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Abstract

For many years, researchers have investigated the use of database technology to manage
file system metadata, with the goal of providing extensible typed metadata and support
for fast, rich metadata search. However, earlier attempts failed mainly due to the reduced
performance introduced by adding database operations to the file system’s critical path.
Recent improvements in the performance of distributed in-memory online transaction
processing databases (NewSQL databases) led us to re-investigate the possibility of using a
database to manage file system metadata, but this time for a distributed, hierarchical file
system, the Hadoop Distributed File System (HDFS). The single-host metadata service
of HDFS is a well-known bottleneck for both the size of the HDFS clusters and their
throughput.

In this thesis, we detail the algorithms, techniques, and optimizations used to develop
HopsFS, an open-source, next-generation distribution of the HDFS that replaces the main
scalability bottleneck in HDFS, single node in-memory metadata service, with a no-shared
state distributed system built on a NewSQL database. In particular, we discuss how we
exploit recent high-performance features from NewSQL databases, such as application-
defined partitioning, partition pruned index scans, and distribution aware transactions, as
well as more traditional techniques such as batching and write-ahead caches, to enable a
revolution in distributed hierarchical file system performance.

HDFS’ design is optimized for the storage of large files, that is, files ranging from megabytes
to terabytes in size. However, in many production deployments of the HDFS, it has been
observed that almost 20% of the files in the system are less than 4 KB in size and as
much as 42% of all the file system operations are performed on files less than 16 KB in
size. HopsFS introduces a tiered storage solution to store files of different sizes more
efficiently. The tiers range from the highest tier where an in-memory NewSQL database
stores very small files (<1 KB), to the next tier where small files (<64 KB) are stored in
solid-state-drives (SSDs), also using a NewSQL database, to the largest tier, the existing
Hadoop block storage layer for very large files. Our approach is based on extending HopsFS
with an inode stuffing technique, where we embed the contents of small files with the
metadata and use database transactions and database replication guarantees to ensure the
availability, integrity, and consistency of the small files. HopsFS enables significantly
larger cluster sizes, more than an order of magnitude higher throughput, and significantly
lower client latencies for large clusters.

Lastly, coordination is an integral part of the distributed file system operations protocols.
We present a novel leader election protocol for partially synchronous systems that uses
NewSQL databases as shared memory. Our work enables HopsFS, that uses a NewSQL
database to save the operational overhead of managing an additional third-party service
for leader election and deliver performance comparable to a leader election implementation
using a state-of-the-art distributed coordination service, ZooKeeper.



Sammanfattning

I många år har forskare undersökt användningen av databasteknik för att hantera metadata
i filsystem, med målet att tillhandahålla förlängbar metadata med stöd för snabb och
uttrycksfull metadatasökning. Tidigare försök misslyckades dock huvudsakligen till följd
av den reducerade prestanda som infördes genom att lägga till databasoperationer på
filsystemets kritiska väg. De senaste prestandaförbättringarna för OLTP databaser som
lagras i minnet (NewSQL databaser) ledde oss till att undersöka möjligheten att använda
en databas för att hantera filsystemmetadata, men den här gången för ett distribuerat
hierarkiskt filsystem, Hadoop Distributed Filesystem (HDFS). Metadata i HDFS lagras på
en maskin, vilket är en känd flaskhals för såväl storlek som prestandan för HDFS kluster.

I denna avhandling redogör vi för de algoritmer, tekniker och optimeringar som används
för att utveckla HopsFS, en med öppen källkod, nästa generationens distribution av HDFS
som ersätter lagringen av metadata i HDFS, där den lagras enbart i minnet på en nod,
med ett distribuerat system med delat tillstånd byggt på en NewSQL databas. I syn-
nerhet diskuteras hur vi utnyttjar nyligen framtagen högpresterande funktionalitet från
NewSQL-databaser, exempelvis applikationsdefinierad partitionering, partitionsskuren in-
dexskanning och distributionsmedvetna transaktioner, samt mer traditionella tekniker som
batching och skrivcache, som banar väg för en revolution inom prestanda för distribuerade
filsystem.

HDFS design är optimerad för lagring av stora filer, det vill säga filer som sträcker sig
från megabyte till terabyte i storlek. Men i många installationer i produktionsystem har
det observerats att nästan 20 procent av filerna i systemet är mindre än 4 KB i storlek
och så mycket som 42 procent av alla filsystemsoperationer utförs på filer mindre än
16 KB i storlek. HopsFS introducerar en nivåbaserad uppdelning av olika filstorlekar
för mer effektiv lagring . Nivåerna varierar från högsta nivån där en NewSQL-databas
lagrar i minnet mycket små filer (<1 KB), till nästa nivå där små filer (<64 KB) la-
gras i SSD-enheter (Solid State Drives) en NewSQL-databas, till den största delen, det
befintliga Hadoop-blocklagringsskiktet för mycket stora filer. Vårt tillvägagångssätt bygger
på att utöka HopsFS med en utfyllningsteknik för filer, där vi lägger in innehållet i små
filer tillsammans med metadata och använder databasstransaktioner och databasreplika-
tion för att garantera de små filernas tillgänglighet, integritet och konsistens säkerställs.
HopsFS möjliggör signifikant större klusterstorlekar, mer än en storleksordning högre
transaktionsgenomströmning, och signifikant lägre latens för klienter till stora kluster.

Slutligen är koordinering en central del av protokollet för distribuerade filsystemsopera-
tioner. Vi presenterar ett nytt ledarval protokoll för delvis synkrona system som använder
NewSQL databaser som delat minne. Vårt arbete möjliggör HopsFS, som använder en
NewSQL-databas för att spara in på de operativa kostnader det skulle medföra att hantera
en ytterligare tredjepartstjänst för ledarval. Protokollets prestanda kan jämföras med en
ledarval implementation I ZooKeeper, som är en modern distribuerad koordinationsservice.
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Software

The research conducted within the scope of this dissertation has resulted in
three main open-source software contributions: Hops Hadoop Distributed
File System, Hammer distributed file system benchmark tool and a leader
election library that uses NewSQL databases as shared memory.

Hops Hadoop Distributed File System

Hops Hadoop Distributed File System (HopsFS) is a next-generation
high-performance distribution of the Hadoop Distributed File System
(HDFS) that replaces HDFS single node in-memory metadata service with
a distributed metadata service built on a MySQL’s Network Database
(NDB) cluster. HopsFS provides a high-performance unified file system
namespace that outperforms HDFS by an order of magnitude in terms
of the size of the supported namespace and also the throughput of the
file system operations. HopsFS can handle both large and small files
efficiently, and it has significantly lower operational latencies for the file
system operations.

Source Code: https://www.github.com/hopshadoop/hops

Hammer File System Benchmark

We have developed a benchmark tool for testing the throughput of the
metadata operations of any Hadoop Compatible File System. The bench-
mark utility is a distributed application that can generate a large number
of metadata operations using tens of thousands of clients spread across
multiple machines. It can be used to test the throughput of individual file
system operations or generate file system operations based on industrial
workload traces. The benchmark utility supports testing HopsFS, HDFS,
MapR, and CephFS.

https://www.github.com/hopshadoop/hops/
https://www.github.com/hopshadoop/hops


Source Code: https://www.github.com/smkniazi/hammer-bench

Leader Election Library Using NewSQL Databases

We have developed a leader election library that uses NewSQL databases
as shared memory. This library enables distributed systems that already
use NewSQL databases to save the operational overhead of managing an
additional third-party coordination service for leader election. Currently,
the library only supports NDB cluster NewSQL database. It is possible
to add support for additional databases by implementing the database
abstraction layer of the leader election library. The library can support
any NewSQL database that supports row-level locking and two-phase
transactions to access and update the data.

Source Code: https://github.com/hopshadoop/hops/tree/master/hops-
leader-election

https://www.github.com/smkniazi/hammer-bench/
https://www.github.com/smkniazi/hammer-bench
https://github.com/hopshadoop/hops/tree/master/hops-leader-election
https://github.com/hopshadoop/hops/tree/master/hops-leader-election
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1
Introduction

’Hierarchical File Systems are Dead.’ [Not!]

— Margo Seltzer, Nicholas Murphy

T
he Unix operating system has popularized the hierarchical names-
pace. In POSIX compliant file systems the files are organized
in top-down hierarchical structure, where all the non-terminal

nodes in the hierarchy are directories, and all the terminal nodes (leaves)
can be files or directories [1]. To this day, even after five decades, it remains
a popular mechanism for organizing and accessing user data. Due to the
simplicity and ubiquity of the single server hierarchical file systems many
distributed file systems have also adopted the hierarchical namespace
abstraction [2–16]. In POSIX, all file system operations, such as create, open,
close, rm, mv, stat, etc., are atomic file system operations, that is, if multiple
threads call one of these functions, then the threads would see either all
or none of the specified effects of the file system operations. Before the
file system operation is performed, the file paths are resolved, and the
permissions are checked. Consider concurrent file write operations on two
independent files /home/user1/file1 and /home/user2/file1. Writing to these
two files would require resolving the file paths from the root (/) directory
all the way down to the files and acquiring locks on the files and their
parent directories to perform the operations atomically. The hierarchical
namespace has obvious natural hotspots, that is, the directories at the top



of the namespace hierarchy are accessed very frequently. Hierarchical
namespaces are a mismatch for distributed file systems that can store
significantly more data and perform vastly more file system operations
per second than single server file systems [17]. The hotspots not only
complicate the design of the metadata service but also limit the scalability
of the distributed file systems.

Typically, distributed file systems separate metadata from data manage-
ment services to provide a clear separation of concerns, enabling the two
different services to be independently managed and scaled. Usually, the
file system metadata is stored on a single metadata server, such as in
HDFS [2], GFS [18], and QFS [3] that provides high availability of the
metadata service using the active-standby failover model [19]. The files’
blocks are stored on block storage servers which ensure high availability
of the data blocks using techniques like forward error correction codes
(such as, erasure codes) and data redundancy. Such an architecture has
two main problems. First, the scalability of the file system is limited by the
scalability of the single-host metadata service. Second, this architecture
is only suitable for data parallel applications which use a large number
of file system clients to read the data in parallel after obtaining the files’
metadata from the metadata service layer. This design only works if the
user data is stored in large files which would reduce the amount of meta-
data stored on the metadata servers and the cost of file system metadata
operations would be amortized over the relatively long periods of time
spent in reading/writing these large files. File systems such as NFS [10],
AFS [11], MapR [12], Locus [13], Coda [14], Sprite [15] and XtreemFS [16]
statically partition the namespace into sub-trees across multiple metadata
servers (shards) to scale-out the metadata service layer. However, the
metadata partition boundaries (shards) are visible to the file system users
due to the lack of support for the atomic link and rename operations that
cross the metadata partition boundaries.

Recent studies about distributed file systems’ workloads in production
deployments have shown that significant portions of the files in the pro-
duction distributed file systems are very small in size [20]. For example,
in the case of Spotify and Yahoo!, almost 20% of the files stored in their
HDFS clusters are less than 4 KB in size. At Spotify, almost 42% of all the
file system operations are performed on files less than 16 KB in size. The
presence of a large number of small files puts pressure on distributed file
systems with single-host metadata servers resulting in poor performance
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of the file systems. See Chapter 9 for more details related to the small
files’ problem in Hadoop. Many applications, such as streaming and
real-time analytics, not only generate a large number of file system meta-
data operations but also require low latency highly parallel file system
metadata operations. Moreover, existing distributed file systems do not
provide mechanisms to enable online ad-hoc analytics on the file system
metadata. For example, finding all files belonging to a user that were
created during a given time range, or finding the largest files/directories
in the file system. Administrators often resort to writing custom tools to
analyze the distributed file system metadata.

The file system metadata consists of highly structured information such
as file/directory names, size, user permissions, data block locations, and
lease information. In distributed file systems, the size of the metadata
is very small compared to the amount of data stored. Databases are
the de facto standard for storing large amounts of structured data and
provide ACID transactions to access and update the stored data in an
atomic manner. The conventional wisdom is that databases are ideal
for storing hierarchical file system metadata, as the metadata not only
easily fits a database, but also the ACID transactions provided by the
database would simplify the design and implementation of the file system
metadata service. Also, the databases provide a mechanism to perform ad
hoc analytics using SQL which could be used to analyze the file system
metadata.

For many years, researchers have investigated this idea of using database
technology to manage file system metadata, with the goal of providing
high-performance metadata service [21–25]. However, earlier attempts
failed mainly due to the reduced performance introduced by adding
database operations to the file system’s critical path. To improve the path
lookup performance, existing solutions that use databases to manage file
system metadata store the file system metadata in denormalized form, that
is, each inode stores complete pathname of the files and directories. This
not only consume a significant amount of precious database storage space
but also, a simple directory rename operation would require updating the
file paths for all the children of the directory subtree – potentially a very
expensive operation.

However, recent improvements in the performance of distributed in-
memory online transaction processing databases (NewSQL databases)
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has led us to re-investigate the possibility of using a database to manage
file system metadata. In this thesis, we base our investigation on the
popular Hadoop distributed file system (HDFS). The single-host metadata
service of HDFS is a well-known bottleneck for both the size of HDFS clus-
ters and their throughput. Migrating the HDFS metadata to a NewSQL
database offered the possibility of a more scalable and simpler metadata
service. We store the file system metadata in normalized form, that is,
instead of storing complete file paths with each inode, we store individual
file path components in the database, enabling in-place mv, chown, and
chmod operations.

1.1 Thesis Statement

Modern NewSQL database systems can be used to store fully
normalized metadata for distributed hierarchical file systems and
provide high throughput and low operational latencies for the file
system operations.

1.2 Hops Hadoop Distributed File System

In this thesis we show how to build a high-performance distributed file
system, using a NewSQL database, which leverages both classical database
techniques such as extensive use of primary key operations, batching opera-
tions and write-ahead caches within transactions, as well as modern data
distribution aware techniques commonly found in NewSQL databases.
These distribution-aware NewSQL techniques include application-defined
partitioning (we partition the namespace such that the metadata for all
immediate descendants of a directory (child files/directories) reside on
the same database partition for efficient directory listing), and distribution
aware transactions (we start a transaction on the database partition that
stores all/most of the metadata required for the file system operation), and
partition pruned index scans (scan operations are localized to a single data-
base partition [26]). We show how we improve the latency and throughput
of the small files by collocating file system metadata and data blocks for
small files. Lastly, we show how to build a coordination service using
NewSQL system that simplifies the administration of the file system by
reducing its reliance on third-party coordination services, such as Apache
ZooKeeper [27].
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We present Hops Hadoop Distributed File System (HopsFS) a new production-
ready file system which is a drop-in replacement for the current state-of-
the-art industry-standard the Hadoop Distributed File System. HopsFS
stores the file system metadata in a NewSQL relational database, the
MySQL Cluster’s Network Database (NDB) storage engine in our case. In
HopsFS, the metadata service layer consists of multiple stateless metadata
servers that convert the file system operations into database transactions.
The database ensures that the conflicting file system operations are iso-
lated and replicates the metadata for high availability. HopsFS provides a
high-performance unified file system namespace that outperforms HDFS
by an order of magnitude both in terms of the size of the supported
namespace and also the throughput of the file system operations. HopsFS
can handle both large and small files efficiently, and it has significantly
lower latencies for the file system operations.

