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i

Abstract

In recent years, adaptive HTTP streaming protocols have become the de facto
standard in the industry for the distribution of live and video-on-demand content
over the Internet. In this thesis, we solve the problem of distributing adaptive HTTP
live video streams to a large number of viewers using peer-to-peer (P2P) overlays.
We do so by assuming that our solution must deliver a level of quality of user expe-
rience which is the same as a CDN while trying to minimize the load on the content
provider’s infrastructure. Besides that, in the design of our solution, we take into
consideration the realities of the HTTP streaming protocols, such as the pull-based
approach and adaptive bitrate switching.

The result of this work is a system which we call SmoothCache that provides
CDN-quality adaptive HTTP live streaming utilizing P2P algorithms. Our experi-
ments on a real network of thousands of consumer machines show that, besides
meeting the the CDN-quality constraints, SmoothCache is able to consistently de-
liver up to 96% savings towards the source of the stream in a single bitrate scenario
and 94% in a multi-bitrate scenario. In addition, we have conducted a number of
pilot deployments in the setting of large enterprises with the same system, albeit
tailored to private networks. Results with thousands of real viewers show that our
platform provides an average offloading of bottlenecks in the private network of
91.5%.

These achievements were made possible by advancements in multiple research
areas that are also presented in this thesis. Each one of the contributions is novel
with respect to the state of the art and can be applied outside of the context of our
application. However, in our system they serve the purposes described below.

We built a component-based event-driven framework to facilitate the develop-
ment of our live streaming application. The framework allows for running the same
code both in simulation and in real deployment. In order to obtain scalability of
simulations and accuracy, we designed a novel flow-based bandwidth emulation
model.

In order to deploy our application on real networks, we have developed a net-
work library which has the novel feature of providing on-the-fly prioritization of
transfers. The library is layered over the UDP protocol and supports NAT Traver-
sal techniques. As part of this thesis, we have also improved on the state of the art of
NAT Traversal techniques resulting in higher probability of direct connectivity be-
tween peers on the Internet.

Because of the presence of NATs on the Internet, discovery of new peers and col-
lection of statistics on the overlay through peer sampling is problematic. Therefore,
we created a peer sampling service which is NAT-aware and provides one order of
magnitude fresher samples than existing peer sampling protocols.

Finally, we designed SmoothCache as a peer-assisted live streaming system based
on a distributed caching abstraction. In SmoothCache, peers retrieve video frag-
ments from the P2P overlay as quickly as possible or fall back to the source of the
stream to keep the timeliness of the delivery. In order to produce savings, the caching
system strives to fill up the local cache of the peers ahead of playback by prefetching
content. Fragments are efficiently distributed by a self-organizing overlay network
that takes into account many factors such as upload bandwidth capacity, connec-
tivity constraints, performance history and the currently being watched bitrate.
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4 CHAPTER 1. INTRODUCTION

Video streaming constitutes 29% of the Internet traffic worldwide and, as of 2013, it
is expected to increase four times in volume in the next 3 years [1].

The most common way to distribute video on the Internet is by using a Content De-
livery Network (CDN) and adaptive HTTP streaming protocols. A CDN is a collection
of servers placed in data centers geographically distributed across the Internet. CDNs
not only cache and distribute video but also most of the content on the Internet, such
as websites, music and social networks. Adaptive HTTP streaming consists of a set of
protocols which all utilize HTTP as a transport protocol [2][3][4][5]. All these protocols
are based on a pull model where the player pulls content over HTTP at a rate it deems
suitable. This differs substantially from traditional streaming protocols such as the RT-
SP/RTP that are based on a push model, where the player requests a certain stream
and then the server pushes content over UDP to the player controlling the speed of the
delivery. On top of that, HTTP streaming protocols have been designed to support an
adaptive bitrate mode of operation, which makes the stream available in a number of
bitrates. All major actors in the online broadcasting business, such as Microsoft, Adobe
and Apple, have developed technologies which embrace HTTP streaming and the con-
cept of adaptive bitrate switching as the main approach for broadcasting. HTTP live has
been adopted by content services providers and creators like Netflix, Hulu and the BBC
with support across all platforms and OSs, including desktop computers, tablets and
smart phones.

Adaptive HTTP content is usually generated by a provider and then pushed across
the CDN network to servers at locations that are geographically closer to the consumer
of the content. For instance, CDNs install servers inside Internet Service Providers (ISPs)
which constitute the lower end of the Internet infrastructure and provide end-users with
access to the web.

CDNs serve three main purposes. First, they improve quality of user experience
(QoE) by letting users access content quicker. They do so by decreasing the physical
distance, i.e. number of hops and latency, the content has to travel before reaching the
user. That translates in the case of adaptive HTTP streaming to shorter startup time,
lower delay from the live point and lower probability of playback interruptions. Besides
that, CDNs can improve throughput towards the user and therefore enable the playback
of the video at higher quality or bitrate.

Second, the presence of a CDN reduces the amount of traffic on the content provider’s
infrastructure, which results in significant cost savings for the video provider on hard-
ware and bandwidth capacity, which are notoriously expensive.

Third, CDNs can improve locality of content and therefore offload bottlenecks and
reduce peering costs. By placing CDN nodes inside ISPs, for example, it possible to
reduce the amount of incoming traffic from other ISPs as content will reach the CDN
node first and then be distributed to users in the ISP rather than all users having to
retrieve content from neighboring or distant ISPs.

The major drawback of the CDN approach is that building an infrastructure of mul-
tiple nodes geographically distributed across the globe is extremely expensive and cum-
bersome to administer and maintain. This is particularly challenging in the case of live
video streaming, where, for popular events, the number of users accessing that same
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infrastructure can be extremely large.
An alternative to CDNs is to use peer-to-peer (P2P) as a mean to exploit resources

that are readily available in the network to distribute live streams to a large number of
users. P2P solutions create an overlay network between the users’ machines and on top
of the physical layer of the Internet. In a peer-to-peer system, every peer executes the
same small set of instructions and together all nodes give raise to an emergent behavior
with specific properties. The main argument in favor of P2P live streaming is that of
scalability, the more users that are running the P2P application the larger the number
of viewers the service is able to sustain. In the P2P model, peers which are part of the
system retrieve the video content and then forward it to other peers. Since each node
contributes its own resources to the system, namely upload bandwidth capacity and
processing power, the capacity of the system usually grows when the number of users
increases.

1.1 Motivation

Peer-to-Peer overlays have the potential of providing streaming at large scale and with a
fraction of the cost of CDNs by using resources that are already available at the edge of
the network, i.e., the user machines, rather than deploying new CDN nodes across the
Internet. However, the adoption of peer-to-peer technologies by the industry has been
very limited. We argue that this is due to two fundamental reasons.

First, classical peer-to-peer live streaming approaches focus on solving the problem
of distributing video to a large number of users with the assumption that the source of
the stream has fixed and limited capacity, e.g. a user machine, trying to provide best
effort quality of user experience (QoE) to users. This is in contradiction with industrial
expectations. Commercial content providers are not willing to compromise on QoE,
instead they are willing to sustain the cost of increased capacity at the source of the
stream or higher CDN usage to keep the desired level of QoE. As a consequence, we
argue that the problem that a peer-to-peer live streaming platform should solve is that
of providing first a well defined level of quality of user experience, such as delay from
the live point, throughput and continuity of playback, and then try to minimize the load
on the provider’s infrastructure.

Second, current state-of-the-art P2P live streaming (PLS) literature is based on the
assumption that video streams are distributed utilizing the RTSP/RTP protocol, whereas
the industry has shifted almost entirely to the pull-based dictated by HTTP streaming
protocols. On top of that, adaptive streaming has been introduced as an integral part of
the HTTP streaming protocols as means to cope with heterogeneous bandwidth avail-
ability and multiple devices with different video rendering capabilities. This shift from
the push-based RTSP/RTP protocol to the pull-based HTTP-live protocols and the intro-
duction in mainstream protocols of adaptive bitrate have rendered many of the classical
assumptions made in the PLS literature obsolete. For the sake of peer-to-peer tech-
nology adoption, it is therefore necessary to develop solutions which support adaptive
HTTP streaming.
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A plethora of solutions has been produced for the problem of scalability of live stream-
ing using peer-to-peer in the last years. However, very few of the proposed ideas have
been implemented in a real environment, even fewer have known adoption by users.
Given the commercial context in which this thesis was conducted, our goal is to design
an approach which is feasible and then produce a deployed system which can be used
by real viewers. As a consequence of that, we concentrate on testing and evaluation of
our ideas in realistic test-beds and live broadcast events, rather than in simulation or
using mathematical models.

1.2 Contribution

In this thesis, we solve the problem of providing live video streaming to large number of
viewers using peer-to-peer overlays. We do so by assuming that our solution must de-
liver a level of quality of user experience which is the same of a CDN while trying to min-
imize the load on the content provider’s infrastructure, namely the source of the stream.
In addition, our design takes into consideration the realities of the HTTP streaming pro-
tocols, such as the pull-based approach and adaptive bitrate switching.

The result of this work is a system which we call SmoothCache and which provides
CDN-quality adaptive HTTP live streaming utilizing peer-to-peer algorithms. Smooth-
Cache is a peer-assisted solution, it strives to retrieve most of the content from the over-
lay but it resorts to existing CDN infrastructure to compensate for deficiencies of the
peer-to-peer delivery. We quantify the system’s quality of user experience and compare
it to the one of a CDN-only delivery service using the following metrics: i) cumulative
playback delay, the time it for the video to start after the user requests it plus the cumula-
tive time the playback was interrupted because of lack of data, ii) delivered bitrate, how
many peers could watch a certain bitrate, iii) delay from the playing point, the period of
time between when the content is made available to peers and when it is consumed by
the player.

Considering the aforementioned metrics, in this thesis we show that our system pro-
vides performance on the Internet that is equivalent to that of a CDN-only service. To
be able to make that claim, we conduct a thorough evaluation of the platform on a sub-
set of around 22.000 from the around 400.000 installations of our system worldwide.
This subset is made by customers who agreed to let us conduct experiments on their
machines. Our experiments highlight that the system, besides meeting the the CDN-
quality constraints, is able to consistently deliver up to 96% savings towards the source
of the stream in a single bitrate scenario and 94% in a scenario where the stream is made
available at different bitrates. In addition to controlled tests on the Internet, we have
conducted a number of pilot deployments in the setting of large enterprise networks
with the same system, albeit tailored to enterprise networks rather than the Internet. An
enterprise network is a large private network which interconnects multiple geographi-
cally distributed branches of a company. Links between branches and towards the rest
of the Internet typically constitute bottlenecks during the broadcast of live events. Re-
sults with our SmoothCache system collected during pilot events with thousands of real
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Figure 1.1: Layered view of the SmootchCache system

viewers show that the platform provides more than 90% of savings towards the source
of the stream and delivers the expected quality of user experience.

These achievements are the result of advancements made in multiple research areas
and these advancements are also presented in this thesis. Each one of those contribu-
tions is novel with respect to the state of the art and can be applied outside of the context
of our application. However, in our system they are organized as shown in Figure 1.1 and
serve the purposes described below.

First, we present a component-based event-driven framework, called Mesmerizer, to
facilitate the development of our live streaming application. The framework enables the
execution of the same code both in simulation and in a real deployment. In simulation,
we execute experiments on an emulated network where we model multiple characteris-
tics of physical networks, such as the presence of Network Address Translators, network
delay patterns and bandwidth allocation dynamics. In order to improve scalability and
accuracy of simulations, we designed a novel flow-based bandwidth emulation model
based on a variation of the min-max fairness algorithm.

In order to deploy our application on real networks, we developed a novel network
library called DTL which provides reliability and on-the-fly prioritization of transfers.
The library is based on the UDP protocol and supports NAT Traversal techniques. NAT
traversal facilitates connectivity between hosts by working around NAT limitations and
therefore letting peers establish direct connectivity, that is without relaying to a third
party. As part of this thesis, we developed a scheme (NATCracker) which improves on
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the state of the art of NAT Traversal techniques resulting in higher probability of direct
connectivity between peers on the Internet.

Because of the presence of NATs in the network, discovery of new peers and collec-
tion of statistics on the overlay through peer sampling is problematic. Therefore we cre-
ated a peer sampling service, the Wormhole peer sampling service, which is NAT-resilient
and provides with the same overhead as similar protocols based on gossip one order of
magnitude fresher samples.

Information provided by the peer sampling service is then used to build our delivery
overlay. In order to provide the same QoE as CDNs, while achieving savings towards the
source of the stream, we implemented a system called SmoothCache which provides
a distributed caching abstraction on top of the peer-to-peer overlay. The distributed
cache makes sure that fragments are always delivered on-time to the player by either
retrieving the data from the overlay if the data is present, or, if the content can’t be re-
trieved quickly enough from the P2P network, SmoothCache retrieves it directly from
the source of the stream to maintain the expected QoE. That said, in order to provide
savings, we make sure to fill up the local cache of the peers ahead of playback. We
do this by implementing prefetching heuristics and by constructing a self-organizing
overlay network that takes into account many factors such as upload bandwidth capac-
ity, connectivity constraints, performance history, prefetching point and the currently
watched bitrate, all of which work together to maximize flow of fragments in the net-
work.

Here we summarize each contribution of this thesis separately and state its novelty
aspects:

• Development and emulation framework. We define a set of the best practices in
Peer-To-Peer(P2P) application development and combine them in a middleware
platform called Mesmerizer. That is a component-based event-driven framework
for P2P application development, which can be used to execute multiple instances
of the same application in a strictly controlled manner over an emulated network
layer for simulation/testing, or a single application in a concurrent environment
for deployment purpose. We highlight modeling aspects that are of critical im-
portance for designing and testing P2P applications, such as the emulation of
Network Address Translation behavior and bandwidth dynamics. We present this
work in Chapter 3.

• Simulation of bandwidth dynamics. When evaluating Peer-to-Peer live stream-
ing systems by means of simulation, it is of vital importance to correctly model
how the underlying network manages the bandwidth capacity of peers when ex-
changing large amount of data. For this reason, we propose a scalable and ac-
curate flow-level network simulation model based on an evolution of the classi-
cal progressive filling algorithm which employs the max-min fairness algorithm.
Our experiments show that, in terms of scalability, our bandwidth allocation algo-
rithm outperforms existing models when simulating large-scale structured over-
lay networks. Whereas, in terms of accuracy, we show that allocation dynamics
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of the proposed solution follow those of packet-level simulators. We describe our
model in chapter 4.

• Transport. We developed a reliable transport library for peer-to-peer applications
which provides variable and on-the-fly transfer prioritization. For portability, the
library is developed in Java on top of UDP. It implements intra- and inter-protocol
prioritization by combining two state of the art congestion control algorithms:
LEDBAT and MulTCP. The library supports a range of priority levels, from less-
than-best-effort priority up to high. The prioritization level can be configured at
runtime by the over-lying application using a single input parameter. Support
for on-the-fly priority variation enables applications to tune transfers in order to
achieve the desired level of QoS. Transitions between different prioritization lev-
els happen without disruptions in the flow of data and without the need for con-
nection re-establishments, which usually involve time consuming NAT Traversal
and peering authentication procedures. We describe the details of our network
library in Chapter 6.

• NAT Traversal. We improve on the state of the art on Network Address Transla-
tion (NAT) traversal by providing a deeper dissection of NAT behaviors resulting
in 27 different NAT types. Given the more elaborate set of behaviors, it is incorrect
to reason about traversing a single NAT, instead combinations must be consid-
ered. Therefore, we provide a comprehensive study which states, for every possi-
ble combination, whether direct connectivity with no relay is feasible. Our novel
NAT Traversal framework is presented in Chapter 5.

• Peer Sampling. We present a novel peer sampling service called wormhole-based
peer sampling service (WPSS) which executes short random walks over a stable
topology. WPSS improves on the state of the art by decreasing the number of
connections established per time unit by one order of magnitude while provid-
ing the same level of freshness for samples. We achieve this without sacrificing
the desirable properties of a PSS for the Internet, such as robustness to churn and
NAT-friendliness. Our work on peer sampling can be found in Chapter 7.

• Live Streaming. We designed and developed a distributed cache for adaptive
HTTP live streaming content based on peer-to-peer (P2P) overlays. The contribu-
tion of this work is twofold. From a systems perspective, it supports live stream-
ing protocols based on HTTP as a transport and the concept of adaptive bitrate
switching. From an algorithmic perspective, the system describes a novel set of
overlay construction and prefetching techniques that realize: i ) substantial sav-
ings in terms of the bandwidth load on the source of the stream, and ii ) CDN-
quality user experience. We describe the first iteration of our live streaming plat-
form, called SmoothCache 1.0, in Chapter 8, where we show that savings towards
the source of the stream can be obtained, in the context of adaptive HTTP live
streaming, using peer-to-peer overlays. The next iteration of our system, which
we call SmoothCache 2.0, is described in Chapter 9. There we present the novel
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set of heuristics which allows to achieve CDN-quality adaptive HTTP live stream-
ing and a thorough evaluation on thousands of consumer machines. Chapter 10
presents the application of our system to the scenario of large private networks. In
that chapter, we outline the changes we implemented in SmoothCache to adapt
our algorithms to the private network setting and show initial results with live
broadcasts with thousands of real viewers.
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BACKGROUND

In this chapter, we present the main concepts that are necessary to understand the re-
search explained in the rest of the thesis.

We start by describing standard practices for the distribution of live content over
the Internet to large audiences in Section 2.1. We then define the challenges of using
peer-to-peer networks for Internet live streaming in Section 2.1. After that, we provide
an extensive description of state-of-the-art techniques to overcome those challenges.
The techniques are classified in two main areas: construction/management of overlays,
presented in Section 2.2.1, and data dissemination, discussed in Section 2.2.2. In Sec-
tion 2.2.3, we highlight methods to leverage infrastructure resources to achieve a quality
of user experience in peer-to-peer live streaming that compares to that of client-server
solutions.

Besides live streaming, in this chapter we also discuss other topics that are relevant
to the design and implementation of peer-to-peer content delivery systems. In Sec-
tion 2.3, we delve into details of peer connectivity in the presence of Network Address
Translators (NATs). In Section 2.4, we introduce peer sampling algorithms that are used
to provide inpuy for peer-to-peer overlay construction in P2P live streaming and that are
also resilient to NATs. In Section 2.5, we describe transport protocols for peer-to-peer
content distribution applications which are employed to transfer data between peers
once the overlay network is in place. We conclude the background chapter with Sec-
tion 2.6 that summarizes a set of best practices that we found useful for development
and evaluation of peer-to-peer applications.
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2.1 Live Streaming

In live streaming, content is created and broadcasted in real-time. The strongest con-
straint on the delivery of the stream is that the stream must be received within a small
delay from the time it is generated by the content provider. Furthermore, users in the
same geographical region should not experience significant differences in their play-
back point. These requirements tie directly into the meaning of live broadcasting.

Live streaming is usually implemented using stateful push-based protocols, such as
RTP/RTSP[18] and RDT[19], where a player software installed in the viewer’s machine
establishes and manages media sessions by issuing commands to the streaming server,
e.g. play, stop and pause. The data is delivered to the player by having the server push
the content fragments at at the rate it deems suitable to the player. At the transport level,
data is delivered over UDP, while TCP is used for control messages.

Recently, the industry has introduced a new technology for live streaming, called
Adaptive HTTP streaming. Adaptive HTTP streaming consists of a set of protocols which
all utilize HTTP as transport [2][3][4][5]. HTTP-live streaming protocols are based on a
pull-based model, where it is the player which requests content over HTTP at the pace
it deems suitable. On top of that, HTTP-live protocols have been designed to support an
adaptive bitrate mode of operation, which provides the stream at a number of bitrates.
This shift to HTTP has been driven by a number of advantages such as the following: i )
Routers and firewalls are more permissive to HTTP traffic compared to the RTSP/RTP
i i ) HTTP caching for real-time generated media is straight-forward like any traditional
web-content i i i ) the Content Distribution Networks (CDNs) business is much cheaper
when dealing with HTTP downloads [4].

In HTTP streaming, the stream is split into a number of small HTTP packets, i.e. frag-
ments, and the streaming server appears to the player as a standard HTTP server. When
a player first contacts the streaming server, it is presented with a descriptor file, called
Manifest, which outlines the characteristics of the stream. It contains the stream’s frag-
ments path on the HTTP server and the quality of bitrates available for the stream. After
reading the manifest, the player starts to request fragments from the server. The burden
of keeping the timeliness of the live stream is totally upon the player, while the server is
stateless and merely serves fragments like any other HTTP server after encoding them
in the format advertised in the manifest. That means that the player implements a num-
ber of heuristics that determine at which pace fragments should be downloaded and at
which bitrate [20][21][22]. In general, the choice of bitrate to request is dictated by the
available bandwidth. That is, when the user has more available bandwidth, the player
requests a higher quality stream and when the host has lower bandwidth available it re-
quests a lower quality stream. Other factors that can influence the choice of bandwidth
are, for example, the computational power of the machine the player is running on or
how fast the machine’s graphic card can render video content. Different HTTP stream-
ing player implementations use different heuristics and behave in different ways. Thus,
it is not possible to predict a player’s behavior. In fact, it is common to observe changes
in behaviors even in different versions of the same player implementation.
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2.2 Peer-to-peer Live Streaming

Live streaming on overlays is inherently difficult due to the fact that participating nodes
are not reliable and they might become unavailable at any time because of temporary
congestion, connectivity issues or simply because of users leaving the system. The pro-
cess of continuous joining and leaving of nodes is called churn. Much attention in the
design of P2P algorithms for live streaming is therefore dedicated to trying to maintain a
certain level of performance in the delivery of the stream while coping with churn. Data
collected from the deployment of the peer-to-peer live streaming platform PPLive [23]
show that a steady amount of churn is expected when broadcasting linear TV channels.
On top of that, flashcrowds and massive failure scenarios are also observed, that is the
sudden join and the sudden departure of a large number of nodes, respectively.

Another source of complexity in the design of peer-to-peer systems is network-level
congestion. Congestion stems from the overloading of physical network’s resources,
caused by excessive user-generated traffic in the network, which causes the formation
of bottlenecks along routing paths between peers on the overlay. The effects of network
congestion on P2P live streaming are: diminished throughout, longer transmission de-
lay, packet loss and blocking of new connections. Although it is believed that most of the
time bottlenecks form at the last mile segment in the Internet infrastructure, i.e. at resi-
dential gateways, congestion can be experienced at different levels in the network. One
reason for that is that ISPs and ASs dimension their internal network and border links
considering the average usage scenario, rather than the peak. That means that conges-
tion happens every time more users than expected access their ISP network. This can
happen, for example, during the streaming of live events of high interest.

In classical peer-to-peer live streaming approaches, the delay from the time the con-
tent is generated by the provider to the time it is delivered to the player may vary for each
peer. This is because the data has to traverse multiple hops before becoming available
for playback at a peer. The number of hops depends on how the overlay is constructed
and how quickly the data is transferred at each hop. Depending on the capacity at the
source of the stream, the delay might be very long, on the order of many seconds or
even minutes. In this thesis however, we work under the assumption that there must be
a target delay value and the system must strive to keep this value constant and the same
for all peers. Given that peer-to-peer delivery is strongly influenced by churn and con-
gestion, the target delay usually cannot be guaranteed with peer-to-peer delivery alone.
For that reason, a new breed of hybrid systems which uses infrastructure resources to
compensate for the limitations of P2P delivery was recently introduced. In the following
sections, we are going to describe general peer-to-peer overlay techniques which apply
both to classical P2P live streaming and hybrid infrastructure/P2P systems. We will then
highlight the infrastructural characteristics of the latter in Section 2.2.3.

Peer-to-peer live approaches differ mainly on two levels: overlay construction and
data dissemination. Overlay construction is the set of heuristics a live streaming sys-
tem uses to create the set of connections between peers which then would be used to
transport control messages and the stream data. The data is usually logically split into
fixed-size chunks which are transferred between peers according to a certain data dis-
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Figure 2.1: Representation of a tree-based over-
lay structure
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Figure 2.2: Representation of a multi-tree-
based overlay structure

semination strategy.

2.2.1 Overlay Construction
There exists three main classes of overlay construction techniques that are commonly
used for live streaming: tree-based, mesh-based and hybrid.

Tree-based

Tree-based overlay construction techniques aim to have peers self-organize in a tree-
like structure, like the one presented in Figure 2.1, where the source of the content is
positioned at the root of the tree. The content is disseminated from the root of the tree
to the other peers by letting peers receive the video from their parents and then forward
it to their children. Famous examples of tree-based systems are Overcast [24], Climber
[25] and ZigZag [26]. The main advantage of a tree-based overlay is that the distribution
delay for each peer is proportional to the number of hops from the source and the delay
corresponds to the sum of the delays traversing the tree.

In tree-based systems, a peer has one or more parents which provide it with chunks
of data and a set of children which it is forwarding the received chunks to. The num-
ber of children which a parent can provide for is proportional to the bandwidth upload
capacity of a peer. That is typically a parent has a number of children which equals
to its upload capacity divided by the bitrate that peers are watching. It is widely ac-
cepted [27][14][28] that the most efficient strategy to place peers in a overlay tree is by
sorting them according to the number of children they can afford, that is their upload
bandwidth. Peers with highest upload bandwidth capacity are usually placed near the
the source of the stream and the others in subsequent rows depending on their upload
capacity, in decreasing order. This makes sure that the number of rows in the tree is kept
to a minimum and therefore also the amount of time after which the peers receive the
content is also minimized.

Tree-based systems may rely on a single tree or on multiple tree structure. In a sin-
gle tree structure, the leaves of the tree do not contribute to the delivery of the stream,



2.2. PEER-TO-PEER LIVE STREAMING 17

since they have no children. In a multi-tree configuration instead, the content server
splits the stream in multiple sub-streams which are then disseminated over separate
tree-shaped overlays. As a consequence, a peer might be parent for a sub-stream but
only a child for another. Solutions using this approach are, for instance, SplitStream
[29] and Orchard [30]. A study on a widely deployed system, i.e. GridMedia [31], has
shown that using multi-tree based systems leads to better performance than single-tree
approaches and to near-optimal bandwidth utilization. Figure 2.2 shows a multi-tree
overlay network structure. In the example, two sub-streams are broadcasted from the
source of the stream along two trees, starting at peer 2 and 1.

The main disadvantage of tree-based approaches is that they are not strongly re-
silient to churn. In fact, when a peer abruptly leaves the overlay, all of its descendants
get disconnected also and need to find another ancestor. On top of that, parts of the
overlay can become partitioned from the rest of the overlay. Even if solutions have been
suggested to alleviate these issues, such as the use of structured networks for peer place-
ment [29], it is widely accepted that tree-based overlays are inferior to mesh-based ap-
proaches in presence of churn [32].

The two broad classes of algorithms used to construct tree-based overlays are cen-
tralized and decentralized algorithms.

Centralized Construction. In centralized tree construction approaches, a central
coordinator instruct peers about which parent they should receive the stream from. The
peers periodically report performance metrics to the coordinator. The central coordi-
nator then keeps an overview of the system which includes the configuration of the tree
at a certain point in time. Using this information, the central server makes decisions
about where to place new peers in the overlay topology.

The principal drawback of this approach is that the coordinator constitutes a single
point of failure in the system. If the coordinator fails, new peers cannot join the overlay.
Also, peers that are already in the system cannot replace failed parents. In addition to
that, the central coordinator is the main performance bottleneck in centralized systems.
It must cope with both significant number of peers joining in a short period of time, i.e.
flash crowds, and large amounts of peers leaving the system abruptly, i.e. massive fail-
ures. Both phenomena are very common in live streaming [23]. During flash crowds and
massive failures periods, the coordinator needs to handle high network traffic coming
from peers but also it must re-evaluate the view of the overlay very frequently in order
to be able to instruct new and old peers on which parents to use.

Examples of systems using centralized coordination are Peer2View [33] and Coop-
net [34]. Central coordination has also been used for classical content distribution in
Antfarm [35].

Distributed Construction. A number of distributed algorithms have been designed
to construct and maintain a tree-based live streaming overlay. In this approach, peers
negotiate by means of gossiping their placement in the tree mainly using their upload
bandwidth as a metric. Examples of systems using decentralized tree construction are:
SplitStream [29], Orchard [30] and ChunkySpread [36].
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Figure 2.3: Representation of a mesh-based overlay structure

Mesh-based

In mesh-based overlay networks no overlay structure is enforced. Instead, peers create
and lose peering relationships dynamically. The overlay is constructed in a way that
only few peers are directly connected to the source of the stream while the majority of
peers exchanges content through overlay links. An example of a mesh-based overlay is
shown in Figure 2.3.

Examples of mesh-based approaches are: SopCast [37], DONet/Coolstreaming [38],
Chainsaw [39], BiToS [40] and PULSE [41]. A mesh-based system is usually composed
by two main parts: membership and partnership. The membership mechanism allows a
peer to discover other peers that are watching the same stream and collect information
about them, such as type of their connectivity and performance metrics. This is usually
achieved by means of a central discovery service to which all peers periodically report,
e.g. a tracker. Another way of discovering peers is to use distributed peer sampling.
Distributed peer sampling algorithms enable peers to collect information about peers in
the overlay without a tracker. The most common way of implementing distributed peer
sampling is by means of gossip. In gossip, every peer maintains a view of the overlay
which is kept updated by continuous exchanges with other peers.

It is quite common in P2P live streaming to use multiple instances of gossip. The
first instance of gossip implements unbiased peer sampling to collect uniform samples
of the overlay, while other instances use the information provided by the peer sampling
to find neighbors that have interesting characteristics, e.g. peers with similar play-
back point and available upload capacity [28] or that are geographically closer to the
requester [42].

Once enough information has been collected by the membership, the partnership
service establishes temporary peering connections with a subset of the peers a node
is aware of in order to transfer the stream of data. Given that peers connect to mul-
tiple partners at random, the peering degree and randomness make mesh-based sys-
tems extremely robust to both churn and network-related disruptions, such as conges-
tion. Since no fixed stream delivery structure is enforced on the overlay, a peer can
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quickly switch between different provider peers if a failure occurs or of the the neces-
sary streaming rate cannot be sustained.

A partnership between two peers is commonly established according to the follow-
ing metrics:

• The load on the peer and resource availability at both ends. Possible load metrics
include: available upload and download bandwidth capacity and CPU/memory
usage.

• Network Connectivity. The potential quality of the link between the two peers in
terms of delay, network proximity and firewall/NAT configurations, as in [8].

• Content Availability. The available data chunks, at both ends, i.e. the parts of the
stream which have been already downloaded and are available locally at a peer.

As for drawbacks, control traffic generated by the mesh-based partnership service is
usually significant given that peers need to frequently exchange status information for
deciding which are the best peers to download chunks from. On top of that, in mesh-
based systems, a larger number of connections are maintained than for tree-based sys-
tems. A high number of partners gives more flexibility when requesting content so that
peers may have more choice to quickly change from one partner to another if compli-
cations arise during the delivery.

Another drawback of the mesh-based approach is sub-optimal bandwidth utiliza-
tion of provider peers since every data chunk is treated as a separate delivery unit, while
per-chunk distribution paths and delivery times are not predictable and highly variable.

Hybrid Overlay Construction Approaches

A tree-based approach can be combined with a mesh-based one to obtain better band-
width utilization. mTreebone[43] elects a subset of nodes in the system as stable and
uses them to form a tree structure. The content is broadcasted from the source node
along the tree structure. A second mesh overlay is then built comprising both the peers
in the tree and the rest of the peers in the system. For content delivery, the peers rely
on the few elected stable nodes but default to the auxiliary mesh nodes in case of a sta-
ble node failure. The drawback of this approach is that a few stable peers might become
congested while the others are not contributing with their upload bandwidth. Thus, this
solution clearly ignores the aspect of efficient bandwidth utilization.

CliqueStream [44] presents an alternative approach where clusters of peers are cre-
ated using both delay and locality metrics. One or more peers are then elected in each
cluster to form a tree-like structure to interconnect the clusters. Both in PRIME [45]
and NewCoolsteaming [46], peers establish a semi-stable parent-to-child relationship
to combine the best of push and pull mesh approach. Typically a child subscribes to
a certain stream of chunks from the parent and the parent pushes data to the child as
soon as it becomes available. It has been shown that this hybrid approach can achieve
near-optimal streaming rates [47] but, in this case as well, no consideration has been
given to efficient bandwidth utilization.
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2.2.2 Data Dissemination

In classical peer-to-peer live streaming systems, peers typically have full control of the
player software. The player is very resilient and can afford temporary starvation, in
which case it just stops rendering the video, and loss of consecutive video fragments,
then it merely skips the missing fragments. To alleviate the effect of temporary disrup-
tions on data delivery, caused by churn, connectivity issues and congestion, p2p sys-
tems introduce a buffer between the overlay and the player. The presence of the buffer
increases the probability of downloading video fragments in time before they are due
for playback. Since the buffer introduces a delay from the point the data is received by
the peer to the time it is provided to the player, it is usually desirable to keep the size of
the buffer small.

Once an overlay is in place, peers can start exchanging data to fill the buffer using
multiple strategies. The most common are push, pull and push-pull. Push-based dis-
semination is typical of tree-based systems. Parent peers receive data chunks and for-
ward them to the children as fast as possible. This guarantees high throughput between
peers and in general maximizes bandwidth utilization on the overlay. Unfortunately,
due to churn, peers may be forced to switch frequently between parents and, therefore,
waste upload capacity of parents in the process.

The pull-based technique is instead typical of mesh-based systems. In pull-based
systems, partners on the overlay exchange bitmaps which indicate which video chunks
they have downloaded up to the moment of the exchange. The pull method is very
resilient to churn because content chunks are only requested from partners which have
recently advertised said chunks and therefore have a high probability of being alive.
On the other hand, there is no guarantee that a peer will receive enough requests for
fragments from its partners and thus utilize its full upload capacity.

In pull-based methods, a scheduler on each peer is given the task of requesting con-
tent chunks as the playback progresses based on availability at its partners. Since each
chunk may be requested individually and from different partners, chunks may be de-
livered over different paths to a peer and arrive out of order. Consequently, the peer
re-orders chunks before delivering them to the player. In addition, it may happen that
a data chunk can not be downloaded by a node because it is not available at its part-
ners (content bottleneck) or the upload bandwidth of it partners is not insufficient to
transfer the chunk in time (bandwidth bottleneck) [48]. For decreasing the probabil-
ity of failing to download a chunk in time, it is common to employ different retrieval
strategies according to the timeline of chunks. GradienTv [28], for instance, normally
requests chunks from peers that have a similar upload bandwidth capacity. However,
for chunks that are due for playback soon, and have not been dowloaded yet, it issues
requests to peers with higher upload capacity. This increases the probability of down-
loading missing fragments on time. In Bittorrent-based live streaming platforms, such
as Pilecast [49], peers use a combination of the rarest-first and greedy policies [50] to de-
cide which fragments to pull from neighbors. Peers employ the greedy policy to down-
load chunks which are due for playback soon, that is in the next 15 seconds of playback.
When all of those fragments have been retrieved, peers switch to the rarest-first policy in
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order to download future fragments, that is more than 15 seconds ahead of the playback
point. Finally, some systems leverage structured overlay networks, such as Distributed
Hash Tables, to improve availability of chunks. In HyDeA [51], a custom DHT is used
to find and retrieve chunks which, again, were not retrieved quickly enough from the
unstructured mesh-based network.

There exists also systems which implement a combination of the push and pull
methods to overcome the limitations of both pull, that is content and bandwidth bottle-
necks, and push, that is limited resiliency to churn. In push-pull based systems, when
a new peer joins the system, it pulls data from nodes that are already in the overlay.
After a period of observation and learning about possible candidates, a peer chooses
one or multiple parents from its partners which then start to push data to it. If some
of the chunks cannot be downloaded in time, a peer resorts again to pull from their
partners. Examples of systems implementing push-pull are Gridmedia[52], NewCool-
Streaming [46], CliqueStream [44], and mTreebone [43].

2.2.3 Infrastructure-aided P2P Live Streaming
We have, up until now, mentioned systems that rely exclusively on peer-to-peer re-
sources to distribute live content over the Internet. Here instead, we survey a class
of hybrid live streaming systems which use both infrastructure services, such as cloud
servers or CDNs, and peer-contributed resources to meet a quality of user experience
for viewers which compares to that of client-server solutions. In this type of systems,
peers leverage the peer-to-peer network to retrieve the majority of content chunks, but
they resort to central infrastructure to compensate for deficiencies of the peer-to-peer
delivery, such as node-to-node congestion and churn.

We classify infrastructure-aided P2P live streaming systems in two categories: cloud-
assisted and peer-assisted. The former category includes systems which build their own
ad-hoc infrastructure to aid the peer-to-peer overlay, while systems in the latter cate-
gory use existing infrastructure such as Content Delivery Networks for the same pur-
pose. While the approaches may differ, both categories of systems share the same goal
of enforcing a specific target quality of user experience for viewers, in terms of delay and
delivered bitrate, by using the least amount of infrastructure resources possible.

Cloud-assisted

The main idea behind cloud-assisted approaches is to leverage cloud resources, that is
dynamic allocation of helper servers, to build an ad-hoc infrastructure to support the
peer-to-peer overlay and achieve the target QoE. In cloud-assisted systems, a coordi-
nator dynamically allocates cloud server instances with a specific amount of resources,
that is computation and bandwidth capacity, to serve the peer-to-peer network accord-
ing to the current state of the overlay. The coordinator continuously receives feedback
from all peers and periodically estimates the number of cloud servers needed to en-
force the target QoE. This target is typically expressed as a bound on the playback delay
from the live point for all peers in the system. The metrics used as input for the co-
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ordinator’s decision are: the bitrate of the video being watched, the total number of
peers, the bandwidth capacity of helper servers and the characteristics of peers, such
as upload bandwidth capacity and churn rate. Since cloud servers are allocated and
removed dynamically, cloud-assisted solutions can limit the amount of infrastructure
resources, and therefore cost, to a minimum. On the other hand, cloud-assisted solu-
tions are cumbersome to deploy in existing commercial live streaming systems that rely
on CDN services. They in fact require a complete re-engineering of the server-side of
the system to allow feedback between the peer-to-peer overlay and the coordinator. Be-
sides that, a completely new management layer for cloud resources must be developed
and deployed for the coordinator to enforce its decisions.

The most popular example of cloud-assisted live streaming system is LiveSky [53].
CALMS [54], Clive [55] and Angelcast [56] are other instances of the same approach. In
contrast to standard cloud-assisted solutions, PACDN [57] proposes an approach where
the infrastructure is made of pre-existing edge servers rather than dynamically allocated
cloud nodes. In PACDN, edge servers form their own centrally-coordinated tree-based
overlay network to make sure content is distributed efficiently from the streaming server
to all edge nodes. Similarly to cloud-assisted approaches, edge nodes are activated or
de-activated dynamically by a coordinator according to the state of the user-contributed
peer-to-peer network.

Peer-Assisted

In contrast to cloud-assisted approaches, peer-assisted content delivery has the goal of
making use of existing Content Delivery Networks infrastructure to help the peer-to-
peer delivery. This, without the need for integration.

From an operational point of view, it means that peers in the system strive to down-
load most of the content from the user-contributed peer-to-peer network but they re-
sort to the CDN in case video chunks cannot be retrieved in time from the overlay. The
underlying assumption in this case is that the CDN has enough capacity to complement
the peer-to-peer delivery at all times.

CDNs are inherently elastic, they implement mechanisms to automatically scale up
or down resources according to the experienced load. This is motivated by the fact that
it is very common for a CDN to experience dramatically varying demand for video con-
tent on the Internet depending on factors such as increased/decreased popularity and
time of the day. Peer-assisted hybrid approaches rely on CDN elasticity to make sure
that there is always enough bandwidth at the server side for peers to use in order to
compensate for the deficiencies of the peer-to-peer overlay. The clear advantage in this
case is that peer-assisted systems do not need coordination with the central infrastruc-
ture but rather extend the capacity of CDNs without the need of integration against the
server side of the system. This makes deployment much easier than cloud-assisted ap-
proaches.

Because of its inherent benefits, the peer-assisted approach has recently gained mo-
mentum in the video distribution industry with companies developing their own peer-
assisted content delivery software, such as Akamai’s NetSession [58], or integrating peer-
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to-peer in their existing distribution frameworks, as in the case of the Adobe’s Flash
framework [59]. Both NetSession and the Flash framework also support adaptive bi-
trate HTTP streaming but they are mostly used for Video-on-Demand (VoD) [60][58]
rather than live streaming. Note that, in industrial context, the concept of peer-assisted
streaming has a slightly different meaning from the one presented in academic litera-
ture. In industrial peer-assisted systems, the CDN can afford the load of serving all users
in the system by scaling up and down resources as needed. The peer-to-peer delivery is
then leveraged as a method to drive down the amount of bandwidth consumed by VoD
viewers but it is never expected to carry most of the delivery, as it does in all academic
work.

In academia, the use of peer-assisted delivery has also been limited to video-on-
demand streaming. From a theoretical point of view, efforts have been directed at un-
derstanding in general, and without considering the details of streaming protocols, what
are the best prefetch policies for peers to download content ahead of the playback dead-
line such that the load on the source of the stream is minimized [61][62]. Recent work,
by Maygh [63], instead proposed a practical solution to enable peer-assisted distribu-
tion of adaptive bitrate HTTP streaming of VoD content using plugin-less browser-based
technologies. Authors show that Maygh can save up to 75% of the load on the CDN in
the considered scenarios.

