, pp. 64–71, 2016.

[150] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi,
M. Barcellos, P. Felber, and E. Riviere, “Edge-centric computing: Vision and
challenges,” 2015.

https://developer.nutritionix.com/

134 bibliography

[151] F. Kulsoom, A. Vizziello, H.N. Chaudhry, and P. Savazzi, “Joint sparse channel
recovery with quantized feedback for multi-user massive mimo systems,”
IEEE Access, vol. 8, pp. 11 046–11 060, 2020.

[152] R. Shokri, P. Pedarsani, G. Theodorakopoulos, and J.-P. Hubaux, “Preserving
privacy in collaborative filtering through distributed aggregation of offline
profiles,” in Proceedings of the third ACM conference on Recommender systems,
2009, pp. 157–164.

[153] I. Mazeh and E. Shmueli, “A personal data store approach for
recommender systems: enhancing privacy without sacrificing accuracy,”
Expert Systems with Applications, vol. 139, p. 112858, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957417419305688

[154] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homomorphic
encryption without bootstrapping,” ACM Transactions on Computation Theory
(TOCT), vol. 6, no. 3, pp. 1–36, 2014.

[155] guppy3.PyPI. Online: https://pypi.org/project/guppy3/. Accessed 28 Octo-
ber 2021.

[156] How many calories should you eat per day to lose weight?
Online: https://www.healthline.com/nutrition/how-many-calories-per-
day#average-calorie-needs. Accessed 28 October 2021.

[157] How many steps do I need a day? Online: https://www.healthline.com/
health/how-many-steps-a-day. Accessed 28 October 2021.

[158] About Adult BMI:Healthy Weight, Nutrition, and Physical Activity | CDC.
Online: https://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/
index.html. Accessed 28 October 2021.

[159] How many calories are in one gram of fat, carbohydrate, or protein? | Food
and Nutrition Information Center. Online: https://www.nal.usda.gov/fnic/
how-many-calories-are-one-gram-fat-carbohydrate-or-protein. Accessed 28
October 2021.

[160] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature
learning,” CoRR, vol. abs/1605.09782, 2016. [Online]. Available:
http://arxiv.org/abs/1605.09782

[161] J. Vitak, Y. Liao, P. Kumar, M. Zimmer, and K. Kritikos, “Privacy attitudes
and data valuation among fitness tracker users,” in International Conference on
Information. Springer, 01 2018, pp. 229–239.

https://www.sciencedirect.com/science/article/pii/S0957417419305688
https://pypi.org/project/guppy3/
https://www.healthline.com/nutrition/how-many-calories-per-day#average-calorie-needs
https://www.healthline.com/nutrition/how-many-calories-per-day#average-calorie-needs
https://www.healthline.com/health/how-many-steps-a-day
https://www.healthline.com/health/how-many-steps-a-day
https://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/index.html
https://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/index.html
https://www.nal.usda.gov/fnic/how-many-calories-are-one-gram-fat-carbohydrate-or-protein
https://www.nal.usda.gov/fnic/how-many-calories-are-one-gram-fat-carbohydrate-or-protein
http://arxiv.org/abs/1605.09782

bibliography 135

[162] E. Bertino, “Data privacy for IoT systems: Concepts, approaches, and research
directions,” in 2016 IEEE International Conference on Big Data (Big Data), 2016,
pp. 3645–3647.

[163] P. Zhao, H. Jiang, C. Wang, H. Huang, G. Liu, and Y. Yang, “On the perfor-
manceofk-anonymity against inference attackswithbackground information,”
IEEE Internet of Things Journal, vol. 6, no. 1, pp. 808–819, 2019.

[164] S.-F. Horchidan, “Real-time forecasting of dietary habits and user health
using federated learning with privacy guarantees,” Master’s thesis, School of
Electrical Engineering and Computer Science (EECS), KTH Royal Institute of
Technology, Sweden, 2020.

[165] J. Orlosky, O. Ezenwoye, H. Yates, and G. Besenyi, “A look at the security and
privacy of fitbit as a health activity tracker,” in Proceedings of the 2019 ACM
Southeast Conference, 04 2019, pp. 241–244.

[166] R. Dong, L. J. Ratliff, A. A. Cárdenas, H. Ohlsson, and S. S. Sastry,
“Quantifying the utility–privacy tradeoff in the internet of things,” ACM
Transactions on Cyber-Physical Systems, vol. 2, no. 2, May 2018. [Online].
Available: https://doi.org/10.1145/3185511

[167] L. M. Aiello and G. Ruffo, “LotusNet: Tunable privacy for distributed online
social network services,” Computer Communications, vol. 35, no. 1, pp. 75–88,
2012.