1.3 List of Publications

The research conducted within the scope of this dissertation resulted in
four research papers listed below in chronological order

• Leader Election using NewSQL Database Systems. Salman Niazi,
Mahmoud Ismail, Gautier Berthou, Jim Dowling. In Distributed Ap-
plications and Interoperable Systems (DIAS): 15th IFIP WG 6.1 Interna-
tional Conference, DAIS 2015. Held as Part of the 10th International Fed-
erated Conference on Distributed Computing Techniques, DisCoTec 2015,
Grenoble, France, June 2-4, 2015.

Author’s Contributions: The thesis author is the main contributor
in designing, implementing and testing the proposed leader election
service. The thesis author did the main bulk of the work including
writing the paper.

• HopsFS: Scaling Hierarchical File System Metadata Using NewSQL
Databases. Salman Niazi, Mahmoud Ismail, Seif Haridi, Jim Dowl-
ing, Mikael Ronström, Steffen Grohsschmiedt. In 15th USENIX Con-
ference on File and Storage Technologies, Santa Clara, California, USA,
2017.

Author’s Contributions: The thesis author is one of the main con-
tributors to HopsFS. The thesis author did the main bulk of the work
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that includes, implementing HopsFS, performance optimization,
benchmarking, evaluation and writing of the paper.

• Scaling HDFS to more than 1 million operations per second with
HopsFS. Mahmoud Ismail, Salman Niazi, Seif Haridi, Jim Dowl-
ing, Mikael Ronström. In Proceedings of the 17th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing, CCGRID
2017, Madrid, Spain.

Author’s Contributions: The thesis author played a major role in
the discussions and implementations of file system operations us-
ing different types of database operations. The thesis author was
responsible for an optimal configuration of the database, operating
system and the network needed for high-performance of HopsFS
and performed the experiments. This paper was also nominated
for 10th IEEE International Scalable Computing Challenge (SCALE
2017). The thesis author also presented HopsFS in SCALE challenge
and demonstrated the scalability of the file system.

• Size Matters: Improving Small Files’ Performance in Hadoop. Salman
Niazi, Seif Haridi, Jim Dowling, Mikael Ronström. In ACM/I-
FIP/USENIX 19th International Middleware Conference (Middleware ’18),
December 10–14, 2018, Rennes, France.

Author’s Contributions: The thesis author is the main contributor
in designing, implementing and testing the proposed solution. The
thesis author also analyzed the production clusters of Hadoop at
Spotify and Logical Clocks to identify the prevalence of small files,
and the frequency of file system operations performed on the small
files. The thesis author did the main bulk of the work including
writing the paper.

1.4 Thesis Outline

This thesis consists of two parts. In the first part, Chapter 2 gives an
overview of the HopsFS architecture. Chapter 3 describes in detail the
system architecture of the NDB NewSQL storage engine and describes
the different types of supported NewSQL database operations. Chap-
ter 4 briefly describes the contributions of this thesis followed by an
introduction of the prior research in the field of distributed file systems.
Chapter 6 concludes the first part of the thesis, and it also discusses possi-
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ble venues for the future research. The second part of the thesis consists
of four chapters that discuss the thesis contributions in much detail.
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2
HopsFS Overview

The world’s most valuable resource is no
longer oil, but data.

— The Economist, 6
th May 2017

This is an age of big data. Internet companies are storing and processing
large volumes of user data in distributed file systems to understand their
customers better and provide value-added services. Apache Hadoop is
currently the open-source state-of-the-art industry-standard software that
provides a highly-scalable, fault tolerant and extremely flexible set of
frameworks to store and process large amounts of data using commodity
hardware [28]. At the heart of the Hadoop is the Hadoop Distributed
File System that is designed to store large volumes of data and provide
streaming access to the stored data, see Figure 2.1a. The data stored in
HDFS is accessed and processed by data processing frameworks such
as Pig, Hive, HBase, MapReduce, Tez, Spark, and Giraph [29–35]. These
applications are managed by Apache YARN [36], which is a resource
negotiator and application scheduler for the Apache Hadoop clusters.
Together, it is said that HDFS and YARN comprise the operating system
for many modern data centers [37].

Hadoop Open Platform-as-a-Service (Hops) is a new open-source distri-
bution of Apache Hadoop that is based on a next-generation, scale-out



Figure 2.1: Software stacks of Apache Hadoop and Hops Hadoop. Hops Hadoop replaces the HDFS
and YARN with the HopsFS and Hops YARN. At the data processing layer there is no significant
difference with Apache Hadoop and Hops Hadoop, that is, both Hadoop distributions support the same
data processing frameworks.

distributed architecture for HDFS and YARN metadata. Hops Hadoop is
designed to make Hadoop more scalable and easier to use for the users.
Hops Hadoop has been running in production in Sweden with over 500

users. Hops Hadoop uses HopsFS for storage which is more scalable and
high-performant than the Apache Hadoop’s HDFS. In this thesis, we will
focus on system development and research contributions for HopsFS. At
the data processing layer there is no significant difference with Apache
Hadoop and Hops Hadoop, that is, both Hadoop distributions share the
same data processing frameworks.

2.1 Apache Hadoop Distributed File System

Apache HDFS has five types of nodes: namenodes, datanodes, clients,
journal nodes, and ZooKeeper nodes that are needed to provide a highly
available file system, see Figure 2.2.

2.1.1 HDFS Namenodes

HDFS decouples file system metadata from blocks that store the file
data. The data blocks for files of all sizes are stored and replicated on
a large number of independent nodes, called the datanodes, while the
file system metadata is stored in-memory on a special node called the
Active Namenode (ANN). HDFS supports multiple standby namenodes
(SbNNs), and it uses the active-standby model for high availability [38]. A
standby namenode stores a replica of the file system metadata and takes
over when the active namenode fails. The active namenode is responsible
for the entire file system. It manages the file system metadata, performs
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Figure 2.2: HDFS system architecture. In HDFS, a single namenode manages the metadata for the
entire namespace. For high availability, the namenode logs all the changes in the metadata on a quorum
of journal nodes using quorum-based replication. The log is subsequently replicated asynchronously
to the standby namenodes. ZooKeeper is used to detect failed namenodes and to reliably failover from
active to standby namenodes. In HDFS, the clients communicate with the active namenode and the
datanodes in order to read and write files.

all the file system metadata operations, and ensures that the file system
is in a healthy state. The namenode is implemented in Java, and it keeps
the metadata in-memory on the heap of a single Java Virtual Machine
(JVM) process for high performance. Storing the metadata in-memory is
necessary because random-access to metadata on either a magnetic disk or
a solid-state-disk is an order of magnitude slower than reading from main
memory. The namenode uses custom map-like in-memory data structures
to minimize the memory footprint. However, the maximum amount of
metadata that can be handled by the namenode is bounded by the amount
of memory that can be efficiently managed by the JVM garbage collector
(a few hundred GBs, at most [2, 39]). At the time of writing the Spotify
HDFS cluster, consisting of ≈2000 data nodes, stores 73 PBs of data in
≈0.5 billion data blocks. Further scalability of the cluster is hampered by
the namenode’s inability to handle more file system metadata, and the
cluster is beset by frequent multi-second pauses where the JVM garbage
collects the metadata. Tuning garbage collection on the namenode for
such a large cluster requires significant, skilled administrator effort.

Moreover, the namespace metadata is kept strongly consistent using
multiple readers/single-writer concurrency semantics, implemented using a
global namespace lock. All the namespace changes (write-operations) are
serialized, even if these operations intend to mutate different files in the
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different sub-trees of the namespace hierarchy. A write-operation blocks
all other operations, and a large write (that is deleting millions of files
at once) operation can potentially block the namespace for a very long
time. Some operators have reported that due to a sudden influx of write-
operations and JVM stop-the-world garbage collection, the namenode
can become unresponsive for tens of minutes [40]. Due to the coarse-
grained global namespace lock, the namenode does not scale well on multi-
core hardware, and the CPU is often underutilized for write-intensive
workloads [41, 42]. For example, the HDFS throughput is limited to
≈80 thousand file system operations/sec on typical read-heavy industrial
workloads, such as at Spotify. For a more write-intensive workload with
20% writes, the throughput drops to ≈20 thousand operations/sec [43].

2.1.2 HDFS Datanodes

The files in HDFS are split into blocks, with a default of 3 replicas of each
block stored on different datanodes. A block placement policy determines
the choice of datanodes to store the replicas of the blocks. The default
block placement policy provides rack-level fault-tolerance and minimizes
data transfers between racks. The client writes the first block to a local
datanode if there is one, and the next two blocks to two datanodes on the
same remote rack. The default block placement policy can be replaced
with a custom block placement policy by an administrator. The datanodes
periodically send heartbeats to both the active and standby namenodes
indicating that they are alive, and the active namenode takes management
actions to ensure that the file system is in a safe state. For example, when
the active namenode detects that a datanode has failed, due to a number
of consecutively missed heartbeats, for each block on the failed datanode,
it orders one of the surviving datanodes that stores a copy of the lost block
to replicate it to a different alive datanode in the system. The datanodes
send periodic block-reports (default six hours) to the namenodes. The
block-report contains IDs of all the blocks stored on the datanode. The
block-report is also sent to the secondary namenode to keep it up-to-date
with the block changes on the datanodes.

2.1.3 HDFS Clients

HDFS clients communicate with both the active namenode and the data-
nodes to access and update the stored data. To read a file, the client first
communicates with the active namenode and retrieves the metadata for
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the file. The metadata contains information about the datanodes that store
the blocks of the file. The client then directly contacts the corresponding
datanodes to retrieve the data blocks. Large HDFS deployments may have
tens of thousands of clients [2]. For a large number of file system clients,
the performance of the file system degrades as the file system operations
wait in RPC call queues at the active namenode [44]. This severely affects
the performance of the file system operation for small files where the
cost of the metadata operations is significantly higher than the cost of
writing/reading small files’ data to/from the datanodes.

2.1.4 Journal Nodes

To avoid losing metadata in the eventuality of a namenode restart or failure,
all changes to the metadata are logged and replicated to a set of external
(at least three) Journal Nodes using a quorum-based replication algorithm.
The log entries in the journal nodes are applied to the standby namenodes
in batches. One of the standby namenodes takes over as the primary
namenode when the active namenode fails after all the outstanding log
entries in the journal nodes have been applied [45].

2.1.5 ZooKeeper Nodes

ZooKeeper is a third-party coordination service that provides services
such as configuration management, naming, distributed synchronization,
and group membership services [27]. HDFS uses ZooKeeper instances to
allow all nodes in the cluster to reach an agreement on which namenode
is currently active and which is standby.

2.2 Hops Hadoop Distributed File System

Hops Hadoop Distributed File System (HopsFS) is a new high-performance
distribution of HDFS that removes the HDFS metadata bottleneck by intro-
ducing a scale-out distributed metadata layer. Hops can be scaled out at
runtime by adding new nodes at both the metadata layer and the datanode
layer. HopsFS has four types of nodes: namenodes, datanodes, clients,
and NDB database nodes.

2.2.1 HopsFS Namenodes

In HopsFS, the metadata is stored in an in-memory, shared-nothing, open-
source database called NDB cluster. This makes the namenodes in HopsFS
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Figure 2.3: HopsFS system architecture. HopsFS supports multiple stateless namenodes and a single
leader namenode. All the namenodes access and update the metadata stored in NDB cluster. HopsFS
only decouples the metadata for large files. Data blocks for small files (664 KB) are stored with
the metadata in the distributed database, while the data blocks for large files (>64 KB) are stored
and replicated on HopsFS datanodes. Unlike HDFS which uses ZooKeeper for coordination services,
HopsFS solves this problem by using the database as shared memory to implement a leader election
and group a membership management service.

stateless. HopsFS supports multiple redundant stateless namenodes that,
in parallel, read and update the metadata stored in the external database.
HopsFS only decouples the metadata for large files. Data blocks for small
files (664 KB) are stored with the metadata in the distributed database,
while the data blocks for large files (>64 KB) are stored and replicated on
the HopsFS datanodes.

HopsFS Leader Namenode

Unlike HDFS all the namenodes are active in HopsFS that simultaneously
perform file system operations. The internal management (housekeep-
ing) operations must be coordinated amongst the namenodes. Some
housekeeping operations cannot be performed by multiple namenodes
simultaneously. These housekeeping operations include ensuring that the
file blocks are properly replicated and removing any dead datanodes. If
these operations are executed simultaneously on multiple namenodes,
they can potentially compromise the integrity of the namespace. For
example, the replication manager service makes sure that all the blocks in
the system have the required number of replicas. If any block becomes
over-replicated, then the replication manager removes the replicas of the
block until it reaches the required level of replication. If, however, we
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had several replication managers running in parallel without coordina-
tion, they might take conflicting/duplicate decisions, and a block might
end up being completely removed from the system. In HopsFS, these
housekeeping operations are performed by a distinguished (leader) name-
node. Unlike HDFS, which uses ZooKeeper [27] for coordination services,
HopsFS solves this problem by using the database as a shared memory to
implement a leader election and group membership service. The leader
election service is discussed in detail in Chapter 10.

2.2.2 Network Database Cluster

Network Database Cluster (NDB) cluster belongs to the class of NewSQL
databases: distributed, in-memory, high-performance, online transaction
processing (OLTP) databases [46]. A typical NDB cluster setup includes
multiple NDB database nodes that run Network Database storage engine,
management nodes and optionally MySQL Server nodes. The NDB storage
engine automatically partitions and replicates the data across multiple
NDB database nodes. MySQL Server nodes can be used to access the
data stored on the NDB database nodes using SQL queries. However, for
high performance, NDB provides native APIs to bypass MySQL Servers
and directly access the data stored on the NDB database nodes. Native
APIs provide greater flexibility and yield higher throughput. NDB cluster
has at least one management node that prevents data inconsistencies
by halting the cluster when it detects a network partition. In the CAP
theorem model, NDB provides consistency and partition tolerance, giving
up availability. In scalability tests with 32 nodes, NDB has performed
more than 200 million updates using native NDB API and 2.5 million
SQL updates per second [47]. NDB cluster supports distribution aware
ACID transactions. Transaction coordinators handle the transactions.
Each database node has at least one (and maybe several) transaction
coordinators. By default, the transactions are randomly load-balanced
among all the transaction coordinators. However, the native APIs allows
the client to enlist a transaction on a specific datanode. The transaction
coordinator handles all the read and update queries in the transaction.
The performance of a transaction greatly depends on how the data is
partitioned. A transaction would run faster if all the data that is read and
updated is local to the transaction coordinator, that is, the data resides in
a partition stored on the same datanode where the transaction coordinator
is running. This way all the read operations are handled by the local
replica of the partition and updates are synchronized with the replicas
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of the partition in the same replication node group, see Chapter 3 for a
detailed discussion on NDB cluster.