We have mentioned so far approaches that resort to peer-assisted delivery for video
on demand streaming, and, in most cases, also provide support for adaptive HTTP
streaming. In this thesis instead, we apply the peer-assisted approach to live stream-
ing. The result of our efforts is the SmoothCache system, which is the first peer-assisted
solution for the distribution of adaptive bitrate HTTP live streaming over the Inter-
net [11][64] and in large private networks [13].

The two different iterations of the SmoothCache system design are presented in
Chapter 8 and Chapter 9. While we describe the application of the same system to the
setting of large private networks in Chapter 10.

2.3 Peer-to-peer Connectivity

In the Internet, it is common to encounter a large amount of peers behind Network
Address Translators (NATs), typically around to 70−80% [8][66]. The presence of NATs
hinders the functioning of peer-to-peer systems because they prevent direct commu-
nication between peers which are behind NATs. Conversely, if a peer can’t connect to
other peers because its NAT prevents it doing so, it can’t contribute with its resources to
the system and might also be excluded from the service. Consequently, working around
NAT connectivity issues is of paramount importance for any peer-to-peer system de-
ployed on the Internet. This is particularly true for content delivery systems, such as
P2P live streaming platforms, which rely on large availability of user-contributed band-
width to provide a good quality of service.

A NAT device allows many hosts to share the same public IP address. Behind the
NAT, peers are assigned private addresses. Communication between private and public
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hosts is possible only if the host behind NAT was the initiator of the communication.
NAT routing behavior can be summarized as follows: when a private node tries to con-
tact a host outside the private network, an entry is created in the NAT device’s registry,
called the NAT translation table, with its destination host’s IP and port. The outgoing
packets are then translated to appear from the IP address of the NAT device. That is the
IP headers of the outgoing packets are re-written to override the private node’s IP and
port with the public ones of the NAT device. When a response packet is generated by
the node outside the private network, the NAT device inspects the source IP and port of
the packet and tries to match them using the NAT translation table. If a private host is
found which communicated with that source IP and port, the packet is forwarded to the
private node, otherwise the packet is dropped without any notification to the originator.

In order to overcome NAT limitations, a number of NAT traversal techniques have
been developed in the last decade. These enable connectivity between pairs of peers
when one or both of them are behind a NAT. NAT traversal can be carried out both using
the TCP and UDP protocol, however it is significantly more effective on the latter [67].

The most widely used NAT traversal protocol for UDP is the STUN protocol [68].
The STUN protocol details a technique known as simple hole punching which lets pri-
vate hosts create NAT entries in their NAT device by sending packets towards a central
STUN server which is always available. The STUN server receives the packets and com-
municates which public IP and port the packets came from to the originator. This in-
formation then can be used by other hosts outside the private network to contact the
private peer using the previously established NAT entry.

NAT boxes implement a number of behaviors which vary from extremely easy to
traverse to extremely difficult [69][70][71]. It is typical for the simple hole punching
technique to succeed only on around 40% of the cases [8]. When hole punching fails,
most peer-to-peer systems resort to relaying though a third-party, which is usually a
dedicated server. This approach has been standardized in the TURN RFC [72]. STUN
and TURN protocols have also been integrated in a single standard, the ICE RFC [73].
ICE is the de-facto standard in the industry and many commercial peer-to-peer proto-
cols rely on it. Examples of such protocols are WebRTC [74] and the SIP Voice over IP
protocol [75]. That said, relaying of packets, while effective for connectivity between
peers behind problematic NATs, is extremely expensive since it consumes large amount
of bandwidth at the relay side to receive and forward data. For peer-to-peer systems
where the content transferred is big, such as live streaming systems, it is not advisable
to use relaying.

Besides simple hole punching, a number of other NAT traversal techniques have
been developed by the research community [76][71]. These techniques try to exploit
detailed knowledge of the NAT device’s behavior to establish connections in presence of
NAT by using a third party facilitator to help coordinating the establishment process.

Besides NAT Traversal, the other approach for peers behind NAT to become reach-
able from external hosts is to use application layer protocols such as UPnP [77] and
NAT-PMP [78]. These two protocols allow applications to configure static NAT transla-
tion entries on NAT devices, such that hosts on the outside of the private network can
use the reserved the static entry’s IP and port to initiate a communication towards the
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host that has configured the entry. Unfortunately these protocols are not enabled by
default in home routers for security reasons and they are not supported by enterprise
NATs.

Research on NAT traversal has not known significant advancements in the last years
even though NAT constraints are one of the most relevant issues in peer-to-peer sys-
tems, for the simple fact that good connectivity is a precondition for any distributed
algorithm to function correctly.

In this thesis, we present in Chapter 5 an extensive classification of NAT behaviors
and an elaborate method to explicitly determine which NAT traversal technique should
be used for each combination of NAT behaviors. We show that our approach results in
a connection establishment success rate of 85% without using relaying or application
level protocols such as UPnP and NAT-PMP.

2.4 Peer Sampling

As mentioned earlier, when describing mesh-based peer-to-peer live streaming systems
(Section 2.2.1), a peer sampling service (PSS) is a vital component of peer-to-peer live
streaming system because it provides the input to overlay construction algorithms.

A peer sampling service (PSS) provides nodes in an overlay with a uniform random
sample of live nodes from all nodes in the system, where the size of the sample set or
view is typically much smaller than the system size. Peer sampling services are widely
used in peer-to-peer systems to discover new peers and collect global statistics about
the overlay. Also, a PSS can be used as a building block for other services, such as dis-
semination [85], aggregation [86] as well as overlay construction and maintenance [87].

The most common approach to peer sampling is Gossip. In gossip, peers keep a
fixed-size view of the overlay, then periodically select a node from that view and ex-
change a number of items from the view with it. In [88], a classification of Gossip pro-
tocols was presented that categorizes algorithms by each of the following three points:
node selection, view propagation and view selection. Node selection defines how a peer
chooses which nodes to exchange its view with. Examples of strategies include: random
(rand strategy) and based on the age of the entry associated with each node in the view.
The most common approach is to use the oldest entry (tail strategy). View propagation
determines if a node only pushes samples to the other node (push strategy) or it also re-
ceives a number of samples from the destination peer in response (push-pull strategy).
Finally, view selection defines how a node updates its view after receiving samples from
the another node. It can either replace a number of nodes in its view with the ones re-
ceived in the exchange uniformly at random (blind strategy) or replace the oldest in its
view (healer). In case of push-pull view propagation, another possible strategy is replac-
ing the nodes sent to the other peer with the ones received in the response (swapper).

Peer sampling services are typically evaluated by estimating the global randomness
of samples, that is the amount of correlation between samples returned by the service
at different nodes. The common practice for doing that it is to use graph theoretical
methods on the overlay graph defined by the set of nodes in the system and their views.



26 CHAPTER 2. BACKGROUND

In the overlay topology graph, each peer is a node and there exists an outgoing edge
from a node a to a node b if peer a contains peer b in its view of the overlay. The goal of
this analysis is to estimate how similar the overlay topology graph is to a random graph,
that, by assuming that entries in each peer view are a random sample of the set of all
nodes in the system.

Two graph-theoretic metrics are used to estimate the global randomness of the over-
lay graph: the in-degree and the clustering coefficient. The In-degree of a node is the
number of incoming edges that a node has in the overlay graph and it is a measure of
how a node is represented in the graph. Intuitively, nodes should not be highly over- or
under-represented in the overlay graph to avoid creating hotspots or bottlenecks in the
system. On top of that, the in-degree value distribution of all peers should follow a bi-
nomial distribution, as it does in random graphs. The clustering coefficient of a node is
instead the number of edges between each of the peer’s neighbors over the total amount
of possible edges between them. Low clustering coefficient is desirable in order to de-
crease the probability of partitioning of the overlay, that is a cluster becoming isolated
from the rest of the overlay.

One common measure of performance of PSSs is freshness of samples. In general,
the fresher the samples in a peer’s view are, the more probability there is that the nodes
in the view are still alive and the information collected is accurate. Age is one freshness
metric which, given the samples in a peer’s view, estimates the average value of how
long ago those samples were generated by the originating nodes. Another metric for
freshness in gossip, is the hop count. That is the number of hops the sample in a peer’s
view has traversed before reaching the peer.

Peer sampling is typically used in peer-to-peer live streaming to provide the mem-
bership service in mesh-based systems [46][11][11][28]. The samples produced by the
peer sampling service constitute the input for the partnership service which manages
overlay construction and maintenance. Consequently, the more reliable and up-to-date
the input to the partnership service is, the better the decision about which partners to
select for downloading the stream will be and consequently the better the system will
perform.

2.4.1 NAT-resilient PSSs
Classical gossip algorithms rely on the assumption that nodes can establish direct com-
munication with any peer in the network with the same probability and this is a neces-
sary pre-condition for ensuring randomness of samples. On the Internet however, this
assumption is not true since the majority of peers are behind NATs. Due to the lim-
itations of existing algorithms for NAT traversal, nodes have a different probability of
connecting to each others depending on the type of NAT they are behind. Kermarec et
al. [89] show that standard gossip-based peer sampling becomes significantly biased in
this setting, producing a significant over-representation of nodes that are not behind
NAT. Additional results show that the network can become partitioned when the num-
ber of private peers exceeds a certain threshold.

In recent years, the community has produced a new class of gossip protocols which



2.5. TRANSPORT 27

take into account the presence of NATs. The proposed approaches have in common
the use of open Internet nodes, i.e. not behind NAT, as facilitators for gossip exchanges.
Early examples of NAT-aware gossip protocols include [90], Nylon [91] and Gozar [92].
In [90], the authors enabled gossiping with a private node by relaying gossip messages
via an open Internet node in the system that had already successfully communicated
with that private node. Nylon instead routes packets to a private node using routing
tables maintained at all nodes in the system. In contrast, Gozar routes packets to a
private node using an existing public node in the system without the need of routing
tables as the address of a private node includes the addresses of the public nodes that
can act as a relay to it. A more recent NAT-aware peer sampling service is Croupier [93].
Croupier removed the need for relaying gossip messages to private nodes. In Croupier,
gossip requests are only sent to public nodes which act as croupiers, shuffling node
descriptors on behalf of both public and private nodes.

NAT-aware gossip-based PSSs are based on two assumptions: i) connection estab-
lishment from a private to a public peer comes at negligible cost, and ii) the connection
setup time is short and predictable. However, these assumptions do not hold for many
classes of P2P systems. In particular, in commercial P2P systems such as Spotify [66],
P2P-Skype [80], and Google’s WebRTC [74] establishing a connection is a relatively com-
plex and costly procedure. This is primarily because security is a concern. All new con-
nections require peers to authenticate the other party with a trusted source, typically a
secure server, and to setup an encrypted channel. Another reason is that establishing
a new connection may involve coordination by a helper service, for instance, to work
around connectivity limitations that are not captured by NAT detection algorithms or
that are caused by faulty network configurations.

In our peer-to-peer live streaming system SmoothCache, which we believe is rep-
resentative of many commercial P2P systems, all these factors combined produce con-
nection setup times which can range from few tenths of a second up to a few seconds,
depending on network latencies, congestion, and the complexity of the connection es-
tablishment procedure. In addition to these factors, public nodes are vulnerable to
denial-of-service attacks, as there exists an upper bound on the rate of new connections
that peers are able to establish in a certain period of time.

In this thesis, in Chapter 7, we explore a solution which alleviates the need for fre-
quent connection establishment and still provides the same performance of gossip-
based approaches in terms of freshness of samples. The resulting peer sampling ap-
proach, which we call the Wormhole Peer Sampling Service (WPSS), is currently used in
our SmootchCache system as a membership service.

2.5 Transport

Historically, peer-to-peer applications have utilized the UDP protocol as the transport
protocol of choice [79][80][74]. The main reason is that NAT traversal is easier in UDP
than in TCP, as described in Section 2.3. In addition to that, UDP is more flexible than
TCP because it enables applications to implement their own congestion control system.
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For a voice and video conferencing application like Skype this is of paramount impor-
tance for instance, as video conferencing and phone calls need a steady low-jitter flow of
packets which is really hard to obtain in TCP. On top of that, due to its real-time nature,
Skype traffic must benefit from higher priority with respect to any other application’s
transfer. Thus, Skype developed an application-level proprietary congestion control al-
gorithm [81] known to be very aggressive towards other applications’ traffic.

On the other end of the spectrum, a content distribution application like Bittorrent
for example, started initially by using TCP but then switched to LEDBAT, in order to
be polite as much as possible towards other applications’ traffic while saturating the
spare link capacity. Politeness was critical to eliminate the reputation of Bittorrent as
a protocol which totally hogs the bandwidth and makes all other applications starve.
Peer-to-peer live streaming applications are another example of peer-to-peer applica-
tions which also implement their own congestion control over UDP. Designs and imple-
mentations vary for each platform and there is currently no standard approach to the
problem of congestion control management in PLS.

As part of the work presented in this thesis, we designed, developed and evaluated a
multi-purpose transport library, called DTL [9], which can be used for any kind of peer-
to-peer applications, be that a file-sharing or a live streaming applications. Given the
different requirements of P2P applications, we implement a flexible congestion control
mechanism which allows for runtime prioritization of transfers. Priority varies from
lower-than-best-effort to up to four times the priority of standard TCP. To achieve this
goal, the library seamlessly combines two different congestion control mechanisms:
LEDBAT and MulTCP.

LEDBAT is widely accepted as an effective solution to provide a less-than-best-effort
data transfer service. Initially implemented in the µTorrent BitTorrent client and now
separately under discussion as an IETF draft [82], LEDBAT is a delay-based congestion
control mechanism which aims at saturating the bottleneck link while throttling back
transfers in the presence of flows created by other applications, such as games or VoIP
applications. The yielding procedure is engineered to avoid disruptions to other traf-
fic in the network, and it is based on the assumption that growing one-way delays are
symptoms of network congestion. With respect to classical TCP, this allows for earlier
congestion detection.

MulTCP [83] instead provides a mechanism for changing the increment and decre-
ment parameters of TCP’s Additive increase/multiplicative decrease (AIMD) [84] algo-
rithm to emulate the behavior of a fixed number N of TCP flows in a single transfer.

In our peer-to-peer live streaming application SmootchCache, we use DTL to prefetch
fragments from partners in the overlay as soon as they become available. Prefetching of
fragments happens with lower-than-best-effort priority, while we progressively increase
the priority of transfers as the fragment nears the playback deadline.
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2.6 Development and Evaluation of Peer-To-Peer Systems

Peer-to-Peer (P2P) systems are inherently difficult to design and implement correctly.
Even a very few lines of code running simultaneously on a large number of peers result
in interactions that are rather challenging to understand and debug. Despite this, while
algorithms and research ideas about P2P systems are abundant, software engineering
practices of developing P2P systems, especially in an industrial setting, are less known
and shared. In fact, to the best of our knowledge, there exists no comprehensive tool for
efficiently implementing, evaluating and deploying distributed algorithms. Our experi-
ence indicates that such tools should provide the following features:

• Simulation-based development. P2P algorithms are in general complex due to
the high amount of exchanged messages, asynchrony and the fact that failures
are the norm rather than the exception. Simulation is therefore essential when
validating P2P protocol interactions. A common practice in distributed systems
development is to develop a prototype of the application first, then validate it and
finally re-implement the validated algorithms in another environment for deploy-
ment. This leads to two main problems: a dual code base which is very cum-
bersome to maintain and not being able to evaluate deployment code in a repro-
ducible fashion, i.e. executing the same test scenario many times while preserving
the exact same sequence of events.

For solving the first issue, it is common practice [94][6] to resort to a framework
which lets developers prototype algorithms as independent components in a sim-
ulator and then easily deploy the same components on a real environment by us-
ing another runtime. In such framework, the network library for instance could
appear to those components as another component with a single interface, how-
ever two implementations would be provided, one real, for deployment, and one
simulated, for evaluation.

For the issue of executing deployment code in a reproducible fashion, a common
solution [16][95] is to inject a Discrete Event Simulator (DES) underneath the ap-
plication components. The DES makes possible to serialize all network and inter-
nal component interactions in order to obtain the same sequence of events every
time the system is executed in simulation.

• Message-passing concurrency model. Message-passing concurrency is the most
commonly used programming model in the distributed systems community, as
opposed to shared-state concurrency. Message-passing not only scales well with
multi-core hardware but it makes easier to reason about concurrency. A popular
set of semantics for message-passing in distributed systems is the actor model [96],
with programming languages like Erlang [97] and Scala [98] providing support
out-of-the-box for it. In the actor model, each process or actor communicates
with other actors using asynchronous messages. This model fits well the seman-
tics of peer-to-peer protocols where a computation is very often triggered at a
node by a message coming from the network. The actor model is inherently con-
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current as many actors can be executed at the same time and therefore exploit
parallel hardware.

Some development frameworks based on the actor model, such as Kompics [95],
provide composability of actor systems. That enables different actors systems to
be combined into a larger one in order to extend functionality. Once again, this
conveniently matches the common practice in development of distributed sys-
tems of combining different protocols to build a larger platform.

• More Realistic Network Model. When evaluating/debugging peer-to-peer appli-
cations in simulation, it is extremely important to model the behavior of the un-
derlying network in the right way since it directly affects the performance of the
system.

Traditionally peer-to-peer simulators emulate only certain aspects of the physical
network, such as delay and packet loss [99][95]. We argue that this is not sufficient
when developing complex systems such as content delivery applications. In those
applications, connectivity and bandwidth allocation dynamics play a major role
in affecting the performance of the system. For this reason, any complete tool for
peer-to-peer applications should contain realistic models for those two physical
network characteristics.

As part of this thesis work, we present a framework, called Mesmerizer, which en-
compasses all best practices which we presented above and that we followed for the
development of our peer-to-peer based products: SmoothCache, SmoothCache 2.0 and
Peer2View [14]. Mesmerizer is a framework that follows the actor programming model,
where components (actors) exchange asynchronous events (messages) with other com-
ponents on the same machine or on a remote machine. Every component runs in its
own thread of control, assigned temporally from a thread pool, when the handling an
event. On the same machine, events are buffered in a First-In-First-Out (FIFO) queue
at the destination component before being handled by that component, consequently
decoupling the generation of the event from the handling of events. Events that are sent
to remote instances of components are also delivered in order.

Mesmerizer allows peer-to-peer developers to implement their algorithms once and
have them running in simulation and on real deployments. In simulation, it provides
a Discrete Event Simulation (DES) runtime which delivers reproducibility and accu-
rate modeling of physical network behavior. In a real deployment, it provides a multi-
threaded runtime and the possibility of using the DTL library, introduced in Section 2.5
and presented in Chapter 6, as transport for the overlying application.

The various iterations of SmoothCache system were developed in the Mesmerizer
framework and they all have have been used in a commercial application.

2.6.1 Emulation of Bandwidth Allocation Dynamics
As mentioned in the previous section, bandwidth modeling is an important tool when
testing and evaluating P2P applications. This is particularly true for peer-to-peer con-
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tent delivery platforms such as PLS systems and file-sharing applications. In those, each
peer implements intricate multiplexing strategies to speed up transmission of large chunks
of data, thus creating complex effects on the underlying physical network which trans-
late into varying transmission delays and packet loss. These aspects can be accurately
reproduced in a simulator by a bandwidth dynamics model.

When emulating bandwidth dynamics, there usually exists a trade-off between scal-
ability and accuracy. That means that accurate network simulators can usually scale
up only to a limited number of simulated peers. This limitation makes it unfeasible to
capture the behavior and issues of a larger P2P real-word deployment, such as the effect
network congestion on segments of the overlay network. In order to achieve scalabil-
ity, most of the existing P2P simulators abstract away network interactions by modeling
only the structural dynamics of the overlay network and thus completely ignoring the
impact of the actual network on application performance.

The best level of accuracy can be achieved with packet-level simulators such as NS-
2 [100] or P2PSim[101]. Those model the behavior of each single low level, network
layer packet. The penalty for detailed modeling comes in scalability: a single transfer
between two peers can generate hundreds of low-level protocol packets which need to
be modeled individually. In a large and complex network characterized by links of high
bandwidth capacity and intricate multi-peer interactions, the sheer number of events
needed to simulate transfers requires a prohibitive amount of computational and mem-
ory resources. As a result, only small sized networks can be simulated efficiently with
packet-level simulators.

The best trade-off between accuracy and scalability is provided by flow-level sim-
ulation, which focuses on a transfer as a whole rather than individual packets. A flow
abstracts away the small time scale rate variation of a packet sequence with a constant
rate allocated at the sender/receiver’s bandwidth. The rate remains allocated for an
amount of time which corresponds to the duration of the flow, i.e. the simulated packet
sequence transmission time. This approach reduces drastically the number of events to
be simulated.

However, our experience with flow-based models is that the desired scalability for
peer-to-peer simulations, that is in the order of thousands of node instances, cannot be
achieved with state of the art approaches [102][103]. Besides that, the accuracy of the
proposed solutions in the state of the art has never been asserted.

As part of this thesis work, in Chapter 4, we have developed a model for estimat-
ing bandwidth allocation dynamics which is more scalable that the state of the art. On
top of that, we have evaluated its accuracy by conducting a detailed study on realistic
scenarios against a packet-level simulator (NS-2). There, we show that the bandwidth
allocation dynamics in the model follow the ones of the packet-level simulator.
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Abstract

In this paper we present what are, in our experience, the best practices in Peer-
To-Peer(P2P) application development and how we combined them in a middle-
ware platform called Mesmerizer. We explain how simulation is an integral part
of the development process and not just an assessment tool. We then present our
component-based event-driven framework for P2P application development, which
can be used to execute multiple instances of the same application in a strictly con-
trolled manner over an emulated network layer for simulation/testing, or a single
application in a concurrent environment for deployment purpose. We highlight
modeling aspects that are of critical importance for designing and testing P2P ap-
plications, e.g. the emulation of Network Address Translation and bandwidth dy-
namics. We show how our simulator scales when emulating low-level bandwidth
characteristics of thousands of concurrent peers while preserving a good degree of
accuracy compared to a packet-level simulator.

3.1 Introduction

Peer-to-Peer (P2P) systems have passed through a number of evolution eras. Starting
from being an exotic practice in hacker communities to a rigorously researched and de-
cently funded academic field. Nowadays, products based on P2P technologies such as
Bittorrent and Skype are mainstream brands in internet technologies. Despite of that,
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while algorithms and research ideas about P2P systems are abundant, software engi-
neering practices of developing P2P systems, especially in an industrial setting are less
shared. Compared with the process of developing web-based applications, the amount
of best practices that has been iterated, re-factored and publicly shared within the com-
munities is huge. Examples include model-driven frameworks such as Ruby on Rails [1]
or Django [2] or communication patters like AJAX [3] and COMET [4] and their variants.
We argue that while the art of developing P2P applications in terms of shear algorithmic
complexity is far beyond web-applications, there are very few best practices shared on
how to develop P2P systems.

The point of this paper is to the share best practices that worked for Peerialism. We
do that by articulating three main areas where we think we have gained maturity. The
first is simulation tools. Namely, how they are an integral part of the software develop-
ment and not just an assessment tool. We highlight how a clear concurrency model can
significantly simplify development and then which modeling aspects are critical for a
successful P2P system design and implementation process.

Simulation-Based Development cycle. P2P algorithms are in general complex due
to the high amount of exchanged messages, asynchrony and the fact that failures are
the norm rather than the exception. Consequently, simulation is not a luxury but a ne-
cessity when validating P2P protocol interactions. Even a very few lines of code running
simultaneously on one thousand peers result in interactions that are rather challeng-
ing to debug. We started with the common practice of authoring the algorithms on our
own discrete-event simulator and, when the algorithms were mature enough, we transi-
tioned to real implementation. However, maintenance of a dual code base and irrepro-
ducibility of bugs were main concerns that led us to attempt injecting a discrete event
simulator underneath our production code. The results of this effort, where mainly a
simulated network, simulated time and simulated threading were provided, were pub-
lished in the MyP2PWorld system [5]. The main advantage of the approach was that
developers wrote exactly in the same style they were familiar with. This approach made
it possible to debug complex interactions of hundreds of peers on a single develop-
ment machine and also share reproducible scenarios with the development team. In
a sense, the simulated mode served as an extremely comprehensive integration testing
tool. That is an achievement which is hard to obtain in uncontrolled, real-world deploy-
ments.

Over time, we found that we are using component-based frameworks like Guice [6]
extensively to organize and decouple various parts of our code. We realized quickly
that the task of switching between real and simulated runs could be achieved in a more
elegant fashion using component frameworks where for example the network is a com-
ponent with one interface and two implementations, one real and one simulated. We
noticed that others in the field have later independently reached the same conclusion
and we see systems like Kompics [7] and Protopeer [8] which adapted the same practice.
We expect more wide dissemination of systems like these in the future.

Message-passing Concurrency Model. In general, the classical way of dealing with
concurrency is to use threads and locks, that is shared-state concurrency. For I/O in-
tensive applications, the network programming community has been advocating the
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message-passing concurrency model. That is more or less an established consensus.
In a programming language like Java, one could observe the transition of the standard
library to provide more off-the-shelf code for asynchronous I/O based on Java NIO [9].
With that model, any network related activity is done in an message-passing fashion,
while the rest of the concurrent modules in the application are written using shared-
state concurrency, using threads and locks. Our first application was developed in such
a way; the co-existence shared-state concurrency and message-passing concurrency
models rendered the applications much harder to design and maintain. The practice
that we finally settled on was to unify the concurrency model by having a pure message-
passing system that follows the actor model semantics [10]. We have also seen that
frameworks like Actors for Scala [11] have a similar concept. It is worth stressing that,
when injecting a DES underneath real application code, the message-passing model is
much more suited.

More Realistic Network Model. Other than being injected underneath the real ap-
plication code, our discrete-event simulation layer is in principle very similar to every
other peer-to-peer simulator out there. That said, we have two unique features. The
first is the ability to simulate the behavior of NAT boxes and the second is an efficient
and accurate bandwidth allocation model. For the former, we have taken all the real-life
complexities we found in actual deployments and implemented that logic in a NAT box
emulator integrated in our framework. Up to our knowledge, this is the first emulator
of its kind. For the latter, we have surveyed how others crafted bandwidth allocation
in their simulators. Packet-level simulators like NS-2 [12] are the winners in terms of
accuracy but fall short on efficiency for the desired scale of thousands of peers. A more
efficient solution is to use flow-based simulation where we have found that the max-min
fairness approach [13] is the most-widely used model. Nevertheless, implementations
of max-min fairness vary a lot, not only in accuracy but in efficiency as well. We have
implemented our own max-min based bandwidth allocation model where we substan-
tially improved on efficiency without sacrificing too much accuracy. The ability to pro-
vide a more realistic network model is important. In the absence of NAT box emulation,
P2P algorithm designers would have a very naive picture of phenomena like long con-
nection setup times, the impossibility of connectivity between different combinations
of NAT boxes, and hence peers behind them. Similarly, sloppy models for bandwidth al-
location result in overly optimistic estimation of data transfer delays, especially in P2P
networks where a lot of transfers are taking place simultaneously.

Our P2P Development Framework. We have combined all of our best-practices in
a P2P Java middleware called Mesmerizer. At the moment, all Peerialism applications
are written on top of that platform. The rest of this paper is dedicated to explaining
how our best practices are realized in the Mesmerizer framework. We start by describ-
ing the Mesmerizer programming model in Section 3.2 as well as its internals in Sec-
tion 3.3. Then, we present the execution modes available to users in Section 3.4 and
give more details about the network layer, both real and simulated, in Section 3.5. Fi-
nally, we present our conclusions and future work in Section 3.6.
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3.2 The Mesmerizer framework

Applications developed in Mesmerizer consist of a set of components. Every compo-
nent has an interface and one or more corresponding implementation(s). An interface is
bound to a component implementation with an explicit binding. A component instance
belongs to a certain group. Groups contain one or multiple component instances, have
explicit identifiers and define the scope of communication between components. A
component may communicate with other components in a message-passing fashion
using events. When an event is triggered by a component, Mesmerizer broadcasts it
to the the component group it belongs. Events may be triggered for immediate execu-
tion, e.g. messaging, or future execution, e.g. timeouts. Inter-group communication
is allowed by using explicit addressing of groups. Static tunnels between groups can
be defined to automatically forward one or many types of events from one group to
the other in order to avoid the need of explicit addressing. Every handler processes a
single type of event. Handlers belonging to a certain component may be executed se-
quentially, i.e. a component instance processes a single handler at a time. This allows
for simple concurrency semantics and isolation of components’ state. However, event
handlers can be defined as concurrency-safe. In that case, no synchronization control is
applied, i.e. many “safe” handlers may be executed, while only a single “unsafe” handler
is running at the same time. Explicit filters may be defined as a protection in order to
avoid execution of handlers based on the runtime characteristics of events.

3.3 Implementation

Mesmerizer is implemented in Java as an extension of Google Guice. Guice is a lightweight
injection framework. It was principally developed to alleviate the use of the explicit
factory pattern in Java. It also provides a tight degree of control on how, which and
when implementations of a certain interface should be instantiated. In Guice, the in-
stantiation mechanism can be configured using explicit static bindings, i.e. interface
to implementation mappings, and scopes. By default, the library makes use of a com-
pletely stateless scope, instances of a specific interface implementation are allocated
every time the application requests a new instance. The library provides two stateful
scopes: singleton, which causes Guice to return always the same instance of a certain
interface, and a request scope, used mainly for Servlet applications, which allocates in-
stances on a request-by-request basis. In general, Guice is principally used for unit-
testing. It is common practice to swap dependencies of a Guice component with mock
implementations in order to test its functionalities independently.

Mesmerizer uses Guice bindings to map component interfaces to corresponding
implementations. Component interfaces are simple Java interfaces which define a num-
ber of handlers. Handlers are objects which inherit from a specific abstract Handler
class and are statically typed by the event class which they take as an argument. Figure
3.1 illustrates an example of component interface and two corresponding component
implementations. In this case, a binding has been created between T i meInter f ace
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Figure 3.1: Example Component Interface and implementations

and SwedenT i meImpl .
Component instances live in the context of groups. Upon the creation of a group,

a set of the aforementioned Guice bindings must be provided together with the corre-
sponding allocation policy. The latter defines if a component instance should be con-
sidered as a singleton or not in the context of the group or of the application. Com-
ponent instantiation calls are made on group instances. Internally, Mesmerizer groups
make use of Guice’s scope mechanism to create and keep track of instances in their
context. As a consequence of this design, two different groups may be able to bind the
same interface to different implementations. When a component implementation gets
instantiated, Mesmerizer uses Guice to parse both the component interface and the
bound implementation. After the parsing, the framework registers each handler as a
possible destination for the event it is typed with. This information is then used upon
event triggering to retrieve the handlers to execute. As a design choice, we let many dif-
ferent components implement a handler for the same event type, whereas we allow only
a single handler for a specific event type on the same component.

In Figure 3.2 we show the structure of Mesmerizer. The most important part of the
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. . . . . .
/ / Binding
bind ( TimeInterface ) . to (SwedenTimeImpl) . as ( Scopes . GroupSingleton )
. . . . . .

/ / I n t e r f a c e
t r a i t TimeInterface extends ComponentInt {
@Handler def timeHandler ( ) : Handler [ GetTime ]
@Handler def dateHandler ( ) : Handler [ GetDate ]

}

/ / Implementation
class SwedenTimeImpl extends TimeInterface {

def timeHandler ( ) : Handler [ GetTime ] = {
return timeHandler ;

}
def dateHandler ( ) : Handler [ GetDate ] = {

return dateHandler ;
}
val timeHandler = new Handler [ GetTime ] ( ) {

def handle ( e : GetTime ) : Unit = {
e . reply (new RespTime ( currentTime (SWEDEN) ) )

} }

val dateHandler = new Handler [ GetDate ] ( ) {
def handle ( e : GetDate ) : Unit = {

e . reply (new RespDate ( currentDate (SWEDEN) ) )
} }

}

Listing 3.1: Example Component Interface and corresponding Component Implementations in the Scala
language

platform is the Core, which contains the implementation of the model’s semantics and
wraps around the Guice library. It provides mainly the group and component instanti-
ation mechanisms, in addition to the registration and resolution mechanisms used for
event routing. The actual handling of events, that is the scheduling and the execution,
is carried out by the Scheduler, while the Timer is entitled with the task of handling
timeouts and recurring operations. A glue Interface and Management layer is added to
handle setup of one or multiple application instances and provide logging through the
Logger embedded in the system. As we can see from the figure, one or many compo-
nent groups can be created by an application, in this case G1 and G2 and filled with
component instances C1,C2 and C3, which are different instances of the same compo-
nent implementations residing in the two different groups.
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Figure 3.2: The structure of the Mesmerizer Framework

3.3.1 Scala Interface

We implemented an interface layer over Mesmerizer to be able to develop components
in Scala [14]. Scala is a programming language designed to express common program-
ming patterns in an easier and faster way. It is an object-oriented language which also
supports functional programming. Our experience is that Scala allows for faster proto-
typing than Java. Algorithms and other complex routines can be written in much shorter
time than in Java and expressed in a clearer and more compact way making it easier for
the programmer/researcher to implement, understand and improve both its logic and
code. An example of the Scala code corresponding to Figure 3.1’s depiction of compo-
nent interface, implementation and binding is shown in Listing 3.1.

We are currently working on a layer to interface the Python language with Mesmer-
izer by using the Jython library [15]. In principle, any programming language that com-
piles to Java bytecode can be interfaced with Mesmerizer. The Mesmerizer framework
provides two different execution modes: simulation and deployment. The former al-
lows for a strictly controlled execution of multiple instances of an application. It en-
ables both large-scale reproducible experiments and smaller-scale testing/debugging
of applications over an emulated network layer.

Deployment allows for parallel processing of events. In this mode, one or multiple
application instances are executed using a concurrent environment while network ser-
vices are provided by a library which enables TCP and UDP communication between
hosts.
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Downloader	  

Bi-orrent	  Applica2on	  Group	  

Uploader	  TransferManager	  

Torrent	  Group	  1	  

Downloader	  Uploader	  TransferManager	  

Torrent	  Group	  2	  

Downloader	  Uploader	  TransferManager	  

Torrent	  Group	  3	  

ClientManager	   RateLimiter	  

F1	  

F2	  

F3	  

Messages	  

Figure 3.3: The structure of our Bittorrent Application

3.4 Execution modes

The design of Mesmerizer allows an application to be run either in simulation or in
emulation mode by simply changing some of the Mesmerizer’s system bindings, namely
the Scheduler, Timer, Logger and Network layer components as shown in Figure 3.2.

3.4.1 Simulation Mode
In simulation mode, multiple instances of the same application are spawned automat-
ically by Mesmerizer according to a specified configuration provided to the Manage-
ment Layer. Event execution in this case is controlled by a Scheduler based on a single-
threaded Discrete Event Simulator (DES). During execution, triggered events are placed
into a FIFO queue and the corresponding handlers executed in a sequential manner.
Our previous experience in using a multi-threaded DES based on pessimistic lock-stepping [16],
where events of the current time step are executed in a concurrent fashion, has shown
that the amount of overhead required for this technique to work is larger than the actual
benefits. We found the event pattern to be very sparse for the applications we developed
using Mesmerizer: a live streaming platform and a Bittorrent client. We noticed that the
synchronization burden required to achieve barrier synchronization between consecu-
tive time intervals is far greater than the speed-up obtained by the actual processing of
the few events present in the "concurrency-safe" intervals.

Trying to scale simulation, we mostly concentrated our efforts in improving the per-
formance of what we experienced to be the biggest bottleneck in our P2P simulations:
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emulating bandwidth allocation dynamics of the network. We will show in Section 3.5.2
how the Mesmerizer simulation environment performs in terms of scalability when em-
ulating such phenomena and its level of accuracy with respect to other more costly so-
lutions.

Simulation Setup. We provide a set of APIs which enable users to fully configure
the execution of multiple application instances and carefully control the behavior of
the simulated network layer. Typically in simulation mode, Mesmerizer isolates an ap-
plication instance in its own component group containing all of its components. Ap-
plication instances communicate using the same network interface provided in deploy-
ment mode. Messages are however routed to an emulated network layer which models
a number of characteristics found in real networks.

For large-scale experiments, we implemented a number of churn generators based
on probabilistic and fixed time behaviors which can be configured either programmat-
ically or through an XML scenario file. The emulated underlying network can also be
configured in the same way. The Mesmerizer simulator allows for the creation of sce-
narios containing a predefined number of peers interconnected using routers and NAT
boxes [17] on simple end-to-end topologies or more complicated consumer LAN infras-
tructures and/or complex multi-layered corporate networks. The simulation APIs make
possible to define bandwidth capacities for each peer/router in the network, dictate the
behavior of NAT boxes and configure in detail network characteristics such as delay pat-
terns, packet loss and link failures.

3.4.2 Deployment Mode
Deployment allows for the execution of application instances in a concurrent environ-
ment. In this mode, the handlers of the application’s components are processed on
multiple threads concurrently. From a component’s instance point of view, a number of
its safe handlers can run together at once, however, its unsafe handlers will be executed
sequentially. On the other hand, many unsafe handlers of different components may be
active at the same point in time. In this mode, execution is controlled by a concurrent
Scheduler which implements the work-stealing paradigm introduced by Blumofe et al
[18] on a number of Java threads, similarly to Kompics [7]. Work-stealing is an efficient
scheduling scheme for multi-core machines which is based on an queuing mechanism
with low cost of synchronization. We make use of the work-stealing paradigm in the fol-
lowing way: when an event gets scheduled, Mesmerizer finds the component instances
which subscribed to that particular event type and hands them to the Scheduler. The
Scheduler then checks the availability of a number of free threads corresponding to that
of the passed handlers. If enough free threads are found, it schedules the handlers for
immediate execution. If no sufficient number of threads is available, the scheduler dis-
tributes randomly the remaining handlers to the waiting queues of the currently occu-
pied threads. When a thread completes the execution of a handler, it tries either to take
an event from its queue or, if its queue is empty, it steals handlers from another thread’s
queues. In our experience, this type of scheduling guarantees a good level of fairness
and avoids starvation of handlers.
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In Figure 3.3 we show the structure of a Bittorrent client that we developed using
Mesmerizer, which is currently deployed in our test network. The application is made
by two basic components which reside into the main Bittorrent Application component
group: the Client Manager and the Rate Limiter. The former is entitled with the task
of setting up and remove Bittorrent transfers, while the latter controls load balancing
and priority levels between transfers. When a new torrent file is provided to the applica-
tion, the C l i ent M anag er creates a component group for the new transfer, for instance
Tor r entGr oup1. The group contains all transfer’s components, which are instances of
the interfaces Downl oader , Uploader and Tr ans f er M anag er . Which implemen-
tation should be used for the aforementioned interfaces is defined in a Guice binding
when adding the torrent. We designed a number of different implementations of the
transfer components which provide various transfer strategies, such as partial in-order
or random. This kind of design allow for the use of multiple transfer policies in the same
client by simply providing the right binding when adding new transfers. During trans-
fer setup, the C l i ent M anag er also proceeds to create automatic tunneling of message
events from the network layer to Tor r entGr oup1 using filters based on message char-
acteristics. We use the mechanisms of tunneling and filtering for automatic inter-group
routing and multiplexing of incoming messages respectively. Routing of events is also
carried out internally to the application between Uploader /Downl oader component
instances and both the C l i ent M anag er and the RateLi mi ter . The latter in particular
has the important task of keeping the view of all transfer rates and dynamically adjust,
by issuing the correct events, the uploading/downloading rates of the Uploader and
Donwloader components, when they excess the priority level or max speed.

3.5 Network Layer

We provide two different sets of components to be used as network layer: one for de-
ployment and another for simulation mode. In deployment mode, components need to
transfer messages, i.e. remote events, to other remote hosts using the TCP or UDP pro-
tocol. In simulation mode instead, the network layer is entitled with the task of model-
ing those same transfers between a number of application instances which are running
in the same context, i.e. the same instance of the Mesmerizer framework. We detail the
composition of the network layer in both modes in the following sections.

3.5.1 Deployment Configuration

Our network layer deployment includes a number of components that offer TCP and re-
liable UDP communication to the overlying applications through a simple event-based
interface. Our TCP and UDP components deliver out-of-the-box support for transpar-
ent peer authentication and encrypted data exchange. We have implemented two com-
ponents to achieve NAT traversal and improve peer-to-peer connectivity; support for
explicit NAT traversal protocols such as UPnP and NAT-PMP, and state-of-the-art tech-
niques for UDP hole-punching, based on our previous work [19]. If direct connectivity
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between two peers cannot be achieved, the network layer automatically relays the com-
munication over a third host. However, we use this feature only for signaling purpose
since relaying traffic is a very expensive operation, in particular for data intensive ap-
plications such as video streaming or content delivery platforms where the amount of
data to be transfered is significant.

On top of NAT traversal and reliable communication, the deployment network layer
provides three strategies for traffic prioritization based on different UDP congestion
control methods. For low priority traffic, we implemented the LEDBAT delay-based
congestion control [20], which yields with respect to other concurrent TCP streams. For
what we call fair level of priority, or medium, we adopted a variation of the TCPReno
[21] protocol which enables equal sharing of bandwidth among flows generated by our
library and other applications using TCP. Finally, when the delivery of data is of crit-
ical importance, the library provides high priority through an adaptation of the Mul-
TCP [22] protocol. The level of priority can be dynamically chosen on a flow-to-flow
basis at runtime.

