
The Design Philosophy of Distributed
Programming Systems: the Mozart Experience

Per Brand

A dissertation submitted to
the Royal Institute of Technology

in partial fulfillment of the requirements for
the degree of Doctor of Philosophy

June 2005

The Royal Institute of Technology
School of Information and Communication Technology

Department of Electronics and Computer Systems
Stockholm, Sweden

TRITA-IMIT-LECS AVH 05:04
ISSN 1651-4076
ISRN KTH/IMIT/LECS/AVH-05/04–SE

and
ISRN SICS-D–37–SE
SICS Dissertation Series 37
ISSN 1101-1335

c© Per Brand, 2005

Abstract

Distributed programming is usually considered both difficult and inherently different
from concurrent centralized programming. It is thought that the distributed program-
ming systems that we ultimately deploy, in the future, when we’ve worked out all
the details, will require a very different programming model and will even need to be
evaluated by new criteria.

The Mozart Programming System, described in this thesis, demonstrates that this
need not be the case. It is shown that, with a good system design, distributed pro-
gramming can be seen as an extended form of concurrent programming. This is from
the programmer’s point-of-view; under the hood the design and implementation will
necessarily be more complex. We relate the Mozart system with the classical trans-
parencies of distributed systems. We show that some of these are inherently on the
application level, while as Mozart demonstrates, others can and should be dealt with
on the language/system level.

The extensions to the programming model, given the right concurrent programming
base, are mainly concerned with non-functional properties of programs. The models
and tuning facilities for failure and performance need to take latency, bandwidth, and
partial failure into account. Other than that there need not be any difference between
concurrent programming and distributed programming.

The Mozart Programming System is based on the concurrent programming lan-
guage Oz, which integrates, in a coherent way, all three known concurrency or thread-
interaction models. These are message-passing (like Erlang), shared objects (like Java
with threads) and shared data-flow variables. The Mozart design philosophy is thus ap-
plicable over the entire range of concurrent programming languages/systems. We have
extracted from the experience with Mozart a number of principles and properties that
are applicable to the design and implementation of all (general-purpose) distributed
programming systems.

The full range of the design and implementation issues behind Mozart are present-
ed. This includes a description of the consistency protocols that make transparency
possible for the full language, including distributed objects and distributed data-flow
variables.

Mozart is extensively compared with other approaches to distributed programming,
in general, and to other language-based distributed programming systems, in particular.

3

4

Acknowlegements

First and foremost I would like to thank the entire Mozart development group. It was a
priviledge and pleasure to work with such a talented, creative and strong-willed group
of people. The development of Mozart was very much team work, and the number of
people involved in Mozart, at one time or other, was very large for an academic project.

It was, I always thought, appropriate that the distributed programming system
Mozart was also developed in a distributed fashion with people from SICS/KTH in
Sweden DKFI/Saarland University in Germany and later UCL in Belgium. I would
like to thank the people who made my frequent and lengthy visits to Saarbrucken dur-
ing the early Mozart days so pleasant and rewarding - Ralf Scheidhauer, Christian
Schulte, Martin Henz, Konstantin Popov, Michael Mehl and Martin Muller (and his
wonderful wife Bettina).

I especially want to thank Seif Haridi, my advisor, and Peter van Roy for their
encouragement, friendship and insights. I will always remember, fondly, the intense
but friendly discussion atmosphere that we had during the course of the Mozart project
(and thereafter).

I would also like to thank Gert Smolka’s group at DKFI for the development of
early Oz. This gave us a good base without which Mozart would never have been
realized.

I want to thank Vinnova(Nutek) for their support, especially in the early days when
the ground work for Mozart was laid in the Perdio project.

Finally, I want to thank Sverker Janson, Erik Klintskog and Ali Ghodsi for their
valuable comments on the drafts of this document.

5

6

Contents

1 Introduction 15
1.1 The Mozart Experience . 16
1.2 Overview . 18
1.3 Reading recommendations . 18

I The Mozart Programming System 21

2 Distributed Programming Languages 25
2.1 Transparency . 26
2.2 Network-transparent language . 27

2.2.1 Ordering transparencies . 27
2.2.2 Concurrency . 28
2.2.3 The Language View . 29
2.2.4 Summary . 29

2.3 Limits of Transparency . 30
2.4 Partial Failure . 31

2.4.1 Failure Transparency . 31
2.4.2 The Mozart Failure Model 32
2.4.3 Transparency Classification 33

2.5 The Oz Programming Language . 34
2.6 Language Extensions . 36

2.6.1 Open Computing . 36

3 Distributed Programming Systems 39
3.1 Network transparency . 40

3.1.1 The Protocol Infrastructure 40
3.1.2 Development of Protocols 41
3.1.3 Marshaling . 41
3.1.4 Garbage Collection . 42

3.2 Network Awareness . 43
3.2.1 Failure Model . 43
3.2.2 Efficient Local Execution . 44
3.2.3 Messaging and Network layer 44

7

8 CONTENTS

3.2.4 Dealing with Localized Resources 46

4 Related Work 49
4.1 The Two-Headed Beast . 49

4.1.1 Message-passing systems . 50
4.1.2 Database Approach . 51

4.2 The Language Approach . 52
4.2.1 Expressivity . 52
4.2.2 Transparency . 53
4.2.3 Network awareness . 54

4.3 Summary . 58

5 Contributions by the Author 59

II The Papers 61

6 Programming Languages for Distributed Appl. 65
6.1 Abstract . 66
6.2 Introduction . 66

6.2.1 Identifying the issues . 67
6.2.2 Towards a solution . 68
6.2.3 Outline of the article . 70

6.3 Shared graphic editor . 70
6.3.1 Logical architecture . 71
6.3.2 Client-server structure . 72
6.3.3 Cached graphic state . 73
6.3.4 Push objects and transaction objects 73
6.3.5 Final comments . 74

6.4 Oz . 74
6.4.1 The Oz programming model 76
6.4.2 Oz by example . 77
6.4.3 Oz and Prolog . 79
6.4.4 Oz and concurrent logic programming 80

6.5 Distributed Oz . 81
6.5.1 The distribution graph . 82
6.5.2 Distributed logic variables 83
6.5.3 Mobile objects . 85
6.5.4 Mobile state . 87
6.5.5 Distributed garbage collection 89

6.6 Open computing . 91
6.6.1 Connections and tickets . 91
6.6.2 Remote compute servers . 92

6.7 Failure detection and handling . 93

CONTENTS 9

6.7.1 The containment principle 93
6.7.2 Failures in the distribution graph 94
6.7.3 Handlers and watchers . 95
6.7.4 Classifying possible failures 95
6.7.5 Distributed garbage collection with failures 95

6.8 Resource control and security . 96
6.8.1 Language security . 97
6.8.2 Implementation security . 98
6.8.3 Virtual sites . 98

6.9 Conclusion . 99

7 Mobile Objects in Distributed Oz 101
7.1 Abstract . 102
7.2 Introduction . 102

7.2.1 Object Mobility . 102
7.2.2 Two Semantics . 103
7.2.3 Developing an Application 103
7.2.4 Mobility Control and State 104
7.2.5 Overview of the Article . 104

7.3 A Shared Graphic Editor . 105
7.4 Language Properties . 107

7.4.1 Network Transparency . 107
7.4.2 Flexible Network Awareness 108
7.4.3 Latency Tolerance . 108
7.4.4 Language Security . 109

7.5 Language Semantics . 110
7.5.1 Oz Programming Model . 111
7.5.2 Compound Entities . 114

7.6 Distribution Model . 119
7.6.1 Replication . 119
7.6.2 Logic Variables . 120
7.6.3 Mobility Control . 121
7.6.4 Programming with Mobility Control 122

7.7 Cells: Semantics and Mobile State Protocol 127
7.7.1 Cell Semantics . 127
7.7.2 The Graph Model . 130
7.7.3 Informal Description . 133
7.7.4 Formal Specification . 134

7.8 System Architecture . 137
7.8.1 Language Graph Layer . 139
7.8.2 Memory Management Layer 140
7.8.3 Reliable Message Layer . 142

7.9 Related Work . 142
7.9.1 Distributed Shared Memory 143

10 CONTENTS

7.9.2 Emerald . 144
7.9.3 Obliq . 144

7.10 Conclusions, Status, and Current Work 145
7.11 APPENDIX . 146

7.11.1 Correctness Proof of the Mobile State Protocol 146
7.11.2 Mobile State Protocol Correctly Migrates the Content-edge . . 147
7.11.3 Chain Invariant . 148
7.11.4 Safety Theorem . 149
7.11.5 Liveness Theorem . 150
7.11.6 Mobile State Protocol Implements Distributed Semantics . . . 151

8 Logic variables in distributed computing 155
8.1 Abstract . 156
8.2 Introduction . 156
8.3 Logic variables in concurrent and distributed settings 158

8.3.1 Basic concepts and notation 158
8.3.2 Distributed unification . 163
8.3.3 Examples of concurrent programming 166
8.3.4 Examples of distributed programming 168
8.3.5 Adding logic variables to other languages 177

8.4 Basic concepts and notation . 180
8.4.1 Terms and constraints . 180
8.4.2 Configurations . 181
8.4.3 Algorithms . 182
8.4.4 Executions . 182
8.4.5 Adapting unification to reactive systems 183

8.5 Centralized unification (CU algorithm) 183
8.5.1 Definition . 184
8.5.2 Properties . 184

8.6 Distributed unification (DU algorithm) 185
8.6.1 Generalizing CU to a distributed setting 185
8.6.2 Basic concepts and notation 187
8.6.3 An example . 188
8.6.4 Definition . 189
8.6.5 Dereference chains . 190

8.7 Off-line total correctness . 191
8.7.1 Mapping from distributed to centralized executions 191
8.7.2 Redundancy in distributed unification (RCU algorithm) 192
8.7.3 Safety . 194
8.7.4 Liveness . 196
8.7.5 Total correctness . 198

8.8 On-line total correctness . 198
8.8.1 On-line CU and DU algorithms 199
8.8.2 Finite size property . 199

CONTENTS 11

8.8.3 Total correctness . 200
8.9 The Mozart implementation . 202

8.9.1 Differences with on-line DU 202
8.9.2 The distribution graph . 204
8.9.3 Basic concepts and notation 206
8.9.4 The local algorithm . 208
8.9.5 The distributed algorithm . 211

8.10 Related work . 213
8.10.1 Concurrent logic languages 213
8.10.2 Languages not based on logic 215
8.10.3 Sending a bound term . 216

8.11 Conclusions . 216
8.12 Acknowledgements . 217

9 A Fault-Tolerant Mobile-State Protocol 219
9.1 Abstract . 220
9.2 Introduction . 221
9.3 Language semantics (OZL) . 222

9.3.1 Language semantics of cells 222
9.3.2 Distributed semantics of cells 223
9.3.3 Cell failure model . 223
9.3.4 Fault-tolerant semantics of cells 224
9.3.5 Usefulness of Probe and Insert 224

9.4 Network interface (RML) . 225
9.5 Protocol definition (DGL) . 226

9.5.1 Stepwise construction of the fault-tolerant protocol 226
9.5.2 Definition of language operations 227

9.6 Correctness . 228
9.7 Conclusions . 229
9.8 Appendix . 230

9.8.1 Formal definition of the network layer (RML) 230
9.8.2 Network layer operations . 230
9.8.3 Site and network failures . 231
9.8.4 Formal definition of the mobile-state protocol (DGL) 232
9.8.5 Basic protocol with chain management 233
9.8.6 Formal definition of the language semantics (OZL) 238
9.8.7 Oz 2 execution model . 239
9.8.8 Language semantics of cells 240
9.8.9 Distributed semantics of cells 240
9.8.10 Cell failure model . 240
9.8.11 Fault-tolerant semantics of cells 241
9.8.12 Formal definition of the language-protocol interface (OZL-DGL)242
9.8.13 Protocol invariant . 244
9.8.14 Undesirability of FIFO in network-transparent distribution . . 245

12 CONTENTS

III Design Philosophy 247

10 Programming Systems 253
10.1 Basic concepts and definitions . 253

10.1.1 Distributed and Centralized Systems 253
10.1.2 Application Domains . 254

10.2 Characterizing Programming Systems 255
10.2.1 Programming Languages, Compilers, and Runtime Systems . 255
10.2.2 Libraries and Tools . 256
10.2.3 Definition of Programming System 258

10.3 Qualities of programming systems 258
10.3.1 The quality of abstraction 259
10.3.2 The quality of awareness . 259
10.3.3 The quality of control . 260
10.3.4 How good control is needed? 262
10.3.5 The challenge in developing programming systems 263

10.4 Concurrent programming systems 263
10.5 Distributed programming systems 264

11 Concurrent programming systems 267
11.1 Abstraction . 267
11.2 Awareness and Control . 268

11.2.1 Processes versus Threads . 268
11.2.2 Lightweight versus Heavyweight Threads 269
11.2.3 Conclusion . 270

12 Three Sharing Models 271
12.1 Sharing models . 271

12.1.1 Object-oriented sharing . 272
12.1.2 Message-oriented sharing 273
12.1.3 Data-flow sharing . 273
12.1.4 Oz or Centralized Mozart . 274
12.1.5 Other forms of thread interaction 275

12.2 Discussion . 276

13 Necessity of Three Sharing Models 277
13.1 Introduction . 277
13.2 Message-sending in object-oriented systems 278
13.3 Data-flow in object-oriented systems 279
13.4 Objects in message-oriented systems 279
13.5 Message-orientation in data-flow systems 280
13.6 Objects in data-flow systems . 280
13.7 Data-flow in message-oriented systems 280
13.8 Implicit Data-Flow . 280
13.9 Conclusion . 281

CONTENTS 13

14 Distributed Programming Systems 283
14.1 Abstraction . 283

14.1.1 Transparency . 283
14.1.2 Reference bootstrapping . 284

14.2 Awareness . 285
14.3 Control . 287
14.4 New Abstractions and Old Assumptions 287

15 Two approaches to dist. prog. sys. 291
15.1 Introduction . 291
15.2 Message-passing approach . 291

15.2.1 Introduction . 291
15.2.2 Messaging Service . 292
15.2.3 Data-integrated message-passing 293
15.2.4 Mailboxes and abstract addressing 294
15.2.5 Abstraction, awareness, and control 295

15.3 Integrated approach . 295
15.3.1 Introduction . 295
15.3.2 Transparency . 296
15.3.3 Partial failure . 297
15.3.4 Reference bootstrapping . 298
15.3.5 Object-oriented . 299
15.3.6 Message-oriented . 299
15.3.7 Data-flow . 300

16 Evaluation of the Integrated Approach 301
16.1 Introduction . 301
16.2 Is it useful? . 302
16.3 Is it possible? . 303
16.4 Is it practical - dealing with code . 303
16.5 Is it practical - awareness . 305
16.6 Is it practical - dealing with shared state 305

16.6.1 Introduction . 305
16.6.2 RMI and Mozart . 306
16.6.3 Use Case Analysis . 306
16.6.4 Consistency Protocols . 307
16.6.5 Conclusion . 308

16.7 Partially transparent systems . 309
16.7.1 Introduction . 309
16.7.2 Stateful versus stateless . 310
16.7.3 Java paradox . 310
16.7.4 Distributed Erlang . 311
16.7.5 Conclusion . 311

16.8 Stateless Data Structures . 312

14 CONTENTS

16.8.1 Introduction . 312
16.8.2 Implementation of Token Equality 312
16.8.3 Distribution Consequences 313
16.8.4 Lazy, eager and immediate 314
16.8.5 Ad-hoc Optimizations . 315

16.9 Data-flow . 316
16.9.1 Protocol properties . 316
16.9.2 Constrained State . 316

16.10Asynchronous versus synchronous 317
16.10.1 Objects versus message-sending 317
16.10.2 Object Voyager . 318

16.11Partial Failure . 319
16.11.1 Introduction . 319
16.11.2 Failure Detection . 319
16.11.3 Failure Detection in Integrated Programming Systems 320
16.11.4 An example of poor integration w.r.t. partial failure 321
16.11.5 Migratory objects . 322
16.11.6 The Variable Protocol . 324
16.11.7 Asynchronous and synchronous failure in integrated systems . 325
16.11.8 Other failure considerations and conclusion 326

16.12Three Sharing Models . 327
16.12.1 Introduction . 327
16.12.2 Protocol properties . 327
16.12.3 Objects and message-sending 327
16.12.4 Data-flow abstractions . 328

17 Conclusion and Future Work 329
17.1 Necessary Qualities of Distributed Programming Systems 329
17.2 Future Work . 331
17.3 Outstanding Research Questions . 334

Chapter 1

Introduction

This dissertation presents the Mozart Programming System. Design and implementa-
tion issues are covered and the broader implications of the work are extensively dis-
cussed.

Mozart is a general-purpose distributed programming system, a system designed
specifically for the programming of distributed applications. Like all programming
systems such a system needs to be understood and evaluated in view of its fundamental
purpose: to enable and simplify the development of applications. In this case, the
applications that we are targeting are distributed, i.e. intended to run on more than one
machine.

Mozart is a complete distributed programming system. Released in 2000 it has
been extensively tested and proven in practice. It is self-contained, it contains all
that is needed to develop most distributed applications. (It does, of course, like all
programming systems, make use of the standard operating system services in Unix
and Windows).

We take the position that a distributed programming system is a realization of a
distributed programming language. This is not always the way in which distributed
programming systems are viewed. Often, the tools by which distributed applications
are developed are thought of consisting of a centralized programming system augment-
ed by a number of libraries for distribution, but this poorly reflects the challenges for
the application programmer when moving from centralized to distributed applications.
The distribution libraries would, unlike typical libraries for centralized programming,
be part of the core of the system, and not an optional, occasionally used, add-on.

Put another way, whatever people might choose to call the packages of tools that
promote for the purpose of developing distributed applications, there are a number of
necessary properties that such tool packages must have to be at all useful. Program-
mers need to be provided (at least in order to avoid laborious trial-and-error program-
ming) with a precise model of the functional properties (semantics) of the available
programming constructs and some, though possibly less precise, model over various
non-functional properties (like performance, and sometimes failure and security). The
former, the semantics, is, of course, just what you expect to find in a programming lan-
guage and the latter, the non-functional properties, in a programming system. These

15

16 CHAPTER 1. INTRODUCTION

packages of tools can thus be considered distributed programming systems.
Mozart is thus one particular distributed programming system, a realization of one

particular distributed programming language. Mozart is extensively compared with
alternatives. Factors such as expressivity (normally thought of as a language property)
and performance (a system quality) are considered. We will argue that Mozart is a
powerful distributed programming system with unparalleled expressivity, and an easy
to understand performance and performance-tuning model.

The core of this thesis consists of four longer papers, three journal papers and one
unpublished paper of journal length which is an extended version of a published con-
ference paper. The first of these papers focuses on language issues and the program-
ming model. Both functional and non-functional aspects of the programming system
are covered.

The focus of the other three papers is on how Mozart was realized. In order to real-
ize Mozart, we faced a large number of design and implementation challenges. Chief
among these challenges were the development of suitable protocols (or distributed al-
gorithms) to support various kinds of language entities (e.g. objects, procedures, and
immutable data structures) that are shared between sites (i.e machines).

1.1 The Mozart Experience

We also discuss the broader implications of the work and attempt to systematically
place the Mozart work into a wider context. One of the important reasons for doing so
is that distributed programming subsumes centralized programming. This means that
Mozart and all other distributed programming systems also commit the programmer to
a given centralized programming language (Oz in the case of Mozart). But the virtues,
or lack thereof, of the various centralized programming systems has been debated for
40 years and no consensus has yet been reached. As this thesis is exclusively concerned
with distribution we will try to sidestep this issue as much as possible.

The Mozart experience, the principles that we formulated, and the insights that we
gained have wide applicability. As Mozart/Oz caters for all the major programming
paradigms (functional, object-oriented, and data-flow) the principles are applicable
to the design of any distributed programming language/system based on any (or any
combination) of these paradigms.

We will consider the question, how should one go about developing a distributed
programming system in general? What are the different approaches? We argue that
there are currently only two. All the more interesting and more expressive distribut-
ed programming systems, including Mozart, belong to one category. In this category
distribution support is to some extent integrated into a concurrent centralized program-
ming language/system. In the centralized concurrent system threads (or processes)
share language entities according to an entity-specific model (e.g. shared objects,
shared code, shared data). This we call the sharing model. Integration is achieved
by supporting - once again, to a certain extent - the same sharing model between sites
(across the net). There are obvious advantages to having the same (or even similar)

1.1. THE MOZART EXPERIENCE 17

sharing model between sites as within a site. It makes for a simpler programming
model; concurrent programming is naturally extended to distributed programming.
Alternatively, inverting the relationship, a good distributed programming model will
subsume a good concurrent programming model.

We shall see that the most important characteristic of the sharing model, from the
point-of-view of distribution support, is those aspects that allow threads (processes)
located at different machines to interact. Without interaction the distributed system is
trivial and once initialized each site works independently and in isolation. So whether
we are considering code or data, the important consideration is the dynamic aspects of
the sharing model - those that allow additional code or data to be shared. When we
analyze concurrent programming languages from this perspective we find that there
are only three different models in all existing programming languages.

From this point-of-view distributed programming systems can be evaluated by con-
sidering how well distribution support is integrated into the programming language.
Having embarked on the path of making sharing between sites much like sharing on
one site, there needs to be a good reason not to make them completely identical or
similar. There are two potential reasons. First, it may not be possible, and second it
may not be practical.

There are conceptual limits to integration, but we show that it is possible to make
the distribution sharing model very similar to the concurrent sharing model. This re-
quires, among other things, a rich and expressive concurrent sharing model. The dif-
ferences between the distribution and concurrent sharing models can then be limited to
certain non-functional aspects. Furthermore these non-functional aspects can be dealt
with orthogonally to program functionality.

The practical limits to integration, both supposed and real, are discussed extensive-
ly. We shall see, within each of the three sharing paradigms, that there are practical
limitations associated with many concurrent programming languages. However, we
shall see that most of these limitations are not truly conceptual. Rather, the language
was not designed with distribution in mind, and the language lacks some functionality
or expressiveness that was deemed not essential or overlooked in the centralized sce-
nario. Irrespective of whether this was a correct or incorrect choice in the centralized
case, these deficiencies must be attended to in the distributed case. Examples of this
are languages where only data-sharing is explicit in the language (i.e. code is shared
implicitly by name), and where the distinction between mutable and immutable data is
blurred.

How does Mozart fit into this? Mozart is based on a concurrent programming lan-
guage that contains all three sharing models. Within each paradigm the system is max-
imally integrated and hence is easily compared to other systems. It is shown that other
systems could be better integrated than they are. In some cases this reflects a major
lack of distribution support, in other cases it is matter of extending the programming
language.

Finally, we consider the question of whether having three sharing models within
one language is really necessary. First the arguments for three sharing paradigms in a
concurrent but centralized setting are reviewed. The concurrent programming language

18 CHAPTER 1. INTRODUCTION

Oz, upon which Mozart was based, supported all three sharing models long before
distribution was considered. We then show that when distribution is added that the
arguments for the usefulness of providing for the entire spectrum of sharing models is
much stronger.

We conclude, therefore, that the Mozart system is a useful and powerful tool for
building distributed applications. Furthermore, the Mozart work demonstrates a num-
ber of design principles and philosophies that should be used in the development of all
general-purpose distributed programming systems.

1.2 Overview

This thesis is organized into three parts. Each part starts with its own overview chapter.
The first part briefly summarizes the work and puts the four included papers into

context. Also, as the Mozart system was joint work, the specific contributions made
by the author are carefully described. Finally a number of additional design and im-
plementation issues that we faced are briefly described.

After a short introduction the second part consists of the four included papers,
three of which are journal papers, while the fourth is an unpublished longer version of
a published conference paper.

The third part discusses the wider implications of the work. Here we begin by
going back to basics and consider the question of what makes a good programming
system in general before moving on to distributed programming systems. We formu-
late criteria to evaluate distributed programming systems and apply them to Mozart
and other systems. We consider the question of what a distributed programming lan-
guage should contain irrespective of user preferences for centralized programming lan-
guages/systems. We finish by describing future work (much of which has been initiated
today).

1.3 Reading recommendations

Depending on the interests of the reader this thesis can be read in a number of different
ways.

The first half of part I and the first of the four papers (chapter 6 in part II)focus on
Mozart, as a the distributed programming language, and can be read independently of
the rest of the thesis.

The second half of part I and papers 2-4 (chapters 7, 8, and 9 in part II) focus on
the implementation design and protocol support.

Also each of the four papers in part II is more or less self-contained and can be
read separately.

Finally, part III is self-contained and is a general formulation of the principles
that should be used in the design of distributed programming languages/systems. The
work on Mozart is used to support that position. Mozart demonstrates many of the

1.3. READING RECOMMENDATIONS 19

characteristics that good distributed programming systems should have, and, as we
shall show, comes closer to fulfilling the criteria than other systems.

Finally, for the reader not familiar with Mozart or Oz as a programming language
only fairly short summaries are provided in this thesis. The interested reader can also
download the Oz tutorial at http:\\www.mozart-oz.org [94]. Finally the book ’Con-
cepts, techniques, and models of computer programming’ [129], is the most compre-
hensive expose of the Oz programming language (there is even a chapter on distributed
programming).

20 CHAPTER 1. INTRODUCTION

Part I

The Mozart Programming System

21

Overview of Part I

This part consists of four chapters. In the first chapter we focus on the language as-
pects of the Mozart system. We relate the role of a distributed programming language,
in general, and Mozart, in particular, to the classic distributed system goal of trans-
parency. This chapter is supported by the first of the four papers (chapter 6).

In the second chapter we focus on the system aspects of Mozart. If the first chapter
is the what, then this chapter is the how. A central role is played by the protocols
that coordinate the language entities that are shared between sites. This chapter is
supported by papers 2-4 (chapters 7,8 and 9) which are all devoted exclusively to the
more complex of the protocols. In addition, we also summarize a number of other
design and implementation issues that arose during the course of realizing the Mozart
system.

In the third chapter we compare Mozart with other state-of-the-art distributed pro-
gramming systems.

In the fourth and final chapter of this part of the thesis the particular contributions
by the author to the joint work are described.

23

24

Chapter 2

Distributed Programming Languages

When we use the term distributed programming system we mean the complete set of
tools by which distributed applications can be programmed. Not included are the prop-
er libraries which are there for convenience. Proper libraries are software components
that in turn were developed within the distributed programming system, but that have
been found useful enough to be put in some repository for future use.

The term distributed programming language then refers to the language by which
the programmer interacts with and instructs the distributed programming system. Pro-
gramming languages have semantics (e.g. operational) defining the behavior of the
primitive programming constructs. Non-functional properties of a system (like perfor-
mance) are system qualities, reflecting that the same programming language may be
realized (as programming systems) in better or worse ways.

The only reason that we might be belaboring the point about libraries is to lay the
groundwork for a fair comparison. One method, all too often used, to hide complex-
ity of programming languages/systems is to present part of the language as libraries.
However, if the libraries are native (i.e. not expressible in the language) and at the
same time used over a wide range of applications, then the programmer must also have
a good understanding, both as regards functional and non-functional aspects, of these
’libraries’.

In this section we consider the question of what makes for a good and useful dis-
tributed programming language. We relate the language question to the traditional goal
of transparency in distributed systems. We see that taking the language point-of-view
actually helps to bring some order in the multitude of transparencies that the distribut-
ed system community defines. We define network-transparency (from the language
point-of-view) and argue for its usefulness as demonstrated by Mozart.

The limits of transparency are also discussed. Total transparency is not always
possible and sometimes it is not desirable. We show that in Mozart fundamental limi-
tations of transparency do not detract from the usefulness of network transparency. We
also show that Mozart respects the limits of good transparency (i.e. not offering more
than is desirable).

We discuss the relationship between concurrency and distribution. We briefly sum-
marize the Mozart/Oz computation model and show that the well-designed concurren-

25

26 CHAPTER 2. DISTRIBUTED PROGRAMMING LANGUAGES

cy model of Mozart also simplifies distribution. Finally, we briefly discuss language
extensions for distribution that have no concurrent programming counterpart and ex-
emplify with the Mozart provisions for open computing.

2.1 Transparency

In almost any textbook on distributed systems the merits of transparency are clearly
formulated. For instance, in Tanenbaum & van Steen [122], it says ’an important goal
of a distributed system is to hide the fact that its processes and resources are physically
distributed across multiple computers’. This goal also forms the definition of trans-
parency, ’a distributed system that is able to present itself to users and applications as
if it were only a single computer system is said to be transparent’.

This seems clear enough and most users can easily recognize its validity on the
application level. Users do not need to know where a specific URL is located to browse
a web page, and both the user and the server source can be physically moved and
transparency means that the user notices no difference (at least ideally, but we will get
back to the limits of transparency).

In Tanenbaum & van Steen, very early in the book, a number of different types of
transparency are listed. They list:

access transparency: Hides differences in data representation and how a resource is
accessed

location transparency: Hides where a resource is located

migration transparency: Hides that a resource may move to another location

relocation transparency: Hides that resource may be moved during use

replication transparency: Hides that a resource is replicated

concurrency transparency: Hides that a resource may be shared by several users

failure transparency: Hides the failure and recovery of a resource

persistence transparency: Hides whether a software resource is in memory of on
disk

We note that there seems to be many different kinds of transparencies. A number of
questions come to mind. First, is this list complete? Second, why are there so many?
Third, are they all on the same level? Finally, can the various transparencies be ordered
in some way?

The answer to the first question is no. Looking at another textbook on distributed
systems Coulouris, Dollimore and Kindberg [29], we find in addition:

mobility transparency: allows the movement of clients within the system

2.2. NETWORK-TRANSPARENT LANGUAGE 27

performance transparency: allows the system to be reconfigured to improve per-
formance as loads vary

scaling transparency: allows the system to expand in scale without change to system

With additional effort we could undoubtedly find many more transparencies.
The answer to the second question is partly that the different types of transparency

reflect transparency as seen by the user. It is transparency on the application level. The
number of applications is unbounded, and even if we attempt to classify applications,
the number of different types of applications is very large and multi-faceted. For in-
stance the difference between mobility transparency and location transparency is that
in the one case the user moves and in the other the resource being used is moved. Re-
location transparency is also related, reflecting as it does movement during the running
of the application rather than at startup.

Furthermore, transparency also begins to include artifacts - in the sense that there
are mechanisms used in distributed systems to improve fault-tolerance and/or perfor-
mance and then transparency reflects that the improvements only improve, i.e. have
no untransparent side-effects. An example is replication transparency. Replication is
done to improve performance and/or fault-tolerance.

Finally, and this may be natural, reflecting the community’s consensus that trans-
parency is a good thing, some of the transparencies seem to go beyond the definition.
Desirable qualities, yes, but not true transparency. For instance, scaling transparency
is not a characteristic of ’as it were only a single computer system’. Single computers
are all limited in capacity.

2.2 Network-transparent language

2.2.1 Ordering transparencies

We will now answer the fourth question posed in the previous section and impose some
order into the multitude of transparencies. We no longer look at transparency from the
user or application perspective, but rather from the programming language perspec-
tive. While there are are a multitude of applications and application types, with various
properties, there exist only a limited number of programming languages and program-
ming language types. The space of possibilities is much smaller. Also, conceptually,
for most applications only a single general-purpose programming language/system is
actually needed (while we do need many different types of applications).

A maximally transparent distributed programming language then lets the distribut-
ed application programmer program, in so far as possible, his application ’as if it were
a single computer system’. This is described most fully in paper 1 (chapter 6) and
called there network transparency. On the language level network transparency means
that the semantics is independent of how the application is distributed among a set of
machines. This includes the special case when all threads/process run on the same
machine.

28 CHAPTER 2. DISTRIBUTED PROGRAMMING LANGUAGES

Looking at the various types of transparencies, we can now order them. First access
transparency, location transparency, migration transparency and mobility transparency,
are all part of network transparency. Mozart exhibits them in full. For example, an
object (both code/methods and state) is a software resource. It may be accessed/used
by any site that has a reference to it (and differences in data representation are hidden).

What are called scaling transparency and performance transparency belong on the
application level or tool/library level. Not all applications scale. Of course, there are
distributed programming language/system qualities that can make scaling applications
harder or easier. This is important, as discussed in the next subsection and section 2.3.

2.2.2 Concurrency

Reformulating the definition of transparency on the language level we get - ’a distribut-
ed programming system that is able to present itself to programmers as if it were only
a single computer system is said to be network-transparent’.

It is clear from this definition that the language must, to be general-purpose, con-
current. Without concurrency a distributed application would consist of only a single
virtual execution process that would pass from machine to machine like a token. Usu-
ally execution takes place on many machines concurrently (i.e. at the same time).

From the programming language point-of-view the details of concurrency need to
be carefully worked out before distribution is even considered. In the case of Mozart
the concurrent core was based on the concurrent programming language Oz [33], de-
veloped earlier and conservatively extended for distribution. If concurrency is first
introduced in conjunction with distributing an application then it might seem to be
connected to distribution, but it is not.

Concurrency is fraught with a number of programming traps that do not occur in
non-concurrent (and centralized) programming. Simultaneous access and updates to
mutable state can lead to inconsistent state. In order to avoid this the programmer must
synchronize between the concurrent processes/threads, via locks (or derivatives there-
of, like monitors) or transactions. In general, the programmer must carefully avoid
the pitfalls of oversynchronization (e.g. deadlock) on the one hand, and undersynchro-
nization (e.g race conditions) on the other. Concurrency transparency just means that
the pitfalls are successfully avoided. Once again, this is on the application level.

However, the properties of the language and system are still important and can aid
or hinder the programmer in dealing with concurrency. On the programming level, the
distributed and concurrent programming language/system should give the program-
mer all the tools needed to avoid the pitfalls of concurrency. Mozart/Oz does this.
It provides the programmer (in addition to locks) a weaker but safer mechanism for
synchronization, the single-assignment or data-flow variable. This is safer in that this
is deadlock free, but weaker in the sense that they are not enough for all applications
(but very useful for many). This programming technique, declarative concurrency, is
presented in [129].

Good concurrency mechanisms can also help in achieving, on the application level,
scaling transparency or, more generally, better scaling. The key to scaling, when this

2.2. NETWORK-TRANSPARENT LANGUAGE 29

cannot be done on the algorithmic level, is to put more machines to work on the prob-
lem. For this to work well the application must have two properties. First, the applica-
tion needs to be (or can be made to be, by clever parallelization) massively concurrent.
Second the dependencies between the concurrent agents must be limited. Applica-
tions where the dependencies are almost non-existent have been called embarrassingly
parallel. If the dependencies are too large, the computational cycles or memory that
additional machines provide will not compensate for the increased synchronization
between threads/processes on different machines. The more machines that are added
the more the threads/processes are partitioned and the more the synchronization takes
place between threads/processes on different machines, which is much slower due to
network latency. There comes a point where no gain in performance will be had by
adding more machines - some limit is reached. Good concurrency mechanisms can
push that limit quite a bit further. This is demonstrated in [102] [103].

2.2.3 The Language View

Replication transparency is also, in a sense, part of network transparency. From the
language point-of-view, the distributed programming system is free to replicate in or-
der to improve performance (or fault-tolerance) as long as this is safe, i.e. does not
change language semantics.

We defer considering failure transparency (or its cousin persistence transparency).
However as for the other transparencies we see that they form two groups. One group
can and should be realized on the language level, and the other which is on the appli-
cation level, while the other is largely beyond the scope of this thesis.

Ultimately we are interested in applications. But the properties of network- trans-
parency carry over from the language/system to the application. The virtue of a
network-transparent distributed programming language/system is that it easy to write
distributed applications that exhibit access transparency, location transparency, etc.
Some, but not all, of the desired transparencies on the application level are obtained
virtually for free.

In paper 1 (chapter 6) we present a distributed graphical editor application. The
application was developed (i.e programmed and tested) on a single computer and then
trivially extended to distribution.

2.2.4 Summary

Our argument as to the relationship between the traditional goals of transparency in
distributed systems to language network-transparency as demonstrated by Mozart is
summarized in the three step argument below. We keep in mind the axiom that ’an
important goal of a distributed system is to hide the fact that its processes are physically
distributed across multiple computers’.

From Tanenbaum & van Steen: A distributed system that is able to present itself to
users and applications as if it were only a single computer system is said to be
transparent.

30 CHAPTER 2. DISTRIBUTED PROGRAMMING LANGUAGES

Our Language View: A distributed programming language that is able to present
itself to programmers as if it were only a single computer system is said to be
network-transparent.

Our System View: A distributed programming system that allows programmers to
develop and test their distributed applications on a single computer system is
practically network-transparent.

2.3 Limits of Transparency

In [122] the limits of transparency are also discussed. They are:

Timings and performance: Different distribution structures (the particular parti-
tioning of the application over a set of sites) of the same application may impact
timings and performance considerably due to varying physical or logical network
distances between machines.

Location-aware applications: Clearly there are some applications where it is not
desirable to hide location of the user, as the application need this information to
filter and adapt the application accordingly.

Failure: Failure transparency is not always achievable, and is not always desirable.

In the above descriptions there are two very different factors that are mixed. First,
complete transparency is just not possible. Second, transparency is not always desir-
able.

From the distributed language point-of-view one is, of course, forced to accept the
fact that complete transparency is impossible. An important part of network awareness,
as described in paper 1 (chapter 6), is to provide the programmer with a practical model
to deal with this. Note that in paper 1 the term network awareness is general and covers
both this awareness aspect as well as control aspects (e.g. being able to control where
computations run).