2.2.3 HopsFS Datanodes

Unlike HDFS that store data blocks for files of all sizes on the datanodes,
HopsFS only stores the data blocks of large files (>64 KB) on the data-
nodes. Similar to HDFS, the datanodes are connected to all the namenodes
in HopsFS. Datanodes periodically send a heartbeat message to all the
namenodes to notify them that they are alive. The heartbeat also con-
tains information such as the datanode capacity, available space, and the
number of active data transfer connections. This information is used by
the namenodes for future block allocations and not persisted in either
HDFS or HopsFS, as it is rebuilt on system restart using heartbeats from
the datanodes. Both HDFS and HopsFS persist the mapping of files to
blocks to stable storage so that it can be recovered in the event of failures.
However, only HopsFS persists information about the datanodes on which
blocks are stored. This enables faster restarts on a cluster failure compared
to HDFS, as HopsFS does not strictly require block-reports from all the
datanodes to rebuild the block location mappings data. In HopsFS, the
datanodes also send periodic block-reports to the namenodes, however,
instead of sending the block-report to all the namenodes the block-reports
are sent to only one namenode in a round-robin manner. Moreover, the
block-reports in HopsFS are more efficient. In HDFS the namenode pro-
cesses all the blocks in a block-report, while, HopsFS uses a hash-based
block-report system that is inspired by Merkle trees to reduce the computa-
tion of block-reports on the namenode side. In HopsFS, the block-report
is split into a large number of sub-block-reports. The datanodes compute
the hash of the sub-block-reports and send the hashes to the namenodes.
The blocks in the sub-block-report are only processed if the hashes do not
match on the namenode side [48].

2.2.4 HopsFS Clients

Similar to HDFS, the HopsFS clients communicate with both the name-
nodes and the datanodes. For example, to read a large file, the client first
sends a read-file operation to one of the namenodes in the system. The
namenode fetches the file’s metadata from the database and ensures that
the file path is valid and the client is authorized to read the file. After
performing the metadata operation, the namenode returns the addresses
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of the datanodes, where the file is stored, to the client. The client then
contacts the datanodes to read the file. For reading small files, whose
data blocks are stored in the database, the namenode fetches the data
blocks along with the file’s metadata and the namenode then returns the
small files data blocks directly to the client. This reduces the number
of communication steps involved in reading small files, reducing the
end-to-end operational latencies for small files, see Chapter 9. HopsFS
clients support random, round-robin, and sticky policies to distribute the file
system operations among the namenodes. If a file system operation fails,
due to namenode failure or overloading, the HopsFS client transparently
retries the operation on another namenode after backing off if necessary.
HopsFS clients refresh the namenode list every few minutes, enabling
new namenodes to join an operational cluster. HDFS clients are fully
compatible with HopsFS, although they do not distribute operations over
namenodes, as they assume there is a single active namenode.
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3
NDB Cluster NewSQL Database

In this chapter, we will briefly introduce the MySQL’s Network Database
(NDB) cluster architecture and the different types of database operations
supported by NDB.

3.1 HopsFS Distributed Metadata

HopsFS stores the file system metadata in NDB. The file system operations
are converted into distributed transactions that read and update the
metadata stored in NDB cluster. In HopsFS, a non-empty file comprises
one or more data blocks which are replicated (by default) three times on
HopsFS datanodes. The file system metadata is stored in different tables
in the database. The inodes table stores the name of the file/directory,
permission attributes, file size, and ownership information. Other tables,
such as blocks table stores information about the data blocks belonging
to the different files and the replicas table stores information about which
HopsFS datanodes store the replicas of the blocks.

The metadata is stored in the database in normalized form. Instead of
storing entire file paths with each inode, HopsFS stores individual file
path components as separate rows in an inodes table. For example, instead
of storing an inode with full pathname /etc/gnupg, we store three inodes
(one for each path component): root (/), etc, and gnupg with foreign keys
to the parent inodes to maintain the namespace hierarchy. Storing the
normalized data in the database has many advantages, such as enabling
rename file system operation to be performed in-place by updating a single



Figure 3.1: A sample file system namespace. The diamond shapes represent directory inodes and the
circles represent file inodes. The inodes are stored in the Inodes table where each row represents a
single file or directory.

row in the database that represents the inode. If complete file paths are
stored alongside each inode, it would not only consume a significant
amount of precious database storage space but also, a simple directory
rename operation would require updating the file paths for all the children
of the directory subtree. The rename operation is an important operation
for higher level frameworks, such as Apache Hive that uses the atomic
rename operations to commit transactions in Hive. The HopsFS schema
contains around 40 tables that store the metadata of the file system. For
the sake of simplicity, here we will only consider the inodes table. Table 3.1
shows a possible solution for how the namespace shown in Figure 3.1 can
be stored in the inodes table.

Now we will discuss the system architecture of the NDB cluster data-
base and show how the inodes table is stored in the distributed database
and how the inodes table is accessed using different types of database
operations.

3.2 NDB Cluster NewSQL Database

HopsFS uses MySQL’s NDB cluster to store the file system metadata.
NDB is an open source, real-time, in-memory, shared nothing, distributed
database management system (and is not to be confused with clustered
MySQL Servers based on the popular InnoDB storage engine. The MySQL
Server supports different database storage engines). NDB has three types
of nodes: NDB database nodes, management nodes, and database clients,
see Figure 3.2. The management nodes are only used to disseminate
the configuration information and to act as arbitrators in the event of a
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ID PID Name isDir ...

1 0 / true ...
2 1 home true ...
3 1 etc true ...
4 1 bin true ...
5 1 lib true ...
6 2 john true ...
7 2 doe true ...
8 3 gnupg false ...
9 3 conf false ...
10 4 vim false ...
11 4 firefox false ...
12 5 libA false ...
13 5 libB false ...

Table 3.1: Normalized representation of the inodes table. Each path component is stored as a single
row in the table. PID refers to the parent inode’s ID for the given path component (for example, the
etc directory is the parent of gnupg file).

network partition. The client nodes access the database using the SQL
interface via MySQL Server or using the native APIs implemented in C++,
Java, JPA, and JavaScript/Node.js. The SQL API is not recommended for
implementing high-performance applications for NDB. Instead, the NDB
storage engine can be accessed using its native (C++) NDB API or the
ClusterJ (Java) API for low latency database operations.

NDB database nodes are responsible for storing the database tables. Fig-
ure 3.2 shows a NDB cluster setup consisting of four NDB database nodes.
Each NDB database node has multiple transaction coordinators (TC),
local data managers (LDM), send, receive, and IO threads. The transac-
tion coordinators execute two-phase commit transactions. The local data
management threads are responsible for storing and replicating the data
partitions assigned to the NDB database nodes. Finally, the send and
receive threads are used to exchange the data between the NDB database
nodes and the clients, and the IO threads are responsible for performing
disk IO operations.

NDB horizontally partitions the tables, that is, the rows of the tables are
distributed among the database partitions stored on the NDB database
nodes. Rows are assigned to the partitions based on an application-
defined partition key or if none has been supplied, the MD5 hash of the
primary key of the row. The NDB database nodes are organized into
node replication groups of equal sizes to manage and replicate the data
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Figure 3.2: System architecture of NDB cluster. The NDB cluster has three types of nodes: database
clients, NDB management nodes, and NDB database nodes. This figure also illustrates how the inodes
table as shown in Table 3.1 is horizontally partitioned and replicated across the NDB database nodes.

partitions. The size of the node replication group is the replication degree
of the database. In the example setup, the NDB replication degree is set
to two (default value). Therefore, each node replication group contains
two NDB database nodes. The first replication node group consists of
NDB database node 1 and 2, and the second replication node group
consists of NDB database nodes 3 and 4. Each replication node group
is responsible for storing and replicating all the data partitions assigned
to the NDB database nodes in the replication node group. By default,
NDB hashes the primary key columns of the tables to distribute the
rows among the different database partitions. Figure 3.2 shows how the
inodes table (Table 3.1) is partitioned and stored in NDB. In production
deployments, each NDB database node may store multiple data partitions,
but for simplicity, the NDB database nodes shown in Figure 3.2 store only
one data partition. The replication node group 1 is responsible for storing
and replicating partitions 1 and 2 of the inodes’ table. The primary replica
of partition 1 is stored on the NDB database node 1, and the replica of
the partition 1 is stored on NDB database node 2. For example, the NDB
database node 1 is responsible for storing a data partition that stores the
lib, conf, and libB inodes, and the replica of this data partition is stored on
NDB database node 2.
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NDB also supports an application-defined partitioning of the stored tables,
that is, it can partition the data based on a user-specified table column.
Application-defined partitioning provides greater control over how the
data is distributed among different database partitions, which helps in
implementing very efficient database operations, see section 3.4.3 for more
details on application-defined data partitioning in NDB.

By default, the database is stored in-memory on the NDB database nodes,
with recovery logs and snapshots stored on disk. Columns in a table
may be defined as on-disk columns, but the primary key and indexes are
still stored in-memory. All transactions are committed in-memory, and
transaction logs are (by default) flushed to disk every two seconds. The
database can tolerate failures of multiple NDB database nodes as long
as there is at least one surviving replica for each of the partitions. For
example, in Figure 3.2, the database cluster will stay active even if the
NDB database nodes 1 and 4 fail. However, if two nodes in the same
replication node group fail, then the database will halt its operations
until the unavailable replication node group has recovered. As such,
NDB favors consistency over availability [49]. NDB cluster supports
asynchronous replication of the whole cluster, enabling data from one
NDB cluster (the master) to be copied to one or more NDB clusters (the
slaves). When the master database cluster is unavailable, then the database
can fail-over to a slave NDB cluster database on the fly without affecting
the availability of the database. NDB cluster supports both node level
and cluster level recovery using persistent transaction redo and undo logs
and checkpoint mechanisms. Every two seconds a global checkpoint
mechanism ensures that all the NDB database nodes agree on a global
epoch ID that is appended to the logs checkpointed to local-disk. Global
checkpoints are needed as there are multiple independent transaction
coordinators that need to agree on a consistent snapshot of the system
when recovering, identified by the latest epoch ID. As such, there is a
possibility of data loss on a system failure, for any transaction committed
in-memory with an epoch-id higher than the last epoch persisted in the
last global checkpoint. By default, a global checkpoint is performed every
two seconds. Typically this means up to two seconds of data may be lost
on a system failure, but some of that data may be recoverable from redo
logs.
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3.3 Transaction Isolation

NDB only supports read-committed transaction isolation, which guarantees
that any data read is committed at the moment it is read. The read-
committed isolation level does not allow dirty reads, but phantom and fuzzy
(non-repeatable) reads can happen in a transaction [50]. However, NDB
supports row-level locks, such as exclusive (write) locks, shared (read) locks,
and read-committed locks that can be used to isolate conflicting transactions.

3.4 Types of Database Operations

HopsFS implements the file system operations as distributed database
transactions that consist of three distinct phases. In the first phase, all the
metadata that is required for the file system operation is read from the
database, in the second phase the operation is performed on the metadata,
and in the last phase all the updated metadata (if any) is stored back in
the database, see Section 4.1.4 and 7.5 for more detail. As the latency
of the file system operation depends on the time spent in reading and
writing the data, therefore, it is imperative to understand the latency,
and computational cost of different database operations used to read
and update the stored data, to understand how HopsFS implements low
latency scalable file system operations.

NDB supports four different types of database operations: primary key,
partition pruned index scan, distributed index scan, and distributed full table
scan operations for reading the data stored in the database. Below, these
different types of database operations are explained in detail along with
micro-benchmarks that show the throughput and latency of these op-
erations. The micro-benchmarks were performed on a four-node NDB
cluster setup running NDB Version 7.5.6. All the experiments were run
using Dell PowerEdge R730xd servers (Intel Xeon ® CPU E5-2620 v3 @
2.4 GHz, 256 GB RAM, 4 TB 7200 RPM HDD) connected using a single 10

GbE network adapter. In the experiments, we varied the amount of the
data read/updated in each operation as well as the number of concurrent
database clients. Up to 1.2 millions inodes were created in a table to test
the performance of different database operations. The database clients
were not collocated with the database nodes, and the database clients (up
to 400) were uniformly distributed across 20 machines.
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Figure 3.3: Different stages of distributed full table scan operation for reading all the immediate
children of the root(/) directory. The client sends the operation to one of the transaction coordinators
in the system, which forwards the operation to all the other NDB database nodes. The NDB database
nodes read all the rows of the inodes table to locate the desired information, that is, rows where
PID is set to 1. The partial results from each NDB database nodes are sent back to the transaction
coordinator that initiated the operation. The transaction coordinator collects all the partial results and
then forwards the results back to the client.

3.4.1 Distributed Full Table Scan Operations

Distributed full table scan operations read all the rows of the table stored in
all the database partitions to retrieve the desired information. Distributed
full table scan operations are computationally intensive and have very high
latency. For example, consider a client that wants to perform a directory
listing operation on the root directory of the namespace, as shown in Fig-
ure 3.1. Assume that the metadata is hash partitioned based on the inodes’
table ID column, that is, all the inodes are uniformly distributed among
the NDB database partitions, as shown in Figure 3.3. The listing operation
can be performed using the query, select * from inodes where PID =
1. The figure also shows the different steps involved in performing the
distributed table scan operation.

1. First, the user sends the transaction containing the single operation
(select * from inodes where PID = 1) to a random transaction
coordinator.