3.5.2 Simulation Configuration
In Simulation mode, we make use of a number of components which emulate different
aspects of the network. For instance, on the IP layer, we provide routing and NAT emu-
lation through the corresponding components. For modeling lower layer network char-
acteristics, we implemented components that model bandwidth allocation dynamics,
non-deterministic delays and packet loss. As mentioned in Section 3.1, some of these
emulated characteristics are found in almost all P2P simulators. We detail the NAT and
bandwidth emulation components; the first being notable for its novelty and the second
for its high level of efficiency/accuracy trade-off.

NAT Emulation

Network Address Translators constitute a barrier for peer-to-peer applications. NAT
boxes prevent direct communication between peers behind different NAT boxes [17].
Even though an attempt has been made to standardize Network Address Translation
[23], in particular to improve support for Peer-To-Peer applications, not all vendors have
complied to the standard. This is either because most of the routers ship with legacy
NAT implementations or because manufacturers claim the standard to be too permis-
sive. In particular, in the context of corporate NAT implementations, the translation
behavior may vary drastically between different vendors or even different models of the
same manufacturer.

In our previous work, we have tried to classify most of the behaviors of current NAT
implementations using a real deployment of our test software. The outcome of this ef-
fort is a model that encompasses 27 types of NATs as a combination of three behavioral
policies: filtering, allocation and mapping. NAT traversal is a pairwise connection es-
tablishment process: in order to establish a communication channel between machines
behind two different NAT boxes, it is necessary to carry out a connection setup process
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dictated by a NAT traversal strategy, which should vary according to the type of the two
considered NAT boxes. Given a set of seven known traversal strategies, the NAT prob-
lem translates to understanding which strategy should be used in each one of the 378
possible combinations of the 27 NAT types. On top of that, each traversal strategy has
its own configuration parameters. These parameters could be as detailed as deciding
which source port should be used locally by the two source hosts to initiate the setup
process in order to maximize the connection establishment success probability.

At first, we tried to understand the mapping between NAT type combinations and
traversal strategies by formal reasoning. However, this task turned out to be too complex
due to the size of the possibility space. As a consequence of that, we developed a con-
figurable NAT box implementation which could emulate all the aforementioned NAT
types. On top of it, we implemented a small simulator which would perform the pro-
cess of traversal, according to the seven strategies, on all of the emulated 240 NAT type
combinations. By using this small framework, we discovered many counter-intuitive
aspects of NAT traversal and mistakes in the strategy’s decision process which we would
not have discovered by simple reasoning. The outcome of our effort of mapping strate-
gies to combinations is described in [19].

For the purpose of testing the correct and non-trivial implementation of the Traver-
sal strategies in our application, we included NAT emulation in the network layer con-
figuration of Mesmerizer. In other words, we built an emulated network where the con-
nection establishment process by means of NAT traversal is modeled in a very detailed
manner. Thus, we were able to test not only the correctness of our implementation of
the traversal strategies, but also to measure the impact of the connection establishment
delays on the overlying application. Delays are very important factors to be considered
when designing audio and video streaming systems, due to the time-constrained nature
of the application.

The model which we designed for the emulation of NAT boxes encompasses most
of the behaviors which are found in current routers and corporate firewalls. However,
after the deployment of our live streaming application on a real network, we noticed a
number of exceptional characteristics, e.g. non-deterministic NAT mapping timeouts,
inconsistent port allocation behaviors and the presence of multiple filtering policies on
the same router. We thus tried to formalize those exceptions and integrate them into
our simulator. We further improved our simulator by modeling connection establish-
ment failures based on real-world measurements. We emulate the observed probability
of success between NAT types combinations according to what we observed during our
real-world tests. Currently, we still experience cases that are not covered by our emula-
tion model and we keep improving our model based on those observations. The source
code of our NAT box emulator is publicly available as an open source project [24].

The detailed emulation of NAT boxes has provided us with better insight on how
peer-to-peer applications should be designed and implemented in order to avoid con-
nectivity issues.
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Bandwidth Modeling

It is common for P2P networks to create complex interactions between thousands of
participant peers, where each peer typically has very high inbound and outbound con-
nection degree [25] [26] [27]. Connections are used either for signaling or for content
propagation. In the latter case, each peer implements intricate multiplexing strategies
to speed up transmission of large chunks of data [28], thus creating complex effects on
the underlying physical network which translate into varying transmission delays and
packet loss at the receiving side.

Most of the existing P2P simulators abstract away network interactions by model-
ing only the structural dynamics of the overlay network [29] [30] [31] [32] [33] and thus
totally ignoring the impact of the actual network on application performance. On the
other end, accurate packet-level simulators like SSFNet [34] and NS-2 [12] can usually
scale up only to a limited number of simulated peers. This limitation makes it infeasible
to capture the behavior and issues of a larger P2P real-word deployment, such as the
effect of network congestion on segments of the overlay network. In order to study the
complex interactions between large scale overlays and the physical network, a proper
network simulation model is required. The level on which the model abstracts the net-
work transfers directly affects both its scalability and accuracy.

Flow-level network simulation focuses on a transfer as a whole rather than individ-
ual packets, introducing a viable trade-off between accuracy and scalability. A flow ab-
stracts away the small time scale rate variation of a packet sequence with a constant rate
allocated at the sender/receiver’s bandwidth. The rate remains allocated for an amount
of time which corresponds to the duration of the flow, i.e. the simulated packet se-
quence transmission time. This approach reduces drastically the number of events to
be simulated. The driving force behind the event creation in flow-level simulation is the
interaction between the flows since an upload/download link might have many flows
happening at the same time. A new or completed flow might cause a rate change on
other flows competing for that same link’s capacity. A flow rate change may also propa-
gate further in the simulated network graph. This phenomenon is known as "the ripple
effect" and has been observed in a number of studies [35] [36]. The impact of the rip-
ple effect on the scalability of the model is directly dependent on the efficiency of the
bandwidth allocation algorithm which is used to mimic the bandwidth dynamics.

Bertsekas and Gallager [13] introduce the concept of max-min fairness for modeling
Additive-Increase Multiplicative-Decrease congestion control protocols like TCP. Max-
min fairness tries to maximize the bandwidth allocated to the flows within a minimum
share thus guaranteeing that no flow can increase its rate at the cost of a flow with a
lower rate. In every network exists a unique max-min fair bandwidth allocation and can
be calculated using the progressive filling algorithm [13]. The basic idea behind this
algorithm is to start from a situation where all flow rates are zero and then progressively
increment each rate equally until reaching the link’s capacity, i.e. the sum of all flow
rates of a link equals its capacity. In this algorithm, the network, including its internal
structure, e.g. routers and backbone links, is modeled as an undirected graph. A recent
accuracy study [37] showed that this approach offers a good approximation of the actual
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network behavior. Nevertheless, having to simulate the flow interactions that take place
on the internal network links magnifies the impact of the ripple effect on the algorithm’s
scalability by making the simulation significantly slower.

In order to gain more scalability, the GPS P2P simulator [38] uses a technique called
minimum-share allocation, defined in [39], which avoids the propagation of rate changes
through the network. Instead, only the flow rates of the directly affected nodes are up-
dated, i.e. only the flow rates of the uploading and downloading nodes of the flow trig-
gering the reallocation. Not considering the cross-traffic effects of the flows obviously
has a positive impact on the simulation time but also makes the model highly inaccu-
rate. Narses [39] uses the same technique as GPS but it further promotes scalability by
ignoring the internal network topology and considers only the bandwidth capacity of
the access links of the participating peers. The result is what we call an end-to-end net-
work overlay where the backbone network is completely abstracted away from the mod-
eling and rate changes happen between pairs of peers. This is a reasonable abstraction
if we consider that the bottlenecks on a P2P network usually appear in the "last mile"
rather than the internet backbone. In doing so, the number of events simulated is fur-
ther reduced, however in this case the inaccuracy remains since only the end-to-end
effects are taken into account while the cascading effect on other nodes, as modeled by
max-min fair allocation, is completely overlooked.

There exists two bandwidth allocation algorithms in the state of the art which apply
the progressive filling idea on end-to-end network models, thus keeping the advantages
of simulating only access links but still considering the effects and propagation of rate
changes throughout the peer interconnections. The first algorithm proposed by F. Lo
Piccolo et Al. [40] models the end-to-end network as an undirected graph. In each
iteration, the algorithm finds the bottleneck nodes in the network, the nodes with the
minimum fair bandwidth share available to their flows. Then it proceeds to allocate the
calculated minimum fair share to their flows. The algorithm iterates until all nodes are
found saturated or a rate is assigned to all their flows. The main disadvantage of this
node-based max-min fair bandwidth allocation algorithm lies in the modeling of the
network as an undirected graph. In order to simulate a network with separate upload
and download capacities, two node instances are required per actual network peer. The
memory footprint is therefore larger than the one needed to model a direct network
graph.

An alternative edge-based max-min bandwidth allocation algorithm is given by Anh
Tuan Nguyen et al. [41]. It is an edge-based algorithm which uses a directed network
model, differently from the approaches we introduced until now. In one iteration, the
algorithm calculates the minimum fair share of the two ends of every unassigned flow.
Then, on the same iteration and based on the previously calculated shares, the algo-
rithm finds the bottleneck nodes, derives the flows’ rates and applies them. The algo-
rithm iterates until all flows have a rate assigned. It is important to underline that during
the second phase of each iteration, the algorithm might find one or multiple bottleneck
nodes, thus assigning rates to the flows of multiple nodes at the same iteration. This
edge-based max-min fair bandwidth allocation algorithm addresses the shortcoming
of the undirected network modeling, that is the memory footprint. However, the algo-
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Figure 3.4: Performance comparison for structured network overlays with 1000 nodes and different number
of outgoing flows per node.

rithm performance’s dependence on the edge-set size constitutes a major drawback. On
top of that, a further iteration of the node set is required in order to find the saturated
nodes.

It is common in large simulated networks for a new or finished flow to only affect the
rates of a subset of the existing network flows, as the propagation of a rate change does
not reach all nodes in the network but rather few of them. Based on this observation, F.
Lo Piccolo et Al. [40] partially outline an affected subgraph discovery algorithm that can
be applied on an undirected network graph.

Using this optimization algorithm before applying an undirected node-based max-
min fair bandwidth allocation algorithm leads to a large performance gain. Unfortu-
nately, F. Lo Piccolo et Al. apply this only on an undirected network model. Moreover,
the authors provide only a sketch of the affected subgraph idea rather than a state-
complete algorithm. In our simulator we leverage the benefits of the affected subgraph
optimization on a directed network model. The result is an algorithm whose compu-
tational complexity is independent of the edge set size. Our node-based max-min fair
bandwidth allocation algorithm iterates until all flows have a rate assigned. Each it-
eration has two phases. In the first, we find the node(s) which provide the minimum
fair share by calculating the fair share of the upload and the download capacity of each
node. The lower of these rates is set as the minimum fair share and the correspond-
ing node sides (uploading or downloading) are considered saturated i.e. they constitute
the bottleneck of the network in this iteration. In the second phase, we allocate this
minimum fair share to the flows of each saturated node, downloading or uploading de-
pending on their saturated side. In order to improve scalability, we adapt the affected
subgraph discovery algorithm for use with directed end-to-end network models. Given
a flow that triggers a bandwidth reallocation, we initiate two graph traversals that each
one has as root one of the flow’s end nodes. In each hop of a traversal we find the af-
fected flows of the last reached nodes and continue the traverse to their other ends.
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Figure 3.5: Performance comparison for structured network overlays with varying size and 20 outgoing flows
per node.

This procedure continues until no newly affected nodes are discovered by any of the
two traversals.

Evaluation For our scalability evaluation, we consider structured overlay scenarios
with two main parameters: the size of the node set and the number of outgoing flows per
node. The nodes enter the system in groups at defined time intervals and the starting
times their flows are distributed uniformly in that same time interval. The destination of
the flows is chosen following a specific structure, i.e. a DHT-based one. The bandwidth
capacities of the nodes are chosen randomly from the set: {100Mbps/100Mbps,24Mbps
/10Mbps,10Mbps/10Mbps,4Mbps/2Mbps,2Mbps/500Kbps} with corresponding prob-
abilities of {20%,40%,10%,10%}.
Our experiments show, Figures 3.4-3.5, that our node-based max-min fair allocation al-
gorithm constantly outperforms the edge-based algorithm proposed by Anh Tuan Nguyen
et al. for large-scale and structured network overlays. An important conclusion drawn
from these results is that the number of connections per node has a bigger impact in the
performance of the simulation models rather than the node set size. For example, the
simulation of a random overlay of 1000 nodes with 70 outgoing flows requires a similar
simulation time to a 10000 nodes random overlay having 20 outgoing flows per node.
We also would like to point out that the performance gain when using flow-level simu-
lation instead of packet-level is paramount. In order to simulate a random scenario of
1000 nodes with 10 flows each, a time of three orders of magnitude longer is required.
Running the same scenarios using the optimization algorithm significantly reduces the
simulation time. In Figure 3.4 we can see that the required time is one order of magni-
tude lower when simulating network overlays with the same size but different number
of outgoing flows per node. The performance improvement is much higher, three or-
ders of magnitude, when we increase the network size and keep the number of flows
per node fixed, as shown in Figure 3.5.
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cu/cd flows std. deviation avg. deviation

20/10

10 3.8±0.4% 3±0.4%
20 3.9±0.2% 3.1±0.1%
30 4.1±0.3% 3.3±0.2%
40 3.4±0.2% 2.8±0.2%
50 3±0.1% 2.5±0.2%

20/10,10/10

10 6.4±0.4% 5±0.4%
20 6±0.4% 4.9±0.3%
30 4.8±0.4% 3.9±0.3%
40 3.4±0.9% 3.2±0.3%
50 3.5±0.2% 2.8±0.2%

Table 3.1: Deviation of simulated transfer times.

Finally, in our accuracy study we compare the simulated transfer times of our pro-
posed solution with the ones obtained with NS-2 for the same scenarios. In NS-2, we use
a simple star topology, similar to the one used in [37] [42]. Each node has a single access
link which we configure with corresponding upload and download capacities. All flows
pass from the source access link to the destination access link through a central node
with infinite bandwidth capacity. Unfortunately, the size of our experiments is limited
by the low scalability of NS-2. We run scenarios of 100 nodes with a number of flows per
node that varies between 10 and 50. The size of each flow is 4MB and the bandwidth ca-
pacities of a node are either asymmetric, 20Mbps/10Mbps, or mixed, 20Mbps/10Mbps
and 10Mbps/10Mbps. The results of our experiments are shown in Table 3.1. We can see
that our flow-level max-min fair bandwidth allocation follows the trends of the actual
packet-level simulated bandwidth dynamics by a nearly constant factor throughout the
experiments. We can see that the presence of the symmetric capacities affects the trans-
fer time deviation negatively. The negative impact is more visible when fewer outgoing
flows per node are used. When the links are less congested, the slower convergence of
the flow rates of the nodes with smaller symmetric capacities is more apparent.

3.6 Conclusion & Future Work

In this paper we presented what we found to be the three most important practices
in P2P software development: a simulation-based development cycle, a clear concur-
rency model, and a realistic network model when running in simulation mode. We then
presented the Mesmerizer framework which we built to encompass all the aforemen-
tioned. We detailed its design and implementation and how it can be used both for
controlled evaluation/testing/debugging and deployment of production code. Regard-
ing simulation-based development, we stress how NAT box and bandwidth dynamics
emulation are of vital importance when testing a large number of a P2P application in-
stances. From the point of view of the scalability, we demonstrate that our simulation
framework is able to emulate the bandwidth characteristics of thousands of peers while



64

CHAPTER 3. MESMERIZER: AN EFFECTIVE TOOL FOR A COMPLETE PEER-TO-PEER

SOFTWARE DEVELOPMENT LIFE-CYCLE

preserving a good level of accuracy compared to the NS2 packet-level simulator.
Our ongoing work includes the improvement of the NAT and bandwidth emulation

model’s accuracy and the release of all our utilities as open source software.
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Abstract

When evaluating Peer-to-Peer content distribution systems by means of simula-
tion, it is of vital importance to correctly mimic the bandwidth dynamics behavior of
the underlying network. In this paper, we propose a scalable and accurate flow-level
network simulation model based on an evolution of the classical progressive filling
algorithm which implements the max-min fairness idea. We build on top of the cur-
rent state of art by applying an optimization to reduce the cost of each bandwidth
allocation/deallocation operation on a node-based directed network model. Unlike
other works, our evaluation of the chosen approach focuses both on efficiency and
on accuracy. Our experiments show that, in terms of scalability, our bandwidth allo-
cation algorithm outperforms existing directed models when simulating large-scale
structured overlay networks. Whereas, in terms of accuracy we show that allocation
dynamics of the proposed solution follow those of the NS-2 packet-level simula-
tor by a small and nearly constant offset for the same scenarios. To the best of our
knowledge, this is the first time that an accuracy study has been conducted on an
improvement of the classical progressive filling algorithm.

4.1 Introduction

It is common for existing P2P networks to create complex interactions between thou-
sands of participant peers. Each peer usually has a very high inbound and outbound
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connection degree [1] [2] [3]. Connections are used either for signaling or content prop-
agation. In the latter case, each peer implements intricate multiplexing strategies to
speed up transmission of large chunks of data [4], thus creating complex effects on
the underlying physical network which translate into varying transmission delays and
packet loss at the receiving side.

In order to study the complex interactions between overlays and physical networks,
a proper performance evaluation technique is required. Currently, no consensus has
been reached in the scientific community on a reference P2P testing platform [5]. It is of
a common practice to test a P2P application in a simulator before real deployment in or-
der to enable controlled testing and evaluation. However, accurate network simulators
can usually scale up only to a limited number of simulated peers. This limitation makes
it infeasible to capture the behaviour and issues of a larger P2P real-word deployment,
such as the effect network congestion on segments of the overlay network. In order to
achieve scalability, most of the existing P2P simulators abstract away network interac-
tions by modeling only the structural dynamics of the overlay network [6] [7] [8] [9] [10]
and thus totally ignoring the impact of the actual network on application performance.

Packet-level network simulation allows for in-depth study of the influence of the
network characteristics and the lower level protocols on the performance of a P2P sys-
tem. The trade-off for this detailed analysis comes in scalability: a single transfer can
generate hundreds of low-level protocol packets. In a large and complex network char-
acterised by links of high bandwidth capacity and intense in-line traffic, the sheer num-
ber of events needed to simulate the transfers require a prohibitive amount of computa-
tional and memory resources. As a result, only small sized networks can be simulated ef-
ficiently. A number of packet-level network simulation frameworks has been conceived
in the last decade [11] [12], being NS-2 [13] the most prominent among them. In turn,
a number of P2P network simulators have been developed on top of NS-2, e.g. P2PSim
[14] and NDP2PSim [15].

Flow-level simulation focuses instead on a transfer as a whole rather than individ-
ual packets, introducing a viable trade-off between accuracy and scalability. A flow ab-
stracts away the small time scale rate variation of a packet sequence with a constant
rate allocated at the sender/receiver’s bandwidth. The rate remains allocated for an
amount of time which corresponds to the duration of the flow, i.e. the simulated packet
sequence transmission time. This approach reduces drastically the number of events
to be simulated. The driving force behind the event creation in flow-level simulation
is the interaction between the flows, since an upload/download link might have many
flows happening at the same time. A new or completed flow might cause a rate change
on other flows competing for that same link’s capacity. For instance, in order for a link
to accommodate an extra flow, bandwidth needs to be allocated to it. This might lead
to a decrease of the bandwidth rates of other competing flows. Similarly, when a flow is
completed, more bandwidth becomes available for the other flows to share. A flow rate
change may also propagate further in the simulated network graph. This phenomenon
is known as "the ripple effect" and has been observed in a number of studies [16] [17] .
The impact of the ripple effect on the scalability of the model is directly dependent on
the efficiency of the bandwidth allocation algorithm.
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In this paper we provide a description of the current state of the art in flow-level
network bandwidth simulation in Section 4.2. Later we present a concise description of
our contribution in Section 4.3, before delving into the details of the proposed model
in Section 4. We then discuss the results of the scalability and accuracy evaluation of
our implementation in Section 5 and, finally, in Section 6, we draw our conclusions and
discuss future work.

4.2 Related Work

Flow-level network simulators implement algorithms which mimic the bandwidth dy-
namics happening in the transport protocol layer used of the real network. Bertsekas
and Gallager [18] introduce the concept of max-min fairness for modeling Additive-
Increase Multiplicative-Decrease congestion control protocols like TCP. Max-min fair-
ness tries to maximize the bandwidth allocated to the flows with minimum share thus
guaranteeing that no flow can increase its rate at the cost of a flow with a lower rate. In
every network exists a unique max-min fair bandwidth allocation and can be calculated
using the progressive filling algorithm [18]. The basic idea behind this algorithm is to
start from a situation where all flow rates are zero and then progressively increment each
rate equally until reaching the link’s capacity, i.e. the sum of all flow rates of a link equals
its capacity. In this algorithm, the network, including its internal structure, e.g. routers
and backbone links, is modeled as an undirected graph. A recent accuracy study [19]
showed that this approach offers a good approximation of the actual network behavior.
Nevertheless, having to simulate the flow interactions that take place on the internal
network links, magnifies the impact of the ripple effect on the algorithm’s scalability by
making the simulation significantly slower.

In order to gain more scalability, the GPS P2P simulator [20] uses a technique called
minimum-share allocation, defined in [21], which avoids the propagation of rate changes
through the network. Instead, only the flow rates of the directly affected nodes are up-
dated, i.e. only the flow rates of the uploading and downloading nodes of the flow trig-
gering the reallocation. Not considering the cross-traffic effects of the flows obviously
has a positive impact on the simulation time but makes also the model highly inaccu-
rate.

Narses [21] uses the same technique as GPS but it further promotes scalability by
ignoring the internal network topology and considering only the bandwidth capacity
of the access links of the participating peers. The result is what we call an end-to-end
network overlay where the backbone network is completely abstracted away from the
modeling and rate changes happen between pairs of peers. This is a reasonable ab-
straction if we consider that the bottlenecks on a P2P network usually appear in the
"last mile" rather than the Internet backbone. In doing so, the number of events sim-
ulated is further reduced, however in this case the inaccuracy remains since only the
end-to-end effects are taken into account while the cascading effect on other nodes, as
modeled by max-min fair allocation, is completely overlooked.

There exists two bandwidth allocation algorithms in the state of the art which apply
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the progressive filling idea on end-to-end network models, thus keeping the advantages
of simulating only access links but still considering the effects and propagation of rate
changes throughout the peer interconnections. The first algorithm proposed by F. Lo
Piccolo et Al. [22] models the end-to-end network as an undirected graph. In each
iteration, the algorithm finds the bottleneck nodes in the network, the nodes with the
minimum fair bandwidth share available to their flows. Then it proceeds to allocate the
calculated minimum fair share to the flows. The algorithm iterates until all nodes are
found saturated or a rate is assigned to all their flows.

The main disadvantage of this node-based max-min fair bandwidth allocation algo-
rithm lies in the modeling of the network as an undirected graph. In order to simulate
a network with separate upload and download capacities, two node instances are re-
quired per actual network peer. The memory footprint is therefore larger than the one
needed to model a direct network graph. Another weakness is that the computational
complexity of the approach depends directly on the cardinality of the node set.

An alternative edge-based max-min bandwidth allocation algorithm is given by Anh
Tuan Nguyen et al. [23]. It is an edge-based algorithm which uses a directed network
model, differently from the approaches we introduced till now. In one iteration, the al-
gorithm calculates the minimum fair share of the two ends of every unassigned flow.
Then, on the same iteration and based on the previously calculated shares, the algo-
rithm finds the bottleneck nodes, derives the flows’ rates and applies them. The algo-
rithm iterates until all flows have a rate assigned. It is important to underline that dur-
ing the first phase of each iteration, the algorithm might find one or multiple bottleneck
nodes, thus assigning rates to the flows of multiple nodes at the same iteration.

This edge-based max-min fair bandwidth allocation algorithm addresses the short-
comings of the undirected network modeling. However, the algorithm performance’s
dependence on the edge-set size constitutes a major drawback. This because each iter-
ation requires the calculation of the minimum fair share for each unassigned flow. On
top of that, a further iteration of the node set is required in order to find the saturated
nodes. As we will see, this hidden complexity makes it unsuitable for simulating large
networks with high adjacency.

It is common in large simulated networks for a new or finished flow to only affect the
rates of a subset of the existing network flows, as the propagation of a rate change does
not reach all nodes in the network but rather few of them. Based on this observation,
F. Lo Piccolo et Al. [22] partially outline an affected subgraph traversal algorithm that
can be applied on an undirected network graph. Starting from the end nodes of the flow
triggering the reallocation, the algorithm traverses the segment of the network graph
that is affected by the change. In fact, this is an attempt to trace the aforementioned
ripple effect. The traverse continues through affected flows/edges until all the affected
network subgraph is visited. The nodes reached by the traversal are treated based on
the parity of the hop distance (odd or even) from any of the two root nodes, i.e. the
initiators of the allocation/deallocation. Depending on the parity, a different subset of
their flows is affected. The traverse continues until no new nodes are affected. Since a
node can be reached in an odd or even hop distance from a root, a node can be visited
maximum twice during a traverse. This results in a linear complexity with respect to the
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node set cardinality, assuming that a node is not reconsidered when reached again in
the same distance from a root.

Using this optimization algorithm before applying an undirected node-based max-
min fair bandwidth allocation algorithm leads to a large performance gain. Unfortu-
nately, F. Lo Piccolo et Al. apply this only on an undirected network model. Moreover,
the authors provide only a sketch of the affected subgraph idea rather than a state-
complete algorithm.

In general, the aforementioned works which propose an improvement to the clas-
sical progressive filling focus their evaluation of the algorithms on performance while
completely overlooking the accuracy of their approaches.

4.3 Contribution

We propose a scalable and efficient flow-level simulator which leverages the benefits
of the affected subgraph optimization on a directed network model. We give a state-
complete description of the subgraph optimization introduced by F. Lo Piccolo et Al.
and we evaluate its performance gain when used in combination with our max-min
fair bandwidth allocation algorithm. The result is an algorithm whose computational
complexity is independent of the edge set size. Our experiments show that our solution
constantly outperforms the edge-based algorithm proposed by Anh Tuan Nguyen et al.
for large-scale and structured network overlays. Finally, we conduct a detailed accuracy
study where we compare the simulated transfer times of our proposed solution with the
ones obtained with NS-2 for the same realistic scenarios. We show that the bandwidth
allocation follows the trends of the actual packet-level simulated bandwidth dynamics.

4.4 Proposed Solution

We model the network as a directed graph G = (U ,F ), where the vertex set U represents
the set of end nodes and the edge set F represents the set of directed flows between
pairs of end nodes. We define as cu

i and cd
i the uploading and downloading capacities

of node i which belongs to the node set U . The rate of a flow fi j is denoted as ri j where
i , j ∈U and i 6= j . The existence of a flow from i to j does not imply the existence of a
flow from j to i . As a result, every node i ∈U has two separate sets of flows, F u

i for the

outgoing, and F d
i for the incoming. Finally, r∗

iu
and r∗

id
are the fair shares of the upload

and download capacity respectively of a node i ∈U . A fair share is the equal division of
a node’s upload or donwload capacity to its flows.

4.4.1 Bandwidth allocation
We now present the first part of our solution: our node-based max-min fair bandwidth
allocation in Algorithm 1.

The algorithm consists of a number of iterations up to the point where all flows have
a rate assigned. Each iteration has two phases. In the first, we find the node(s) which
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Algorithm 1 Node-based max-min fair bandwidth allocation algorithm

Input: A set of nodes U with their upload and download bandwidth capacities
cu

i ,cd
i ,∀i ∈U , and their corresponding flow sets F u

i , F d
i .

Output: The Max-Min fair rate allocation~r of the bandwidth capacities to the flows.
begin

1: SatUp ←;; SatDown ←;
2: while F 6= ; do

3: SatUp ← {su |r∗
su

= mi ni∈U ,cu
i 6=0

cu
i

|F u
i | }

4: SatDown ← {sd |r∗
sd

= mi ni∈U ,cd
i 6=0

cd
i

|F d
i | }

5: r∗ = mi n(r∗
su

,r∗
sd

)
6: if r∗

su
> r∗

sd
then

7: SatUp ←;
8: else if r∗

su
< r∗

sd
then

9: SatDown ←;
10: end if
11: if SatUp 6= ; then
12: for all i ∈ SatUp do
13: for all fi j ∈ F u

i do
14: ri j = r∗

15: cd
j = cd

j − r∗

16: F d
j ← F d

j − { fi j }

17: end for
18: cu

i = 0; F u
i ←;

19: end for
20: end if
21: if SatDown 6= ; then
22: for all i ∈ SatDown do
23: for all f j i ∈ F d

i do
24: r j i = r∗
25: cu

j = cu
j − r∗

26: F u
j ← F u

j − { f j i }

27: end for
28: cd

i = 0; F d
i ←;

29: end for
30: end if
31: end while
end

provide the minimum fair share r∗ (lines 4-10). The process happens as follows: we
calculate the fair share of the upload and the download capacity of each node. Then,
we find the nodes that provide the minimum upload fair share r∗

su
and the minimum
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Figure 4.1: An example of the max-min bandwidth allocation algorithm.

download fair share r∗
sd

and add them to node set SatUp, SatDown respectively (lines
4-5). The smallest rate between r∗

su
and r∗

sd
is set as the minimum fair share r∗ and the

nodes of the corresponding set are considered saturated (line 6-10), i.e. they constitute
the bottleneck of the network in this iteration. In the case where r∗

sd
= r∗

sd
, then all nodes

in SatUp and SatDown are considered saturated. In the second phase, we allocate the
minimum fair share r∗ to the flows of each saturated node, either to their download-
ing or uploading side (lines 11-24). The available bandwidth on the other end of each
flow (cu

j for a downloading flow or cd
j for an uploading flow) is reduced and the assigned

flows are removed from the flow sets (lines 15-16, 22-23). The saturated nodes have no
available capacity left on their affected side (downloading/uploading) and their corre-
sponding flow sets are empty (17, 24).

An example of how our max-min fair allocation algorithm works is shown in Figure
4.1. We consider the network graph shown in Figure 4.1.a. In the first iteration, the min-
imum fair share in the graph is found to be 10, this is provided by the upload capacity of
node 2 and node 4. The state of the graph after the allocation of the minimum fair share
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to flows f2,3, f2,6 and f4,1 is shown in Figure 4.1.b. In the second iteration, the minimum
fair share is 20 and is provided by the upload side of node 1, as well as the downloading
side of node 4 and node 6. The minimum fair share is assigned to flows f1,2, f1,3, f3,4 and
f3,6, which results to the network state shown in Figure 4.1.c. Finally, in the last iteration,
the download side of node 5 provides the minimum fair share of 50, which is allocated
to its downloading flow f3,5. The final rate allocation for this network graph is shown in
Figure 4.1.d.

The complexity of the algorithm is O(N 2) since at least one node side is found satu-
rated in each iteration. In order to improve scalability, we adapt the affected subgraph
discovery algorithm for use with directed end-to-end network models, i.e. where only
access links capacity is modeled.

4.4.2 Affected subgraph algorithm
This optimization is essentially an affected subgraph discovery algorithm. Given a flow
that triggers a bandwidth reallocation, the algorithm initiates two graph traversals that
each one has as root one of the flow’s end nodes. In each hop of a traversal we find the
affected flows of the last reached nodes and continue the traverse to their other ends.
This procedure continues until no newly affected nodes are discovered by any of the
two traversals. We characterize the nodes reached by one of these traversals based on
three criteria: (1) the parity of the distance in hops from the root node, i.e. odd or even;
(2) the type of the root node from which the traversal originates, i.e. the uploading or
downloading end of the triggering flow; and (3) the type of the triggering event, i.e. new
or finished flow.

Furthermore, the flows of a node i are distinguished between locally bottlenecked,
Li , and remotely bottlenecked, Ri . A node’s flow is referred as locally bottlenecked if
its own capacity is restricting the bandwidth rate of the flow. In contrast, a node’s flow
is referred as remotely bottlenecked if the node at the other end of the flow is the one
restricting its bandwidth rate. For example, the flow f4,1 in Figure 4.1.d is locally bottle-
necked for node 4 since it is its upload capacity that restricts the flow’s rate. In contrast,
for node 1 the flow is considered remotely bottlenecked since its rate is restricted by the
capacity available to the node on the other end of the flow.

A node can be affected in two different ways. First, it might need to accommodate
a new flow or a rate increase of an already existing flow. Second, it might have some of
its bandwidth freed due to a finished flow or a flow that has decreased its rate. Since
we distinguish between the upload and download side of a node, we have a total of four
different ways in which a a node can be affected:

• upload rate increase
A node in this category is asked for a rate increase. The criteria configurations
which correspond to this group of nodes are {even, uploading, new} and {odd,
downloading, finished}. This means that a node will have all the locally bottle-
necked uploading flows affected since they will need to reduce their rates in order
to accommodate a new flow or a bandwidth increase. Moreover, it might hap-
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Algorithm 2 Directed affected subgraph algorithm

Input: A set of nodes U with their upload and download capacities cu
i ,cd

i ∀i ∈U , their

flow sets F u
i , F d

i and a triggering flow fr1,r2 .
Output: The subsets AU and AF of U and F respectively, that correspond to the affected

network subgraph.
begin

1: hop ← 0; AU ←;; AF ←;
2: if fr1,r2 ∈ F then
3: AF ← AF ∪ { fr1,r2 }
4: end if
5: S AU ← {r1}; D AU ← {r2}
6: while S AU 6= D AU 6= ; do
7: AU ← AU ∪S AU ∪D AU
8: S AU ′ ←;; D AU ′ ←;
9: for all i ∈ S AU do

10: if (hop mod 2 6= 0 and fr1,r2 ∈ F ) or (step mod 2 == 0 and fr1,r2 ∉ F ) then
11: S AU ′ ← S AU ′∪DownDecr ease(i )
12: else if (hop mod 2 6= 0 and fr1,r2 ∉ F ) or (hop mod 2 == 0 and fr1,r2 ∈ F ) then
13: S AU ′ ← S AU ′∪DownIncr ease(i )
14: end if
15: end for
16: for all i ∈ D AU do
17: if (hop mod 2 6= 0 and fr1,r2 ∈ F ) or (hop mod 2 == 0 and fr1,r2 ∉ F ) then
18: D AU ′ ← D AU ′∪UpDecr ease(i )
19: else if (hop mod 2 6= 0 and fr1,r2 ∉ F ) or (hop mod 2 == 0 and fr1,r2 ∈ F ) then
20: D AU ′ ← D AU ′∪UpIncr ease(i )
21: end if
22: end for
23: S AU ← S AU ′; D AU ← D AU ′
24: hop ← hop +1
25: end while
end

Algorithm 3 "UpDecrease(node)" returns the nodes reached by means of locally bottle-
necked uploading flows.

1: procedure UpDecrease(A node i ) 〈The set of nodes reached by the affected locally
bottlenecked uploading flows of i 〉

2: AF ← AF ∪ { fi j | fi j ∈ F u
i and fi j ∈ Lu

i }
3: return { j | fi j ∈ F u

i and j unaffected by download increase and fi j ∈ Lu
i }

4: end procedure
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Algorithm 4 "UpIncrease(node)" returns the nodes reached by means of locally and re-
motely bottlenecked uploading flows.

1: procedure UpIncrease(A node i ) 〈The set of nodes reached by affected locally and
remotely bottlenecked uploading flows of i 〉

2: AF ← AF ∪ { fi j | fi j ∈ F u
i and ( fi j ∈ Lu

i or ( fi j ∈ Ru
i and (4.1) false for ri j ))}

3: return { j | fi j ∈ F u
i and j unaffected by download decrease and ( fi j ∈ Lu

i or ( fi j ∈
Ru

i and (4.1) false for ri j ))}
4: end procedure

pen that some or all of the remotely bottlenecked outgoing flows might turn into
locally bottlenecked. We can find the remotely affected bottlenecked flows of a
node x by evaluating the following expression, as proposed by [22]:

A : ri <
cu

x −∑i−1
j=1 r j

|F u
x |− i +1

, i ∈ |Ru
x |, (4.1)

cu
x is the upload capacity of x, and ri , where i ∈ Ru

x , the rate of a remotely bot-
tlenecked uploading flow i of x. We consider the remotely bottlenecked flows or-
dered by increasing rate size: r1 ≤ r2 ≤ ·· · ≤ r|Ru

x |. The above condition is evaluated
starting from i = 1 until it is either true for all i ∈ Ru

x or becomes false for a certain
i . In the first case all remotely bottlenecked flows remain unaffected. In the sec-
ond case the flows with rates ri ,ri+1, ...,r|Ru

x | might turn into locally bottlenecked
by the rate increase and thus should be considered as affected.

• upload rate decrease
The nodes included in this category got affected due to a rate decrease of one of
their uploading flows. The criteria configurations for these nodes are {odd, down-
loading, new} and {even, uploading, finished}. Nodes falling into this category
need to allocate a released amount of upload/download bandwidth to their cur-
rently active flows. This leads all their locally bottlenecked outgoing flows to be
affected by the operation.

• download rate increase
These nodes are affected by a rate increase in the same manner as the ones in
the first category but by means of a downloading flow. The criteria configurations
corresponding to this node category are {even, downloading, new} and {odd, up-
loading, finished}.

• download rate decrease
Like the nodes of the second category, these nodes experience a rate decrease but
this time caused by a downloading flow. The criteria configurations which repre-
sent this category are {odd, uploading, new} and {even, downloading, finished}.

During the same round of affected subgraph discovery, a node side can be reached
both by a request to increase and by a request to decrease its flow rates. This makes
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for a clear conflict. In the original algorithm, the conflict is resolved by ignoring the
change request that affects less children nodes from the current node’s point of view.
The approach clearly introduces inaccuracy since the propagation of a rate change is
stopped abruptly. In our solution, we do not discriminate between the way by which a
node is affected. However, this might introduce loops along the traversal path, in order
to avoid this situation, we stop the traversal if a node gets affected twice in the same
way, e.g. if it gets an increase request from its uploading flows twice in the same affected
subgraph discovery.

The state-complete algorithm is shown in Algorithm 2 and Procedures UpIncr ease
and UpDecr ease. We do not show procedures DownIncr ease and DownDecr ease
since they are the complement of UpIncr ease and UpDecr ease. The algorithm begins
by checking the type of the triggering event. In the case that it is a new flow fr1,r2 , it is
added to the affected flow set AF (lines 3-4). A traversal is then initiated from each of
the two root nodes, r1,r2. Two sets S AU and D AU containing the last reached nodes, for
the traversals originating from r1 and r2 respectively, are updated at each hop. Initially,
both sets contain only the root node (line 5). At each iteration, we check the last reached
nodes and classify them based on the proposed categorization (lines 9-18). Depending
on the parity of the hop distance, the root node (uploading/downloading) and the type
of the triggering event (new or finished flow), we define which will be the nodes affected
in the next iteration using Procedures UpIncr ease, UpDecr ease, DownIncr ease and
DownDecr ease. As a result, two sets of newly affected nodes are produced after the
iteration: one set (S AU ′) for the traversal originating from the uploading side of the
triggering flow and one (D AU ′) for the traversal originating from the downloading side
of the triggering flow. These node sets will be provided as input to the next iteration of
the algorithm. The traversal continues until no more affected nodes are found (line 6).
The complexity of the algorithm is O(N ) since each node can be reached at maximum
in 4 different ways.

In order to illustrate the affected subgraph discovery algorithm, we extend the an-
notation used in [22] in order to show both the direction and the bottleneck side of a
flow. The source of a flow is depicted with a circle and the destination with an arrow.
Their color shows the end of the flow that constitutes the bottleneck on a pairwise fash-
ion. We denote with a white circle or arrow the restrictive end, i.e. the flow is locally
bottlenecked. In contrast, we denote as a black circle or arrow the end of a flow that is
remotely bottlenecked. If we use this annotation on the previous network graph exam-
ple in Figure 4.1.a, we obtain the graph shown in Figure 4.2.a.

Lets consider the case of a new flow from node 2 to node 1. The algorithm firsts
checks the outgoing flows of the uploading root node 2 and the incoming flows of the
downloading root node 1 to find the affected ones, Figure 4.2.b. Since the triggering flow
is a new one, all the locally and probably some remotely bottlenecked flows of its end
nodes are affected. The uploading root node 2 has two locally bottlenecked uploading
flows, f2,3 and f2,6, that are affected. The downloading root node 1 has only one re-
motely bottlenecked downloading flow f4,1 which is not affected since (4.1) is true for
its rate. In the next hop, the download flows of nodes 3 and 6 are checked, Figure 4.2.c.
Since they are in an odd hop distance from the uploading side of a new transfer, only
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Figure 4.2: An example of the affected subgraph discovery.

their locally bottlenecked downloading flows will be affected by means of a download
decrease. Node 3 has no locally bottlenecked downloading flows while node 6 has only
one, f3,6. The next hop of the traversal reaches node 6 at an even hop distance from the
uploading side of new flow, it should have all his locally and maybe some of his remotely
bottlenecked flows affected, Figure 4.2.d. Node 6 has only remotely bottlenecked up-
loading flows and one of them, f3,5, has a rate for which (4.1) is evaluated as false. This
flow is considered thus as affected. Finally, since node 5 has no unaffected flows, the
algorithm terminates.