[168] G. Skinner, “Dynamic user reconfigurable privacy and trust settings for col-
laborative industrial environments,” in INDIN’05. 2005 3rd IEEE International
Conference on Industrial Informatics, 2005. IEEE, 2005, pp. 761–766.

[169] G. Ghinita, K.Nguyen,M.Maruseac, andC. Shahabi, “A secure location-based
alert system with tunable privacy-performance trade-off,” GeoInformatica,
vol. 24, no. 4, pp. 951–985, 2020.

[170] C. Niu, F. Wu, S. Tang, L. Hua, R. Jia, C. Lv, Z. Wu, and G. Chen, “Billion-scale
federated learning onmobile clients: a submodel designwith tunable privacy,”
in Proceedings of the 26th Annual International Conference on Mobile Computing
and Networking, 2020, pp. 1–14.

[171] R. Narendula, T. G. Papaioannou, Z. Miklós, and K. Aberer, “Tunable privacy
for access controlled data in peer-to-peer systems,” in 2010 22nd International
Teletraffic Congress (lTC 22). IEEE, 2010, pp. 1–8.

[172] E. Duriakova, E. Z. Tragos, B. Smyth, N. Hurley, F. J. Peña, P. Symeonidis,
J. Geraci, and A. Lawlor, “PDMFRec: a decentralised matrix factorisation

https://doi.org/10.1145/3185511

136 bibliography

with tunable user-centric privacy,” in Proceedings of the 13th ACM Conference
on Recommender Systems, 2019, pp. 457–461.

[173] J. Liao, O. Kosut, L. Sankar, and F. du Pin Calmon, “Tunable measures
for information leakage and applications to privacy-utility tradeoffs,” IEEE
Transactions on Information Theory, vol. 65, no. 12, pp. 8043–8066, 2019.

[174] M. K. Kundalwal, K. Chatterjee, and A. Singh, “An improved privacy preser-
vation technique in health-cloud,” ICT Express, vol. 5, no. 3, pp. 167–172,
2019.

[175] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, R. Zhang, and
Y. Zhou, “A hybrid approach to privacy-preserving federated learning,” in
Proceedings of the 12th ACM AISec, 2019, pp. 1–11.

[176] C. Clifton, Individually Identifiable Data. Encyclopedia of Database
Systems, Springer, 2009, pp. 1471–1472. [Online]. Available: https:
//doi.org/10.1007/978-0-387-39940-9_1390

[177] Z. Huang, “Extensions to the k-means algorithm for clustering large data sets
with categorical values,” Data mining and knowledge discovery, vol. 2, no. 3, pp.
283–304, 1998.

[178] TensorFlow-Federated. Online: https://www.tensorflow.org/federated. Ac-
cessed 28 October 2021.

[179] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov,
C. Kiddon, J. Konečný, S. Mazzocchi, H. B. McMahan, T. V. Overveldt,
D. Petrou, D. Ramage, and J. Roselander, “Towards federated learning at scale:
System design,” 2019.

[180] H. B. McMahan, G. Andrew, U. Erlingsson, S. Chien, I. Mironov, N. Papernot,
and P. Kairouz, “A general approach to adding differential privacy to iterative
training procedures,” arXiv preprint arXiv:1812.06210, 2018.

[181] Ú. Erlingsson, V. Pihur, and A. Korolova, “Rappor: Randomized aggregatable
privacy-preserving ordinal response,” in Proceedings of the 2014 ACM SIGSAC
CCS, 2014, pp. 1054–1067.

[182] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated learning:
A client level perspective,” NIPS’17. arXiv:1712.07557, 2017.

[183] T. W. Liao, “A clustering procedure for exploratory mining of vector time
series,” Pattern Recognition, vol. 40, no. 9, pp. 2550–2562, 2007. [Online].
Available: https://doi.org/10.1016/j.patcog.2007.01.005

https://doi.org/10.1007/978-0-387-39940-9_1390
https://doi.org/10.1007/978-0-387-39940-9_1390
https://www.tensorflow.org/federated
https://doi.org/10.1016/j.patcog.2007.01.005

bibliography 137

[184] G. Das, K.-I. Lin, H. Mannila, G. Renganathan, and P. Smyth, “Rule discovery
from time series.” in KDD, vol. 98, no. 1, 1998, pp. 16–22.