One important aspect when considering timings or performance, is the number of
network hops that the various language operations will take. In Mozart it is shown that
worst case depends only on the language entity type (e.g. an object), and the expected
case depends on the usage pattern.

There is nothing unusual about this. The point here is that you do not lose aware-
ness due to transparency. Simpler distributed programming systems/tools (with poor
network-transparency) have similar models. For instance, consider RMI (remote method
invocation) [120] or RPC (remote procedure call). Worst case here is two network
hops, but expected case can differ (when the remote process actually resides on the
same machine). One of the main design criteria that we used in pursuit of network
transparency (up to the impossibility limits) was not to lose the awareness that simpler
and less transparent systems invariably have.

2.4. PARTIAL FAILURE 31

Location awareness or lack thereof is, however, an application question. The fact
that Mozart is network transparent does not preclude applications from reasoning about
and adapting to location.

2.4 Partial Failure

2.4.1 Failure Transparency

Previously we covered the first two non-transparencies, timings and location-awareness.
We now turn our attention to failure.

Distributed systems unlike centralized systems exhibit partial failure, e.g. one ma-
chine out of a set of machines involved in the same application fails. Failure trans-
parency, is defined in Tanenbaum as ’the user does not notice that a resource (he has
possibly never heard of) fails and the system subsequently recovers from that failure’.
Notice that the definition clearly puts failure transparency on the application or user
level.

Furthermore, Tanenbaum goes on to state that there is a trade-off between a high
degree of transparency and the performance of a system. Here he is thinking of two
very different issues.

The first issue is that various forms of relaxed consistency can on the application
level be thought of as a lack of transparency. Many replication schemes introduce
what in the context of centralized programming would be considered inconsistency
(i.e. not sequentially consistent). From the language point-of-view this is a question of
semantics. Mutable sequential consistent state and mutable, say, eventually consistent
state are two different semantic types of entities. Both have their uses, and distributed
programming systems should support (directly as primitives or indirectly as libraries)
both. The best choice is application dependent and the network awareness model is
one of the factors used to decide which is appropriate.

The second issue is that failure transparency (where possible) is very expensive.
On the user and application level it is definitely not something you always want -
sometimes it is better to give up.

Even when you do want failure-transparency on the user level this does not translate
into a practical goal on the language and programming system level. Fault-tolerance
may be achieved on many different levels of granularity. On a very fine-grained level,
fault-tolerant techniques making use of redundancy may be used to be able to recover
from all crash failures on the level of individual memory cell updates. No single ob-
ject will ever be left in a inconsistent state. This can be done (given reliable failure
detection) but is enormously costly. It may be that fault-tolerance can be achieved on a
coarser level, throwing away intermediate results, and restarting from an earlier point.
This coarse grained fault-tolerance can cause very long delays when failures do occur
(particularly, upon repeated failures), but cost little when failures do not occur. The
dependencies between mechanisms for fault-tolerance and system performance indi-
cate that fault-tolerance is on the application level and not on the language level. The

32 CHAPTER 2. DISTRIBUTED PROGRAMMING LANGUAGES

appropriate trade-off choice is application dependent.

2.4.2 The Mozart Failure Model

Nevertheless, dealing with failure was an important aspect of the Mozart work. We
needed to give the programmer the means to avoid creating distributed applications
that suffer from the syndrome so succinctly described by Leslie Lamport ’you know
you are dealing with a distributed system when the crash of computer you never heard
about stops you from getting any work done’.

There was a real danger here. Network transparency hides the identities of sites
from one another. Clearly the information that a site with a given IP-address and
port has crashed breaks transparency. Not only that, but it would be difficult for the
programmer to make use of such information (let alone the user) in order to take the
appropriate action.

Therefore the Mozart failure model is designed to fulfill the following

• Reflect failure to the language level

• Take no irrevocable action

• Provide both eager and lazy failure detection

• Provide the programmer with the ability to replace failed actions by other actions

The Mozart programmer deals with language entities. Failure is detected on this
level as well. Language entities are either normal, permanently failed, or temporarily
failed. The ultimate cause of such failures is, of course, either the crash of a site or
some network problem. The latter condition may, but need not be, temporary. Network
failures may mask crashed sites. However, the programmer need not think in terms of
sites and networks, or even be aware of them. Permanent failed entities will never
work properly, while temporary failed entities might recover.

The system takes no irrevocable action upon detecting failure. Threads that at-
tempt to operate on failed entities merely suspend (or more precisely the system can
be configured for this behavior). The are good reasons for wanting to allow this. The
reason for this is very clear when dealing with temporary failures. If and when the
network repairs itself the operation is transparently resumed. Appropriate time-outs
are application-dependent, and indeed coarse-grained fault-tolerance might measure
progress or lack thereof on a much higher level. When and if the current activity is to
be aborted a group of such suspended threads will be terminated.

Eager fault detection is managed by a mechanism called watchers. The program-
mer attaches such watchers to entities - if the entity enters the failed state that the
watcher is configured for, the watcher procedure will be invoked in its own thread.
Lazy fault detection (called handlers) detects failed entities when operations on them
are attempted. The attempted operation is replaced by the handler procedure. A com-
mon type of handler merely injects an exception into the calling thread, but the handler
procedure might also replace the attempted operation by an alternative operation (e.g.

2.4. PARTIAL FAILURE 33

instead of invoking one service instance invoking another instance known to be equiv-
alent). Another kind of handler is one that upon temporary failure sets an application-
dependent timer (in a separate thread) that will abort the operation (i.e. inject an ex-
ception) if no progress is made within the programmed time.

Mozart provides the programmer with a model to reason about and deal with failure
on the language level, i.e. without breaking network-transparency. Of course, creating
fault-tolerant abstractions and applications is still very difficult. If the programmer is
not successful in masking failure the user will still be confused. To paraphrase Lamport
’you know you are dealing with a distributed system when some distributed object that
you have no idea what it is supposed to do tells you it’s broken’.

2.4.3 Transparency Classification

We can now complete our classification of the traditional transparencies of distributed
computing from the language point-of-view. The defintions of the transparencies were
given in section 2.1.

We have three groups. The first group, listed below, are properties of the network-
transparent language (requiring considerable support by the system).

access transparency

location transparency

concurrency transparency

mobility transparency

Mozart exhibits all these transparencies in full.
The second group relates to mechanisms that the distributed programming system

may or may not use. The motivation to use them is to improve the non-functional
properties of the system. There should be no side-effects, i.e. language network-
transparency is not broken by the introduction of these mechanisms.

replication transparency

relocation transparency

migration transparency

Mozart uses the mechanisms freely. For instance, immutable are freely replicated,
and object-state both migrates and gets relocated.

Finally, there are transparencies that may or may not be desired on the application
level. Some may be common enough to be put in libraries. The distributed program-
ming system should have the necessary support to be able to achieve these transparen-
cies on the the application level.

failure transparency

34 CHAPTER 2. DISTRIBUTED PROGRAMMING LANGUAGES

Contains variables & bindings
Only allows operations that are

Not physical memory!●

●

●Y=person(age:25)

...S1 S2 Sn Execute statement sequences
Block on data availability●

●

legal for the entities involved

Z
X=23

Dataflow
threads

Abstract
store

Figure 2.1: Computation model of OPM

persistence transparency

performance transparency

scaling transparency

If the Mozart system has the necessary support for programming fault-tolerant ap-
plications (i.e. achieving failure on the application level) is still somewhat of an open
question (see also chapter 17). Other than that we see no major difficulty with the lan-
guage constructs. Of course, there are improvements that can be made to the system
that impact performance and scaling, ranging from JIT-compilation to reworking some
of the protocols for better scaling.

2.5 The Oz Programming Language

Mozart is based on the concurrent programming language Oz. Here we give a brief
overview of the language. A fuller description is given in paper 2 (chapter 7). For full
details see www.mozart-oz.org.

Oz is a rich language built from a small set of powerful ideas. We summarize its
programming model.

The roots of Oz are in concurrent and constraint logic programming. But Oz pro-
vides a firm foundation for all facets of computation, not just for a declarative subset.
The semantics should be fully defined and bring the operational aspects out into the
open. For example, concurrency and stateful execution make it easy to write programs
that interact with the external world [58]. True higher-orderness results in compact,
modular programs [4].

The basic computation model of Mozart is an abstract store observed by dataflow
threads (see Figure 2.1). A thread executes a sequence of statements and blocks on the
availability of data. The store is not physical memory. It only allows operations that
are legal for the entities involved, i.e., no type casting or address calculation. The store
has three compartments: the constraint store, containing variables and their bindings,

2.5. THE OZ PROGRAMMING LANGUAGE 35

S ::= S S Sequence
| X=f(l1:Y1 ... ln:Yn) | Value

X=<number> | X=<atom> | {NewName X}
| local X1 ... Xn in S end | X=Y Variable
| proc {X Y1 ... Yn} S end | {X Y1 ... Yn} Procedure
| {NewCell Y X} | {Exchange X Y Z} | {Access X Y} State
| {NewPort Y X} | {Send X Y} Ports
| case X==Y then S else S end Conditional
| thread S end | {GetThreadId X} Thread
| try S catch X then S end | raise X end Exception

Figure 2.2: Kernel language of OPM

the procedure store, containing procedure definitions, and the cell store, containing
mutable pointers (“cells”). The constraint and procedure stores are monotonic, i.e.,
information can only be added to them, not changed or removed. Threads block on
availability of data in the constraint store.

The threads execute a kernel language called Oz Programming Model (OPM) [116].
We briefly describe the OPM constructs as given in Figure 2.5. Statement sequences
are reduced sequentially inside a thread. Values (records, numbers, etc.) are introduced
explicitly and can be equated to variables. All variables are logic variables, declared in
an explicit scope defined by the local construct. Procedures are defined at run-time
with the proc construct and referred to by a variable. Procedure applications block
until their first argument refers to a procedure. State is created explicitly by NewCell,
which creates a cell, an updatable pointer into the constraint store. Cells are updated by
Exchange and read by Access. Conditionals use the keyword case and block until
the condition is true or false in the constraint store. Threads are created explicitly with
the thread construct and have their own identifier. Exception handling is dynamically
scoped and uses the try and raise constructs. Ports

A port is an asynchronous channel that supports many-to-one communication. A
port P encapsulates a stream S. A stream is a list with unbound tail. The operation
{Send P M} adds M to the end of S. Successive sends from the same thread appear
in the order they were sent. By sharing the stream S between threads many-to-many
communication is obtained.

Full Mozart/Oz is defined by transforming all its statements into this basic model.
Full Oz supports idioms such as objects, classes, reentrant locks, and ports [116, 132].
The system implements them efficiently while respecting their definitions. We define
the essence of these idioms as follows. For clarity, we have made small conceptual
simplifications. Full definitions may be found in [51].

• Object. An object is essentially a one-argument procedure {Obj M} that refer-
ences a cell, which is hidden by lexical scoping. The cell holds the object’s state.
The argument M indexes into the method table. A method is a procedure that is

36 CHAPTER 2. DISTRIBUTED PROGRAMMING LANGUAGES

given the message and the object state, and calculates the new state.

• Class. A class is essentially a record that contains the method table and attribute
names. When a class is defined, multiple inheritance conflicts are resolved to
build its method table. Unlike Java, classes in Oz are pure values, i.e., they are
stateless.

• Reentrant lock. A reentrant lock is essentially a one-argument procedure {Lck
P} used for explicit mutual exclusion, e.g., of method bodies in objects used
concurrently. P is a zero-argument procedure defining the critical section. Reen-
trant means that the same thread is allowed to reenter the lock. Calls to the lock
may therefore be nested. The lock is released automatically if the thread in the
body terminates or raises an exception that escapes the lock body.

2.6 Language Extensions

We have shown and argued that a network-transparent and network-aware distributed
programming system based on a good concurent programming model will take you
very far. However, this does not mean that this is enough. Developing a programming
system that ’presents itself to the programmer as if it were a single computer system’
is not sufficient.

The reason for this is quite simple. There are facets of computing that are either not
visible, not important, or not natural on a single computer system. These facets will,
however, become an intrinsic part of distributed programming, and will be reflected in
the distributed programming language.

It is, we think, unclear exactly what extensions will ultimately be needed on the
programming system level (maybe they can be dealt with on top of the programmng
system). We do not claim that Mozart is complete in this sense. See also section 17.

The failure monitoring constructs that were described in section 3.2.1 belong to
this category. They were put into the language to deal with partial failure, which is not
visible (or not possible) on a single computer system.

In the next subsection we describe another very important language extension.

2.6.1 Open Computing

One of the most important extensions to the programming language Oz to make it a
distributed programming language was to make provisions for open computing. Open
computing means that running applications must be able to establish connections with
computations that have been started independently across the net.

This is an example of a need that is not natural on the single computer system
where the user/programmer has total control.

Mozart uses a ticket-based mechanism to establish connections between indepen-
dent sites. One site (called the server site) creates a ticket with which other sites (called
client sites) can establish a connection. The ticket is a character string which can be

2.6. LANGUAGE EXTENSIONS 37

stored and transported through all media that can handle text, e.g., phone lines, elec-
tronic mail, paper, and so forth.

The ticket identifies both the server site and the language entity to which a remote
reference will be made. Independent connections can be made to different entities on
the same site. Establishing a connection has two effects. First, the sites connect by
means of a network protocol (e.g., TCP). Second, in the Mozart computation space,
a reference is created on the client site to a language entity on the server site. The
second effect can be implemented by various means, i.e., by passing a zero-argument
procedure, by unifying two variables, or by passing a port which is then used to send
further values. Once an initial connection is established, then further connections as
desired by applications can be built from the programming abstractions available in
Oz. For example, it is possible to define a class C on one site, pass C to another site,
define a class D inheriting from C on that site, and pass D back to the original site. This
works because Mozart is fully network-transparent.

Mozart features two different types of tickets: one-shot tickets that are valid for
establishing a single connection only (one-to-one connections), and many-shot tick-
ets that allow multiple connections to the ticket’s server (many-to-one connections).
Tickets are used in the example program of paper 1(chapter 6).

38 CHAPTER 2. DISTRIBUTED PROGRAMMING LANGUAGES

Chapter 3

Distributed Programming Systems

A distributed programming system is a realization of a distributed programming lan-
guage. In the previous chapter we presented the language aspects of the Mozart pro-
gramming system. In this chapter we turn our attention to the system. In the course
of the Mozart work we faced a number of severe challenges that had to be met. These
challenges and how we overcame this is the subject of this chapter. This chapter is
supported by papers 2-4 (chapters 7 to 9).

We worked with the following design and implementation principles:

1. Maximal network transparency

2. Good Network awareness

3. Open and dynamic computing

4. Efficient local execution

5. Minimal protocol infrastructure

6. Minimal latency for reference passing

The first principle was thoroughly discussed in the previous chapter. There we al-
so introduced the principle of network awareness which is here used in the sense of
paper 1 (chapter 6). Network awareness may be further subdivided into a true aware-
ness aspect and a control aspect. The true awareness aspect is that the system behaves
in a predictable manner, and that associated with the system are programming mod-
els over the non-functional aspects of the system, e.g. performance and failure. (By
performance here we are thinking mainly of distribution aspects such as number of
network hops, number and size of messages, and latency). The control aspect reflects
that the programmer must be able to control where computations take place, be able
to tune the program with respect to performance (according to expected or observed
application-specific usage patterns), and be able to deal with failure on the language
level.

The third principle has also already been discussed to some degree. Mozart caters
for open and dynamic distributed applications. It is not restricted to LANs, but is

39

40 CHAPTER 3. DISTRIBUTED PROGRAMMING SYSTEMS

suitable for WANs and the Internet. The machines involved in a distributed application,
at any point in time, is a dynamic property. The machines do not have to be known a
priori, machines may continually join an application (e.g. via tickets), or leave (e.g. as
shared references go out of scope). In one sense, as we shall see, Mozart also scales
perfectly (see section 3.1.1).

The last three design principles may also be seen as aspects of network awareness,
but their importance motivates listing them explicitly here. These three principles are,
as we shall see, important for either performance and/or failure vulnerability.

3.1 Network transparency

3.1.1 The Protocol Infrastructure

Network transparency meant that we had to take into account that all language entities
that in the concurrent centralized system could be shared between threads on the same
machine could now be shared between threads on different machines. This meant that
we had to, for many of the language entities, devise or find protocols (or distributed
algorithms) that would coordinate operations on sites that reference the entity. Clearly,
we wanted the most efficient (in terms of messages and network hops) without sacri-
ficing semantics (consistency).

An important design principle in the work was not to rely on any kind of central
authority or out-of-band service. This can be formulated precisely. Whatever the entity
type if a language entity is shared between a set of sites then only those sites and no
others will be involved in the protocol. Actually, for practical reasons, we relaxed this
to, ’only those sites that reference the entity and the creation site will be involved the
protocol’. (At the time it seemed that usually the site that creates an entity participates
in the sharing throughout the entity lifetime).

Note that this differs from many other distributed programming systems. In Globe
[122], for example, there is a central and separate naming and location service that
has to be maintained separately. In this sense Mozart is self-organizing. Note that
in running distributed applications the sites involved in the application may be many
more than share any one particular entity. The sites are still linked and can influence
one another indirectly via chains of shared entities.

Note that a Mozart application, in one sense, scales perfectly. A loosely-connected
application (i.e. connected only by virtue of chains of shared entities) can potentially
number in the millions of sites or machines. Mozart allows for this. Of course, it is
problematic if a millions of sites share the same object or logical variable, as there are
limits in the scalability of the protocol coordinating any one particular (non-stateless)
language entity.

3.1. NETWORK TRANSPARENCY 41

3.1.2 Development of Protocols

We developed a set of protocols to handle the different types of language entities.
Some of these protocols were fairly simple and standard, others were challenging. An
example of the first type is the protocol supporting ports (the asynchronous message-
passing primitive). The mobile state protocol and the variable protocol exemplify the
second type.

We developed an entirely new protocol for single-assignment or logical variables
that realized distributed unification efficiently. This is described in paper 3 (chapter 8).

We developed a new protocol for dealing with Oz cells. Oz cells form the basis of
mutable state (and objects) in Mozart. This is described in paper 2 (chapter 7).

The stateless language entities of Mozart occur in two varieties based on the sup-
ported equality relationship. Records, atoms, integer and floats have structural equality.
Procedure, classes, and object-records have token equality, i.e. are only equal if they
have the same source. Network transparency implies that token equality must be pre-
served, i.e. the system must recognize that equality of repeated imports of the same
(via token equality) data structure. This was achieved by the use of global names, and
had the additional benefit that irrespective of history there is at most one copy per site
of the data structures corresponding to code (i.e. classes and procedures).

3.1.3 Marshaling

Stateless language entities (records, atoms, integers, floats, classes and procedures)
and snapshot state (as part of the mobile state protocol) would need to be transferred
between sites. We developed an efficient (i.e compact) marshaling format and imple-
mented a marshaler/unmarshaler to convert data structures in memory into linearized
form and vice versa. The marshaling format recognizes co-references for compact
marshaling (this was also necessary as Oz allows for cyclic data structures).

One of the complications of marshaling is the risk of memory explosion. Sites and
networks vary in capacity and marshaled data structures consume memory space. Pro-
tocol operation can quite easily deliver more messages (and in particular messages con-
taining Mozart data structures) than the network can handle. The problem is twofold.
First, the marshaled linearized representation of language entities tends to be much
larger than the the space consumed by the entity in program memory. Second, the
space in the marshaling buffer is space that is used in addition to that in memory.
Effectively there are two copies of the same entity in different forms.

An important design decision was therefore to queue messages in unmarshaled
form, i.e. to implement late marshaling. This is also described in the section on the
messaging or network layer (section 3.2.3). Entities are thus not marshaled when the
channel buffer (one for each other site that a site is connected to) exceeds some critical
size.

The story does not really end there. Individual messages may contain very large
data structures that take considerable space in marshaled form. For this reasons, the
marshaling framework in Mozart was later extended (in joint work including the au-

42 CHAPTER 3. DISTRIBUTED PROGRAMMING SYSTEMS

thor) to provide for full incremental marshaling. This is beyond the scope of this thesis
but is described in [101]. With incremental marshaling Mozart only needs a constant
buffer space per channel.

Asynchronous operations (i.e. sending to a port) might potentially cause memory
explosion - in program memory this time, not just as marshaled data. It was therefore
necessary to provide feedback from the marshaler to execution, threads engaged in
asynchronous operations are suspended or slowed when the number or size of undeliv-
ered messages grows too large.

3.1.4 Garbage Collection

Mozart/Oz is a high-level programming language and has automatic memory reclama-
tion or garbage-collection. For complete network transparency memory reclamation
also needs to work on entities that have been shared.

We developed a distributed garbage collection scheme based on weighted refer-
ence counting (called a distributed credit mechanism in paper 1). This collector is
guaranteed to reclaim all acyclic garbage (modulo failure).

Weighted reference counting allows a site holding a reference to freely export this
reference without coordinating with the home of the entity (or any type of central
authority) for minimal latency. It merely divides the weight associated with the enti-
ty between itself and the exported reference. Of course, a problem occurs when the
weight cannot be further subdivided.

Weighted reference counting was modified in the initial Mozart release to be able
to handle arbitrary reference passing patterns, i.e. avoiding the problem of not being
able to further divide the weight. The scheme suffered from complexity and was later
superseded by a better algorithm (co-designed by the author) called fractional weighted
reference counting published in [74].

Our distributed garbage collector does not so much recognize that shared entities
become garbage, but rather detects the situation when there is (at most) one site ref-
erencing the entity. The entity can then be localized for efficient local execution (or
possibly reclamation by the local garbage collector).

The weighted reference counting garbage collector breaks in the face of site fail-
ure. Weight is lost and garbage will then never be reclaimed. More sophisticated safe
distributed garbage collection schemes to deal with this are both expensive and break
one or other of our design principles [98]. For instance, they may demand that all
sites know about each other, which violates openness and self-organization. Later as
is suggested in paper 1 (chapter 6), a time-lease based garbage collection scheme was
implemented as an alternative (programmer’s choice). Note that, time-lease garbage
collection may break network-transparency, as long delays may cause entities to be
prematurely reclaimed.

3.2. NETWORK AWARENESS 43

3.2 Network Awareness

Here we are concerned with the non-functional properties of the system. We consider
performance and failure issues. Here and in paper 1 (chapter 6) the term network
awareness in used as term to denote both proper awareness issues and control issues.
In part III we separate and make a clear division between awareness and control issues.

Network-awareness covers system aspects properties that make the system pre-
dictable in the terms of performance, failure, etc. Network-awareness also cover sys-
tem properties that give the programmer the necessary control to adapt and optimize
the application depending on deployment, expected usage patterns, etc. This control
aspect of network-awareness requires that the system is reasonably efficient and fault-
tolerant to begin with.

The protocols were designed with network-awareness in mind. This is discussed
both in the next chapter (comparing Mozart with other systems) and in the papers (part
II).

In the rest of this section we consider other aspects of network-awareness that we
dealt with in the course of the Mozart work.

3.2.1 Failure Model

The failure model was described in the previous section. The system needed consider-
able instrumentation to realize this model.

The key to realization of the failure model was to map the underlying fault detection
in the network layer on the level of sites and connections between sites onto failure
on the level of language entities. This was done efficiently in that when failure was
handled exclusively by handlers (i.e. lazily with no eager watchers installed) there was
no impact on system performance in the absence of failure.

Eager failure detection, via watchers, had some minor impact on system perfor-
mance. It requires the continuous monitoring of communication channels possibly
above that which is required for protocol operation. This is also discussed in section
3.2.3.

The protocols needed to be instrumented to provide the information required for
entity fault detection. In the case of the mobile state state protocol, considerable mod-
ifications needed to be made on the original protocol as described in paper 2 (chapter
7). The modifications are described in paper 4 (chapter 9).

Of course, failure detection on language entities is only as reliable as the underlying
network layer can deliver reliable information as to the failure of sites and communi-
cation channels.

The handler and watcher mechanism were made primitive in the language and sys-
tem, and integrated into the centralized execution engine. It was necessary to be able
to install handlers and watchers on a local language entity as the entity might later
become distributed. To allow handler/watcher installation only on distributed entities
would violate the good concurrency properties of the base language (introducing pos-
sible race conditions). A handler/watcher installed on a local language entity that ends

44 CHAPTER 3. DISTRIBUTED PROGRAMMING SYSTEMS

up never being distributed has, of course, no effect.

3.2.2 Efficient Local Execution

A major design constraint was that operations on local language entities (i.e. only
referenced from a single site) should be affected as little as possible. Ideally there
would be no difference in performance in Mozart as compared to centralized Oz. In
practice, we found that we pay cost on the order of 1%.

Note that the localness of a language entity is a dynamic property. During the
course of execution local language entities may or may not become globalized, i.e
shared. For example, a site that has references to a local object and globalized object
may update the state (attribute) of the globalized object to reference the local object.
The previously local object is now globalized and may be accessed by threads on other
sites. Note that the fact that an entity is globalized does not mean that the entity is
is not available locally, but only that operations must go through the coordination or
protocol logic. For instance, in the mobile object protocol of papers 2 and 4, the object
state may at invocation time be cached locally.

In practice, the design constraint that we worked with was that operations on en-
tities that are at operation-time local should be virtually unchanged. This means that
the performance of operations on an entity is independent of the entity’s history. This
requires the cooperation of the distributed garbage collector.

A Mozart site thus carefully maintains a dynamic distinction between local and
globalized entities. Operations on local entities are done efficiently and without any
synchronization between sites.

Two observations may be made here. First, we make good use of the language
property of reference security here. The only way that a local entity can become glob-
alized is by action at the site that holds the local entity. No uncoordinated action taken
by any other site can achieve this as no other site holds a reference to the entity.

Second, the problems of distributed shared memory (DSM) are avoided. Distribut-
ed shared memory (a language-independent middleware) must also cater for imperative
languages (e.g. concurrent C) that allow for pointer arithmetic. All memory is poten-
tially addressable by all sites. This would be as if all entities were globalized. DSM
systems also suffer from the problem of false sharing [122], which is also avoided - in
Mozart that which seems to be shared is always truly shared.

3.2.3 Messaging and Network layer

Mozart uses TCP (as supported by Linux, Solaris and Windows OS) as the underlying
communication mechanism between sites. Mozart threads are not OS-threads (this is
what makes concurrency scalable in Mozart) but are part of the Mozart runtime. We
could therefore not use blocking TCP. But this was by no means enough and above
TCP we found it necessary to build a fairly complex messaging-layer. The messaging
layer did the following:

3.2. NETWORK AWARENESS 45

Trsnslation of TCP Error Codes: The TCP error codes had to be translated into
permanent and temporary failure of sites, which in turn, in other layers, would
be mapped onto entity failures. This translation is conservative and a permanent
failure is only declared when crash failure can be safely determined. Determin-
ing site failure could also be established in other ways. For instance, when one
Mozart OS-process crashes and another is started with the same IP-address and
port that the permanent failure of the crashed site will be determined when a
connection is established with the newly started site.

Recovery: In Mozart, time-outs, in the sense of when the suspended operation on
a temporary failed entity is aborted, is determined by the programmer. TCP
can thus time-out before Mozart time-outs. This requires that the network layer
can recover from broken TCP connections with all that this entails in terms of
acknowledgments, buffering, and resending on the network layer level. (The
network layer here actually duplicates on another level many of the fundamental
TCP mechanisms).

Sharing of connection resources: Sites have logical connections to other sites. De-
pending on entity type and the consistency protocol associated with the entity,
sites have a logical connection to some or all of the sites that share the same
language entity. A site therefore potentially has very many logical connections.
At any one time some logical connections are passive in that there is currently
no need to communicate with the site on the other end. This is quite common
as sites hold references to object and ports that are seldom used. Other logical
connection are active in the sense that there currently is a need to communicate
with that site (i.e. messages to that site are currently queued). Finally there are
physical connections in the sense that TCP connections are established between
sites.

Most operating systems limit the number of physical connections that may be
maintained. Mozart therefore shares the limited physical connection slots among
the active logical connections. The messaging layer therefore contains queues
and its own scheduler.

Watcher instrumentation: Watchers (for eager fault detection) have an affect on
connection-resource sharing. Their operation will be mapped to the need for
regular monitoring of a number of logical connections. If these logical connec-
tions are not made active by normal execution involving shared language entities,
then they must be made active anyway.

Queuing and Buffering: In general, messages may be queued waiting for schedul-
ing. Some of the messages contain language entities (Oz terms). To save memo-
ry the language entities are not marshaled when referenced from the queue. The
queue cooperates with the local garbage collector.

In the Mozart implementation of 2000 once a message (containing a reference
to a language entity) was scheduled and marshaling was begun, marshaling was

46 CHAPTER 3. DISTRIBUTED PROGRAMMING SYSTEMS

complete without interruption. Some messages may be very large (e.g. sending
a large tree data structure to a port), and this usually requires buffering in the
Mozart runtime as the underlying TCP, with limited buffering, cannot hold the
entire message. It is buffered in the Mozart system and the buffer may grow and
shrink depending on current needs. TCP cannot, of course, free its buffer space
before it receives acknowledgment from the receiver.

Time-sharing between communication and execution: In centralized Mozart/Oz
the internal scheduler manages the time-sharing of runnable threads. In distribut-
ed Mozart there is the need for time-sharing between messaging layer operation
(including marshaling) and thread execution.

3.2.4 Dealing with Localized Resources

The Mozart Programming System like other programming systems makes use of stan-
dard operation system resources. Typical resources are the file system and the win-
dow system (graphics). These resources can be seen as references from within the
Mozart/Oz computations world to the outside world and the outside world is, of course,
not network transparent. So the question is, what should be done when such references
are exported from one site to another?

With some analysis it quickly becomes apparent that the desired scoping is very
unclear. This is not the case with the normal language entities of Oz, where lexical
scoping is the rule. Consider, for example, the case when code (e.g. class or procedure)
that encapsulates a reference to the file system is exported over the Internet from one
site to another. What is the programmer’s intent? Is the intention to use the file system
at the sending site or the receiving site? In other words, do we want static linking or
dynamic linking? This is just one case where the traditional constructs of centralized
programming systems underspecify requirements. The necessary distinctions are just
not there.

A time-consuming partial solution to the resource problem would have been to
rework the Mozart/Oz resource model to capture the distinction between static and
dynamic resources. This we did not do. Indeed, an attempt to do so would suffer from
many complications. Statically linked resources may have a wider scope than just the
particular site or operating system process. For example, the same file system may be
used directly by sites on the same LAN. Some resources are stateful (e.g. an open file)
and cannot be made dynamic.

Instead, we ensured that the programmer was given the necessary means to realize
static linking, where this was what was wanted, and dynamic linking, where this was
what was wanted. Static linking is achieved by using the stationary object abstraction
as described in papers 1 and 2 (chapters 6 and 7. For instance, a statically linked file
system would transfer file operations back to the original site. Dynamic linking is
achieved by using functors [28].

This left us with the question of what to do when the programmer does nothing
and shares a resource reference directly without making the necessary provision for

3.2. NETWORK AWARENESS 47

static or dynamic linking. We took the safe course, and these resources simply do not
work outside the original site (i.e. give rise to exceptions on attempted use). This has
the added benefit that programmer oversight does not introduce a security hole, but
causes the application to fail (or more precisely, the thread). Resources can be harm-
lessly exported (maybe the reference is never actually used). For reasons of maximally
transparency, resources that are exported and then reimported to the original site do
work.

Note that in Mozart, code (i.e. classes and procedures) are first-class values and
have full distribution support for token equality. When these code constructs are sent
across the net this does not mean that the actual code needs to be shipped (marshaled
and unmarshaled). The receiving site may very well, and this is quite common, already
have the required code, which is then linked in. This has the performance advantages
of dynamic linking but is safe.

Dynamic linking of code, however, is very important for code revision. New and by
token-equality different code components should be able to connect as replacements.
This is also handled by functors were code can explicitly be equated by name. (For
some of the problems of dealing with code in other systems see also section 16.4.)

48 CHAPTER 3. DISTRIBUTED PROGRAMMING SYSTEMS

Chapter 4

Related Work

In this chapter we relate Mozart to other distributed programming systems.
The first section covers systems where the centralized programming model and the

model over distribution support are completely different. This kind of system can be
easily constructed by making use of some what are called ’language-independent’ dis-
tribution support tool (or middleware) together with some centralized programming
system. The section is titled the ’two-headed beast’, because it makes use of two pro-
gramming models that are typically very different. This makes programming beastly
- much like trying to control a two-headed beast where each head has its own idea of
where to go.

The second section covers distributed programming systems that to different de-
grees avoid the problem with the ’two-headed’ approach by incorporating centralized
programming and distributed programming in the same programming language. In
part III this approach is called the integrated approach (see section 15.3).

4.1 The Two-Headed Beast

The most straightforward approach to distributed programming is to use separate mod-
els, tools, and systems for centralized programming on the one hand and distributed
programming on the other. There are, however, many disadvantages to this approach:

Multiplicity of models: The programmer must work with two very different pro-
gramming models and be extremely careful when working in the intersection of
the two.

Difficult to change distribution structure: Any changes in the distribution structure
of the application, i.e. how threads are distributed between sites, will require
major reworking of the application.

Different data formats: The data formats in the centralized programming model and
the distribution model are different and any exchange of information between the
two needs to be converted. This is less serious in that this may be dealt with on
the library level.

49

50 CHAPTER 4. RELATED WORK

Mismatch of concepts: This last factor depends on the nature of the distribution
support tool. The centralized and distributed programming model may be so dif-
ferent so as to violate each other’s basic assumptions. This will become clearer
when we consider individual systems.

We call this approach the two-headed approach.

4.1.1 Message-passing systems

Using a message-passing system [122, 29] together with a centralized programming
language/system falls into the two-headed approach (except for Erlang as will be de-
scribed at the end of this subsection).

The simplest message-passing system is a centralized programming language to-
gether with the socket library (i.e. TCP). More sophisticated message-passing support
can be found in MPI or MOM (message-oriented middleware) [122]. Support for data
conversion between different formats can be included [104, 2]. However, the disad-
vantages of multiplicity of models, and difficulty in changing the distribution structure
remain.

Usually there is a serious mismatch of concepts between the message-passing mid-
ddleware and the centralized programming system. This is the case when the central-
ized programming system is based on mutable state programming. This includes most
programming systems, and all the really popular ones (some exceptions are functional
programming languages, the declarative subset of Mozart, and Erlang). Messages are
stateless (immutable) and once sent cannot be unsent. The application developed will
have to work with local mutable state on the one hand and immutable messages and
undoable message-sending (i.e. you cannot retract sent messages) on the other. This is
a serious mismatch.

What to do about this mismatch was actually investigated in the context of develop-
ment of Oz (both before Mozart and early on during Mozart work when some smaller
semantic changes in the language were made). You do not need to go to distribution
- the mismatch can be investigated in a concurrent programming system that caters
for both mutable state and declarative programming (including message-sending). The
conclusions were:

Declarative concurrency: Declarative concurrency, which includes message-sending
but not mutable state, is all that is needed for many concurrent applications. The
advantages of this style are many, but most important may be that it lessens the
risk of deadlock and race conditions. A full description can be found in [129]

Encapsulated state: There is a mismatch between the declarative subset and mutable
state, but this is almost non-existent when all mutable state is kept local to a
single thread.

Shared state: There is a fundamental mismatch but sometimes one needs shared
state. There are techniques to minimize the dangers of the mismatch but pro-
grammers need to be careful.

4.1. THE TWO-HEADED BEAST 51

One of our major criticisms of so many tools and programming system extensions
for distributed programming is that they are presented as simple add-ons and libraries
but actually introduce significant complexities. These complexities will bite the pro-
grammer as soon as he tries to go much beyond the simplest of applications. In Mozart
these complexities are in the language, put up front, and made visible. The language
can be mastered and then, by virtue of network-transparency, distribution is obtained
almost for free.

At this point we need to discuss Erlang [138]. Erlang is a special case as the basic
centralized (concurrent) programming model is based on message-passing. Adding
distributed message-passing to concurrent Erlang does not, of course, add any new
concepts. Distributed Erlang is thus not two-headed and does not suffer from its disad-
vantages. Erlang, like Mozart, has a declarative concurrent base. However, in Erlang
there is no provision for shared state at all, and the only type of encapsulated state is
on the individual process level (process dictionaries). Thus shared state is forbidden1.

4.1.2 Database Approach

Another mixed approach is to use some type of shared data repository. Threads and
sites coordinate by inserting, updating, reading and removing data from this repository.

This approach has many of the same disadvantages of the message-passing ap-
proach, such as multiplicity of models, and often, mismatch of programming concepts.
For true database applications where the application basically does nothing except ac-
cess and update the data repository the mismatch critique does not apply. This is not
the type of application that we targeted with the Mozart work. In database applications
the complexity is on the database side. Consistency, fault-tolerance and scalability
issues are all important. Databases have, of course, been extensively researched.

Interesting in this regard is Linda [23] which provides operations to insert and
extract immutable data items, called “tuples,” from a shared space. This is called
a coordination model, and it can be added to any existing language. The fact that
the data is immutable makes achieving consistency easier, and improves performance
considerably compared to traditional updateable databases. One is reminded of Mozart
where the language distinction between immutable, mutable, and single-assignment is
leveraged for good performance. Note that Linda also suffers from the multiplicity
of models. Once again, in the context of programming languages centered around
manipulation of mutable state there is also a mismatch of concepts.