4.5 Evaluation

4.5.1 Methodology
We focus in the evaluation of our proposed solution on the two desirable characteristics
of a P2P network simulator: scalability and accuracy. In our scenarios, we consider two
main parameters: the size of the node set and the number of outgoing flows per node.
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Figure 4.3: Simulation times of a random network overlay. 1000 nodes network size and varying number of
outgoing flows per node.

The destination of the flows is chosen either randomly or following a specific structure,
i.e. a DHT-based one. The nodes enter the system in groups at defined time intervals.
The starting times of a joined node’s flows are distributed uniformly in that same time
interval. The node’s bandwidth capacities are either symmetric, asymmetric or mixed
depending on the experiment. Finally, the amount of transferred bytes per flow is also a
parameter.

For our accuracy study we implemented the same scenario both on our simulator
and on the NS-2 packet-level simulator. In NS-2, we use a simple star topology, similar
to the one used in [19] [24]. Each node has a single access link which we configure
with corresponding upload and download capacities. All flows pass from the source
access link to the destination access link through a central node with infinite bandwidth
capacity. We use the TCP Reno implementation with a packet size of 1460 Bytes. The
queue mechanism used is Drop Tail and all links have 2ms delay, resulting in a 8ms
RTT. Finally, the TCP queue and the maximum window sizes are defined taking into
consideration the bandwidth delay product.

We repeat each experiment a number of times with different random seeds and we
take the average value of the resulting measurements. In the scalability study, we con-
sider the average simulation time of the runs, while in the accuracy study we analyze
the average deviation between the NS-2 data transfers and the corresponding flows’
time modeled in our simulator. The machine used for this evaluation has a dual core
processor with 2.1GHz per core, 3MB cache and 3GB RAM.

4.5.2 Scalability
In our scalability evaluation, we vary the size of node sets, in the scale of thousands,
and the number of outgoing flows per node, in increments of tens. Both random and
structured overlays are characterized by a specific degree of inter-flow dependency. We
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Figure 4.4: Simulation times for a DHT-like structured network overlay. 1000 nodes and varying number of
outgoing flows per node.

can define the latter as how many flows on average are affected by a new or finished
flow. i.e. the average ripple effect’s scope. In the random scenario, it is more likely for
the destination of the flow not being saturated, whereas in the structured, we guarantee
a minimum level of saturation at each receiving end.

The rest of the scenario parameters are set as follows: the size of each flow is 2MB
plus the size of TCP headers. Nodes join in groups of 50 every 20 seconds. The start-
ing times of the flows of a newly joined node are uniformly distributed on the inter-
val period. The bandwidth capacities of a node are chosen randomly from the set:
{100Mbps/100Mbps,24Mbps /10Mbps,10Mbps/10Mbps,4Mbps/2Mbps,2Mbps/500Kbps}
with corresponding probabilities of {20%,40%,10%,10%}.

We first compare our proposed node-based max-min fair bandwidth allocation al-
gorithm with the edge-based proposed by [23]. The simulation times required by both
algorithms for a random scenario of networks with 1000 nodes and varying number
outgoing flows per node are shown in Figure 4.3. The edge-based algorithm appears to
perform slightly better than our solution. This is expected since the edge-based algo-
rithm finds more saturated nodes per iteration, as mentioned in Section 4.2.

We run the same scenarios but this time selecting the destination nodes of the flows
in a more structured manner. The selection is done in such a way that nodes form a
circle where each node’s outgoing flows are directed to the nearest neighbors in a clock-
wise fashion. The simulation times required by both algorithms for this scenario are
shown in Figure 4.4. It is clear that the edge-based algorithm is significantly slower than
our proposed algorithm when it comes to networks with strong inter-flow dependen-
cies. This because the higher computational complexity of the edge-based algorithm
emerges in those cases where stronger relations between the flows exist.

We next study the simulation times when dealing with larger size networks. We fix
each node’s outgoing flows to 20 and vary the node set size between 1000 and 10000
nodes. The results for the random and structured overlay scenarios are shown in Figure
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Figure 4.5: Simulation time for varying sizes of a random overlay networks with a fixed 20 outgoing flows per
node.

Figure 4.6: Simulation time for different sizes of a structured overlay networks with fixed 20 outgoing flows
per node.

4.5 and Figure 4.6 respectively. When random overlays are considered, we observe that,
as the node set gets bigger, the edge-based algorithm performance deteriorates and is
outperformed by our proposed algorithm. This can be explained by the fact that the
edge-based algorithm includes an extra check of the complete node set per each itera-
tion. This may not have a big impact when considering relatively small networks, but
it might constitute a performance bottleneck for large scale simulations. The impact
of this bottleneck becomes more apparent in the case of structured overlays where less
nodes are found saturated at every iteration.

Based on these results, we can state that our proposed max-min fair bandwidth al-
location algorithm performs better when simulating large and strongly connected net-
works with high inter-flow dependency. An other important conclusion drawn from
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Figure 4.7: Performance improvement when using the affected subgraph algorithm on random network over-
lays with 1000 nodes and different number of outgoing flows per node.

these results is that the number of connections per node has a bigger impact in the
performance of the simulation models rather than the node set size. For example, the
simulation of a random overlay of 1000 nodes with 70 outgoing flows requires a similar
simulation time to a 10000 nodes random overlay having 20 outgoing flows per node.

We also would like to point out that the performance gain when using flow-level
simulation instead of packet-level is paramount. In order to simulate a random scenario
of 1000 nodes with 10 flows each, a time of three orders of magnitude longer is required.

We run the same overlay scenarios using the directed affected subgraph algorithm
defined in Algorithm 2 before running the max-min fair bandwidth allocation algo-
rithm. The results are shown in Figures 4.7-4.10. It is clear that the optimization reduces
significantly the simulation time. In Figures 4.7 and 4.9 we can see that the required
time is one order of magnitude lower when simulating network overlays with the same
size but different number of outgoing flows per node. The performance improvement
is much higher, three orders of magnitude, when we increase the network size and keep
the number of flows per node fixed, as shown in Figures 4.8 and 4.10. This can be ex-
plained by the fact that the affected subgraph size, on which a max-min fair bandwidth
allocation algorithm is applied, mainly depends on the connectivity of the network. It
should be also pointed out that the performance is similar for both our and the edge-
based max-min bandwidth allocation algorithms when they are used together with the
affected subgraph algorithm. This is because the affected subgraphs in these cases are
not big enough to point out the performance differences between the two algorithms.

4.5.3 Accuracy
The goal of this study is to find out how accurately the bandwidth capacity is allocated to
competing flows with respect to a packet-level simulator, such as NS-2. Unfortunately,
the size of our experiments is limited by the low scalability of NS-2. We run a scenario
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Figure 4.8: Performance improvement when using the affected subgraph algorithm on random network over-
lays with varying size and 20 outgoing flows per node.

Figure 4.9: Performance improvement when using the affected subgraph algorithm on structured network
overlays with 1000 nodes and different number of outgoing flows per node.

with 100 nodes joined at the start of the simulation. The destination of the nodes’ out-
going flows is random, the size of each flow is 4MB and their number vary between 10
and 50 per node.

As in [19], we use the the relative error in transfer times as our accuracy metric. Let
tN S−2 be the time at which a flow terminates in NS-2 and tmax−mi n the time at which
our max-min fair flow terminates. The relative error is then given by:

RE = t f low − tN S−2

tN S−2
(4.2)

In our flow simulation, we ignore any segmentation or retransmission of packets. The
packet header overhead introduced by the packet level simulation is added to the flow
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Figure 4.10: Performance improvement when using the affected subgraph algorithm on structured network
overlays with varying size and 20 outgoing flows per node.

size.
We fist consider the case where the access link’s capacities are symmetric, i.e. same

upload and download capacity that we set to 10Mbps. Results for different number of
outgoing flows per node are shown in Table 4.1. The standard and average deviation of
the relative error of the transfer times are given for each of the scenarios.

We can see that the deviation is smaller when the network is more under stress, i.e.
more outgoing flows per node. In these situations, TCP converges quicker causing the
transfer times to deviate less. Moreover, since both sides of every flow have the same
bandwidth capacity, the share that they provide should be similar. This leads to an os-
cillation of the window size that translates into an extra transfer time deviation. How-
ever, while the absolute of the deviation varies with the number of links, we can still
assert that the deviation is nearly constant, e.g. max 0.5%, between different iterations
of the same experiment and different flows in the same experiment, for each one of the
experiments conducted. In terms of absolute deviation, a flow-level simulator cannot
compete with a packet-level because of the different level of abstraction. But we can
safely state that, if the deviation is constant, the flow-level simulation follows the be-
havior of the packet-level simulation by the amount of that constant value, which is the
desired effect of the simulator.

In the next experiment, we show the impact of the capacity size as well as the in-
teraction between nodes with different symmetric capacities. For this purpose, we run
the same scenario but this time setting half of the nodes in the network to symmetric
bandwidth capacities of 20Mbps. The results are shown in Table 4.1. The introduction
of nodes with higher capacity speeds up the transfer times, thus providing less time for
TCP to converge. This effect leads to more deviation. We observe that the number of
the outgoing flows per node does not affect the deviation. This might be because the
impact of the higher bandwidth capacities to the time deviation is larger. Again, we can
assert that the flow-level simulation follows the behavior of the packet-level one by a
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cu/cd flows std. deviation avg. deviation

10/10

10 9.6±0.6% 7.9±0.6%
20 7.3±0.3% 5.9±0.2%
30 6.1±0.3% 5±0.2%
40 5.1±0.3% 4±0.3%
50 4.4±0.2% 3.6±0.2%

10/10, 20/20

10 12.7±1.0% 10.5±0.9%
20 13.7±0.4% 11.3±0.4%
30 12.6±0.3% 10.8±0.4%
40 13.1±0.4% 11.4±0.5%
50 13.2±0.3% 11.5±0.4%

Table 4.1: Deviation of transfer times.

nearly constant degree.
Next we consider the case of asymmetric bandwidth capacities. We assign to every

node 20Mbps of download capacity and 10Mbps of upload capacity. The results for
different number of outgoing flows per node are shown in Table 4.2. It appears that
the deviation is significantly smaller and not affected by the per node outgoing flows
comparing to the previous symmetric scenario. This can be explained by the absence of
oscillation and quicker TCP convergence due to the larger download capacity.

Finally, we investigate the deviation when both symmetric and asymmetric node
capacities are used. We set half of the nodes with a symmetric 10Mbps capacity and the
rest with asymmetric capacity of 20Mbps download and 10Mbps upload. The results
are also given in Table 4.2. We can see that the presence of the symmetric capacities
affects negatively the transfer time deviation. The negative impact is more visible when
fewer outgoing flows per node are used. When the links are less congested, the slower
convergence of the flow rates of the nodes with smaller symmetric capacities is more
apparent.

In the last two experiments, as in the first two, we measured a deviation from the
NS-2 packet-level simulation but our max-min fair simulation followed the trends of
the ones provided by NS-2 by an almost constant deviation factor.

4.6 Conclusion & Future Work

In this paper we presented a scalable and efficient flow-level network simulation model
based on the max-min fairness idea. We evaluated our solution in terms of scalability by
showing that it outperforms the existing state-of-the-art for large-scale and structured
network overlays where a directed network is used for the modeling. In terms of accu-
racy we showed that our approach follows the trends of the NS-2 packet-level simulator
network by a nearly constant factor throughout the experiments.

Our ongoing work includes the improvement of the model’s accuracy by considering
the time period that a flow requires to converge to a new rate, and also the use of time-
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cu/cd flows std. deviation avg. deviation

20/10

10 3.8±0.4% 3±0.4%
20 3.9±0.2% 3.1±0.1%
30 4.1±0.3% 3.3±0.2%
40 3.4±0.2% 2.8±0.2%
50 3±0.1% 2.5±0.2%

20/10,10/10

10 6.4±0.4% 5±0.4%
20 6±0.4% 4.9±0.3%
30 4.8±0.4% 3.9±0.3%
40 3.4±0.9% 3.2±0.3%
50 3.5±0.2% 2.8±0.2%

Table 4.2: Deviation of transfer times in the presence of asymmetric node capacities.

stepping aggregation to achieve higher performance with minimum cost in accuracy.
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Abstract

In this paper, we report our experience in working with Network Address Trans-
lators (NATs). Traditionally, there were only 4 types of NATs. For each type, the
(im)possibility of traversal is well-known. Recently, the NAT community has pro-
vided a deeper dissection of NAT behaviors resulting into at least 27 types and doc-
umented the (im)possibility of traversal for some types. There are, however, two
fundamental issues that were not previously tackled by the community. First, given
the more elaborate set of behaviors, it is incorrect to reason about traversing a single
NAT, instead combinations must be considered and we have not found any study
that comprehensively states, for every possible combination, whether direct con-
nectivity with no relay is feasible. Such a statement is the first outcome of the pa-
per. Second, there is a serious need for some kind of formalism to reason about
NATs which is a second outcome of this paper. The results were obtained using our
own scheme which is an augmentation of currently-known traversal methods. The
scheme is validated by reasoning using our formalism, simulation and implemen-
tation in a real P2P network.

5.1 Introduction

Dealing with Network Address Translators (NATs) is nowadays an essential need for any
P2P application. The techniques used to deal with NAT have been more or less “coined”
and there are several widely-used methods[1][2]. Some of them are rather a defacto
standard like STUN [3],TURN [4],ICE [5].
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In the context of our a P2P live video streaming application PeerTV, we are mainly
concerned with media streaming using UDP and therefore the scope of this paper is
UDP NAT traversal. Moreover, we are strictly interested in solutions that do not use
relay, such as TURN for instance, due to the high bandwidth requirements of video
streaming.

We have found lots of of previous work on the subject that aims to answer the follow-
ing question: For every t in the set of NAT types T , which s in the set of traversal strategies
S should be used to traverse t? The answer is of the form f : mathcalT →S . i.e. the fol-
lowing is an example with a couple of types f : { Simple Hole Punching, Port-Prediction
} → { Full-Cone, Symmetric} [6].

However, the point which we found not gaining enough attention is that the pres-
ence of a feasible traversal technique that enables two peers behind NAT to communi-
cate depends on the “combination” of the NAT types and not on the type of each peer
separately. Thus, the question should be: “Given 2 peers pa and pb with respective NAT
types t (pa) and t (pb), which traversal strategy s is needed for p1 and p2 to talk? The an-
swer is of the form f : T ×T → S ”, i.e we need to analyze traversable combinations
rather than traversable types.

Most works contain a few examples of combinations for explanation purposes [6][7].
However, we have failed to find any comprehensive analysis that states, for every possi-
ble combination of NAT types, whether direct (i.e. with no relay) connectivity is possi-
ble and how. The analysis is more topical given that NAT community is switching from
the classical set of NAT types Tcl assi c = { Full-Cone, Restricted-Cone, Port-Restricted,
Symmetric} [3] to a more elaborate set that defines a NAT type by a combination of three
different policies, namely, port mapping, port allocation and port filtering [8]. With that,
a statement like “two peers behind symmetric NAT can not communicate” becomes im-
precise, as we will show that in many cases it is possible given the nuances available in
the presently wide spectrum of NAT types.

5.2 Related Work

The work in [7] includes a matrix for a number of combinations, however mostly drawn
from Tcl assi c rather than the more elaborate classification in [8]. The work in [6] is prob-
ably the closest to ours, one can see our work as a superset of the set of combinations
mentioned in that work.

5.3 NAT Types as Combinations of Policies

In this section we try to semi-formally summarize the more elaborate classification of
NATs known as “BEHAVE-compliant”[8] and craft the notation that we will use in the
rest of the paper.

Notation. Let na and nb be NAT gateways. For i ∈ {a,b}, Let Pi = {pi , p ′
i , p ′′

i , . . . } be
the set of peers behind ni . An “endpoint” e is a host-port pair e = (h, p), where h(e)
is the host of e and p(e) is its port. Let Vi = {vi , v ′

i , v ′′
i , . . . } denote the set of all private



5.3. NAT TYPES AS COMBINATIONS OF POLICIES 99

endpoints of all peers behind ni and Ui = {ui ,u′
i ,u′′

i . . . } be the set of public endpoints
of ni . i.e ∀v ∈Vi ,h(v) ∈ Pi and ∀u : Ui ,h(u) = ni .

When a packet is sent out from a certain private endpoint vi of a peer pi behind
a gateway ni , to some public endpoint d , a rule in the NAT table of ni is created. We
define the set of NAT table rules Ri = {ri ,r ′

i ,r ′′′
i } at ni , the rule records the fact that some

public port ui and some private port vi are associated, e.g ra = (va ↔ ua).
The behavior of a gateway ni is defined by three policies, namely, port mapping,

port filtering and port allocation. We use the notation f (ni ),m(ni ), a(ni ) to denote the
respective policies of gateway ni .

5.3.1 Mapping Policy
The mapping policy is triggered every time a packet is sent from a private endpoint vi

behind the NAT to some external public port d . The role of a mapping policy is deciding
whether a new rule will be added or an existing one will be reused. We use the notation:

1.
−−−→
vi ,d Í ri to specify that the sending of a packet from vi to d resulted in the cre-
ation of a new NAT table rule ri at ni . That is the binding of a new public port on
ni . However, we say that a rule was created because we care not only about the
binding of the port but also the constraints on using this new port.

2.
−−−→
vi ,d ⇒ ri to specify that the sending of the packet reused an already existing rule
ri .

3.
−−−→
vi ,d

r eason6=⇒ ri to specify that the sending of the packet did not reuse some ri in
particular because of some “reason”.

Irrespective of the mapping policy, whenever a packet is sent from a private port vi

to an arbitrary public destination endpoint d and Øri ∈ Ri of the form ri = (vi ↔ ui ),

for an arbitrary ui , the following is true
−−−→
vi ,d Í ri . However, if such a mapping exists,

the mapping policy would make the reuse decision based on the destination. For all

subsequent packets from vi to d , naturally,
−−−→
vi ,d ⇒ ri . However, for any d ′ 6= d , there are

3 different behaviors:

• Endpoint-Independent, m(ni ) = EI:−−−→
vi ,d ′ ⇒ ri , for any d ′

• Host-Dependent, m(ni ) = HD:−−−→
vi ,d ′ ⇒ ri , iff h(d) = h(d ′)−−−→
vi ,d ′ Í r ′

i , iff h(d) 6= h(d ′), where r ′
i = (vi ↔ u′

i )
and u′

i 6= ui

• Port-Dependent, m(ni ) = PD:−−−→
vi ,d ′ Í r ′

i
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Having introduced the different policies, we decorate the notation of the rule to include
the criteria that will be used to decide whether a certain rule will be reused as follows:

ri =



(
vi ←−−−−−→

m:vi→∗ ui

)
if m(ni ) = EI(

vi ←−−−−−−−−−→
m:vi→(h(d),∗)

ui

)
if m(ni ) = HD(

vi ←−−−−−→
m:vi→d

ui

)
if m(ni ) = PD


Where the syntax m : x → y means that the rule will be reused if the source endpoint of
the packet is x and the destination is y . The ∗ denotes any endpoint.

Order. We impose the EI < HD < PD according to the increasing level of restrictive-
ness.

5.3.2 Allocation Policy.
Every time a new ri is added to Ri , a new public endpoint ui is bound. This policy
allocates p(ui ). That is, the mapping policy decides when to bind a new port and the
allocation policy decides which port should be bound as follows:

1. Port-Preservation, a(ni ) = PP:

Given
−−−→
vi ,d Í ri , where ri = (vi ↔ ui ), it is always the case that: p(ui ) = p(vi ).

Naturally, this may cause conflicts if any two pi and p ′
i behind ni decided to bind

private endpoints with a common port.

2. Port Contiguity, a(ni ) = PC:
Given any two sequentially allocated public endpoints ui and u′

i it is always the
case that: p(u′

i ) = p(ui )+∆, for some ∆= 1,2, ...

3. Random, a(ni ) = RD:
∀ui , p(ui ) is allocated at random.

Order. We impose the order PP < PC < RD according to the increasing level of difficulty of
handling.

5.3.3 Filtering Policy.
The filtering policy decides whether a packet from the outside world to a public end-
point of a NAT gateway should be forwarded to the corresponding private endpoint.
Given an existing rule ri = (vi ↔ ui ) that was created to send a packet from vi to d , we
use the notation:

1. ri ⇐←−−ui , s to denote that the receival of a packet from the public endpoint s to ni ’s
public endpoint ui is permitted by ri

2. ri
r eason6⇐= ←−−ui , s to denote that the receival is not permitted because of some “reason”.
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There are 3 filtering policies with the following conditions for allowing receival:

• Endpoint-Independent, f (ni ) = EI:
ri ⇐←−−ui , s, for any s

• Host-Dependent, f (ni ) = HD:
ri ⇐←−−ui , s, iff h(s) = h(d)

• Port-Dependent, f (ni ) = PD:
ri ⇐←−−ui , s, iff s = d

We also decorate the rules to include conditions for accepting packets as follows:

ri =



(
vi

f :ui←∗←−−−−→ ui

)
if f (ni ) = EI(

vi
f :ui←(h(d),∗)←−−−−−−−−−→ ui

)
if f (ni ) = HD(

vi
f :ui←d←−−−−−→ ui

)
if f (ni ) = PD


Order. We impose the order EI < HD < PD according to the increasing level of restrictive-
ness.

5.3.4 The Set of NAT Types

Having defined the above policies, the NAT type of a given NAT gateway is simply a mat-
ter of listing which behavior is used for each of the policies. We define the set of triplets
representing all possible NAT types τ= {(m, a, f )| f ,m ∈ {EI, HD, PD}, a ∈ {PP, PC, RD}}.

5.4 NAT Type Discovery

Before traversing a NAT gateway, one needs to know its type. STUN [3] is the most-
widely used method for accomplishing this and there exists many publicly-available
STUN servers that assist in the discovery process. The original STUN algorithm pro-
duces a classification withdrawn from the set τcl assi c . More recently, [6, 8] have re-used
the STUN infrastructure to get more detailed information, namely, knowing the filtering
and the mapping policies.

Due to space limitations and the fact that our main focus is on traversal strategies,
we will not delve into the details of performing the discovery process. However, we just
need to clarify that in the spirit of [6, 8], we have expanded the scope of the discovery
process to discover information about the allocation policy. With that, our classification
is capable of reporting all elements in the set τ.
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5.5 NAT Traversal Techniques

We explain our traversal techniques which are an augmented version of the well-known
techniques in [1]. A time diagram of the techniques is available in the appendix in Chap-
ter 12.

Basic Assumptions. We assume that there is a Rendez-vous server with public IP
referred to by z. The traversal process always starts after: i ) two Peers pa and pb respec-
tively behind NATs na and nb register themselves at z and have an “out-of-band” com-
munication channel with z, which is in our case a TCP connection initiated by the peer,
we refer to all endpoints of z and z itslef by the same symbol; i i ) The 2 peers know that
they need to communicate and know the other peer’s public IP, i.e. the corresponding
NAT IP, some peers supply additional information during registration as we will shortly
explain in Section 5.7.2; i i i ) all the policies of pa , pb are known to z using a discovery
process before any traversal process takes place.

5.6 Simple hole-punching (SHP)

5.6.1 Traversal Process

1. pa sends from some va to z through na .

2. na creates ra = (va ↔ ua) and forwards to z.

3. z receives and consequently knows ua .

4. z informs pb about ua (Out-of-band).

5. pb sends from some vb to ua through nb .

6. nb creates rb = (vb ↔ ub) and forwards to ua .

7. na receives, if the filtering allows, forwards to va

8. pa sends from va to ub through na , if the mapping allows, ra is reused. Otherwise,
r ′

a will be created and sending will occur from some other public endpoint u′
a 6=

ua

9. nb receives, if the filtering allows, forwards to vb

5.6.2 SHP Feasibility

Theorem 5.6.1. Simple hole punching is feasible for establishing direct communication
between two peers pa and pb respectively behind na and nb if ∃nx ∈ {na ,nb} s.th. f (nx ) =
EI, and either m(nx ) = EI or m(nx ) > EI and f (nx′ 6=x ) < PD.
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Proof. We consider the most restrictive case where f (na) = f (nb) = m(na) = m(nb) = PD

and a(na) = a(nb) = RD and show the minimum relaxations that we need to do for SHP
to work. By looking at the steps in section 5.6, and considering all the very restrictive
mapping and filtering on both sides, we can see that after steps 5 and 6, ra and rb will
be as follows:

ra =
(

va
f :ua←uz←−−−−−−→

m:va→uz
ua

)
,rb =

(
vb

f :ub←ua←−−−−−−→
m:vb→ua

ub

)
Which will cause the following problems:

In step 7: ra

ub 6=uz6⇐= ←−−−−ub ,ua and there is nothing that we can relax at nb which can help.
Instead, we have to relax the filtering at pa to indulge receiving on ua from ub while
it was initially opened for receiving from uz . i.e, ra has to tolerate host change which
is not satisfied by PD nor HD filtering, therefore f (na) = EI is necessary, resulting into

ra =
(

va
f :ua←∗←−−−−−−→

m:va→uz
ua

)
In step 8: −−−−→va ,ub

ub 6=uz6=⇒ ra and −−−−→va ,ub Í r ′
a where r ′

a =
(

va
f :u′

a←∗←−−−−−−→
m:va→ub

u′
a

)
. Consequently,

rb

ua 6=u′
a6⇐= ←−−−−

u′
a ,ub . To solve this, we have two solutions, the first is to let the mapping reuse

ra and not create r ′
a which needs relaxing m(na) to be EI, in which case we can keep

f (nb) as restrictive. The second solution is to keep na as restrictive and relax f (nb) to
tolerate receiving from u′

a . In the second solution, there is a minor subtlety that needs
to he handled, where pb has to be careful to keep sending to pa on ua despite the fact
that it is receiving from u′

a . Similarly pa should always send to pb on ub despite the fact
it is receiving from u′

b . That is an asymmetry that is not in general needed.

5.6.3 Coverage of SHP
Since |τ| = 27 types, we have a 27×28

2 = 378 distinct combinations of NAT types of two
peers. Using Theorem 5.6.1, we find that 186 combinations, i.e. 49.2% of the total num-
ber of possible ones are traversable using the Simple Hole Punching approach. That
said, this high coverage is totally orthogonal to how often one is likely to encounter
combinations in the covered set in practice, which we discuss in our evaluation (Sec-
tion 5.9.1). Traversable SHP combinations are shown in Figure 5.1 with label SHP(*).

To cover the rest of the cases, we use port prediction which enables a peer to punch
a hole by sending to the opposite peer instead of z, which makes it possible to tolerate
more restrictive filtering and mapping policies, as explained below.

5.7 Prediction

5.7.1 Prediction using Contiguity (PRC)
The traversal process consists in the following steps:
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Figure 5.1: All possible distinct NAT types combinations for two peers a and b with the technique needed
to traverse the combination and X for un-traversable combinations. SHP(*), PRC(*) and PRP(*) stand re-
spectively for Simple Hole Punching, Port Prediction using Contiguity and Port Prediction using Preserva-
tion. Combinations of NAT behaviors mandated by RFC 4787 are identified by the label BEHAVE in the table’s
legend.

1. pa sends two consecutive messages:

• from some va to z through na

• from va to udum
b , an arbitrary endpoint of nb

2. na creates the following two rules:

• r ′
a = (va ↔ u′

a) and forwards to z.

• ra = (va ↔ ua) and forwards to udum
b . Actually, the whole point of sending

udum
b is to open ua by sending to nb but be able to predict it at z.

3. The messages are received as follows:

a) z receives and consequently knows u′
a and additionally predicts ua = u′

a +∆
where ∆ is known during the discovery process.

b) nb drops the message since no endpoint udum
b was ever bound.

4. z informs pb about ua (Out-of-Band).

5. Steps 5−9 follow the same scheme as in simple hole punching.

Port scanning.The process is susceptible to failure if another peer p ′
a happens by

coincidence to send a packet between the two consecutive packets. For that, a tech-
nique called port scanning [6] is used such that when pb tries to connect to ua , pb will
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try ua +∆,ua +2∆,ua +3∆, etc.. until a reply is received. Some gateways might identify
this as a malicious UDP port scan and block it as is the case in some corporate fire-
walls. Port scanning might be used only when pb connecting to pa where a(na) = PC
has m(nb) < PD , as shown by[6].

5.7.2 Prediction using Preservation (PRP)
Another technique is to exploit the port-preservation allocation policy. However, to do
that, we assume that when a peer with port-preservation policy registers at z, the peer
supplies a pool of free candidate ports to z. The main point here is to avoid conflicts with
ports of other peers behind the same NAT. The rendez-vous server z is stateful regarding
which ports are bound by each NAT and chooses from the pool of the ports supplied by
the peer a port which is not already bound.

1. z chooses some arbitrary port ρ and tells pa (Out-of-Band) to bind ρ

2. pa sends from va where p(va) = ρ to udum
b through na .

3. na creates a new rule ra = (va ↔ ua)udum
b and forwards to udum

b and since a(pa) =
PP, p(ua) = p(va) = ρ.

4. z informs pb about ua (Out-of-Band).

5. Steps 5-9 follow the same scheme as in SHP.

Note that the process is shorter than prediction by contiguity and z chooses the port
for the peer behind NAT instead of the NAT of the peer deciding it and z observing it.
However, for the sake of reasoning, the two are equivalent because what matters is what
happens after the opposite peer learns about the punched port irrespective of how the
port was predicted.

5.7.3 Prediction-on-a-Single-Side Feasibility
Theorem 5.7.1. Prediction using contiguity or preservation on a single side is feasible for
establishing direct communication between two peers pa and pb respectively behind na

and nb if:

• Condition 1: ∃nx ∈ {na ,nb} s.th. a(nx ) < RD and f (nx ) < PD

• Condition 2: Either m(nx ) < PD or m(nx ) = PD and f (nx′ 6=x ) < PD.

Proof. Similar to theorem 5.6.1, we start with the most restrictive policies and we re-
lax until prediction is feasible. The allocation policy of the side to be predicted (na in
Section 5.7.2,5.7.1) can not be random, because the whole idea of prediction relies on a
predictable allocation policy, thus the needed relaxation is a(na) < RD.

In both prediction techniques, the dummy packet from pa punches a hole by send-
ing to pb , in contrast to SHP which punches by sending to z. nevertheless, it is sent to a
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dummy port of pb . After steps 5, 6:

ra =
(

va
f :ua←udum

b←−−−−−−−−→
m:va→udum

p

ua

)
,rb =

(
vb

f :ub←ua←−−−−−−→
m:vb→ua

ub

)

In step 7: ra

ub 6=udum
b6⇐= ←−−−−ub ,ua , we have to relax the filtering at pa to indulge the port

difference from ub , but we tolerate host sensitivity. The needed relaxation is: f (na) < PD

resulting into:

ra =
(

va
f :ua←(nb ,∗)←−−−−−−−−→
m:va→udum

b

ua

)
In step 8: the reasoning about relaxing the mapping on pa or the filtering of pb

is identical to Theorem 5.6.1 except that host-sensitivity is tolerable and thus either
m(na) < PD or is kept m(na) = PD and in that case, the needed relaxation is f (nb) <
PD.

5.7.4 Coverage of PRP & PRC
PRP and PRC together cover another 18% of the combinations. That said, we can say
that PRP is as good as SHP in terms of traversal time and success rate (see Section 5.9),
which means in addition to the cases where PRP on a single side is used in Figure 5.1,
we can also use PRP instead of SHP when the allocation policy is port preservation.

5.8 Interleaved Prediction on Two Sides

. The remaining combinations are these not covered by SHP nor prediction. The final
stretch to go is to do simultaneous prediction on both sides. However, it is a seemingly
tricky deadlock situation because every peer needs to know the port that will be opened
by the other peer without the other peer sending anything. Which we solve as follows.

Interleaved PRP-PRP. In this case actually double prediction is very simple because
the rendez-vouz server can pick a port for each side and instruct the involved peers to
simultaneously bind it and start the communication process.

Interleaved PRP-PRC This case is also easily solvable thanks to preservation. Be-
cause z can inform the peer with a port contiguity allocation policy about the specific
endpoint of the opposite peer. The latter in turn will run a port prediction process using
the obtained endpoint in the second consecutive message.

Interleaved PRC-PRC This one is the trickiest and it needs a small modification in
the way prediction by contiguity is done. The idea is that the two consecutive packets,
the first to z and the second to the opposite peer can not be sent after each other imme-
diately. Instead, both peers are commanded by z to send a packet to z itself. From that,
z deduces the ports that will be opened on each side in the future and sends to both
peers informing them about the opposite peer’s predicted endpoint. Both peers in their
turn send a punching packet to each other. The problem with this scheme is that there
is more time between the consecutive packets which makes it more susceptible to the
possibility of another peer behind any of the NATs sending a packet in in between. Like
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Figure 5.2: Distribution of encountered NAT types in τ as (m, f ,a)

the case in single PRC, port scanning is the only resort, but in general this combination
has lower success rate compared to single PRC (see Section5.9).

For our reasoning, we will work on the last one (PRC-PRC), since it is a general harder
case of the first two.

5.8.1 Traversal Process

1. z tells pa & pb to start prediction (Out-of-Band)

2. pa & pb both send to z through na & nb respectively resulting in the new rules
r ′

a = (va ↔ u′
a),r ′

b = (vb ↔ u′
b)

3. z receives from pa & pb , observing u′
a & u′

b and deducing ua = u′
a+∆& ub = u′

b+∆

4. z informs pa & pb about ub & ua respectively (Out-of-Band)

5. pa sends to ub through na and pb sends to ua through nb

6. nb receives and forwards to vb and na receives and forwards to va

A race condition where step 6 for one of the peers happens before the opposite peer
starts to run step 5 can take place resulting into a packet drop. However, the dropped
packet opens the hole for the opposite peer, and retrying sending is enough to take care
of this issue.
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Mapping EI HD PD

80.21% 0% 19.79%
Filtering EI HD PD

13.54% 17.45% 69.01%
Allocation PP PC RD

54.69% 23.7% 21.61%

Table 5.1: Distribution of encountered NAT policies

5.8.2 Interleaved Prediction Feasibility
Theorem 5.8.1. Interleaved Prediction is feasible for establishing direct communication
between two peers pa and pb respectively behind na and nb if both a(nb) and a(nb) are
< RD

Proof. Similar to theorem 5.6.1, we start with the most restrictive policies and we re-
lax until prediction is feasible. Since we need to predict both sides we need a(na) <
RD & a(nb) < RD. After step 5 in Section 5.8.1, we have:

ra =
(

va
f :ua←ub←−−−−−−→

m:va→ub
ua

)
,rb =

(
vb

f :ub←ua←−−−−−−→
m:vb→ua

ub

)
In step 6, we have ra ⇐←−−−−ua ,ub and rb ⇐←−−−−ub ,ua without the need for any relaxations on
the filtering nor the mapping of either sides.

5.8.3 Interleaved Prediction Coverage
The interleaved prediction covers another 11.9% of the combinations, namely the ones
shown in Figure 5.1 leaving 20.6% of the cases untraversable. That is, approximately
79.4% of all NAT type combinations are traversable and for each combination, we know
which technique to use. The more important thing is that not all of them have the same
likelihood of being encountered which we discuss in the next section. That said, it worth
mentioning that there is a technique in [9] which performs a brute-force search on all
possible ports after reducing the search space using the birthday paradox, which we
ignored due to low success probability, high traffic and long time requirements.

5.9 Evaluation

Apart from the reasoning above, we have done a sanity check on our logic using our
emulation platform [10]. That is, we wrote our own NAT boxes, which behave according
to the semantics defined in Section 5.3. We also implemented the Rendez-Vous server
and the nodes that are capable of performing all the traversal techniques in Section 5.5.
For each case in Figure 5.1, we ran the suggested traversal technique and we made sure
direct communication is indeed achievable. Real-life evaluation was needed to gain
insights on other aspects like probability of encountering a given type, success rates of
traversal techniques and time needed for the traversal process to complete.
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Figure 5.3: Success rate of each technique averaged over all applicable combinations.

5.9.1 Distribution of Types
We wanted to know how likely is it to encounter each of the types in τ. We have col-
lected cumulative results for peers who have joined our network over time. As shown
in Figure 5.2: i ) we encountered 13 out of the 27 possible types; i i ) we found that
(m = EI, f = PD, a = PP) is a rather popular type (approx. 37%) of all encountered types,
which is fortunate because port preservation is quite friendly to deal with and it is with
a very relaxed mapping; i i i ) about 11% are the worst kind to encounter, because when
two peers of this type need to talk, interleaved prediction is needed with a shaky success
probability.

5.9.2 Adoption of BEHAVE RFC
By looking at each policy alone, we can see to what extent the recommendations of the
BEHAVE RFC [8] ( f = EI/HD,m = EI) are adopted. As shown in Table 5.1, for filtering, the
majority are adopting the policy discouraged by the RFC, while for mapping the ma-
jority were following the recommendation. For allocation, the RFC did not make any
specific relevant recommendation. The percentage of NATs following both recommen-
dations was 30%.

5.9.3 Success Rate
Given the set of peers present in the network at one point in time, we conduct a connec-
tivity test where all peers try to connect to each other. We group the result by traversal
techniques, e.g. SHP is applicable for 186 combinations, so we average the success rate
over all combinations and the whole process is repeated a number of times, we have
found (Figure 5.3) as expected that SHP is rather dependable as it succeeds 96% of the
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Figure 5.4: Time taken (in msec) for the traversal process to complete.

time. We also found that PRP is as good as SHP, which is quite positive given that we
found that the probability of occurrence of preservation is quite high in the last section.
Interleaved PRP-PRP is also rather good with slightly worse success rate. The three re-
maining techniques involving PRC in a way or the other are causing the success rate
to drop significantly especially for PRC-PRC mainly because of the additional delay for
interleaving.

5.9.4 Time to traverse
When it comes to the time needed for the traversal process to complete (Figure 5.4), we
find two main classes, SHP and PRP in one class and PRC in another class, even when
we do PRC-PRP, it is faster than PRC alone because the number of messages is less.

5.10 Conclusion & Future Work

In this paper, we have presented our experience with trying to find a comprehensive
analysis of what combinations of NAT types are traversable. We have shown that using
a semi-formal reasoning that covers all cases and we provided a slightly augmented ver-
sions of the well-known traversal techniques and shown which ones are applicable for
which combinations.We have shown that about 80% of all possible combinations are
traversable.

Using our deployment base for P2P live streaming, we have shown that only 50% fo
all possible types are encounterable. We have also reported our findings on the success
probability and time of traversing the different combinations.

For future work: a) Modeling: we would like to enrich the model to make it capture
real-life aspects like expiration of NAT rules, multiple levels of NAT, subtleties of con-
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flicts between many peers behind the same NAT, NATs that use different policies in dif-
ferent situations, and support for uPnP and TCP; b) Real-life Evaluation: more insight
into the trade-off between success probability and timing, preventing the techniques
as being identified as malicious actions in some corporate firewalls; c) Dissemination:
releasing our library and simulator as open-source for third-party improvement and
evaluation.
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Abstract

This paper presents the design and implementation of the Dynamic Transport
Library (DTL), a UDP-based reliable transport library, initially designed for - but not
limited to - peer-to-peer applications. DTL combines many features not simultane-
ously offered by any other transport library including: i ) Wide scope of congestion
control levels starting from less-than-best-effort to high-priority, i i ) Prioritization
of traffic relative to other non-DTL traffic, i i i ) Prioritization of traffic between DTL
connections, i v) NAT-friendliness, v) Portability, and vi ) Application level imple-
mentation. Moreover, DTL has a novel feature, namely, the ability to change the level
of aggressiveness of a certain connection at run-time. All the features of the DTL
were validated using a controlled environment as well as the Planet Lab testbed.

6.1 Introduction

Looking at the rich and diverse requirements of applications in a quickly emerging field
like P2P computing, we find that these needs have driven innovation in Internet trans-
port protocols. In the past few years, it has been more and more common that a P2P ap-
plication develops its own congestion control algorithm, because using out-of-the box
TCP congestion control did not suffice. To name a few examples, for a voice and video
conferencing application like Skype, a steady low-jitter flow of packets is required. On
top of that, due to its real-time nature, Skype traffic must benefit from higher priority
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with respect to any other application’s transfer. Thus, Skype developed an application-
level proprietary congestion control algorithm [1] known to be very aggressive towards
other applications. On the other end of the spectrum, a content distribution applica-
tion like Bittorrent, started initially by using TCP but then switched to LEDBAT, in order
to be polite as much as possible towards other applications, while saturating the link
capacity. Politeness was critical to eliminate the reputation of Bittorrent as a protocol
which totally hogs the bandwidth and makes all other applications starve. Between ex-
treme politeness and aggressiveness, many other applications can settle for traditional
fair contention over the bandwidth.

The collective state-of-the-art in congestion control algorithms has already addressed
most of the diverse needs of P2P applications. The serious shortcoming is the that the
best known techniques are scattered around in different libraries. This makes it rather
hard for anyone developing a new P2P application to benefit from the progress in the
field. This scattering of ideas in addition to some practical and algorithmic issues that
we faced while studying other algorithms like LEDBAT, MulTCP and MulTFRC moti-
vated our work on the DTL transport library. The idea is to have one single library that
can practically serve as single one-stop-shop for any P2P application.