2. As the data is hash partitioned using the ID column of the inodes
table, the immediate children of the root(/) directory will be spread
across all the database partitions. As no single database partition
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Figure 3.4: Micro-benchmarks for distributed full table scan (DFTS) operations. The experiments are
repeated twice. The first set of experiments (represented by the solid lines) are read-only operations,
and the second set of experiments (represented by the dotted lines) are read-write operations where all
the data read is also updated and stored back in the database. For example, the solid red line shows the
throughput and latency of distributed full table scan operations that read only one row. Distributed
full table scans have a maximum throughput of 5.5K operations per second when only one row is
read from the database. The throughput drops as more data is read in each operation and the number
of concurrent clients increases. For reading 10 rows in each operation the maximum throughput
drops to 650 operations per second and the maximum latency increases to 1.8 second per operation.
The dotted lines for read-write experiments overlap with their corresponding read-only experiments
because the amount of data that is updated is very low, and it does not have any significant impact on
the performance of read-write distributed full table scan operations.

holds all the rows needed for the operation, the transaction coordi-
nator forwards the database operation to all the database partitions
to perform the scan operations.

3. All the database partitions locally scan all the stored rows for the
inodes table to retrieve the rows with PID set to 1.

4. Upon completion of the local table scan operations, the NDB data-
base nodes send the partial results back to the transaction coordina-
tor that is responsible for the operation.

5. Once the transaction coordinator has received the results from all
the NDB partitions it forwards the results back to the client.

Distributed full table scan operations are the least efficient database op-
eration for reading data from the database. The inodes table may contain
billions of rows. Reading and searching through all the rows incurs
prohibitive CPU costs. Figure 3.4 shows the throughput and latency of
distributed full table scan operation as a function of the number of concur-
rent clients and the number of rows read/updated in each operation. The
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experiments are repeated twice. The first set of experiments (represented
by solid lines) are read-only operations, and the second set of experiments
(represented by dotted lines) are read-write operations where all the data
read is also updated and stored back in the database. Distributed full
table scan operations do not scale, and the throughput of the system drops
and the latency increases when the number of concurrent database clients
increases. This is because the database can only handle a very limited
number of concurrent distributed full table scan operations. NDB limits
the number of concurrent distributed full table scan operations to 500,
due to very high CPU cost of these operations. In the micro-benchmarks,
we only managed to perform 5.5K distributed full table scan operations
that read and update a single row from the test table, and the through-
put drops to 350 operations per second when the number of concurrent
database clients reaches 400. The latency of the distributed full table
scan operations is also very high that increases with the increase in the
number of concurrent database clients. The dotted lines for read-write
experiments overlap with their corresponding read-only experiments be-
cause the amount of data updated is very small, and the time required to
update the data is not visible due to a very high cost of reading the data
using distributed full table scan operations. For the operations that read
and update 10 rows, the average latency of the operation increases to 1.8
seconds using 400 concurrent database clients.

3.4.2 Distributed Index Scan Operations

The primary reason that distributed full table scans are very slow is
that these operations read all the data stored in the tables. A simple
solution to speed up the distributed full table scan operations is to create
an index over the desired table columns. In the example above if we
create an index for the PID column then the performance of the scan
operation can be significantly improved. A distributed scan operation
using an index becomes distributed index scan operation. The steps involved
in a distributed index scan operation are the same as distributed full
table scan operations except the datanodes use an index scan operation.
Figure 3.5 shows the throughput and latency of distributed index scan
operations. Distributed index scan operations have better scalability and
lower latency than the distributed full table scan operations. Distributed
index scan operation delivers 38X to 590X the throughput of distributed
full table scan operations using 20 and 400 concurrent database clients,
respectively for reading single row in each operation. In the case of
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read-write experiments, the throughput drops and the latency increases
due to the overhead of distributed two-phase commit protocol used by
NDB to update the table rows atomically. For the single row tests, the
throughput drops from 210K to 145K and the latency increases from 1.8
milliseconds to 2.7 milliseconds for reading and updating a single row
in each operation. Similarly, for tests that read and update 10 rows, the
throughput drops from 173K to 66K operations per second and the latency
increases from 2.3 milliseconds to 5.9 milliseconds using 400 concurrent
database clients.
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Figure 3.5: Throughput and latency of distributed index scan (DIS) operations as a function of the
number of database clients and the amount of data read/updated in each operation. Creating an index
significantly improves the performance of the operation. The maximum throughput of distributed
index scan operations reaches 210K operations per second as opposed to a maximum throughput of
5.5K operations per second for distributed full table scan operations. Updating the data generally
halves the throughput and doubles the latency of the operation, this is due to the high cost of two-phase
commit protocol for updating the data.

3.4.3 Partition Pruned Index Scan Operations

The performance of the distributed index scan operation can be improved
by reducing the number of NDB database nodes that participate in the
operation. As the default partitioning scheme spreads the inodes’ rows
for the immediate children of the root(/) directory across all data parti-
tions, therefore, it is not possible to confine the index scan operation to a
limited number of database nodes. NDB supports an application-defined
partitioning mechanism that allows the users to partition the tables using
user-defined columns. A limitation of NDB is that the partition key must
be part of the table’s primary key. If the inodes table is partitioned using
the parent ID (PID) column, then all the immediate children of a directory
will reside on same database partition. For example, in Figure 3.6, all the
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immediate children of the root(/) directory will reside on NDB database
node 1, and the immediate children of the home directory will reside
on NDB database node 2, and so on, making it possible to read all the
required metadata from a single database partition for the directory listing
operation. A partition pruned index scan operation is an index scan oper-
ation where the index scan is performed on a single database partition. In
HopsFS, the inode ID column acts as a candidate key column, and the com-
posite primary key consists of the parent ID (PID) and name columns of
the inodes table. Figure 3.6 shows different stages of the partition pruned
index scan operation used to read all the immediate children of the root(/)
directory.

Figure 3.6: Different stages of a partition pruned index scan (PPIS) operation for reading all the
immediate children of the root(/) directory. The client sends the operation to one of the transaction
coordinators in the system, which forwards the operation to only one NDB database node which stores
the data partition responsible for holding all the immediate children of the root(/) directory. The NDB
database node performs a local index scan operation on a single database partition and sends the
results back to the transaction coordinator. The transaction coordinator then forwards all the results
back to the client.

1. The client sends the operation (select * from inodes where PID
= 1) to a transaction coordinator located on a random NDB database
node.

2. As the inodes table is partitioned using the PID column the transac-
tion coordinator can infer where all the data for this query resides.
The transaction coordinator forwards the operation to the NDB data-
base node 1, which stores all the immediate children of the root(/)
inode.
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3. The index scan operation is performed by only one database partition
on the NDB database node 1.

4. The results are sent back to the transaction coordinator that initiated
the operation.

5. The transaction coordinator then returns the results to the client.

3.4.4 Data Distribution Aware Transactions

Apart from controlling how NDB partitions the data, the client can also
specify which transaction coordinator should be used to perform the
database operations. In NDB this is done by specifying a hint when
starting a transaction. For example, in the above case, when starting the
transaction, the client can provide a hint (the partition ID) to NDB to start
the transaction on the NDB database node that is responsible for all the
rows with PID=1. This will start the transaction on NDB database node
1, thus, reducing the number of messages exchanged between the NDB
database nodes for the given transaction. Such types of transactions are
also known as data distribution aware transactions.

Figure 3.7 shows the throughput and latency of partition pruned index
scan operations. All the operations performed in these experiments are
data distribution aware, that is, the partition pruned index scan operations
were started on the datanodes that held the data required for the opera-
tion. Partition pruned index scan operations scale better than distributed
index scan operations, as in each operation only one NDB data partition
participates in performing the index scan operation. In our experiments
with four NDB database nodes, Partition pruned index scan operations
delivers ≈4-5X the throughput of distributed index scan operations de-
pending upon the amount of data read in each operation and have lower
latency than distributed index scan operations. Similar to the distributed
index scan operations, the throughput and latency drop significantly for
read-write operations. Using partition pruned index scan operations, we
managed to perform ≈120K operations, that read and update 10 rows,
every second, which is ≈1.8X the throughput of distributed index scan
operations for the similar experiment. In our experiments, we only had
four NDB database nodes. For clusters with even more NDB database
nodes, we can expect that partition pruned index scan operations will
increase their relative performance advantage after distributed index scan
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Figure 3.7: Throughput and latency of partition pruned index scan (PPIS) operations as a function
of the number of database clients and the amount of data read/updated in each operation. Limiting
the number of database partitions that participates in the index scan operation greatly improves the
performance and lowers the latency of the operations. The partition pruned index scan delivers ≈4-5X
the throughput of distributed index scan operations depending upon the amount of data read in each
operation and have lower latency than distributed index scan operations.

operations as transactions will have to wait for responses from even more
NDB database nodes.

3.4.5 Primary Key Operations

A Primary Key operation reads/writes a single row from a table. HopsFS
uses primary key operations to resolve the file and directory paths re-
cursively. Note that the primary key of the inodes table in HopsFS is a
composite key consisting of the name and parent ID of the inode. Moreover,
the root directory is a special immutable directory whose ID and name
does not change. The ID and parent ID of the root(/) directory are set to 1

and 0, respectively. In HopsFS, the path /home/doe will be resolved, as fol-
lowing, using only primary key lookup operations. In the first primary key
lookup, the root(/) directory will be resolved using the query (select *
from inodes where PID=0 and name=’/’). This will return the inodes’
table row for the root(/) directory. In the second primary key lookup, the
home directory will be resolved using the query (select * from inodes
where PID=root.ID and name=’home’). This will return the inodes’ ta-
ble row for the home directory. In the subsequent third primary key
operation, the directory doe will be resolved using the query (select
* from inodes where PID=home.ID and name=’doe’). This will return
inodes’ table row for the directory doe stored in the home directory. Pri-
mary key operations are data distribution aware, as NDB uses the primary
key (or part of the primary key in case of a composite primary key) to
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partition the table’s data. Primary key operations are the most efficient
database operation for reading single rows or a small number of rows in
a batch of primary key operations. Figure 3.8 shows the steps involved
in performing a primary key lookup operation for resolving the home
directory inode.

Figure 3.8: Primary key operations are data distribution aware. The client sends the operation to one
of the transaction coordinators on NDB database node 1 as it is responsible for storing all inodes with
PID=1. The operation is locally resolved and the result is sent back to the client.

Figure 3.9 shows the throughput and latency of primary key lookup
operations. Primary key operations can read up to 1.4 million rows per
second using 400 concurrent database clients. The throughput drops to
170K operations per second if 10 rows are read in each transaction. This
is due to the iterative reading of the rows, that is, using a primary key
operation the first row is read, and then the second row read, and so on.
Primary key operations have very low latency where reading a single row
takes on average 0.2 milliseconds. Similar to the partition pruned index
scan operations, the throughput of the primary key operations drops for
the read-write tests (represented by the dotted lines). This is due to the
high cost of two-phase commit protocol used to update the replicated
inode rows atomically.

3.4.6 Batched Primary Key Operations

The throughput of the database, in terms of operations/second, can be
improved by batching operations in transactions. The batch size defines
the number of operations in a transaction and, in general, larger batch
sizes result in higher throughput in operations/second. NDB’s Java API,
ClusterJ (used by HopsFS) only supports batching primary key operations.
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Figure 3.9: Throughput and latency of primary key (PK) operations as a function of the number of
database clients and the amount of data read/updated in each operation. Primary key operations are
data distribution aware, that is, these operations are sent directly to the database nodes that hold the
desired data. Using primary key operations, more than 1.4 million rows can be read every second using
400 concurrent database clients. For reading multiple rows in the same transaction the performance
drops significantly due to iterative operations used to read multiple rows. Primary key operations
have very low latency, where a reading a single row takes on average 0.2 milliseconds.

Figure 3.10 shows a batch of two primary key operations used to resolve
the two inodes that make up the path component of the path /home. The
inodes are root (/) inode and the home inode.

1. The client creates a batch of primary key operations. In this example
the batch consists of two primary key read operations, that is, (PID=0,
name="/") and (PID=1, name="home"). See section 7.5.1 for more
details on how HopsFS discovers the primary keys for individual
file path components using the inode cache. Primary key operations
are data distribution aware. However, the data for primary key
operations in a batch may reside on different partitions. The client
starts the transaction on an NDB database node that holds all or most
of the data required for the operations. Here the data is spread over
two partitions stored on NDB database node 1 and NDB database
node 4. Therefore, the client started the transaction on NDB database
node 4 that holds 50% of the data required for the batch operation.

2. The transaction coordinator forwards the primary key operations
to their respective NDB database nodes that store the data required
for individual primary key operations. Here one of the primary key
operations is resolved locally on NDB database node 4 while the
other primary key operation is sent to NDB database node 1.
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Figure 3.10: Steps involved in batched primary key operations in NDB. The client starts the transaction
on the NDB database node that holds all or most of the data required for the primary key operations.
The transaction coordinator forwards the primary key operations to the NDB database nodes that hold
the data rows required for the primary key operations. The NDB database nodes perform local primary
key lookup operations and send the results back to the transaction coordinator. The transaction
coordinator then forwards the results to the client.

3. The NDB database nodes perform a local primary key lookup to
locate the rows.

4. The NDB database nodes send the results back to the transaction
coordinator which then forwards the results to the client.

Figure 3.11 shows the throughput and latency of the batched primary key
operations. For reading a single row, the throughput of the operations (1.4
million ops/sec) matches the throughput of the primary key operations
because batching a single operation is same as a single primary key
operation. However, for reading multiple rows, batched operations have
significantly higher throughput than iterative primary key operations.
For example, for reading 10 rows, batched operations deliver 3.4X times
the throughput of primary key operations and have three times lower
average latency. For the read-write test, the throughput drops to 115K
operations per second when ten rows are read and updated in each
operation using 400 concurrent clients. While for a similar read-write
test that read and updated 10 rows using (non-batched) primary key
operations the throughput is 80K operations per second, see Figure 3.9.
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Figure 3.11: Throughput and latency of batched primary key (BPK) operations as a function of
the number of database clients and the amount of data read/updated in each operation. Batched
primary key operations have 3.4X times higher throughput and 3X times lower latency than primary
key operations when ten rows are read in each operation. Similar to primary key operations tests
throughput drops for read-write tests. The throughput drops to 115K operations per second when ten
rows are read and updated in each operation, where for the similar test the throughput for primary key
operations is 80K operations per second.