Linda can also be seen as form or library-based distributed-shared memory [122].
Unlike page-based (low-level) distributed shared memory only certain abstractions
may be shared and given to DSM middleware to maintain consistency. Another exam-
ple is Orca [14] where network pointers, called “general graphs,” and shared objects
are provided. Orca is designed for parallel applications (requires LAN support to work
well). Library-based DSM also suffers from the multiplicity of models.

In a sense Mozart also follows the library-based DSM approach. In this view the

1Many Erlang applcations do however make use of an external database

52 CHAPTER 4. RELATED WORK

shared computation space of Mozart is a DSM layer that is designed to support all
language entities. There is no distinction between entities that may be shared and
those that may be not. This is vital for network-transparency.

Also, the Mozart DSM layer leverages the invariants associated with language en-
tity types to provide the best consistency protocol. Stateless language entities can be
freely replicated between sites. Single-assignment (data-flow) variables are intermedi-
ate in complexity between immutable and mutable data structures. Once this has been
done the Mozart DSM is finished with the entity and the entity is indistinguishable
from any other local entity.

From this point of view the Mozart DSM layer is extended to provide functionality
that is not part of traditional DSMs. First, it supports single-assignment data in a
strong form (logic variables) as well as other sharing protocols such as read-only data
(values) and migratory data (objects). Second, the system is open: sites can connect
and disconnect dynamically. Although not impossible, we do not know of any DSM
system that possesses this property 2 . Third, the system is portable across a wide
range of operating systems and processors. Fourth, the system supports precise failure
detection.

4.2 The Language Approach

Here we compare with distributed programming systems that at least to some degree
avoid the problem of the multiplicity of models as described in the previous section.
We can compare systems and the associated languages based on:

• Language Expressivity: The most natural and common way of comparing the
relative merits and demerits of programming languages.

• Network transparency: The extent to which the systems offer network trans-
parency.

• Network awareness: Here we consider various non-functional properties of the
system, such a predictability, performance (for distributed operations), and fail-
ure.

4.2.1 Expressivity

The expressivity that Mozart offers is mainly due to the fact that it is based on the
concurrent programming language Oz. The expressivity carries over to distribution
and because of network-transparency the programming model is not complicated by
having to take into account non-transparencies.

Oz has a solid formal foundation that does not sacrifice expressiveness or efficient
implementation. Oz is based on a higher-order, state-aware, concurrent constraint

2It is beyond the scope of this thesis but later work at SICS, with the involvement of the author has
developed, for the first time, something along these lines. See [1]

4.2. THE LANGUAGE APPROACH 53

computation model. Oz appears to the programmer as a concurrent object-oriented
language that is every bit as advanced as modern languages such as Java. The current
emulator-based implementation is as good or better than Java emulators [59, 58]. Stan-
dard techniques for concurrent object-oriented design apply to Oz [79]. Furthermore,
Oz introduces powerful new techniques that are not supported by Java [51]. Higher-
order means that the same mechanisms for sharing data between threads (and in the
distributed setting between sites) can be used for sharing code.

Oz provides both synchronous (e.g. method invocation on objects) and asyn-
chronous operations (via the message-sending construct ports). There is a noticeable
difference in behavior between the two alternatives already in the centralized concur-
rent setting, but the need for both forms increases when distribution is added to the
mix.

Oz is a state-aware and dataflow language. State-awareness means the language
distinguishes between stateless data (e.g., procedures or values) and stateful data (e.g.,
objects). Dataflow synchronization allows to decouple calculating a value from pass-
ing it as reference. Data-flow synchronization between threads is also useful in that
it lessens the risk for deadlock and race conditions that otherwise plague concurrent
programming systems [129].

Oz is referentially secure and provides language security. References to all lan-
guage entities are created and passed explicitly. An application cannot forge references
nor access references that have not been explicitly given to it. The underlying repre-
sentation of language entities is inaccessible to the programmer. Oz has an abstract
store with lexical scoping and first-class procedures. These are essential properties to
implement a capability-based security policy within the language [125, 134].

Object-oriented systems like Java-RMI [120], Emerald [71, 72], and Globe [122]
do not provide higher-order programming nor data-flow variables and thus many of
the programming techniques of Mozart are just not available. Neither do most object-
oriented systems provide for asynchronous thread interaction. In the Java-based system
Object Voyager [3] extensions were added to permit asynchronous method invocation,
which if the method return void can be seen as message-passing. (Object Voyager
is an example of an add-on, for distribution, that though it has major programming
implications, is presented as if it were a very minor addition).

Obliq [21] shares with Mozart the notions of dynamic typing, concurrency, state
awareness, and higher-orderness with distributed lexical scoping. There are however
no provision for data-flow. Obliq like Emerald is also only object-based (i.e. not
object-oriented in the sense of Mozart or Java).

Erlang [138] does not provide distributed objects nor data-flow variables. Thread
interaction is limited to message-passing.

4.2.2 Transparency

Most distributed programming systems are only partially network-transparent. At first
sight this is strange, given the consensus on the merits of transparency. The reason for
this, in the author’s opinion is threefold. First, few have taken the language view and

54 CHAPTER 4. RELATED WORK

transparency is sought on the application level, as discussed in section 2.2.3. Second,
network transparency is difficult to realize without sacrificing network awareness (e.g.
reasonable performance). A network transparent solution with poor performance is of
little interest. Third, many programming languages have limitations that just do not
allow both good network transparency and good network awareness.

Partial network transparency means that changes in the distribution structure of the
program often requires rewriting the application. In Java RMI [120, 90], for example,
invoking a remote object where all method parameters are simple types is network-
transparent, modulo failure and timing, just like Mozart. In this case Java RMI is
maximally transparent. However when the parameters are (stateful) local objects the
remote method invocation is not transparent, i.e. does not exhibit the same behavior
as a local method invocation would. Any change in the distribution structure which
places interacting threads that previously resided on the same machine on different
machines runs a high risk of changing program behavior. There are many other non-
transparencies in Java RMI. There are issues related to thread identity when a thread
performs a remote invocation. In RMI re-entrant locking does not work when the
call graph extends over the net (so changing an application’s distribution structure can
cause deadlock!).

Recently, there has been considerable research effort in java-based system to fix
the transparency problems. The thread identity problem is fixed both in cJVM ([10])
and in [137]. Transparency is most complete in cJVM (which is designed exclusively
for clusters). (Much of this work was done after the Mozart work and release).

In most distributed object systems there is a distinction beween objects that may
be distributed and those that may not. This applies to Java, Obliq, Object Voyager and
many others.

Distributed Erlang and Emerald are network-transparent, but the languages are less
expressive than Mozart.

4.2.3 Network awareness

Here we consider both aspects of network awareness. First, we consider predictability.
Does the system provide a model for the programmer to predict performance properties
(i.e. network hops), and failure resilience? Does the system provide the programmer
with the necessary control to achieve good performance.

Imperative Programming Languages and DSM

Languages that are not referentially secure (i.e. imperative with pointer arithmetic)
suffer from the fact that the distinction between local and globalized (shared) entities
is difficult to maintain. This has considerable impact on performance as described in
section 3.2.2. Distributed programming systems based on imperative programming
languages require distributed shared memory support.

Distributed shared memory (DSM) [29, 122] does provide a substrate for distribut-
ed programming. Page-based DSM does not provide predictable network awareness

4.2. THE LANGUAGE APPROACH 55

and may perform badly (when part of the page is actually only used on one site). The
units of distribution (“pages”) do not correspond directly to language entities. This
leads to false sharing. Munin [24], while page-based, provides programmer annota-
tions for network awareness. A data item in memory can be annotated as read-only,
migratory, write-shared, and so forth.

Distributed Object Systems

Many distributed object systems (e.g. JavaRMI [90, 120], Object Voyager [3]) only
provide for stationary objects. In section 16.6.3 we analyze use cases for distributed
object systems and see that for good performance under all usage patterns this is not
enough. The migratory object protocol of Mozart (paper 2 in chapter 7), which in a
sense caches the state of the object at the site invoking it, performs best under certain
usage patterns.

Systems like Emerald and Obliq provide for objects that may be explicitly, by the
programmer, moved from one site to another.

Java-based

Traditional Java RMI only provides for stationary objects which is inefficient for a
wide range of applications (see section 16.6.3). The Java programming language (and
the way it is typically used) makes it difficult to provide good transparency and good
performance at the same time. This is because the language is not state-aware, there is
no clear distinction between stateless and stateful language entities.

Java is most transparent when all the parameters in a remote invocation are state-
less. This is the case when they are all simple types (e.g. numbers). This is also the
case when they are stateless objects. There is only one way to express this in the lan-
guage and that is to make use of objects where all instance variables are final. This
is limited (there is no way to express that an object becomes stateless subsequent to
object initialization). Also, in centralized programming, there are no semantic conse-
quences of omitting the final declaration so programmers are only motivated to make
this annotation for defensive programming. The practical consequence of this is that
Java programs abound with stateless data structures masquerading as stateful ones.

If Java-based systems were to implement complete transparency then all objects
except for those where all instance variables are final would upon sharing be made into
shared objects (e.g. remote). All accesses except at the original site would require 2
network hops. Clearly this is unacceptable, performance-wise, if the object is stateless
and only masquerading as a stateful object.

Practical use of Java-RMI is based on the programming discipline that stateful ob-
jects that will be shared should be declared (i.e. compiled) as remote objects, and those
that are stateless when shared should not be declared as remote. The latter masquerad-
ing objects will when shared (e.g. used as a parameter in a remote method invocation)
be copied, which, of course, is exactly the right thing to do. However, this is very risky
and defensive programming is not possible.

56 CHAPTER 4. RELATED WORK

In cJVM [10] where Java is made network-transparent they were forced to extend
the language to get good network-awareness. They introduce extra annotations to pro-
vide the system with the information as to the statefulness of Java objects. Annotations
may also be seen in [31]. It is unclear how cJVM could be extended to Internet appli-
cations.

In the interest of performance in the sense of network hops and network delays
many other Java systems also extend the language. They may introduce asynchronous
method invocation and futures [38].

In recent years (subsequent to Mozart) there are many attempts to improve Java.
An interesting system is Java Party ([57],[97]). Distributed objects can be moved,
and replicated safely under a read/write invalidation protocol. In recent years (beyond
the scope of this thesis) Mozart has also been extended with read/write invalidation
and explicitly movable distributed objects. In section 16.6.3 we identify four different
protocols for distributed objects (state) that for good performance (hence, network
awareness) distributed programming systems should offer.

Emerald

Emerald [72] is a statically typed concurrent object-based language that provides fine-
grained object mobility [71, 72]. Emerald has distributed lexical scoping and is im-
plemented efficiently with a two-level addressing scheme. Emerald is not an open
system. Objects can be mutable or immutable, which is good from the point-of-view
of network awareness.

Objects are stationary by default and explicit primitive operations exist to move
them. Having an object reference gives both the right to call and to move the ob-
ject; these rights are separated in Mozart. Immutable objects are copied when moved.
Apart from object mobility, Emerald does not provide any special support for latency
tolerance. There is no syntactic support for using objects as caches.

Moving a mutable object in Emerald is an atomic operation that clones the object
on the destination site and aliases the original object to it. The result is that messages
to the original object are passed to the new object through an aliasing indirection. If the
object is migrated again, there will be two indirections, and so forth. The result is an
aliasing chain depending on the object history. This makes for poor network awareness
in the sense that number of hops is unpredictable and only bounded by the number of
participating sites, which in open system is not limited.

The forwarding chain is lazily shortened in two ways. First, if the object returns to
a previously visited site, then the chain is short-circuited. Second, all message replies
inform the message sender of the object’s new site. If the object is lost because a site
failure induces a break in the aliasing chain, then a broadcast is used to find the object
again. Using broadcast does not scale up to many sites, nor is it practical for Internet
applications. As in Mozart, failure is detected for single objects.

Because of the aliasing chain and possible broadcasting, it is difficult or impossible
to predict the network behavior in Emerald or to guarantee that an object is independent
of third-party sites. These problems are solved in Mozart by using a manager node that

4.2. THE LANGUAGE APPROACH 57

is known to all proxies (see paper 2 in chapter 7). This gives an upper bound of three
on the number of network hops to get the object and guarantees that all third-party
dependencies except for the manager site eventually disappear. Furthermore, the lack
of an aliasing chain means that losing an object is so infrequent that it is considered as
an object failure. There is therefore no need for a broadcast algorithm.

The Emerald system implements a distributed mark-and-sweep garbage collector.
This algorithm is able to collect cross-site cycles, but it is significantly more com-
plex than the Mozart mechanisms. It requires global synchronization and is thus not
practical.

Obliq

Obliq has taken some steps toward the goal of conservatively extending language enti-
ties to a distributed setting. Obliq distinguishes between values and locations. Moving
values causes them to be copied (replicated) between sites. Moving locations causes
network references to them to be created.

Obliq objects are stationary. Object migration in Obliq can be implemented in two
phases by cloning the object on another site and by aliasing the original object to the
clone. These two phases must be executed atomically to preserve the integrity of the
object’s state. According to Obliq semantics, the object must therefore be declared
as serialized. To be able to migrate these objects, the migration procedure must be
executed internally by the object itself (be self-inflicted, in Obliq terminology). The
result is an aliasing chain much like Emerald.

Erlang

Erlang is network-transparent but the language has its limitations. The only interac-
tions between threads, and hence sites, is via message-sending. Thus the only language
entities that are shared between sites are stateless messages and process references.
There is no sharing of state and hence no caching of state as in the mobile object pro-
tocol of Mozart. For many applications this limitation carries a serious performance
penalty as described in papers 1 and 2 (chapter 6 and 7). State may be programmed by
letting a process hold the value of the state where accesses and updates are achieved
by sending messages back and forth. This invariably rise to the same network commu-
nication pattern as stationary objects in Mozart or Java RMI.

Furthermore the message-passing primitive of Erlang offers only one-to-one and
many-to-one communication. In Mozart one-to-many and many-to-many communi-
cation is achieved by the use of streams (in conjunction with ports for many-to-many
communication). Communication with many readers must be programmed in Erlang
and it is difficult or impossible to always achieve the wanted network communication
patterns.

Erlang was not designed to be an open system, and is not higher-order which com-
plicates dynamic sharing of code. (Higher-orderness or the ability to share code by
the same mechanisms as whereby data is shared is very important for open distributed

58 CHAPTER 4. RELATED WORK

systems but much less so for closed systems).

Data-flow variable

One of the interesting results from the Mozart work are the additional advantages of
single-assignment for distribution above and beyond that of concurrent programming
(all of which, also carry over to distribution). We have discussed their use for latency
tolerance, but there is one more advantage.

Data-flow or single assignment variables can from the distribution point-of-view be
seen as constrained state. The state is constrained in the way in which it can be updated
or changed. The implementation of the associated protocol (chapter 8) leverages these
constraints to make for a lightweight consistency protocol. True state can be updated
many times and this requires a (relatively) heavyweight consistency protocol. This is
not the case with single assignment variables. The protocol described in paper 3 can be
compared to the closest related true state consistency protocol - invalidation with eager
replication. Compared to true invalidation protocols the variable protocol leverages the
single-assignment constraint and optimizes the eager invalidation protocol as follows:

• No invalidation messages need be sent

• The protocol infrastructure (proxy/manager network) can be dismantled auto-
matically and safely after the one and only one eager propagation of the value.

The first point is due to the fact that all readers automatically synchronize (wait)
when the variable is still unbound. The second point reflects the fact that the protocol
infrastructure (i.e. the network of the manager and proxies) is only needed once.

4.3 Summary

We have compared Mozart with other distributed programming systems. We showed
that the disadvantages of the two-headed approach to distributed programming are
large. This is recognized not only by us, but by many others, hence the increasing
interest in distributed programming system where the language is integrated with dis-
tribution support.

We have compared Mozart to other distributed programming systems based on
these principles. We have analyzed this based on three criteria: language expressivity,
network transparency, and network awareness. We have seen that Mozart is the most
expressive, one of the most network transparent (particularly for Internet applications)
and is among the best with respect to network awareness.

Chapter 5

Contributions by the Author

The thesis represents joint work done between 1995 and 2000.
The culmination of this work was the open-source release of the Mozart Program-

ming System in 1999 and 2000 at www.mozart-oz.org.
The author was the main architect behind distribution in Mozart. The distribution

support component of Mozart was mainly designed by the author. The author was the
main implementor of this component in the earliest version. Later, the implementation
team grew.

We first review some of the exceptions to the rule that the author was the main
architect:

Oz: The centralized concurrent Oz language/system was designed and implemented
by Prof. Gert Smolka’s group in the early 90’s. The core semantics of Oz was
almost unchanged when Oz was extended for distribution to become Mozart.

The Marshaler: The marshaler/unmarshaler was designed and implemented by Ralf
Scheidhauer (DFKI). The interface between the marshaler and the rest of the
system was done by the author, including feedback flow control on asynchronous
operations.

Token Equality: The naming mechanism to ensure token equality and preserve the
at-most-one-copy property were developed by the author and Ralf Scheidhauer
jointly

Protocols: The first version of the mobile state protocol (chapter 7) was developed
by the author, but this was later improved jointly (mainly by Peter van Roy,
Seif Haridi, and the author). The variable protocol of paper 3 (chapter 8) was
developed jointly. The improved failure-detecting mobile state protocol (chapter
9) was developed mainly by the author. The other protocols mentioned in paper
1 (chapter 6) were developed mainly by the author.

Some particular contributions made by the author were:

Failure model: The author designed the failure model, and designed and implement-
ed all the entity protocols to correctly detect entity failure.

59

60 CHAPTER 5. CONTRIBUTIONS BY THE AUTHOR

Resource model:The author was also responsible for the resource model as described
in the previous section.

Protocols: The lazy, eager and immediate protocols for stateless entities were devel-
oped by the author.

Garbage Collector: The author designed and implemented the distributed garbage
collector.

Messaging and Network Layer: The author designed and implemented the network
layer as described in the previous section.

Part II

The Papers

61

Overview of part II

The first paper was published 1998 in the journal of New Generation Computing. The
paper presents Mozart (or Distributed Oz as it was called earlier) as a programming
language designed specifically for distributed applications. Included is a short in-
troduction to the concurrent programming language Oz. Thereafter the distributed
programming language, Mozart, is introduced, and we see how the extensions for dis-
tribution in the language change virtually nothing (in the programming model). The
only changes are in the programmer’s model over certain non-functional character-
istics (performance and failure model), which means that the distribution support is
well-integrated into the concurrent programming model. A number of programming
examples are included, demonstrating the ease of distributed programming in Mozart.

The remaining papers focus on the algorithms that underlie the implementation.
The second paper, published in 1997 in TOPLAS, deals with distributed objects, or
shared mutable language entities. In particular, the mobile state protocol (distributed
algorithm) is presented. As is explained in the paper, the mobile state protocol is,
for certain usage patters, optimal for shared mutables (e.g. distributed objects). Also
shown in the paper is how to achieve one of the alternatives, a stationary state protocol,
which is also optimal under different patterns of use.

The third paper, published 1999 in TOPLAS, is focused on the protocol underlying
the sharing of data-flow variables. This, was the first effective algorithm for dealing
with distributed unification. Interestingly, distribution actually increases the useful-
ness of data-flow variables over and beyond those that are found in centralized concur-
rent programming, where they simplify thread synchronization and enable concurrent
declarative programming. Firstly, they are useful for latency-hiding, and secondly,
the distribution protocols for single-assignment state (i.e. logical variables) are more
efficient than the protocols for full-fledged (multiple-assignment) state.

The fourth paper (unpublished) presents a fault-tolerant (and fault-aware) version
of the mobile state protocol. The version in the second paper is not practical in that
certain failure conditions are not detectable (so the system cannot distinguish between
latency and failure). The results described in this unpublished paper have been pre-
sented and published in slightly less detail in the paper, ’Lightweight Reliable Object
Migration Protocol’ [128]. This published paper is not included as it is an abbreviated
version of what is covered by the second and fourth included paper.

Note that in some of the papers the Mozart was called Distributed Oz. This was
before the public release of the Mozart system in 1999 and 2000.

63

64

Chapter 6

Programming Languages for
Distributed Applications

Programming Languages
for Distributed Applications

Seif Haridi1, Peter Van Roy2, Per Brand3, and Christian Schulte4

1seif@sics.se, Swedish Institute of Computer Science, S-164 28 Kista, Sweden
2pvr@info.ucl.ac.be, Dép. INGI, Université catholique de Louvain, B-1348 Louvain-la-

Neuve, Belgium
3perbrand@sics.se, Swedish Institute of Computer Science, S-164 28 Kista, Sweden
4schulte@dfki.de, German Research Center for Artificial Intelligence (DFKI), D-66123 Saar-

brücken, Germany

65

66 CHAPTER 6. PROGRAMMING LANGUAGES FOR DISTRIBUTED APPL.

6.1 Abstract

Much progress has been made in distributed computing in the areas of distribution
structure, open computing, fault tolerance, and security. Yet, writing distributed ap-
plications remains difficult because the programmer has to manage models of these
areas explicitly. A major challenge is to integrate the four models into a coherent de-
velopment platform. Such a platform should make it possible to cleanly separate an
application’s functionality from the other four concerns. Concurrent constraint pro-
gramming, an evolution of concurrent logic programming, has both the expressiveness
and the formal foundation needed to attempt this integration. As a first step, we have
designed and built a platform that separates an application’s functionality from its dis-
tribution structure. We have prototyped several collaborative tools with this platform,
including a shared graphic editor whose design is presented in detail. The platform
efficiently implements Distributed Oz, which extends the Oz language with constructs
to express the distribution structure and with basic primitives for open computing, fail-
ure detection and handling, and resource control. Oz appears to the programmer as a
concurrent object-oriented language with dataflow synchronization. Oz is based on a
higher-order, state-aware, concurrent constraint computation model.

6.2 Introduction

Our society is becoming densely interconnected through computer networks. Transfer-
ring information around the world has become trivial. The Internet, built on top of the
TCP/IP protocol family, has doubled in number of hosts every year since 1981, giving
more than 20 million in 1997. Applications taking advantage of this new global orga-
nization are mushrooming. Collaborative work, from its humble beginnings as elec-
tronic mail and network newsgroups, is moving into workflow, multimedia, and true
distributed environments [73, 41, 18, 13]. Heterogeneous and physically-separated
information sources are being linked together. Tasks are being delegated across the
network by means of agents [75]. Electronic commerce is possible through secure
protocols.

Yet, despite this explosive development, distributed computing itself remains a ma-
jor challenge. Why is this? A distributed system is a set of autonomous processes,
linked together by a network [124, 85, 25]. To emphasize that these processes are not
necessarily on the same machine, we call them sites. Such a system is fundamentally
different from a single process. The system is inherently concurrent and nondetermin-
istic. There is no global information nor global time. Communication delays between
processes are unpredictable. There is a large probability of localized faults. The system
is shared, so users must be protected from other users and their computational agents.

6.2. INTRODUCTION 67

Part of problem

Interaction between parts

with added specifications
Single modelMultiple interacting models

functionality
Application

Application
functionality

Distribution
structure Distribution structure

Fault tolerance

Open computing

Resource control
and security

Open computing

Resource control and security

Fault tolerance

These do not affect
functionality

Figure 6.1: The challenge: simplifying distributed programming

6.2.1 Identifying the issues

A distributed application should have good perceived behavior, despite the vicissitudes
of the underlying system. The application should have good performance, be depend-
able, and be easily interfaceable with other applications. How can we achieve this?

In the current state of the art, developing a distributed application with these prop-
erties requires specialist knowledge beyond that needed to develop an application on
a single machine. For example, a new client-server application can be written with
Java RMI [120, 90]. An existing application can be connected with another through a
CORBA implementation (e.g., Orbix) [96]. Yet in both cases the tools are unsatisfac-
tory. Simply reorganizing the distribution structure requires rewriting the application.
Because the Java specification does not require time-sliced threads [46], doing such a
reorganization in Java may require profound changes to the application. Furthermore,
with each new problem that is addressed, e.g., adding a degree of fault tolerance, the
complexity of the application increases. To master each new problem, the developer
must learn a complex new tool in addition to the environment he or she already knows.
A developer experienced only in centralized systems is not prepared.

Some progress has been made in integrating solutions to different problem areas
into a single platform. For example, the Ericsson Open Telecom Platform (OTP) [36],
based on the Erlang language [11, 138], integrates solutions for both distribution struc-
ture and fault tolerance. Erlang is network-transparent at the process level, i.e., mes-
sages between processes (a form of active objects) are sent in the same way indepen-
dently of whether the processes are on the same or different sites. The OTP goes far
beyond popular platforms such as Java [120, 90] and is being successfully used in

68 CHAPTER 6. PROGRAMMING LANGUAGES FOR DISTRIBUTED APPL.

commercial telephony products, where reliability is paramount.
The success of the Erlang approach suggests applying it to the other problem areas

of distributed computing. We identify four areas, namely distribution structure, open
computing, fault tolerance, and security. If the application functionality is included,
this means that the application designer has five concerns:

• Functionality: what the application does if all effects of distribution are disre-
garded.

• Distribution structure: the partitioning of the application over a set of sites.

• Open computing: the ability for independently-written applications to interact
with each other in interesting ways.

• Fault tolerance: the ability for the application to continue providing its service
despite partial failures.

• Security: the ability for the application to continue providing its service despite
intentional interference. An important part of fault tolerance and security is
resource control.

A possible approach is to separate the functionality from the other four concerns (see
Figure 6.1). That is, we would like the bulk of an application’s code to implement
its functionality. Models of the four other concerns should be small and orthogonal
additions. Can this approach work? This is a hard question and we do not yet have a
complete answer. But some things can be said.

The first step is to separate the functionality from the distribution structure. We say
that the system should be both network-transparent and network-aware. A system is
network-transparent if computations behave in the same way independent of the distri-
bution structure. Applications can be almost entirely programmed without considering
the network. A system is network-aware if the programmer maintains full control over
localization of computations and network communication patterns. The programmer
decides where a computation is performed and controls the mobility and replication of
data and code. This allows to obtain high performance.

6.2.2 Towards a solution

We have designed and implemented a language that successfully implements the first
step, i.e., it completely separates the functionality from the distribution structure. The
resulting language, Distributed Oz, is a conservative extension to the existing central-
ized Oz language [33]. Porting existing Oz programs to Distributed Oz requires essen-
tially no effort. Why is Oz a good foundation for distributed programming? Because
of three properties [118]:

• Oz has a solid formal foundation that does not sacrifice expressiveness or ef-
ficient implementation. Oz is based on a higher-order, state-aware, concurrent

6.2. INTRODUCTION 69

constraint computation model. Oz appears to the programmer as a concurrent
object-oriented language that is every bit as advanced as modern languages such
as Java (see Section 6.4). The current emulator-based implementation is as good
or better than Java emulators [59, 58]. Standard techniques for concurrent object-
oriented design apply to Oz [79]. Furthermore, Oz introduces powerful new
techniques that are not supported by Java [51].

• Oz is a state-aware and dataflow language. This helps give the programmer con-
trol over network communication patterns in a natural manner (see Section 6.5).
State-awareness means the language distinguishes between stateless data (e.g.,
procedures or values), which can safely be copied to many sites, and stateful data
(e.g., objects), which at any instant must reside on just one site [132]. Dataflow
synchronization allows to decouple calculating a value from sending it across
the network [53]. This is important for latency tolerance.

• Oz provides language security. That is, references to all language entities are
created and passed explicitly. An application cannot forge references nor access
references that have not been explicitly given to it. The underlying representa-
tion of language entities is inaccessible to the programmer. Oz has an abstract
store with lexical scoping and first-class procedures (see Section 6.8). These are
essential properties to implement a capability-based security policy within the
language [125, 134].

Allowing a successful separation of functionality from distribution structure puts se-
vere restrictions on a language. It would be almost impossible in C++ because the
semantics are informal and unnecessarily complex and because the programmer has
full access to all underlying representations [119]. It is possible in Oz because of
the above three properties. So far, it has not been necessary to update the language
semantics more than slightly to accommodate distribution.5 This may change in the
future. Furthermore, work is in progress to separate the functionality from the other
three concerns. Currently, Distributed Oz provides the language semantics of Oz and
complements it in four ways:

• It has constructs to express the distribution structure independently of the func-
tionality (see Section 6.5). The shared graphic editor of Section 6.3 is designed
according to this approach.

• It has primitives for open computing, based on the concept of tickets (see Sec-
tion 6.6). This allows independently-running applications to connect and seam-
lessly exchange data and code.

• It has primitives for orthogonal failure detection and handling, based on the con-
cepts of handlers and watchers (see Section 6.7). This allows to build a first level
of fault tolerance.

5For example, ports have been changed to model asynchronous communication between sites [132].

70 CHAPTER 6. PROGRAMMING LANGUAGES FOR DISTRIBUTED APPL.

• It supports a capability-based security policy and has primitives for resource
control based on the concept of virtual site (see Section 6.8).

In Distributed Oz, developing an application is separated into two independent parts.
First, only the logical architecture of the task is considered. The application is written
in Oz without explicitly partitioning the computation among sites. One can check the
safety and liveness properties6 of the application by running it on one site. Second,
the application is made efficient by specifying the network behavior of its entities.
In particular, the mobility of stateful entities (objects) must be specified. For example,
some objects may be placed on certain sites, and other objects may be given a particular
mobile behavior (such as state caching).

The Distributed Oz implementation extends the Oz implementation with four non-
trivial distributed algorithms. Three are designed for specific language entities, namely
logic variables, object-records, and object-state. Logic variables are bound with a vari-
able binding protocol (see Section 6.5.2). Object-records are duplicated among sites
with a lazy replication protocol (see Section 6.5.3). Object-state moves between sites
with a mobile state protocol (see Section 6.5.4). The fourth protocol is a distributed
garbage collection algorithm using a credit mechanism (see Section 6.5.5). Garbage
collection is part of the management of shared entities, and it therefore underlies the
other three protocols.

6.2.3 Outline of the article

The rest of this article consists of six parts. Section 6.3 gives the design of a shared
graphic editor in Distributed Oz. It shows how the separation between functionality
and distribution works in practice. Section 6.4 gives an overview of the Oz language
and its execution model. Oz has deep roots in the logic programming and concur-
rent logic programming communities. It is illuminating to show these connections.
Section 6.5 presents Distributed Oz and its architecture, and explains how it separates
functionality from distribution structure. The four protocols are highlighted, namely
distributed logic variables, lazy replication of object-records, mobility of object-state,
and distributed garbage collection. Finally, Sections 6.6, 6.7, and 6.8 discuss open
computing, failure detection and handling, and resource control and security. These
three sections are more speculative than the others since they describe parts of the
system that are still under development.

6.3 Shared graphic editor

Writing an efficient distributed application can be much simplified by separating the
functionality from the distribution structure. We have substantiated this claim by de-
signing and implementing a prototype shared graphic editor, an application which is
useful in a collaborative work environment. The editor is seen by an arbitrary number

6A fortiori, correctness and termination for nonreactive applications.

6.3. SHARED GRAPHIC EDITOR 71

Informal specification:

All users see
the same design

Users are not bothered
by the network

●

●

Network

Intranets + Internet Contractor B

Consultant
Study bureau

Contractor A

R

A2

A1 B1

B2

C

Figure 6.2: A shared graphic editor

CM
WM
GS Graphics subsystem

Window manager
Client manager

DB Display broadcaster
UM User manager

Graphic entitiesGE

WM CM

UM

DB

WM CMGS

GE

GS...
...

Figure 6.3: Logical architecture of the graphic editor

of users. We wish the editor to behave like a shared virtual environment. This implies
the following set of requirements (see Figure 6.2). We require that all users be able to
make updates to the drawing at any time, that each user sees his or her own updates
without any noticeable delays, and that updates must be visible to all users in real time.
Furthermore, we require that the same graphic entity can be updated by multiple users.
This is useful in a collaborative CAD environment when editing complex graphic de-
signs. Finally, we require that all updates are sequentially consistent, i.e., each user
has exactly the same view of the drawing. The last two requirements is what makes the
application interesting. Using IP multicast to update each user’s visual representation,
as is done for example in the LBL Whiteboard application, 7 does not satisfy the last
two requirements.

6.3.1 Logical architecture

Figure 6.3 gives the logical architecture of our prototype. No assumptions are made
about the distribution structure. The drawing state is represented as a set of objects.
These objects denote graphic entities such as geometric shapes and freehand drawing

7Available at http://mice.ed.ac.uk/mice/archive.

72 CHAPTER 6. PROGRAMMING LANGUAGES FOR DISTRIBUTED APPL.

WM CM

UM

DB

WM CMGS

GE

GS...
...

Client 1 site

Server site

Client n site

Figure 6.4: Editor with client-server structure

pads. When a user updates the drawing, either a new object is created or a message
is sent to modify the state of an existing object. The object then posts the update
to a display broadcaster. The broadcaster sends the update to all users so they can
update their displays. The execution path from user input to display update is shown
by the heavy curved line. The users see a shared stream, which guarantees sequential
consistency.

New users can connect themselves to the editor at any time using the open comput-
ing ability of Distributed Oz. The mechanism is based on “tickets”, which are simply
text strings (see Section 6.6). Any Oz process that knows the ticket can obtain a refer-
ence to the language entity. The graphic editor creates a ticket for the User Manager
object, which is responsible for adding new users. A new user is added by using the
ticket to get a reference to the User Manager. The two computations then reference
the same object. This transparently opens a connection between two sites in the two
computations. From that point onward, the computation space is shared. When there
are no more references between two sites in a computation, then the connection be-
tween them is closed by the garbage collector. Computations can therefore connect
and disconnect seamlessly.

6.3.2 Client-server structure

To realize the design, we have to specify its distribution structure. Figure 6.4 shows
one possibility: a client-server structure. All objects are stationary. They are parti-
tioned among a server site and one site per user. This satisfies all requirements except
performance. It works well on low-latency networks such as LANs, but performance is
poor when a user far from the server tries to draw freehand sketches or any other graph-
ic entity that needs continuous feedback. This is because a freehand sketch consists of
many small line segments being drawn in a short time. In our implementation, up to
30 motion events per second are sent from the graphics subsystem to the Oz process.
Each line segment requires updating the drawing pad state and sending this update to

6.3. SHARED GRAPHIC EDITOR 73

GE

WM CM

DB

WM CMGS GS...
Client 1 site Client n site

UM

...

Server siteCached
objects

Figure 6.5: Editor with cached graphic state

all users. If the state is remote, then the latency for one update is often several hundred
milliseconds or more, with a large variance.

6.3.3 Cached graphic state

To solve the latency problem, we change the distribution structure (see Figure 6.5).
We refine the design to represent the graphic state and the display broadcaster as freely
mobile (“cached”) objects rather than stationary objects. The effect of this refinement
is that parts of the graphic state are cached at sites that modify them. Implementing the
refinement requires changing some of the calls that create new objects. In all, less than
10 lines of code out of 500 have to be changed. With these changes, freehand sketches
do not need any network operations to update the local display, so performance is
satisfactory. Remote users see the sketch being made in real time, with a delay equal
to the network latency. How is this magic accomplished? It is simple: whenever an
object is invoked on a site, then the mobile state protocol first makes the object’s state
pointer local to the site (see Section 6.5.4). The object invocation is therefore a local
operation.

6.3.4 Push objects and transaction objects

More refined editor designs can take advantage of additional distribution behaviors of
objects. For example, the design with cached objects suffers from two problems:

• Users who simultaneously modify different graphic entities will interfere with
each other through the display broadcaster. The latter will bounce between user
sites, causing delays in updating the displays. This problem can be solved by
using a push object, which multicasts state updates to all sites that reference the
object. One possibility is to make the display broadcaster into a push object,
thus maintaining sequential consistency while taking advantage of a multicast

74 CHAPTER 6. PROGRAMMING LANGUAGES FOR DISTRIBUTED APPL.

network protocol. Another possibility is to make each graphic entity into a push
object. In this case, the users may see inconsistent drawings.

• If a user wishes to modify a graphic entity, there is an initial delay while the
graphic entity’s state is cached on the user site. This problem can be solved by
using a transaction object, which does the state update locally, while requesting
a global lock on the object. The state update will eventually be confirmed or
rejected.

Both push and transaction objects maintain consistency of object updates: the object
is defined by a sequence of states. It follows that there is still one graphic state and up-
dates to it are sequentially consistent. The editor therefore still supports collaborative
design. What changes is how the state sequence is seen and how it is created.

Updating the editor to use either or both of these object types may require chang-
ing its specification or logical architecture. For example, the specification may have
to be relaxed slightly, temporarily allowing incorrect views. This illustrates the limits
of network-transparent programming. It is not possible in general to indefinitely im-
prove the performance of a given specification and logical architecture by changing the
distribution structure. At some point, one or both of the specification and architecture
must be changed.

6.3.5 Final comments

Designing the shared graphic editor illustrates the two-part approach for building appli-
cations in Distributed Oz. First, build and test the application using stationary objects.
Second, reduce latency by carefully selecting a few objects and changing their mobil-
ity behavior. Because of transparency, this can be done with quite minor changes to
the code of the application itself. This can give good results in many cases. To obtain
the very best performance, however, it may be necessary to change the application’s
specification or architecture.

In both the stationary and mobile designs, fault tolerance is a separate issue that
must be taken into account explicitly. It can be done by recording on a reliable site a
log of all display events. Crashed users disappear, and new users are sent a compressed
version of the log. Primitives for fault tolerance are given in Section 6.7.

In general, mobile objects are useful both for fine-grained mobility (caching of
object state) as well as coarse-grained mobility (explicit transfer of groups of objects).
The key ability that the system must provide is transparent control of mobility, i.e.,
control that is independent of the object’s functionality. Sections 6.4.2 and 6.5 explain
briefly how this is done in Distributed Oz. A full explanation is given in [132].