The following is a list of the target requirements that we realize in DTL:
Priority Levels Supported. The library has to support all levels of traffic prioritization
that already exist in the congestion control state-of-the-art.
Inter-Protocol Prioritization. The library has to give control to the application on how
polite or aggressive it wants to be against other applications.
Intra-Protocol Prioritization. The library has to give control to the application on
how polite or aggressive each individual connection is with respect to other connection
within the application. A P2P storage application might need, for instance, to have low-
priority background transfers for backup purposes and high-priority transfer to fetch a
file that has just been shared by another peer.
In addition to that, there are some features that have to be there for practical purposes:
NAT-Friendliness. The library has to be based on UDP. This makes it easier to circum-
vent NAT constraints as UDP NAT traversal procedures are known to be more effective
than TCP ones [2][3].
Application-level implementation. The library has to be implemented in user space,
because for all practical purposes, a kernel-level implementation would hinder any suc-
cessful wide use. A feature lacking from a rather flexible congestion control library like
MulTCP.
Portability. The library shall be available on all platforms, again, that if we want it to be
widely-adopted.
Run-Time Dynamic Prioritization. One final feature which we have not previously
found in any other library is the ability to not only specify different priorities for dif-
ferent connection but to be able to change the priority of a particular connection at
run-time. The need for this feature has arisen, when our team was working on a P2P
video streaming application and we needed to tweak the priority of incoming transfers
to achieve the necessary playback rate; this by progressively increasing the aggressive-
ness towards other traffic in the network. An additional advantage of on-the-fly priority
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tuning is that it prevents disruptions of existing connections and avoids the need of con-
nection re-establishments for transitioning from one priority level to the other or from
a congestion control algorithm to the other. In fact, it is known that connection estab-
lishments procedures are usually very costly, on the order of several seconds [2], due to
expensive peer-to-peer NAT Traversal and authentication procedures.
Finally, the library should support TCP-like reliability and flow control for ease of use.

In this paper, we present how we achieved meeting all aforementioned requirements
in the software we call Dynamic Transport Library or DTL. The paper is organized as
follows: in Section 6.2 we present the state of the art which constitutes the starting point
of our effort. With respect to that, we detail the contribution of our work in Section
6.3. In Section 6.4 we explain the design and implementation of the library, while in
Section 6.5, we present our library’s evaluation results. We then conclude with some
final considerations and future work in Section 6.6.

6.2 Related Work

LEDBAT is widely accepted as an effective solution to provide a less-than-best-effort
data transfer service. Initially implemented in the µTorrent BitTorrent client and now
separately under discussion as an IETF draft [4], LEDBAT is a delay-based congestion
control mechanism which aims at saturating the bottleneck link while throttling back
transfers in the presence of flows created by other applications, such as games or VoIP
applications. The yielding procedure is engineered to avoid disruptions to other traf-
fic in the network, and it is based on the assumption that growing one-way delays are
symptoms of network congestion. With respect to classical TCP, this allows for earlier
congestion detection. LEDBAT was inspired by previous efforts like TCP-Nice [5] and
TCP-LP [6] which are based on the same idea.

Our initial goal was to test LEDBAT for background data transfers and later try to
tweak its parameters to obtain increased aggressiveness and thus higher transfer pri-
ority. Although positively impressed by the ability of LEDBAT to minimize the latency
introduced on the network, we found out that tweaking gain and target delay metrics
does not lead to a corresponding degree of aggressiveness, as also stated by [7]. As a
consequence, we started to investigate other possible solutions for obtaining tunable
aggressiveness transfers. MulTCP [8] provides a mechanism for changing the increment
and decrement parameters of the normal TCP’s AIMD [9] algorithm to emulate the be-
havior of a fixed number N of TCP flows in a single transfer. The idea of multiple flow
virtualization is very promising, however the protocol has been experimented only as
a kernel module and it is unclear how an application-level implementation would per-
form.

MulTFRC [10] extends a previous protocol called TCP Friendly Rate Control (TFRC)
[11] to achieve variable transfer aggressiveness. The core idea of TFRC is to achieve
TCP-friendliness by explicitly calculating an equation which approximates the steady-
state throughput of TCP. MulTFRC modifies the TFRC congestion equation, resulting
in a tunable version of the rate control which emulates the behavior of N TFRC flows
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Inter-protocol pri-
oritization

Intra-protocol
prioritization

Application
level

Portable NAT-
friendly

Runtime
Dynamic

Tuning
LEDBAT L-T-B-E X UDP
MulTCP L-H, CONT X TCP
MulTFRC L-H, CONT X X UDP
DTL L-T-B-E & L-H,

CONT
X X X UDP X

Table 6.1: Comparison between protocols. L.T.B.E. = Less-Than-Best-Effort, CONT = Continuous Range, L-H.
= Low to High

while maintaining a smooth sending rate. It has been shown that MulTFRC gives better
bandwidth utilization than other protocols, such as the Coordination Protocol (CP), by
better approximating the steady-state throughput of N virtualized TCP flows [10]. MulT-
FRC differs from MulTCP in the way that it provides a smoother sending rate, making
it particularly suitable for multimedia applications. Unfortunately, MulTFRC does not
allow for the runtime modification of the N parameter and thus, it is not suitable for our
goals [12].

Since MulTCP and MulTFRC are both packet-based congestion control algorithms,
if configured to simulate less than one TCP flow, they are likely to be more aggressive
than other less-than best effort alternatives. For simulating multiple flows instead, both
MulTCP and MulTFRC perform reasonably well with values up to N = 10, but only MulT-
FRC increases linearly for higher values, as mentioned in [10].

6.3 Contribution

In this paper, we present the design and implementation of an application-level library
which provides TCP-like reliability and flow control while implementing variable and
configurable on-the-fly traffic prioritization through different congestion control tech-
niques. To the best of our knowledge, this library is first of its kind given the aforemen-
tioned characteristics.

The library implements two state of the art congestion controls algorithms: LEDBAT
and MulTCP. The two mechanisms have been combined to achieve traffic prioritization
which cover a range of levels which start from less-than-best-effort, where transfers to-
tally yield to other traffic, up to high, where transfers try to reclaim bandwidth from
both other intra- and extra-protocol transfers. The priority level can be adjusted using
a unique configurable parameter named pr i or i t y . The parameter can be changed at
runtime without causing the flow of data to be disrupted and without the need of con-
nection re-establishments. For presentation’s purpose, the traffic levels are classified in
two operational modes, according to which congestion control algorithm is used:

Mode =
{

Pol i te, if pr i or i t y = 0(LEDB AT )

V ar i able, if pr i or i t y > 0(MU LTC P )
(6.1)

As a further contribution, the library is implemented in Java as an attempt to make the
software portable between different platforms. We are unaware of any other effort to



6.4. DYNAMIC TRANSPORT LIBRARY (DTL) 119

fully implement LEDBAT, MulTCP or any relevant congestion control mechanism for
that matter on an application-level library in Java. A feature-wise comparison of the
state-of-the art against DTL is shown in Table 6.1.

6.4 Dynamic Transport Library (DTL)

We implemented DTL using Java NIO over UDP. We drew inspiration for its design from
TCP with SACK (Selective Acknowledgment Options). For this reason, we provide an
application level TCP-like header in order to enable reliability, congestion control and
flow control over UDP in the same way TCP does. In our implementation, the header is
appended to each datagram together with the data to be transmitted, and it is encod-
ed/decoded by the sender and receiver modules at the respective ends of the connec-
tion. The base header carries the receiver’s advertised window, the sequence number
and the acknowledge number. The packet size is dynamically chosen. By default, DTL
uses large packet sizes of 1500 bytes, while at slow rates the size can be adjusted down
to 300 bytes.

The sender’s module which initiates a transfer maintains three variables: (1) the
congestion window cwnd , meant as a sender-side limit, (2) the receiver’s advertised
window, as receiver-side limit, and(3) the slow start threshold.

End-to-end flow control, used to avoid the sender transmitting data too quickly to a
possible slow receiver, is obtained using a sliding window buffer. In every acknowledge-
ment packet, the receiver advertises its receive window as the amount of data that it is
able to buffer for the current connection. At each point in time, the sender is allowed to
transmit only a number of bytes defined as follows:

al lowed = mi n(r cv_wi n,cwnd)− i n f l i g ht (6.2)

where r cv_wi n is the advertised receive window, i n f l i g ht is the amount of data in
transit on the network and not yet acknowledged, while cwnd is the congestion window
size.

Reliability is ensured by tagging each packet with a sequence number which corre-
sponds to the the amount of bytes sent up to that point in time. Using the sequence
number, the receiver is able to understand the ordering of packets and identify losses.
For each received packet, the receiver sends back an acknowledgement(ack) with the
amount of bytes it has received up till that point. The sender can detect packet loss in
two ways: when a packet times out, or when the receiver notifies the sender with a spe-
cial format’s selective acknowledgement. The packet timeout value is correlated with
the estimated RTT. The latter is updated the same way TCP does: using the Karn/Par-
tridge algorithm [13].

The Selective Acknowledgement is generated by the receiver after more than three
out-of-order packets, and contains the information about all successfully received seg-
ments. Consequently, the sender can retransmit only the segments which have actually
been lost. The library’s behaviour in case of packet loss or ack reception is defined at
the server-side by the chosen congestion control mechanism.
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This is because, while in our library flow control and reliability designs are both di-
rectly derived from TCP, we provided a different implementation of congestion control
according to the transfer prioritization policy which needs to be enforced.

In general terms, in order to control the aggressiveness of the flow, we provide the
applications with priority parameter for each socket, intended as a positive floating
point number. The correlation between the priority parameter and the service mode
has been previously defined in Equation 6.1.

In the poli te mode, we make use of the LEDBAT algorithm. In the var i abl e mode
instead, we provide our implementation of MulTCP, parametrized with a priority value
corresponding to the number N == pr i or i t y of flows to virtualize. The choice of MulTCP
is motivated by the fact that, while MulTFRC might provide a small improvement in
transfer stability and bandwidth utilization [12], the number of virtualized flows cannot
be changed at runtime. In the following two sections, we will detail our implementation
of both poli te and var i abl e modes, describing the implementation of the congestion
control algorithms.

6.4.1 Polite Mode
Although LEDBAT is not the only congestion control providing less-than-best-effort
transfers, it is the only one which actually tries to control the latency introduced on the
network by the transfer itself. Other similar algorithms, like TCP-Nice [5] and TCP-LP [6]
use the increasing delay as an indicator of imminent congestion as LEDBAT does, but
they try to react in a more conservative manner, or simply by backing off earlier than
TCP. LEDBAT instead opts to keep the delay under a certain threshold, reason for which
it is able to achieve a yielding factor that is higher than other congestion controls, as
explained in [7].

Since the main congestion indicator in LEDBAT is the one-way delay variation, in
order to react earlier than TCP to congestion events, we added a timestamp and delay
header fields to compute its value. For every packet sent, the sender appends to the
packet its own timestamp, while the receiver sends back an acknowledgement contain-
ing that same timestamp (used also for better RTT estimation) and the measured one-
way delay. The sender’s congestion control module maintains a list of the minimum
one-way delays observed every minute in a B ASE_H I ST ORY queue. The smallest de-
lay Dmi n is used to infer the amount of delay due to queuing, as we assume it represents
the physical delay of the connection before any congestion happened. The mechanism
of using only "recent" measurements, letting the old ones expire, results in a faster re-
sponse to changes in the base delay. Consequently it also allows to correct possible
errors in the measurements caused by clock skewness between sender and receiver.
The last measured one-way delays are stored in a NOI SE_F I LT ER queue. The lowest
value in the queue is used to compute the queuing delay. In our implementation, the
B ASE_H I ST ORY memory time is set to 13 minutes while the NOI SE_F I LT ER queue
contains the 3 last measured delays.

The key element in the LEDBAT congestion control algorithm lies in comparing the
estimated queuing delay against a fixed target delay value τ, considered as the maxi-
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mum amount of delay that a flow is allowed to introduce in the queue of the bottleneck
buffer. The difference ∆(t ) between the queuing delay and the target is used to pro-
portionally increase or decrease the congestion window. The original LEDBAT linear
controller is defined as follows:

∆(t ) = τ− (D(t )−Dmi n) (6.3)

cwnd(t +1) = cwnd(t )+γ∆(t )/cwnd(t ) (6.4)

where γ is the gain factor. The controller has a behavior similar to TCP in the way it
reacts to a packet loss by halving the congestion window.

In our implementation, we set γ= 1/T ARGET , so that the max ramp-up rate is the
same of TCP, and τ = 100ms, as specified in the BitTorrent’s open source µTP imple-
mentation and later confirmed in the second version of the LEDBAT Internet draft (July
2010).

A first implementation of the standard LEDBAT linear controller confirmed the pres-
ence of intra-protocol fairness issues, known as the late-comer advantage. Primary
causes of the problem are base delay measurement errors and a wrong window decre-
ment policy. In order to overcome this issue we implemented the solution proposed
by Rossi et al. [14], i.e. applying the TCP slow-start mechanism to the very beginning
of LEDBAT flows. Slow-start forces a loss in the other connections active on the same
bottleneck, thus allowing the new-coming flow to measure a correct base delay.

From our experiments however, we found out that even using the slow-start mecha-
nism, slight differences in the base delay measurements might lead to significant unfair-
ness among transfers. We identified the problem to be in the Additive Increase/Additive
Decrease (AIAD) mechanism. Referring to the work of Chiu et Al.[15], we implemented a
a simple Additive Increase/Multiplicative Decrease (AIMD) algorithm instead, which is
proven to guarantee stability. As a result, we modified the original Equation 6.4 in such
a way that, if the estimated queuing delay exceeds the t au value, the cwnd shrinks by a
β< 1 factor, as described here:

cwnd(t +1) =
{

cwnd(t )+γ∆(t )/cwnd(t ) if ∆(t ) >= 0

cwnd(t )×β if ∆(t ) < 0
(6.5)

With this modification, the decrement of the congestion window is caused by the
queuing delay reaching a higher value than the target. The decrement also becomes
proportional to the sending rate itself. Flows with higher sending rate will then decrease
more than others. In our implementation, we used a β factor of 0.99 as found in other
implementations [16].

The validity of our considerations has been confirmed by an independent study [16],
in which the authors analytically prove that the additive-decrease component in the
LEDBAT linear controller makes the system unfair, causing transfers to fall out of Lya-
punov stability. In the same study, two solutions are proposed for this problem: the first,
more conservative, consists of adding a probabilistic drop to the additive increase/de-
crease dynamics. The other, more aggressive, directly replaces the additive decrease
with a multiplicative one, thus confirming our finding.
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6.4.2 Variable Mode
We implemented our variable mode transfer priority using the MulTCP algorithm. MulTCP
[8] congestion control mechanism allows for a single flow to behave like an aggregate of
N concurrent TCP connections, in particular from the point of view of the throughput.

The congestion control module is implemented on top of the normal TCP SACK al-
gorithm using the priority value as number of virtual flows N which one transfer must
virtualize. MulTCP simply provides the a and b parameters in the additive-increase/
multiplicative-decrease (AIMD) algorithm which are proportional to the number of flows
to emulate. MulTCP tries to closely emulate the behavior of TCP in all of its phases, so
that in both slow start and congestion avoidance, the congestion window grows as N
TCP flows would. In order to avoid sending large bursts of packets if N is too large, caus-
ing packet losses, we also implemented the smooth slow start algorithm introduced in
[8].

As a further improvement to the original MulTCP algorithm, we implemented the
MulTCP2 algorithm modification proposed by Nabeshima et al. [17]. The mechanism
makes it possible, in case of packet loss, to achieve a better virtualized behavior than
the original MutlTCP specification, considered to be too aggressive. Here we report the
suggested equation implemented in our library.

First, the steady-state average congestion window of N flows is calculated as follows:

cwndN = N × cwndstd = N
p

1.5p
p

(6.6)

where p is the packet loss rate. Then we derive the cwnd in function of a, AIMD’s in-
crease parameter, and b, AIMD decrease parameter:

cwnd =
p

a(2−b)√
2bp

(6.7)

Finally b is derived from equations 6.6 and 6.7 as:

b = 2a

a +3N 2 (6.8)

We then set a to be N , the number of virtualized flows, which is also equal to our
pr i or i t y parameter, and b = 2/(1+3N ).

It’s easy to observe that, for a = 1, the parameters of the AIMD algorithm are exactly
the same of the standard TCP.

6.5 Evaluation

In this chapter, we report the results gathered using DTL. Our evaluation methodology
is the same used for studies conducted on the LEDBAT protocol such as [14].

We performed our tests in two different configurations:
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• a controlled network environment consisting of three host machines using Ubuntu
with kernel 2.6.32-22, two as traffic sources and one as traffic sink, connected by
a Gigabit links. In order to emulate bottleneck network conditions, we used the
Dummynet traffic shaper [18]. We created two pipes with RED queue and stan-
dard periodic loss, the first with symmetric capacity of C = 1Mbps for the low-
bandwidth scenario, and one with symmetric capacity of C = 10Mbps, for the
high-bandwidth scenario. Both of them are configured with a delay of 20ms. This
is a common configuration setup used by other related works [10][8].

• a real-world environment using the PlanetLab testbed. The experiments are per-
formed using the same configuration of the controlled case, i.e. two hosts, in this
case PlanetLab machines, as traffic sources and one as traffic sink. Only non-
congested nodes with a symmetric capacity of C = 10Mbps are chosen to host
the experiment.

As metrics to evaluate the performance of the DTL, we adopted:

1. the notion of fairness introduced by Jain’s fairness index F [15], defined as:

F = (
∑N

i=1 Xi )2

N ·∑N
i=1 X 2

i

(6.9)

where xi is the rate of flow i and N is the number of flows sharing the bottleneck.
Notice that, when N flows get the same bottleneck share, fairness is equal to 1,
while it decreases to 1/N in the unfair case, where a single flow overtakes the other
transfers and uses all available capacity.

2. the efficiency or link utilization η, defined as the ratio of the total link utilization
normalized over the available bandwidth.

3. the normalized throughput, when comparing the total throughput of multiple
parallel flows.

We identify flows with dynamic priority over time as DTL(0,1,2), where 0,1 and 2 are
the priority values at different point in time in the experiment.

6.5.1 Polite Mode results
Early results of our initial implementation of LEDBAT, following the draft specification,
with the slow start option enabled, immediately showed three fundamental character-
istics:

• Capacity of the congestion control algorithm of exploiting all the available bottle-
neck resources, keeping the one-way delay around the queuing delay target and
yielding to TCP flows.

• Fairness in sharing available bandwidth in case of multiple flows starting at the
same point in time.
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Figure 6.1: Comparison of Polite Mode intra-protocol fairness with AIAD (a) as opposed to with AIMD (b)

• Unfairness in sharing available bandwidth when flows start at different point in
time, even when using the slow start mechanism.

Figure 6.1 shows a comparison of two intra-protocol examples. The first run (a) is
executed using the original algorithm with slow-start, while the second (b) using the
modified algorithm with multiplicative-decrease. The results have been obtained using
the first test configuration. As shown, the original linear controller is not able to timely
compensate the initial small error in the base-delay measurements, while the introduc-
tion of the non-linear decrease seems to efficiently solve the issue. We would like to
underline that, from our experiments, both techniques, i.e. slow start and multiplica-
tive decrease, should be used to guarantee intra-protocol fairness as shown on Figure
6.1(b). As opposed to another previous which claims that implementing multiplicative-
decrease is enough to provide such behavior.

In Figure 6.2 we plotted the temporal evolution of the throughput of ten DTL flows
with pr i or i t y = 0 (DTL0), starting 5 seconds after each others with a duration of 300
seconds. The test was executed on PlanetLab. The low priority flows perfectly share the
bottleneck using all the available resources.

We present in Figure 6.3 the temporal evolution of two polite flows (DTL0) and two
TCP flows on the PlanetLab configuration. The two DTL0 flows, one started at t = 0 and
the other at t = 60, equally share the available bandwidth, then yield to a TCP flow at
t = 120, and again fill up the bottleneck link when the TCP flows, the second one having
joined at t = 180, terminate at t = 240.

Finally, we examine the impact of the Multiplicative-decrease modification in terms
of efficiency η, fairness F and loss rate L. We considered two low-priority flows starting
at different points in time. Both flows share a common bottleneck both in low and high
bandwidth configuration. Each simulation lasted 300 seconds. In Table 6.2, we report
the average of multiple simulation runs executed at different point in time. The results
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Figure 6.2: Temporal evolution of the throughput of 10 DTL 0 flows on the path planetlab1.sics.se -
planet2.zib.de
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Figure 6.3: Temporal evolution of the throughput of two DTL flows pr i or i t y = 0 (fixed) and two TCP flows
on the Planetlab testing configuration

refer to the time interval where both flows are active at the same time. The gathered re-
sults clearly demonstrate the positive effect of the multiplicative-decrease modification
on the intra-protocol fairness in both bottleneck configurations. As shown, the modifi-
cation does not affect bandwidth usage and it causes significantly less packet loss.

6.5.2 Variable Mode results
For pr i or i t y parameter values greater than zero, the congestion control switches to
the MulTCP algorithm, which uses packet loss as congestion detection rather than in-
creased delay as in LEDBAT. In Figure 6.4(a), we present the normalized throughput
value of one DTL flow parametrized with different priorities, ranging from 1 to 6, against
nine TCP flows. In the experiment, all ten flows share a bottleneck link of capacity
C = 10Mbi t s. As shown, the DTL flow reaches a throughput value of about pr i or i t y
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C η F L
Mbi t [%] µ σ µ σ

No multiplicative decrease
1 99 5.9 ·10−1 1.01 ·10−1 1.8 ·10−2 5.03 ·10−3

10 98 6.68 ·10−1 1.87 ·10−1 1.68 ·10−2 6.20 ·10−3

With multiplicative decrease
1 98 9.88 ·10−1 1.03 ·10−2 5.4 ·10−3 1.2 ·10−4

10 98 9.92 ·10−1 4.90 ·10−3 8.08 ·10−3 7.60 ·10−5

Table 6.2: Polite mode pr i or i t y = 0 (fixed): results showing the Link utilization average η, together with the
observed Fairness F and packet Loss Rate L, both considering their mean µ and standard deviation σ values
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Figure 6.4: Plot of the relative Throughput (a) and the Intra-protocol Fairness (b) as a function of pr i or i t y

times the one of a single TCP flow up to pr i or i t y value of 4, which leads to the best
trade-off in terms of throughput. This effectively means that, for pr i or i t y = 4, the DTL
flow appears as 4 TCP flows combined, leaving to each of the other nine TCP flows a
share of 1/13 of the bandwidth. However, for values of pr i or i t y greater than 4, the link
gets congested and no more improvements are possible due to the high rate of packet
loss. In Figure 6.4(b) instead, we compare the normalized throughput of one DTL flow
with respect to another DTL flow of same pr i or i t y , for values of pr i or i t y ranging
from 1 to 4. This in order to show how the intra-protocol fairness is maintained for all
priorities, as the normalized throughput remains 1.0 for all pr i or i t y parameters.

Figure 6.5 presents the same PlanetLab test scenario as in Figure 6.3, but this time
setting pr i or i t y = 1. As expected, the DTL flows share in a fair manner the bandwidth
resources with the two new-coming TCP flows.

Similarly to the polite mode, we decided to examine with more accuracy the DTL be-
havior for pr i or i t y = 1 in terms of efficiencyη, fairness F and Nor mal i zed T hr oug hput .
We considered two DTL1 flows for the intra-protocol configuration, and a single DTL1
flow against a TCP flow for the inter-protocol one. Each simulation has a duration of
300 seconds. In Table 6.3, we report the average and standard deviation of multiple
runs. The results confirm the ability of DTL1 to correctly share the bandwidth capac-
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Figure 6.5: Temporal evolution of the throughput of two DTL flows pr i or i t y = 1 (fixed) and two TCP flows
on the Planetlab testing configuration

C η F Nor mal i zed T hr oug hput
Mbi t [%] µ σ µ σ

Intra-protocol
1 97 9.93 ·10−1 3.7 ·10−3 9.92 ·10−1 8.56 ·10−2

10 98 9.96 ·10−1 9.3 ·10−4 9.84 ·10−1 2.3 ·10−2

Inter-protocol
1 97 9.83 ·10−1 3.5 ·10−3 9.84 ·10−1 4.47 ·10−2

10 98 9.52 ·10−1 8.6 ·10−3 9.85 ·10−1 2.15 ·10−2

Table 6.3: Variable mode pr i or i t y = 1(fixed): results showing the Link utilization average η, together with
the observed Fairness F and Nor mal i zed T hr oug hput

ity with other TCP flows competing on the same bottleneck under the same conditions,
MTU- and RTT-wise.

We then present an experiment in Figure 6.6, using the first test configuration, where
DTL flow’s priority value changes with time. The simulation lasts 480 seconds, the bot-
tleneck is set to 5Mbit with RTT = 25ms. In order to emphasize the different degrees
of aggressiveness, we introduce a TCP transfer on the same bottleneck. The DTL flow
starts in polite mode and completely yields to the TCP flow until second 240 when its
priority is updated to pr i or i t y = 1, forcing it to switch from LEDBAT to MulTCP. Just
after that point, the DTL flow starts to increase its congestion window and share in a fair
manner the bandwidth with TCP. Finally, at second 360, we increase the priority up to
2. The congestion window grows now twice as fast. However, in case of packet loss, the
same windows is decreased by a value of less than a half, depending on the value of b.
The result is a throughput twice as large as in TCP.

In Figure 6.7, we show a plot, produced in our first configuration, of five DTL flows
with pr i or i t y value which varies in time. At first, all flows start with pr i or i t y = 0, then
at second 120 four of them get updated to pr i or i t y = 1. We can clearly observe that the
four DTL1 flows share the bandwidth equally, while the only DTL0 flow yields to them.
At second 230 two of the flows get upgraded to pr i or i t y = 2 and the others keep their
previous priority value. As a result, the DTL2 flows consume equally more bandwidth
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Figure 6.6: Temporal evolution of the throughput of two dynamic priority DTL(0,1,2) flows which share the
bottleneck link with a TCP flow
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Figure 6.7: Temporal evolution of the throughput of six DTL flows with varying pr i or i t y value

than the other two DTL1 flows, while the DTL0 still yields to all of them. These results
confirm our expectations of multiple priorities intra-protocol fairness.

6.6 Conclusion

In this paper we presented the design and implementation of the DTL application-level
library, which is a reliable, variable priority transfer library developed in the Java lan-
guage, using NIO over UDP. In order to provide different transfer prioritization policies,
we implemented two state-of-the art congestion control control mechanisms: LEDBAT
and MulTCP. We motivated our choices in using the aforementioned algorithms for the
case of configurable priority. As an important achievement, we showed in our results
that the library performs on-the-fly transfer priority changes as required, while avoid-
ing connection termination or transfer rate fluctuations. On top of that, our results
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obtained both using a controlled environment and the Planet Lab testbed show that
the library meets all necessary fairness and throughput requirements under the imple-
mented priority levels.

As future work, we would like to provide a more extensive evaluation of our library in
a deployed peer-to-peer system. We also would like to investigate the possibility of mod-
ifying the MulTFRC algorithm, which provides a more stable approximation of multiple
TCP flows behavior than MultTCP, to support variable priority. We plan to make DTL
available as an open source project in the near future.
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Abstract

State of the art gossip protocols for the Internet are based on the assumption
that connection establishment between peers comes at negligible cost. Our expe-
rience with commercially deployed P2P systems has shown that this cost is much
higher than generally assumed. As such, peer sampling services often cannot pro-
vide fresh samples because the service would require too high a connection estab-
lishment rate. In this paper, we present the wormhole-based peer sampling service
(WPSS). WPSS overcomes the limitations of existing protocols by executing short
random walks over a stable topology and by using shortcuts (wormholes), thus lim-
iting the rate of connection establishments and guaranteeing freshness of samples,
respectively. We show that our approach can decrease the connection establishment
rate by one order of magnitude compared to the state of the art while providing the
same levels of freshness of samples. This, without sacrificing the desirable proper-
ties of a PSS for the Internet, such as robustness to churn and NAT-friendliness. We
support our claims with a thorough measurement study in our deployed commer-
cial system as well as in simulation.
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7.1 Introduction

A peer sampling service (PSS) provides nodes in a distributed system with a uniform
random sample of live nodes from all nodes in the system, where the sample size is
typically much smaller than the system size. PSSes are widely used by peer-to-peer
(P2P) applications to periodically discover new peers in a system and to calculate sys-
tem statistics. A PSS can be implemented as a centralized service [1], using gossip pro-
tocols [2] or random walks [3]. Gossip-based PSSes have been the most widely adopted
solution, as centralized PSSes are expensive to run reliably, and random walks are only
suitable for stable networks, i.e. with very low levels of churn [3].

Classical gossip-based PSSes [2] assume that all nodes can communicate directly
with one another, but these protocols break down on the open Internet [4], where a
large majority of nodes do not support direct connectivity as they reside behind Net-
work Address Translation Gateways (NATs) and firewalls. To overcome this problem, a
new class of NAT-aware gossip-based PSSes have appeared that are able to generate uni-
formly random node samples even for systems with a high percentage of private nodes,
that is, nodes that reside behind a NAT and/or firewall [4, 5, 6].

State of the art NAT-aware gossip protocols, such as Gozar [4] and Croupier [5], re-
quire peers to frequently establish network connections and exchange messages with
public nodes, nodes that support direct connectivity, in order to build a view of the over-
lay network. These designs are based on two assumptions: i) connection establishment
from a private to a public peer comes at negligible cost, and ii) the connection setup
time is short and predictable. However, these assumptions do not hold for many classes
of P2P applications. In particular, in commercial P2P applications such as Spotify [1],
P2P-Skype [7], and Google’s WebRTC [8] establishing a connection is a relatively com-
plex and costly procedure. This is primarily because security is a concern. All new con-
nections require peers to authenticate the other party with a trusted source, typically a
secure server, and to setup an encrypted channel. Another reason is that establishing
a new connection may involve coordination by a helper service, for instance, to work
around connectivity limitations that are not captured by NAT detection algorithms or
that are caused by faulty network configurations. To put this in the perspective of our
P2P live streaming system [9], which we believe is representative of many commercial
P2P systems, all these factors combined produce connection setup times which can
range from few tenths of a second up to a few seconds, depending on network latencies,
congestion, and the complexity of the connection establishment procedure. In addi-
tion to these factors, public nodes are vulnerable to denial-of-service attacks, as there
exists an upper bound on the rate of new connections that peers are able to establish in
a certain period of time.

It is, therefore, preferable in our application to build a PSS over a more stable topol-
ogy than the constantly changing topologies built by continuous gossiping exchanges.
An instance of such a stable topology might be an overlay network where connections
between peers are maintained over time and node degree is kept constant by replacing
failed connections. Random walks (RWs) over such a stable overlay are potentially an
alternative to NAT-resilient gossip protocols. However, we are not aware of any work
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which addresses the problem of random walks over the Internet in presence of NATs.
That said, RW methods over other stable networks that are not the Internet[10] are not
practical in our case because of the high level of churn experienced in P2P systems,
which causes the PSS’ quality of service to degrade by interrupting or delaying the RWs.
Furthermore, RWs are not able to provide fresh-enough samples because a random walk
has to complete a large number of hops (depending on the topology of the network) to
collect or deposit a sample.

In this paper, we present an alternative approach where the PSS creates enough new
connections to ensure the PSS’ quality of service in the face of peer churn, but not too
many as to exceed peers’ upper bounds on connection establishment rate. We call our
system a wormhole-based PSS (WPSS). WPSS can tune the number of new stable net-
work connections established per sample to match application-level requirements and
constraints. We show that our system can provide the same level of freshness of sam-
ples as the state of the art in NAT-aware PSSes [5] but with a connection establishment
rate that is one order of magnitude lower. This, without sacrificing the desirable prop-
erties of a PSS for the Internet, such as robustness to churn, NAT-friendliness and local
randomness of samples.

The main idea behind WPSS is that we separate the service into two layers. The bot-
tom layer consists of a stable base overlay network that should be NAT-friendly, with
private nodes connecting to public nodes, while public nodes connect to one another.
On top of this overlay, every node periodically connects to a random public node se-
lected from the base overlay (not necessarily a neighbor in the base overlay). Using the
random public node, each node systematically places samples of itself on nodes in the
neighborhood of this random public node. We call these links to random public nodes
wormholes. That is, a wormhole is a link to a public node that is selected uniformly and
independently at random. We do not require hole-punching or relaying to private nodes
in this paper, although those techniques can be used as well if there are not enough pub-
lic nodes.

In addition to explaining the WPSS algorithm (Section 7.4), our contributions also
include a analytical comparison between WPSS and related work (Section 7.5), and a
thorough evaluation of the protocol in both simulation and our deployed system (Sec-
tion 7.6). The latter experiments include a comparison with the state of the art NAT-
resilient PSS, Croupier.

7.2 System Model

We model a distributed system as a network of autonomous nodes that exchange mes-
sages and execute the same protocol. Nodes join and leave the system continuously. We
consider large-scale networked systems with limited connectivity, for example, where a
large majority of nodes reside behind NAT devices or firewalls. A public node has a glob-
ally reachable IP address; this includes nodes that use IP addresses allocated by UPnP
Internet Gateway Devices. A private node does not support direct connectivity, typically,
because it is behind a firewall or a NAT.
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Each node discovers its NAT type (public or private) at bootstrap-time and also when
its IP address changes using a NAT-type identification protocol. We also assume that a
bootstrap service provides newly joined nodes with a small number of node descriptors
for live nodes in the system. Each node separately maintains open network connections
to a small, bounded number of randomly selected public nodes in a stable base overlay.
The node degree on the base overlay is kept constant over time by replacing connections
to failed nodes with new ones.

7.3 Background and Related Work

The first generation of peer sampling services were not designed to account for NATs [2,
11, 12]. In recent years, researchers have worked on NAT-aware gossip protocols [13],
and the first NAT-aware PSSes were Nylon [6] and Gozar [4]. They enabled gossiping
with a private node by relaying a message via an existing node in the system that had al-
ready successfully communicated with the private node. Nylon routes packets to a pri-
vate node using routing tables maintained at all nodes in the system. In contrast, Gozar
routes packets to a private node using an existing public node in the system. Gozar does
not require routing tables as the address of a private node includes the addresses of j
public nodes that can act as relays to it. To improve Gozar’s reliability, gossip messages
can be sent to a private node in parallel via its j relays, where j is a system parameter.
Parallelizing relay messages also reduces the latency of gossip messages, but at the cost
of an increase in protocol overhead. Both Nylon and Gozar require that private nodes
refresh their NAT bindings by periodically pinging their neighbors.

Croupier [5] provided an alternative NAT-aware PSS that removed the need for re-
laying gossip messages to private nodes. Instead of routing gossip messages to private
nodes, gossip requests are only sent to public nodes that act as croupiers, shuffling node
descriptors on behalf of both public and private nodes. Public nodes are able to send
response messages through a private node’s NAT, as the shuffle request from the private
node created a NAT binding rule that is subsequently used to forward the response to
the private node. Two similarities between Croupier and WPSS are that nodes need to
know whether they are public or private, and that the stable topology created by WPSS is
similar to the dynamic topology maintained by Croupier, where both private and public
nodes only connect to public nodes. In contrast to WPSS, Croupier provides a decentral-
ized NAT-type identification protocol to discover a node’s NAT type (public or private),
while our system provides an infrastructure-supported service based on [14].

One general difference between gossip-based approaches and WPSS is that a gossip
message combines both the advertisement of the source node’s descriptor as well as
a set of other node descriptors for dissemination [2][11], while WPSS messages only
contain an advertisement of the initiating node’s descriptor, making the message size
somewhat smaller.

PSSes have also been implemented using independent RWs on stable, and even very
slowly changing, dynamic graphs [3]. Intuitively, RWs work by repeatedly injecting ran-
domness at each step until the initiator node is forgotten. RW sampling can be classified
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Figure 7.1: WPSS layered architecture.

as either push-based or pull-based. In push-based RWs, the initiating node advertises
its descriptor as a random sample at the terminating node, where the RW completes.
In pull-based RWs, the final node’s descriptor is advertised as a random sample at the
initiating node. An extension to these methods allows a new direct link (DL) to be cre-
ated by the final node to fetch (pull) or send (push) a fresher sample. Depending on the
network topology, RWs may require a large number of hops over unreliable links with
highly varying latencies before they reach good mixing and complete, thus samples can
be relatively old on arrival at final nodes. Direct links provide more recent samples at
the cost of creating a new network connection. However, on the open Internet, DLs will
not work if the initiator is a private node and there is no support for NAT traversal. To
the best of our knowledge, there has been no previous work on making RW-based PSSes
NAT-aware.

7.4 Wormhole Peer Sampling Service

The core of our idea is that nodes disseminate (push) advertisements of themselves over
a stable base overlay using short walks, that also utilize wormhole links. That is, the node
that initiates the advertisement sends its own descriptor over a small number of hops in
the base overlay and places it at the node where this (typically short) walk terminates.
The short length of the walks guarantees the freshness of the samples. However, to be
able to provide good random samples, despite completing only a relatively few hops,
our advertisements always traverse a wormhole link.

A wormhole link (or wormhole, for short) points to a public node in the system that
is selected independently at random. In our WPSS protocol, every node discovers such
a random public node to act as its wormhole, and every node only has one wormhole
active at any given point in time. The distribution of the wormholes does not need to
be uniform in the system, for example, we restrict the wormholes to be public nodes.
However, all the nodes must sample their wormhole from the same distribution inde-
pendently. This guarantees that for each node it is true that any other node will pick it
as a wormhole with the same probability.

A new network connection will be created only when a wormhole is traversed for
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the first time by an advertisement. The wormhole is then reused for a few subsequent
advertisements from the same initiator node, in which case no new network connection
needs to be established. This makes it possible to decrease the number of new links we
establish.

The very first time an advertisement traverses the wormhole, it can be considered
to have reached a random public node. Thus, the advertisement can now be placed at
the public node as a new sample. However, if the wormhole has already been used, or
the public node already has a sample from the initiator node, then the advertisement
will start a random walk over the base overlay until it either (1) reaches a node that
does not already have a sample from the initiator node or (2) it reaches a given time-
to-live (TTL) that guarantees good quality sampling. Clearly, as a wormhole creates a
link to a public node, advertisements through it will place a sample first at that public
node unless it already has an advertisement from the initiator. However, the reuse of
the wormhole causes advertisements to continue, allowing them to also finish at private
nodes, as private nodes are connected to public nodes over the base overlay.

When a wormhole is reused by a advertisement, the expected number of hops the
advertisement will have to take increases, as it needs to reach a node that does not al-
ready have a sample from the initiator node. To counteract this, new wormholes are cre-
ated. WPSS defines a wormhole renewal period as a parameter for creating new worm-
holes enabling users to control how frequently new network connections will be cre-
ated. If a new wormhole is created for each advertisement, then we get a protocol very
similar to RW-push-DL (see Section 7.5). If wormholes are never updated, the behav-
ior converges to that of RW-push, eventually. In between, there is a range of interesting
protocols some of which—as we will argue—achieve the goals we set.

We illustrate the interaction between the wormholes and the base overlay in Fig-
ure 7.2. In the figure, the bottom layer is the base overlay, while the upper layer shows
the wormhole overlay, containing a single wormhole. The upper layer also shows two
advertisements over the wormhole that follow links in the base overlay to place samples
in the vicinity of the wormhole.

7.4.1 WPSS Architecture
We implemented WPSS in a modular, layered architecture, illustrated in Figure 7.1. WPSS
requires a stable base overlay and a set of wormhole links. It is very important that the
wormhole links are drawn independently from an identical (but not necessarily uni-
form) distribution. Since the random samples generated using wormholes do not guar-
antee inter-node independence, these samples cannot be used to generate new worm-
hole links. So, another PSS is required that provides independent samples of public
nodes. We call this the bootstrap PSS. The bootstrap PSS will have relatively low load,
since wormholes are refreshed rarely, given that WPSS is designed to reduce the number
of new network connections created. For this reason, the bootstrap PSS can be imple-
mented even as a central server. Alternatively, public nodes can generate independent
samples by periodically starting random walks that continue until they reach their TTL.

In our architecture, the base overlay can be any connected overlay, as long as the
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Figure 7.2: The Base Overlay contains stable links between nodes (bottom layer). Wormholes (the thick line
on the upper layer) are created to public nodes. The upper layer also illustrates a private node placing two
advertisements at neighboring nodes to the wormhole.

TTL of the advertisements is set to make sure the random walks are long enough to pro-
vide high quality samples. It is beneficial, however, to maintain a random base overlay
due to its low mixing time [15, 16]. Therefore, we construct a stable undirected overlay
that is random, but where private nodes are connected to a random set of public nodes,
thus avoiding the need for NAT traversal. This results in a stable topology with a low
clustering coefficient, a constant degree for private nodes, and a narrow (roughly bino-
mial) degree distribution for public nodes. This is similar to the topology maintained by
Croupier [5], although Croupier’s topology is dynamic.

The base overlay also needs a PSS in order to replace broken links with new random
neighbors. The samples used to replace random links can be obtained either from the
bootstrap PSS or from WPSS itself, with the choice depending on application require-
ments. For example, with relatively low churn rates the bootstrap PSS might be a better
choice. However, under high churn, when many samples are needed, the cheaper WPSS
samples are preferable despite the lack of inter-node independence that might result in
higher clustering. This potentially higher clustering is not a problem as long as the net-
work maintains good enough mixing properties.