[185] L. Chen, Y. Gao, Z. Fang, X. Miao, C. S. Jensen, and C. Guo, “Real-time dis-
tributed co-movement pattern detection on streaming trajectories,” Proceedings
of the VLDB Endowment, vol. 12, no. 10, pp. 1208–1220, 2019.

[186] F. Sattler, K.-R. Müller, and W. Samek, “Clustered federated learning: Model-
agnostic distributedmulti-task optimization under privacy constraints,” arXiv
preprint arXiv:1910.01991, 2019.

[187] L. Huang, A. L. Shea, H. Qian, A. Masurkar, H. Deng, and D. Liu, “Patient
clustering improves efficiency of federated machine learning to predict
mortality and hospital stay time using distributed electronic medical records,”
Journal of biomedical informatics, vol. 99, p. 103291, 2019.

[188] F. Díaz González, “Federated learning for time series forecasting using LSTM
networks: Exploiting similarities through clustering,” Master’s thesis, KTH,
EECS, 2019.

[189] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” in NIPS, 2019, pp.
14 774–14 784.

[190] C. Ma, J. Li, M. Ding, H. H. Yang, F. Shu, T. Q. Quek, and H. V. Poor, “On
safeguarding privacy and security in the framework of federated learning,”
IEEE Network, 2020.

[191] R. Shokri andV. Shmatikov, “Privacy-preserving deep learning,” inProceedings
of the 22nd ACM SIGSAC CCS, 2015, pp. 1310–1321.

[192] O. Choudhury, A. Gkoulalas-Divanis, T. Salonidis, I. Sylla, Y. Park, G. Hsu,
and A. Das, “Differential privacy-enabled federated learning for sensitive
health data,” arXiv:1910.02578, 2019.

[193] X. Li, Y. Li, H. Yang, L. Yang, and X.-Y. Liu, “DP-LSTM: Differential privacy-
inspired LSTM for stock prediction using financial news,” arXiv:1912.10806,
2019.

[194] R. Tso, A. Alelaiwi, S. M. M. Rahman, M.-E. Wu, and M. S. Hossain, “Privacy-
preserving data communication through secure multi-party computation in
healthcare sensor cloud,” Journal of Signal Processing Systems, vol. 89, 10 2017.

[195] Google’s differential privacy libraries. Online: https://github.com/google/
differential-privacy. Accessed 28 October 2021.

https://github.com/google/differential-privacy
https://github.com/google/differential-privacy

138 bibliography

[196] Openmined/pydp: A python wrapper for google’s differential privacy li-
braries. Online: https://github.com/OpenMined/PyDP. Accessed 28 Octo-
ber 2021.

[197] N. Holohan, S. Braghin, P. M. Aonghusa, and K. Levacher, “Diffprivlib: The
ibm differential privacy library,” 2019.

[198] Diffprivlib: The IBM Differential Privacy Library. Online: https://
github.com/IBM/differential-privacy-library/. Accessed 28 October 2021.

[199] dp-stats: A library for differentially private statistics and machine learning
algorithms. Online: https://gitlab.com/dp-stats/. Accessed 28 October 2021.

[200] J. Xu, Z. Zhang, X. Xiao, Y. Yang, and G. Yu, “Differentially private histogram
publication,” in IEEE ICDE, 2012, pp. 32–43.

[201] OpenDP tools. Online: https://opendp.org/. Accessed 28 October 2021.

[202] American College of Radiology. (2019) Prostate Imaging Reporting &
Data System (PI-RADS). Online: https://www.acr.org/Clinical-Resources/
Reporting-and-Data-Systems/PI-RADS. Accessed 28 October 2021.

[203] Plotly python graphing library. Online: https://plotly.com/python/. Ac-
cessed 28 October 2021.

[204] Y. Wang, X. Wu, and D. Hu, “Using randomized response for differential
privacy preserving data collection.” in EDBT/ICDT Workshops, vol. 1558, 2016.

[205] R. Cummings and D. Durfee, “Individual sensitivity preprocessing for data
privacy,” in Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete
Algorithms. SIAM, 2020, pp. 528–547.

[206] M. Bun and T. Steinke, “Average-case averages: Private algorithms for smooth
sensitivity and mean estimation,” arXiv preprint arXiv:1906.02830, 2019.