6.4 Oz

Oz is a rich language built from a small set of powerful ideas. This section attempts to
situate Oz among its peers. We summarize its programming model and we compare it

6.4. OZ 75

Contains variables & bindings
Only allows operations that are

Not physical memory!●

●

●Y=person(age:25)

...S1 S2 Sn Execute statement sequences
Block on data availability●

●

legal for the entities involved

Z
X=23

Dataflow
threads

Abstract
store

Figure 6.6: Computation model of OPM

S ::= S S Sequence
| X=f(l1:Y1 ... ln:Yn) | Value

X=<number> | X=<atom> | {NewName X}
| local X1 ... Xn in S end | X=Y Variable
| proc {X Y1 ... Yn} S end | {X Y1 ... Yn} Procedure
| {NewCell Y X} | {Exchange X Y Z} | {Access X Y} State
| case X==Y then S else S end Conditional
| thread S end | {GetThreadId X} Thread
| try S catch X then S end | raise X end Exception

Figure 6.7: Kernel language of OPM

with Prolog and with concurrent logic languages.

The roots of Oz are in concurrent and constraint logic programming. The goal of
the Oz project is to provide a firm foundation for all facets of computation, not just for
a declarative subset. The semantics should be fully defined and bring the operational
aspects out into the open. For example, concurrency and stateful execution make it
easy to write programs that interact with the external world [58]. True higher-orderness
results in compact, modular programs [4]. First-class computation spaces allow to pro-
gram inference engines within the system. For example, it is easy to program multiple
concurrent first-class Prolog top levels, each with its own search strategy [111].

Section 6.4.1 summarizes the Oz programming model, including the kernel lan-
guages and the abstractions built on top of it. Section 6.4.2 illustrates Oz by means of
a nontrivial example, namely the implementation of remote method invocation. Sec-
tion 6.4.3 compares Oz and Prolog. Finally, Section 6.4.4 gives the history of Oz from
a concurrent logic programming viewpoint.

76 CHAPTER 6. PROGRAMMING LANGUAGES FOR DISTRIBUTED APPL.

6.4.1 The Oz programming model

The basic computation model is an abstract store observed by dataflow threads (see
Figure 6.6). A thread executes a sequence of statements and blocks on the availability
of data. The store is not physical memory. It only allows operations that are legal for
the entities involved, i.e., no type casting or address calculation. The store has three
compartments: the constraint store, containing variables and their bindings, the pro-
cedure store, containing procedure definitions, and the cell store, containing mutable
pointers (“cells”). The constraint and procedure stores are monotonic, i.e., information
can only be added to them, not changed or removed. Threads block on availability of
data in the constraint store.

The threads execute a kernel language called Oz Programming Model (OPM) [116].
We briefly describe the OPM constructs as given in Figure 8.3. Statement sequences
are reduced sequentially inside a thread. Values (records, numbers, etc.) are introduced
explicitly and can be equated to variables. All variables are logic variables, declared in
an explicit scope defined by the local construct. Procedures are defined at run-time
with the proc construct and referred to by a variable. Procedure applications block
until their first argument refers to a procedure. State is created explicitly by NewCell,
which creates a cell, an updatable pointer into the constraint store. Cells are updated
by Exchange and read by Access. Conditionals use the keyword case and block
until the condition is true or false in the constraint store.8 Threads are created explic-
itly with the thread construct and have their own identifier. Exception handling is
dynamically scoped and uses the try and raise constructs.

Full Oz is defined by transforming all its statements into this basic model. Full
Oz supports idioms such as objects, classes, reentrant locks, and ports [116, 132].
The system implements them efficiently while respecting their definitions. We define
the essence of these idioms as follows. For clarity, we have made small conceptual
simplifications. Full definitions may be found in [51].

• Object. An object is essentially a one-argument procedure {Obj M} that refer-
ences a cell, which is hidden by lexical scoping. The cell holds the object’s state.
The argument M indexes into the method table. A method is a procedure that is
given the message and the object state, and calculates the new state.

• Class. A class is essentially a record that contains the method table and attribute
names. When a class is defined, multiple inheritance conflicts are resolved to
build its method table. Unlike Java, classes in Oz are pure values, i.e., they are
stateless.

• Reentrant lock. A reentrant lock is essentially a one-argument procedure {Lck
P} used for explicit mutual exclusion, e.g., of method bodies in objects used
concurrently. P is a zero-argument procedure defining the critical section. Reen-
trant means that the same thread is allowed to reenter the lock. Calls to the lock

8The keyword if is reserved for constraint applications.

6.4. OZ 77

proc {NewStationary Class Init ?StatObj}
Obj={New Class Init}
S P={NewPort S}
N={NewName}

in
thread
{ForAll S
proc {$ M#R}

thread
try {Obj M} R=N
catch E then R=E end

end
end}

end
proc {StatObj M}

R in
{Send P M#R}
case R==N then skip
else raise R end
end

end
end

Figure 6.8: RMI part 1: Create a stationary object from any class

may therefore be nested. The lock is released automatically if the thread in the
body terminates or raises an exception that escapes the lock body.

• Port. A port is an asynchronous channel that supports many-to-one communi-
cation. A port P encapsulates a stream S. A stream is a list with unbound tail.
The operation {Send P M} adds M to the end of S. Successive sends from the
same thread appear in the order they were sent.

6.4.2 Oz by example

It is not the purpose of this article to give a complete exposition of Oz. Instead, we
present Oz by means of a nontrivial example program that is interesting in its own
right. We show how to implement active objects in Oz, and as a corollary, we show
that the same program implements remote method invocation in Distributed Oz. An
active object is an object with an associated thread (or process), much like an actor or
concurrent logic process. Invoking a method in an active object is done by explicitly
sending a message to the associated thread. As we will see, this kind of object has a
well-defined distribution behavior in Distributed Oz. Because threads are stationary in

78 CHAPTER 6. PROGRAMMING LANGUAGES FOR DISTRIBUTED APPL.

class Counter
attr i
meth init i<-0 end
meth inc i<- @i+1 end
meth get(X) X=@i end
meth error raise some_error end end

end

Obj={NewStationary Counter init}
{Obj inc}
{Obj inc}
{Print {Obj get($)}}
try {Obj error} catch X then {Print X} end

Figure 6.9: RMI part 2: A stationary counter object

Distributed Oz, the objects also are stationary and reside on their creation site. Invok-
ing the object from a remote site behaves exactly like a remote method invocation.

In Distributed Oz, objects are mobile by default and will execute on the invoking
site, inside the invoking thread. This is implemented by a lightweight mobility proto-
col that serializes the path of the object’s state pointer among the invoking sites (see
Section 6.5). One way to make an object stationary is to wrap it inside a port and create
a thread that invokes the object with messages read from the port’s stream. The object
is accessed only from this thread, so the object is stationary.

Figure 6.8 defines the procedure NewStationary that implements stationary ob-
jects by wrapping them inside a port. It takes a class Class and initialization message
Init, and returns a procedure StatObj. The “?” is a comment that denotes an out-
put argument. Inside NewStationary, an object Obj is created, as well as a port P
and its associated stream S. A thread is created that serves each message appearing
on S. This is done using the higher-order procedure {ForAll S Proc} where Proc
is a one-argument procedure. The thread waits until a message M#R appears on the
stream S and then executes the procedure call {Proc M#R}. The procedure starts a
thread that invokes the object with {Obj M} and binds R either to a unique name N

denoting normal execution or to an exception E. The use of the lexically-scoped new
name N avoids conflicts with existing exceptions. Let us now consider the procedure
StatObj. A thread executing StatObj sends on the port P the pair M#R where M is
the message and R is a logic variable for the answer. It suspends on R until the cor-
responding method is executed successfully or an exception is returned. In the latter
case the exception is reraised in the thread executing StatObj.

We see that Oz allows the programmer to provide generic abstractions that can be
used later without concern for their implementation. It is not necessary to understand
NewStationary in order to use it. This is because the objects it creates have the same

6.4. OZ 79

SICStus Prolog Oz
Constraints Incremental solver with tell Incremental solver with ask,

tell
Control Backtracking and coroutining Explicit dataflow threads, en-

capsulated search
Higher-order Call, assert First-class procedures with

lexical scoping
State Objects, mutables, assert Objects, cells

Table 6.1: Oz and Prolog

Oz semantics as objects created by the standard procedure New.
Figure 6.9 defines a Counter class, creates a stationary instance, Obj, and sends

several messages to Obj. Whether Obj is created by NewStationary or New, its lan-
guage behavior is the same. The Counter class does not have any ancestors, therefore
no inheritance declaration appears. Each instance of Counter has one attribute i and
four methods. An attribute is a mutable part of the object state that can be accessed
and modified from within a method. A method is defined by a method head, which
is a record, and a method body, which is a statement. Dynamic binding is supported
through the use of self inside a method body. Accessing the value of an attribute is
done by the operator “@”. Assigning a new value to an attribute is done by the operator
“<-”. Therefore, the method init initializes i to 0, the method inc increments i, the
method get gets the current value of i, and the method error raises the somewhat
unusual exception some_error. Oz has syntactic support for embedding statements
in expressions. A statement can be used as an expression by using a “$” to mark
the result. Therefore {Print {Obj get($)}} is equivalent to local X in {Obj

get(X)} {Print X} end.

6.4.3 Oz and Prolog

There is a strong sense in which Oz is a successor to Prolog (see Table 6.1). The
Oz system can be used for many of the tasks for which Prolog and constraint logic
programming are used today [88, 111, 67, 113]. Like Prolog, Oz has a declarative
subset. Like Prolog, Oz has been generalized to arbitrary constraint systems (currently
implemented are finite domains and open feature structures). Oz is fully defined and
has an efficient implementation competitive with the best emulated Prolog systems [58,
91, 127]. Even though Oz has much in common with Prolog, it is not a Prolog superset.
Oz does not have Prolog’s reflective syntax (i.e., data and programs have the same
syntax), nor does it have the meta-programming facilities (like call/1, assert/1)
or the user-definable syntax (operator declarations).

The foundation of Prolog’s success is the high abstraction level of its declarative
subset, namely first-order Horn clause logic with SLDNF resolution [84]. What’s miss-
ing from Prolog is that little attempt is made to give the same foundation to anything
outside the declarative subset. Two decades of research have resulted in a solid un-

80 CHAPTER 6. PROGRAMMING LANGUAGES FOR DISTRIBUTED APPL.

Concurrent logic programming Oz
Constraints None, except in AKL Incremental solver with ask,

tell
Control Fine-grained concurrency Explicit dataflow threads, en-

capsulated search
Higher-order Restricted First-class procedures with

lexical scoping
State Stream-based objects Objects, cells

Table 6.2: Oz and concurrent logic programming

derstanding of the declarative subset and only a partial understanding of the rest.9

This results in two main flaws of Prolog. First, the operational aspects are too deeply
intertwined with the declarative. The control is naive (depth-first search) and eager.
The interactive top level has a special status: it is lazy, but unfortunately inaccessi-
ble to programs. It is lazy because new solutions are calculated upon user request. It
is inaccessible to programs, i.e., a program cannot internally set up a query and re-
quest solutions lazily. To provide a top level within a program requires programming
a meta-interpreter, thus losing an order of magnitude in efficiency. Second, to express
anything beyond the declarative subset requires ad hoc primitives that are limited and
do not always do the right thing. The freeze/2 provides coroutining as a limited
form of concurrency. The call/1 and setof/3 provide only a limited form of
higher-orderness. All these problems are solved in Oz.

6.4.4 Oz and concurrent logic programming

Oz is the latest in a long line of concurrent logic languages. Table 6.2 compares Oz
with concurrent logic programming languages. First experiments with concurrency
were done in the venerable IC-Prolog system where coroutining was used to simulate
concurrent processes. This led to the Parlog language and Concurrent Prolog. The
advent of GHC simplified concurrent logic programming considerably by introduc-
ing the notion of quiet guards. A clause matching a goal will fire only if the guard
is entailed by the constraint store. This formulation and its theoretical underpinning
were pioneered by the work of Maher and Saraswat as they gave a solid foundation
to concurrent logic programming [86, 107]. On the practical side, the flat versions
of Concurrent Prolog and GHC, called FCP and FGHC respectively, were the focus
of much work [66, 114]. The KL1 language, derived from FGHC, was implemented
in the high-performance KLIC system. This system runs on sequential, parallel, and
distributed machines [44]. A number of implementation techniques in the current Dis-
tributed Oz system have been borrowed from KLIC, notably the distributed garbage
collection algorithm.

An important subsequent development was AKL (Andorra Kernel Language) [69],

9The non-declarative aspect has received some attention, e.g., [95, 100, 9].

6.5. DISTRIBUTED OZ 81

Kind of entity Protocol Entity
Stateless Replication Eager record, procedure, class

Lazy object-record
Single assignment Binding Eager logic variable

Lazy logic variable
Stateful Localization Mobile cell, object-state

Stationary port, thread

Table 6.3: Semantics of Distributed Oz

which added explicit state in the form of ports and provided the first synthesis of con-
current and constraint logic programming. AKL encapsulates search by using nested
computation spaces. A computation space is a constraint store with its associated
goals. Search is done by allowing procedures to be defined by a sequence of don’t-
know guarded clauses. These definitions denote disjunctions. When local propagation
cannot choose between different disjuncts, then the program is free to try them by
cloning the computation space. The initial Oz system, Oz 1, was largely derived from
AKL, but added the notions of higher-order procedures, more controllable search by
making computation spaces first class, compositional syntax, and the cell primitive for
mutable state. Concurrency in Oz 1 is fine-grained. When a statement suspends, a new
thread is created that contains only the suspended statement. The main thread is not
suspended but continues with the next statement.

All concurrent logic languages up to and including Oz 1 were designed for fine-
grained concurrency and implicit exploitation of parallelism. The current Oz language,
Oz 2, abandons this model in favor of explicit control over concurrency by means of a
thread creation construct. Thread suspension and resumption is still based on dataflow
using logic variables. Our experience shows that explicit concurrency makes it easier
for the user to control application resources. It allows the language to have an efficient
and expressive object-oriented model without sequential state threading within method
definitions. It also allows easy incorporation of a conventional exception handling
construct into the language, and last but not least a simple debugging model. In the
current Oz system concurrency is used mostly to model logical concurrency in the
application rather than to increase potential parallelism.

6.5 Distributed Oz

Distributed Oz has the same language semantics as Oz. Distributed Oz separates appli-
cation functionality from distribution structure by defining a distributed semantics for
all language entities [132, 131, 53, 55]. The distributed semantics extends the language
semantics to take into account the notion of site. It defines the network operations in-
voked when a computation is partitioned on multiple sites. We classify the language
entities into three basic types (see Table 6.3):

• Stateless entities are replicated eagerly (records, procedures, classes) or lazily

82 CHAPTER 6. PROGRAMMING LANGUAGES FOR DISTRIBUTED APPL.

(object-record).

• Single assignment entities (logic variables) are bound eagerly or lazily [53].

• Stateful entities are localized and are either mobile by default (cell, object-state)
or stationary by default (port, thread) [132]. What moves is not the state, but the
site that has the right to create the next state. We say that this site has the state
pointer.10

For each of these entities, network operations11 are predictable, which gives the pro-
grammer the ability to manage network communications. In the rest of this section, we
present the four distributed algorithms used to implement the language entities. Sec-
tion 8.2 introduces the concept of access structure, which models a language entity that
is accessible from more than one site. The distributed behavior of a language entity
is defined as a protocol between the nodes of its access structure, i.e., as a distributed
algorithm. Sections 6.5.2 explains the uses of distributed logic variables and shows
how to bind them with a variable binding protocol. Sections 6.5.3 and 6.5.4 show how
to build mobile objects that have predictable network behavior by using a lazy repli-
cation protocol for the object-record (explained in Section 6.5.3) and a mobile state
protocol for the object-state (explained in Section 6.5.4). The network behavior of log-
ic variables and objects highlights most clearly the design philosophy of Distributed
Oz. Finally, Section 6.5.5 explains the distributed garbage collection algorithm, which
underlies the management of access structures.

Variable (when unbound)

Cell (state pointer)

Record (with fields) Thread (with references)

Procedure (with external references)

Figure 6.10: Language entities as nodes in a graph

6.5.1 The distribution graph

We model distributed execution in a simple but precise manner using the concept of
distribution graph. We obtain the distribution graph in two steps from an arbitrary
execution state of the system. The first step is independent of distribution. We model
the execution state by a graph, called language graph, in which each language entity
except for an object corresponds to one node (see Figure 6.10). Objects are compound
entities and are explained in Section 6.5.3.

In the second step, we introduce the notion of site. Assume a finite set of sites and
annotate each node by its site (see Figure 6.11). If a node, e.g., N2, is referenced by
at least one node on another site, then map it to a set of nodes, e.g., {P1,P2,P3,M}.

10In [132] it is called the content-edge.
11In terms of the number of network hops.

6.5. DISTRIBUTED OZ 83

This set is called the access structure of the original node. An access structure consists
of one proxy node Pi for each site that referenced the original node and one manag-
er node M for the whole structure. The resulting graph, containing both local nodes
and access structures where necessary, is called the distribution graph. Most of the
example protocol executions in this article use this notation.

Each access structure is given a global address that is unique system-wide. The
global address encodes various pieces of information including the manager site. Proxy
nodes are uniquely identified by pairs (global address,site). On each site, the global ad-
dress indexes into a table that refers to the proxy. This allows to enforce the invariant
that each site has at most one proxy. Messages are sent between nodes in access struc-
tures. In terms of sites, a message is sent from the source node’s site to the destination
node’s site. In the message body, all references are to nodes on the destination site.
These nodes are identified by the global addresses of their access structures. When the
message arrives, the nodes are looked up in the site table.

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

N1 P1 P2 P3 N3N3N2N1

Site 1 Site 2 Site 3 Site 1 Site 3Site 2

M

access structure for N2

Language graph Distribution graph

Figure 6.11: Access structure in the distribution graph

Procedures and other values (records and numbers, etc.) are copied eagerly, i.e.,
they never result in an access structure.12 A procedure is only sent once to any site13

and has only one copy on the site. A procedure consists of a closure and a code block,
each of which is given a global address. Messages contain only the global addresses,
and upon arrival the missing code blocks and closures are requested immediately.

6.5.2 Distributed logic variables

Logic variables express dependencies between computations without imposing an ex-
ecution order. This property can be exploited in distributed computing:

• Two basic problems in distributed computing are latency tolerance and third-
party independence. Using logic variables instead of explicit message passing
can improve these two aspects of an application with little programming effort.

• Using logic variables, common distributed programming idioms can be expressed
in a network-transparent manner that results in optimal or near-optimal message
traffic.

12In [132] there is a variant design in which objects are procedures and all procedures are copied
lazily.

13Unless a garbage collection removes it.

84 CHAPTER 6. PROGRAMMING LANGUAGES FOR DISTRIBUTED APPL.

M

P

P

Site 1 Site 2 Site 3

P T

3
3

3
2

4

1

1
2
3
4

Proxy requests binding
Thread initiates binding and blocks

Manager grants binding & multicasts to all proxies
Proxy informs thread, allowing thread to continue

Figure 6.12: Binding a logic variable

These benefits are realized due to a practical distributed algorithm for rational tree
unification, which is used to bind logic variables [53]. The algorithm is efficiently
implemented in the Distributed Oz system as two parts: a local algorithm and a dis-
tributed algorithm. Most of the work of unification is done locally. The distributed
algorithm does only variable binding. We briefly describe it here.

The two basic operations on logic variables are binding and waiting until bound. A
logic variable X can be bound to a data structure or to another variable. The algorithm
is the same in both cases. If many bindings to X are initiated concurrently (from one
or more sites), then only one will succeed. The other bindings are then retried with
the entity to which X is bound. By default, binding is eager. That is, the new value
is immediately sent to all sites that know about X. This means that a bound variable is
guaranteed to eventually disappear from the system.

We illustrate the binding algorithm with an example. In the distribution graph, a
logic variable shows up as an access structure. Figure 6.12 shows a variable that exists
on three sites. A thread on site 2 initiates a binding of the variable by informing its
proxy (message 1) and then blocking. The proxy asks the manager to bind the variable
(message 2). The manager informs all proxies of the binding (message 3), thus binding
the variable eagerly. When a proxy receives the binding, it informs all waiting threads
(message 4). The threads then continue execution.

Logic variables can have different distributed behaviors, as long as network trans-
parency is satisfied in each case. A logic variable is eager by default. This gives
maximal latency tolerance and third-party independence. However, this may cause the
binding to be sent to sites that do not need it. We say that a logic variable is lazy if
its value is only sent to a site when the site requests it (e.g., when a thread needs the
value). A lazy variable has better message complexity, i.e., fewer messages are used.
In some cases, e.g., implementing barrier synchronization using a short-circuit tech-
nique, lazy variables are preferable. Eager and lazy variables obey the same distributed

6.5. DISTRIBUTED OZ 85

unification algorithm, differing only in the scheduling of one reduction rule [53]. Dis-
tributed Oz currently only implements eager variables; with a minor change it can do
both. A programmer annotation can then decide whether a variable is eager or lazy.

class Account
 attr bal:0

 meth getBal(B)
 B = @bal
 end
end

 meth trans(Amt)
 bal<- @bal+Amt
 end

theClass

state

cl
st id

100

record
State

Object-record

trans getBal

theName

A

A={New Account trans(100)}
bal

Class record
and object
identifier

pointer
State

Cell

Figure 6.13: An object with one attribute and two methods

6.5.3 Mobile objects

Objects in Distributed Oz obey a lightweight object migration protocol that preserves
centralized object semantics and allows for precise prediction of network behavior.
Existing systems with mobile objects do not use such an algorithm. They move the
objects by creating a chain of forwarding references [90, 72, 21]. This chain is short-
circuited when a message is sent or after a given time delay. This gives good average-
case number of network hops when moving an object, but very bad worst-case number
of hops. A design principle of Distributed Oz is for third-party dependencies to disap-
pear quickly. Using chains is therefore unacceptable. Instead, we have designed the
mobility protocol presented here, which has a much-improved worst-case behavior.

In the distribution graph, an object shows up as a compound entity consisting of an
object-record, a class record containing procedures (the methods), a cell (containing
the state pointer), and a record containing the object-state. The distributed behavior
of the object is derived from the behavior of its parts. Figure 6.13 shows an object
A that has one attribute, bal, and two methods, trans and getBal. The object is
represented as an object-record with three fields. The st field contains a cell, whose
state pointer refers to the object’s state record. The cl field contains the class record,
which contains the procedures trans and getBal that implement the methods. The
id field contains the object’s unique identifier theName. The object-record and the
class record cannot be changed. However, by giving a new content to the cell (i.e.,
updating the state pointer), the object-state can be updated.

Figure 6.14 shows an object A that is local to Site 1. There are no references to A
from any other sites. Figure 6.15 shows an object A with one remote reference. The
object is now part of an access structure whose manager is on Site 1 and that has one
proxy on Site 2. A local object A is transformed to a global (i.e., remotely-referenced)
object when a message referencing A leaves Site 1. A manager node Ma is created on
Site 1 when the message leaves. When a message referencing A arrives on Site 2, then
a proxy node Pa2 is created there.

86 CHAPTER 6. PROGRAMMING LANGUAGES FOR DISTRIBUTED APPL.

State1

Class

A

Site 1 Site 2

pointer
State

Figure 6.14: A local object

State1

Class

A Pa2

Site 1 Site 2

Ma

pointer
State

Figure 6.15: A global object with one remote reference

Figure 6.16 shows what happens when thread T invokes A from Site 2. At first, only
the proxy Pa2 is present on Site 2, not the object itself. The proxy asks its manager
for a copy of the object-record. This causes an access structure to be created for the
cell, with a manager Mc and one proxy Pc1. The class record is copied eagerly and
does not have a unique global address. A message containing the class record and a
cell proxy is sent to Site 2. The object’s state remains on Site 1.

Figure 6.17 shows what happens when the message arrives. A second proxy Pc2
is created for the cell. The class record is copied to Site 2 and proxy Pa2 becomes
the object-record A. The site table now refers to the object-record. The mobile state
protocol (see Section 6.5.4) then atomically transfers the cell’s state pointer to Site 2.
Because of the site table, any further messages to Site 2 containing references to the
object will immediately refer to the local copy of the object-record, without requiring
any additional network operations.

Figure 6.18 shows what happens after the state pointer is transferred to Site 2. The
new state, State2, is created on Site 2 and will contain the updated object-state after
the method finishes. The old state, State1, may continue to exist on Site 1 but the
state pointer no longer points to it.

Figure 6.19 shows what happens if Site 1 invokes the object again. The state pointer
is transferred back to Site 1. The new state, State3, is created on Site 1 and will
contain the updated object-state after the method finishes. The old state, State2,
may continue to exist on Site 2 but the state pointer no longer points to it.

There are several interesting things going on here. First, the object is always ex-

6.5. DISTRIBUTED OZ 87

Pa2 Thread T

State1

Class

Pc1
Class

Site 2Site 1

MaMc

Pc

A

Figure 6.16: The object is invoked remotely (1)

Thread T

Class

State1

Class

A

Mc

A

Pc1 Pc2

Site 1 Site 2

Figure 6.17: The object is invoked remotely (2)

ecuted locally. The cell’s state pointer is always localized before the method starts
executing and it is guaranteed to stay local during the method execution while the ob-
ject is locked. Second, the class code is only transferred once to any site. Only the
state pointer is moved around after the first transfer. This makes object mobility very
lightweight. Third, all requests for the object are serialized by the cell’s manager node.
This simplifies the protocol but introduces a dependency on the manager site. A more
complicated protocol (not shown here) can remove this dependency [132].

6.5.4 Mobile state

The freely mobile objects shown in Section 6.5.3 are composite entities that use several
distributed algorithms. The object-record is copied once lazily (when the object is first
invoked), the methods are copied along with it, and the object’s state pointer is moved
between sites that request it. At all times, the state pointer of the object’s cell access
structure exists at exactly one proxy, or is in transit between two proxies. The protocol
that moves the state pointer, the mobile state protocol, is particularly interesting. This
protocol must guarantee consistency between consecutive states. If the consecutive
states are on different sites, this requires an atomic transfer of the state pointer between
the sites. A site that wants the state pointer requests it from the cell manager, and the
latter sends a forwarding command to the site that has the state pointer. Therefore the
manager needs to store only one piece of information, namely the site containing the
state pointer [132].

88 CHAPTER 6. PROGRAMMING LANGUAGES FOR DISTRIBUTED APPL.

Thread T

ClassClass

A

Mc

A

Pc1 Pc2

State1 State2

Site 1 Site 2

Figure 6.18: The object is invoked remotely (3)

Thread T

ClassClass

A

Mc

A

Pc1 Pc2

State3 State2

Site 1 Site 2

Figure 6.19: The object moves back to Site 1

Figure 6.20 shows a cell C referenced from two sites. The cell’s state pointer is on
Site 1 and Site 2 requests it when thread T does the operation {Exchange C X Y}.
It suffices to know that the exchange is an atomic swap that sets the new state to Y (i.e.,
to State2) and initiates a binding of X to the old state State1.

Figure 6.21 shows (a) proxy Pc2 requesting the state pointer by sending a Get
message to manager Mc, and (b) the manager sending a Forward message to the
proxy that has (or will eventually have) the state pointer, namely Pc1. Therefore the
manager can accept another request immediately; it does not need to wait until the
state pointer’s transfer is complete.

Figure 6.22 shows Pc1 sending to Pc2 a Content message containing the old
state, State1. The old state may still exist on Site 1 but Pc1 no longer has a pointer
to it. Figure 6.23 shows the final situation. Pc2 has the state pointer, which points to
State2. X is bound to State1.

This protocol provides a predictable network behavior. There are a maximum of
three network hops for the state pointer to change sites; only two if the manager is on
the source or destination site; zero if the state pointer is on the requesting site. The
protocol maintains sequential consistency, that is, cell exchanges (updates of the state
pointer) are done in a globally consistent order.

6.5. DISTRIBUTED OZ 89

State1

Mc
{Exchange C X Y}

TPc2Pc1

State2 XY

Site 1 Site 2

Figure 6.20: A cell referenced from two sites

State1

Mc

TPc2Pc1

State2 XY

(b) Forward (a) Get

Site 1 Site 2

Figure 6.21: (a) Site 2 requests the state pointer; (b) Site 1 is asked to forward it

6.5.5 Distributed garbage collection

Access structures are built and managed automatically when language entities become
remotely referenced. This happens whenever messages exchanged between nodes on
different sites contain references to other nodes. If the reference is to a local node, then
the memory management layer converts the local node into an access structure. We say
the local node is globalized. While the message is in the network, the access structure
consists of a manager and one proxy. When the message arrives at the destination site,
then a new proxy is created there. Access structures can reduce in size and disappear
completely through garbage collection.

Distributed garbage collection is implemented by two cooperating mechanisms: a
local garbage collector per site and a distributed credit mechanism to reclaim global
addresses. A local garbage collector informs the credit mechanism when a node is
no longer referenced on its site. Conversely, the credit mechanism informs the local
garbage collector when a node is no longer remotely referenced. Local collectors
can be invoked at any time independently of other sites. The roots of local garbage
collection are all nodes on its site that are reachable from non-suspended thread nodes
or are remotely referenced.

A global address is reclaimed when the node that it refers to is no longer remote-
ly referenced. This is done by the credit mechanism, which is informed by the local
garbage collectors. This scheme recovers all garbage except for cross-site cycles. The
only cross-site cycles in our system occur between different objects or cells. Since
records and procedures are both replicated, cycles between them will be localized to

90 CHAPTER 6. PROGRAMMING LANGUAGES FOR DISTRIBUTED APPL.

Mc

TPc2Pc1

State2State1 XY

Site 1 Site 2

Content

State1

Figure 6.22: Site 1 has sent the state pointer to Site 2

Mc

TPc2Pc1

State2 State1State1 Y X

Site 1 Site 2

Figure 6.23: Site 2 has the state pointer

single sites. The credit mechanism does not suffer from the memory or network inef-
ficiencies of previous reference-counting schemes [99].

We summarize briefly the basic ideas of the credit mechanism. Each global address
is created with an integer (its debt) representing the number of credits that have been
given out to other sites and to messages. Any site or message that contains the global
address must have at least one credit for the global address. The creation site is called
the owner. All other sites are called borrowers. A node is remotely referenced if and
only if its debt is nonzero.

Initially there are no borrowers, so the owner’s debt is zero. The owner lends
credits to any site or message that refers to the node and increments its debt each time
by the number of credits lent. When a message arrives at a borrower, its credits are
added to the credits already present. When a message arrives at the owner, its credits
are deducted from the owner’s debt. When a borrower no longer locally references a
node then all its credits are sent back to the owner. This is done by the local garbage
collector. When the owner’s debt is zero then the node is only locally referenced, so
its global address will be reclaimed.

Consider the case of a cell access structure. The manager site is the owner, and all
other sites with cell proxies are borrowers. A proxy disappears when no longer locally
referenced. It then sends its credit back to the manager. If the proxy contains the state
pointer, then the state pointer is transferred back to the manager site as well. Remark
that this removes a cross-site cycle within the cell access structure. When the manager
recovers all its credit then it disappears, and the cell becomes a local cell again. When

6.6. OPEN COMPUTING 91

the local cell has no local references, then it is reclaimed. If the local cell becomes
global again (because a message referring to it is sent across the network), then a new
manager is created, completely unrelated to the reclaimed one.

6.6 Open computing

We say a distributed system is open if independently-running applications can interact
in interesting ways [30]. In general, this means that the system must have common
ground, in the form of common frameworks or languages, that applications can use
to interact. Typical examples are common information formats for exchanging in-
formation, common protocols for electronic commerce, etc. As a first requirement,
applications must be able to establish connections with computations that have been
started independently across the net. A second requirement is that applications should
be able to initiate new distributed computations.

6.6.1 Connections and tickets

Distributed Oz uses a ticket-based mechanism to establish connections between in-
dependent sites. In the final system, both the tickets and the connections must be
implemented in a secure way (see Section 6.8). In this section, we explain the basic
mechanism without discussing security issues. One site (called the server site) creates
a ticket with which other sites (called client sites) can establish a connection. The tick-
et is a character string which can be stored and transported through all media that can
handle text, e.g., phone lines, electronic mail, paper, and so forth.

The ticket identifies both the server site and the language entity to which a remote
reference will be made. Independent connections can be made to different entities
on the same site. Establishing a connection has two effects. First, the sites connect
by means of a network protocol (e.g., TCP). Second, in the Oz computation space,
a reference is created on the client site to a language entity on the server site. The
second effect can be implemented by various means, i.e., by passing a zero-argument
procedure, by unifying two variables, or by passing a port which is then used to send
further values. Once an initial connection is established, then further connections as
desired by applications can be built from the programming abstractions available in
Oz. For example, it is possible to define a class C on one site, pass C to another site,
define a class D inheriting from C on that site, and pass D back to the original site. This
works because Distributed Oz is fully transparent.

Oz features two different types of tickets: one-shot tickets that are valid for es-
tablishing a single connection only (one-to-one connections), and many-shot tickets
that allow multiple connections to the ticket’s server (many-to-one connections). One-
to-one connections are useful when connecting to newly-started compute servers (see
Section 6.6.2). Many-to-one connections are useful in collaborative applications such
as the shared graphic editor of Section 6.3. Multiple users connect to this application
in order to contribute to a common design.

92 CHAPTER 6. PROGRAMMING LANGUAGES FOR DISTRIBUTED APPL.

We sketch a small example for one-to-one connections:

Server Client

STkt={Connection.offer
X}
{PutOnWebPage STkt}
{ProcessData X}

CTkt={QueryUser}
X={Connection.take CTkt}
X=data(· · ·)

The server offers X with the system procedure Connection.offer, which is part of
the module Connection. This procedure takes the offered value and returns a new
one-shot ticket STkt, which is made available on a Web page. The user reads the page,
retrieves the ticket, and types it in at the client site, which puts it in variable CTkt. The
system procedure Connection.take then returns a reference to X, which becomes
a shared reference between the client and server. In this example, X is a shared logic
variable. It could have been any language entity, e.g., an object or a port. The client
binds X and the server reads its value. This passes information from the client to the
server.

6.6.2 Remote compute servers

Distributed applications mainly fall into two categories. In the first category, applica-
tions involve geographically-distributed resources. For example, in the shared graphic
editor of Section 6.3 the users are the distributed resources. In the second category,
applications use multiple networked computers to increase computation speed. These
applications are often structured as a single master computation that coordinates a set
of slave computations. The actual computation is carried out by the slaves.

To support the second category, Oz provides the ability to create remote compute
servers, which are accessible as Oz objects. This is implemented using the ticket mech-
anism. After the compute server has been set up, it can be given tasks to do in the form
of procedures. The following example shows one way to use a compute server:

S={New RemoteServer init(´wallaby.ps.uni-sb.de´)}
{Print {S run(fun {$} 4+5 end $)}}

The remote server site is started on the computer with Internet address ´wallaby.ps.uni-sb.de´.
The run method takes a zero-argument function that is executed at the remote server.
In the example, two numbers are added and the result 9 is returned to the original site,
where it is printed.

Setting up a remote server is done in two steps. Assume that a site wishes to create
a remote server and then become a client to the server. First, the potential client creates
an independently-running Oz site with the help of the operating system.14 Second, a
connection is established between the potential client and the remote server. This is
done by passing a one-shot ticket from the potential client to the server. The server
takes a logic variable that has been offered by the client and binds it to a stationary

14In the current system, a remote site is started by the Unix remote shell command (rsh).

6.7. FAILURE DETECTION AND HANDLING 93

object (see Section 6.4.2). This stationary object is used on the client side to implement
the run method shown in the example above.

As an application of this idea, we are currently investigating distributed search en-
gines for solving combinatorial constraint problems. First experiments show encour-
aging speedup. Oz supports the two aspects of distributed search engines in a powerful
way: search engines can be easily programmed in Oz [112], and the language supports
distributed computing well.

6.7 Failure detection and handling

An application is fault-tolerant if it can continue to fulfill its specification despite acci-
dental failures of its components. How can one write such applications in Distributed
Oz? The theory of fault-tolerant systems explains how to construct such systems as
layers of abstractions [68]. Very little work has been done to integrate these abstrac-
tions into a language platform so that (1) a fault-tolerant system can be built within
the platform, and (2) the integration is orthogonal to the language entities. Most of the
language work has been concentrated in the areas of persistence and transactions, by
adding models of these concepts to an existing language. It is possible, however, to
support fault tolerance in a much simpler way.

We extend the system to support partial failure of sites and individual language
entities, and to detect and handle failure of language entities. We provide the means
for the programmer to decide what action to take upon failure. This is done by in-
stalling “handlers” or “watchers” on individual language entities (see below). These
are invoked when a failure occurs. No irrevocable decision is taken by the system; the
handlers and watchers are free to take any course of action. In this way, we intend to
build a first fault-tolerant layer using the redundancy that comes from having multiple
sites in the system. This gives fault tolerance even in the absence of persistence. More
refined fault tolerance based on persistence and transactions will be added later.