3.5 Comparing Different Database Operations

Figure 3.12 shows the comparison of throughput and latency of different
types of database operations using 400 concurrent database clients. Pri-
mary key operations are the fastest database operations for reading single
rows from the database. However, if multiple rows are read from the data-
base in the same transaction, then partition pruned index scan operations
and batched primary key operations are more suitable. Batched primary
key operations are used in scenarios where the client knows in advance
the primary keys of the rows that it wants to read. Otherwise, partitioned
pruned index scan operations are more suitable for reading multiple rows
from the database. Distributed full table scan operations and distributed
index scan operations do not scale as the number of concurrent database
clients increases. These operations have the lowest throughput and the
highest end-to-end latency among all the database operations, therefore,
these operations must be avoided in implementing file system operations.
Primary key, batched primary key operations, and partition pruned index
scan operations are scalable database operations that can be used to imple-
ment efficient file system operations. The throughput of these operations
increases as the number of concurrent database clients increases. More-
over, the end-to-end latency of these operations does not increase rapidly
when the number of concurrent database clients increases. The design of
the database schema, that is, how the data is laid out in different tables,
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Figure 3.12: Comparison of the performance of different database operations using 400 database clients
executing concurrent database operations on a 4 node NDB cluster database. Distributed full table
scan operations (DFTS) and distributed index scan operations (DIS) do not scale as the number of
concurrent database clients increase. Primary key (PK), batched primary key (BPK) operations, and
partition pruned index scan operations (PPIS) are scalable database operations, whose throughput
increases as the number of concurrent database clients increases. For reading multiple independent
rows of data, batched primary key operations have higher throughput and lower latency than the
iterative primary key operations.

the design of the primary keys of the tables, types/number of indexes for
different columns of the tables, and data partitioning scheme for the tables
plays a significant role in choosing an appropriate (efficient) database
operation to read/update the data. In HopsFS, the schema is designed
such that all frequently used file system operations are implemented using
high-throughput and low-latency database operations. For more detail
see Chapter 7, and Chapter 8.
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4
Thesis Contributions

Great scientific contributions have been techniques.

— B. F. Skinner

The contributions of this thesis are twofold. First, as a part of the re-
search, we have implemented a production-grade distributed file system,
HopsFS, which is a drop-in replacement for HDFS. HopsFS is the un-
derlying file system in Hops Hadoop distribution1. Hops Hadoop has
been running in production in RISE SICS ICE data center since February
2016 [51]. At RISE SICS ICE we have been providing Hadoop-as-a-Service
to researchers and companies in Sweden. Currently, our system has five
hundred registered users that regularly use our data processing platform.
Companies like Scania AB2, Mobilaris Group3, and Karolinska Institute4 are
among the prominent users of HopsFS. HopsFS was part of the teaching
platform used to teach the ID2223: Scalable Machine Learning and Deep
Learning5 course at KTH in the Fall 2016 and 2017 attended by more than
200 students. Second, from the research perspective, we show different al-
gorithms and design/implementation techniques used to build a scalable,

1 Hops Hadoop: Hadoop for humans. http://www.hops.io/
2 Scania AB. https://www.scania.com
3 Mobilaris Group. http://www.mobilaris.se/
4 Karolinska Institute. https://ki.se/start
5 ID2223: Scalable Machine Learning and Deep Learning. https://www.kth.se/

student/kurser/kurs/ID2223?l=en

http://www.hops.io/
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http://www.mobilaris.se/
http://www.mobilaris.se/
https://ki.se/start
https://ki.se/start
https://www.kth.se/student/kurser/kurs/ID2223?l=en
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high-performance distributed metadata service using a NewSQL database
system.

4.1 HopsFS Research Contributions

To the best of our knowledge, HopsFS is the first open-source distributed
file system that stores normalized metadata in a NewSQL distributed
relational database, NDB cluster in our case. Storing the metadata in
the NewSQL database introduces many new challenges. For example,
how to partition (shard) the file system metadata and implement strongly
consistent file system metadata operations using only the read-committed
transaction isolation level provided by the NewSQL distributed databases?
Storing the file system metadata in an external database increases the
latency of the file system operations as the external database is access-
ed multiple times to resolve individual file path components and to
read blocks’ metadata. To improve the performance of file system oper-
ations, we leverage both classical database techniques such as batching
(bulk operations) and write-ahead caches within transactions, as well as
distribution aware techniques commonly found in NewSQL databases.
These distribution-aware NewSQL techniques include application-defined
partitioning (we partition the namespace such that the metadata for all
immediate descendants of a directory (child files/directories) reside on
the same database partition for efficient directory listing), and distribution
aware transactions (we start a transaction on the database partition that
stores all/most of the metadata required for the file system operation),
and partition pruned index scans [26]. We also introduce an inode hints
cache for faster resolution of file paths. Cache hits when resolving a path
of depth N can reduce the number of database round-trips from N to 1.

Recursive operations on large directories, containing millions of inodes,
are too large to fit in a single transaction. Our solution is a protocol that
implements subtree operations incrementally in batches of transactions.
Our subtree operations protocol provides the same consistency semantics
as subtree operations in HDFS. We have also designed an adaptive tiered
storage using in-memory and on-disk tables stored in a high-performance
distributed database to efficiently store and improve the performance of
the small files in Hadoop. Lastly, we show how to avoid third-party coor-
dination service and implement a leader election service using NewSQL
databases for partially synchronous systems, which ensures at most one
leader at any given time. In the rest of this chapter, we will briefly intro-
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duce these research contributions that enables HopsFS to deliver an order
of magnitude higher throughput and lower latency file system operations
than HDFS for real word industrial workload traces, see section 4.1.9 for
an overview of the performance improvements in HopsFS.

4.1.1 Distributed Metadata

Metadata for hierarchical distributed file systems typically contains in-
formation on inodes, blocks, replicas, quotas, leases, and mappings (di-
rectories to files, files to blocks, and blocks to replicas). When metadata
is distributed, an application-defined partitioning scheme is needed to
partition the metadata, and a consensus protocol is required to ensure
metadata integrity for operations that cross partitions (shards). File system
operations in HopsFS are implemented primarily using multi-partition
two-phase transactions and row-level locks in MySQL Cluster to provide
serializability [52] for metadata operations.

The choice of partitioning scheme for the hierarchical namespace is a
key design decision for distributed metadata architectures. We base our
partitioning scheme on the expected relative frequency of file system
operations in production deployments and the cost of different database
operations that can be used to implement the file system operations. We
have observed that in production environments (such as at Spotify) list,
stat and file read operations alone account for ≈ 95% of the operations in
the HDFS cluster. These statistics are similar to the published workloads
for Hadoop clusters at Yahoo! [53], LinkedIn [54], and Facebook [41].
The metadata partitioning scheme for HopsFS is designed such that the
metadata frequently used in file system operations resides on a single
database partition. HopsFS metadata design and metadata partitioning
enable implementations of common file system operations using only the
low-cost database operations, that is, primary key operations, batched
primary key operations, and partition pruned index scans. For example,
the read and directory listing operations are implemented using only
(batched) primary key lookups and partition pruned index scans. Index
scans and full table scans were avoided, where possible, as they touch all
database shards and scale poorly.

Figure 4.2 shows how HopsFS stores the metadata for the namespace
shown in Figure 3.1 in the NDB cluster in normalized form. For readability,
we only show three tables, that is, inodes, blocks, and replicas tables. The
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Figure 4.1: This figure shows how the metadata in HopsFS is partitioned and stored in NDB cluster.
HopsFS partitions inodes by their parents’ inode ID, resulting in inodes with the same parent inode
being stored on the same database partition. For example, all the immediate children of the root(/)
inode are stored in a partition on NDB datanode 1 which enables the efficient implementation of the
directory listing operation. File inode related metadata, that is, blocks, replicas, and other tables are
partitioned using the file’s inode ID. This results in for a given file all the blocks and replicas being
stored in a single database partition, again enabling efficient file operations. For example, the blocks
and replicas for the file /etc/gnupg are stored on a database partition on NDB datanode 2.

inodes table stores the names of files and directories, permission attributes,
file size, and ownership information. Each inode also stores a reference
to the parent (PID) to maintain the hierarchical namespace structure. A
non-empty file comprises one or more data blocks which are replicated
(by default) three times on the HopsFS datanodes. The blocks table store
information about the data blocks belonging to the different files. For
example, the /etc/gnupg file consists of two blocks, and the blocks’ metadata
is stored in the blocks table. Each block belonging to the /etc/gnupg file
is replicated on three different HopsFS datanodes for high availability.
The location of the copies (replicas) of the data blocks is stored in the
replicas table. The metadata for a file resides in different tables, and the
metadata is linked together using foreign keys. For example, the replicas
table contains a foreign key to the inodes table and to the blocks table.

HopsFS partitions inodes by their parents’ inode ID, resulting in inodes with
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Inodes Table
Inode
ID

PID Name isDir ...

1 0 / true ...
2 1 home true ...
3 1 etc true ...
4 1 bin true ...
5 1 lib true ...
6 2 john true ...
7 2 doe true ...
8 3 gnupg false ...
9 3 conf false ...
10 4 vim false ...
11 4 firefox false ...
12 5 libA false ...
13 5 libB false ...

Blocks Table
Block
ID

Inode
ID (FK)

Size Index ...

1 8 64 MB 0 ...
2 8 40 MB 1 ...
3 9 64 MB 0 ...
4 9 60 MB 1 ...
5 10 14 MB 0 ...
6 11 30 MB 0 ...
7 12 44 MB 0 ...
8 13 13 MB 0 ...

Replicas Table
Block
ID (FK)

Inode
ID (FK)

Datanode
ID (FK)

State ...

1 8 DN-0100 OK ...
1 8 DN-0030 OK ...
1 8 DN-0400 OK ...
2 8 DN-9832 OK ...
2 8 DN-9123 OK ...
2 8 DN-1837 OK ...
3 9 DN-1874 OK ...
3 9 DN-1882 OK ...
3 9 DN-0874 OK ...
4 9 DN-1882 OK ...
4 9 DN-1874 OK ...
4 9 DN-1882 OK ...
5 10 DN-0100 OK ...
5 10 DN-0030 OK ...
5 10 DN-0400 OK ...
6 11 DN-9832 OK ...
6 11 DN-9123 OK ...
6 11 DN-1837 OK ...
7 12 DN-1874 OK ...
7 12 DN-1882 OK ...
7 12 DN-0874 OK ...
8 13 DN-1882 OK ...
8 13 DN-1874 OK ...
8 13 DN-1882 OK ...

Figure 4.2: These tables show how the metadata for the namespace as shown in Figure 3.1 is stored in the database in normalized form. The inodes table stores the
names of files and directories, permission attributes, file size, and ownership information. Each inode also stores a reference to the parent (PID) to build the hierarchical
namespace structure. The blocks table store information about the data blocks belonging to the different files. For example, /etc/gnupg file consists of two file blocks and
the blocks’ metadata is stored in the blocks table. Each block belonging to the /etc/gnupg file is replicated on three different HopsFS datanodes for high availability. The
location of the copies (replicas) of the data blocks is stored in the replicas table.
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the same parent inode being stored on the same database partition. This
has the effect of uniformly partitioning the metadata among all database
partitions, and it enables the efficient implementation of the directory
listing operation. Figure 4.1 shows how the metadata shown in Figure 4.2
is partitioned and stored in NDB. For example, the inodes for immediate
children of the root(/) directory are stored on a database partition on NDB
datanode 1. For listing the root(/) directory, we can retrieve all the required
metadata by performing a partition pruned index scan operation on single
database partition on NDB datanode 1. File inode related metadata, that
is, blocks, replicas, and other tables are partitioned using the file’s inode
ID. This results in all the blocks and replicas for files being stored in
a single database partition, again enabling efficient file operations, see
Figure 4.1. For example, the metadata for all the blocks and replicas of the
blocks for the files /etc/gnupg and /etc/conf are stored in database partition
on NDB datanode 2 and 3 respectively. Using our partitioning scheme,
the complete metadata for a file would reside on at-most two database
partitions. One database partition would hold the single inode row for
the file inode (partitioned by parent’s inode ID) while the other database
partition would hold all the file related metadata comprised of blocks,
replicas and other file-related information (partitioned by inode’s ID). For
example, when the file /etc/gnupg is read then inode row (file name and
permission information) is read from database partition on NDB datanode
3, and the blocks and replicas are all read from single database partition on
NDB datanode 2. In Figure 4.1 we have shown only two file inodes related
tables, that is, blocks and replicas tables. Inodes related tables comprise
the bulk of the metadata stored in the database and all of these tables are
partitioned using the inode ID. These tables include corrupt, deleted, excess,
under-construction, under-replicated blocks, lease, and quota tables.

4.1.2 Serialized File System Operations

Due to poor performance, NewSQL systems typically do not provide
serializable as the default transaction isolation level, if they even support
it at all [55]. Many NewSQL databases only support read-uncommitted and
read-committed transaction isolation levels [56]. Read-committed transaction
isolation guarantees that any data read is committed at the moment it
is read while the read-uncommitted transaction isolation may read uncom-
mitted data from other concurrent transactions. The read-uncommitted
transaction isolation level allows dirty, non-repeatable(fuzzy), and phantom
reads, while the read-committed isolation level does not allow dirty reads
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Isolation Level Dirty Read
Non-repeatable
Read

Phantom
Read

Supported

Read
Uncommitted

Permitted Permitted Permitted YES

Read
Committed

— Permitted Permitted YES

Repeatable
Read

— — Permitted NO

Serializable
Transactions

— — — NO

Table 4.1: Transaction isolation levels supported by NDB. NDB only supports read-uncommitted
and read-committed transaction isolation levels. In NDB, the default transaction isolation level is
read-committed which is not strong enough to implement strongly consistent file system metadata
operations as it permits non-repeatable and phantom reads.

but non-repeatable and phantom reads can happen in a transaction [50]. The
default transaction isolation level in NDB is read-committed [56]. We now
show why both the read-uncommitted and read-committed transaction isola-
tion levels are not strong enough to build consistent file system operations.
Consider a very simplified scenario where the file system namespace
has only one directory that is the root(/) directory. Furthermore, assume
two concurrent file system clients want to create the same /bin directory.
In POSIX it is not allowed that the two file system clients create two
directories with the same name, that is, one of the clients should get an
exception that the directory already exists. Figure 4.3 shows how using
read-committed transaction isolation (strongest transaction isolation level
supported by NDB) can cause inconsistent file system operations. Before
the clients create the new directory, they check if there is already a di-
rectory with the same name, line 2 for client 1 & 2. Both clients see that
the /bin directory does not already exist and the clients then proceed to
create the new /bin directory. This way two clients can create the same
directory simultaneously causing inconsistent file system operations. This
would not have happened using the serializable transaction isolation level.
However, serializable transaction isolation level is not supported by NDB.