[207] S. Tu. (2013) Introduction to Differential Privacy. Online: https://
stephentu.github.io/writeups/6885-lec20-b.pdf. Accessed 28 October 2021.

https://github.com/OpenMined/PyDP
https://github.com/IBM/differential-privacy-library/
https://github.com/IBM/differential-privacy-library/
https://gitlab.com/dp-stats/
https://opendp.org/
https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/PI-RADS
https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/PI-RADS
https://plotly.com/python/
https://stephentu.github.io/writeups/6885-lec20-b.pdf
https://stephentu.github.io/writeups/6885-lec20-b.pdf

Appendix A: Additional Results for
Clustered Federated Learning for
Privacy Preserving Time-Series
Forecasting

Fitbit-GAN dataset

Preliminary results without grid search

Figure 1: Evolution of the Mean Absolute Error of the baseline model against
clustered model during the training process on the augmented Fitbit dataset
without grid search performed on each group of users.

Table 1 presents the results obtained before running a grid search for parameters for
each dataset corresponding to a cluster of users. The average change in observed
error has been recorded in comparison with the model trained on the whole dataset.
An increase in the average observed error suggests a decrease in prediction accuracy.

139

140
appendix a: additional results for clustered federated learning for privacy preserving

time-series forecasting

Table 1: Accuracy obtained by training one model per cluster of users on the
augmented Fitbit dataset.

Predicted MAE RMSE Average change in
observed error Training time (sec)

Cluster 1
(167 users)

Macronutrients 1.001 1.277

+24% 2761Calories burned 14.248 18.451
Resting heart rate 0.063 0.079
Active minutes 2.476 3.176

Cluster 2
(63 users)

Macronutrients 1.412 1.798

+50% 1219Calories burned 12.015 15.370
Resting heart rate 0.081 0.105
Active minutes 3.269 4.058

Cluster 3
(44 users)

Macronutrients 1.771 2.289

+124% 1020Calories burned 20.327 27.603
Resting heart rate 0.136 0.179
Active minutes 4.498 5.926

Cluster 4
(213 users)

Macronutrients 1.036 1.370

+25% 3531Calories burned 12.683 16.216
Resting heart rate 0.053 0.071
Active minutes 3.374 4.180

141

Differential privacy - noisy data approach

Tables 2 and 3 show the results of noising the training data to achieve DP in the
clustered FL scenario with different ε for noise addition. A decrease in the average
observed error(compared to baseline model) implies an increase in accuracy.

Table 2: Results of noising the training data with ε = 0.025 noise addition to achieve
DP in the clustered FL scenario

Predicted MAE RMSE Average change in
observed error Training time (sec)

Cluster 1
(112 users)

Macronutrients 0.783 0.888

-38% 294Calories burned 4.784 5.7
Resting heart rate 0.052 0.063
Active minutes 1.875 2.103

Cluster 2
(57users)

Macronutrients 0.643 0.745

-40% 187Calories burned 6.125 7.317
Resting heart rate 0.054 0.064
Active minutes 1.79 2.067

Cluster 3
(78 users)

Macronutrients 0.632 0.736

-42% 226Calories burned 6.206 7.525
Resting heart rate 0.049 0.058
Active minutes 1.668 1.973

Cluster 4
(35 users)

Macronutrients 0.636 0.745

-36% 149Calories burned 8.957 10.64
Resting heart rate 0.052 0.062
Active minutes 1.769 2.093

Cluster 5
(54 users)

Macronutrients 0.639 0.75

-34% 192Calories burned 10.76 12.491
Resting heart rate 0.049 0.059
Active minutes 1.734 2.059

142
appendix a: additional results for clustered federated learning for privacy preserving

time-series forecasting

Table 3: Results of noising the training data with ε = 1 noise addition to achieve DP
in the clustered FL scenario

Predicted MAE RMSE Average change in
observed error Training time (sec)

Cluster 1
(37 users)

Macronutrients 0.692 0.863

+12% 148Calories burned 12.359 14.447
Resting heart rate 0.044 0.055
Active minutes 3.791 4.121

Cluster 2
(167 users)

Macronutrients 0.497 0.597

-20% 385Calories burned 8.687 10.393
Resting heart rate 0.041 0.048
Active minutes 1.751 2.051

Cluster 3
(47 users)

Macronutrients 0.538 0.649

-22% 169Calories burned 8.752 10.598
Resting heart rate 0.041 0.049
Active minutes 1.928 2.263

Cluster 4
(108 users)

Macronutrients 0.571 0.679

-22% 279Calories burned 9.235 11.176
Resting heart rate 0.042 0.05
Active minutes 1.723 2.038