6.7.1 The containment principle

Fault tolerance is a property that crosses abstraction boundaries [78]. An example will
make this clear. Most existing systems (we include applications) do not handle time
correctly. What they do is let a lower layer make an irrevocable decision, in the form
of a time-out that does not let the system continue. Say there is a time-out in a lower
layer, for example in the transport layer (TCP) of the network interface. This time-out
crosses all abstraction boundaries to appear at the top level, i.e., to the user. Usually,
a window is opened asking confirmation to abort the application. The user does not
have the possibility to communicate back to the timed-out layer. This greatly limits
the flexibility of the system. It should be possible to build a system where the user can
decide to wait, avoiding an abort, or to abort immediately without waiting. In most
cases, neither of these possibilities is offered. Sometimes one possibility is offered,
thus improving the perceived quality of the system. A hard-mounted resource in the

94 CHAPTER 6. PROGRAMMING LANGUAGES FOR DISTRIBUTED APPL.

NFS file system offers the first possibility. The Stop button in a Web browser offers
the second possibility.

This leads to a principle of containment: “abnormal” behavior of any layer should
be containable by a higher layer. Therefore the abnormal layer should not make any
irrevocable decisions, such as aborting execution, unless this is desired by the program-
mer. The programmer decides which higher layer is competent to handle the problem.
The higher layer should be able to take any reasonable course of action. In our ex-
ample, this means that time-out should not be a wired-in property of a system. The
programmer should decide whether or not to have a time-out, and what to do after a
given time has elapsed (one of the possibilities being to continue waiting).

Site A Site B Site C

Site D Site E Site F

M

M

M
P

P
P

P

P

P

P

P

Failed site

Normal site

Affected node

Normal node

Figure 6.24: Remote detection of site failure in Distributed Oz

6.7.2 Failures in the distribution graph

The external cause of a failure in Distributed Oz is the failure of one or more sites or
of part of the network. This shows up in the distribution graph at the level of access
structures. We say an access structure is affected if it has at least one node on a failed
site or if it has at least one link across a failed network. An affected access structure
can in many cases continue to work normally, e.g., an object can still be used even if
it has a remote reference on a failed site. An access structure is failed if normal sites
can no longer do operations on it. This happens if a crucial part of the access structure,
e.g., the manager node, is inaccessible because it is on a failed site or across a failed
network. Figure 6.24 shows a system that covers six sites. Site B has failed; sites A,
C, E, and F have affected nodes; and site D has only normal nodes. We assume that
sites are designed to satisfy the fail-stop property, i.e., site failures happen instantly and
are permanent. Networks may have temporary failures, i.e., the network may return to
normal. An access structure can therefore have both temporary and permanent failures.

6.7. FAILURE DETECTION AND HANDLING 95

6.7.3 Handlers and watchers

Distributed Oz detects failure at the level of access structures, which shows up in the
language as single language entities, e.g., objects, variables, and ports. The default
behavior is that an attempted operation on an entity blocks indefinitely if there is a
problem in doing the operation. Any other behavior must be specified explicitly by the
programmer. We propose to do this by installing handlers and watchers on the entity.
A handler is invoked if an error is detected when trying to do an operation on the entity
(lazy detection). A watcher is invoked when an error is detected for an entity, even if
no operation is attempted on the entity (eager detection).

The semantics of handlers and watchers is simple. If an operation is attempted on
a failed entity, then the operation is replaced by a call of the handler, if one exists with
a valid trigger condition. If the system discovers that an entity has failed, then every
watcher with a matching trigger condition is immediately made runnable in a newly-
created thread. Handlers and watchers have two arguments, namely the failed entity
itself and information about the type of error.

Handlers may be installed on entities per site and per thread. Per site and per
entity, there is at most one site-based handler and at most one thread-based handler
per thread. Thread-based handlers override site-based handlers, i.e., where both apply
only the thread-based handler is invoked. Watchers may be installed on entities per
site. There may be any number of watchers per entity on a given site.

Handlers and watchers are installed by builtins with the following three arguments:
the entity, control information, and the handler or watcher itself, which is a two-
argument procedure. The control information gives the type of error for which the
handler or watcher should be invoked. In the case of handlers, the control information
also stipulates whether the handler is installed on a site or thread basis, and whether
after handler invocation the operation should be retried.

6.7.4 Classifying possible failures

Failure detection distinguishes between four classes of failure. A failure can be either
temporary or permanent. These are further subdivided into home and foreign failures.
Home failures prevent the current site from performing operations on the entity, while
foreign failures indicate that there is a problem among other sites sharing the entity
preventing some or all of them from performing operations on the entity. Handlers
are triggered on home failures. Watchers may be triggered on home as well as foreign
failures. Foreign failures give the site an indication that there is more than network
latency behind a lack of activity by other sites.

6.7.5 Distributed garbage collection with failures

If a site fails, then credit is lost for all affected access structures whose manager is
still working. These access structures will not be reclaimed unless we introduce an-
other idea. A technique that is successfully being used in existing systems, e.g., Java

96 CHAPTER 6. PROGRAMMING LANGUAGES FOR DISTRIBUTED APPL.

RMI [90], is a lease-based reference-counting mechanism. This technique can also
be used together with the credit mechanism. Any site that has credit for an access
structure must periodically renew its lease by sending a message to the manager. If
the manager does not receive at least one renewal message within a given time period,
then the manager can be reclaimed.

Network

Operating system

Network interface

OS interface

Emulator

Operating system

Emulator

User

Oz program

Bytecode program

User

Oz program

User

Oz program

Bytecode Bytecode

Distributed Oz
shared space

Emulator interface

Oz compiler
Implementation

security

Language
security

(i.e., emulator)
Run-time system

OS and network
security

Site 2 (virtual)Site 1 Site 3 (virtual)

Figure 6.25: Security issues in Distributed Oz

6.8 Resource control and security

An application is secure if it can continue to fulfill its specification despite intentional
(i.e., malicious) failures of its components. Resource control and security are global
issues, i.e., they cross abstraction boundaries [8], just like fault tolerance. The issues
must therefore be addressed at each layer. We briefly discuss what can be done in
Distributed Oz. Fault tolerance and security have much in common [78], including the
reliance on containment and redundancy. But they focus on very different classes of
failures. For example, a crucial part of security is resource control because exhausting
resources is a common technique to provoke intentional failures (“denial of service”
attacks). Although important, resource control is less critical for fault tolerance.

Resources are conveniently divided into site and network resources. Site resources
include computational resources (memory/processor) and other resources such as file
systems and peripherals. The same site resources normally appear in some form at
each site layer, i.e., Oz program, emulator, and operating system. In a similar way,
security issues appear at each layer (see Figure 6.25):

6.8. RESOURCE CONTROL AND SECURITY 97

% Create new module ROpen that looks like the standard Open
% but allows only reading and only in the given directory Dir:
proc {NewReadInDir Dir ROpen}

class ROpenF
attr fd
meth init(name:FN)

% Should verify absence of ’..’ and ’/’ in FN!
fd <- {New Open.file init(name:Dir#FN)}

end
meth read(list:CL)

{@fd read(list:CL)}
end

end
in

ROpen=open(file:ROpenF)
end

% Give limited rights to the untrusted object UntrustedObj:
SandboxOpen = {NewReadInDir "/usr/home/untrusted_foreign/"}
{UntrustedObj setopenmodule(SandboxOpen)}

Figure 6.26: Capabilities in Oz

• Language security is a property of the language. It guarantees that computa-
tions and data are protected from adversaries that stay within the language.

• Implementation security is a property of the language implementation in the
process. It protects computations and data from adversaries who attempt to in-
terfere with compiled programs, i.e., with the Oz bytecode.

• Operating system and network security are properties of the operating system
and network. They protect computations and data from adversaries who attempt
to interfere with the internals of the Oz emulator and run-time system within an
operating system process, and who attempt to interfere with the operating system
and the network. Network security is available through secure TCP/IP.

6.8.1 Language security

We provide language security by giving the programmer the means to restrict access to
data. Data are represented as references to entities in an abstract shared computation
space. The space is abstract because it provides a well-defined set of basic operations.

98 CHAPTER 6. PROGRAMMING LANGUAGES FOR DISTRIBUTED APPL.

In particular, unrestricted access to memory is forbidden.15 One can only access data
to which one has been given an explicit reference.

A reference to a procedure or an object behaves as a capability. Because of lexical
scoping and first-class procedures [4], it is possible to create new capabilities that
encapsulate existing ones, thus possibly limiting their rights. For example, Figure 6.26
shows how to give an object limited rights to a file system. Calling {NewReadInDir

Dir ROpen} creates a new module ROpen, which behaves exactly like the system
module Open, except that it only allows to read files and only in the given directory
Dir.

Capabilities do not solve all problems in security [134]. They have inherent weak-
nesses. First, the authorization to do something is given very early, namely when the
capability is given and not when the operation is attempted. Second, a capability can
be forwarded to anyone and it will continue working. Therefore, a capability-based
mechanism needs to be extended–for example with access control based on the identi-
ty of the capability’s current possessor.

6.8.2 Implementation security

Two important issues in implementation security are site integrity and resource control.
These issues appear when code is directly or indirectly passed between sites. For
example, sending a procedure to a compute server to execute it (direct) or invoking a
method of a mobile object (indirect). The foreign code is not necessarily trustworthy.
The importing site should be protected from being corrupted by malicious foreign
code, i.e., by invalid Oz bytecode. This is very difficult in general. Typical techniques
are bytecode verification and authenticating compilers [125].

The foreign code should be limited in its ability to use the site’s computational
resources. Monopolizing the processor may starve the site’s other concurrent activities.
Excessive memory use may exhaust the site’s memory, which being extremely difficult
to recover from, would effectively crash the site.

The foreign code should be given controlled access to other site resources. Obvi-
ously, untrusted code cannot be given unlimited access to site-specific resources such
as file systems. It is possible, but not practical, to forbid access to all site-specific re-
sources (just as it is not practical to forbid all access to basic computational resources!).
Better is to provide limited capabilities.

6.8.3 Virtual sites

To partially provide implementation security in Distributed Oz, we propose the mech-
anism of virtual sites (see Figure 6.25). A site can spawn slave virtual sites, which
behave exactly like standard sites except that the master monitors and controls the
slaves. If the slave crashes then the master is notified but not otherwise affected. The
master controls slaves’ resources, including their computational resources and other

15For example, both examining data representations (type casts) and calculating addresses (pointer
arithmetic) are forbidden.

6.9. CONCLUSION 99

resources such as access to file systems. For example, the slave site might be given the
possibility to create and delete files in one specific directory but nowhere else.

Within the limitations imposed by the master, a virtual site behaves almost exactly
the same as an ordinary site. It may share Oz entities with the master site or any other
site. The difference is that the virtual site shares the same machine. Communication is
more efficient since there is no network layer. To take advantage of the protection and
resource control mechanisms of the operating system, a slave site will normally live in
a different process than its master.

Virtual sites can be used to exploit the computational resources of shared-memory
multiprocessors. Simply allocate one virtual site per processor. Because communi-
cation overheads are lower, this is more efficient than parallelism over the network.
Whether the parallelism leads to an effective speedup of course still depends on these
overheads.

6.9 Conclusion

Distributed programming is of major importance today, yet it remains difficult. We
present a design for a distributed programming language, Distributed Oz, that fully
separates an application’s functionality from its distribution structure. Distributed Oz
is a conservative extension to the existing centralized Oz language. Oz is a concurrent
object-oriented language that is state-aware and that has dataflow synchronization. Oz
programs can be ported almost immediately to Distributed Oz, which is implemented
and publicly available. We are experimenting with distributed applications including
collaborative tools, compute servers, and techniques for using centralized applications
in distributed settings [18].

Distributed Oz is very much work in progress. We present preliminary designs that
conservatively extend the language with models for open computing, fault tolerance,
and resource control. These designs are being implemented and extended.

Acknowledgements

We thank the numerous people at SICS, DFKI, and UCL that have contributed to Dis-
tributed Oz and the referees for useful comments. We thank Donatien Grolaux for sug-
gesting transaction objects. Seif Haridi and Per Brand are supported by the Swedish
national board for industrial and technical development (NUTEK) and SICS. Christian
Schulte is supported by the Bundesminister für Bildung, Wissenschaft, Forschung und
Technologie (FKZ ITW 9601) and the Esprit Working Group CCL-II (EP 22457).

100 CHAPTER 6. PROGRAMMING LANGUAGES FOR DISTRIBUTED APPL.

Chapter 7

Mobile Objects in Distributed Oz

Mobile Objects in Distributed Oz

PETER VAN ROY
Université Catholique de Louvain

SEIF HARIDI and PER BRAND
Swedish Institute of Computer Science
and

GERT SMOLKA, MICHAEL MEHL, and RALF SCHEIDHAUER
German Research Center For Artificial Intelligence (DFKI)

101

102 CHAPTER 7. MOBILE OBJECTS IN DISTRIBUTED OZ

7.1 Abstract

Some of the most difficult questions to answer when designing a distributed application
are related to mobility: what information to transfer between sites and when and how
to transfer it. Network-transparent distribution, the property that a program’s behav-
ior is independent of how it is partitioned among sites, does not directly address these
questions. Therefore we propose to extend all language entities with a network behav-
ior that enables efficient distributed programming by giving the programmer a simple
and predictable control over network communication patterns. In particular, we show
how to give objects an arbitrary mobility behavior that is independent of the object’s
definition. In this way, the syntax and semantics of objects are the same regardless of
whether they are used as stationary servers, mobile agents, or simply as caches. These
ideas have been implemented in Distributed Oz, a concurrent object-oriented language
that is state aware and has dataflow synchronization. We prove that the implementation
of objects in Distributed Oz is network transparent. To satisfy the predictability con-
dition, the implementation avoids forwarding chains through intermediate sites. The
implementation is an extension to the publicly available DFKI Oz 2.0 system.

7.2 Introduction

The distinguishing feature of a distributed computation is that it is partitioned among
sites. It is therefore important to be able to easily and efficiently transfer both compu-
tations and information between sites. Yet, when the number of sites increases without
bounds, the programmer must not be burdened with writing separate programs for each
site and explicitly managing the communications between them. We conclude that
there are two conflicting goals in designing a language for distributed programming.
First, the language should be network transparent, i.e., computations behave correctly
independently of how they are partitioned between sites. Second, the language should
give simple and predictable control over network communication patterns. The main
contribution of this article is to present a language, Distributed Oz, that satisfies these
two goals. The design has two key ideas: first, to define the language in terms of two
semantics, a language semantics and a distributed semantics that refines it to take net-
work behavior into account, and second, to incorporate mobility in a fundamental way
in the distributed semantics.

7.2.1 Object Mobility

Making mobility a primitive concept makes it possible to define efficient networked
objects whose mobility can be precisely controlled (see Section 7.6.4). The object can
change sites on its own or on request. The object does not leave a trail, i.e., it does not
leave behind aliases or surrogate objects to forward messages when it changes sites.
There is no “proxy explosion” problem when an object is passed repeatedly between
two sites [42]. Many sites may send messages to the object. It is eventually true

7.2. INTRODUCTION 103

that messages sent will go to the object in a single network hop, no matter how many
times the object moves. There is no difference in syntax or computational behavior
between these objects and stationary objects. No published system has objects with
these abilities. In particular, Emerald [72], Obliq [21], and Java with Remote Method
Invocation [120] all suffer from the aliasing problem to some extent. One of the con-
tributions of this article is to show how to provide mobile objects with predictable
network behavior, i.e., without aliasing, in a simple and straightforward way.

7.2.2 Two Semantics

The basic design principle of Distributed Oz is to distinguish clearly between the
language semantics and the distributed semantics. Distributed Oz has the same lan-
guage semantics as Oz 2, a concurrent object-oriented language that is state aware
and has dataflow synchronization. The object system has a simple formal founda-
tion and yet contains all the features required in a modern concurrent language. De-
tailed information about the language and its object system can be found in [51]
and [60].1 Implementations of Oz and its successor Oz 2 have been used in many
research projects [[13]; [22]; [39]; [40]; [63]; [61]; [110]; [135]]. To be self-contained,
this article uses a subset of Oz 2 syntax that directly corresponds to its semantics.

The distributed semantics extends the language semantics to take into account the
notion of site. It defines the network operations invoked when a computation is par-
titioned on multiple sites. There is no distribution layer added on top of an existing
centralized system. Rather, all language entities are given a network behavior that re-
spects the same language semantics they have when executing locally. By a language
entity we mean a basic data item of the language, such as an object, a procedure, a
thread, or a record. Figure 7.3 classifies the entities and summarizes their distribut-
ed semantics. Network operations2 are predictable, which gives the programmer the
ability to manage network communications.

7.2.3 Developing an Application

Developing an application is separated into two independent parts. First, the applica-
tion is written without explicitly partitioning the computation among sites. One can
in fact check the safety and liveness properties3 of the application by running it on
one site. Second, the application is made efficient by controlling the mobility of its
entities. For example, some objects may be placed on certain sites, and other objects
may be given a particular mobile behavior. The shared graphic editor of Section 7.3 is
designed according to this approach.

1See also http://www.ps.uni-sb.de.
2In terms of the number of network hops.
3A fortiori, correctness and termination for nonreactive applications.

104 CHAPTER 7. MOBILE OBJECTS IN DISTRIBUTED OZ

7.2.4 Mobility Control and State

The distributed semantics extends the language semantics with mobility control. In
general terms, mobility control is the ability for stateful entities to migrate between
sites or to remain stationary at one site, according to the programmer’s intention [56].
The programmer can use mobility control to program the desired network communi-
cation patterns in a straightforward way. For example, to reduce network latency a
mobile object can behave as a state cache. This is illustrated by the shared graphic
editor of Section 7.3.

By stateful entities we mean entities that change over time, i.e., they are defined by
a sequence of states, where a state can be any entity. At any given moment, a stateful
entity is localized to a particular site, called its home site. Stateful entities are of two
kinds, called cells and ports, that are respectively mobile and stationary. Objects are
defined in terms of cells. The mobility behavior of an object is defined in terms of cells
and ports. The language semantics of these entities is given in Section 7.5, and their
distributed semantics is given in Section 7.6. The implementation contains a mobile
state protocol that implements the language semantics of cells while allowing the cell’s
state4 to efficiently migrate between sites.

It is important that all language entities have a well-defined network behavior. For
example, the language provides network references to procedures. A procedure is
stateless, i.e., its definition does not change over time. Calling the procedure locally
or remotely gives the same results. Disregarding sites, it behaves identically to a cen-
tralized procedure application. Passing a procedure to a remote site causes a network
reference to be created to the procedure. Calling the procedure causes it to be replicat-
ed to the calling site.5 The procedure’s external references will be either replicated or
remotely referenced, depending on what kind of entity they are. Only the first call will
have a network overhead if the procedure does not yet exist on the site.

7.2.5 Overview of the Article

This article consists of eight parts and an appendix. Section 7.3 presents an example
application, a shared graphic editor, that illustrates one way to use mobile objects to
reduce network latency. Section 7.4 lays the foundation for our design by reasoning
from four general requirements for distributed programming. Section 7.5 summarizes
the language semantics of Distributed Oz in terms of these requirements. Section 7.6
defines and justifies the distributed semantics of Distributed Oz. We show by example
how easy it is to code various kinds of migratory behavior using cells and ports. Sec-
tion 7.7 outlines how mobility is introduced into the language semantics and specifies
a mobile state protocol for cells. Section 7.8 summarizes the system architecture and
situates the protocol in it. Section 7.9 compares the present design with distributed
shared memory, Emerald, and Obliq. Section 7.10 summarizes the main contributions

4More precisely, its content-edge, which is defined in Section 7.5.1.
5This is not the same as an RPC. To get the effect of an RPC, a stationary entity (such as a port) must

be introduced.

7.3. A SHARED GRAPHIC EDITOR 105

User BUser A

process

User C

Distributed Oz
Objects for

picture state

Graphics subsystem
(Tcl/tk)

Figure 7.1: A shared graphic editor.

and the status of the project. Finally, Appendix 7.11.1 gives a formal proof that the
mobile state protocol implements the language semantics for cells.

7.3 A Shared Graphic Editor

Writing an efficient distributed application can be much simplified by using network
transparency and mobility. We have substantiated this claim by designing and imple-
menting a prototype shared graphic editor, an application which is useful in a collabo-
rative work environment. The editor is seen by an arbitrary number of users. We wish
the editor to behave like a shared virtual environment. This implies the following set
of requirements. We require that all users be able to make updates to the drawing at
any time, that each user sees his or her own updates without any noticeable delays, and
that the updates must be visible to all users in real time. Furthermore, we require that
the same graphical entity can be updated by multiple users. This is useful in a collab-
orative CAD environment when editing complex graphic designs. Finally, we require
that all updates are sequentially consistent, i.e., each user has exactly the same view
of the drawing. The last two requirements are what makes the application interesting.
Using multicast to update each user’s visual representation, as is done for example in
the LBL Whiteboard application, 6 does not satisfy the last two requirements.

Figure 7.1 outlines the architecture of our prototype. The drawing state is repre-
sented as a set of objects. These objects denote graphical entities such as geometric
shapes and freehand drawing pads. When a user updates the drawing, either a new ob-
ject is created or a message is sent to modify the state of an existing object. The object

6Available at http://mice.ed.ac.uk/mice/archive.

106 CHAPTER 7. MOBILE OBJECTS IN DISTRIBUTED OZ

then posts the update to a distributed agenda. The agenda sends the update to all users
so they can update their displays. The users see a shared stream, which guarantees
sequential consistency.

New users can connect themselves to the editor at any time using the open comput-
ing ability of Distributed Oz. The mechanism is extremely simple: the implementation
provides primitives for saving and loading a language entity in a file named by a URL.
A URL is an Ascii string that names a globally unique file and is recognized by HTTP
clients and servers. We use a URL because it provides us with a convenient global
address space. The graphic editor saves to a file a reference to the object that is respon-
sible for managing new users. By loading the file, a new user gets a reference to the
object. The two computations then reference the same object. This transparently opens
a connection between two sites in the two computations. From that point onward, the
computation space is shared. When there are no more references between two sites
in a computation, then the connection between them is closed by the garbage collec-
tor. Computations can therefore connect and disconnect at will. The issue of how to
manage the shared names represented by the URLs leads us into the area of multiagent
computations. This is beyond the scope of the article, however.

The design was initially built with stationary objects only. This satisfies all re-
quirements except performance. It works well on low-latency networks such as LANs,
but performance is poor when users who are far apart, e.g., in Sweden, Belgium, and
Germany, try to draw freehand sketches or any other graphical entity that needs contin-
uous feedback. This is because a freehand sketch consists of many small line segments
being drawn in a short time. In our implementation, up to 30 motion events per second
are sent from the graphics subsystem to the Oz process. Each line segment requires
updating the drawing pad state and sending this update to all users. If the state is re-
mote, then the latency for one update is often several hundred milliseconds or more,
with a large variance.

To solve the latency problem, we refine the design to represent the picture state
and the distributed agenda as freely mobile objects rather than stationary objects. The
effect of this refinement is that parts of the picture state are cached at sites that modify
them. Implementing the refinement requires changing some of the calls that create new
objects. In all, less than 10 lines of code out of 500 have to be changed. With these
changes, freehand sketches do not need any network operations to update the local
display, so performance is satisfactory. Remote users see the sketch being made in real
time, with a delay equal to the network latency.

This illustrates the two-part approach for building applications in Distributed Oz.
First, build and test the application using stationary objects. Second, reduce latency
by carefully selecting a few objects and changing their mobility behavior. Because of
transparency, this can be done with quite minor changes to the code of the application
itself. In both the stationary and mobile designs, fault tolerance is a separate issue that
must be taken into account explicitly. It can be done by recording on a reliable site a
log of all display events. Crashed users disappear, and new users are sent a compressed
version of the log.

In general, mobile objects are useful both for fine-grain mobility (caching of object

7.4. LANGUAGE PROPERTIES 107

4in

Requirements Mechanisms
Network transparency Shared computation space,

concurrency
Flexible network awareness State awareness,

mobility control
Latency tolerance Concurrency,

caching,
dataflow synchronization,
asynchronous ordered communication

Language security Capability-based computation space,
lexical scoping,
first-class procedures

Table 7.1: System Requirements and Some of their Mechanisms

state) as well as coarse-grain mobility (explicit transfer of groups of objects). The key
ability that the system must provide is transparent control of mobility, i.e., control that
is independent of the object’s functionality. Section 7.6.4 shows how this is done in
Distributed Oz.

7.4 Language Properties

In order to provide a firm base for the language design, we start from four requirements
that are generally agreed to be important in a distributed setting. We then propose a set
of mechanisms that are sufficient to satisfy these requirements. The four requirements
are network transparency, flexible network awareness, latency tolerance, and language
security. Table 7.1 summarizes the requirements and their enabling mechanisms. Sec-
tion 7.5 presents a design that contains all the mechanisms. For brevity, we give only a
summary of the fault model. Other important requirements such as resource manage-
ment and network security will be presented elsewhere.

It is not obvious that the four requirements can be satisfied simultaneously. In
particular, achieving both network transparency and flexible network awareness may
seem inherently impossible. It becomes possible by carefully distinguishing between
the language semantics and distributed semantics.

7.4.1 Network Transparency

Network transparency means that computations behave in the same way independent
of the distribution structure.7 That is, the language semantics is obeyed independent
of how the computation is partitioned onto multiple sites. This requires a distributed
shared computation space, which provides the illusion of a single networkwide ad-
dress space for all entities (including threads, objects, and procedures). The distinction

7The terms “network transparency” and “network awareness” were first introduced by Cardelli [21].

108 CHAPTER 7. MOBILE OBJECTS IN DISTRIBUTED OZ

between local references (on the same site) and remote references (to another site) is
invisible to the programmer. Consistency of remote access is explained in Section 7.6.
For reasons of security, the computation space is not just a shared memory. This is
explained below.

To be practical, a network-transparent system must be able to express all important
distributed-programming idioms. Many of these do parallel execution, e.g., multiple
clients accessing multiple servers. Therefore the language must be concurrent, i.e.,
allow for multiple computational activities (called “threads”) that coexist and evolve
independently.

7.4.2 Flexible Network Awareness

Flexible network awareness means two things: predictability and programmability.
Network communication patterns should be simply and predictably derived from the
language entities. In addition, the communication patterns provided should be flexible
enough to program the desired network behavior. The resulting distributed semantics
gives the programmer explicit control over network communication patterns.

The basic insight to achieve flexible network awareness is that for efficiency, state-
ful data (e.g., objects) must at any instant reside on exactly one site (the home site).8

On the other hand, stateless data (e.g., procedures or values) can safely be replicated,
i.e., copied to another site. It is therefore useful for the language to distinguish between
these two kinds of data, that is, it is state aware. Replication is used in first instance to
improve the network behavior of stateless data.

Mobility control is the ability of a home site to change (mobility) or to remain the
same (stationarity). With the concepts of state awareness and mobility control, the
programmer can express any desired network communication pattern. In the design
described here, entities have three basic network behaviors. Mobile entities migrate to
each remote site invoking them. The implementation is careful to make the network
behavior of mobile entities predictable by using the appropriate distributed algorithm.
Stationary entities require a network operation on each remote invocation. Replicable
entities are copied to each remote site requesting the entity. More complex network
behaviors are built from these three.

7.4.3 Latency Tolerance

Latency tolerance means that the efficiency of computations is affected as little as
possible by network delay. Distributed Oz provides four basic mechanisms for latency
tolerance. Concurrency provides latency tolerance between threads: while one thread
waits for the network, other threads can continue.

Caching improves latency tolerance by increasing the locality of computations.
Caching stateless entities amounts to replicating them. Caching stateful entities re-
quires a coherence protocol. The mobile state protocol of Distributed Oz guarantees

8They can of course be referenced from any site.

7.4. LANGUAGE PROPERTIES 109

coherence and is optimized for frequent state updates and moves. The current design
does not yet have a replacement policy, i.e., there are no special provisions for resource
management.

Dataflow synchronization allows computations to stall only on data dependency
(not on send or receive). Well-known techniques to achieve this are futures [49], I-
structures [64], and logic variables [15, 114]. We use logic variables because they
have great expressive power, are easily implemented efficiently, and are consistent
with the semantics of a state-aware language (see Section 7.5.1). Asynchronous or-
dered communication generalizes logic variables by adding a form of buffering. This
is provided by ports (see Section 7.5.2).

7.4.4 Language Security

Language security means that the language guarantees computations and data are pro-
tected from adversaries that use only the language. It is important to distinguish be-
tween language security and implementation security. Implementation security means
that computations and data are protected from adversaries that have access to the sys-
tem’s implementation. This is beyond the scope of the article, though. We provide
language security by giving the programmer the means to restrict access to data. Data
are represented as references to entities in an abstract shared computation space. The
space is abstract because it provides a well-defined set of basic operations. In partic-
ular, unrestricted access to memory is forbidden.9 One can only access data to which
one has been given an explicit reference. This is controlled through lexical scoping
and first-class procedures [4]. Lexical scoping implies that a procedure’s initial set
of external references is determined by its static structure. Other references can be
passed around explicitly during execution. Having first-class procedures implies that
procedures can be created and applied dynamically and that references to them can be
passed around:

local P in % Declare P in a large scope
% At site 1: Declare X in a limited scope
local X in

% Define procedure P
proc {P ...} ... end % X is visible inside P

end

% At site 2:
local Q in

% Define procedure Q
proc {Q ...} ... end % X is not visible inside Q

end
end

9For example, both examining data representations (type casts) and calculating addresses (pointer
arithmetic) are forbidden.

110 CHAPTER 7. MOBILE OBJECTS IN DISTRIBUTED OZ

S ::= S S Sequence
| X=f(l1:Y1 ... ln:Yn) | Value

X=<number> | X=<atom> | {NewName X}
| local X1 ... Xn in S end | X=Y Variable
| proc {X Y1 ... Yn} S end | {X Y1 ... Yn} Procedure
| {NewCell Y X} | {Exchange X Y Z} | {Access X Y} State
| if X=Y then S else S end Conditional
| thread S end | {GetThreadId X} Thread
| try S catch X then S end | raise X end Exception

Table 7.2: Summary of OPM Syntax

Procedure P can access X, but procedure Q cannot. However, since Q can access P,
this gives Q indirect access to X. Therefore Q has some rights to X, namely those that it
has through P. Passing procedures around thus transfers access rights, which gives the
effect of capabilities.

7.5 Language Semantics

Distributed Oz, i.e., Oz 2, is a simple language that satisfies all the requirements of the
previous section. Distributed Oz is dynamically typed, i.e., its type structure is checked
at run-time. This simplifies programming in an open distributed environment. The
language is fully compositional, i.e., all language constructs that contain a statement
may be arbitrarily nested. All examples given below work in both centralized and
distributed settings.

Distributed Oz is defined by transforming all its statements into statements of a
small kernel language, called OPM (Oz Programming Model) [115, 116]. OPM is a
concurrent programming model with an interleaving semantics. It has three innova-
tive features. First, it uses dataflow synchronization through logic variables as a basic
mechanism of control. Second, it makes an explicit distinction between stateless refer-
ences (logic variables) and stateful references (cells). Finally, it is a unified model that
subsumes higher-order functional and object-oriented programming.

The basic entities of OPM are values, logic variables, procedures, cells, and threads.
A value is unchanging and is the most primitive data item that the language semantics
recognizes. For all entities but logic variables, an entity is a group of one or more
values that are useful from the programmer’s point of view. A record entity consists
of one value (the record itself), and a cell entity consists of two values (its name and
content). The full language provides syntactic support for additional entities including
objects, classes, and ports. The system hides their efficient implementation while re-
specting their definitions. All entities except for logic variables have one value that is
used to identify and reference them.

7.5. LANGUAGE SEMANTICS 111

7.5.1 Oz Programming Model

This section summarizes OPM, the formal model underlying Oz 2. Readers interest-
ed mainly in the object system may skim directly to Section 7.5.2 on first reading.
A program written in OPM consists of a (compound) statement containing value de-
scriptions, variable declarations, procedure definitions and calls, state declarations and
updates, conditionals, thread declarations, and exception handling. This is summarized
in Table 7.2.

Computation takes place in a computation space hosting a number of sequential
threads connected to a single shared store. The store contains three compartments: a
set of variables, each with its binding if bound, a set of procedure definitions, and a set
of cells. Variable bindings and procedure definitions are immutable. Cells are updat-
able, as explained below. Each thread consists of a sequence of statements. Compu-
tation proceeds by reduction of statements that interact with the store and may create
new threads. Reduction is fair between threads. Once a statement becomes reducible,
it stays reducible.

Value Description

The values provided are records (including lists), numbers, literals (names and atoms),
and closures. Except for names and closures, these values are defined in the usual
way. Closures are created as part of procedures and are only accessible through the
procedure name. The other values can be written explicitly or referred to by variables:

local V W X Y Z H T in
V=queue(head:H tail:T) % Record
W=H|T % Record (representing a list)
X=333667 % Number
Y=foo % Literal (atom)
{NewName Z} % Literal (name)

end

A name has no external representation and hence cannot be forged within the language.
The call {NewName Z} creates a new name that is unique systemwide. Names are
used to identify cells, procedures, and threads. Names can be used to add hidden
functionality to entities. For example, the server loop of Section 7.6.4 is stopped with
a secret name. Names are to language security what capabilities are to implementation
security.

Variable Declaration

All variables are logic variables. They must be declared in an explicit scope bracketed
by local and end. The system enforces that a variable always refers to the same
value. A variable starts out with its value unknown. The value becomes known by

112 CHAPTER 7. MOBILE OBJECTS IN DISTRIBUTED OZ

binding the variable, i.e., after executing the binding X=V, variable X has value V.10

The binding operation is called incremental tell [116]. In essence, incremental tell
only adds variable bindings that are consistent with existing bindings in the store.

Any attempt to use a variable’s value will block the thread making the attempt until
the value is known. From the viewpoint of the thread, this is unobservable. It affects
only the relative execution rate of the thread with respect to other threads. Therefore
logic variables introduce a fundamental dataflow element in the execution of OPM.

Binding variables is the basic mechanism of communication and synchronization in
OPM. It decouples the acts of sending and receiving a value from the acts of calculating
and using that value. A logic variable can be passed to a user thread before it is bound:

local X in % Declare X, value is unknown
thread {Consumer X} end % Create thread, use X
{Producer X} % Calculate value of X

end

The call {Consumer X} can start executing immediately. Its thread blocks only if X’s
value is not available at the moment it is needed. We assume that the call {Producer
X} will eventually calculate X’s value.

Procedure Definition and Call

Both procedure definitions and calls are executed at run-time. For example, the fol-
lowing code defines MakeAdder, which itself defines Add3:

local
MakeAdder Add3 X Y

in
proc {MakeAdder N AddN} % Procedure definition

proc {AddN X Y} Y=X+N end
end
{MakeAdder 3 Add3} % Procedure call
{Add3 10 X} % X gets the value 13
{Add3 1 Y} % Y gets the value 4

end

Executing the call {MakeAdder 3 Add3} defines Add3, a two-argument procedure
that adds 3 to its first argument. Executing a procedure definition creates a pair of a
name and a closure. A variable referring to a procedure actually refers to the name.
When calling the procedure, the name is recognized as corresponding to a procedure
definition. A closure is a value that contains the procedure code and the external refer-
ences of the procedure (which are given by lexical scoping).

10Variables may be bound to other variables. An exception is raised if there is an attempt to bind a
variable to two different values.

7.5. LANGUAGE SEMANTICS 113

State Declaration and Update

Variables always refer to values, which never change. Stateful data must be declared
explicitly during execution by creating a cell. The call {NewCell X C} creates a pair
of a new name (referred to by C) and an initial content X. The content can be any value.
The pair is called the content-edge of the cell. Two other operations on cells are an
atomic read-and-write (exchange) and an atomic read (access). The call {Exchange
C X Y} atomically updates the cell with a new content Y and invokes the binding of
X to the old content, and the call {Access C X} invokes the binding of X to the cell
content.

local C X1 X2 X3
in

{NewCell bing C} % C’s cell has initial content bing
{Exchange C X1 bang}
% X1 bound to bing; new content is bang
{Exchange C X2 bong(me:C was:X2)}
% X2 bound to bang; new content is bong(me:C was:X2)
{Access C X3}
% X3 bound to bong(me:C was:X2)

end

Cells and threads are the only stateful entities in OPM. The other stateful entities in
Distributed Oz, namely objects and ports, are defined in terms of cells.

Conditional

There is a single conditional statement. The condition must be a test on the values of
data structures:

local X in
thread % Put conditional in its own thread

% Block until can decide the condition
if X=yes then Z=no else Z=yes end

end
X=no % Now decide the condition: it is false

end

The conditional blocks its thread until it has enough information about the value of X
to decide whether X=yes is true or false. In this case, the binding X=no makes it false.
Local logic variables may be introduced in the condition. Their scope extends to the
end of the then branch.

Thread Declaration

Execution consists of the preemptive and fair reduction of a set of threads. Each thread
executes in strictly sequential manner. A thread will block, or suspend execution, if
a value it needs is not available. The thread becomes reducible again when the value
becomes available. Concurrency is introduced explicitly by creating a new thread:

114 CHAPTER 7. MOBILE OBJECTS IN DISTRIBUTED OZ

% Define a procedure and run it in a new thread
local Loop in

proc {Loop N} {Loop N+1} end
thread {Loop 0} end

end

Each thread is identified uniquely by a name, which can be obtained by executing
{GetThreadID T} in the thread. With the thread name, it is possible to send com-
mands to the thread, e.g., suspend, resume, and set priority. Thread names can be
compared to test whether two threads are the same thread.