The base overlay service strives to keep the overlay connected by keeping and re-
pairing in case of failures a fixed number of outgoing links. In order to detect failures of
base topology links, we implement a simple failure detector based on timeouts.
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Algorithm 5 Wormhole peer sampling
procedure onWormholeFailure 〈〉

wormhole ← getNewWormhole()
end procedure

procedure onWormholeTimeout 〈〉 . Every ∆wh time units
wormhole ← getNewWormhole()

end procedure

procedure onAdTimeout 〈〉 . Every ∆ time units
ad ← createAd()
hops ← 1
sendAd(wormhole, ad, hops)

end procedure

procedure onReceiveAd 〈ad, hops〉
if hops == getTTL() || acceptAd(ad) then

view.addAd(ad)
else

j ← getMetropolisHastingsNeighbor(baseOverlay)
sendAd(j, ad, hops+1)

end if
end procedure

7.4.2 Wormhole Peer Sampling Skeleton

Algorithm 5 contains the pseudocode of WPSS that implements the ideas described
above. The algorithm contains a number of abstract methods, implementations of which
will be discussed in the subsequent sections. The algorithm is formulated as a set of
event-handlers that are in place on every node in the system. The events in the system
are classified into three types: failures, timeouts and advertisements.

Failure events are generated by detecting failing neighboring nodes in the two topol-
ogy layers in Figure 7.1. We deal with these failure events by picking a new neighbor us-
ing the appropriate PSS through the abstract methods GetNewLink and GetNewWormhole.
Timeout events are generated by two local timers with a tunable period. The periods of
these timers are protocol parameters that are the same at all nodes. One of the timers,
the wormhole timer, has a period of ∆wh . This timer triggers the generation of new
wormholes.

The other timer defines the rate at which advertisements are published by all the
nodes. Clearly, this rate is the same as the average rate of receiving new random sam-
ples, so the period of this timer must be∆ at all nodes. This timer triggers the sending of
one advertisement over the local wormhole. Finally, the event of receiving an advertise-
ment is handled by first checking whether the node is willing to add the given sample to
its set of samples or View (that is, whether it will consume the advertisement).

This check is performed by the AcceptAd method. The AcceptAd method consumes
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an advertisement only if its sample is not already contained in the node’s view, thus
promoting diversity of samples. On top of that, AcceptAd makes sure that every node
consumes advertisements at the same rate, namely one advertisement in each ∆ time
period. We implement this rate control mechanism only at the public nodes; if the ac-
ceptance rate on the public nodes is 1/∆, then private nodes are guaranteed to observe
the same rate on average due to the advertisement generation rate being 1/∆ at all the
nodes. To control the rate, we need to approximate the period of receiving advertise-
ments. To do this, we calculate the running average and the average deviation of the
delays between consecutive acceptance events. If the approximated period, increased
by mean deviation, is higher than∆ then the advertisement is accepted and the approx-
imation of the period is updated. We show later in Section 7.6 that the AcceptAd method
successfully balances advertisements over public and private nodes.

If the node does not consume the advertisement, it sends it on to another node using
the Metropolis-Hastings transition probabilities over the (random, stable) base network
which results in a uniform stationary distribution [17]. Let di denote the degree of node
i , that is, the number of neighbors of node i . Note that the graph is undirected. The
implementation of GetMetropolisHastingsNeighbor works as follows. First, we select a
neighbor j with uniform probability, that is, with probability 1/di . Then, we return j
with probability min(di /d j ,1), otherwise we return node i itself, that is, the advertise-
ment will visit i again.

Note that the node will consume the advertisement also if the TTL of the advertise-
ment is reached, since at that point it can be considered a uniform random sample. The
TTL is returned by GetTTL, that can be implemented in many different ways depending
on the system properties. We simply set a constant TTL in our experiments.

7.5 Analytical comparison

Here, we provide an analytical comparison between related work and WPSS. In order
to do that, we develop a number of metrics and criteria. As a general assumption, we
assume that the considered PSSes provide a continuous stream of random node de-
scriptors at every node in the network. To be more precise, we require each node to
receive one sample every ∆ time units on average, where ∆ is the sampling period.

7.5.1 Metrics of Quality of Service and Cost
The minimum that we assume about any PSS is that the stream of samples at a given
fixed node is unbiased (that is, the samples received by a node are independent of the
node) and that samples are uniform (that is, any fixed individual sample has a uniform
distribution). These properties hold for WPSS. This is almost trivial and can be formally
proven using the facts that WPSS is blind to the content of node descriptors and worm-
holes are random. The technical proof is omitted due to lack of space.

Apart from this, we characterize the quality of service using the properties of fresh-
ness and independence. Freshness is the age of the sample, that is, the delay between
the recording of the sample at the source node and its delivery at the terminating node.
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Quality of service Cost per sample
Algorithm Freshness Indep. # New links Bandwidth
RW-push TTL·δhop yes 0 TTL

RW-push-DL δhop yes 1 TTL+1
RW-pull 2·TTL·δhop yes 0 2·TTL

RW-pull-DL δhop yes 1 TTL+1
gossip healer O(k logk)∆ no 1/k 1

gossip swapper O(k2)∆ no 1/k 1
WPSS h(∆wh/∆)δhop no ∆/∆wh h(∆wh/∆)+∆TTL/∆wh

Table 7.1: Analytical comparison of different PSS implementations.

Obviously, fresher samples are always preferable. Independence is a property of the ran-
dom samples that states whether the stream of samples generated at any two nodes are
statistically independent of one another or not. Independence is not a hard requirement
for many applications. Having unbiased and uniform streams (that are not necessarily
independent) is often sufficient.

We focus now on two costs for the PSSes: bandwidth and link creation rate. Band-
width is the amount of data transferred per received sample. The link creation rate is
the number of new network connections (links) that are created (or in other words, the
number of new network connections established) per sample. This new measure is mo-
tivated by our experience with deployed commercial P2P streaming.

7.5.2 Analysis of Existing PSS Algorithms

In Table 7.1, we summarize the quality of service and costs of the PSS algorithm space
for existing RW and gossiping approaches, where δhop is the average latency for a hop
in a RW. The example given here results in a connection establishment that is tolerable
for our application and good enough level of freshness for samples.

In the case of RW-push, the initiating node’s descriptor will be added to the final
node’s sample set (the node where the RW terminates). In the case of RW-pull, the final
node’s descriptor is added to the sample set of the initiating node. In addition, if the
physical network supports efficient routing then after the RW terminates a new direct
link (DL) can be created by the final node to fetch (push) or send (pull) a fresh sample as
well. Clearly, using direct links one can achieve a higher freshness at the cost of creating
new links.

For the gossip-based protocols, we consider an idealized gossip protocol that has
a view size of 2k, and a gossip period of k∆. This setting makes sure that a node gets
one new sample per sampling period (∆) on average, since, in a typical gossip-based
PSS, nodes refresh half of their views in each round. This is an optimistic assumption,
because k is an upper bound on the independent samples.

We consider the two classical gossip protocols: healer and swapper [2]. Let us pro-
vide a quick intuitive analysis of the freshness for these protocols. In the case of healer,
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fresher descriptors always have preference when spreading. This results in an expo-
nential initial spreading of newly inserted descriptors, until their age reaches about the
logarithm of the view size. At that point the fresher descriptors take over. This results
in an average age that is equal to O(logk), where age is measured in gossip rounds. So,
freshness equals O(k logk)∆. In the case of swapper, descriptors perform batched RWs,
during which no descriptor gets replicated. In every round, every node removes one
random descriptor and replaces it with its own new descriptor. For this reason, the
age of a descriptor follows a geometric distribution, where the expected age (measured
in number of rounds) is proportional to the view size: O(k). So the average freshness
equals O(k2)∆.

Let us now discuss the NAT-aware gossip protocols. Croupier has the same costs and
freshness as swapper (although node-level load is higher at public than private nodes, as
they provide shuffling services). In Gozar, public nodes create the same number of new
links and generate the same bandwidth as healer. Private nodes, on the other hand,
generate j ∗ 2 times more bandwidth, as messages are sent over 2 links: first to the j
relays and then to the private nodes. Gozar also creates and maintains an extra constant
number of links to relays ( j ∗N , where N is system size). Nylon has unbounded costs,
as routing paths to private nodes can be arbitrarily long, and for that reason it is not
considered here.

For WPSS, the most important parameter is ∆wh , the wormhole renewal period.
One important value that is determined by ∆wh/∆ is the average number of hops that
an advertisement makes before being accepted by a node. Let us denote this value
by h(∆wh/∆). Now, the freshness of samples can be calculated using h(∆wh/∆)δhops .
The number of newly created links per sample is ∆/∆wh , since the only new links are
the wormholes. Finally, the bandwidth utilization per sample is given by h(∆wh/∆)+
∆TTL/∆wh where the second addend accounts for the cost of the bootstrap PSS, as-
suming it is implemented as a RW over the stable random topology.

Clearly, since ∆ is a constant given by the application requirements, and ∆wh (and
thus∆/∆wh) is a parameter of the protocol, the most important component is h(∆wh/∆).
We know from the definition of the protocol that h(1) = 1 (one hop through the worm-
hole), and limx→∞ h(x) = TTL. They key question is whether h(∆wh/∆) grows slowly. In
Section 7.6, we show that this is indeed the case.

We calculate the properties of the different protocols using a typical practical param-
eter setting, with the results summarized in Table 7.2. For this example, we set k = 10,
and δhop = 0.1 seconds. We assume that T T L = 100. During the experimental evalu-
ation in Section 7.6 we apply the same setting, and we present a justification for it as
well.

For WPSS, we set ∆wh = 10∆, which is shown in Section 7.6 to provide a good trade-
off between reducing the number of new connections created per round and keeping
samples fresh. For ∆wh = 10∆, the freshness is evaluated in our experiments in Sec-
tion 7.6 as h(10) ≈ 3, and, thus, this value is given in the table.

Note that freshness depends on the sampling period ∆ only in the case of the gossip
protocols. Typical settings for∆ range from 1 to 10 seconds. Besides, it is not meaningful
to set ∆ < δhop, so we can conclude that WPSS provides samples that are fresher by an
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Algorithm Freshness # New links Bandwidth
RW-push 10 0 100

RW-push-DL 0.1 1 101
RW-pull 20 0 200

RW-pull-DL 0.1 1 101
gossip healer 33∆ 0.1 1

gossip swapper 100∆ 0.1 1
WPSS 0.3 0.1 13

Table 7.2: Example comparison of PSS implementations. The example uses k = 10, δhop = 0.1, TTL=100, and
∆wh = 10∆.

order of magnitude than those provided by the fastest possible gossip protocol.
We would like to point out that gossip protocols will use a lot less bandwidth com-

pared to the other protocols under most parameter settings, assuming our invariant
(which fixes the same rate of receiving new samples). If we allow for the same band-
width for gossip protocols and WPSS by speeding up gossip then gossip samples will get
proportionally fresher, besides, proportionally more samples will arrive in a unit time
as well. However, freshness will still depend on the length of the (now shorter) gossip
cycle. In addition, most importantly, the number of new links will increase proportion-
ally since all the connections in gossip protocols are new connections. Reducing the
number of new links is one of our main motivations.

Gossip protocols have a further advantage due to batching 2k advertisements in a
single message. This could additionally reduce bandwidth costs, as the relative amount
of meta-data per packet sent is lower if the network packets from gossip messages are
closer in size to the network’s maximum transmission unit (MTU) than WPSS messages.
However, in our target application the size of an advertisement can be large, which justi-
fies our focus on bandwidth as a measure of cost as opposed to the number of messages
sent.

Based on the above cost analysis of existing PSS algorithms, our main observation is
that no single method other than WPSS offers a combination of three desirable proper-
ties for a PSS: fresh samples, a low number of new links, and low bandwidth overhead.
Apart from being vulnerable to failures, RW methods can offer fresh samples with an ex-
tremely high number of new links (one per each sample) or relatively old samples with-
out creating new links; in both cases with a relatively high bandwidth. Gossip based
methods provide even older samples than RW methods.

7.6 Evaluation

We now evaluate the performance of WPSS in simulation as well as in our deployed
system. The experiments on the deployed system show that our protocol provides the
desirable PSS properties of fresh samples, randomness, and low cost in a real environ-
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ment. The simulation experiments, in contrast, test robustness in scenarios that are
difficult or impossible to reproduce in deployment, such as different churn levels.

Our implementation follows the structure outlined in Figure 7.1. The bootstrap ser-
vice component provides addresses of random public nodes that are used by the up-
per layer to build the base overlay and to create wormholes. In our implementation,
the bootstrap service initiates RWs from the public nodes in the base overlay using the
same transition probabilities as used by WPSS. The rate of starting these walks is dou-
ble the rate of wormhole renewal to account for failure events in the base overlay and
the wormhole overlay. If the bootstrap service runs out of local random samples gen-
erated by RWs (because of massive join or failure events), a central bootstrap server is
contacted for random samples.

We set T T L = 100. After a RW of this length, the distribution is very close to uniform
in the base overlays we apply here. More precisely, its total variational distance [16] from
the uniform distribution is less than 10−6 in all base overlays in this section. In a fully
public network—but with the same number of nodes and random links—the same qual-
ity can be reached with T T L = 16. This means that in our environment, independent
RW methods have a further disadvantage due to the constrained topology. By increasing
the network size, this difference becomes larger. As we will see, WPSS walks will always
terminate much sooner in most practical settings, so the TTL is not a critical parameter
from that point of view.

The base overlay service strives to keep the overlay connected by identifying and
repairing broken links, thus, maintaining a fixed number of outgoing links at each node.
In order to detect failures of base topology links and the wormhole, we implement a
simple failure detector based on timeouts. Every node maintains 20 links to random
public nodes in the base overlay. However, these links are bidirectional, so the effective
average degree is 40 as a result.

7.6.1 Experimental Setup: Simulation

For simulations, we implemented WPSS on the Kompics platform [18]. Kompics pro-
vides a framework for building P2P systems and a discrete event simulator for evaluating
those systems under different churn, latency and bandwidth scenarios. All experiments
are averaged over 6 runs. Unless stated otherwise, we applied the following settings. The
view size (the number of freshest random samples a node remembers) was 50 and we set
∆= 1 second. For all simulation experiments, we use a scenario of N = 1000 nodes that
join following a Poisson distribution with a mean inter-arrival time of 100 milliseconds.
In all simulations 20% of the nodes were public and 80% were private, which reflects the
distribution observed in the commercial deployments of our P2P application.

7.6.2 Experimental Setup: Deployment

In order to test WPSS in a real environment, we implemented the protocol using [19],
a production-quality framework for building event-based distributed applications. The
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framework utilizes a UDP-based transport library that implements the same reliability
and flow control mechanisms as TCP [20].

We tested WPSS in our test network, where volunteers give us permission to conduct
experiments on their machines using a remotely-controlled test agent. The test network
contains around 12000 installations. The network included nodes mostly from Sweden
(89%) but also some from Europe (6%) and USA (4%). For connectivity, 76% of the nodes
were behind NATs or firewalls and 19.2% were public nodes, while the rest (4.8%) could
not be determined by our NAT-type identification protocol.

Each experiment is run in wall-clock time and thus it is subject to fluctuations in
network conditions and in the number of nodes involved. In order to keep a good level
of reproducibility, we selected a subset of 2000 of the more stable nodes, out of an aver-
age of 6200 online, which are representative of both our test network and the Internet in
Sweden, in general. For each data point, the deployment experiments were repeated a
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Figure 7.5: In-degree measurements

number of times varying from 3 to 10 runs, depending on the variance of the results, and
every run lasted 20 minutes. In all deployment experiments, the nodes join at a uniform
random point in time within the first 2 minutes from the start of the test. Unless stated
otherwise, we set the a view size to 50, and ∆= 2 seconds.

7.6.3 Freshness
In this set of experiments, we measure the freshness of samples on our deployed system
using the average hop count as well as the 90th and 99th percentiles. As we can see in
Figure 7.3, both the average hop count (h(∆wh/∆)) and the 90th percentile grow slowly
with increasing ∆wh (wormhole renewal period), while the TTL is never reached by any
advertisement. The 99th percentile, however, grows more quickly when∆wh/∆ exceeds
5 seconds as a small number of public nodes have under-performing or too few con-
nections, meaning that advertisements that arrive at them via wormholes have to take
more hops to complete.

In simulation, we now measure the average time required for a node to publish 20
consecutive advertisements. This characterizes the average freshness of the advertise-
ments also taking into account all possible delays, not only hop count. We examine sce-
narios with and without churn. The total time we measure includes the time required
for an advertisement to be accepted by a node (h(∆wh/∆)δhops ), and the amount of
time devoted to opening new wormhole links, if applicable. It also includes the retrans-
mission time in case of failures.

We note that the average time required to establish a network connection to a public
node in our system and was measured to be 1250ms in deployment. In Figure 7.4, we
can observe the freshness of advertisements under three different scenarios: with no
churn, and with a churn level of 0.3% or 0.5% of nodes failing and joining every 10 sec-
onds. Recall that in simulation we had∆= 1 second. We consider these churn figures to
be representative of the deployments of our commercial P2P application. The required
time to publish an advertisement increases with∆wh/∆, especially in the scenarios with
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churn. This is due to both a higher average hop count, as shown later in the evaluation,
and to retransmissions caused by failures along the advertisement path.

The most interesting result here is that the performance is optimal for ∆wh/∆ be-
tween about 5 and 10 even under high churn. Given this finding, we set ∆wh = 10∆ for
the remaining experiments, as this value has good freshness (even considering the 99th
percentile), while the number of new links required is relatively low.

7.6.4 Randomness
Similar to [2, 4, 5], we evaluate here the global randomness properties of our deployed
system by measuring properties of the WPSS overlay topology (that is, not the base over-
lay, but the overlay that is defined by the samples stored at nodes). In this set of exper-
iments, we measure the indegree distribution of the WPSS overlay network, its conver-
gence time for different view sizes, and finally its clustering coefficient for different view
sizes.

With samples drawn uniformly at random, we expect that the in-degree to follow
the binomial distribution. In Figure 7.5(a), we can see that WPSS actually results in a
distribution that is even narrower than what is predicted by the uniform random case,
which suggests good load balancing. In Figure 7.5(b) we can also see that the average
indegree converges after around 4 minutes and the variance after around 8 minutes,
respectively; an acceptable convergence time for our system. Since in deployment we
had ∆= 2 seconds, this translates to 120∆ and 240∆, respectively.

In Figure 7.6(a), we can see that the clustering coefficient converges at roughly the
same rate as the indegree distribution. Figure 7.6(b) indicates that the clustering coef-
ficient is higher than that of the random graph by a constant factor, which is due to the
fact that WPSS does not guarantee independent samples at nodes that are close in the
stable base overlay, as we explained previously. As we increase the view size, the cluster-
ing coefficient increases simply due to the larger chance of triangles; this is true for the
random graph as well.



7.6. EVALUATION 151

Δ=1s
Δ=3s
Δ=6s

Ad
ve

rti
se

m
en

t i
nt

er
-a

rri
va

l t
im

e 
(m

s)

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time (minutes)
0 2 4 6 8 10 12 14 16 18

(a) Average values for samples (terminating adver-
tisements) at all peers

Δ=1s
Δ=3s
Δ=6s

In
te

r-a
rri

va
l d

iff
er

en
ce

 (m
s)

0

500

1000

1500

2000

Time (minutes)
2 4 6 8 10 12 14 16 18

(b) Difference values between public and private
peers

Figure 7.7: Inter-arrival time measurements

7.6.5 Inter-arrival Time of Advertisements

These experiments were again conducted in the deployed system. Figure 7.7(a) shows
that the average inter-arrival times for samples (advertisements) converges to the re-
spective advertisement period after roughly 120∆ seconds. As public nodes can be
wormhole exits, they receive samples at a higher rate than private nodes. But, as Fig-
ure 7.7(b) shows, the method accept Ad (see Section 7.4) successfully balances samples
(advertisements) across public and private nodes.

7.6.6 Robustness to Different Churn Patterns

We experiment with several churn patterns in simulation. Figure 7.8 shows our results
with flash crowd scenarios, where we progressively decrease the number of peers that
join at the beginning of the simulation while increasing the number of those that join at
a later point in time. For instance, for a flash crowd scenario of 70% of the nodes, 300
nodes start to join at time 0 and the other 700 nodes start to join the system at minute
6.5. The number of nodes involved in all experiments stays constant at 1000. As we can
observe in Figure 7.8(a), the hop count not only stabilizes quickly after the flash crowd
terminates, but it also converges to the same value for all flash crowd scenarios.

The clustering coefficient exhibits a similar behavior, that is, it stabilizes quickly af-
ter the flash crowd to the same value for all flash crowd sizes. The converged cluster-
ing coefficient value (0.0975) is almost identical to the converged value of gossip healer
(0.0960) [2] in a scenario with no churn. Figure 7.8(c) shows that the average indegree
drops significantly during the flash crowd but it recovers quickly after that.

In Figure 7.9, we also show that the protocol is robust to catastrophic failures, that
is, when a large number of peers leaves the system at a single instant in time. In this
scenario, we wait for the overlay to stabilize after all the nodes have joined, then we fail
a percentage of peers drawn uniformly from the set of all peers at time 5 minutes. It is
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Figure 7.8: Flash crowd scenario for different sizes of flash crowd.

important to note that the overlay remains connected even after the failure of 80% of
the nodes.

As we can observe in Figure 7.9(a), the average hop count stabilizes more slowly for
higher percentages of failed nodes. This is expected given the large number of broken
links to detect and repair for both the base and wormhole overlays. The clustering co-
efficient converges somewhat quicker. Note that the clustering coefficient stabilizes on
higher values, because the number of remaining nodes is lower after the failure. More
precisely, for both clustering coefficient and hop count, the converged values after the
mass failure are the same as they would have been in a network that hadn’t experienced
mass failure but had the same size as our system had size after the mass failure. Two
minutes after the mass failures, in all scenarios, dead links have been expelled from the
view, as shown in Figure 7.10(c).

In Figure 7.10, we also show that the protocol is robust to different levels of steady
churn, with up to one percent of the nodes failing and joining every wormhole refresh
period (10 seconds). Figure 7.10(a) shows that for a level of churn of 0.1%, the hop count
takes a longer time to stabilize compared to a scenario without churn, but it converges
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Figure 7.9: Catastrophic failure scenarios in WPSS for different ratios of failed nodes.

nevertheless to the same value as in the scenario without churn. For levels of churn of
0.5% and 1%, the average hop count increases by 7% and 21%, respectively, which is still
acceptable in terms of freshness. Another effect of churn is the steady increase of the
clustering coefficient, as shown in Figure 7.10(b).

In order to measure the extent of damage of continuous churn, we also show in Fig-
ure 7.10(c) the average number of dead links in a node’s view. From the figure, it is clear
that it is proportional to the level of churn.

7.6.7 Comparison with Croupier
We conclude our evaluation with a comparison with the state of the art NAT-aware PSS,
Croupier. We use the same experiment setup in Croupier as in WPSS (the same number
of nodes, ratio of public/private nodes and join distribution) with a view size of 50 in
Croupier. We compare WPSS and Croupier using well-established properties for good
PSSes, and we show that WPSS has better results for global randomness (through the
network properties of the clustering coefficient, and the in-degree distribution of graph
of samples), the freshness of samples, and how many hops node descriptors have to
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Figure 7.10: WPSS under churn scenarios with varying levels of churn.

traverse before being placed as a sample.
For a fair comparison with Croupier, we include two settings, one that creates new

network connections at the same rate as WPSS (Croupier-10s) with the Croupier gossip
round time is set to 10 seconds, and another setting that has the same round time as
WPSS (Croupier-1s), but, for this setting, the network connection establishment rate is
10 times higher than WPSS. In Figure 7.11(b), we can see that the clustering coefficient of
WPSS converges more quickly than in Croupier-10s, but at only a slightly faster rate than
Croupier-1s. Both protocols have low clustering coefficients, close to random graphs. In
Figure 7.11(d) we can see that WPSS has a much narrower in-degree distribution than
Croupier around the expected in-degree, indicating better load balancing of samples
around all the nodes.

In Figure 7.11(a), we can see that average hop count in WPSS is stable and low over
time, while in Croupier the average hop count increases as node descriptors spread
throughout the system until they finally are expired.

In Figure 7.11(c), we can see the average age (freshness) of samples generated by
WPSS is roughly the same as Croupier-1s at 11.5 seconds, but much better than Croupier-
10s. As Croupier is based on the swapper policy, from our earlier Table 7.2, we can see
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Figure 7.11: Comparison between WPSS and Croupier.

that the average freshness of its samples are close to Swapper’s expected value of 10s,
with the extra second resulting from the private nodes having to use an extra hop to
public nodes who shuffle descriptors on behalf of private nodes.

7.7 Conclusions and Future Work

In this paper, we presented WPSS, a peer sampling service to meet the requirements
of commercially deployed P2P systems on the Internet. WPSS executes short random
walks over a stable topology and by using shortcuts (wormholes). WPSS provides the
same level of sample freshness as other state-of-the-art protocols, but achieves that with
a connection establishment rate that is one order of magnitude lower.

In addition, the connection establishment rate of WPSS can be tuned from zero per
sample to up one per sample, according to the application requirements on freshness
and cost. We showed in our deployed live-streaming P2P system that the lowest cost
connection creation rate lies between these two extremes. On top top of that, we exper-
imentally demonstrated that our system has the randomness properties required of a
peer sampling service, while it is robust to churn and large-scale failure scenarios.
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While we have designed WPSS for the Internet, we believe it is general enough to
work over any type of stable base overlay (given a high enough TTL for RWs) and any
subset of nodes can act as wormholes. As part of our future work, we will consider ap-
plying WPSS to mobile and sensor networks, and overlay networks without NATs or fire-
walls.
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Abstract

In this paper, we present SmoothCache, a peer-to-peer live video streaming
(P2PLS) system. The novelty of SmoothCache is threefold: i ) It is the first P2PLS
system that is built to support the relatively-new approach of using HTTP as the
transport protocol for live content, i i ) The system supports both single and multi-
bitrate streaming modes of operation, and i i i ) In Smoothcache, we make use of
recent advances in application-layer dynamic congestion control to manage prior-
ities of transfers according to their urgency. We start by explaining why the HTTP
live streaming semantics render many of the existing assumptions used in P2PLS
protocols obsolete. Afterwards, we present our design starting with a baseline P2P
caching model. We, then, show a number of optimizations related to aspects such as
neighborhood management, uploader selection and proactive caching. Finally, we
present our evaluation conducted on a real yet instrumented test network. Our re-
sults show that we can achieve substantial traffic savings on the source of the stream
without major degradation in user experience.

8.1 Introduction

Peer-to-peer live streaming (P2PLS) is a problem in the Peer-To-Peer (P2P) networking
field that has been tackled for quite some time on both the academic and industrial
fronts. The typical goal is to utilize the upload bandwidth of hosts consuming a cer-
tain live content to offload the bandwidth of the broadcasting origin. On the industrial
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front, we find successful large deployments where knowledge about their technical ap-
proaches is rather limited. Exceptions include systems described by their authors like
Coolstreaming [1] or inferred by reverse engineering like PPlive [2] and TVAnts [3]. On
the academic front, there have been several attempts to try to estimate theoretical limits
in terms of optimality of bandwidth utilization [4][5] or delay [6].

Traditionally, HTTP has been utilized for progressive download streaming, cham-
pioned by popular Video-On-Demand (VoD) solutions such as Netflix [7] and Apple’s
iTunes movie store. However, lately, adaptive HTTP-based streaming protocols became
the main technology for live streaming as well. All companies who have a major say
in the market including Microsoft, Adobe and Apple have adopted HTTP-streaming as
the main approach for live broadcasting. This shift to HTTP has been driven by a num-
ber of advantages such as the following: i ) Routers and firewalls are more permissive to
HTTP traffic compared to the RTSP/RTP i i ) HTTP caching for real-time generated me-
dia is straight-forward like any traditional web-content i i i ) The Content Distribution
Networks (CDNs) business is much cheaper when dealing with HTTP downloads [8].

The first goal of this paper is to describe the shift from the RTSP/RTP model to the
HTTP-live model (Section 8.2). This, in order to detail the impact of the same on the
design of P2P live streaming protocols (Section 8.3). A point which we find rather ne-
glected in the research community (Section 8.4). We argue that this shift has rendered
many of the classical assumptions made in the current state-of-the-art literature obso-
lete. For all practical purposes, any new P2PLS algorithm irrespective of its theoreti-
cal soundness, won’t be deployable if it does not take into account the realities of the
mainstream broadcasting ecosystem around it. The issue becomes even more topical
as we observe a trend in standardizing HTTP live [9] streaming and embedding it in all
browsers together with HTML5, which is already the case in browsers like Apple’s Safari.

The second goal of this paper is to present a P2PLS protocol that is compatible with
HTTP live streaming for not only one bitrate but that is fully compatible with the con-
cept of adaptive bitrate, where a stream is broadcast with multiple bitrates simultane-
ously to make it available for a range of viewers with variable download capacities (Sec-
tion 8.5).

The last goal of this paper is to describe a number of optimizations of our P2PLS
protocol concerning neighborhood management, uploader selection and peer transfer
which can deliver a significant amount of traffic savings on the source of the stream
(Section 8.6 and 8.7). Experimental results of our approach show that this result comes
at almost no cost in terms of quality of user experience (Section 8.8).

8.2 The Shift from RTP/RTSP to HTTP

In the traditional RTSP/RTP model, the player uses RTSP as the signalling protocol to
request the playing of the stream from a streaming server. The player enters a receive
loop while the server enters a send loop where stream fragments are delivered to the re-
ceiver using the RTP protocol over UDP. The interaction between the server and player
is stateful. The server makes decisions about which fragment is sent next based on ac-
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Figure 8.1: Sample Smooth streaming Manifest

knowledgements or error information previously sent by the client. This model makes
the player rather passive, having the mere role of rendering the stream fragments which
the server provides.

In the HTTP live streaming model instead, it is the player which controls the content
delivery by periodically pulling from the server parts of the content at the time and pace
it deems suitable. The server instead is entitled with the task of encoding the stream
in real time with different encoding rates, or qualities, and storing it in data fragments
which appear on the server as simple resources.

When a player first contacts the streaming server, it is presented with a metadata
file (Manifest) containing the latest stream fragments available at the server at the time
of the request. Each fragment is uniquely identified by a time-stamp and a bitrate. If a
stream is available in n different bitrates, then this means that for each timestamp, there
exists n versions of it, one for each bitrate.

After reading the manifest, the player starts to request fragments from the server.
The burden of keeping the timeliness of the live stream is totally upon the player. The
server in contrast, is stateless and merely serves fragments like any other HTTP server
after encoding them in the format advertised in the manifest.

Manifest Contents. To give an example, we use Microsoft’s Smooth Streaming man-
ifest. In Figure 8.1, we show the relevant details of a manifest for a live stream with 3
video bitrates (331, 688, 1470 Kbps) and 1 audio bitrate (64 Kbps). By inspecting one of
the streams, we find the first (the most recent) fragment containing a d value which is
the time duration of the fragment in a unit of 100 nanoseconds and a t value which is the
timestamp of the fragment. The fragment underneath (the older fragment) has only a d
value because the timestamp is inferred by adding the duration to the timestamp of the
one above. The streams each have a template for forming a request url for fragments of
that stream. The template has place holders for substitution with an actual bitrate and
timestamp. For a definition of the manifest’s format, see [8].
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Figure 8.2: Client-Server interactions in Microsoft Smooth Streaming

Adaptive Streaming Protocol. In Figure 8.2, we show an example interaction se-
quence between a Smooth Streaming Client and Server [8]. The Client first issues a
HTTP GET request to retrieve the manifest from the streaming server. After interpreting
the manifest, the player requests a video fragment from the lowest available bitrate (331
Kbps). The timestamp of the first request is not predictable but in most cases we have
observed that it is an amount equal to 10 seconds backward from the most recent frag-
ment in the manifest. This is probably the only predictable part of the player’s behavior.

In fact, without detailed knowledge of the player’s internal algorithm and given that
different players may implement different algorithms, it is difficult to make assump-
tions about the period between consecutive fragment requests, the time at which the
player will switch rates, or how the audio and video are interleaved. For example, when
a fragment is delayed, it could get re-requested at the same bitrate or at a lower rate. The
timeout before taking such action is one thing that we found slightly more predictable
and it was most of the time around 4 seconds. That is a subset of many details about the
pull behavior of the player.

Implications of Unpredictability. The point of mentioning these details is to ex-
plain that the behavior of the player, how it buffers and climbs up and down the bitrates
is rather unpredictable. In fact, we have seen it change in different version of the same
player. Moreover, different adopters of the approach have minor variations on the in-
teractions sequence. For instance, Apple HTTP-live [9] dictates that the player requests
a manifest every time before requesting a new fragment and packs audio and video
fragments together. As a consequence of what we described above, we believe that a
P2PLS protocol for HTTP live streaming should operate as if receiving random requests
in terms of timing and size and has to make this the main principle. This filters out the
details of the different players and technologies.
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8.3 Impact of the Shift on P2PLS Algorithms

Traditionally, the typical setup for a P2PLS agent is to sit between the streaming server
and the player as a local proxy offering the player the same protocol as the streaming
server. In such a setup, the P2PLS agent would do its best, exploiting the peer-to-peer
overlay, to deliver pieces in time and in the right order for the player. Thus, the P2PLS
agent is the one driving the streaming process and keeping an active state about which
video or audio fragment should be delivered next, whereas the player blindly renders
what it is supplied with. Given the assumption of a passive player, it is easy to envisage
the P2PLS algorithm skipping for instance fragments according to the playback dead-
line, i.e. discarding data that comes too late for rendering. In this kind of situation, the
player is expected to skip the missing data by fast-forwarding or blocking for few in-
stants and then start the playback again. This type of behavior towards the player is an
intrinsic property of many of the most mature P2PLS system designs and analyses such
as [1, 6, 10].

In contrast to that, a P2PLS agent for HTTP live streaming can not rely on the same
operational principles. There is no freedom in skipping pieces and deciding what is to
be delivered to the player. The P2PLS agent has to obey the player’s request for frag-
ments from the P2P network and the speed at which this is accomplished affects the
player’s next action. From our experience, delving in the path of trying to reverse engi-
neer the player behavior and integrating that in the P2P protocol is some kind of black
art based on trial-and-error and will result into very complicated and extremely version-
specific customizations. Essentially, any P2PLS scheduling algorithm that assumes that
it has control over which data should be delivered to the player is rather inapplicable to
HTTP live streaming.

8.4 Related Work

We are not aware of any work that has explicitly articulated the impact of the shift to
HTTP on the P2P live streaming algorithms. However, a more relevant topic to look at
is the behavior of the HTTP-based live players. Akhshabi et. al [11], provide a recent
dissection of the behavior of three such players under different bandwidth variation
scenarios. It is however clear from their analysis that the bitrate switching mechanics of
the considered players are still in early stages of development. In particular, it is shown
that throughput fluctuations still cause either significant buffering or unnecessary bi-
trate reductions. On top of that, it is shown how all the logic implemented in the HTTP-
live players is tailored to TCP’s behavior, as the one suggested in [12]. That in order to
compensate throughput variations caused by TCP’s congestion control and potentially
large retransmission delays. In the case of a P2PLS agent acting as proxy, it is then of
paramount importance to not interfere with such adaptation patterns.

We believe, given the presented approaches, the most related work is the P2P caching
network LiveSky [13]. We share in common the fact of trying to establish a P2P CDN.
However, LiveSky does not present any solution for supporting HTTP live streaming.
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Strategy Baseline Improved

Manifest Trimming (MT) Off On

Partnership Construction (PC) Random Request-Point-aware

Partnership Maintenance (PM) Random Bitrate-aware

Uploader Selection (US) Random Throughput-based

Proactive Caching (PR) Off On

Table 8.1: Summary of baseline and improved strategies.

8.5 P2PLS as a Caching Problem

We will describe here our baseline design to tackle the new realities of the HTTP-based
players. We treat the problem of reducing the load on the source of the stream the same
way it would be treated by a Content Distribution Network (CDN): as a caching problem.
The design of the streaming protocol was made such that every fragment is fetched as
an independent HTTP request that could be easily scheduled on CDN nodes. The dif-
ference is that in our case, the caching nodes are consumer machines and not dedicated
nodes. The player is directed to order from our local P2PLS agent which acts as an HTTP
proxy. All traffic to/from the source of the stream as well as other peers passes by the
agent.

Baseline Caching. The policy is as follows: any request for manifest files (metadata),
is fetched from the source as is and not cached. That is due to the fact that the mani-
fest changes over time to contain the newly generated fragments. Content fragments
requested by the player are looked up in a local index of the peer which keeps track of
which fragment is available on which peer. If information about the fragment is not in
the index, then we are in the case of a P2P cache miss and we have to retrieve it from the
source. In case of a cache hit, the fragment is requested from the P2P network and any
error or slowness in the process results, again, in a fallback to the source of the content.
Once a fragment is downloaded, a number of other peers are immediately informed in
order for them to update their indices accordingly.

Achieving Savings. The main point is thus to increase the cache hit ratio as much as
possible while the timeliness of the movie is preserved. The cache hit ratio is our main
metric because it represents savings from the load on the source of the live stream. Hav-
ing explained the baseline idea, we can see that, in theory, if all peers started to down-
load the same uncached manifest simultaneously, they would also all start requesting
fragments exactly at the same time in perfect alignment. This scenario would leave
no time for the peers to advertise and exchange useful fragments between each oth-
ers. Consequently a perfect alignment would result in no savings. In reality, we have
always seen that there is an amount of intrinsic asynchrony in the streaming process
that causes some peers to be ahead of others, hence making savings possible. However,
the larger the number of peers, the higher the probability of more peers being aligned.
We will show that, given the aforementioned asynchrony, even the previously described
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baseline design can achieve significant savings.
Our target savings are relative to the number of peers. That is we do not target

achieving a constant load on the source of the stream irrespective of the number of
users, which would lead to loss of timeliness. Instead, we aim to save a substantial
percentage of all source traffic by offloading that percentage to the P2P network. The
attractiveness of that model from a business perspective has been verified with content
owners who nowadays buy CDN services.

8.6 Beyond Baseline Caching

We give here a description of some of the important techniques that are crucial to the
operation of the P2PLS agent. For each such technique we provide what we think is the
simplest way to realize it as well as improvements if we were able to identify any. The
techniques are summarized in Table 1.

Manifest Manipulation. One improvement particularly applicable in Microsoft’s
Smooth streaming but that could be extended to all other technologies is manifest ma-
nipulation. As explained in Section 8.2, the server sends a manifest containing a list of
the most recent fragments available at the streaming server. The point of that is to avail
to the player some data in case the user decides to jump back in time. Minor trimming
to hide the most recent fragments from some peers places them behind others. We use
that technique to push peers with high upload bandwidth slightly ahead of others be-
cause they have they can be more useful to the network. We are careful not to abuse this
too much, otherwise peers would suffer a high delay from live playing point, so we limit
it to a maximum of 4 seconds. It is worth noting here that we do a quick bandwidth mea-
surement for peers upon admission to the network, mainly, for statistical purposes but
we do not depend on this measurement except during the optional trimming process.

Neighborhood & Partnership Construction. We use a tracker as well as gossiping
for introducing peers to each other. Any two peers who can establish bi-directional
communication are considered neighbors. Each peer probes his neighbors periodically
to remove dead peers and update information about their last requested fragments.
Neighborhood construction is in essence a process to create a random undirected graph
with high node arity. A subset of the edges in the neighborhood graph is selected to form
a directed subgraph to establish partnership between peers. Unlike the neighborhood
graph, which is updated lazily, the edges of the partneship graph are used frequently. Af-
ter each successful download of a fragment, the set of (out-partners) is informed about
the newly downloaded fragment. From the opposite perspective, it is crucial for a peer
to wisely pick his in-partners because they are the providers of fragments from the P2P
network. For this decision, we experiment with two different strategies: i ) Random pick-
ing, i i ) Request-point-aware picking: where the in-partners include only peers who are
relatively ahead in the stream because only such peers can have future fragments.

Partnership Maintenance. Each peer strives to continuously find better in-partners
using periodic maintenance. The maintenance process could be limited to replacement
of dead peers by randomly-picked peers from the neighborhood. Our improved main-
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tenance strategy is to score the in-partners according to a certain metric and replace
low-scoring partners with new peers from the neighborhood. The metric we use for
scoring peers is a composite one based on: i ) favoring the peers with higher percent-
age of successfully transferred data, i i ) favoring peers who happen to be on the same
bitrate. Note that while favoring peers on the same bitrate, having all partners from a
single bitrate is very dangerous, because once a bit-rate change occurs the peer is iso-
lated. That is, all the received updates about presence of fragments from other peers
would be from the old bitrate. That is why, upon replacement, we make sure that the re-
sulting in-partners set has all bit-rates with a gaussian distribution centered around the
current bitrate. That is, most in-partners are from the current bit rate, less partners from
the immediately higher and lower bit rates and much less partners from other bitrates
and so forth. Once the bit-rate changes, the maintenance re-centers the distribution
around the new bitrate.

Uploader Selection. In the case of a cache hit, it happens quite often that a peer
finds multiple uploaders who can supply the desired fragment. In that case, we need
to pick one. The simplest strategy would be to pick a random uploader. Our improved
strategy here is to keep track of the observed historical throughput of the downloads
and pick the fastest uploader.