Read-committed transaction isolation cannot be used to implement consis-
tent HopsFS metadata operations. Similarly, weaker transaction isolation
levels, such as read-uncommitted are also not suitable for implementing
file system operations. However, NDB supports row-level locks, such as
exclusive (write) locks and shared (read) locks that can be used to isolate
conflicting transactions. HopsFS implements a pessimistic concurrency
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Time Client 1 Client 2

T0 1. Begin Transaction
T1 1. Begin Transaction
T2 2. if !/bin then //True
T3 2. if !/bin then //True
T4 3. create /bin directory
T5 3. create /bin directory
T6 4. Commit
T7 4. Commit

Inconsistent Operation

Figure 4.3: Read-committed transaction isolation can cause inconsistent file system operations when
two concurrent file system operations try to create the same /bin directory. Before the clients create the
new directory, they check if there is already a directory with the same name. Both clients see that the
/bin directory does not exist and the clients proceed to create the /bin directory. This way two clients
are able to create the directory simultaneously causing inconsistent file system operations.

model that supports parallel read and write operations on the namespace,
serializing conflicting file system operations. In HopsFS read-only op-
erations, such as reading and listing operations take shared locks on the
metadata that is being read, while the file system operations that modify
the namespace, such as creating new files/directories and adding new
data blocks take exclusive locks on the metadata that is being updated.
Figure 4.4 shows how HopsFS uses row-level locks to isolate concurrent
file system clients that try to create the same directory /bin. Before the
clients create a new directory, the clients acquire an exclusive lock on
the parent directory of the new directory. In this case only one of the
clients, that is, client 1, manages to acquire an exclusive lock on the root(/)
directory. Client 2 blocks and waits for the lock on root(/) directory. After
acquiring the locks, client 1 proceeds to create the new directory and
commits the transaction which also releases the locks it acquired during
the transaction. After that, the client 2 would get an exclusive lock on the
root(/) directory and continue. However, now the client 2 will find out that
the directory /bin already exists and it will throw an exception that the
directory already exists.

4.1.3 Resolving File Paths

In hierarchical file systems, all file system metadata operations are path
based. Before a metadata operation is performed the file path is resolved
to make sure that the file path is valid and the user is allowed to perform
the file system operation. HopsFS stores the inodes in normalized form,
that is, we store individual path components not complete path name
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Time Client 1 Client 2

T0 1. Begin Transaction
T1 1. Begin Transaction
T2 2. Write Lock root dir //Succeeds
T3 2. Write Lock root dir //Blocks
T4 3. if !/bin then //True
T5 4. create /bin directory
T6 5. Commit//Release Locks
T7 3. if !/bin then //False
T8 4. create /bin directory
T9 5. else
T10 6. Dir Already Exists Exception
T11 7. Commit
T12 Consistent Operation Consistent Operation

Figure 4.4: This figure shows how HopsFS uses row-level locks to isolate conflicting file system
operations. Two concurrent file system operations want to create the same /bin directory. One of these
file system operations should fail as in POSIX it is not permissible to create two directories with the
same pathname. Before the clients create a new directory, the clients acquire an exclusive lock on the
parent directory of the new directory. In this case only one of the clients, that is, client 1 manages to
acquire an exclusive (write) lock on the root(/) directory. Client 2 blocks and waits for the lock on
root(/) directory. After acquiring the locks, client 1 proceeds to create the new directory and commits
the transaction which also releases the locks it acquired during the transaction. Then client 2 would
get the exclusive lock on the root(/) directory and continue. However, now the client 2 would find out
that the directory /bin already exists and it will throw an exception.

with each inode. In HopsFS for a path of depth N, it would require N

roundtrips to the database to retrieve file path components, resulting
in high latency for file system operations, as discussed in section 3.4.5.
Similar to AFS [11] and Sprite [15], we use hints [57] to speed up the path
lookups. Hints are mechanisms to quickly retrieve file path components
in parallel (batched operations). In our partitioning scheme, inodes have a
composite primary key consisting of the parent inode’s ID and the name
of the inode (that is, file or directory name), with the parent inode’s ID
acting as the partition key. Each namenode caches only the name, parent
inode’s ID, and inode ID of the inodes. Given a pathname and a hit for all
path components directories, we can discover the primary keys for all the
path components which are used to read the path components in parallel
using a single database batch query containing only primary key read
operations.

We use the inodes’ hint cache entries to read the all the inodes in a
pathname using a single batch query at the start of a transaction for a file
system operation. If a hint entry is invalid, a primary key read operation
fails and path resolution falls back to a recursive method for resolving
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file path components, followed by repairing the cache. Cache entries
infrequently become stale, as move and delete operations, that invalidate
entries in the inodes’ cache, are less than 2% of operations in typical
Hadoop workloads, see industrial workload traces in Chapter 7. Moreover,
typical file access patterns follow a heavy-tailed distribution (in Yahoo
3% of files account for 80% of accesses [53]) and using a sticky policy, for
HopsFS clients, improves temporal locality and cache hit rates.

4.1.4 Transactional Metadata Operations

A transactional file system operation in HopsFS has three main stages
which are discussed below with an example shown in Figure 4.5.

1. Pre-Transaction Phase: In the pre-transaction phase we try to re-
solve the file path using the inodes’ hint cache. Due to the locality of
reference and sticky client sessions with the namenodes, all or most
of the file path components are resolved using the inodes’ hint cache.
However, this does not mean that the file path is valid or the client is
allowed to access the file. The cache does not contain file or directory
permissions, and it is quite possible that the cache entries are stale.
For example, a client wants to read the file /etc/gnupg. The client will
first send the operation to a namenode. The namenode will try to
resolve the file path locally using the inodes’ hint cache. If the file is
popular, then it is likely that the complete file path will be resolved
locally at the namenode. This will result in the discovery of the
primary keys for all the file path components. The namenode will
also discover the inode ID for the gnupg inode. The namenode will
then start a database transaction and supply the gnupg inode’s ID as
a hint to start the transaction on the NDB datanode that holds the
data for the file. If the pathname resolution fails, then the transaction
is started on a random NDB datanode.

2. Metadata Retrieval Phase: In this phase, all the metadata that is
needed for the file system operation is retrieved from the database.
First, the file/directory pathname will be resolved. The pathname
can be resolved using a single batch of primary key operations. The
namenode resolves the file path recursively if the batch operation
fails or the file path is not found in the inodes’ hint cache. In this
case, the inodes’ hint cache is updated after resolving the pathname
recursively.
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Then the file/directory on which the file system operation is per-
formed is locked using row-level locks. Read-only file system opera-
tions take a shared lock on the inode(s) and the file system operations
that update the metadata take an exclusive lock on the inodes that
are updated by the transactions. In this case of reading the file
/etc/gnupg, a shared lock is acquired on the gnupg inode. After this,
all the file inode related metadata is read from the database. In this
simplified example, only the file blocks and the replicas information
are needed to read the file. The majority of the metadata needed for
this operation is stored on the database partition on NDB datanode 2

which is read using efficient partition pruned index scan operations.
Other operations may require additional metadata which will also
reside on the same partition as all the tables other than the inodes
table are partitioned using the inode ID, see Figure 4.5 for the steps
involved in a transactional file system operation.

3. Execute and Update Phases: All the metadata that is read in the
previous phase is stored in a per-transaction cache. The inode
operation is performed by processing the metadata stored in the
per-transaction cache. Updated and new metadata generated during
the second phase is stored in the cache which is sent to the database
in batches in the final update phase, after which the transaction is
either committed or rolled back.

4.1.5 Recursive Subtree Operations

Recursive operations on large directories, containing millions of inodes,
are too large to fit in a single transaction, that is, locking millions of rows
in a transaction is not supported in NDB or any other existing open-
source online transaction processing system. These operations include
move, delete, change owner, change permissions, and set quota operations. The
move operation changes the absolute paths of all the descendant inodes,
while delete removes all the descendant inodes, and the set quota operation
affects how all the descendant inodes consume disk space or how many
files/directories they can create. Similarly, changing the permissions or
owner of a directory may invalidate operations executing at the lower
subtrees.

Our solution is a protocol that implements subtree operations incremen-
tally in batches of transactions. Instead of row-level database locks, our
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Figure 4.5: Different operations performed in a transactional file system operation for reading the
file /etc/gnupg. For this file system operation ten metadata rows (highlighted in yellow color) are
needed. Using the inodes’ cache the file system path is resolved and the database partition that holds
the metadata for the file is determined. The transaction is started on the database node that holds
the metadata for the gnupg inode. 1) All the file path components upto the penultimate file path
component are retrieved using a single batch operation of primary key operations. 2) Then the gnupg
file inode is locked and read. 3 & 4) All the file related metadata, such as blocks and replicas is read
using efficient partition pruned index scan operations. All the data that is read from the database
is stored in the per-transaction cache. The file system operation is performed and all the changes
in the metadata (if any) are stored back in the per-transaction cache. In the end all the changes are
transferred to the database in batches and the transaction is committed.

subtree operations protocol uses an application-level distributed locking
mechanism to mark and isolate the subtrees. We serialize subtree oper-
ations by ensuring that all ongoing inode and subtree operations in a
subtree complete before a newly requested subtree operation is executed.
We implement this serialization property by enforcing the following in-
variants: (1) no new operations access the subtree until the operation

50 Chapter 4. Thesis Contributions



C
h.

4

completes, (2) the subtree is quiesced before the subtree operation starts,
(3) no orphaned inodes or inconsistencies arise if failures occur.

Our subtree operations protocol provides the same consistency semantics
as subtree operations in HDFS. For the delete subtree operation, HopsFS
provides even stronger consistency semantics. Failed delete operations in
HDFS can result in orphaned blocks that are eventually reclaimed by the
block reporting subsystem (hours later). HopsFS improves the semantics
of the delete operation, as failed operations do not cause any metadata
inconsistencies, see section 7.6.2.

Subtree operations have the following phases

Phase 1: In the first phase, an exclusive lock is acquired on the root of the
subtree, and a subtree lock flag (which also contains the ID of the namenode
that owns the lock) is set and persisted in the database. The flag is an
indication that all the descendants of the subtree are locked with exclusive
(write) lock.

Before setting the lock, it is essential that there are no other active subtree
operations at any lower level of the subtree. Setting the subtree lock could
fail active subtree operations executing on a subset of the subtree. We
store all active subtree operations in a table and query it to ensure that no
subtree operations are executing at lower levels of the subtree. Checking
the subtree operations table and setting the lock on the root of the subtree
is done in a single transaction, similar to the mechanism discussed in
section 4.1.4. In the transaction, we acquire an exclusive lock on the
root inode of the subtree and then query the subtree operations table to
see if there is any active subtree operation that conflicts with the new
subtree operation. If there are no concurrent conflicting subtree operations
then a new row containing information about the subtree operation is
inserted in the subtree operations table, the lock on the subtree root
is set and the transaction is committed. However, this is not enough
to guarantee the isolation of subtree operations. Assume there are no
subtree operations running on the namespace as shown in Figure 3.1. Two
concurrent subtree operations, that is, rm -rf /home and rm -rf /home/doe are
started. Both operations will acquire exclusive locks on their respective
subtree root inodes and concurrently check the subtree operations table.
These operations will find that no conflicting subtree operation is currently
running. Both subtree operations will then set the subtree lock on the
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root inodes of their subtrees, that is, rm -rf /home operation will set the
subtree lock on the home inode and the rm -rf /home/doe operation will
set the subtree lock on the doe inode. Then the operations will add their
information to the subtree operations table and commit the transactions.
This way two concurrent subtree operations may execute on the same
subtree which may lead to inconsistent file system operations. To isolate
subtree operation, we also take shared locks on the ancestor directories
of the subtree root directory. For example, the operation rm -rf /home/doe
will take shared locks on the root(/), and home directory inodes and an
exclusive lock on the doe inode. While the operation rm -rf /home will take
a shared lock on the root(/) inode and then it will try to take an exclusive
lock on the home inode. However, as the home inode is shared lock by the
other operation, therefore, the operation will wait until the first operation
completes. After the first operation completes and releases the locks,
the second operation will continue and discover that there is already a
conflicting subtree operation running on the same subtree. For setting
the subtree lock, taking shared locks on the ancestors of the subtree root
isolates conflicting subtree operations. In a typical workload, the subtree
operations table does not grow too large as subtree operations are usually
only a tiny fraction of all file system operations. It is important to note
that during path resolution, inode and subtree operations that encounter
an inode with a subtree lock turned on voluntarily abort the transaction
and wait until the subtree lock is removed.

Phase 2: To quiesce the subtree we wait for all ongoing inode operations
to complete by taking and releasing database write locks on all inodes
in the subtree in the same total order used to lock inodes. To do this
efficiently, a pool of threads in parallel execute partition pruned index
scans that write-lock child inodes. This is repeated down the subtree to
the leaves, and, a tree data structure containing the inodes in the subtree
is built in memory at the namenode, see Figure 7.5. The tree is later used
by some subtree operations, such as move and delete operations, to process
the inodes.

Phase 3: In the last phase the file system operation is broken down into
smaller operations that execute in parallel. For improved performance,
large batches of inodes are manipulated in each transaction. The delete
operation uses the in-memory tree to delete the subtree incrementally
using parallel transactions, starting from the leaves and traversing the
tree upwards. The move operation uses the in-memory tree to calculate
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the size of the tree for maintaining the quota information. All subtree
operations other than the delete operation can be performed using a single
transaction as the amount of data that is updated is small and is not a
function of the size of the subtree, that is, they only update the root of
the subtree. For example, mv operation only updates the subtree’s root.
Similarly, the quota operation also only updates the quota values for the
root of the subtree after checking that the new quota values do not violate
the quota requirements for any of the descendants of the subtree.

4.1.6 Handling Failed Subtree Operations

HopsFS takes a lazy approach to cleanup subtree locks left by the failed
namenodes [58]. Each namenode maintains a list of the active namenodes
provided by our leader election and group membership service. If an
operation encounters an inode with a subtree lock set and the namenode
ID of the subtree lock belongs to a dead namenode, then the subtree lock
is cleared. However, it is important that when a namenode executing a
subtree operation fails, it should not leave the subtree in an inconsistent
state. The in-memory tree built during the second phase plays an impor-
tant role in keeping the namespace consistent if the namenode fails. For
example, in case of a delete operation, the subtree is deleted incrementally
in post-order tree traversal manner using transactions. If halfway through
the operation the namenode fails then the inodes that were not deleted
remain connected to the namespace tree. HopsFS clients will transpar-
ently resubmit the file system operation to another namenode to delete
the remainder of the subtree.

Other subtree operations (move, set quota, chmod, and chown) do not cause
any inconsistencies as the actual operation where the metadata is modified
is done in the third phase using a single transaction that only updates the
root inodes of the subtrees, and the inner inodes are left intact. In the case
of a failure, the namenode might fail to unset the subtree lock. However,
this is not a problem as other namenodes can easily remove the subtree
lock when they find out that the subtree lock belongs to a dead namenode.

See Chapter 7 for further details and experimental results for HopsFS file
system operations. Chapter 8 presents more detail on the techniques we
used in the design of HopsFS, including the main features and config-
uration parameters we used in NDB to scale HopsFS. Also, we discuss
different optimization for the operating system used by HopsFS and the
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impact of these optimizations on the performance of HopsFS.