Exception Handling

Exception handling is an extension to a thread’s strictly sequential control flow that
allows to jump out from within a given scope. For example, AlwaysCalcX will return
a value for X in cases when CalcX cannot:

proc {AlwaysCalcX CalcX A X}
try

local Z in
{CalcX A Z}
Z=X % Bind X if there is no exception in CalcX

end
catch E then

{FailFix A X}
end

end

The try S1 catch E then S2 end defines a context for exception handling in the
current thread. If an exception T is raised during the execution of S1 in the same thread
then control will transfer to the catch clause of the innermost try. If T matches E
then S2 is executed, and the try is exited; otherwise the exception is reraised at an
outer level. User-defined exceptions can be raised by the statement raise T end.

7.5.2 Compound Entities

Distributed Oz provides the following two additional derived entities over OPM:

• Concurrent objects with explicit reentrant locking. There is syntactic support for
classes with multiple inheritance and late binding.

• Ports, which are asynchronous channels. Ports are related to M-structures [16].

These entities are entirely defined in terms of OPM. They are provided because they
are useful abstractions. In Section 7.6 they are given a specific distributed semantics.

7.5. LANGUAGE SEMANTICS 115

Concurrent Objects

An object in Oz 2 is defined in OPM as a one-argument procedure. The procedure ref-
erences a cell which is used to hold the object’s internal state. State update and access
are done with cell exchange and access. The procedure’s argument is the message,
which indexes into the method table. Methods are procedures that are passed the mes-
sage and the object’s state. Mutual exclusion of method bodies is supported through
explicit reentrant locking.

Class definitions and object declarations are both executed at run-time. A class
definition builds the method table and resolves conflicts of multiple inheritance. Like
OPM, both class definitions and object declarations are fully compositional with re-
spect to all language features. For example, arbitrary nesting is allowed between class,
object, procedure, and thread declarations. The following presents a definition of ob-
jects consistent with Oz 2. For more information see [115], [51], [60], and [62].

An object without locking. The following example in Oz 2 syntax defines the class
Counter:

class Counter % Define class
attr val:0 % Attribute declaration with initial value
meth inc % Method declaration

val := @val + 1
end
meth get(X) % Method with one argument

X = @val
end
meth reset

val := 0
end

end

Objects of this class have a single attribute val with initial value 0 and the three meth-
ods inc, get, and reset. Attribute access is denoted with @ and attribute assignment
with :=.

An object with locking. Instances of this class may be accessed from several con-
current threads. To make sure that the methods are mutually exclusive, Oz 2 uses
reentrant locking. This is done by using the construct lock S end on the part of the
methods that require exclusive access. This can be done by specializing the Counter
class as follows:

class LCounter from Counter
prop locking % Declare an implicit lock
meth inc

lock Counter,inc end % Call the method of superclass
end
meth get(X)

lock Counter,get(X) end
end
meth reset

116 CHAPTER 7. MOBILE OBJECTS IN DISTRIBUTED OZ

lock Counter,reset end
end

end

The above class declares an implicit lock and specializes the methods of the superclass
Counter. The notation Counter,inc is a static method call to the methods of the
Counter class. An instance is created using the procedure New as follows:

C={New LCounter} % Create instance
{C inc} % Send message
{C get(X)} % Return with X=1

With the above class definition, the object C behaves in a way equivalent to the
following code in OPM:

proc {NewCounter ?C}
State = s(val:{NewCell 0 $})
Lock = {NewLock $}
Methods = m(inc:Inc get:Get reset:Reset)
proc {Inc M} V W in

{Lock proc {$} {Exchange State.val V W} W=V+1 end}
end
proc {Get M} X in

M=get(X) {Lock proc {$} {Access State.val X} end}
end
proc {Reset M}

{Lock proc {$} {Exchange State.val _ 0} end}
end

in
proc {C Message}
M in

{Label Message M}
{Methods.M Message}

end
end

This example introduces four syntactic short-cuts which will be used freely from now
on. First, the question mark in the argument ?C is a comment to the programmer that
C is an output. Second, we omit the local and end keywords for new local variables
in a procedure or a conditional. Third, all variables occurring before the in and either
as procedure names or to the left-hand side of equalities are newly declared. Fourth,
we add a nesting notation for statements, so that Lock={NewLock $} is equivalent to
{NewLock Lock}. The dollar symbol is used as a placeholder. We use the notation
proc {$...} ... end for anonymous procedures.

The procedure {NewLock Lock} returns a reentrant lock named Lock. In OPM a
reentrant lock is a procedure that takes another procedure P as argument and executes
P in a critical section. The lock is thread-reentrant in the sense that it allows the same
thread to enter other critical sections protected by the same lock. Other threads trying
to acquire the lock will wait until P is completed. The definition of NewLock in OPM

7.5. LANGUAGE SEMANTICS 117

will be given shortly. As we will see, thread-reentrant locking is modeled in OPM
using cells and logic variables.

The procedure NewCounter defines the variables State, Lock, and Methods.
State contains the state of the object defined as a record of cells; Lock is the lock;
and Methods is the method table. Both the state and lock are encapsulated in the object
by lexical scoping. The call {NewCounter C} returns a procedure C representing the
object. This procedure, when given a message, will select the appropriate method from
the method table and apply the method to the message. The call {Label M X} returns
record M’s label in X.

Reentrant locking in OPM. A thread-reentrant lock allows the same thread to reen-
ter the lock, i.e., to enter a dynamically-nested critical region guarded by the same
lock. Such a lock can be secured by at most one thread at a time. Concurrent threads
that attempt to secure the same lock are queued. When the lock is released, it is grant-
ed to the thread standing first in line. Thread-reentrant locks can be modeled by the
procedure NewLock defined as follows:

proc {NewLock ?Lock}
Token = {NewCell unit $}
Current = {NewCell unit $}

in
proc {Lock Code}

ThisThread={GetThreadID $}
LockedThread

in
{Access Current LockedThread}
if ThisThread=LockedThread then

{Code}
else Old New in

{Exchange Token Old New}
{Wait Old}
{Exchange Current _ ThisThread}
try

{Code}
finally

{Exchange Current _ unit}
New=unit

end
end

end
end

This assumes that each thread has a unique identifier T that is different from the literal
unit and that is obtained by calling the procedure {GetThreadID T}. The {Wait
Old} call blocks the thread until Old’s value is known. The try ... finally S
end is syntactic sugar that ensures S is executed in both the normal and exceptional
cases, i.e., an exception will not prevent the lock from being released.

118 CHAPTER 7. MOBILE OBJECTS IN DISTRIBUTED OZ

_

t t

thread A thread B

Send the elements

Respect order X1

X3

X2

within threads

Elements appear at end of stream

{Snd X1}

{Snd X2}

{Snd X3}
Str = X1 | X3 | X2 | _

Str =

{Port entity =
Procedure ‘Snd’
Stream ‘Str’

Figure 7.2: Ports: asynchronous channels with multicast ability.

Ports

A port is an asynchronous channel that supports ordered many-to-one and many-to-
many communication [70]. A port consists of a send procedure and a stream (see
Figure 7.2). A stream is a list whose tail is a logic variable. Sends are asynchronous
and may be invoked concurrently. The entries sent appear at the end of the stream. The
send order is maintained between entries that are sent from within the same thread. No
guarantees of order are given between threads.

A reader can wait until the stream’s tail becomes known. Since the stream is state-
less, it supports any number of concurrent readers. Multiple readers waiting on the
same tail can be informed of the value simultaneously, thus providing many-to-many
communication. Adding an element to the stream binds the stream’s tail to pairs (cons
cells) containing the entry and a logic variable as the new tail.

Within OPM one can define a port as a send procedure and a list. The procedure
refers to a cell which holds the current tail of the list. Ports are created by NewPort,
which can be defined as follows:11

proc {NewPort Str ?Snd}
C={NewCell Str $}

in
proc {Snd Message}
Old New in

{Exchange C Old New} % Create new stream tail
thread Old=Message|New end % Add message to stream

end
end

11This definition maintains order between causally-related sends. The definition can be extended to
maintain order only within threads by using queues indexed by thread name.

7.6. DISTRIBUTION MODEL 119

stateful

stateless

unknown

known

stationary

mobile

cell

object

port

thread

procedurelazy

eager value

Binding causes value to be multicast.

Executing causes replication to executing site.

Value is replicated to each site that references it.

Execution is sequential and remains on the same site.

thread. Stream is always created on the same site.
Send is asynchronous and ordered from within same

State update causes state to move to sending site.

Exchange causes content-edge to move to executing site.

logic variable

Oz 2 entity

Figure 7.3: Oz 2 entities and their distributed semantics.

Calling {NewPort Str Snd} creates the procedure Snd and ties it to the stream Str.
Calling {Snd X} appends X to the stream and creates a new unbound end of the stream.
That is, the tail S of the stream is bound (S=X|S2), and S2 becomes the new tail. One
way to build a server is to create a thread that waits until new information appears on
the stream and then takes action, depending on this information. Section 7.6.4 shows
how to use a port to code a server.

7.6 Distribution Model

Distributed Oz defines a distributed semantics for all basic entities and compound enti-
ties. By this we mean that each operation of each entity is given a well-defined network
behavior. This section defines and motivates this behavior. The distributed semantics
for all seven entities is classified and summarized in Figure 7.3. We discuss separately
replicable entities (values and procedures), logic variables, and stateful entities (cells,
objects, ports, and threads). The semantics of the basic stateful entity, the cell, are
defined in Section 7.7. Appendix 7.11.1 proves correctness of the cell’s mobile state
protocol. Definitions and correctness proofs for objects and ports should be easy to
devise after understanding the cell.

7.6.1 Replication

All stateless entities, namely values and procedures, are replicated. That is, copies are
made when necessary to improve network behavior. Since the entities never change,
using copies does not affect the language semantics. An important design decision
is how much of a stateless data structure to replicate eagerly. Too much may cause
resource limits to be exceeded on the receiving site. Too little may cause a great in-
crease in latency. The current design incorporates both eagerness and laziness so that
the programmer can program the degree of laziness desired.

120 CHAPTER 7. MOBILE OBJECTS IN DISTRIBUTED OZ

We summarize the lazy replication protocol, i.e., the distributed algorithm that
manages replication. Records, numbers, and literals are replicated eagerly, i.e., there is
no such thing as a remote reference to a record.12 Procedures are replicated lazily, i.e.,
one may have remote references to a procedure. The procedure is replicated when it is
applied remotely. Both the compiled code and the closure are given global addresses.
Therefore a site has at most one copy of each code block and closure. All network
messages, except for responses to explicit replication requests, do not contain any pro-
cedure code nor closure. A replication request is sent only if the code or closure is not
available locally.

The two extremes (eager and lazy) are thus provided. This allows the programmer
to design the degree of eagerness or laziness desired in his or her data structures. This
is not the only possible design; good arguments can also be given for eager procedure
replication and an independent mechanism to introduce laziness.

The following example shows how a large tree can be dynamically partitioned into
eager and lazy subtrees by introducing procedures:

proc {MakeLazyTree E L R ?X}
I1 I2 in

X=bigtree(leftlazy:I1 rightlazy:I2 eagerbranch:E)
proc {I1 T1} T1=L end
proc {I2 T2} T2=R end

end

Executing {MakeLazyTree E L R X} with three record arguments E, L, and R re-
turns a record X with one eager field corresponding to E and two lazy fields cor-
responding to L and R. When a reference to X is communicated to a site, the sub-
tree at eagerbranch is transferred immediately while the subtrees at leftlazy and
rightlazy are not transferred. Executing {I1 Y} transfers the left subtree and binds
it to Y.

7.6.2 Logic Variables

A logic variable is a reference to a value that is not yet known. There are two basic
operations on a logic variable: binding it and waiting for it to have a value. Binding a
logic variable eagerly replaces the logic variable on all sites that reference it. Since a
value is stateless, any number of readers can wait concurrently for the value to become
known. This binding protocol, also called variable elimination protocol, is the only
distributed algorithm needed to implement distributed unification.13

In addition to their role in improving latency tolerance, logic variables provide the
programmer with an efficient and expressive way to dynamically manage multicast
groups. A multicast sends data to a predefined subset of all network addresses, called
the multicast group. Recent protocol designs support multicast as a way to increase

12Therefore, it is possible to have multiple copies of the same record on a site, since the same record
may be transferred many times.

13The distributed unification algorithm will be the subject of another article.

7.6. DISTRIBUTION MODEL 121

network efficiency [32]. Binding a logic variable can be implemented using a multicast
group. Binding to a record multicasts the record. Binding to a procedure multicasts
only the name of the procedure (not the closure). Binding to another logic variable
merges the two multicast groups.

If a logic variable is bound to a list whose tail is a logic variable, then a new
multicast group can be immediately created for the tail. Implementations may be able
to optimize the binding to reuse the multicast group of the original logic variable for
the tail. In this way, efficient multicasting of information streams can be expressed
transparently.

7.6.3 Mobility Control

Any stateful entity, i.e., cell, object, port, or thread, is characterized by its home site.
Mobility control defines what happens to the home site for each operation on the state-
ful entity. For example, invoking an exchange operation on a cell is defined to change
the home site to be the invoking site. A stateful entity is referred to as mobile or sta-
tionary, depending on whether the entities’ basic state-updating operation is mobile or
stationary.

To allow programming of arbitrary communication patterns, the language must
provide at least one mobile and one stationary entity. To satisfy this condition, we
define cells and objects to be mobile and ports and threads to be stationary.

— Cells. A cell is mobile. A cell may be accessible from many sites, each of which
knows the cell name. Only the home site contains the cell’s content-edge, which
pairs the name and the content. Invoking an exchange from any site causes a
synchronous move of the content-edge to that site. This is done using a mobile
state protocol to implement the interleaving semantics of the exchanges (see
Section 7.7). Invoking a cell-access operation does not move the content-edge.
Only the cell’s content is transferred to the invoking site.

— Objects. An object is mobile, and its distribution semantics obeys its OPM
definition. When a method is called remotely, the procedures corresponding to
the object and the method are replicated to the calling site. The method is then
executed at the calling site. When the object’s state is updated, the content-edge
of the cell holding the state will migrate to the site. Subsequent method calls will
be completed locally without network operations. If the object possesses a lock,
then operations on the object’s state will not be disturbed by remote requests for
the lock until it is released. This is implemented by using a cell-access operation
to check the current thread (see reentrant locks).

— Ports. A port is stationary. Invoking a send from any site causes a new entry
to appear eventually in the port’s stream at its home site. The send operation
is defined to be asynchronous (nonblocking) and ordered (FIFO). This behav-
ior cannot be defined in terms of OPM. It is proper to the distributed semantics.

122 CHAPTER 7. MOBILE OBJECTS IN DISTRIBUTED OZ

proc {MakeStat Obj ?StatObj}
Str
proc {Serve S}

if M Ss in S=M|Ss then
{Obj M}
{Serve Ss} % Loop on received

messages
else skip end

end
in

{NewPort Str StatObj} % Port is stationary
thread {Serve Str} end % The server loop

end

Figure 7.4: Making an object stationary (first attempt).

Send operations complete immediately (independently of any network opera-
tions), and messages sent from a given thread appear on the stream in the same
order that they were sent.

We provide ports as an entity for two reasons. First, a stationary port is
a natural way to build a server. Second, the asynchronous ordering supports
common programming techniques and can exploit popular network protocols.
Ports have a second operation, localize, which causes a synchronous move of
the home site to the invoking site. Without the ability to localize ports, mostly
stationary objects cannot be implemented transparently (see Section 7.6.4).

— Threads. A thread is stationary. The reduction of a thread’s statement is done at
its home site, which is the thread’s creation site. A thread cannot change sites.
First-class references to threads may be passed to other sites and used to control
the thread. For example, an exception may be raised in a thread from a remote
site. Commands to a thread from a remote site are sent synchronously and in
order, as an RPC. This is modeled as if the target thread access were packaged
in a port, and the calling thread suspends until the operation is performed.

The protocols used to implement mobility control for objects and ports are both based
on the mobile state protocol given in this article. They are extended to provide for the
operations of the particular entity. For example, the port protocol manages the mobility
of the home site as well as the FIFO connections from other sites to the home site. The
port protocol is defined in Section 7.7.4.

7.6.4 Programming with Mobility Control

We show how to concisely program arbitrary migratory behavior using the entities
of Distributed Oz. Expressing other distributed-programming idioms (e.g., RPC and

7.6. DISTRIBUTION MODEL 123

client-server architectures) is left as an exercise for the reader. We assume the existence
of primitives to initiate a computation on a new site.

In a user program, the mobility of an object must be well-defined and serve the
purpose of the program. Some objects need to stay put (e.g., servers), and others need
to move (e.g., mobile agents or caches). The most general scenario is that of the caller
and the object negotiating whether the object will move. The basic implementation
technique is to define procedures to transparently limit the mobility of an object, which
is freely mobile by default. We show in three steps how this is achieved:

• Freely mobile objects. This is the default behavior for objects. Any object
defined as in Section 7.5.2 will move to each site that sends a message that
updates the object’s state. The object is guaranteed to stay at the site until the
lock is released within the invoked method. While the lock is held, the object
will not move from the site.

• Stationary objects. A stationary object executes all its methods on the same site.
Any object can be made stationary using the technique given in Section 7.6.4.

• Mostly stationary objects. A mostly stationary object remains stationary unless
explicitly moved. Any freely mobile object can be made mostly stationary using
the technique given in Section 7.6.4.

Each of the latter two cases defines a procedure that can control the mobility of any
mobile object. This is an important modularity property: it means that one can change
the network behavior of a program’s objects without rewriting the objects in any way.
The objects and their mobility properties are defined independently. This property is
obtained independently of the object system’s metaobject protocol.

Stationary Objects

An object can be made stationary be wrapping it in a port. Figure 7.4 shows a simple
way to do this by defining the procedure MakeStat that takes any object Obj and
returns the procedure StatObj. The result of calling StatObj is to send messages
to a port. The thread in the construction thread {Serve Str} end is responsible
for the actual object invocation. The thread takes messages from the port’s stream and
sends them to the object. The thread does not move. Therefore, StatObj behaves like
Obj except that Obj does not move. After the first object invocation, the object is at
the site of the server loop and will not move (unless, of course, some threads are given
direct references to Obj). For example, if upon its creation Obj is passed directly to
MakeStat, and only references to StatObj are passed to others, then Obj will forever
remain on its creation site.

However, the solution in Figure 7.4 is too simple. StatObj deviates from pro-
viding exactly the same behavior as Obj in three ways. First, sending messages to
StatObj is asynchronous, whereas sending messages to Obj is synchronous. Second,
only one method of Obj can be executing at a time, since Obj is inside its own thread.
Third, exceptions in Obj are not seen by StatObj.

124 CHAPTER 7. MOBILE OBJECTS IN DISTRIBUTED OZ

proc {MakeStat Obj ?StatObj}
Str Send
proc {Serve S}

if M Sync Ss in S=msg(M Sync)|Ss then
thread

try {Obj M} Sync=unit
catch E then Sync=exception(E) end

end
{Serve Ss} % Loop on received

messages
else skip end

end
in

{NewPort Str Send} % Port is stationary
proc {StatObj M}
Sync E in

{Send msg(M Sync)} % Sync variable ensures
order

if Sync = exception(E) then
raise E end

else skip end
end
thread {Serve Str} end % The server loop

end

Figure 7.5: Making an object stationary (correct solution).

7.6. DISTRIBUTION MODEL 125

Figure 7.5 gives a correct definition of the procedure MakeStat. The logic vari-
able Sync is used to synchronize {StatObj M} with {Obj M}. The notation msg(M

Sync) pairs M and Sync in a record. Waiting until Sync is bound to a value guar-
antees that the thread executing {StatObj M} continues execution only after {Obj
M} is finished. This means that messages sent from within one thread are received
in the order sent. The example also models exceptions correctly by transferring the
exceptions back to the caller.14

There are many useful variations of this solution:

• Leaving out the synchronization variable Sync makes StatObj behave asyn-
chronously. Then message sending is a local operation that takes constant time.
Messages are received in any order.

• Leaving out the thread ... end inside Serve ensures that Obj executes on-
ly a single message at a time. Together with the synchronization variable, this
results in an end-to-end flow control between the sender and receiver. All mes-
sages sent are serialized at Obj and only a single message is handled at a time.

This solution makes it clear that a stationary object is not a simple concept. It requires
synchronization between sites, passing of exceptions between sites, and thread cre-
ation. Freely mobile objects are simpler, since their execution is always local. The
mechanics of making an object stationary can be encapsulated, as is done here, to hide
its complexity from the user. In general, most of the complexity of concurrent pro-
gramming can be encapsulated. The practicality of this approach is demonstrated on
an industrial scale by the Ericsson Open Telecom Platform [11, 36].

Mostly Stationary Objects

It may be desirable in special cases to move an object that has been made stationary,
e.g., for a server to move closer to its clients or to leave a machine that will be shut
down. We require a solution in which it is eventually true that sending a message
will need only a single network hop, no matter how many times the object moves.
Figure 7.6 gives a solution that uses the localize operation for ports. Port mobility is
derived from cell mobility; see Sections 7.6.3 and 7.7.4. The figure defines the proce-
dure MakeFirm that takes any freely mobile object Obj and returns two procedures,
FirmObj and Move. The procedure FirmObj has identical language semantics to Obj
but is stationary.15 Move is a zero-argument procedure that when applied, atomically
moves the object to the invoking site. That is, in each thread’s stream of messages to
FirmObj, there is a point such that all earlier messages are received on the original
site, and all later messages are received on the new site.

14One subtle point remains that requires attention. The encapsulated object can escape by a method
returning self. The problem can be solved by using inheritance to make the object stationary or by
using the Oz 2 metaobject protocol [60]. We do not show the details, since this would take us too deep
into the object system.

15Adding the corrections of Figure 7.5 is left as an exercise for the reader.

126 CHAPTER 7. MOBILE OBJECTS IN DISTRIBUTED OZ

proc {MakeFirm Obj ?FirmObj ?Move}
Str Prt Key={NewName $}
proc {Serve S} % Stoppable server

proc.
if Stopped Rest Ss in

S=Key(Stopped Rest)|Ss then
Rest=Ss
Stopped=unit

elseif M Ss in S=M|Ss then
{Obj M}
{Serve Ss}

else skip end
end

in
proc {Move}
Stopped Rest in

{Prt Key(Stopped Rest)} % Stop old server
loop

{Wait Stopped}
{Localize Prt} % Transfer to new

site
thread {Serve Rest} end % Start new server

loop
end
{NewPort Str Prt}
proc {FirmObj M} {Prt M} end
thread {Serve Str} end % Initial server

loop
end

Figure 7.6: Making an object mostly stationary.

7.7. CELLS: SEMANTICS AND MOBILE STATE PROTOCOL 127

Like a stationary object, a mostly stationary object consists of an object wrapped
in a port. To handle incoming messages, a server loop is installed on the port’s home
site. To move the object, this loop is stopped; the port’s home site is moved using the
localize operation; and a new server loop is installed on the new site. The server loop
in Figure 7.6 is stopped by sending the message Key(Stopped Rest), where Key is
an Oz 2 name used to identify the message and where Stopped and Rest are outputs.
Since Key is unforgeable and known only inside MakeFirm, the server loop can be
stopped only by Move. The port Prt must be hidden inside a procedure; otherwise
it can be localized by any client. When the loop is stopped, Rest is bound to the
unprocessed remainder of its message stream. The new server loop uses Rest as its
input.

From an algorithmic viewpoint, Figure 7.6 defines the distributed algorithm for
mostly stationary objects. This algorithm is a composition of three simpler algorithms:
(1) a mobile state protocol (for cells and extended for ports), which is the scope of
this article, (2) a variable elimination protocol (see Section 7.6.2), and (3) a lazy repli-
cation protocol (see Section 7.6.1). The three algorithms are composed by means of
a notation which is exactly the OPM language. The technique of factoring complex
algorithms into simpler components has many advantages. For example, Figure 7.6
can be extended in a straightforward way with a failure model, using the exceptions of
OPM.

7.7 Cells: Semantics and Mobile State Protocol

In this section we specify the language semantics and distributed semantics of cells.
We first define both semantics in a high-level manner. In general, the language se-
mantics is defined as a transition relation between configurations. A configuration is a
pair consisting of a statement and a store. The distributed semantics is an orthogonal
refinement of the language semantics where the notion of site is made explicit. It is
carefully designed to give a simple programmer model of network awareness. In this
article, however, we confine ourselves to the model of cell mobility.

It will be shown in the case of the cell exchange operation that the distributed se-
mantics correctly implements the language semantics, hence achieving network trans-
parency. The mobile state protocol is part of a graph model of the execution of OPM.
We give the graph model in just enough detail to set the context of the protocol. We
then give an informal description and a formal specification of the protocol. Ap-
pendix 7.11.1 proves that the formal specification correctly implements the distributed
semantics and consequently the language semantics.

7.7.1 Cell Semantics

Among the basic operations on cells there are creation, exchange, and access. We give
the language semantics of these operations and the distributed semantics of exchange.
The distributed semantics of the other operations should be relatively easy to devise

128 CHAPTER 7. MOBILE OBJECTS IN DISTRIBUTED OZ

after understanding the exchange.

Basic Notation

All execution is described by the reduction of transition rules. The reduction is an
atomic operation that is described by a rule written according to the following diagram:

(statement) (new statement)
(store) (new store)

This rule becomes applicable for a given statement when the actual store matches the
store given in the rule. Because the language is concurrent, reduction is in general
nondeterministic. The effect of a reduction is to replace the current configuration by a
set of result configurations. In the case of cell operations, this set is always a singleton.
Fairness between threads implies that a rule is guaranteed to reduce eventually when it
is applicable and when it refers to the first statement of a thread.

Language Semantics

We give the transition rules for cell creation, access, and exchange. For all rules, the
part of the store that is not relevant to the rule is denoted by σ.

Cell creation
{NewCell X C} C=n

σ σ ∧ n:X
newName(n)

Cell creation is provided by the operation {NewCell X C}. The statement reduces
to the new statement C=n, where n is a new name taken from an infinite set of fresh
names. The new store contains the content-edge n:X, which pairs n with the initial
content X.

Cell access
{Access C X} X=Z

σ ∧ C=n ∧ n:Z σ ∧ C=n ∧ n:Z

Cell access is provided by the operation {Access C X}. The rule is reducible when
its first argument refers to a cell name. It reduces to the binding X=Z. The store is
unchanged. The binding is defined through other reduction rules. Reducing the binding
gives access to the content Z through X. If X and Z are incompatible, then an exception
is raised.

Cell exchange
{Exchange C X Y} X=Z

σ ∧ C=n ∧ n:Z σ ∧ C=n ∧ n:Y

Cell exchange is provided by the operation {Exchange C X Y}. The rule is reducible
when its first argument refers to a cell name. It reduces to the new statement X=Z,
which gives access to the old content Z through X. The content-edge is updated to refer
to the new content Y.

7.7. CELLS: SEMANTICS AND MOBILE STATE PROTOCOL 129

Distributed Semantics of Exchange

The distributed semantics is an extension of the language semantics that specifies how
the reduction is partitioned among multiple sites. We introduce the notion of a repre-
sentative on a site. This notion is used to place statements and the store contents on
one or more sites. By store contents we mean content-edges and references to values
or logic variables. The representative of X on site i is denoted by Xi. The subscript
denotes the site. The exact notion of representative depends on what Oz 2 entity is
considered (see Figure 7.3). In the case of cells it is defined here. For other entities
it is straightforward to devise after understanding the language graph and distribution
graph defined in Section 7.7.2. We define the distributed semantics in three steps:

• Define the representation of an entity as a formula written in terms of represen-
tatives.

• Define a mapping M from the representation of an entity to the entity it repre-
sents.

• Formulate the reduction rules in terms of representations.

To show that the distributed semantics implements the language semantics, we use a
technique variously known as abstraction [77] or simulation [85]. Consider the con-
figuration (S, σ). Its reduction gives a set of new configurations (S′, σ′). Consider the
corresponding configuration (Sr, σr), written in terms of representatives. Its (distribut-
ed) reduction gives a set of (S′r, σ′r). This is summarized in the following diagram:

(S,σ)
ls
−→ (S′,σ′)

M ↑ ↑ M

(Sr,σr)
ds
−→ (S′r,σ′r)

(7.1)

To show that the distributed semantics ds implements the language semantics ls, we
must show that M applied to the set of possible configurations (S′r, σ′r) gives the same
result as the set of possible configurations (S′, σ′).

Assume that a cell with name n exists on sites 1, ... k and that the content-edge is
on site p with content Z. We define the mapping M as follows:

Distributed semantics Language semantics
C1=n ∧ ... ∧ Ck=n C=n

(n:Z)p ∧ 1≤ ∀i≤ k, i 6= p : (n:⊥)i n:Z

The cell is accessible from sites 1, ..., k, so that C1=n, C2=n, ... Ck=n together imply
C=n. The content-edge on site p is denoted by (n:Z)p. The other sites know the cell
but do not have the content-edge. This is denoted by (n:⊥)i for i 6= p. If we assume the
exchange is invoked on site q and that the content-edge is on site p, where 1≤ p,q≤ k,
then the distributed reduction rule is

130 CHAPTER 7. MOBILE OBJECTS IN DISTRIBUTED OZ

...

... ...

S

a : X

a : XX

record

procedure thread

port

celllogic variable

f(a1:X a2:Y ... an:Z)

a : X Y ... Z / S

Figure 7.7: Nodes in the language graph.

{Exchange C X Y}q (X=Z)q

σr ∧ C1=n ∧ ... ∧ Ck=n ∧ σr ∧ C1=n ∧ ... ∧ Ck=n ∧
(n:Z)p ∧ 1≤ ∀i≤ k, i 6= p : (n:⊥)i (n:Y)q ∧ 1≤ ∀i≤ k, i 6= q : (n:⊥)i

We assume that the representatives Xq, Yq, and Zq are created if needed to complete the
reduction. From this rule it follows that the cell is accessible from multiple sites, that
the content-edge exists on exactly one of these sites, that the exchange is performed on
exactly one of these sites, and that after the exchange the content-edge is on the same
site as the exchange.

Theorem 1 (T1). The distributed semantics of exchange implements the language se-
mantics of exchange.

Proof. Consider the reduction performed by the rule for distributed exchange. It is
clear from inspection that M continues to hold after the reduction.

If multiple exchanges are invoked on site q, it is easy to see that if p 6= q then
the first exchange requires nonlocal operations. One can deduce also that subsequent
exchanges are purely local. If exchanges are invoked from many sites, then they will
be executed in some order. If the content-edge refers to an object state, then the object,
while mobile, will be correctly updated as it moves from site to site. The system uses
a mobile state protocol to implement this rule.

7.7.2 The Graph Model

We present a graph model of the distributed execution of OPM. The graph model plays
a key role in bridging the distributed semantics with the mobile state protocol and the
implementation architecture. An OPM computation space can be represented in terms
of two graphs: a language graph, in which there is no notion of site, and a distribution
graph, which makes explicit the notion of site. We explain what mobility means in
terms of the distribution graph. Finally, we summarize the failure model in terms of
the distribution graph.

7.7. CELLS: SEMANTICS AND MOBILE STATE PROTOCOL 131

Language graph Distribution graph

Site 1 Site 2 Site 3 Site 1 Site 2 Site 3

M

access structure for N2

N1 P1 P2 P3 N3N3N2N1

Figure 7.8: From language graph to distribution graph.

The Distribution Graph

The distributed execution of OPM is introduced in two steps. In the first step, we model
an OPM computation space as a graph, called language graph. Each Oz 2 entity except
for an object corresponds to one node in the language graph (see Figure 7.7). An object
is a derived concept that is modeled as a subgraph, namely a procedure with references
to the object’s state, lock, and methods. OPM execution is modeled as a sequence of
graph transformations.

In the second step, we extend the language graph with the notion of site. First
introduce a finite set of sites, and then annotate each node of the language graph with
a site. If a node is referenced by a node on another site, then map it to a set of nodes.
This set is called the access structure of the original node (see Figure 7.8). An access
structure consists of a set of global nodes, namely one proxy node per site and one
manager node for the whole structure. In a cell access structure, the content-edge is an
edge from exactly one proxy node to the content. Nodes that are only accessed locally
(local nodes) do not have an access structure. In this case, the content-edge is an edge
from the local node to the content.

The graph resulting after all nodes have been transformed is called the distribution
graph. OPM execution is again modeled as a sequence of graph transformations. These
transformations respect language semantics while defining the distributed semantics.
For a cell access structure, a proxy node Pi on site i corresponds to the representatives
Ci=n ∧ (n:X)i if the content-edge is on site i, and otherwise to Ci=n ∧ (n:⊥)i. The
content-edge itself corresponds to the representative (n:X)i.

Mobility in the Distribution Graph

At this point, it is useful to clarify how cell mobility fits into the distribution graph
model. First, the nodes of the distribution graph never change sites. A manager node
has a global address that is unique across the network and never changes. This makes

132 CHAPTER 7. MOBILE OBJECTS IN DISTRIBUTED OZ

memory management very simple, as explained in Section 7.8.2. Second, access struc-
tures can move across the network (albeit slowly) by creating proxies on fresh sites and
by losing local references to existing proxies. Third, a content-edge can change sites
(quickly) if requested to do so by a remote exchange. This is implemented by a change
of state in the cell proxies that is coordinated by the mobile state protocol.

The mobile state protocol is designed to provide efficient and predictable network
behavior for the common case of no failure. It would be extremely inefficient to inform
all proxies each time the content-edge changes site. Therefore, we assume that proxies
do not in general know where the content-edge is located. A proxy knows only the
location of its manager node. If a proxy wants to do an exchange operation, and it does
not have the content-edge, then it must ask its manager node. The latency of object
mobility is therefore at most three network hops (less if the manager node is at the
source or destination).

Having a fixed manager node greatly simplifies the implementation. However, it
reduces locality and introduces an unwanted dependency on a third party (i.e., the man-
ager site). For example, object movement within Belgium is expensive if the manager
is in Sweden, and it becomes impossible if the network connection to Sweden breaks
down. We present two possible extensions to the mobile state protocol, each of which
solves these problems and is compatible with the current system architecture. The final
solution is being designed in tandem with the failure model (see below). The first solu-
tion is to dynamically construct a tree of managers, such that each proxy potentially has
a manager on its own site. The second solution is for the proxies to change managers.
For example, assume the old manager knows all its proxies. To change managers, it
creates a new manager and then it sends a message to each proxy informing it of the
new manager.

The Failure Model

The failure model must reliably inform the programmer if and when a failure occurs
and allow him or her to take the necessary actions. The failure model is still under
discussion, so the final design will likely differ from the one presented here. This
section summarizes an extension to the mobile state protocol that provides precise
failure detection. The programmer can enable a failure to appear in the language as
an exception. Objects based on the extended protocol can be used as building blocks
to program reliable objects. For example, one can program a reliable cell that has a
primary-slave architecture [29].

We distinguish between network failure and site failure. All failures become visible
lazily in a proxy. For sites we assume a stopping failure (crash) model: a failed site
executes correctly up to the moment of the failure, after which it does nothing. A
thread attempts to access a proxy to do a cell operation. If the access structure cannot
continue to function normally, then the proxy becomes a failure node, and attempts to
invoke an operation can cause an exception to be raised in the thread.

In the case of site failure, a cell access structure has two failure modes:

• Cell failure. The complete access structure fails if either the manager node

7.7. CELLS: SEMANTICS AND MOBILE STATE PROTOCOL 133

T

1 2

M2.get(P1)

Content

4.put(Nz)

Content-edge
1.request(T,Ny)

P P

P

T
z

z

P

1 2

M

Content

Content-edge
5.proceed(Pz)

Nx

P

N

P

y

N

N

x

y

Mz

zN

Site 1 Site 2 Site 1 Site 2

3.forward(P1)

Figure 7.9: Exchange initiates migration of content-edge.

fails or if a proxy that contains the content-edge fails. The manager does not
know at all times precisely where the content-edge is. The manager bounds the
set of proxies that may contain the content-edge by maintaining a conservative
approximation to the chain structure (see Appendix 7.11.1). The content-edge is
guaranteed to be in the chain. If one proxy in the chain fails, then the manager
interrogates the proxies in the chain to distinguish between cell failure and proxy
failure.

• Proxy failure. This happens if a proxy fails that does not contain the content-
edge. This does not affect the computation and may be safely ignored.

It is impossible in general to distinguish between a failed site and a very slow network.
A cell may therefore fail even if no site has failed. This will normally be a rare event.

7.7.3 Informal Description

We first give an informal description of the mobile state protocol. The protocol is
defined with respect to a single cell. Assume that the cell is accessible from a set of
sites. Each of these sites has a proxy node responsible for the part of the protocol on
that site. The proxy node is responsible for all cell behavior visible from its site. In
addition, there is a single manager node that is responsible for coordinating the proxy
nodes. These nodes together implement the distributed semantics of one cell.

The content-edge is stored at one of the cell proxies. Cell proxies exchange mes-
sages with threads in the engine. To ask for the cell content, a thread sends a message
to a proxy. The thread then blocks waiting for a reply. After executing its protocol, the
proxy sends a reply giving the content. This lets the thread do the binding. Figure 7.9
shows how this works. We assume that the content-edge is not at the current proxy. A
proxy requests the content-edge by sending a message to the manager. The manager
serializes possible multiple requests and sends forwarding commands to the proxies.
The current location of the content-edge may lag behind the manager’s knowledge
of who is the eventual owner. This is all right: the content-edge will eventually be
forwarded to every requesting site.

134 CHAPTER 7. MOBILE OBJECTS IN DISTRIBUTED OZ

Many requests may be invoked concurrently to the same and different proxies,
and the protocol takes this into account. A request message from a thread that issued
{Exchange C X Y} will atomically achieve the following results: the content Z is
transferred to the requesting site; the old content-edge is invalidated; a new content-
edge is created bound to Y; and the bind operation X=Z becomes applicable in the
requesting thread.