Sub-fragments. Up to this point, we have always used in our explanation the frag-
ment as advertised by the streaming server as the unit of transport for simplifying the
presentation. In practice, this is not the case. The sizes of the fragment vary from one
bitrate to the other. Larger fragments would result in waiting for a longer time before in-
forming other peers which would directly entail lower savings because of the slowness
of disseminating information about fragment presence in the P2P network. To handle
that, our unit of transport and advertising is a sub-fragment of a fixed size. That said, the
reality of the uploader selection process is that it always picks a set uploaders for each
fragment rather than a single uploader. This parallelization applies for both random
and throughput-based uploader selection strategies.

Fallbacks. While downloading a fragment from another peer, it is of critical im-
portance to detect problems as soon as possible. The timeout before falling back to
the source is thus one of the major parameters while tuning the system. We put an
upper bound (Tp2p ) on the time needed for any P2P operation, computed as: Tp2p =
Tpl ayer −S ∗T f where Tpl ayer is the maximum amount of time after which the player
considers a request for a fragment expired, S is the size of fragment and T f is the ex-
pected time to retrieve a unit of data from the fallback. Based on our experience, Tpl ayer

is player-specific and constant, for instance Microsoft’s Smooth Streaming waits 4 sec-
onds before timing out. A longer Tp2p translates in a higher P2P success transfer ratio,
hence higher savings. Since Tpl ayer and S are outside of our control, it is extremely im-
portant to estimate T f correctly, in particular in presence of congestion and fluctuating
throughput towards the source. As a further optimization, we recalculate the timeout
for a fragment while a P2P transfer is happening depending on the amount of data al-
ready downloaded, to allow more time for the outstanding part of the transfer. Finally,
upon fallback, only the amount of fragment that failed to be downloaded from the over-
lay network is retrieved from the source, i.e. through a partial HTTP request on the range
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of missing data.

8.7 Proactive Caching

The baseline caching process is in essence reactive, i.e. the attempt to fetch a fragment
starts after the player requests it. However, when a peer is informed about the pres-
ence of a fragment in the P2P network, he can trivially see that this is a future fragment
that would be eventually requested. Starting to prefetch it early before it is requested,
increases the utilization of the P2P network and decreases the risk of failing to fetch it
in time when requested. That said, we do not guarantee that this fragment would be
requested in the same bitrate, when the time comes. Therefore, we endure a bit of risk
that we might have to discard it if the bitrate changes. In practice, we measured that the
prefetcher successfully requests the right fragment with a 98.5% of probability.

Traffic Prioritization. To implement this proactive strategy we have taken advan-
tage of our dynamic runtime-prioritization transport library DTL [14] which exposes
to the application layer the ability to prioritize individual transfers relative to each other
and to change the priority of each individual transfer at run-time. Upon starting to fetch
a fragment proactively, it is assigned a very low-priority. The rationale is to avoid con-
tending with the transfer process of fragments that are reactively requested and under
a deadline both on the uploading and downloading ends.

Successful Prefetching. One possibility is that a low-priority prefetching process
completes before a player’s request and there is no way to deliver it to the player before
that happens, the only option is to wait for a player request. More importantly, when
that time comes, careful delivery from the local machine is very important because ex-
tremely fast delivery might make the adaptive streaming player mistakenly think that
there is an abundance of download bandwidth and start to request the following frag-
ments a higher bitrate beyond the actual download bandwidth of the peer. Therefore,
we schedule the delivery from the local machine to be not faster than the already-observed
average download rate. We have to stress here that this is not an attempt to control the
player to do something in particular, we just maintain transparency by not delivering
prefetched fragments faster than not prefetched ones.

Interrupted Prefetching. Another possiblity is that the prefetching process gets in-
terrupted by the player in 3 possible ways: i ) The player requests the fragment being
prefetched: in that case the transport layer is dynamically instructed to raise the prior-
ity and Tpl ayer is set accordingly based on the remaining amount of data as described
in the previous section. i i ) The player requests the same fragment being prefetched but
at a higher rate which means we have to discard any prefetched data and treat the re-
quest like any other reactively fetched fragment. i i i ) The player decides to skip some
fragments to catch up and is no longer in need of the fragment being prefetched. In this
case, we have to discard it as well.



172 CHAPTER 8. SMOOTHCACHE: HTTP-LIVE STREAMING GOES PEER-TO-PEER

8.8 Evaluation

Methodology. Due to the non-representative behaviour of Planetlab and the difficulty
to do parameter exploration in publicly-deployed production network, we tried another
approach which is to develop a version of our P2P agent that is remotely-controlled and
ask for volunteers who are aware that we will conduct experiments on their machines.
Needless to say, that this functionality is removed from any publicly-deployable version
of the agent.

Test Network. The test network contained around 1350 peers. However, the max-
imum, minimum and average number of peers simultaneously online were 770, 620
and 680 respectively. The network included peers mostly from Sweden (89%) but also
some from Europe (6%) and the US (4%). The upload bandwidth distribution of the
network was as follows: 15% : 0.5Mbps, 42% : 1Mbps, 17% : 2.5Mbps, 15% : 10Mbps,
11% : 20Mbps. In general, one can see that there is enough bandwidth capacity in
the network, however the majority of the peers are on the lower end of the bandwidth
distribution. For connectivity, 82% of the peers were behind NAT, and 12% were on
open Internet. We have used our NAT-Cracker traversal scheme as described in [15]
and were able to establish bi-directional communication between 89% of all peer pairs.
The unique number of NAT types encountered were 18 types. Apart from the tracker
used for introducing clients to each other, our network infrastructure contained, a log-
ging server, a bandwidth measurement server, a STUN-like server for helping peers with
NAT traversal and a controller to launch tests remotely.

Stream Properties. We used a production-quality continuous live stream with 3
video bitrates (331, 688, 1470 Kbps) and 1 audio bitrate (64 Kbps) and we let peers
watch 20 minutes of this stream in each test. The stream was published using Microsoft
Smooth Streaming traditional tool chain. The bandwidth of the source stream was pro-
vided by a commercial CDN and we made sure that it had enough capacity to serve the
maximum number of peers in our test network. This setup gave us the ability to com-
pare the quality of the streaming process in the presence and absence of P2P caching in
order to have a fair assessment of the effect of our agent on the overall quality of user ex-
perience. We stress that, in a real deployment, P2P caching is not intended to eliminate
the need for a CDN but to reduce the total amount of paid-for traffic that is provided
by the CDN. One of the issues that we faced regarding realistic testing was making sure
that we are using the actual player that would be used in production, in our case that
was the Microsoft Silverlight player. The problem is that the normal mode of operation
of all video players is through a graphical user interface. Naturally, we did not want to
tell our volunteers to click the “Play” button every time we wanted to start a test. Luck-
ily, we were able to find a rather unconventional way to run the Silverlight player in a
headless mode as a background process that does not render any video and does not
need any user intervention.

Reproducibility. Each test to collect one data point in the test network happens in
real time and exploring all parameter combination of interest is not feasible. Therefore,
we did a major parameter combinations study on our simulation platform [16] first to
get a set of worth-trying experiments that we launched on the test network. Another
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Figure 8.3: Comparison of traffic savings with different algorithm improvements

problem is the fluctuation of network conditions and number of peers. We repeated
each data point a number of times before gaining confidence that this is the average
performance of a certain parameter combination.

Evaluation Metrics. The main metric that we use is traffic savings defined as the
percentage of the amount of data served from the P2P network from the total amount
of data consumed by the peers. Every peer reports the amount of data served from
the P2P network and streaming source every 30 seconds to the logging server. In our
bookkeeping, we keep track of how much of the traffic was due to fragments of a certain
bitrate. The second important metric is buffering delay. The Silverlight player can be
instrumented to send debug information every time it goes in/out of buffering mode,
i.e. whenever the player finds that the amount of internally-buffered data is not enough
for playback, it sends a debug message to the server, which in our case is intercepted
by the agent. Using this method, a peer can report the lengths of the periods it entered
into buffering mode in the 30 seconds snapshots as well. At the end of the stream, we
calculate the sum of all the periods the player of a certain peer spent buffering.

8.8.1 Deployment Results

Step-by-Step Towards Savings. The first investigation we made was to start from the
baseline design with all the strategies set to the simplest possible. In fact, during the
development cycle we used this baseline version repeatedly until we obtained a stable
product with predictable and consistent savings level before we started to enable all the
other improvements. Figure 8.3 shows the evolution of savings in time for all strategies.
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Figure 8.4: Comparison of cumulative buffering time for source only and improvements

The naive baseline caching was able to save a total of 44% of the source traffic. After
that, we worked on pushing the higher-bandwidth peers ahead and making each part-
ner select peers that are useful using the request-point-aware partnership which moved
the savings to a level of 56%. So far, the partnership maintenance was random. Turn-
ing on bit-rate-aware maintenance added only another 5% of savings but we believe
that this is a key strategy that deserves more focus because it directly affects the effec-
tive partnership size of other peers from each bitrate which directly affects savings. For
the uploader selection, running the throughput-based picking achieved 68% of savings.
Finally, we got our best savings by adding proactive caching which gave us 77% savings.

User Experience. Getting savings alone is not a good result unless we have provided
a good user experience. To evaluate the user experience, we use two metrics: First, the
percentage of peers who experienced a total buffering time of less than 5 seconds, i.e.
they enjoyed performance that did not really deviate much from live. Second, showing
that our P2P agent did not achieve this level of savings by forcing the adaptive streaming
to move everyone to the lowest bitrate. For the first metric, Figure 8.4 shows that with
all the improvements, we can make 87% of the network watch the stream with less than
5 seconds of buffering delay. For the second metric, Figure 8.5(a) shows also that 88% of
all consumed traffic was on the highest bitrate and P2P alone shouldering 75% (Figure
8.5(b)), an indication that, for the most part, peers have seen the video at the highest
bitrate with a major contribution from the P2P network.

P2P-less as a Reference. We take one more step beyond showing that the system of-
fers substantial savings with reasonable user experience, namely to understand what
would be the user experience in case all the peers streamed directly from the CDN.
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Figure 8.5: Breakdown of traffic quantities per bitrate for: (a) A network with P2P caching, Source & P2P traffic
summed together. (b) The same P2P network with source & P2P traffic reported separately, and (c) A network
with no P2P.
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Figure 8.6: Breakdown of traffic quantities per bitrate using baseline

Therefore, we run the system with P2P caching disabled. Figure 8.4 shows that with-
out P2P, only 3% more (90%) of all viewers would have a less than 5 seconds buffering.
On top of that, Figure 8.5(c) shows that only 2% more (90%) of all consumed traffic is on
the highest bitrate, that is the small price we paid for saving 77% of source traffic. Figure
8.6 instead describes the lower performance of our baseline caching scenario, which
falls 13% of the P2P-less scenario (77%). This is mainly due to the lack of bit-rate-aware
maintenance, which turns out to play a very significant role in terms of user experience.

Partnership Size. There are many parameters to tweak in the protocol but, in our
experience, the number of in-partners is by far the parameter with the most significant
effect. Throughout the evaluation presented here, we use 50 in-partners. Figure 8.7
shows that more peers result in more savings; albeit with diminishing returns. We have
selected 50-peers as a high-enough number, at a point where increasing the peers does
not result into much more savings.

Single Bitrate. Another evaluation worth presenting as well is the case of a single
bitrate. In this experiment, we get 84%, 81% and 69% for the low, medium and high bi-
trate respectively (Figure 8.8). As for the user experience compared with the same single
bitrates in a P2P-less test, we find that the user experience expressed as delays is much
closer to the P2P-less network (Figure 8.9). We explain the relatively better experience in
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Figure 8.8: Savings for single bitrate runs

the single bitrate case by the fact that all the in-partners are from the same bitrate, while
in the multi-bitrate case, each peer has in his partnership the majority of the in-partners
from a single bitrate but some of them are from other bitrates which renders the effec-
tive partnership size smaller. We can also observe that the user experience improves as
the bitrate becomes smaller.

8.9 Conclusion

In this paper, we have shown a novel approach in building a peer-to-peer live streaming
system that is compatible with the new realities of the HTTP-live. These new realities
revolve around the point that unlike RTSP/RTP streaming, the video player is driving
the streaming process. The P2P agent will have a limited ability to control what gets
rendered on the player and much limited ability to predict its behaviour. Our approach
was to start with baseline P2P caching where a P2P agent acts as an HTTP proxy that re-
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ceives requests from the HTTP live player and attempts to fetch it from the P2P network
rather the source if it can do so in a reasonable time.

Beyond baseline caching, we presented several improvements that included: a) Request-
point-aware partnership construction where peers focus on establishing relationships
with peers who are ahead of them in the stream, b) Bit-rate-aware partnership main-
tenance through which a continuous updating of the partnership set is accomplished
both favoring peers with high successful transfers rate and peers who are on the same
bitrate of the maintaining peer, c) Manifest trimming which is a technique for manipu-
lating the metadata presented to the peer at the beginning of the streaming process to
push high-bandwidth peers ahead of others, d) Throughput-based uploader selection
which is a policy used to pick the best uploader for a certain fragment if many exist, e)
Careful timing for falling back to the source where the previous experience is used to
tune timing out on P2P transfers early enough thus keeping the timeliness of the live
playback.

Our most advanced optimization was the introduction of proactive caching where
a peer requests fragments ahead of time. To accomplish this feature without disrupting
the already-ongoing transfer, we used our application-layer congestion control [14] to
make pre-fetching activities have less priority and dynamically raise this priority in case
the piece being pre-fetched got requested by the player.

We evaluated our system using a test network of real volunteering clients of about
700 concurrent nodes where we instrumented the P2P agents to run tests under differ-
ent configurations. The tests have shown that we could achieve around 77% savings for
a multi-bitrate stream with around 87% of the peers experiencing a total buffering de-
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lay of less than 5 seconds and almost all of the peers watched the data on the highest
bitrate. We compared these results with the same network operating in P2P-less mode
and found that only 3% of the viewers had a better experience without P2P which we
judge as a very limited degradation in quality compared to the substantial amount of
savings.
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Abstract

In recent years, adaptive HTTP streaming protocols have become the de-facto
standard in the industry for the distribution of live and video-on-demand content
over the Internet. This paper presents SmoothCache 2.0, a distributed cache for
adaptive HTTP live streaming content based on peer-to-peer (P2P) overlays. The
contribution of this work is twofold. From a systems perspective, to the best of
our knowledge, it is the only commercially deployed P2P platform which supports
recent live streaming protocols based on HTTP as a transport and the concept of
adaptive bitrate switching. From an algorithmic perspective, the system describes
a novel set of overlay construction and prefetching techniques that realize: i ) sub-
stantial savings in terms of the bandwidth load on the source of the stream, and i i )
CDN-quality user experience in terms of delay from the live playing point and the
mostly-watched bitrate. In order to support our claims, we conduct a methodical
evaluation encompassing a subset of thousands of real customers’ machines which
who agreed to install an instrumented version of our software.

9.1 Introduction

Peer-to-Peer live streaming (PLS) is the problem of improving distribution efficiency
for a given online live broadcast by letting viewers of the content contribute with their
resources, namely bandwidth.

1Submitted to a conference and currently under review.
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Previous work in this area has produced a lot of systems such as PPlive [1], Cool-
Streaming [2], T-bone [3], and more recently Bittorrent live[4]. Overlay construction
for such applications falls mainly into 2 classes, tree-based and mesh-based systems.
Although a consensus has not been reached on the best approach, mesh-based ap-
proaches lately became more popular as they are more robust to churn [5, 6], while
tree-based overlays are more cumbersome to maintain in the same conditions [7].

Despite the increased maturity in the field, an important aspect which we find rel-
atively under-studied is the ramification of the recent trend of using HTTP-live stream-
ing instead of the traditional RTSP/RTP protocol for broadcast of live video content over
the Internet. HTTP-live streaming consists of a set of protocols which all utilize the
HTTP protocol as transport [8]. HTTP-live streaming changes the way the producer of
the content (usually a CDN) and the consumer of the content (the media player) inter-
act. Traditional streaming protocols such as the RTSP/RTP are based on a push-based
model, where the player requests a certain stream and then the server pushes content
over UDP to the player controlling the speed of the delivery. HTTP-live streaming pro-
tocols are instead based on a pull-model, where it is the player which requests content
chunks over HTTP at the pace it deems suitable. On top of that, the HTTP-live proto-
cols have been designed to support adaptive bitrate mode of operation, which avails the
stream in a number of qualities. The choice of which quality to retrieve/reproduce is left
to the player.

All major actors in the online broadcasting business, such as Microsoft, Adobe and
Apple, have developed technologies which embrace HTTP-streaming and the concept
of adaptive bitrate switching as the main approach for broadcasting. HTTP live has been
adopted by content services and creators like Netflix, Hulu and the BBC with support
across all platforms and OSs, including computers, tablets and smart phones.

The shift from the push-based RTSP/RTP protocol to the pull-based HTTP-live pro-
tocols has rendered many of the classical assumptions made in the current state-of-the-
art PLS literature obsolete [9]. For all practical purposes, any new PLS algorithm, irre-
spective of its theoretical soundness, won’t be deployable if it does not take into account
the realities of the mainstream broadcasting ecosystem around it.

Being an industrial entity, our attention to this area grew as we started to find it
difficult to raise any reasonable market interest while overlooking the fact that both the
CDNs and the live streaming solution vendors are focusing on HTTP-based solutions.
Our first take on the problem of designing a distributed caching system tailored to HTTP
live streaming [9] showed that it is possible to achieve significant savings towards the
source of the stream by using peer-to-peer overlays.

In this iteration, we aim higher by not only targeting high savings but also making
sure viewers experience CDN-like QoE in terms of delay from the live point. In order
to achieve our goal, we exploit detailed knowledge of the HTTP live streaming distri-
bution chain. Based on that, we build a distributed caching solution which prefetches
content ahead of the live deadline and distributes it to all nodes in the network such as
to significantly decrease the bandwidth requirements on the source of the stream.

The distribution of data happens over a self-organizing overlay network that takes
into account many factors such as upload bandwidth capacity, connectivity constraints,
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performance history, prefetching point and currently watched bitrate all of which work
together to maximize flow of fragments in the network. In the description of our system,
we focus primarily on how our prefetching techniques work and on the overlay con-
struction heuristics. On top of that, we conduct a thorough evaluation of our overlay
techniques on a real network of thousands of consumer machines and show how each
of our techniques individually contributes to the performance. We also show empiri-
cally that the resulting system provides the same QoE of a standard CDN, with respect
to cumulative buffering time and mostly watched bitrate.

9.2 Related Work

First, an important high-level distinguishing feature of SmoothCache from classical peer-
to-peer solutions is that, in all other systems, bounded source bandwidth is assumed
and the challenge is to maximize throughput, but nothing prevents the maximum de-
lay from the live point to grow with the network size [10]. Our industrial experience
has led us to believe that commercial content owners are not willing to compromise
on quality of user experience. In contrast, we have designed this system to achieve a
bounded delay that is no worse than a CDN. That is, we have first to meet the same tar-
gets of throughput and playback delay of a CDN, and then try to maximize savings. This
concept is found both in peer-assisted and cloud-assisted systems. The former category
includes systems which build their own ad-hoc infrastructure to aid the peer-to-peer
overlay, while the latter category use existing infrastructure such as Content Delivery
Networks for the same purpose. While the approaches may differ, both categories of
systems share the same goal of enforcing a specific target quality of user experience for
viewers by using the least amount of infrastructure resources.

Cloud-assisted systems, such as LiveSky [11] and CALMS [12], utilize cloud-based
dynamically allocated resources to support the peer-to-peer delivery. The main draw-
back of cloud-assisted solutions is that they are cumbersome to deploy in existing live
streaming systems that are already relying on CDN services. They in fact require a com-
plete re-engineering of the server-side of the system to allow bidirectional feedback
from the peer-to-peer overlay and a centralized coordinator which controls the cloud
resources. On top of that, in cloud-assisted systems a completely new management
layer must be deployed for the coordinator to enforce its cloud allocation decisions.

SmoothCache 2.0 belongs instead to the peer-assisted category, which leverages
the inherent ability of CDN networks to dynamically scale up and down resources and
therefore cope with variable load from the peer-to-peer overlay. Dynamic scalability
is one of the main features of CDNs because in such systems it is very common to ex-
perience dramatically varying demand for video content depending on factors such as
increased/decreased popularity and time of the day.

The peer-assisted approach has been applied mostly to video on demand (VoD)
streaming rather than live streaming. In the industry, we find instances of peer-assisted
VoD systems in Akamai’s NetSession [13] and Adobe’s Flash framework [14][15].

In academia instead, efforts have been directed at understanding in general, and
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without considering the details of streaming protocols, what are the best prefetch poli-
cies for peers to download VoD content ahead of playback such that the load on the
source of the stream is minimized [16][17]. Recent work instead proposed a practical
solution to enable peer-assisted distribution of VoD content with adaptive bitrate HTTP
streaming protocols using plugin-less browser-based technologies with Maygh [18]. Au-
thors show that Maygh can save up to 75% of the load on the CDN in the considered
scenarios.

We believe, given the presented approaches, that SmoothCache 2.0 is the first peer-
assisted live streaming system to be designed with HTTP adaptive streaming in mind.
Other systems have addressed the problem of adaptive streaming in the past by using
Layered Video Coding (LC) [19] or Multiple Descriptor Coding (MDC) [20]. There are
different LC and MDC techniques in the literature, all of which come at the expense of
varying levels of added overhead, in terms of redundancy, computational complexity
and reconstruction performance. To the best of our knowledge, there is no wide adop-
tion of either technique in mainstream streaming platforms. On top of that, in Smooth-
Cache 2.0 we show that HTTP adaptive streaming is achievable without data coding
techniques and therefore without incurring the associated overhead.

Regarding live P2P streaming in general, Peerstreamer[21] is one of the actively-
maintained mesh-based systems. However, it is not integrated with existing commer-
cial live streaming protocols such as [22, 23, 24], and it does not support adaptive bitrate
streaming.

In order to guide our design, we also investigated theoretical work which builds on
the peer-assisted paradigm. Liu et Al. [25] assert the benefits of peer-assisted delivery for
single bitrate streams by providing a theoretical framework which highlights the trade-
offs between three fundamental metrics: savings towards the source of the stream, bi-
trate watched by peers and number of hops from the source of the stream. The model is
however applicable only to tree-based overlay networks deployed on always-on set-top-
boxes and therefore absent of churn. Mansy et al. [26] describe a model for designing
and operating a peer-assisted system. Specifically, the model estimates the minimum
amount of peers which should be served by the CDN and also which bitrate should
peers download given the CDN and peers bandwidth capacity. The significant limita-
tion of this work is that it does not model bitrate switching at the player side, which is a
fundamental characteristic of adaptive HTTP streaming protocols. In the model, peers
are not allowed to switch bitrate according to the observed throughput but rather it is
the CDN which controls which bitrate they are watching. We are not aware of any other
theoretical work which considers both the peer-assisted paradigm and adaptive HTTP
streaming principles.

9.3 System Architecture

SmoothCache 2.0 is composed of a client (the PLS agent) which is installed on the viewer’s
machines, and by a number of helper services which represent our operational central-
ized infrastructure. It is important to note that our system is designed to be transparent
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to already-existing streaming infrastructure in order to ensure both vendor neutrality as
well as simplified deployment. Therefore, we do not operate our own stream origin. We
assume that there is an already-published stream, for instance from a Content Distri-
bution Network (CDN), that can be played directly from its source and our customers
would transparently use our system to minimize the load on that source. That said, we
solve the problem of reducing the load on the source of the stream the same way a CDN
would: by building a caching scheme.

9.3.1 Baseline caching
The basic idea of our system is to build a random graph between all nodes watching
a stream. Upon a content fragment request from the player running on the peer, the
PLS agent tries to timely retrieve the data requested from other peers in the overlay. If
a fragment cannot be retrieved from any other peer on time, the agent downloads the
missing portion of the fragment from the source of the stream, i.e. the CDN. By falling
back to the source, we guarantee that all fragments are delivered on time even if the
overlay network cannot retrieve such fragments, thereby guaranteeing the desired level
of QoE.

9.3.2 PLS Agent
In the absence of our PLS agent, the HTTP live streaming process starts from the video
encoder which outputs video “fragments” of constant duration δ as they are “born”
in real time. Each fragment is created in multiple qualities (bitrates) simultaneously.
Therefore, a fragment is uniquely identified by a timestamp and a bitrate.The fragments
are published on a standard web-server. In addition to that, a constantly-changing man-
ifest file is updated to contain the newly-born fragment.

To start playing a stream, a player makes an HTTP request to fetch the manifest,
learns what is the latest fragment, then makes a second request to access the fragment
with the highest timestamp (the most recent) in the manifest and continues retrieving a
piece every δ seconds. Since the stream is usually CDN hosted, therefore, based on the
throughput of the CDN, the player jumps to a higher bitrate or a lower bitrate starting
initially from the lowest. The bitrate switches are performed to make sure the player is
not drifting from the live playing point.

In the presence of our PLS agent, all player requests, are redirected to the local PLS
agent instead of going directly to the source of the stream and that is the only change
that needs to occur compared to normal operation without our agent.

Internally, as illustrated in Figure 9.1, the PLS agent has an HTTP server which re-
ceives sequential HTTP requests, detects which protocol they are made for, that being
Apple’s HTTP Live Streaming (HLS)[22], Adobe’s HDS[23] or Microsoft’s Smooth Stream-
ing (SS)[24], and forwards them to a protocol-specific component which extracts rel-
evant information and generates protocol-neutral requests to the Distributed Cache
component. The latter decides whether a request can be served from the source or
from the P2P network using a Fragment Index, that keeps track of fragments available
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Figure 9.1: PLS agent architecture

on other peers. Manifest files are always retrieved from the source and are never cached
since they are updated frequently and they contain live information about the newly
released fragments.

The process described above is of a reactive nature, that is all requests to the Dis-
tributed Cache come from the player after protocol-specific translation. In addition to
this, SmoothCache 2.0 implements a process which pro-actively downloads fragments
ahead of time and before they are requested by the player. The component responsible
for this operation is called the Pre-Fetcher.

To implement the distributed cache abstraction described above, a set of compo-
nents for Overlay management work together to maintain the agent’s neighborhood and
update the fragment index. For efficient retrieval of data from other parties, an HTTP
client maintains a keep-alive connection to the source of the stream, while a P2P trans-
port layer utilizes state of the art NAT traversal [27] and a variable priority application-
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layer congestion control protocol [28] for transfers to and from other peers.

9.3.3 Server Infrastructure

The following is a list of services that we operate and which offer various helper func-
tionalities to our PLS agent: a) Admission: upon entering the system, every peer is as-
signed a unique identifier which is a hash of it public key. Peers are admitted to the net-
work and can communicate with the infrastructure servers and other peers after their
identifiers are verified to be signed by this server, b) Bandwidth Measurement: each
peer, upon startup, measures his bandwidth using this server. This measured band-
width is used afterwards in the overlay construction algorithms, c) NAT rendez-vous:
we use an augmented STUN [29] server to facilitate the traversal of network address
translation (NAT) gateways. Additionally, upon startup, this server helps each agent de-
tecting the NAT type of the gateway it is behind, according to the classification defined
in [27], d)Tracker: The tracker is used to introduce peers to each others and disseminate
information about them such as bandwidth capacity and NAT type. The tracker service
also plays an essential role in identifying the best peers in the system for the overlay
construction process.
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9.4 Beyond Baseline Caching

We have, up until now, described a fully functional distributed caching system, where
peers pull content from a random mesh overlay network upon player request. It is how-
ever necessary to utilize a more involved set of strategies to reach our goal of providing
minimal load towards the source of the stream, while retaining quality of user experi-
ence of a hardware CDN. As a first step towards our goal, we elaborate on details regard-
ing the functioning of production HTTP live streaming chains in order to understand
how to provide the same kind of service. Then, we present a set of heuristics which lever-
age that knowledge to enhance the performance with respect to our baseline caching
system.

9.4.1 The Window of Opportunity
In the HTTP live streaming chain, the lifetime of a given fragment i includes three main
events: a) the time at which it is born, which is also its time stamp ti , where the differ-
ence between any ti+1 − ti is a constant duration δ, b) the time at which it is published,
i.e. the time t m

i at which it gets included in the live streaming manifest resulting in peers
inquiring about the latest available fragments being aware of the birth of fragment i , and
c) the time t r

i at which i is requested by the player of a certain client. The typical case
for typical hardware CDNs offering HTTP live streams is to artificially introduce a delay
µ between the birth of a fragment and its inclusion in the manifest i.e. t m

i − ti = µ. This
delay is to allow the propagation of the fragment to all CDN nodes. To be more specific,
the born fragment is transferred to the CDN nodes as fast as possible andµ is configured
to be long enough such that by the time i is included in the manifest, it is available on
all CDN nodes. As shown in Figure 9.2(a) all peers are delayed µ seconds from the ac-
tual live playing point and all peers have their request time t r

i in the period [t m
i , t m

i +δ],
before the next piece is born.

Conversely, the time period between the generation of a fragment at the source ti

and the time at which the fragment has to be handed over to the player t r
i constitutes

the window of opportunity for distributing the fragment to all viewers in the system
before the player requests it.

9.4.2 Exploiting the window of opportunity
We leverage this window of opportunity in two ways: first, by constructing an efficient
overlay structure to enable quick dissemination of data between nodes in the system,
and, second, by letting nodes prefetch data both from the source and from the other
peers. The best peers in the overlay network are allowed to prefetch directly from the
CDN in a rarest-first fashion, while all others prefetch from their partners in a greedy
manner. That said, we have to stress that our solution does not introduce any additional
delay, i.e., in the absence or presence of our distributed cache, a player will request the
live content always µ seconds after its birth as in the case of a hardware CDN deploy-
ment.
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Overlay construction

We strive to create a hierarchy of peers - yet without loosing the robustness of the ran-
dom mesh - where peers with high upload capacity are closer to the source. We do that
by creating a overlay comprising all peers in the system which internally self-sorts itself
in such a way that each peer always picks uploaders with higher bandwidth than its own.
This process is fully distributed and it is tailored to create an emergent behaviour which
causes nodes to form a delivery mesh where peers with the best upload capacity are
placed closer to the source of the stream and all others progressively further depending
on their upload capacity. A number of additional factors are considered and the details
on how our overlay construction heuristics are described in Section 9.4.3.

Prefetching

We implement prefetching heuristics which allow for a node to fill up its local cache with
fragments that are about to be requested by the player, therefore limiting the probability
of a node having to retrieve content directly from the source of the stream. Fragments
are prefetched sequentially following their playback’s order and only one fragment is
prefetched at a time. However, sub-fragments of the same fragment may be downloaded
in parallel from different sources. In our system, we implement two types of prefetching:
proactive and reactive.

In proactive prefetching, we select a subset of peers in the system, which we call first
tier peers, to behave exactly as CDN nodes would. That is, they aggressively prefetch
and cache fragments as soon as they are born in order to make them available to the
rest of the overlay. Proactive prefetching makes sure that the window of opportunity in

our system is the same as that of a CDN, a fragment is prefetched at a point t f
i where

ti ≤ t f
i ≤ ti +µ]. The first tier peer selection process is tracker-assisted and it is tasked

to identify a few peers among the ones with best upload capacity such that the their
aggregate upload capacity is enough to supply the rest of the peer-to-peer.

We implement reactive prefetching which allows prefetching of fragments between
peers as soon as they become available from their neighborhood. The download of a
fragment at a peer’s end is triggered by the reception of an advertisement for that same
fragment from one or more neighbors. Reactive prefetching is enabled on all nodes in
the system such as to maximize the whole peer-to-peer network utilization. Therefore

t f
i for a given ti will differ depending on how close a peer is to the CDN.

In Figure 9.2(b), we visualize the timeline of a fragment’s delivery in our system us-
ing our prefetching heuristics. First tier peers use proactive prefetching to request the
fragment as soon as it is born. After that, the fragment is reactive prefetched from the
first tier peers by the rest of the overlay. For simplicity, we classify the overlay by a peer’s
upload capacity and in three bandwidth classes: high, medium and low. As we can
see, the fragment is first downloaded by peers in the highest bandwidth class and then
by the ones in medium and in low. This is an effect of our bandwidth-ordered overlay
structure.
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Multi-bitrate support

Multi-bitrate support is not achieved by constructing a separate overlay for each bitrate.
Instead, first tier peers prefetch more than one bitrate. A small price which we decided
to pay instead of creating churn by frequent hopping between different overlays.

Regarding overlay construction, peers preferably choose neighbors that are down-
loading (prefetching or watching) the same bitrate as they are watching. On top of that,
each peer will keep a small selection of other peers that are downloading bitrates im-
mediately adjacent to the one it is watching. This as to quickly adapt to bitrate switches
without having to fall back to the source of the stream. Note that the invariant of each
peer choosing neighbors with higher upload bandwidth is kept even when watching a
multi-bitrate stream.

9.4.3 Overlay Construction
The overlay construction process is divided into three sub-processes which are: first
tier construction, out-partners selection and in-partners selection. In order to provide
overlay samples as input to the latter, we also implement a distributed peer sampling
service.

All peers run the same neighborhood selection process, where each peer p chooses
a number of candidates out of a local sample S ⊂ P of all peers P in the overlay to
become part of its neighborhood. A peer’s neighborhood is composed of two sets, the
in-partner set Ip and the out-partner set Op . Ip contains peers that p has chosen to act
as uploaders for fragments. The out-partners of a peer p are the partners that have cho-
sen p as in-partner and p accepted them as such. Peer p accepts a maximum number of
out-partners Omax

p depending on its maximum bandwidth capacity up that is estimated
against our bandwidth measurement service.

9.4.4 Peer Sampling
By periodically contacting the tracker service, each peer keeps its random sample S of
the overlay up-to-date. Samples are also exchanged among peers. We use our NAT-
resilient peer sampling service called WPSS [30]. The service returns a uniform random
sample of the nodes in the network, which is added to S. Each peer entry in it contains:
a peer identifier, the peer’s NAT-type and the maximum upload capacity. This informa-
tion is periodically refreshed by the sample service and by the tracker service and used
as input in the neighbor selection process.

9.4.5 In-partners Selection
Let I max

p be the desirable size of Ip , the set of in-partners for a peer p. Every peer pe-
riodically updates its Ip set after a period of Tr epai r seconds by removing a subset of
under-performing peers I r

p . A new set of peers I a
p is then selected from its local sample

of the overlay S and added to Ip . This update happens only if p has not been getting all
the content from the overlay network in the last period Ts .
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The in-partner selection process makes sure that
∣∣Ip

∣∣= ∣∣∣Ip \ I r
p

∣∣∣+∣∣∣I a
p

∣∣∣= I max . I r
p has

size
∣∣∣I r

p

∣∣∣= min(β∗I max , I max−∣∣Ip
∣∣) andβ is a replacement factor typically set toβ= 0.3.

Each peer strives to obtain a number of in-partners which is equal to I max as a safety
measure in order to have readily available an alternative sender if connectivity issues,
congestion or churn temporarily prevent him from retrieving content from one of its
partners.

Remove Filters

We here define a set of removal filters, which are applied to the current Ip , and that
output the set of peers I r

p to remove from Ip .
Prefetching point. This filter identifies and removes all the peers in Ip that are

prefetching fragments later than p. We do so by estimating the prefetch indicator pi (i ) =
t f

i − t r
i for each fragment i , which is the difference between the time i was prefetched

and the time i was requested by the player. Note that we use t r
i as a point of reference

because we assume that the time between two fragment requests is constant and corre-
sponds to δ. On top of that, we assume that all peers request the same fragment i in a
period of time [t m

i , t m
i +δ], as explained in Section 9.4.1.

Peers estimate their average request indicator pi over the last downloaded frag-
ments and then piggy-back it to all fragment advertisements. In the filter, we compare
p’s average request point with all of its current partners’ and remove partners which
have a smaller pp than peer p. The filter is defined as follows:

I ′p = { q | pi q < pi p , q ∈ Ip },

where pi q is the average prefetch point of peer q and pi p the one of p.
Successful transfers. The filter has the goal of removing a fixed number of under-

performing peers in to order to promote discovery of new ones. We define the ordered
tuple Q = (q0, q1, ..., qn) containing all peers in I ′p . The tuple Q is ordered in ascending
order according to the number of successful fragment downloads from each peer in the
set in the last period of time Tr epai r . We then select and filter the ones with the fewer
number of successful downloads until we remove a minimum of peers from the set, that
is |I r

p | =β∗ I max
p .

I r
p = { (q0, q1, ..., qk ) | k ≤ max{ 0, |I ′p |− I max

p (1−β) }}

Add Filters

Add filters have the purpose of selecting which peers will be added to Ip . Add filters are
applied to S and produce a set of best candidates peers I a

p .
Connectivity. We filter out any peer q which cannot establish bidirectional connec-

tivity with p.

S′ = { q | i mp(τ(p),τ(q)), q ∈ S }
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i mp(τ(p),τ(q)) is a predicate that evaluates to true if bi-directional communication
between p and q is not possible according to [27], where τ(q) is the type of NAT/fire-
wall/gateway that q is behind.

Bandwidth. This filter removes all peers from S′ which have lower bandwidth ca-
pacity than p. The rationale behind this is to have peers in a certain bandwidth range
become partners with peers of similar or higher bandwidth. This filter together with the
out-partner selection process described in the next section makes possible to construct
an hierarchical overlay structure based on bandwidth capacity of peers.

S′′ = { q | up < uq , q ∈ S′}

Bitrate. The filter picks a finite subset R of size N from S′ according to the bitrate
peers in S′ are downloading. The rationale behind the filter is to preferably choose peers
from S′ which are watching the same bitrate b peer p is watching and, additionally, a
number of other peers which are watching the bitrates immediately higher and lower
bitrate b.

We hereby describe how set R is constructed. Let Sk be the set of peers which are
downloading bitrate k from S′′, and let Sn

k be a set of size nk from Sk without replace-
ment. We define α as the percentage of R to be chosen from Sb (the bitrate p is watch-
ing). αb−1 and αb+1 are instead the percentages of the elements to be chosen from Sb+1

and Sb−1, where b +1 and b −1 are the bitrates immediately lower and higher than b,
respectively. The values of αb+1 and αb−1 are calculated as:

αb+1 =
{

1−α
2 , 1 < b < B

1−α, b = 1

αb−1 =
{

1−α
2 , 1 < b < B

1−α, b = B

Here B is meant as the largest bitrate of all bitrates watched by peers in S′′. We then
estimate nk , the number of elements to pick from each set Sk in the following way:
nk = min(N ∗αk , |Sk |) for k = b,b −1,b +1. At this point, we can build the output of the
filter I a

p as:

I a
p = {p ∈ Snb

b ∪Snb−1
b ∪Snb+1

b }

If |I a
p | = N then the set I a

p is returned as is. Otherwise, a sample of w = N −nb −
nb−1 −nb+1 values is randomly selected from the set A = ⋃

j=1..nb

S j \ R and added to I a
p .

9.4.6 Out-partners selection
The out-partner selection process is responsible for choosing, upon a partnership re-
quest from a downloader, if the request should be accepted or not. If that is the case, an
existing partner may be evicted from the set of out partners. We hereby describe how
this process works.
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We define Omax
p as the maximum number of out-partners for peer p. This is calcu-

lated as Omax
p = min(up /bp ). As long as |Op | <Omax

p , new outgoing partners that chose
p as in-partner are accepted. Every newcomer is given a grace period Tg r ace where it
is not considered for eviction, when Tg r ace is over and the peer has not requested any
fragment from p, the peer is added to a set Or

p . Consequently, Or
p contains at all time

the partners which may be considered for eviction. If new applicant q , i.e. a downloader
requesting to become partner of p, has a maximum upload bandwidth uq that is larger
than any of the peers in Or

p , the peer with the smallest maximum upload capacity in Or
p

is evicted and replaced by q .
The bandwidth-based out-partner selection policy makes sure that the best peers

in the system, e.g. the first tier peers, accept as out-partners only the best peers in the
second tier. The latter will do the same and the overlay will self-organize in an hierar-
chical structure where peer bandwidth’s utilization is maximized at every level of the
second tier. As such, we increase the efficiency of delivery in the overlay and minimize
the probability of falling back to the source.

9.5 Prefetching

9.5.1 Proactive prefectching
We have designed a process for deciding on a set of peers which proactively prefetch
content from the source and make it available to the rest of overlay. The process is
tracker-assisted. Every peer p reports its number of out-partner slots Op and the bitrate
it is watching b(p) to the tracker. Periodically, the tracker executes the first tier construc-
tion heuristic and communicates to a subset of peers to activate proactive prefetching
on a specific bitrate.

The first tier construction process relies on the assumption that the overlay is orga-
nized in a bandwidth-ordered fashion, where peers with the highest upload capacity are
positioned closer to the source of the stream. First tier peers are selected among those
best peers as they offer the best download to upload ratio and therefore can serve a large
amount of peers with relatively small load on the source.

The goal of first tier construction is to choose the least possible number of peers
while maintaining two constraints: i) all peers are provided for, either from the first tier
peers or from the rest of the overlay, ii) all peers retrieve fragments from the overlay
before the player actually requests them, that is a period of time µ after the fragment is
generated at ti as defined in Section 9.4.1.

Intuitively, the more peers prefetch from source of the stream, the quicker the dif-
fusion on the overlay will be and thus the lower the probability that a peer will have to
request from the source. Alternatively, a small number of peers prefetching from the
source would provide higher savings towards the source but also increase the probabil-
ity of peers failing to retrieve fragments in their entirety from the overlay.