4.1.7 Improving the Performance of Small Files

To make HopsFS a drop-in replacement for HDFS, all file system oper-
ations protocols were implemented exactly as in HDFS. HopsFS outper-
formed HDFS under load due to high parallelism and scalable design of
the metadata service layer. Despite having very high throughput for file
system operations, the end-to-end latency of the file system operations
in unloaded HopsFS and HDFS clusters were identical. Similar to HDFS,
HopsFS had relatively high end-to-end latency for file system operations
performed on small files due to intricate file system operations protocols
that involved hopping between the database, namenodes, datanodes, and
the clients to read/write small amounts of data.

We have redesigned HopsFS to introduce two file storage layers, in con-
trast to the single file storage service in HopsFS (and HDFS). The existing
large file storage layer is kept as is, consisting of datanodes specialized in
handling large blocks, and a new small file storage layer has been designed
and implemented where small blocks are stored in the distributed data-
base. The new small file storage layer is tiered where very small blocks
are stored in tables that reside in-memory, while other small blocks are
stored in on-disk tables in the database. Our approach benefits from the
fact that HDFS is an append-only file system, so we avoid dealing with
complex scenarios where small files could keep changing between large
files and small files states. In our system, when a small file is appended
and it becomes a large file, and it stays a large file.

Our small file storage layer is based on an inode stuffing technique that
brings the small files’ data blocks closer to the metadata for efficient
file system operations. In HopsFS, an average file requires 1.5 KB of
metadata [43] with replication for the high availability of the metadata. As
a rule-of-thumb, if the size of a file is less than the size of the metadata (in
our case 1 KB or less), then the data block is stored in-memory with the
metadata. Other small files are stored in on-disk data tables. The latest
high-performance NVMe solid-state drives are recommended for storing
small files data blocks as typical workloads produce a large number of
random reads/writes on disk for small amounts of data.

Inode stuffing has two main advantages. First, it simplifies the file system
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operations protocol for reading/writing small files, that is, many network
round trips between the client and datanodes (in the large file storage layer)
are avoided, significantly reducing the expected latency for operations
on small files. Second, it reduces the number of blocks that are stored
on the datanodes and reduces the block reporting protocol traffic on the
namenode. For example, when a client sends a request to the namenode
to read a file, the namenode retrieves the file’s metadata from the database.
In case of a small file, the namenode also fetches the data block from the
database. The namenode then returns the file’s metadata along with the
data block to the client. Compared to HDFS this removes the additional
step of establishing a validated, secure communication channel with the
datanodes (Kerberos, TLS/SSL sockets, and a block token are all required
for secure client-datanode communication), resulting in lower latencies
for file read operations.

Similar to reading small files, writing a small file in our system avoids
many communication round trips to the datanodes for replicating the
small files’ blocks, as well as the time required by HDFS to set up the
replication pipeline for writing the file. In HopsFS, we take advantage of
the fact that, when writing files, both HDFS and HopsFS clients buffer
64 KB of data on the client side before flushing the buffer and sending
the data to the datanodes. The 64 KB buffer size is a default value and
can be configured, but for backward compatibility with existing HDFS
clients, in HopsFS, we keep the 64 KB size buffer. The 64 KB buffer size
was established experimentally by the Hadoop community as a reasonable
trade-off between the needs of quickly flushing data to datanodes and
optimizing network utilization by sending larger network packets.

For HopsFS, when writing a file, the client first sends an open file request
to the namenode to allocate a new inode. The client then starts writing
the file data to its local buffer. If the client closes the file before the buffer
fills up completely (64 KB), then the data is sent directly to the namenode
along with the close file system operation. The namenode stores the
data block in the database and then closes the file. In case of a large file,
the client sends an RPC request to the namenode to allocate new data
blocks on the datanodes, and the client then writes the data on the newly
allocated data blocks on the datanodes. After the data has been copied
to all the allocated data blocks, then the client sends a close file request to
the namenode. In HopsFS, all file system operation protocols for large
files are performed the same way as in HDFS. Detailed discussion on the
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solution of improving the performance of small files and the experimental
results are discussed in detail in Chapter 9.

4.1.8 HopsFS Leader Election Service

Distributed file system operations such as housekeeping operations can
only be performed by a single metadata server. For example, the file sys-
tem operations of removing the dead nodes and recovering the data stored
on the dead nodes could lead to inconsistent file system state if multiple
metadata servers try to perform the same housekeeping operation. Such
conflicting operations should only run on a designated (leader) metadata
server, chosen using a coordination service. In partially synchronous sys-
tems, designing a leader election algorithm, that does not permit multiple
leaders while the system is unstable, is a complex task. As a result, many
production systems use third-party distributed coordination services, such
as ZooKeeper and Chubby, to provide a reliable leader election service.
However, adding a third-party service such as ZooKeeper to a distributed
system incurs additional operational costs and complexity. ZooKeeper
instances must be kept running on at least three machines to ensure its
high availability.

We show how we avoid third-party coordination service and implement
our leader election service using NewSQL databases for partially syn-
chronous systems, which ensures at most one leader at any given time.
The leader election protocol uses the database as a distributed shared
memory. Our work enables distributed systems that already use NewSQL
databases to save the operational overhead of managing an additional
third-party service for leader election. Logically, all processes communi-
cate through shared registers (implemented as rows in a database table).
Each process stores its descriptor in the database. Process descriptor
contains ID, heartbeat counter, IP, and port information. Periodically each
process updates its heartbeat counter (in a transaction) to indicate that it is
still alive. Each process also maintains a local history of all the processes’
descriptors. Using the local history, a process is declared dead if it fails
to update its counter in multiple consecutive rounds. A process declares
itself to be the leader when it detects that it has the smallest ID among all
the alive processes in the system. The leader evicts failed processes, and it
is also responsible for increasing the heartbeat round time to accommodate
slow processes.
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All processes run in parallel. Concurrency control could be handled with
a transaction isolation level set to serializable, ensuring that conflicting
transactions will execute one after another. For example, if two processes,
Pa and Pb, want to become leader simultaneously then the transactions
will automatically be ordered such that if Pa manages to execute first,
then Pb is put on hold. The transaction Pb waits until transaction Pa has
finished. However, as discussed before due to poor performance, NewSQL
systems typically do not provide serializable as the default transaction
isolation level, if they even support it at all [55]. The strongest isolation
level supported by NDB is the read-committed isolation level, guaranteeing
that any data read is committed at the moment it is read. However, it is
not sufficient for implementing a reliable leader election service. We use
row-level locking to implement stronger isolation levels for transactions.
Row-level locking complicates the design, but allows for more fine-grained
concurrency control and thus, higher throughput. We also use lease-based
mechanisms to ensure that at any given time there is at most one leader
in the system. Our leader election algorithm is discussed in detail in
Chapter 10.

4.1.9 Results Overview

The poor performance of HDFS has long been a bane of the Hadoop
community. In this thesis, we introduced HopsFS which is an open-
source, highly available file system that scales out in both capacity and
throughput by adding new namenodes and database nodes. We have
evaluated our system with real-world workload traces from Spotify and
with experiments on a popular deep learning workload, the Open Images
dataset [59], containing 9 million images (mostly small files) as well as a
number of microbenchmarks. We show that for real-world workload traces
HopsFS delivers 16 times higher throughput than HDFS, and HopsFS
has no downtime during failover. For a more write-intensive workload,
HopsFS delivers 37 times the throughput of HDFS. Our results show that
for 4 KB files, HopsFS could ingest large volumes of small files at 61 times
and read 4 KB files at 4.1 times the rate of HDFS using only six NVMe disks
in the small file storage layer. Our solution has 7.39 times and 3.15 times
lower operational latencies for writing and reading small files respectively
for Spotify’s workload traces. For files from the Open Images dataset,
and a moderate-sized hardware setup, HopsFS’s throughput exceeds
HDFS’ by 4.5 times for reading and 5.9 times for writing files. Further
scalability is possible with larger clusters. Our architecture supports a
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pluggable database storage engine, and other NewSQL databases could
be used. Finally, HopsFS makes metadata tinker friendly, opening it up
for users and applications to extend and analyze in new and creative ways.
Evaluation of HopsFS is discussed in detail in Chapters 7, 8, 9, and 10.
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5
Related Work

Earlier file systems, such as the Unix time-sharing file system [60] and
BSD’s fast file system [61], have popularized hierarchical namespaces for
single server file systems. Implementing distributed metadata for hier-
archical file systems is a challenging task as file system operations may
require data from multiple metadata servers to resolve the file path and
check user permissions. This increases the latency and complexity of the
file system operations, as it introduces the need for agreement between the
servers on how concurrent metadata operations are processed and when
metadata is replicated, an agreement is needed between metadata servers
on the value of the current replicated state. Distributed hierarchical file
systems is a well-studied field. In this chapter, we draw upon the vast
body of literature about hierarchical file systems that are most relevant to
HopsFS. More specifically, here we focus on distributed metadata man-
agement, small files optimization in distributed hierarchical file systems,
and coordination services used by different distributed file systems.

5.1 Client-Server Distributed File Systems

In the client-server file systems, the server provides network access to its
files. Client-Server distributed file systems are also known as network
attached storage (NAS) systems. NAS typically uses the existing network
infrastructure and provides file-level access to the storage system. NFS [10]
and CIFS [62] protocols are used to access the NAS. NFS [10] is the most
popular client-server file system. The clients can mount a directory from
the NFS server on their local file system, and access it as if it were a local



directory. CIFS [62] is another popular protocol to access NAS. CIFS is
an open-source implementation of Server Message Block (SMB) protocol.
In contrast to NFS which transparently mounts the remote directories
onto the clients’ local file system, CIFS makes requests to the server to
access the remote file. The server receives the requests and performs the
operations and return the results to the client.

NFS relaxes the file system consistency semantics as it was primarily
designed as a stateless application (NFS version 3 and earlier). For ex-
ample, in NFS the clients write changes to the files, without waiting for
confirmation that the file blocks have been successfully written to the NFS
server. This leads to better client-side file write performance. However,
concurrent file read operations by multiple clients may not return the
same copy of the data. Similarly, the NFS clients also cache the file system
metadata for some file system operations, such as list and stat to limit the
number of file system operations on the NFS server. Although the clients
cache the metadata for a short period, this can still lead to application
problems due to inconsistent file system operations.

In the client-server model, the central server is the scalability bottleneck
as all file system operations are performed by the centralized server.
Moreover, managing a client-server file system is not trivial as these file
systems grow in size the administrators have to re-partition the namespace
manually and mount multiple NFS servers on the client side. Also, this
strategy is not practical as it does not take into account varying file system
workloads.

5.2 Shared-Disk Distributed File Systems

Storage area network (SAN) is a special type of storage network system
that connects computers and disk devices the same way as SCSI cables
connect disk drives to a computer. SAN typically requires a dedicated
storage data network infrastructure. SAN is accessed using SCSI over
TCP/IP, InfiniBand, ATA over Ethernet (AoE), Fiber Channel Protocol
(FCP) or similar protocols. Storage area Networks (SAN) only provide
block-level access to the storage disks, and the management of the file
system typically resides with the file system clients, that is, the clients
implement the shared file system.

GPFS, Farangipani, XFS, GlobalFS, StorageTank and Panasas [6–9, 63, 64]
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are SAN based distributed file systems that store the file systems metadata
on shared-disks. Multiple nodes can access the metadata stored on the
shared-disks. Locking mechanisms are needed to support a single-node
equivalent POSIX compliant file system semantics for the file system
operations. In the case of centralized lock management, all conflicting
file system operations are sent to a designated node, which performs the
requested file system operation. While in the case of distributed locking
each file system operation acquires appropriate locks on the inodes and
their corresponding blocks to serialize conflicting operations. Distributed
locking scales better, however, in the presence of frequent conflicting
operations on a subset of inodes the overhead of distributed locking may
exceed the cost of sending the conflicting operations to a dedicated node.

5.3 Monolithic Metadata Servers

Many distributed file system, such as GFS, HDFS, and QFS use monolithic
metadata servers that store and process the entire metadata [2, 3, 6–9, 18].
Although monolithic metadata servers are easier to implement, they limit
the scalability and performance of the entire distributed file system. For
example, in GFS the metadata is stored on a single metadata server, and
the contention on the metadata server is alleviated using read-only replicas
of the metadata server.

5.4 Subtree Metadata Partitioning

The file system namespace can be statically/dynamically split into multi-
ple sub-trees and assigned to the metadata servers for high-performance
and better scalability.

5.4.1 Static Subtree Metadata Partitioning

Distributed file systems such as AFS, NFS, LOCUS, Coda, MapR, Sprite,
and federated HDFS [10–15, 65] statically partition the namespace using
directory sub-trees (also called volumes). Subtree partitioning has an
advantage that metadata objects within a directory subtree are located on
a single metadata server. However, this technique fails to divide the work-
load evenly among the metadata servers. Typically, these sub-trees are
treated as independent structures, and the subtree boundaries are visible
to the file system users due to lack of support for file system operations,
such as rename and link that cross multiple subtree partitions. Another
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problem with this approach is that it often requires an administrator effort
to decide how the file system would be partitioned. As different file
system sub-trees grow at a different rate, it is difficult to partition the
namespace optimally. The unpredictable growth of the namespace may re-
quire repartitioning the sub-trees. If the file system workload is not evenly
balanced across all the metadata servers, then the hotspots (frequently
accessed files and directories) can overload the metadata servers storing
the popular files and directories.

5.4.2 Dynamic Subtree Metadata Partitioning

When the metadata is stored on multiple metadata servers, it is possible
that the file system would not be balanced across the metadata servers.
Moreover, distributed transactions are needed to perform file system
operations. Ursa Minor, Farsite and CephFS [4, 5, 66–69] use dynamic sub-
tree partitioning to distribute the file system namespace across multiple
metadata servers. As the file system workload changes or the number
of metadata servers change, the file system sub-trees are dynamically
reassigned to the metadata servers. In the case of Ursa Minor, the main
objective of dynamic partitioning is to avoid distributed transactions.
Whenever it encounters an atomic operation that spans multiple partitions,
it repartitions the metadata by collocating the metadata that needs to be
atomically updated [5]. The directory service in Farsite dynamically parti-
tions the sub-trees according to the file identifiers which are immutable
and have a tree structure. Atomic rename operations are implemented us-
ing two-phase locking. The server that manages the destination directory
acts as the leader and the servers that hold the source files act as followers.
Similar to Farsite, CephFS also dynamically partitions the file system tree
and replicates hotspot directories on multiple metadata servers for better
performance [68, 69].