Messages. The protocol uses the following nodes and messages. Pi denotes the ad-
dresses of proxies in the distribution graph corresponding to cell C. Nx, Ny, Nz denote
the addresses of nodes corresponding to variables X, Y, and Z. A manager understands
get(P). A proxy understands put(N), forward(P), and request(T,N), where T is the
requesting thread. A thread understands proceed(N).

Outline of protocol (Figure 7.9).

1. Proxy P1 receives a request(T,Ny) from the engine. This message is sent by
thread T as part of executing {Exchange C X Y}. Thread T blocks until the
proxy replies. Ny is stored in P1 (but does not yet become the content-edge).
If the content-edge is at P1 and points to some node Na, then P1 immediately
sends proceed(Na) to T. Otherwise, get(P1) is sent to the manager.

2. Manager M receives get(P1). Manager sends forward(P1) to the current owner
P2 of the content-edge and updates the current owner to be P1.

3. Proxy P2 receives forward(P1). If P2 has the content-edge, which points to
Nz, then it sends put(Nz) to P1 and invalidates its content-edge. Otherwise,
wait until the content-edge arrives at P2. Sending the message put(Nz) causes
the creation of a new access structure for Nz.16 From this point onward, all
references to Nz are converted to Pz.

4. Proxy P1 receives put(Pz). At this point, the content-edge of P1 points to Ny.
P1 then sends proceed(Pz) to thread T.

5. Thread T receives proceed(Pz). The thread then invokes the binding of Nx and
Pz.

7.7.4 Formal Specification

We formally define the mobile state protocol as a set of nondeterministic reduction
rules that determine the behavior of a subset of the distribution graph. We assume
nodes of three types: proxy, manager, and thread nodes. The proxy and manager
nodes form an access structure for a cell. We first define the notation for the rules and
the nodes’ internal state. Then we give the rule definitions. Finally, we describe how
to extend the protocol for ports. Appendix 7.11.1 gives a formal proof that the protocol
correctly implements the language semantics of cells.

16For all types of entities Nz except records, which are replicated eagerly.

7.7. CELLS: SEMANTICS AND MOBILE STATE PROTOCOL 135

Proxy
node

Protocol layerEngine

Manager
node

Proxy
node

Thread
node

Send(d,m)

Figure 7.10: Interface between engine and protocol.

Preliminaries

Consider a single manager node M, a set of k proxy nodes Pi with 1≤ i≤ k, and a set
of m thread nodes Ti with 1≤ i≤ m. All nodes have state, can send messages to each
other according to Figure 7.10, and can perform internal operations. Let these nodes
be linked together by a network N that is a multiset containing messages of the form
d : m where d identifies a destination (proxy, manager, or thread node) and where m is
a message.

The protocol is defined using reduction rules of the form

Condition
Action

.

Each rule is defined in the context of a single node. Execution follows an interleaving
model. At each reduction step, a rule with valid condition is selected. Its associat-
ed actions are reduced atomically. A rule condition consists of boolean conditions
on the node state and one optional receive condition Receive(d,m). The condition
Receive(d,m) means that d : m has arrived at d. Executing a rule with a receive condi-
tion removes d : m from the network and performs the action part of the rule. A rule
action consists of a sequence of operations on the node state with optional sends. The
action Send(d,m) asynchronously sends message m to node d, i.e., it adds the message
d : m to the network. The action Receive(d,m) blocks until message m arrives at d, at
which point it removes d : m from the network and continues execution.

We assume that the network and the nodes are fair in the following sense. The net-
work is asynchronous, and messages to a given node take arbitrary finite time and may
arrive in arbitrary order. All rules that are applicable infinitely often will eventually
reduce.

Node State

The node state is represented as a set of attributes of each node. Table 7.3 lists the
attributes for proxy, manager, and thread nodes, along with their initial values. This
table assumes without loss of generality that the content-edge is initially at proxy P1.
A NodeRef is a reference to any node. GetManagerRef() returns a reference to the

136 CHAPTER 7. MOBILE OBJECTS IN DISTRIBUTED OZ

Thread Ti
Attribute Type Initial value
id NodeRef GetThreadRef(i)

Manager M
Attribute Type Initial value
tail NodeRef GetProxyRef(1)

Proxy Pi
Attribute Type Initial value
state {FREE,CHAIN} CHAIN (i = 1), FREE (i 6= 1)
content NULL | NodeRef N (i = 1), NULL (i 6= 1)
forward NULL | NodeRef NULL
thread NULL | NodeRef NULL
newcontent NULL | NodeRef NULL
manager NodeRef GetManagerRef()
id NodeRef GetProxyRef(i)

Table 7.3: Node State

manager M. GetProxyRef(i) returns a reference to proxy Pi. GetThreadRef(i) returns
a reference to thread Ti. N is a NodeRef giving the initial content of the cell. NULL
is a special value that marks an attribute as not valid. P.manager, P.id, and T.id are
constants.

Rule Definitions

The protocol is defined in two parts. Figure 7.11 defines the procedure exchange and bind,
which is part of the thread. Figure 7.12 defines the protocol rules. Rules 1–5 are de-
fined for proxy nodes. Rule 6 is defined for the manager node.

The reduction of both the statement {Exchange C X Y} and its resulting binding
X=Z is implemented in thread T by calling exchange and bind(P,Nx,Ny). The nodes P,
Nx, and Ny correspond to the variables C, X, and Y. T sends a message containing Ny
to the proxy P on its site. T blocks until the content-edge and the content have moved
to its site. Then the proxy sends the old content Nz to T. The exchange is completed,
strictly speaking, when Nz is received in T, because that is when the bind operation
becomes applicable. The thread then invokes bind(Nx,Nz).

Appendix 7.11.1 gives a proof that this specification implements the distributed se-
mantics of exchange. Every exchange eventually results in a bind operation with cor-
rect arguments, and the content is updated correctly in the access structure. Exchange
requests on a site without the content-edge will invoke the bind operation when the
content arrives.

P.state=FREE if P has not requested the content-edge. P.state=CHAIN if P has
requested the content-edge, which may not have arrived yet. P.content 6=NULL if and
only if P has the content-edge. P.forward 6=NULL if and only if P should forward the
content when it is present. P.thread and P.newcontent are used when the content-edge is

7.8. SYSTEM ARCHITECTURE 137

procedure exchange and bind(P,Nx,Ny)
Send(P,request(T.id,Ny))
Receive(T,proceed(Nz))
bind(Nx,Nz)

end

Figure 7.11: Mobile state protocol: Thread interface.

remote. They store the information necessary for a correct reply when the content-edge
arrives locally.

Extension for Port Mobility

The port protocol is an extension of the cell protocol defined in the previous section.
As explained in Section 7.6.3, a port has two operations, send and localize, which are
initiated by a thread referencing the port. The localize operation uses the same protocol
as the cell exchange operation. For a correct implementation of the send operation, the
port protocol must maintain the FIFO order of messages even during port movement.
Furthermore, the protocol is defined so that there are no dependencies between proxies
when moving a port. This means that a single very slow proxy cannot slow down a
localize operation.

Each port home is given a generation identifier. When the port home changes
sites, then the new port home gets a new generation identifier. Each port proxy knows
a generation which it believes to be the generation of the current port home. No order
relation is needed on generations. It suffices for all generations of a given port to be
pairwise distinct. For simplicity they can be implemented by integers.

The send operation is asynchronous. A send operation causes the port proxy to
send a message to the port home on a FIFO channel. The message is sent together
with the proxies’ generation. If a message arrives at a node that is not the home or
has the wrong generation, then the message is bounced back to the sending proxy on a
FIFO channel. If a proxy gets a bounced message then it does four things. It no longer
accepts send operations. It then asks the manager where the current home is. When
it knows this, it recovers all the bounced messages in order and forwards them to the
new home. Finally, when it has forwarded all the bounced messages, it again accepts
send operations from threads on its site.

7.8 System Architecture

The mobile state protocol defines the distributed semantics of cells. This protocol is
only one aspect of a Distributed Oz implementation. Other important aspects include
the interface between the protocol and the centralized execution, how the protocol is
built on top of a shared computation space, and how the shared computation space

138 CHAPTER 7. MOBILE OBJECTS IN DISTRIBUTED OZ

1. Request content (content not present).

Receive(P,request(T,Ny)) ∧ P.state=FREE
Send(P.manager,get(P.id))
P.state← CHAIN
P.thread← T
P.newcontent← Ny

2. Request content and reply to thread (content present).

Receive(P,request(T,Ny)) ∧ P.content 6=NULL
Send(T,proceed(P.content))
P.content← Ny

3. Accept content and reply to thread.

Receive(P,put(Nz))
P.content← Nz
Send(P.thread,proceed(P.content))
P.content← P.newcontent

4. Accept forward.

Receive(P,forward(P’))
P.forward← P’

5. Forward content.

P.forward 6=NULL ∧ P.content 6=NULL
Send(P.forward,put(P.content))
P.forward← NULL
P.content← NULL
P.state← FREE

6. Serialize content requests (at manager).

Receive(M,get(P))
Send(M.tail,forward(P))
M.tail← P

Figure 7.12: Mobile state protocol: Migration of the content-edge.

7.8. SYSTEM ARCHITECTURE 139

Thread Cell State

Language graph layer

Reliable message layer

Memory management layer

Centralized engine

Network (TCP)

Nodes doing language operations

Reliable messages

Sited nodes sending subgraphs

Arbitrary-length byte sequences

Un/marshalling, building access structures
Shared address space and garbage collection

Distributed algorithms for:

DFKI Oz 2.0 byte-code emulator

M
PP StateThread

Cell

Nonblocking send, connection cache

mobile state, variable elimination, lazy replication

Figure 7.13: System architecture on one site.

is built. This section summarizes these aspects in sufficient detail to situate the pro-
tocol. Figure 7.13 shows an architecture for the execution of the distribution graph.
This architecture is fully implemented and is being used for application development.
Sections 7.8.1, 7.8.2, and 7.8.3 summarize the language graph layer, the memory man-
agement layer, and the reliable message layer.

Distribution is added as a conservative extension to a centralized engine. The ex-
tension is designed not to affect the centralized performance. The centralized engine
executes internally all operations on local nodes. It is based on emulator technology
and has similar or better performance than current Java emulators [60]. In particular,
DFKI Oz 2.0 threads are much cheaper than Java threads. Operations on distributed
entities are passed to the language graph layer. The language graph layer implements
the distributed semantics for all Oz 2 entities, e.g., it decides when to do a local opera-
tion or a network communication. The language graph layer rests on a “bookkeeping”
layer, the memory management layer. This layer implements the shared computation
space, the building of access structures, and the distributed garbage collection. The re-
liable message layer implements transfer of arbitrary-length byte sequences between
sites. It keeps a connection cache between sites and manages the message buffers.
The network is the network interface of the host operating system, providing standard
protocols such as TCP/IP.

7.8.1 Language Graph Layer

The distribution semantics of each Oz 2 entity is implemented in the language graph
layer. Each entity has a separate protocol. There are three essentially different proto-

140 CHAPTER 7. MOBILE OBJECTS IN DISTRIBUTED OZ

Item Space (bytes)
Local object 36
Global object

Active proxy 64
Passive proxy 44
Manager 44

Protocol messages
get 15
forward 29
put 15+S

Table 7.4: Object Granularity in the Distributed Oz Implementation

cols: mobile state (cells, objects, and ports), variable elimination (logic variables), and
lazy replication (procedures). Records and threads have trivial protocols. As illustrat-
ed in Figure 7.13 for cells, these protocols implement the illusion that all entities are
centralized.

Table 7.4 gives the space usage of objects and messages in the mobile state proto-
col. Objects have a tag that defines them to be local, active proxy, passive proxy, or
manager. This tag is combined with other fields to take up no extra space. The follow-
ing extra run-time overhead is paid over a system that has only local objects. For each
object operation, test the tag to see if the object is local or global, and if it is global,
check if the content-edge is local. The local objects shown are of minimum size; add
4 bytes for each attribute and method. The global object sizes include the overhead for
distributed garbage collection (see Section 7.8.2). A passive proxy is one that has not
been called since the most recent local garbage collection. Other proxies are active. In
the put message, S denotes the marshalled size of the state.

7.8.2 Memory Management Layer

Shared Computation Space

A two-level addressing scheme, using local and global addresses, is used to refer to
nodes. The translation between local and global addresses is done automatically to
maintain the following invariants. Nodes on the same site are always referred to by
local addresses. Nodes on remote sites are always referred to by global addresses.
Global addresses never change, since nodes in the distribution graph never change
sites. If a node is remotely referenced, then it must have a global address. A node is
remotely referenced if and only if it is referenced from another site or from a message
in transit. If the node is no longer remotely referenced, then its global address will be
reclaimed.

7.8. SYSTEM ARCHITECTURE 141

Site 1

Site 2

M

P

Site 1

L

Site 1

Site 2

M

P

P

Local node Export Import

Message

Figure 7.14: Globalizing a local node.

Building Access Structures

Access structures are built and managed automatically when language entities become
remotely referenced. This happens whenever messages exchanged between nodes on
different sites contain references to other nodes. If the reference is to a local node, then
the memory management layer converts the local node into an access structure. We say
the local node is globalized (see Figure 7.14). While the message is in the network,
the access structure consists of a manager and one proxy. When the message arrives at
the destination site, then a new proxy is created there. Access structures can reduce in
size and disappear completely through garbage collection.

Distributed Garbage Collection

Distributed garbage collection is implemented by two cooperating mechanisms: a local
garbage collector per site and a distributed credit mechanism to reclaim global address-
es. Local collectors can be invoked at any time independently of other sites. The roots
of local garbage collection are all nodes on the collector’s site that are reachable from
non-suspended thread nodes or are remotely referenced.

A global address is reclaimed when the node that it refers to is no longer remote-
ly referenced. This is done by the credit mechanism, which is informed by the local
garbage collectors. This scheme recovers all garbage except for cross-site cycles. The
only cross-site cycles in our system occur between different objects or cells. Since
records and procedures are both replicated, cycles between them will be localized to
single sites. The credit mechanism does not suffer from the memory or network inef-
ficiencies of previous reference-counting schemes [99].

We summarize briefly the basic ideas of the credit mechanism. Each global address
is created with an integer (its debt) representing the number of credits that have been

142 CHAPTER 7. MOBILE OBJECTS IN DISTRIBUTED OZ

given out to other sites and to messages. Any site or message that contains the global
address must have at least one credit for the global address. The creation site is called
the owner. All other sites are called borrowers. A node is remotely referenced if and
only if its debt is nonzero.

Initially there are no borrowers, so the owner’s debt is zero. The owner lends
credits to any site or message that refers to the node and increments its debt each time
by the number of credits lent. When a message arrives at a borrower, its credits are
added to the credits already present. When a message arrives at the owner, its credits
are deducted from the owner’s debt. When a borrower no longer locally references a
node then all its credits are sent back to the owner. This is done by the local garbage
collector. When the owner’s debt is zero then the node is only locally referenced, so
its global address will be reclaimed.

Consider the case of a cell access structure. The manager site is the owner, and
all other sites with cell proxies are borrowers. A proxy disappears when no longer
locally referenced. It then sends its credit back to the manager. If the proxy contains
the content-edge, then the content-edge is transferred back to the manager site as well.
Remark that this removes a cross-site cycle within the cell access structure. When
the manager recovers all its credit then it disappears, and the cell becomes a local cell
again. When the local cell has no local references, then it is reclaimed. If the local cell
becomes global again (because a message referring to it is sent across the network),
then a new manager is created, completely unrelated to the reclaimed one.

7.8.3 Reliable Message Layer

The reliable message layer is the part of the Distributed Oz architecture that is clos-
est to the operating system. This layer assumes a reliable transport protocol with no
bounds on transfer time. For all entities except threads and ports, no assumptions are
made on relative ordering of messages (no FIFO). For threads and ports, FIFO con-
nections are made. The current prototype implements a cache of TCP connections to
provide reliable transfer between arbitrary sites on a wide-area network [27]. Recent
implementations of TCP can outperform UDP [20]. To send arbitrary-length messages
from fair concurrent threads, the implementation manages its own buffers and uses
nonblocking send and receive system calls. If some global addresses in a message
require additional credit, then the message is put in a pending queue until all credit
arrives.

7.9 Related Work

All systems that we know of except Emerald [72] and Obliq [21] do distributed exe-
cution by adding a distribution layer on top of a centralized language, e.g., CORBA
[30, 96], DCE [122], Erlang [138], Java [120], Facile [80], and Telescript [89]. This
has the disadvantage that distribution is not a seamless extension to the language, and

7.9. RELATED WORK 143

therefore distributed extensions to language operations (such as mobile objects or repli-
cated data) must be handled by explicit programmer effort.

A better environment for distributed programming can be obtained by looking care-
fully at the entities of the language and conservatively extending their behavior to a
distributed setting. For example, the Remote Procedure Call (RPC) [17] is designed to
mimic centralized procedure calling and is therefore a precursor to the design given in
this article. Following this integrated approach has two consequences. First, in order to
carry it out successfully, the language must have a well-defined operational semantics
that clearly identifies the entities. Second, to do the extensions right one must design
a distributed algorithm for each entity. In the following sections, we take a closer look
at distributed shared memory, Emerald, and Obliq.

7.9.1 Distributed Shared Memory

Distributed shared memory (DSM) [29, 122] has the potential to provide an adequate
substrate for distributed programming. DSM has traditionally been viewed as a sub-
strate for parallel programming, but work has been done on using it for distributed
programming. We limit the discussion to distribution in software DSM. To achieve
predictable network awareness, a language for distributed programming must be well-
matched with its DSM layer. Following [29], we distinguish between page-based and
library-based DSM.

Page-based DSM does not provide predictable network awareness. The units of
distribution (“pages”) do not correspond directly to language entities. This is too
coarse grained for the applications we have in mind. It leads to false sharing. Munin [24],
while page-based, provides programmer annotations for network awareness. A data
item in memory can be annotated as read-only, migratory, write-shared, and so forth.

Library-based DSM provides sharing that is designed for particular data abstrac-
tions and hence can avoid the problems of granularity and false sharing. For example,
Orca [14] provides network pointers, called “general graphs,” and shared objects. Or-
ca is designed for parallel applications. Linda [23] provides operations to insert and
extract immutable data items, called “tuples,” from a shared space. This is called a co-
ordination model, and it can be added to any existing language. Linda does not address
the language issues of network transparency.

Distributed Oz follows the library-based approach. The shared computation space
is a DSM layer that is designed to support all language entities. The layer is extended
to provide functionality that is not part of traditional DSMs. First, it supports single-
assignment data in a strong form (logic variables) as well as other sharing protocols
such as read-only data (values) and migratory data (objects). Second, as was briefly
mentioned in Section 7.3, the system is open: sites can connect and disconnect dynam-
ically. Although not impossible, we do not know of any DSM system that possesses
this property. Third, the system is portable across a wide range of operating systems
and processors. Fourth, the system can be extended to support precise failure detection.

144 CHAPTER 7. MOBILE OBJECTS IN DISTRIBUTED OZ

7.9.2 Emerald

Emerald is a statically typed concurrent object-based language that provides fine-
grained object mobility [71, 72]. The object system of Emerald is interesting in its own
right. We limit the discussion to issues related to distribution. Emerald has distribut-
ed lexical scoping and is implemented efficiently with a two-level addressing scheme.
Emerald is not an open system. Objects can be mutable or immutable. Objects are
stationary by default and explicit primitive operations exist to move them. Having an
object reference gives both the right to call and to move the object; these rights are
separated in Distributed Oz. Immutable objects are copied when moved. Apart from
object mobility, Emerald does not provide any special support for latency tolerance.
There is no syntactic support for using objects as caches.

Moving a mutable object in Emerald is an atomic operation that clones the object
on the destination site and aliases the original object to it. The result is that messages
to the original object are passed to the new object through an aliasing indirection. If the
object is migrated again, there will be two indirections, and so forth. The result is an
aliasing chain. This chain is lazily shortened in two ways. First, if the object returns to
a previously visited site, then the chain is short-circuited. Second, all message replies
inform the message sender of the object’s new site. If the object is lost because a site
failure induces a break in the aliasing chain, then a broadcast is used to find the object
again. Using broadcast does not scale up to many sites. As in Distributed Oz, failure
is detected for single objects.

Because of the aliasing chain and possible broadcasting, it is difficult or impossible
to predict the network behavior in Emerald or to guarantee that an object is independent
of third-party sites. These problems are solved in Distributed Oz by using a manager
node that is known to all proxies (see Section 7.7.2). This gives an upper bound of
three on the number of network hops to get the object and guarantees that all third-
party dependencies except for the manager site eventually disappear. Furthermore, the
lack of an aliasing chain means that losing an object is so infrequent that it is considered
as an object failure. There is therefore no need for a broadcast algorithm.

The Emerald system implements a distributed mark-and-sweep garbage collector.
This algorithm is able to collect cross-site cycles, but it is significantly more complex
than the Distributed Oz credit mechanism. It requires global synchronization, and it
is not clear whether this scales up. It handles temporary network failures, but it is not
clear how it behaves in the case of site failures.

7.9.3 Obliq

With Obliq, Distributed Oz shares the notions of dynamic typing, concurrency, state
awareness, and higher-orderness with distributed lexical scoping. We differ from Obliq
in two major ways: mobility control is a basic part of the design, and logic variables
introduce a fundamental dataflow element. Another difference is that Distributed Oz
is object-oriented with a rich concurrent object system, while Obliq is object-based.
While it is outside the scope of this article, we mention that Oz 2 is a powerful con-

7.10. CONCLUSIONS, STATUS, AND CURRENT WORK 145

straint language that is being used in problem-solving research. The constraint aspects
of Oz 2 are orthogonal to the distribution aspects given in this article.

Obliq has taken a first step toward the goal of conservatively extending language
entities to a distributed setting. Obliq distinguishes between values and locations.
Moving values causes them to be copied (replicated) between sites. Moving locations
causes network references to them to be created.

Distributed Oz takes this approach for the complete language, consisting of sev-
en language entities. Each of these entities has a distributed algorithm that is used
to remotely perform an operation on the entity (see Figure 7.3). The algorithms are
designed to preserve the language semantics while providing a simple model for the
communication patterns.

It is interesting to compare object migration in Obliq with Distributed Oz mobile
objects. Obliq objects are stationary. Object migration in Obliq can be implemented in
two phases by cloning the object on another site and by aliasing the original object to
the clone. These two phases must be executed atomically to preserve the integrity of
the object’s state. According to Obliq semantics, the object must therefore be declared
as serialized. To be able to migrate these objects, the migration procedure must be
executed internally by the object itself (be self-inflicted, in Obliq terminology). The
result is an aliasing chain.

Oz 2 objects are defined as procedures that have access to a cell. The content-
edge refers to the current object state. Mobility is obtained by making the cell mobile.
When a method is invoked on a remote site, the content-edge is first moved to that
site. Integrity of the state is preserved because the cell continues to obey the language
semantics. The implementation uses a distributed algorithm to move the content-edge
(see Section 7.7). Because mobility is part of a cell’s distributed semantics, there are
no chains of indirections. This is true as well for mostly stationary objects, which use
the port protocol (see Section 7.7.4).

7.10 Conclusions, Status, and Current Work

We have presented the design of a language for distributed programming, Distributed
Oz, in which the concept of mobility control has been incorporated in a fundamental
way. We define the language in terms of two operational semantics, namely a language
semantics and a distributed semantics. The language semantics ignores the notion of
site and allows reasoning about correctness and termination. The distributed semantics
gives the network behavior and allows the writing of programs that use the network
predictably and efficiently. Mobility control is part of the distributed semantics.

The main contribution of this article is a system for network-transparent distribu-
tion in which the programmer’s control over network communication patterns is both
predictable and easy to understand. To make object migration predictable, the imple-
mentation uses a distributed algorithm to avoid forwarding chains through intermediate
sites. This guarantees that all dependencies to third-party sites except for the manager
site eventually disappear.

146 CHAPTER 7. MOBILE OBJECTS IN DISTRIBUTED OZ

We show by example how this approach can simplify the task of distributed pro-
gramming. We have designed and implemented a prototype shared graphic editor that
is efficient on networks with high latency yet is written in a fully network-transparent
manner. We give Oz 2 code that shows how the mobility of objects can be precisely
controlled and how this control can be added independently of the object’s definition.

We give a formal definition of the mobile state protocol, and we prove that it imple-
ments the language semantics. This implies that the implementation of cells, objects,
and ports in Distributed Oz is network transparent.

We outline the system architecture including the distributed memory management
and garbage collection. A prototype implementation of Distributed Oz exists that in-
corporates all of the ideas presented in this article. The prototype maintains the se-
mantics of the Oz 2 language. The implementation is an extension of the centralized
DFKI Oz 2.0 system and has been developed jointly by the German Research Center
for Artificial Intelligence (DFKI) [118] and the Swedish Institute of Computer Sci-
ence (SICS). DFKI Oz 2.0 is publicly available17 and has a full-featured development
environment.

This article has presented one part of the Distributed Oz project. This work is
being extended in several ways. An important unresolved issue is to find high-level
abstractions for fault tolerance that separate the application’s functionality from its
fault-tolerant behavior. Providing the basic primitives, e.g., precise failure detection,
is not difficult. Other current work includes improving the efficiency and robustness of
the prototype, using it in actual applications, improving the support for open comput-
ing, and building the standard services needed for distributed application development.
Future work includes adding support for resource management and multiprocessor ex-
ecution (through “virtual sites”), and adding security. The main research question to
be addressed is how to integrate these abilities without compromising network trans-
parency.

7.11 APPENDIX

7.11.1 Correctness Proof of the Mobile State Protocol

This appendix gives a proof that the mobile state protocol as defined in Section 7.7.4
implements the language semantics of the exchange operation as defined in Section 7.7.1.
We have given three specifications of the exchange operation:

(LS) Language reduction rule (Section 7.7.1)
(DS) Distributed reduction rule (Section 7.7.1)
(MP) Mobile state protocol (Section 7.7.4)

Theorem T1 (Section 7.7.1) implies that (DS) implements (LS). It remains to be shown
that (MP) implements (DS). We do this in two parts. First, in Section 7.11.2 we prove
safety and liveness of the mobile state protocol. Namely, all reachable configurations

17At http://www.ps.uni-sb.de

7.11. APPENDIX 147

satisfy the chain invariant defined in Section 7.11.3, and a request for the content-edge
on a node that does not have it causes it to arrive exactly once. Then, in Section 7.11.6
we use these results first to prove that the mobile state protocol is observationally
equivalent to a much simpler protocol. We then show that the latter implements the
distributed reduction rule for exchange.

7.11.2 Mobile State Protocol Correctly Migrates the Content-edge

This section proves that the mobile state protocol correctly implements the migration
of the content-edge. We follow the definitions and notations introduced in Section 7.7.
The proof is structured around a global distributed data structure that we call a chain,
which is defined in Section 7.11.3 by an invariant of the distribution graph [85, 124].
Section 7.11.4 proves that the mobile state protocol satisfies the chain invariant. Sec-
tion 7.11.5 proves that requesting the content causes it to arrive exactly once.

Informally, a chain consists, at any given instant, of the known path of the content
among the proxy nodes (see Figure 7.15). That is, it is a sequence of proxy nodes such
that the first node contains the content or will eventually receive it and that all nodes
will eventually pass the content on to the next node in the chain. The chain grows if new
content-edge requests are more frequent than the rate at which the content is forwarded
among proxies. If there are no new requests, then the chain shrinks to length one. The
chain is defined formally as part of the proof. Reasoning in terms of the chain makes
proving properties of the protocol tractable.

For the proof, we ignore the attributes thread and newcontent and the operations
concerning them. We are interested only in whether the content attribute is NULL
or non-NULL. We use the special value CVAL to represent any non-NULL value. We
assume the initial P1.content and the Ny argument in request messages are both CVAL.
We show that there is only one node or message in the network that contains the value
CVAL. Any node may request the content, and we show that the protocol guarantees
that the content will eventually arrive exactly once. After arriving at the node, the
content will eventually leave if another node requests it.

148 CHAPTER 7. MOBILE OBJECTS IN DISTRIBUTED OZ

link

a a a a321
P PPP

a1 a2 3 aaP P P P
j

j

Content

Content

Forwarding

Figure 7.15: Two forms of a chain.

7.11.3 Chain Invariant

The chain invariant I is defined as follows on the distribution graph:

I = Ip ∧ Ia ∧ Ib ∧ Ic ∧ It ∧ Iu (7.1)

Ip = A,B,C form a partition of{1, ...,k} (7.2)

Ia = A = {a1, ...,a j} ∧ j > 0 ∧


1≤ ∀i < j :







Pai .state = CHAIN
Pai .forward ∈ {NULL,ai+1}
Pai .forward = ai+1 ⊕ ai : forward(ai+1) ∈ N



 ∧

Pa j .state = CHAIN ∧ Pa j .forward = NULL ∧ M.tail = a j (7.3)

Ib = ∀i ∈ B :

(

Pi.state = CHAIN ∧ Pi.forward = NULL ∧
M : get(i) ∈ N

)

(7.4)

Ic = ∀i ∈C : (Pi.state = FREE ∧ Pi.forward = NULL) (7.5)

It = Pa1 .content ∈ {NULL,CVAL} ∧

(Pa1 .content = CVAL ⊕ a1 : put(CVAL) ∈ N) ∧

1≤ ∀i≤ k, i 6= a1 : Pi.content = NULL (7.6)

Iu = All messages in N are unique and explicitly mentioned in I (7.7)

Informally, Ia states that all the proxy nodes in A form a chain, where ⊕ denotes the
exclusive-or (see Figure 7.15). We call Pa1 the head of the chain and Pa j the tail of the
chain. Ib states that all the proxy nodes in B will eventually become part of the chain.
When it is known from which source node a target node will receive the content, then
the target node is considered part of the chain. Ic states that all other proxy nodes
(which are in C) are not part of the chain. The content invariant It states that there is
exactly one content-edge in the system and that it belongs to the head of the chain.
Writing the uniqueness invariant Iu as an explicit formula is left as an exercise for the
reader.

Figure 7.16 illustrates the partitioning of the proxy nodes in classes C, B, and A.

7.11. APPENDIX 149

Class of inactive proxies Class of requesting proxies Class of requesting proxies

C AB

unknown to manager known to manager (in chain)

Figure 7.16: Classifying the proxy nodes.

During execution, a proxy node changes class according to the arrows. The node is
in class C when it does not have the content-edge and has not requested it. The node
moves from class C to B when the content-edge is requested. The node moves from
class B to A when the manager is informed of the request. The node moves from class
A to C when the content-edge leaves the node. Within class A, the content-edge moves
from one node to the next in the chain. The node reaches the head of the chain when it
receives the content-edge.

7.11.4 Safety Theorem

Theorem 2 (S). The chain invariant (formula I in Section 7.11.3) is an invariant of the
mobile state protocol (Section 7.7.4).

Proof. It is clear that I holds in the configuration C0 with N = /0, A = {1}, B = /0, and
C = {2, ...,k}. Consider a configuration Ci in which I holds. Then we show that I also
holds in configuration Ci+1:

1. Rule 1 is only applicable when C 6= /0. Applying rule 1 removes one element
from C and adds it to B. This affects Ib and Ic. It is clear that both formulas and
Iu continue to hold.

2. Rule 2 is applicable when P.content=CVAL. Since the request message’s second
argument is CVAL, therefore applying rule 2 changes nothing in the invariant.

3. Rule 3 is applicable when the second alternative (a1 : put(CVAL) ∈ N) of the
disjunction in It holds. Applying the rule causes only the first alternative to hold,
which maintains the truth of It and Iu.

4. Rule 4 is applicable when the second alternative (ai : forward(ai+1) ∈ N) of a
disjunction in Ia holds. Applying the rule causes only the first alternative to hold,
which maintains the truth of Ia and Iu.

150 CHAPTER 7. MOBILE OBJECTS IN DISTRIBUTED OZ

5. Rule 5 is applicable when the first alternatives of the disjunctions in Ia and It
hold. From Ia and It we deduce that when rule 5 is applicable, it is applicable
at node Pa1 , that Pa1 .forward = a2, and that therefore j ≥ 2. Applying the rule
removes a1 from A and adds it to C, maintaining the truth of Ia and Ic. Since
a2 : put(CVAL) is added to the network, the truth of It is maintained.

6. Rule 6 is applicable when B is nonempty. Applying the rule removes one element
from B and adds it to A. Reasoning from the value of M.tail shows that this
element becomes the new a j. In other words, each reduction of the manager
node adds one element to the chain. The truth of Iu is maintained.

This proves the theorem.

7.11.5 Liveness Theorem

Theorem 3 (L). Given the fairness assumptions of Section 7.7.4, requesting the content
at a proxy node will cause it eventually to arrive once.

Proof. The statement of the theorem means that for all proxy nodes P we have one of
the following three cases:

1. P.content=CVAL. The content is at the node.

2. P.content=NULL∧ P.state=FREE. Reducing rule 1 causes P.content=CVAL even-
tually to become true once through the application of rule 3.

3. P.content=NULL ∧ P.state=CHAIN. Then P.content=CVAL will eventually be-
come true once through the application of rule 3.

Case 1 is evident. In case 2, rule 1 is clearly applicable, and reducing it gives the
condition of case 3. It is clear that the only way in which P.content=CVAL can become
true is through the reduction of rule 3. In what follows, we consider only case 3.

In case 3, rule 1 has been reduced once at node P. This causes an eventual reduction
of rule 6 once, which results in a configuration Cx with invariant Ix such that P’s index
is in Ax. If | Ax |= 1 then the proof is done. Let us assume without loss of generality
that | Ax |≥ 2. What is the relationship between Ax and Ax+1? That is, what happens
to Ax during reduction of a single rule? Inspecting the rules shows that there are three
possibilities (assume | Ax |= j):

Ax+1 = Ax (7.1)

Ax+1 = Ax \{a1} (7.2)

Ax+1 = Ax∪{a j+1} (7.3)

We must show that in any configuration Cx with | Ax |≥ 2, possibility (2) is eventually
executed. From inspection, this is only possible by applying rule 5.

We show that from Cx it will always become possible to apply rule 5. We use the
fact that when rules 3, 4, or 5 become applicable, they stay applicable until reduced.

7.11. APPENDIX 151

Assume that Ia contains a1 : forward(a2). Then we can apply rule 4. Therefore we
can assume without loss of generality that Pa1 .forward = a2. Similarly, by possibly
applying rule 3, we can assume Pa1 .content = CVAL. The equations Pa1 .forward =
a2 and Pa1 .content = CVAL imply the conditions of rule 5. Therefore rule 5 will
eventually be reduced. This proves that the head a1 is eventually removed from Ax.
Since new nodes are only added at the tail, this proves that all elements will eventually
receive the token. This shows that the content eventually arrives. We know that nodes
are only removed at the head and that the chain does not contain cycles. This shows
that the content arrives exactly once.

7.11.6 Mobile State Protocol Implements Distributed Semantics

The proof is presented as two lemmas and a theorem. From the two lemmas it follows
that the mobile state protocol is observationally equivalent to a much-simplified pro-
tocol with one proxy node, one reduction rule, and no manager. In a similar manner
to Section 7.7.1, we then use abstraction to show that the behavior of this simplified
protocol exactly corresponds to the distributed semantics of exchange.

Lemma 1 (A). Invoking Send(P,request(T,N)) will eventually result in exactly one
atomic execution at P of the derived rule:

(EXCH)
Receive(P,request(T,N)) ∧ P.content 6=NULL
Send(T,proceed(P.content))
P.content← N

Proof. We prove the result in two parts. We first show that eventually rule 1 or rule 2
is reduced exactly once. Assume the Receive(P,request(T,N)) condition corresponding
to the send becomes true at proxy P. Enumerating all possible values of P.state and
P.content gives the following four cases:

1. P.state=FREE ∧ P.content 6=NULL. We show that this condition never occurs in
a reachable configuration. By Theorem S, the chain invariant I is valid in all
reachable configurations. Then according to It , P.content 6=NULL means that
P=Pa1 . From Ia we see that Pa1 .state=CHAIN.

2. P.state=FREE ∧ P.content=NULL. Rule 1 is applicable and stays applicable, so
by the fairness assumption eventually it is reduced.

3. P.state=CHAIN ∧ P.content 6=NULL. Rule 2 is applicable. Either it is eventually
reduced, in which case all is well, or it is never reduced. The latter can only
happen if rule 5 is reduced, which makes P.state=FREE ∧ P.content=NULL. The
previous case then applies.

4. P.state=CHAIN∧ P.content=NULL. No rule is applicable. However, since P.state=CHAIN,
this means that rule 1 has been reduced by the reception of another request mes-
sage. By Theorem L, eventually P.content 6=NULL. When this happens, the pre-
vious case applies.