In order to estimate correctly the number of peers prefetching from the source, we
designed a simple heuristic which models the overlay as a multi-row structure where
first tier peers are positioned in the first row and all others in lower levels depending
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Algorithm 6 Row construction heuristic

Input: P = (p0, p1, ..., pn),L
Output: F
begin

1: F ′ ← P
2: i ← 0
3: while F ′ 6= ; do
4: i = i +1
5: r = 0
6: F = { pn : n ≤ i }
7: F ′ = P \ F

8: upRowC ap =
F∑

k=1
|Ok |

9: cur RowC ap = 0
10: while F ′ 6= ; and r ≤ L do
11: q = q0 | F ′ = {q0, q1, ...}
12: F ′ = F ′ \ q
13: if upRowC ap − I max > 0 then
14: upRowC ap = upRowC ap − I max

15: cur RowC ap = cur RowC ap +Oq

16: else
17: r = r +1
18: upRowC ap = cur RowC ap
19: cur RowC ap = 0
20: end if
21: end while
22: end while
end

on their upload capacity, in descending order. The heuristic is a variation of the tree-
construction algorithm described in our previous work [31].

We have to stress at this point that the following heuristic is only used as an approx-
imation method to compute the number of first-tier piers while the actual construction
of the overlay is achieved in a completely decentralized fashion in a mesh topology as
described in Section 9.4.3.

First tier construction heuristic. The heuristic takes into account the constraints
defined earlier by making sure that: i) each row r has enough upload capacity to serve
the next row r +1, ii) the number of rows does not exceed a maximum of L = µ

δ , i.e. given
that the unit of transfer is a fragment of duration δ, then a fragment should travel from
the first to the last row in a period of length of at most µ, the CDN deadline.

The first tier construction heuristic is shown in Algorithm 6. The input is the de-
sired maximum number of rows L and the set of peers P ordered by the number of
out-partner slots, in descending order. The output is the set of first tier peers F .
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The process starts by selecting a subset F ⊂ P , namely the first i peers, where upRowC ap
is the sum of the number of their upload slots. Then, it iterates over all the non first tier
peers F ′ = P \ F and tries to place each peer q in the current row r .

If the capacity available upRowC ap is enough to accommodate q by sustaining
its number of in-partners I max , then the remaining upRowC ap is decreased and the
number of p’s out-partner slots added to the cur RowC ap. Otherwise, a new row is
created and the current row capacity cur RowC ap becomes the capacity available for
the next row upRowC ap. The row construction algorithm continues to allocate the
peers in F ′ until either all peers from F ′ have been allocated or the number of rows has
exceeded the maximum L. Reaching the first case means that F is sufficiently large. In
the latter case, since not all peers have been allocated, the heuristic increases the set of
first tier peers in F and retries until all peers in F ′ have been placed.

Besides what we described above, we also augment the heuristic to accommodate
for two more factors. First, in order to become an eligible first tier candidate, a peer
needs to be behind a NAT that is easily traversable or is an open Internet node. Second
that peers in F can prefetch multiple bitrates which affects the calculation of upRowC ap
to account for uploading multiple bitrates.

9.5.2 Reactive prefectching
On all peers, the peer-to-peer prefetcher runs in parallel with the player and tries to
populate the fragment cache with upcoming fragments of the same bitrate the player is
requesting, before they are actually requested by the latter. The peer-to-peer prefetcher
retrieves fragments exclusively from the overlay and does so upon receipt of advertise-
ments of downloaded fragments from in-partners. The idea is to increase the utilization
of the P2P network and decrease the risk of failing to fetch a fragment in time when re-
quested by the player.

Traffic Prioritization. To implement this proactive strategy we have taken advantage
of our dynamic runtime-prioritization transport library DTL [28] which exposes to the
application layer the ability to prioritize individual transfers relative to each other and
to change the priority of each individual transfer at run-time. Upon starting to fetch a
fragment proactively, it is assigned a lower-than-best-effort-priority, by using the LED-
BAT congestion control implemented in DTL. The rationale is to avoid contending with
the transfer process of fragments that are reactively requested and under a deadline
both on the uploading and downloading ends. On top of that, as almost all the traffic
in our system is LEDBAT traffic, we also avoid interfering with traffic generated by other
applications. Thus meeting the requirement of politeness towards the user and host.

9.6 Evaluation

Our customer network has a total of of around 400000 peers located all over the world.
In order to evaluate our application, we installed an instrumented version of our soft-
ware on a subset of our customers who agreed to let us conduct experiments on their
machines. The experiments are executed remotely using different sets of parameters
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Figure 9.3: Test network bandwidth distribution

according to the needed scenario. Needless to say, these functionalities are removed
from the commercial version of our software.

Th subset of instrumented nodes amounted to around 22000 machines. Neverthe-
less, for each data point in our results, we selected a sample of 2000 randomly-chosen
peers in order to ensure that the results are not valid only for a particular set of ma-
chines. The majority of peers in the network are located in Sweden (85%), while the
others are in the rest of Europe (8%) and the US (5%). In Figure 9.3, we show the dis-
tribution of upload bandwidth in our network. The measurements are made against a
central server. The maximum bandwidth reported is capped to 50Mbps. As we can ob-
serve, the majority of the peers is either on the lower end of the spectrum (0−2.4Mbps)
or the higher (> 49Mbps,) while the others are almost evenly distributed across the rest
of the spectrum.

Regarding connectivity, 79% of the peers were behind NAT, and 18% were on open
Internet and the rest could not be determined or did not allow UDP traffic. In the exper-
iments, we have used our state of the art traversal scheme [27] and were able to establish
bi-directional communication between 84% of all peer pairs.

9.6.1 Test-bed
Stream Properties. We test our application in both single bitrate and multi-bitrate
mode. We used a production-quality continuous live stream configured with different
bitrates according to the scenario we wanted to present. The stream was published us-
ing Microsoft Smooth Streaming traditional tool chain. The bandwidth of the source
stream was provided by a commercial streaming server and a commercial CDN for the
fallback. We made sure that the CDN had enough capacity to serve the maximum num-
ber of peers for all tests we run. This setup gave us the ability to compare the quality of
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Figure 9.4: Single bitrate, resource-rich scenario

the streaming process in the presence and absence of P2P caching in order to have a fair
assessment of the effect of our application on the overall quality of user experience.

In order to create the most realistic conditions for our tests, we let the peers execute
the standard Silverlight player, although in headless mode, which does not render the
video and does not require user intervention.

Aside the services described in Section 9.3.3, the rest of our test infrastructure com-
prises of a logging server and a controller to launch tests remotely.

Reproducibility. Each test to collect one data point in the test network happens in
real time and exploring all parameter combination of interest is not feasible. Therefore,
we did a major parameter combinations study on our simulation platform [32] first to
get a set of worth-trying experiments that we launched on the test network. Another
problem is the fluctuation of network conditions and number of peers. We repeated
each data point a number of times before gaining confidence that this is the average
performance of a certain parameter combination.

Scenarios For single bitrate tests, we define two scenarios, a resource-rich(RR) sce-
nario and a resource-poor(RP) scenario. The resource rich scenario represents the con-
figuration of our standard deployments, while we construct the resource-poor scenario
in order to highlight some of the strengths of our heuristics. In order to estimate the
resources available in each scenario we introduce the notion of resource factor, that is
defined as:

RF =
∑N

i=1 mi n(ui ,Omax ∗bi )

N
(9.1)

N is the number of peers in the network and ui is the measured upload capacity of
peer i . Omax is a global system parameter that establishes a maximum on the amount of
out-partners allowed on any peer, that is for limiting the number of upload bandwidth
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Figure 9.5: Single bitrate, resource-poor scenario

utilized on the best peers in the network and therefore promote politeness towards our
customers’ machines. Finally, bi is the stream’s bitrate. The resource factor represents
the average number of streams that a peer is able to upload to neighbors for all peers in
the network.

In the resource-rich scenario, we use a random sample of 1000 peers from the en-
tirety of our test network, we let the peers watch a 688K bps bitrate stream and we limit
their Omax to 10, with a resulting resource factor of RF = 5.

In the resource-poor scenario instead, we pick a random sample of again 1000 peers
from the lower end of the bandwidth distribution, that is from 0 up to 11Mbps. Then,
we let the peers watch a stream of 1200Kbps, while the maximum number of out part-
ners is Omax = 5. The resulting resource factor for this scenario is around 2.5. It is
important to highlight that the resource factor estimation does not take into account
connectivity limitations between peers, i.e. NATs/firewalls, and therefore it is safe to
assume that the effective resource factor for both scenarios is actually lower.

For multi-bitrate tests, we use the same configuration of the resource-rich scenario
but with 3 video bitrates, that is 331, 1000, 2000 Kbps. Note that Omax is kept to a very
low number on all peers, Omax = 10 for multi-bitrate and single bitrate RR and Omax

i = 5
for single bitrate RP . This is to promote fairness and spread the load of the distribution
across all peers and politeness towards the host.

9.6.2 Experiments

All experiments have a duration of 10 minutes. Peers are joined uniformly in a period of
time of one minute and churn depends on the test at end.
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Figure 9.6: Multi-bitrate

Savings Using a single bitrate stream, we analyse the impact on savings of each of
the main processes of our system: peer-to-peer pre-fetching, first tier construction and
pre-fetching, in-partner selection and out-partner selection.

As reference for our experiments, we use baseline caching as described in Section 9.3.1,
with all the aforementioned processes disabled. We then enable them one by one start-
ing from peer-to-peer pre-fetching. In Figure 9.4, we show the evolution of savings in
time in the single bitrate resource-rich scenario. As we can observe, peer-to-peer pre-
fetch yields to a fairly small improvement in savings from the baseline (from 60% to 66%
at steady state) because peers have short time to exchange data, as fragments become
available from an uploader only when they are downloaded on response to a player re-
quest. Activating first tier construction and pre-fetching leads instead to a significant
increment in performance ( 94%) because of the additional time µ allowed for peer-
to-peer prefetching to provide to the rest of the overlay. However, enabling the overlay
construction policies provides only a small increase in savings ( 96% at steady state).
This is because of the abundance of resources in the scenario, where few peers can pro-
vide for most of the overlay network and therefore there is no need for a hierarchical
structure in the overlay.

In Figure 9.5, we show the effect of the same processes but in the resource-poor
scenario, always using a single bitrate. In this case, the overlay construction heuristics
contribute to most of the savings, 82% at steady state, while the out-partner selection
brings the savings to 92% on average. It is evident that, in the resource-poor scenario,
constructing an efficient overlay where peers with higher upload capacity are arranged
closer to the source is of vital importance to achieve high levels of savings.

We now consider savings in the multi-bitrate scenario, Figure 9.6 presents the evo-
lution of savings in the system for all bitrates combined (95% at steady state) and for
each bitrate separately. As we can see, the savings for low bitrates are lower (70%) than
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the ones for the highest one (98%). This is due to peers continuously switching from
the lowest to the middle bitrate and vice versa, therefore not being able to stabilize their
in-partner set for retrieving all the content from the overlay. The switching happens
throughout the test and we attributed it to the bandwidth oscillations in the test-bed
that are out of our control.

In Section 9.5.2, we described how transfers are assigned lower-than-best-effort pri-
ority while proactively pre-fetching from other peers. We have estimated the low prior-
ity traffic to be on average 97% of the cumulative peer-to-peer traffic during the afore-
mentioned multi-bitrate tests. For the previous single bitrate experiments instead, we
have achieved 98% and 95% for the resource-rich and resource-poor scenario, respec-
tively. Consequently, in all our testing scenarios we have met the requirement of polite-
ness towards the host and other network traffic.
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Figure 9.9: Classification of cumulative peer-to-peer transferred data per bandwidth class

Quality of user experience Getting savings alone is not a good result unless we have
provided a good user experience. To evaluate the user experience, we use two metrics:
First, the percentage of peers who experienced a total buffering time of less than 5 sec-
onds, i.e. they enjoyed performance that did not really deviate much from live. Second,
showing that our P2P agent did not achieve this level of savings by forcing the adap-
tive streaming to move everyone to the lowest bitrate. For the first metric, Figure 9.7
shows that we can make 95% of the network watch the stream with less than 5 seconds
of buffering delay. For the second metric, Figure 9.8 shows also that, as indicated by bars
with the SmoothCache2.0(S2) label, 92.75% of all consumed traffic was on the highest
bitrate and P2P alone shouldering 84.96%, an indication that, for the most part, peers
have seen the video at the highest bitrate with a major contribution from the P2P net-
work.

P2P-less as a Reference. We take one more step beyond showing that the system of-
fers substantial savings with reasonable user experience, namely to understand what
would be the user experience in case all the peers streamed directly from the CDN.
Therefore, we run the system with P2P caching disabled. Figure 9.7 shows that with-
out P2P, only 1% less (94%) of all viewers would have a less than 5 seconds buffering. On
top of that, Figure 9.8 shows that 0.62% less (92.13%) of all consumed traffic is on the
highest bitrate. As shown, our solution provides the same or slightly better user experi-
ence than the one of the CDN.

Overlay organization In order to show that our heuristics indeed promote a hierarchi-
cal structure of the overlay based on bandwidth, we categorize, for one run, the cumula-
tive peer-to-peer traffic for each bandwidth class including first tier peers in Figure 9.9.
Each stacked bar shows the percentage of peer-to-peer traffic coming from different
peers classes. We consider here a resource-poor scenario.
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Figure 9.10: Scenario 1% churn

As we can see, all p2p traffic in the first tier comes from other first tier peers. That is
not true however for the the first bandwidth class (from 9000 to 11000Kbps) on the rest
of the overlay, with just 40% of the traffic coming from the first tier. We can also observe
that bandwidth class [9000,11000) provides for most of the second and third bandwidth
classes in the overlay. Instead, the last class [0,2400), that is the largest by number of
peers N = 555, takes only half of data from peers in the first and second bandwidth
class, while striving to retrieve data from the same class and the class above. For all
classes, the invariant of not retrieving data from a lower bandwidth class is maintained.

Effect of churn We now explore the performance of our system under churn. Fig-
ure 9.10 shows the evolution of savings in a scenario where, after two minutes from the
start of the experiment, we start failing and joining 1% of the nodes every 10 seconds
until the 9th minute. This is consistent with the churn experienced in our commer-
cial deployments. In both multi-bitrate scenario (labeled as [0.3,1,2]Mb/s) and single-
bitrate (688K b/s, on RR configuration), the churn has only small negative impact on the
savings, which is quantified to a maximum of 3% during the time the churn process is
active on both scenarios.

In Figure 9.11, we create a churn scenario where 50% of the peers leaves the overlay
network in one minute at time 6 minutes, which models a massive failure in the net-
work. This churn pattern leads only to a drop in savings in the multi-bitrate scenario,
from 95% to 88%, from which the system recovers after one minute the churn event
stops. In the single-bitrate scenario, the drop is much smaller, from 98% to 95%.
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Figure 9.11: Massive failure scenario

9.7 Conclusion

In this work, we have presented the SmoothCache 2.0 system. The main motivation
behind it is to cope with the recent shift in commercial live streaming protocols to use
HTTP as the transport protocol instead to RTSP/RTP where timeliness is kept not by
skipping video fragments but by changing bitrates. Our main target scenario is to de-
crease the load on a CDN broadcasting a live stream while offering the same quality and
not the more typical P2P live streaming setting where a consumer machine with limited
bandwidth is the source of the stream.

The approach of this work could be summarized as follows. Given the existence of
an internal delay inside CDNs while releasing live video streaming fragments, we pro-
mote a small subset of powerful peers to act similarly to CDN nodes, by aggressively
prefetching fragments as they are created. We make sure, then, that all prefetched data
is propagated in the network within a small window of time. The goal is to make video
fragments available to all peers after a delay that is not higher than they would expe-
rience by accessing the CDN directly. The fast propagation during the small window
of time is made possible by employing two main techniques: i ) a mesh-based over-
lay structure which enforces a hierarchy based on upload bandwidth but additionally
takes into consideration other factors like connectivity constraints, performance his-
tory, prefetching point and currently watched bitrate i i ) a mix of proactive and reactive
prefetching strategies with various levels of aggressiveness using an application-layer
congestion control balancing high dissemination efficiency and politeness.

Our evaluation on real consumer machines, shows that SmoothCache 2.0 delivers
source bandwidth savings of up to 96% in a high bandwidth resource scenario, while it
manages to save 92% in a constrained bandwidth scenario. Besides achieving high sav-
ings, we showed that our system meets the same quality of user experience as a CDN.
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When all the peers watched the stream directly from the CDN 94% of the viewers ex-
perienced a maximum delay of 5 seconds, and 92% watched the highest bitrate. Both
metrics were matched using P2P distribution albeit with substantial bandwidth source
savings.
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SmoothCache Enterprise: adaptive HTTP live
streaming in large private networks

Abstract

In this work, we present a distributed caching solution which addresses the
problem of efficient delivery of HTTP live streams in large private networks. With
our system, we have conducted tests on a number of pilot deployments. The largest
of them, with 3000 concurrent viewers, consistently showed that our system saves
more than 90% of traffic towards the source of the stream while providing the same
quality of user experience of a CDN. Another result is that our solution was able to
reduce the load on the bottlenecks in the network by an average of 91.6%.

A extended abstract about this work has been published as:

Roberto Roverso, Sameh El-Ansary, and Mikael Höqvist. On HTTP live streaming in large en-
terprises. In Proceedings of the ACM conference on applications, technologies, architectures,
and protocols for computer communication [1]. SIGCOMM 2013, Hong Kong, China, 2013

10.1 Introduction

In the last years, the streaming industry has witnessed a shift from the RTP/RTSP stan-
dard towards HTTP live, a set of protocols which all utilize HTTP for delivery of live and
on-demand content in IP networks [2]. Microsoft, Adobe and Apple have developed
players which embrace HTTP-streaming and the concept of adaptive bitrate switching
as the main approach for broadcasting. HTTP live has been adopted by content services
and creators like Netflix, Hulu and the BBC with support across all platforms and OSs,
including computers, tablets and smart phones.

The main challange of delivering HTTP-based live streams is the unicast nature of
the HTTP protocol. This creates a potential bottleneck at the source of the stream with
a linear increase in bandwidth demand as the number of viewers increases. A natural
approach, which is also the primary solution to handle capacity issues for normal HTTP
traffic, is to introduce caching. For HTTP live this is the only alternative since there is
no multicast support.

While caching of HTTP live via Content Distribution Networks (CDNs) is common
for the open Internet, it is challenging to deploy efficiently within private networks such
as those operated by corporations or other entities. Larger private networks intercon-
nect multiple network segments representing geographically distributed offices with
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fixed VPN links. Inside an office, the network is constructed with high capacity links
and switches. Traffic from and to the public Internet is routed through a gateway link of
fixed capacity or through one or more segments until a gateway link is reached.

The main bottlenecks in private networks are the VPN and gateway links which are
typically not dimensioned to sustain the load of delivering one or more streams to a
large amount of viewers at the same time. While a private CDN would dramatically im-
prove the efficiency of HTTP live performance, it is hard to deploy and manage since it
requires i ) new or upgraded caching hardware to support HTTP live i i ) that each net-
work segment is covered to handle the bandwidth load of all potential viewers, i i i ) han-
dling of heterogeneous network infrastructure resulting from network changes such as
company acquisitions and mergers.

In this work, we are exploring a software-based CDN for HTTP live in private net-
works. We leverage the experience acquired in our previous research on improving the
efficiency of delivery of HTTP streams over the Internet, where we proposed a peer-to-
peer distributed caching approach [3][4]. Based on the same principles, we design an
overlay which minimizes inter-segment traffic. In doing so, we enable efficient HTTP
live streaming without the need of deploying and managing expensive and specialized
hardware. In addition, we evaluate our solution in real-world deployments in private
networks which allows us to present unique insights into the problem at hand.

It is paramount to note that the goal of this platform is actually minimizing inter-
segment traffic rather than only providing savings towards the source of the stream as
in our previous work [3][4].

10.2 Challenges

In this section, we identify a set of challenges and requirements which a distributed
caching system must satisfy to be a viable solution for HTTP live streaming in a private
network.

Locality and structure awareness. The overlay must be constructed to follow the
physical structure of the private network in order to keep traffic within local segments
and offload gateway and VPN links.

Bitrate switching. An HTTP live player dynamically switches between different bi-
trates for the same stream depending on the available bandwidth and host rendering
capabilities. Our solution must therefore be able to quickly handle bitrate changes.

Vendor neutrality. Support different players and protocols such as Microsoft’s Smooth
Streaming, Adobe’s HTTP Dynamic Streaming and the upcoming standard MPEG-DASH.

Politeness. The delivery and relaying of content should not interfere with other ac-
tivities of the user or network traffic generated by critical services.

Finally, in our industrial experience, we have found that quality of experience (QoE)
is a feature that content owners are not willing to compromise on. Our service should
then strive to improve efficiency of distribution while providing QoE which matches the
one of private CDNs.
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10.3 System Overview

In HTTP live streaming protocol every fragment is fetched as an independent HTTP re-
quest that could be scheduled on caching servers. The difference in our solution is that
the caching is done at desktop machines instead of dedicated servers. The HTTP player
is directed to a local caching agent which acts as an HTTP proxy. All traffic to/from the
source of the stream as well as other peers passes by the agent. Upon a content frag-
ment request, the caching agent tries to timely retrieve the data requested by the player
from other peers in the overlay. If a fragment cannot be retrieved from any other peer
on time, the agent downloads the missing portion of the fragment from the source of
the stream, e.g. a public CDN. By falling back to the source, we guarantee that all frag-
ments are delivered on time even if the overlay network cannot retrieve such fragments,
thereby guaranteeing the desired level of QoE. This process is engineered to make the
agent totally transparent to the player and the streaming infrastructure. In this manner,
our platform can support all HTTP-based live streaming protocols.

10.3.1 Overlay Construction
Our distributed caching system is implemented as a self-organizing system based on a
mesh overlay network. When joining the system, peers are introduced to other partici-
pants by a tracker. After that, they build a random overlay which is used for dissemina-
tion of live peer information, e.g. throughput and playback quality. A network segment
id is provided by a central registry, with a mapping provided by the network’s owner.
Peers choose their neighbors by sampling their local view and by ranking peers accord-
ing to the aforementioned information. Peers make sure to partner with nodes which
are retrieving different bitrates, in order to adapt quickly to player bitrate switches.

One or more peers in a segment are promoted to act as live caches for all others in
the same segment. The promotion process is implemented either with the help of a
locality-aware central service or by means of a distributed K-leader election algorithm
similar to [5]. In order to determine the peers to be promoted, we utilize an absolute
ranking based on metrics such as computational load, bandwidth and connectivity.

10.3.2 Delivery
Promoted peers are tasked with prefetching content ahead of all other peers in the same
segment. The prefetching happens either from the source of the stream or from other
nodes outside their segment. We manipulate the prefetching in a way that promoted
peers retrieve the stream from the CDN only if their segment has a gateway link, as the
content is typically provided by a source external to the private network.

As soon as a fragment is prefetched, other nodes in the segment start to retrieve it
from the promoted peer using lower-than-best effort priority [6], as not to interfere with
other critical traffic in the network.

A sample delivery overlay is shown in Figure 10.1, promoted peers are highlighted
in black, while the others in orange. Arrows denote the traffic’s flow across the gateway



214

CHAPTER 10. SMOOTHCACHE ENTERPRISE: ADAPTIVE HTTP LIVE STREAMING IN LARGE

PRIVATE NETWORKS

Figure 10.1: HTTP live delivery in a private network with our solution

(GTW) and VPN links, as well as across the network segments.

10.4 Differences between SmoothCache 2.0 and SmoothCache
enterprise

SmoothCache 2.0, presented in Chapter 9, and SmoothCache enterprise are essentially
the same system. They differ however on these three points:

• Locality-centric overlay. In SmoothCache enterprise, the overlay construction
mechanism works similarly to SmootchCache 2.0, except that the choice of part-
ners is strongly biased towards peers that are, first, in the same network segment
and, then, in the same geographical location or Autonomous system but in other
segments.

• A first tier for each segment. While in SmoothCache 2.0 there exists a single first
tier peer set for all the overlay, in SmoothCache enterprise a different set of first
tier peers is promoted for each network segment. The election is carried out in a
distributed fashion inside each segment as described in Section 10.3.1.

• Reactive Prefetching locality. In SmoothCache enterprise, peers reactively and
aggressively prefetch fragments, as in SmoothCache 2.0, but do so only from peers
in the same network segment.

10.5 Preliminary results

We currently have a number of deployments in corporations with offices all around the
globe. On these installations, we have conducted a series of pilot events using Smooth-
Cache enterprise. In this section, we show a sample event in detail to prove the validity
of our approach.
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Figure 10.2: Evolution of number of viewers, Real event

10.5.1 About Deployments

Deployments of our application are done following a fairly standard process. First, we
deploy our client application on all hosts of the enterprise’s network. Second, we agree
with the customer on a setup for the streaming chain. This includes a production-
quality continuous live stream configured with a single or multi-bitrate profile. The
stream is usually published using either a CDN that is located externally to the private
network or a streaming server that resides inside the enterprise network. The adaptive
HTTP streaming protocols that are used to transport the stream are Smooth Streaming,
HLS or HDS. Once all of these components are in place, the live broadcast event can
take place. During the event, the viewer is presented with a webpage with an adaptive
HTTP streaming player embedded in it. The player is configured to redirect all requests
to the SmoothCache proxy.

Before the event and after a series of basic tests, we run large scale tests with the
SmoothCache proxy software by operating our software remotely. As part of Smooth-
Cache’s functionality, there is also the possibility of starting and stopping the exact same
player that the viewers will use during the event, but without rendering of content. The
streaming chain used in these instrumented tests is also the same that will be used in the
live events. During instrumented tests, we let peers gather detailed statistics which in-
clude quality of user experience information, locality and overlay structure snapshots.
Since these statistics require peers to send large amount of data, they are turned off
during the live event as not to interfere with the broadcast. Instrumented tests are con-
ducted on a larger amount of concurrent peers than the ones expected during the live
event. The goal then is to stress test the infrastructure and verify that all potential view-
ers can access the stream with sufficient QoE.

In the following section, we present the data gathered during a pilot event conducted
on a sample deployment in a US-based company. First, we show the statistics collected
during the live event, then, we present a more detailed set of statistics obtained from an
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Figure 10.3: Savings towards the source of the stream, Real Event

instrumented test conducted before the event. In all graphs, each data point represents
the aggregate value of the metrics in a 30 seconds period of time.

10.5.2 Pilot Event: US-based company

The US-based deployment comprised 48.000 installations on 89 network segments. The
stream was broadcasted on a single bitrate (1.4Mbps) configuration from a CDN out-
side of the enterprise network using the standard Microsoft SmoothStreaming tool chain.

In Figure 10.2, we present the evolution of the amount of viewers over time. The
stream started at time 0, while the event began at the 50th minute. As we can see, the
peers start to join earlier than the start of the event and then the number raises expo-
nentially to a maximum of around 2000 concurrent viewers. The number stays more or
less constant until the end of the event at minute 145. We accounted for 3529 unique
viewers in total located in 69 network segments.

Figure 10.3 shows the evolution of savings in time towards the CDN, that is the
amount of data which the peers downloaded from the overlay network over the amount
of data downloaded for playback. Since the stream was hosted externally to the private
network, this metric also represents how much we offloaded the gateway links to the
CDN. In total, there were 3 gateways, one for western USA, one for central USA and one
for eastern USA. From the figure, it is clear that even a small amount of viewers in the
beginning can lead to high savings, around 80%, while, after the event started, the sav-
ings reach and remain stable at around 90%. The total amount of data consumed by the
viewers was 1720.45 gigabytes, 87.5% was served from the overlay and 12.1% from the
external CDN.

Regarding quality of user experience, we present in Figure 10.4, the evolution of av-
erage buffering time for all peers over time. In this graph, each data point is the buffering
time experienced by the peers in the network in a 30 seconds time period. This measure
is reported directly by the SmoothStreaming player to our software. The buffering time
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Figure 10.4: Average buffering time over all peers, Real Event

measured here includes the initial buffering time and the time the player stopped the
playback because of starvation. As we can see, between time 0 and 100, when all peers
join, the buffering time reaches a maximum of 0.2 seconds and then becomes much
lower. The reason for that is that, in that time period, we have a large number of peers
starting to watch the stream and therefore buffering before starting to render the con-
tent. This is by far the major contributor to the buffering time, while the buffering due
to starvation (after time 100) is very low.
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Figure 10.5: Evolution of number of viewers, Instrumented Test

Instrumented Test

We present now a test conducted before the event with around 3100 machines. In Fig-
ure 10.5 we show the evolution of number of peers running the tests over time. All peers
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join in the first 8 minutes of the test and then their number stays more or less constant
over the duration of the test until the test finishes at time 25 minutes.
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Figure 10.6: Savings towards the source of the stream, Instrumented Test

Figure 10.6 shows the savings evolution of the test as the percentage of P2P traffic
(P2P Total) over the total amount of video traffic. As we can see, the savings are similar to
the ones of the live event. In the same graph, we can also see the percentage of the video
content that was transferred using lower than best effort priority (P2P Low Priority), as
explained in 10.3.2.
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Figure 10.7: Average savings CDF for all network segments, Instrumented Test

In order to understand how the savings were distributed over the network segments,
we present in Figure 10.7 the CDF distribution of average savings for all segments in the
network. In the great majority of the segments (70%), the savings were higher than 80%,
while in more than 50% of the segments, the savings were more than 90%.
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Figure 10.8: Locality percentage CDF for all network segments, Instrumented Test

We then analyze the peer-to-peer traffic by looking into the percentage of locality,
that is the quantity of peer-to-peer data retrieved from peers in one segment over all the
peer-to-peer data downloaded by peers in that same segment. Figure 10.8 shows the
CDF of the percentage of locality for all segments. Most of the segments, that is more
than 70%, have locality of over 90%, while 20% of the segments have locality close to
100%. That means that only the leader(s) of the segment are retrieving the content from
the CDN, or alternatively from another segment, and providing for the overlay inside
the segment.
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Figure 10.9: Cumulative buffering time classification, Instrumented Test

Regarding quality of user experience, we consider the cumulative delay experienced
by peers during the total duration of the test. In Figure 10.9, we present the classification
of the cumulative delay. Results show that 86% of the clients experienced a cumulative
buffering delay of less than 5 seconds.
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In Figure 10.10, we show a visual representation of the delivery overlay network for
the instrumented test. The hexagons represent the network segments in the enterprise
network. The size of an hexagon is proportional to the number of viewers who watched
from the network segment. The gray lines represent the edges of the delivery network,
that is a gray line exists if data was exchanged between two segments. The thickness of
an edge represents instead the amount of data transferred, that is, the thicker the line,
the larger the amount of traffic.

As we can see in the figure, there are five main clusters of network segments. The
segments are clustered considering the number of transfers and the amount of data
transferred between the segments. In most cases, the clustering also matches the geo-
graphical location of the segments (observed from the labels in the overlay graph). The
main cluster in the center of the figure is made of offices that are located mostly in the
south-eastern part of the United states. The clusters on the left side and the right-lower
side of the picture contain offices from the central part of the US. Instead, the ones on
the right and at the bottom of the picture contain network segments located mostly
on the south and north-eastern parts of the States, respectively. We can also note that
there are very few edges between different clusters, indicating that the locality policies
in SmoothCache do actually work as expected when it comes to geographical location.

Finally, in the figure, we find five network segments which are not connected to any
other segment. This was due to the fact that those segments were behind very restrictive
firewalls which did not allow them to communicate with other branches of the com-
pany.
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Figure 10.10: Overlay visualization, Instrumented Test
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Video streaming accounts for a large portion of the global Internet traffic. Content
providers cope with the demand for online video content by relying on Content De-
livery Networks. As demand for online video is bound to increase significantly in the
coming years and as competition between CDN services becomes fiercer, we argue that
the CDN industry will likely turn to more cost effective solutions based on peer-to-peer
overlays. In fact, we already observe some early signs of that trend for the distribution of
video on demand content with companies such as Akamai pushing for adoption of Net-
Session [1], a peer-assisted content distribution software, and Adobe enabling support
for peer-to-peer video delivery in the Flash framework [2]. These solutions also pro-
vide out-of-the-box support for adaptive HTTP streaming protocols which are quickly
becoming the de-facto standard for video distribution on the Internet. All major actors
in the online broadcasting business, such as Microsoft, Adobe and Apple, have devel-
oped technologies which embrace HTTP as transport protocol for streaming and the
concept of adaptive bitrate switching. At the same time, most of the content services
providers have switched to adaptive HTTP streaming, for instance Netflix, Hulu and the
BBC, and they have also added support for the new protocols across all platforms and
OSs, including desktop computers, tablets and smart phones.

In this thesis, we have explored the possibility of leveraging peer-to-peer overlays
to offload CDNs when streaming live content with adaptive HTTP streaming protocols.
The result of our effort is a system called SmoothCache which is the first peer-assisted
solution for the distribution of adaptive bitrate HTTP live streams. Following the peer-
assisted approach, our system leverages the existing Content Delivery Network infras-
tructure, as provided and without the need for integration, to assist the peer-to-peer
delivery and provide a target quality of user experience (QoE) that is the same of a CDN.

In order to build SmoothCache, we have developed a number of components which
are in their own merit novel and each of them improves on the existing state of the art
in its respective research field.

We have first implemented a state-of-the art framework for the development of peer-
to-peer applications called Mesmerizer [3]. The framework follows the semantics of the
actor model [4], similarly to Erlang [5], Scala [6] and Kompics [7], and lets developers
implement their distributed application as a set of of components which communi-
cate using events. The framework enables the execution of the developed code both
in simulation and in a real deployment. In simulation, we execute experiments on an
emulated network where we accurately model multiple characteristics of physical net-
works, such as the presence of Network Address Translators, network delay patterns
and bandwidth allocation dynamics. In order to improve scalability and accuracy of
simulations in our framework, we designed a novel flow-based bandwidth emulation
model [8] which combines the max-min fairness bandwidth allocation algorithm [9]
with a method called affected subgraph optimization [10]. The result is a model which
provides accuracy that is close to that of packet-level simulators but with much higher
scalability.

For deployment of SmoothCache on real networks, we developed a novel network li-
brary called DTL [11] which provides reliability and on-the-fly prioritization of transfers.
The library is based on the UDP protocol and enables intra- and inter-protocol priori-
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tization by combining two state of the art congestion control algorithms: LEDBAT [12]
and MulTCP [13]. DTL supports a range of priority levels, that is from less-than-best-
effort (LEDBAT) priority up to many times the priority of TCP. Priority can be config-
ured at runtime by the application without disruptions in the flow of data and without
the need of connection re-establishment.

DTL also includes support for state-of-the-art Network Address Translation traversal
methods, which were also studied as part of this thesis [14]. Our work on NAT Traversal
relies on a detailed classification of NAT behavior which comprises of 27 different NAT
types. In contrast to all previous work on the subject, we argue that it is incorrect to rea-
son about traversing a single NAT, instead combinations must be considered. Therefore,
we provide a comprehensive study which states, for every possible NAT type combina-
tion, whether direct connectivity with no relaying is feasible. On top of that, we also
define which specific NAT traversal technique should be used for each traversable com-
bination. Our approach results in a traversal success probability that is 85% on average
in the tested scenarios and therefore much higher than previous approaches.

Because of the presence of NATs in the network, distributed discovery of new peers
and collection of statistics on the overlay through peer sampling is problematic. That
is because the probability of establishing direct connections with peers varies from one
peer to the other. To work around this limitation, we have designed a novel peer sam-
pling service, the Wormhole peer sampling service (WPSS) [15]. WPSS builds a slowly
changing overlay network and executes short random walks on top of that overlay. A
descriptor containing information on a peer is originated at a node and then carried by
a random walk until it is deposited when the walk terminates. WPSS improves on the
state of the art by one order of magnitude in terms of connection established per unit
time while providing the same level of freshness for samples. This is achieved without
sacrificing the desirable properties of a PSS for the Internet, such as robustness to churn
and NAT-friendliness.

All of the aforementioned components are used as part of our SmoothCache system
and are employed in commercial deployments. Regarding SmoothCache itself, we have
designed our system as a distributed cache where every peer acts as a caching node
for live content. The main motivation behind this design is to cope with the mode of
operation of adaptive HTTP streaming where timeliness is kept not by skipping video
fragments but rather by changing bitrates. For that reason, in our system, when the
player requests a fragment, the data is either retrieved from the neighbors of a peer
or otherwise downloaded directly from the CDN in order to guarantee its delivery. Our
system is completely oblivious to the streaming protocol and, as a consequence, it never
tries to manipulate the player behavior such as to skip fragments or force the playback
of a specific bitrate. That is in direct contrast with classical peer-to-peer systems where
the player merely renders content and the P2P agent decides which video chunks should
be played and which chunks should be dropped.

Our first take on the design of the SmoothCache system, that is a distributed caching
scheme for the Internet tailored to adaptive HTTP live streaming, showed that it is possi-
ble to achieve significant savings towards the source of the stream by using peer-to-peer
overlays [16]. In the second iteration of our distributed caching system [17], we were



11.1. FUTURE WORK 227

able to match the same quality of user experience levels of a CDN and achieve even
higher savings. This was possible by letting a small subset of powerful peers, that is first
tier peers, act similarly to CDN nodes. Those nodes aggressively prefetch fragments as
they are created by the streaming server. We make sure, then, that all prefetched data is
propagated in the network within a small window of time. This window should not be
higher than the delay that viewers would experience by accessing a CDN directly. In case
some fragments are not retrieved in that time window, the nodes download the data di-
rectly from the CDN. Fast propagation in the peer-to-peer network during a small win-
dow of time is achieved in Smoothcache by employing two techniques: i ) a mesh-based
overlay structure which enforces a hierarchy based on upload bandwidth but addition-
ally takes into consideration other factors like connectivity constraints, performance
history and currently watched bitrate, i i ) a mix of proactive and reactive prefetching
strategies with various levels of aggressiveness using an application-layer congestion
control for balancing high dissemination efficiency and politeness.

The performance of SmoothCache was evaluated in a thorough experimental study
conducted on a subset of 22000 of the around 400000 installations of our software world-
wide. The study showed that SmoothCache matches the QoE of the CDN on all of the
three considered metrics: cumulative playback delay, delivered bitrate and delay from
the playback point. Besides this result, SmoothCache was also able to consistently de-
liver up to 96% savings towards the source of the stream in single bitrate scenarios and
94% in multi-bitrate scenarios.

Finally, we were able to adapt our Smoothcache system to distribute adaptive HTTP
live content in large enterprise networks [18]. In this setting, links between the branches
of the enterprise and towards the rest of the Internet constitute a bottleneck during live
streaming of events. We have conducted a number of pilot deployments of the resulting
system and, in this work, we presented in detail one of them to prove the validity of
our approach. For the considered live broadcast event, our software was installed on
48.000 machines on 89 network branches of a US-based company. The event involved
3529 unique viewers, with a maximum of around 2000 of them watching concurrently.
Collected statistics show that SmoothCache was able to save up to 87.5% of the traffic
towards the source of the stream and it also offloaded the majority of the enterprise
branches links of more than 80%.

11.1 Future Work

As future work, we would like to replace the tracker-assisted first tier election process of
SmoothCache 2.0 with a completely distributed solution. For that purpose, we intend
to use an approach similar to Absolute Slicing [19]. This algorithm enables the assign-
ment of peers to groups or slices of a specific size in a purely distributed manner. The
assignment is maintained under churn, and membership to one or more slices is de-
cided considering a set of predefined metrics. In SmoothCache, we would use Absolute
Slicing to form a slice which contains all possible first tier candidates.Then, we would let
peers in that group estimate how many of the candidates should become first tier peers.
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This can be done by re-designing the estimation heuristic presented in [17] to work with
statistics collected by our peer sampling layer, such as upload bandwidth distribution.
Finally, the promotion of the estimated number of first tier peers would happen by cre-
ating another slice containing only the candidates which are allowed to prefetch from
the source of the stream.

We believe that a natural continuation of this work would be adding support for
video on demand adaptive HTTP streaming to SmoothCache, similarly to Maygh [20].
For that purpose, we would need to transform what is now a sliding window caching
system into a persistent caching system. The first step of the process is to implement
local persistent storage of fragments. The next step is then to build a light-weight dis-
tributed indexing mechanism for spreading information about piece availability of mul-
tiple videos. Finally, we would need to build a replication mechanism which strives to
maintain enough copies of a video in order to maximize availability and performance.
In line with the peer-assisted approach, we would rely on an existing infrastructure in
case the content is not present in the peer-to-peer network. Once video-on-demand is
in place, caching of general content might be considered as a possible extension to our
platform.

Finally, it would be extremely interesting to apply the Software-defined Network-
ing (SDN) paradigm [21] to improve efficiency in the delivery of adaptive HTTP live
streaming. SDN-enabled network infrastructure decouples the the control plane, which
decides on where the traffic should be sent, from the data plane, which forwards the
traffic according to instructions from the control plane. Typically, the control plane
does not reside on routers or switches but on a centralized controller which commu-
nicates remotely with the data plane using the OpenFlow protocol [22]. This simplifies
tremendously network management since the centralized infrastructure allows for ef-
ficient monitoring and dynamic re-configuration of the data plane [23]. Recently, we
have observed a new trend of applying the SDN principle to video distribution with
RASP [24]. There authors utilize a mixture of SDN techniques and overlay networks to
improve locality of traffic in RTSP/RTP streaming. In the near future, we would like to
apply the same approach to the delivery of adaptive HTTP live streaming content, this
both on the Internet and in the setting of large private networks.
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