5.5 Hash-Based Metadata Distribution

File systems like GlusterFS [70] Vesta [71], Lustre [72], InterMezzo [73], and
RAMA [74] use hash-based techniques to distribute file system metadata.
Partial or complete file paths are hashed to locate the metadata servers
storing the file information. Using hash-based metadata distribution it
is easier for the file system clients to locate the metadata. For a well-
balanced file system namespace tree, the metadata is evenly distributed
across the metadata servers. However, expanding the metadata service
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could be expensive as metadata has to be relocated because of the changes
in the output of the hash function. Using the file paths for hashing loses
the metadata locality for file system operations, such as directory listing.
Moreover, renaming large directories could be very expensive as all the
dependent files and directories have to be updated and relocated to the
new metadata servers. Some distributed file systems use partial file paths,
such as using the file path up to the penultimate file path component
to hash the metadata to preserve the metadata locality for file listing
operations.

HopsFS also relies on a hash-based metadata partitioning to distribute the
metadata across the database partitions. In HopsFS, we store only one
path component with each inode, and we hash the metadata using the
immutable inode ID. For example, the files are partitioned using the parent
inode’s ID, which stores all the immediate descendants of the directory
on the same database partition for efficient directory listing. While the file
metadata (such as the blocks and replicas information) is partitioned using
the file inode ID to read the metadata efficiently for file read operations.
Using the inode ID to partition the metadata also makes it possible to
implement in-place rename operations. Renaming (moving) directories in
HopsFS only changes the parent directory ID of the root of the directory
subtree. Thus, only one inode is moved between the database partitions.

One of the most significant limitations of hash-base metadata distribution
is that the file path permission checks are very slow as the clients have to
contact multiple metadata servers to obtain the metadata for the individual
file path components. Lazy Hybrid (LH) [75] tries to solve this issue by
using a dual-entry access control list structure that merges the net effect of
the permission check into each file metadata which allows file permission
to be determined directly without traversing the entire path. LH also uses
complete file paths to hash the metadata. Inspired by peer-to-peer file
sharing applications file systems like CFS [76] and PAST [77] use scalable
distributed hash tables to distribute file system metadata that are based
on Chord [78] and PASTRY [79].

5.6 Using a Database to Store Metadata

For years researchers have tried to use databases to store file system meta-
data as database transactions would provide simple and correct handling
of file system metadata operations. Earlier systems used local databases or
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used transactions provided by the operating system to implement the file
system metadata services [21–23]. The conventional wisdom has been that
it is too expensive (in terms of throughput and latency) to store hierarchi-
cal file system metadata in an external database [17, 80]. For example, file
systems such as WinFS [24] and InversionFS [25] that store the metadata
in an external database have poor performance.

Recently, high performance distributed databases such as HBase [31, 81],
Cassandra [82], and CalvinDB [55] have enabled the development of new
distributed metadata management architectures in file systems. Unlike
HopsFS which stores metadata in the external database in normalized
form, all of these file systems store the file system metadata in denormal-
ized form. GiraffaFS [83] is Hadoop compatible distributed file system
stores the file system metadata in HBase in denormalized form, that is,
the identifier for each inode is byte array representing full path of the file.
For example, a file, /home/user/file.txt is stored in the HBase as a single
row identified by a row key that is the file full path name. The metadata
is sorted using a lexicographical order to ensures locality of reference in
HBase, that is, the immediate children of a directory will be stored in
the same database partition. This strategy is very similar to HopsFS. We
partition the immediate children of a directory based on the parent inode
ID, which puts all the immediate children of the directory on the same
database partition. However, HopsFS stores fully normalized metadata.
GiraffaFS does not support in-place rename operations, and a rename
operation changes the row identifiers of all the children of the renamed
directory.

CassandraFS [84] is another Hadoop compatible distributed file system
that stores the metadata in Cassandra key-value store. The entire metadata
is modeled with two column families in Cassandra that represent two
distinct metadata services. The first column family stores the file/directory
inodes, and the second column family stores the block locations. Like
GiraffaFS, CassandraFS also stores the metadata in denormalized form,
and it does not support in-place rename operations.

CalvinFS partitions the metadata by hashing the complete directory/file
path names and stores it in the Calvin database – a log replicated dis-
tributed transactional key-value store [55, 85]. CalvinFS avoids multiple
network round-trips to the database to resolve the file path by storing the
entire path information along with all permissions attributes with each
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metadata entry. This metadata partitioning approach requires CalvinFS to
update all the descendants of a subtree for all subtree operations, making
it prohibitively expensive. CavlinFS relies on CalvinDB to perform large
file system operations atomically, such as renaming and deleting large
directories. CalvinDB runs large transactions in two phases. In the first
phase the lock set is identified, and in the second phase all the locks are
acquired, and the operation is performed, provided that the lock set has
not changed. However, it is not clear whether CalvinFS’ proposed use of
multiphase optimistic locking to perform directory operations is viable in
current OLTP databases, as potentially millions of locks may be acquired
to update the metadata atomically.

Wave file system [86] is another file system that uses HyperDex [87], a
transactional key-value store, for storing the file system metadata. It also
avoids file path traversal by storing complete file paths with the inodes.
As a side effect, the Wave file system does not support permission checks
on the full path from the root. For file system operations, such as, listing
directories which require a scan operation, the wave file system maintains
special files that store the children of the directories which are atomically
updated using HyperDex transactions.

5.7 Improving the Performance of Small Files

Walnut [88], from Yahoo! in 2012, described a hybrid storage system
that stores large files in a file system and small files in a Log-Structured
Merge-Tree (LSM-tree) database, BLSM [89]. They identified an object
size threshold of 1 MB for SSD storage, where objects under 1 MB in size
could be stored with higher throughput and lower latency in the database,
while objects larger than 1 MB were more efficient to store in a file system.
Although they chose 1 MB as the crossover region, the results showed that
between 100 KB and 1 MB, there was no clear winner.

Although we use NDB cluster to store stuffed inodes as on-disk columns
in tables, WiscKey [90] recently showed how separating the storage of
keys from values in an LSM-tree database can help improve throughput
and reduce latency for YCSB workloads on SSDs. This tells us there is still
significant potential for performance improvements when using SSDs for
disk-based columns in NDB cluster.

File systems like HDFS and GFS store the data block on the datanodes
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as files. The files are managed by local file systems such as Ext4, ZFS,
XFS, and Btrfs. These local file systems often provide functionalities, such
as erasure coding, journaling, encryption, and hierarchical file system
namespace, that may not be directly required by the distributed file
systems. For small files, the overhead introduced by the local file systems
is considerable compared to the time required to actually read/write the
small files. In distributed file systems these features, such as encryption,
replication, erasure coding, etc., are provided by the distributed metadata
management system. The iFlatLFS [91] improves the performance of the
handling of the small files by optimally storing the small files on the disk
of the datanodes using a simplified local file system called the iFlatLFS.
The iFlatLFS is a local file system installed on all the datanodes that
manage the small files stored on the disk. TableFS [92] has shown that
better performance can be achieved if the metadata and the file data is
stored in a local key-value store such as LevelDB [93], however, TableFS is
a not a distributed file system. James Hendricks et al. has shown that the
performance of small files can be improved by reducing the interactions
between the clients and the metadata servers, and by using caching and
prefetching techniques [94].

HDFS provides an archiving facility, known as Hadoop Archives (HAR),
that compresses and stores small files in large archives as a solution to
reduce the contention on the namenode caused by the small files, see
section 9.3.4 for more details. Similar to HAR, Xuhui Liu et al. group the
small files by relevance and combines them into a large file to reduce the
metadata overhead. It creates a hash index to access the contents of the
small files stored in a large file [95]. MapR is a proprietary distributed file
system that stores first 64 KB of all the files with the metadata [12], which
improves the performance of small files.

In industry, many companies handle different client requirements for fast
access to read/data by using multiple scale-out storage services. Typically,
this means using a NoSQL database, such as Cassandra or HBase, for fast
reading/writing data, as done by Uber [96], while an archival file system,
such as HDFS, is used for long-term storage of data. This approach,
however, complicates application development, as applications need to
be aware of where data is located. In contrast, our small file storage
layer solution ensures that HopsFS clients are unaware of whether a file is
stored in the database or on a HopsFS datanode.
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Finally, one advantage of using NDB cluster is that, because its up-
dates are made in-place, it has lower write-amplification than LSM-tree
databases [31, 97], which can improve SSD device lifetime.

Finally, alternative in-memory storage engines to NDB could be inves-
tigated. MemSQL supports high throughput transactions, application-
defined partitioning, and partition pruned queries [98]. However, VoltDB
is not currently a candidate as it serializes cross-partition transactions [99].

5.8 Coordination Services In Distributed File Systems

Consensus algorithms are a core building block of distributed systems.
Many commercial distributed storage systems use third-party services
like ZooKeeper [27], etcd [100, 101], and Chubby [102] to provide con-
sensus among the nodes for different parts of the storage system. In
many cases, these third-party solutions can be avoided by exploiting the
properties, such as locking and transactions that are often supported by
the underlying storage systems.

CassandraFS [84] uses Phi Accrual Failure Detector [103] to detect node
failures [104]. Cassandra takes in to account the network performance,
workload, and application data to dynamically adjusts the Phi threshold
for each node. Cassandra also supports lightweight transactions that
are restricted to single partitions using the Paxos algorithm [105] which
can also be used to implement a leader election algorithm [106]. Dy-
namoDB [107] also supports locking and transactions that can be used to
implement a lease-based leader election algorithm [108].

CephFS [109] uses a few monitor nodes that provide group membership
services and maintain the master copy of the cluster map. The monitors’
cluster uses Paxos [110] to reach an agreement on which object storage
devices are active. One of the monitors node is elected as a leader, which
ensures that the monitor nodes are active and all the monitor nodes have
the most recent map epoch. The leader monitor also issues short-term
leases to other monitors. Leases grant permissions to the active monitors
to distributed their copy of the cluster map to the OSDs as long as their
lease is valid.

Chubby [102] is a distributed lock service developed at Google that pro-
vides coarse-grained locking and reliable storage for the loosely-coupled
distributed systems. At Google, Chubby is used by many internal services
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including the Google File System (GFS) [18]. ZooKeeper is an open-source
alternative for the Google’s Chubby distributed locking service. HDFS
uses both the ZooKeeper and a heartbeat-based mechanism to detect failed
nodes. ZooKeeper is used to detect namenodes failures and to switch
from active to standby namenodes reliably. The datanodes in HDFS send
heartbeat messages to the namenodes to indicate that the datanodes are
alive. Similar to HDFS, the datanodes in HopsFS send heartbeats to the
namenodes, however, instead of using ZooKeeper the namenodes use the
database as a shared memory to implement a leader election and a group
membership service for the namenodes. Other distributed file systems
that use ZooKeeper are Apache Ignite file system [111], and MapR [12]

Some notable leader election protocols in the message passing paradigm
using timers are [112–114]. In these protocols, the processes send messages
to each other to indicate they are alive. A process is suspected if it fails to
send a heartbeat message within a time bound. If a heartbeat is received
from a suspected process the timer is increased to accommodate slow
processes. Eventually, time bounds for processing and communication
latencies are determined for the given system by successively increasing
the timer upon receiving a message from a suspected process.
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6
Conclusions and Future Work

We believe that distributed metadata in a commodity database is a sig-
nificant new enabling technology and it can become a reliable source of
ground truth for metadata applications built on top of distributed file
systems. In this thesis, we introduced HopsFS, that is, to the best of our
knowledge, the first open-source production-grade distributed hierarchi-
cal file system that stores its metadata in an external NewSQL relational
database in a normalized form. We show how to build a highly available
file system that scales out in both capacity and throughput by leveraging
traditional database techniques as well as modern NewSQL techniques,
such as, data distribution aware transactions and partition pruned index
scan operations. We also show how the performance of small files can be
improved by using a tiered file storage solution which naturally matches
the storage hierarchy typically seen on servers, where small fast data is
stored in-memory, and larger frequently accessed files are stored on SSDs,
and the biggest files are stored on spinning disks. Lastly, we show how to
build a leader election service using NewSQL databases, which simplifies
the administration of the distributed file system as it does not have to
rely on third-party coordination services for leader election and group
membership services.

Storing the file system metadata in an external database has opened up
many new research and development opportunities. HopsFS enables
online ad-hoc analytics on the metadata using SQL. HopsFS metadata can
be selectively and asynchronously replicated to either a backup cluster or
a MySQL slave server, enabling complex analytics without affecting the



performance of the active cluster.

The metadata architecture of HopsFS makes it easier to implement geo-
replicated distributed hierarchical file systems for the cloud that spans
multiple data centers in different availability zones and regions to provide
high availability in the eventuality of a data center failure. A region is a ge-
ographically independent set of data centers that consists of multiple avail-
ability zones connected through low-latency links with sub-millisecond
inter-availability zone network latencies. The inter-region network laten-
cies vary between 25 to 500 milliseconds [115]. We are building the next
version of HopsFS which can be deployed across multiple data centers.
With very few changes, HopsFS can be deployed across two availability
zones in the same region, such that, the database nodes, namenodes, and
the datanodes are split across the two data centers, and still provide low
latency file system operations as the inter-availability zone latencies are
very low. In such a setup, the NDB nodes in each node-group will be
split across the two availability zones, and the data replication policy for
the file system is modified such as there is at least one replica of each
block in the two availability zones. HopsFS can scale to more than two
availability zones if the replication factor of the database (default 2) is
increased. However, this setup would not work across data centers in
different zones due to high network latencies. In order to enable HopsFS
across data centers across multiple regions, we propose that each data cen-
ter will have its own complete database setup and the namenodes would
perform the file system operations using the local database in the data
center. The changes in the metadata will be asynchronously replicated
across the data centers using MySQL asynchronous replication [116] and
the conflicting file system operations will be detected and resolved by the
namenodes [117].

We are also looking to making HopsFS cloud-native, by enabling blocks in
the file system be stored on external cloud-storage, such as the S3 block-
store [118]. HopsFS will treat the blocks stored in external block-stores
the same as the blocks stored on HopsFS datanodes. This introduces
problems of ensuring the availability, consistency, and integrity of block
data stored in external block-stores. Currently, HopsFS has a periodic
synchronization protocol that ensures that the blocks stored at datanodes
are kept consistent with the metadata describing the availability and
location of the blocks. Supporting external block-stores would require
extending the blocks’ metadata to describe which blocks are stored in
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external block-stores, designing a new periodic block synchronization
protocol that also ensures that the blocks stored in the external block-
stores are not tampered with unknowingly, and implementing a solution
that has limited impact on the throughput and latency of HopsFS. An
additional constraint is to design a solution that is transparent to existing
HDFS clients.
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