152 CHAPTER 7. MOBILE OBJECTS IN DISTRIBUTED OZ

Distributed Semantics Distribution Graph Notation
Representatives Xq, Yq, Zq Nodes Nx, Ny, Nz on site q
Cell representative Cq Cell proxy Pq

C1=n ∧ ... ∧ Ck=n Access structure containing Pi for 1≤∀i≤
k

(n:Z)p ∧ 1≤ ∀i≤ k, i 6= p : (n:⊥)i Pp.content=Nz, 1 ≤ ∀i ≤ k, i 6= p:
Pi.content=NULL

{Exchange C X Y}q exchange and bind(P,Nx,Ny) in thread on
site q, until just before bind operation

(X=Z)q bind(Nx,Nz) in thread on site q

Table 7.5: Correspondence between distributed semantics and graph notation

This shows that eventually rule 1 or rule 2 will be reduced. The first condition Re-
ceive(P,request(T,N)) of the (EXCH) rule is therefore taken care of. We now show that
in each case the lemma is true:

1. Rule 1 is reduced. By Theorem L, the content arrives exactly once by the re-
duction of rule 3. This makes true the second condition P.content 6=NULL of the
(EXCH) rule. Between the reduction of rule 1 and the arrival of the content,
only rule 4 is potentially applicable. Reducing rule 4 is irrelevant since it only
changes the value of P.forward, which does not change the value of any other
node attribute nor the applicability of any rules. When the content arrives, rule 3
becomes applicable. Reduction of rule 3 makes the lemma true.

2. Rule 2 is reduced. Inspection of rule 2 makes it clear that the lemma is true.

This proves the lemma.

Lemma 2 (B). The P.content value at the end of one (EXCH) rule is used as the
P.content value at the beginning of exactly one other (EXCH) rule, or of no (EXCH)
rules if no further (EXCH) rules are executed.

Proof. By Theorem S, either P.content 6=NULL on exactly one proxy or there is exactly
one put(N) message in transit. We also know that the transfer of P.content between two
proxies conserves its value, since the transfer can only be done by reducing rule 5 at
the source and rule 3 at the destination. This proves the lemma.

Theorem 4 (T2). The mobile state protocol of Section 7.7.4 implements the distributed
semantics of Section 7.7.1.

Proof. We first make clear the correspondence between the notations of Sections 7.7.1
and 7.7.4 (Table 7.5). Then we show that the execution of the exchange procedure
follows exactly the distributed reduction rule.

By Lemma A, executing exchange and bind(P,Nx,Ny) in thread T on site q even-
tually reduces one (EXCH) rule. The bind operation becomes applicable when the
message sent by this rule is received by the thread. The receive therefore marks the

7.11. APPENDIX 153

end of the exchange reduction. Denote P.content=Nz just before entering the (EXCH)
rule’s body. By Lemma B, Nz is the result of the previous exchange. Then, assuming
the correspondence in Table 7.5 holds just before the (EXCH) rule, we show that the
correspondence holds just after the (EXCH) rule:

1. The nodes of the access structure are undisturbed.

2. Pq.content=Ny and by Theorem S, 1≤ ∀i≤ k, i 6= q: Pi.content=NULL.

3. The operation bind(Nx,Nz) is applicable in thread T after the exchange.

This corresponds exactly to the distributed reduction rule of Section 7.7.1.

Acknowledgements

We thank Luc Onana for fruitful discussions that led to mobile ports and to the proof
given in Appendix 7.11.2. We thank Christian Schulte for his help with the shared
editor. We thank Michel Sintzoff, Joachim Niehren, and the anonymous referees for
their perceptive comments that permitted us to improve and complete the presentation.

154 CHAPTER 7. MOBILE OBJECTS IN DISTRIBUTED OZ

Chapter 8

Using logic variables in distributed
computing

Efficient Logic Variables for Distributed
Computing

SEIF HARIDI
Swedish Institute of Computer Science (SICS)

PETER VAN ROY
Université Catholique de Louvain and SICS

PER BRAND
Swedish Institute of Computer Science

MICHAEL MEHL and RALF SCHEIDHAUER
German Research Center For Artificial Intelligence (DFKI)
and
GERT SMOLKA
Universität des Saarlandes and DFKI

155

156 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

8.1 Abstract

We define a practical algorithm for distributed rational tree unification and prove its
total correctness in both the off-line and on-line cases. We derive the distributed
algorithm from a centralized one, showing clearly the trade-offs between local and
distributed execution. The algorithm is used to realize logic variables in the Mozart
system, which implements the Oz language. Oz appears to the programmer as a con-
current object-oriented language with dataflow synchronization. Oz is defined in terms
of a general execution model that consists of concurrent constraints extended with ex-
plicit state and higher-orderness. We show that logic variables can easily be added
to the more restricted models of Java and ML. We present common distributed pro-
gramming idioms in a network-transparent way using logic variables. We show that in
common cases the algorithm maintains the same message latency as explicit message
passing. In addition, it is able to handle uncommon cases that arise from the properties
of latency tolerance and third-party independence. This is evidence that using logic
variables in distributed computing is beneficial at both the system and language levels.
At the system level, they improve latency tolerance and third-party independence. At
the language level, they help make network-transparent distribution practical.

8.2 Introduction

Logic variables were first studied in the context of logic programming [105, 136].
They remain an essential part of logic programming and constraint programming sys-
tems [127, 67]. In the context of the Distributed Oz project, we have come to realize
their usefulness to distribution [55, 118]. Logic variables express dependencies be-
tween computations without imposing an execution order. This property can be ex-
ploited in distributed computing:

• Two basic concerns in distributed computing are latency tolerance and third-
party independence. We say a program is third-party independent if its execution
is unaffected by sites that are not currently involved in the execution. We show
that using logic variables instead of explicit message passing can reduce the
effect of both concerns with little programming effort.

• With logic variables we can express common distributed programming idioms
in a network-transparent manner that results in optimal or near-optimal message
latency. That is, the same idiom that works well in a centralized setting also
works well in a distributed setting.

The main contribution of this article is a practical distributed algorithm for rational tree
unification that realizes these benefits. The algorithm is used to realize logic variables
in the Mozart system. We formally define the algorithm and prove that it satisfies
safety and liveness properties in both the off-line and on-line cases.

8.2. INTRODUCTION 157

(Section 4)
CU algorithm

DU algorithm
(Section 5)

RCU algorithm
(Section 6.2)

RCU is correctredundant work
of DU algorithm

Proof that

(Section 6.2)

Proof that DU implements
RCU (Section 6)

Generalize to
distributed setting

Extend to model

Figure 8.1: Defining the algorithm and proving it correct

From the programmer’s point of view, the use of logic variables adds a dataflow
component to program execution. In a first approximation, this component can be com-
pletely ignored. That is, it is invisible to the programmer whether or not a thread tem-
porarily blocks while waiting for a variable’s value to arrive. Programs can be devel-
oped using well-known techniques of concurrent object-oriented programming [79]. In
a second approximation, the dataflow component greatly simplifies many concurrent
programming tasks [51, 15].

This article consists of two parts that may be read independently of each other. The
first part, Section 8.3, motivates and discusses in depth the use of logic variables in
concurrent and distributed programming. Section 8.3.1 introduces a general execution
model, its distributed extension, and the concept of logic variable. Section 8.3.2 gives
the key ideas of the distributed unification algorithm. Section 8.3.3 shows how to
express basic concepts in concurrent programming using logic variables. Section 8.3.4
expresses common distributed programming idioms in a network-transparent manner
with logic variables. We show that the algorithm provides good network behavior
for these examples. Finally, Section 8.3.5 shows how to add logic variables in an
orthogonal way to Java and ML, taken as representative examples of object-oriented
and functional languages.

The second part, Section 8.4 and following, defines the distributed unification algo-
rithm, proves its total correctness (see Figure 8.1), and discusses its implementation.
Section 8.4 defines the formal representation of logic variables and data structures.
This section also defines configurations and executions and introduces the reduction
rule notation used to define algorithms. Section 8.5 defines the CU algorithm, which
implements off-line centralized unification, and summarizes well-known results about
its correctness. By off-line we mean that the set of equations is finite and initially
known. Section 8.6 defines the DU algorithm, which implements off-line distributed
unification. Section 8.7 defines the RCU algorithm, which modifies the centralized
algorithm to reflect the redundant work done by the DU algorithm. The section then
proves that the DU algorithm is a correct implementation of the CU and RCU algo-

158 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

S1 SnS3S2 ...

p1:proc {$ A} A=Y+1 end

p2:proc {$} skip end

Cells

Store

Threads

c2:X

c1:Z

Q=p1Y=42

X
W=c1

Z=person(age: Y)

Variables Procedures

Figure 8.2: The Oz execution model

rithms. Section 8.8 defines on-line versions of the CU and DU algorithms. By on-line
we mean that new equations can nondeterministically be introduced at any moment.
We define the finite size property, and prove that given weak fairness, every introduced
equation that satisfies this property is eventually entailed by the store for both algo-
rithms. Section 8.9 defines the algorithm used in the Mozart system, which implements
the on-line DU algorithm.

8.3 Logic variables in concurrent and distributed set-
tings

This section motivates our unification algorithm by showing its usefulness to distribut-
ed programming. First Section 8.3.1 introduces our execution model and its notation.
Then Section 8.3.2 gives the key ideas of the algorithm. This is followed by Sec-
tion 8.3.3 which gives programming examples showing the usefulness of logic vari-
ables for basic tasks in concurrent programming. Section 8.3.4 continues with tasks
in distributed programming. We explain in detail the network behavior of our algo-
rithm for these tasks. Finally, Section 8.3.5 shows how to add logic variables to other
languages including the Java and ML families.

8.3.1 Basic concepts and notation

As a framework for logic variables, we introduce a general execution model that can
accommodate most programming languages. Underlying it is a formal model called
concurrent constraints [116, 108] that contains logic variables as a basic ingredient.
Some uses of logic variables, e.g., synchronization and communication, already appear
in this model. The general execution model, called Oz execution model, extends the
concurrent constraint model with explicit state and higher-orderness. Other uses of
logic variables, e.g., locks, become possible when explicit state is added.

8.3. LOGIC VARIABLES IN CONCURRENT AND DISTRIBUTED SETTINGS159

This section gives the essential characteristics of the Oz execution model and how
it is distributed. Later on, we show how to add logic variables to the more restricted
models of Java and ML. The advantage of using a general formal model is that it allows
us to define precisely what the examples do. It is straightforward to compile Java or
ML to Oz; the converse is not as easy.

The Oz execution model

The Oz execution model consists of dataflow threads observing a shared store (see
Figure 8.2). Threads contain statement sequences Si and communicate through shared
references into the store. A thread is dataflow if it only executes its next statement when
all the values the statement needs are available. If the statement needs a value that is
not yet available, then the thread automatically blocks until it can access that value.
We add the fairness condition that every thread that is not blocked eventually executes
its next statement. As we shall see, data availability in the Oz model is implemented
using logic variables.

The shared store is not physical memory, rather it is an abstract store that only
allows legal operations for the entities involved, i.e., there is no direct way to inspect
their internal representations. The store consists of three compartments, namely logic
variables (with optional bindings), cells (named mutable pointers, i.e., explicit state),
and procedures (named lexically-scoped closures, i.e., higher-orderness). Variables
can reference the names of procedures and cells. Cells point to variables. The exter-
nal references of threads and procedures are variables. When a variable is bound, it
disappears, that is, all threads that reference it will automatically reference the binding
instead. Variables can be bound to any entity, including other variables. The variable
and procedure stores are monotonic, i.e., information can only be added to them, not
changed or removed. Because of monotonicity, a thread that is not blocked is guaran-
teed to stay not blocked until it executes its next statement.

The Oz language

All Oz execution can be defined in terms of a kernel language whose semantics are
outlined in [51, 132]. The current Oz language is called Oz 2 to distinguish it from
an earlier language, Oz 1, whose kernel language is called Oz Programming Model
(OPM) [116]. Oz 1 was designed for fine-grained concurrency and implicit exploita-
tion of parallelism. Oz 2 abandons this model in favor of explicit control over concur-
rency by means of a thread creation construct. We do not discuss Oz 1 further in this
paper.

Figure 8.3 defines the abstract syntax of a statement S in the Oz kernel language.
Statement sequences are reduced sequentially inside a thread. All variables are log-
ic variables, declared in an explicit scope defined by the local statement. Values
(records, numbers, names, etc.) are introduced explicitly and can be equated to vari-
ables. A name is a unique unforgeable constant that has no external representation. A
new name is created by calling NewName. Procedures are defined at run-time with the

160 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

S ::= S S Sequence
| X=f(l1:Y1 ... ln:Yn) | Value

X=<number> | X=<atom> | {NewName X}
| local X1 ... Xn in S end | X=Y Variable
| proc {X Y1 ... Yn} S end | {X Y1 ... Yn} Procedure
| {NewCell Y X} | {Exchange X Y Z} | {Access X Y} State
| if X then S else S end Conditional
| thread S end | {GetThreadId X} Thread
| try S catch X then S end | raise X end Exception

Figure 8.3: The Oz kernel language

proc statement and referred to by a variable. Procedure applications block until the
first argument references a procedure name. State is created explicitly by NewCell,
which creates a cell, a mutable pointer into the variable store. Cells are updated by
Exchange and read by Access. The if statement defines a conditional that blocks
until its condition is true or false in the variable store. Threads are created explic-
itly with the thread statement. Each thread has a unique identifier that is used for
thread-related operations. Exception handling is dynamically scoped. The try state-
ment defines a scope and the raise statement raises an exception that is caught by the
innermost enclosing scope.

The full Oz language is defined by transforming all its statements into this kernel
language. Oz supports idioms such as objects, classes, reentrant locks, and a vari-
ety of channel called “ports” [116, 132]. The system implements them efficiently
while respecting their definitions. We give a brief summary of each idiom’s definition.
For clarity, we have made small conceptual simplifications. Full definitions are given
in [51].

• Object. An object is essentially a one-argument procedure {Obj M} that refer-
ences a cell, which is hidden by lexical scoping. The cell holds the object’s state.
The argument M indexes into the method table. A method is a procedure that is
given the message and the object state, and calculates the new state.

• Class. A class is essentially a record that contains the method table and attribute
names. A class is defined through multiple inheritance, and any conflicts are
resolved at definition time when building its method table.

• Reentrant lock. A reentrant lock is essentially a one-argument procedure {Lck
P} used for explicit mutual exclusion, e.g., of method bodies in objects used
concurrently. P is a zero-argument procedure defining a critical section. Reen-
trant means that the same thread is allowed to reenter the lock. Calls to the lock
may therefore be nested. The lock is released automatically if the thread in the
body terminates or raises an exception that escapes the lock body.

8.3. LOGIC VARIABLES IN CONCURRENT AND DISTRIBUTED SETTINGS161

• Port. A port is an asynchronous channel that supports many-to-one communi-
cation. A port P encapsulates a stream S. A stream is a list with unbound tail.
The operation {Send P M} adds M to the end of S. Successive sends from the
same thread appear in the order they were sent.

The distribution model

The Mozart system implements Distributed Oz, which is a conservative extension to
the centralized Oz language [34] that completely separates functionality from distribu-
tion structure. That is, Oz language semantics are unchanged1 while adding predictable
and programmable control over network communication patterns. Porting existing Oz
programs to Distributed Oz requires essentially no effort.

Allowing a successful separation of functionality from distribution structure puts
severe restrictions on a language. It would be almost impossible in C++ because of its
complex, informal semantics and because the programmer has full access to all under-
lying representations [119]. It is possible in Oz because of the following properties:

• Oz has a simple formal foundation that does not sacrifice expressiveness or ef-
ficient implementation. Oz appears to the programmer as a concurrent object-
oriented language whose basic functionality is comparable to modern languages
such as Java. The current emulator-based implementation is competitive with
Java emulators [59, 58]. Standard techniques for concurrent object-oriented de-
sign apply to Oz [79]. Furthermore, Oz introduces powerful new techniques that
are not supported by Java [51]. Some of these techniques are presented here.

• Oz is both a state-aware and dataflow language. That is, language entities can be
classified naturally into stateless, single assignment, and stateful. This helps give
the programmer control over network communication patterns in a natural man-
ner. Stateless data includes procedures and values, which can safely be copied to
many sites [7]. Stateful data includes objects, which at any instant must reside
on just one site [132]. Single assignment data includes logic variables, whose
dataflow synchronization allows to decouple calculating a value from sending it
across the network.

• Oz is a fully dynamic and compositional language. That is, Oz is dynamically
typed and all entities are first-class. By dynamically typed we mean that its type
structure is checked at run-time. This makes it easy to implement fully open
distribution, in which independent computations can connect and disconnect at
will. When connected they can communicate as if they were in the same central-
ized process. For example, it is possible to define a class C in one computation,
pass C to an independent computation that has never before heard of C, let the
independent computation define a class D inheriting from C, and pass D back to
the original computation [130, 54].

1Only ports are changed slightly to better model asynchronous FIFO communication between
sites [132].

162 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

• Oz provides language security. That is, all references to language entities are
created and passed explicitly. An application cannot forge references nor access
references that have not been explicitly given to it. The underlying representation
of language entities is inaccessible to the programmer. This is a consequence of
the abstract store and a kernel language with lexical scoping and first-class pro-
cedures. These are essential properties to implement a capability-based security
policy, which is important in open distribution.

The Distributed Oz execution model extends the Oz execution model by giving a dis-
tributed semantics to each language entity. The distributed semantics defines the net-
work behavior when language entities are shared between sites. The semantics is cho-
sen carefully to give predictable control over network communication patterns. The
centralized semantics is unchanged: we say the model is network-transparent [21].
In the current system, language entities are put in four categories. Each category is
implemented by a family of distributed protocols:

• Stateless: records, numbers, procedures, and classes. Since they do not change,
these entities can be copied at will.2 There is a trade-off between when to copy,
how many times to copy to a site, and access time. This gives a family of proto-
cols to define their distributed behaviors [7].

• Single assignment: logic variables. Assignment is done by a distributed unifica-
tion algorithm, which is the subject of this paper. To be precise, logic variables
provide consistent multiple assignment, that is, there can be multiple assign-
ments as long as they are unifiable. We keep the phrase “single assignment” to
avoid multiplying terminology.

• Stateful: cells, objects, ports, reentrant locks, and threads. For efficiency rea-
sons, these entities’ state pointers are localized to a site. If the state pointer’s site
can change, we say that the entity is mobile. Currently there are two mobility
behaviors: a mobile state protocol (cells, objects, locks, ports) and a stationary
access protocol (threads). The mobile state protocol ensures coherent state up-
dates with controlled mobility of the state pointer [132]. The stationary access
protocol is used for entities that cannot move.

• Resource: entities external to the shared store. References to resources can be
passed around the network at will, but the resource can only be executed on its
home site [130]. This includes computational and memory resources, which can
be made visible in the language, e.g., by means of virtual sites [54].

The single-assignment category can be seen as an optimization of the stateful category
in which a variable is bound to only one value, instead of repeatedly to different values.
That is, the distributed unification algorithm is more efficient than the mobile state
protocol. However, it turns out that logic variables have many more uses than simply
as an optimization of stateful entities. These uses are explained below.

2This is true only for the entity; not for its external references. An external reference has its own
protocol that corresponds to its category.

8.3. LOGIC VARIABLES IN CONCURRENT AND DISTRIBUTED SETTINGS163

Logic variables

A logic variable conceptually has a fixed value from the moment of its creation. The
value is unknown at first, and it remains unknown until the variable is bound. At all
times, the variable can be used as if it were the value. If the value is needed, then the
thread requiring the value will suspend until the variable is bound. If the value is not
needed then execution continues.

A logic variable can be passed among sites arbitrarily. At all times, it “remembers
its origins”, that is, when the value becomes known then the variable will receive it.
The communication needed to bind the variable is part of the variable, and not part
of the program manipulating the variable. This means that the variable can be passed
around at will, and the value will always arrive at the variable. This is one key reason
why logic variables are useful in distributed computing.

Logic variables can replace standard (assignable) variables in all cases where they
are assigned only one value, i.e., where they are used as placeholders for values. The
algorithm used to bind logic variables must ensure that the result is independent of
binding order. In a centralized system, the algorithm is called unification and is usual-
ly implemented as an extension of a union-find algorithm. Union-find handles only the
binding of variables with variables [93]. Unification generalizes this to handle nonvari-
able terms as well. In a good implementation, binding a new variable to a nonvariable
(the common case) compiles to a single register move or store operation [127].

A logic variable may be bound to another logic variable. A legitimate question is
whether variable-variable binding is useful in a practical system. As we shall see, one
reason that variable-variable binding is important is that it allows to maintain maximum
latency tolerance and third-party independence when communicating among more than
two sites, independent of fluctuating message delays. A second reason is that it has a
very simple logical semantics.

It is possible to disallow variable-variable binding to obtain a slightly simpler im-
plementation. The simpler implementation blocks any attempt to do variable-variable
binding until at least one of the variables is bound to a value. The price of the sim-
pler implementation is that third-party dependencies are not removed in all cases. Fu-
tures [49] and I-structures [12, 133, 64] resemble this weaker version of logic variables
(see Section 8.10.2). There remains a crucial difference with logic variables, namely
that futures and I-structures can be assigned only once, whereas logic variables can be
assigned more than once, as long as the assignments are consistent with each other.

The efficiency difference between full and weak logic variables is small. The dis-
tributed binding algorithm is almost identical for the full and weak versions. Further-
more, the full version has a simple logical semantics. For these three reasons we have
implemented the full version in the Distributed Oz implementation.

8.3.2 Distributed unification

For logic variables to be practical in a distributed setting they must be efficiently im-
plementable. This section gives the key ideas of the distributed algorithm that realizes

164 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

y f(y1)

y f(y1)

y f(y1)

Centralized

Site 1 Site 2

Distributed

x

y1=foo
y1

x1

Site 3

Equations Store

x=f(x1) x

x1

y1y1=foo

x=y

x=f(x1)

x=y x1

y1

x=f(x1)
x

y1
(none)

=

variable’s
Marks

owner site

x=f(x1)

Figure 8.4: Initial configuration of example

this goal. We explain the algorithm in just enough detail so that its network behavior
becomes clear. This will allow us to infer the algorithm’s behavior in the programming
examples that follow. A formal definition of the algorithm and proofs of its correct
behavior are given starting from Section 8.4.

The two basic operations on logic variables are binding and waiting until bound.
Waiting until bound is easy: the variable has a list containing suspended threads that
need its value. When the value arrives, the threads are awoken. Binding is harder: it
requires cooperation between sites. If a variable exists on several sites, then it must be
bound to the same value on all sites, despite concurrent binding attempts. Unification
implements the binding operation. At any instant there can be any number of bindings
in various stages of completion. Both the centralized and distributed algorithms cause
each binding request to be eventually incorporated into the store, if it is consistent with
the store.

The basic distributed operation is binding a variable to a value. This is implemented
by making one site the “owner” of the variable. In the current system, the site that
declares the variable is its owner. A binding request is sent to the owner, and the owner
forwards the binding to each site that knows the variable. In terms of network behavior,
one message is sent to the owner, and one message is sent by the owner to each site
that knows the variable. The owner’s sends can be done by a reliable multicast, if the
network supports it efficiently. The owner accepts the first binding request and ignores
all subsequent binding requests. An ignored request will be retried by its initiating
site after it receives the binding. As we will see in the programming examples, in the
majority of cases a variable is declared either on a site that will need its value or on
the site that will bind the variable. In both of these cases, the network behavior of the
algorithm is very good.

A logic variable X can be bound to a data structure or to another variable. The
algorithm is the same in both cases. By default the binding is eager, i.e., the new value

8.3. LOGIC VARIABLES IN CONCURRENT AND DISTRIBUTED SETTINGS165

y1 foo y1 foo

y f(y1)y f(y1)

y1 foo

Site 3Site 2Site 1

x1

x

x=f(x1) (none)

x

x1

x=f(x1)

x=y

Figure 8.5: Configuration after executing the equation Y1=foo

is immediately sent to all sites that know about X. This means that a bound variable is
guaranteed to eventually disappear from the system. The same binding eventually ap-
pears on each site that has the variable. For example, executing the equation X=f(X1)
causes the binding X ← f(X1) to appear in the store on all sites containing X. Fur-
thermore, X1 is added to the known variables of all of these sites that did not know
X1.

An example

We illustrate the algorithm with an example. Figure 8.4 shows a centralized configura-
tion (on the left) and one way to distribute it (on the right). Each configuration has a set
of equations and a store. For the algorithm, an equation is simply a request to perform
a binding. In the formal discussion (Section 8.4 and following), we need more kinds of
requests than just equations. We call all the requests actions. The same equation may
exist more than once. The store contains the variables and their bindings, if the latter
exist.

In the distributed case, each site has a set of equations and a store. The centralized
equations are distributed among the sites. Each variable is visible on a subset of the
sites. If there is only one site, then the distributed algorithm is identical to the central-
ized algorithm. Each variable occurrence on a site is called a “proxy”. One of the sites
is the variable’s owner. In Figure 8.4, site 1 is the owner of X and site 3 is the owner
of both X1 and Y1. If the variable is bound, then the binding will eventually arrive on
each site that sees the variable. Variable Y is bound to f(Y1) on sites 2 and 3.

Site 1 requests the binding Y1=foo. This sends a message to site 3, the owner of
Y1. The owner sends a message to all proxies of Y1. That is, the owner sends three
messages, to sites 1, 2, and 3. When a message arrives on a site, then the binding Y1
← foo appears on that site (see Figure 8.5). Since the owner is on site 3, its message
to site 3 does not need any network operations.

Lazy and eager variables

Logic variables can have different distributed behaviors, as long as network transparen-
cy is satisfied in each case. As explained above, by default a logic variable is eager
on all sites, i.e., its binding is sent immediately to all sites that reference the vari-

166 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

able. This gives maximal latency tolerance and third-party independence. However,
this may cause the binding to be sent to sites that do not need it. We say that a logic
variable is lazy on a site if its value is only sent to that site when the site needs it, e.g.,
when a thread is waiting for the variable. Binding a lazy variable typically needs fewer
messages, since not all sites that know the variable need its value. Both eager and lazy
variables are implemented by the on-line DU algorithm of Section 8.6. They differ
only in the scheduling of one reduction rule. The Mozart implementation currently
only provides eager variables; with a minor change it can provide both. A programmer
annotation can then decide whether a variable is eager or lazy. The implementation
issues of laziness are further explored in Section 8.9.5.

8.3.3 Examples of concurrent programming

It turns out that logic variables suffice to express most concurrent programming idioms
in an intuitive and concise manner. Additional concepts such as semaphores, critical
sections, or monitors, are not needed. [15] conclude that logic variables are “spec-
tacularly expressive” in concurrent programming even without explicit state. We give
examples of four important idioms, namely synchronization, communication, mutual
exclusion, and first-class channels. Many other idioms can be found in the concurrent
logic programming literature [114, 51].

Synchronization and communication

The following fragment creates two threads and synchronizes their execution:

local X in
thread {Print a} X=unit end
thread {Wait X} {Print b} end

end

The statement {Wait X} blocks until X’s value is known. Therefore “a” is always
printed before “b”. The value of X is communicated from the first to the second thread.
{Wait X} is not a new notion; it can be defined as if X=1 then skip else skip

end.

Mutual exclusion

A critical section can be defined by means of logic variables and one cell. The cell is
used to manage access to a token, which is passed from one thread to the next. Assume
that a cell C exists with initial content unit, e.g., defined by {NewCell unit C}.
Then the following fragment defines a critical section:

local X Y in
{Exchange C X Y} {Wait X} % Enter
{InnerSanctum} % Body
Y=unit % Exit

end

8.3. LOGIC VARIABLES IN CONCURRENT AND DISTRIBUTED SETTINGS167

We show that only one thread at a time can be executing the body. A thread that tries
to enter is given C’s previous state Xn and current state Yn. The thread then waits on Xn.
When the previous thread leaves, it binds Yn−1=unit. Since Yn−1 = Xn, this allows
the next thread to enter. This works even if many threads try to enter concurrently,
since the exchanges are serialized. Section 8.3.4 uses this idea to define a procedure
NewSimpleLock that can create any number of locks.

First-class channels

A simple kind of FIFO channel is the stream, a list with unbound tail. Reading from
the stream is receiving from the channel. Appending to the stream is sending through
the channel. Each element of the stream can be a record containing both the query and
an answer channel. For example, here is a fragment that handles queries appearing on
the stream X0:

case X0 of query(Q1 A1)|X1 then % Wait for query Q1 and channel
A1

A1={CalcAnswerStream Q1} % Calculate answer stream on A1
case X1 of query(Q2 A2)|X2 then % Wait for Q1 and A2

A2={CalcAnswerStream Q2} % Calculate answer stream on
A2

...
end

end

We assume that Q1 is a database query that gives multiple answers, which appear incre-
mentally on A1. The case statement is a useful idiom: it waits until X0 is sufficiently
bound to read the pattern query(Q1 A1)|X1. The pattern variables Q1, A1, X1 are
declared implicitly. Typically, the above fragment would be written as part of a loop:

local P in
proc{P M}

case M of query(Q A) then A={CalcAnswerStream Q} end
end
{ForAll X0 P}

end

ForAll takes a list X0 and a one-argument procedure, and applies the procedure to
all the list’s elements. The above example can be written more compactly as a nested
statement with exactly the same meaning:

{ForAll X0
proc{$ M}

case M of query(Q A) then A={CalcAnswerStream Q} end
end}

This is just a short-cut that avoids explicitly declaring P. Using ForAll is efficient;
there are no memory leaks and the stream is not consumed faster than it is produced. It
may be produced faster than it is consumed, however. Usually, a stream is associated
to an Oz port and one writes to the port (see Section 8.3.1).

168 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

8.3.4 Examples of distributed programming

The purpose of this section is to show the usefulness of logic variables when extending
concurrent object-oriented programming to a distributed setting. Sections 8.3.4-8.3.4
present a series of common programming idioms in distributed programming. We
show how to express them in a concurrent object-oriented language that contains logic
variables. The resulting solutions have two properties:

• The solutions perform correctly independently of how they are partitioned among
sites. That is, the programming idioms underlying the communication patterns
can be expressed in a network-transparent manner.

• No matter how the solutions are partitioned among sites, the resulting message
traffic is optimal or near-optimal (in the common cases) or at least reasonable
(in the uncommon cases). That is, given logic variables, the same programming
idioms perform well in both centralized and distributed settings.

This shows that, at least in the cases presented here, using logic variables allows to keep
useful programming idioms of centralized object-oriented programming, while allow-
ing the implementation to extend efficiently to a distributed setting. This is evidence
that controlling execution through data availability, which is what logic variables pro-
vide, is a natural way to keep good performance while mapping a program to arbitrary
distribution structures.

The examples show a variety of distributed programming techniques using logic
variables. Some of them, e.g., barrier synchronization and distributed locking, will
normally be provided as primitives by the system. Others, e.g., stream communication,
will normally be programmed by the user. We do not distinguish between the two cases
since our goal is to show the expressiveness of logic variables.

Latency tolerance and third-party independence

From the viewpoint of execution order of basic language operations, a distributed ex-
ecution cannot be distinguished from a concurrent execution. Distinguishing them re-
quires looking at the effects of partitioning an execution over several sites. This affects
system properties such as network properties (e.g., delays and limited bandwidth) and
site resources (e.g., disks and main memory). At the language level, the latter shows up
as the restriction of some operations to be local or remote only (such as local memory
operations and remote message sends).

Logic variables decouple the declaration of a variable from its binding. Once a
variable is declared, it can be passed to other sites, even before it is bound. When it is
bound, the binding will be transferred automatically and efficiently to the sites needing
it. This decoupling allows programs to provide a degree of latency tolerance, i.e., their
execution is less affected by changes in network latency. For example, in the following
fragment:

local Ans in
thread

8.3. LOGIC VARIABLES IN CONCURRENT AND DISTRIBUTED SETTINGS169

proc {Generate N Max L} % Return list of integers from N to
Max-1

if N < Max then L1 in
L=N|L1
{Generate N+1 Max L1}

else L=nil end
end

fun {Sum L A} % Return (A + sum of elements of list
L)

case L
of nil then A
[] X|Ls then {Sum Ls A+X}
end

end

local CS L S in % Generate a list and sum its elements
CS={NewComputeServer ´sinuhe.sics.se´} % Remote compute

server
thread L = {Generate 0 150000} end % Producer thread

(local)
{CS proc {$} S={Sum L 0} end} % Consumer thread

(remote)
{Print S} % Print result (local)

end

Figure 8.6: Stream communication

{DataBase query("How far is up?" Ans)}
end
thread

{RemoteClient inform(Ans)}
end

end

The database query and the client transfer are initiated concurrently. Assume that they
are on different sites. The initiator site owns Ans. As soon as Ans is bound, the binding
will be sent from the database site to the initiator site, which forwards it to the client
site. This is all done independently of the initiator.

A logic variable can be bound to another logic variable. This allows programs to
improve third-party independence. For example, assume variable X exists on sites 1
and 2 and variable Y exists on sites 2 and 3. Assume that X and Y are bound together
on site 2. Then binding X to 23 on site 1 should be visible on site 3 independent of
what happens to site 2.

170 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

proc {Generate N L} % Return list L of integers starting with
N

case L of X|Ls then
X=N
{Generate N+1 Ls}

else skip end
end

fun {Sum N L A} % Return (A + sum of first N elements of
L)

if N>0 then X L1 in
L=X|L1
{Sum N-1 L1 A+X}

else
A

end
end

local CS L S in
CS={NewComputeServer ´sinuhe.sics.se´} % Remote compute

server
{CS proc {$} {Generate 0 L} end} % Producer thread

(remote)
thread S={Sum 150000 L 0} end % Consumer thread

(local)
{Print S} % Print result (local)

end

Figure 8.7: Stream communication with flow control

8.3. LOGIC VARIABLES IN CONCURRENT AND DISTRIBUTED SETTINGS171

Stream communication

The first example program consists of a producer that creates a data stream and a
consumer that reads this stream. We first examine the program in a centralized setting.
Then we explain what happens when the producer and consumer are on different sites.

As we saw before, a stream is a list whose tail is a logic variable. The producer
thread incrementally binds the tail to a pair of an element and a new tail. The consumer
thread can start reading the stream while the producer is still writing to it. In the
program of Figure 8.6, the producer generates a list of numbers and the consumer
sums them. The consumer will print the sum 11250075000. This example has no flow
control, i.e., the producer will create elements eagerly. Unless the list’s maximum size
is small, flow control is needed to avoid problems with memory utilisation. This is true
in both centralized and distributed settings.

Flow control can be added by letting the consumer inform the producer when it is
able to receive the next element. We do this by letting the consumer bind the tail to
a pair of a logic variable and a new tail. The producer waits until this pair exists and
then binds the logic variable to the next element. The producer and consumer then
execute in lock step (see Figure 8.7). An n-element buffer can be programmed with
minor changes. The consumer can terminate the producer if the skip is replaced with
L=nil. The producer detects the end of L and terminates.

To distribute these examples, let the producer thread and consumer thread run on
different sites. For example, Figure 8.6 executes the producer locally and the consumer
remotely, and Figure 8.7 does it the other way around. In both cases, remote execution
is initiated by designating the site on which a calculation starts.

The distributed behavior is as follows. In the first example, the consumer is started
by sending a request, i.e., a zero-argument procedure, to a remote compute server
CS. This procedure and the function Sum are defined locally. Their compiled code is
sent across the network. Because of network transparency, the procedure body can
be any expression at all. The logic variable S is shared between the local and remote
sites, and therefore transparently becomes a distributed variable. When Sum finishes
its calculation then the result is bound to S. This sends the result back to the local site.

In terms of network operations, both examples are efficient. Since N is already
bound when L is bound, Figure 8.6 will send one message from the producer to the
consumer for each element of the stream, exactly as desired. Figure 8.7 will send one
message in each direction for each element of the stream, exactly as desired.

Stream communication with multiple readers

Now let the stream be read by multiple consumers. Figure 8.8 shows how to do it
with consumers on three sites. We assume three compute servers referenced by CS1,
CS2, and CS3. Both examples of the previous section (with and without flow control)
will work with multiple consumers. This is an excellent illustration of the difference
between logic variables and I-structures. It is allowed for multiple readers to bind the
list’s tail, since they bind it in a consistent way. This would not work with ordinary
single assignment, e.g., as provided by I-structures.

172 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

local CS1 CS2 CS3 L S1 S2 S3 in
CS1={NewComputeServer ´sinuhe.sics.se´}
CS2={NewComputeServer ´norge.info.ucl.ac.be´}
CS3={NewComputeServer ´tinman.ps.uni-sb.de´}
thread {Generate 0 L} end % Producer (local)
{CS1 proc {$} S1={Sum L 150000 0} end} % Consumer 1 (on

Site 1)
{CS2 proc {$} S2={Sum L 150000 0} end} % Consumer 2 (on

Site 2)
{CS3 proc {$} S3={Sum L 150000 0} end} % Consumer 3 (on

Site 3)
end

Figure 8.8: Stream communication with multiple readers

The example without flow control is straightforward: one message is sent to each
consumer per element. The example with flow control is more interesting; it is shown
in Figure 8.8. In this case, each consumer sends a message to request the next element
when it is needed. The network behavior is as follows. To make things interesting, we
assume a fast, a medium, and a slow consumer. The fast consumer sends a message
to the producer, which is the owner of the first stream variable. The message contains
two variables: one for the element and one for the next stream variable. Both of
these variables are owned by the fast consumer. It follows that from this point on, the
fast consumer will be the owner of all stream variables. Therefore all further stream
elements will be sent by the producer to the fast consumer, who will multicast them to
the other consumers. After the first message, the medium consumer will send requests
to the fast consumer, since it is the owner. These requests will be ignored, since the
fast consumer will already have bound the stream variable. The slow consumer will
send no requests at all; it receives the elements before asking for them.

Barrier synchronization

We would like to create a set of concurrent tasks and be informed as soon as all tasks
have finished. This should work efficiently independently of how the tasks are parti-
tioned over a set of sites. Figure 8.9 gives a simple solution that works well in both
centralized and distributed settings. To explain how it works, we need first of all to
understand how to synchronize on the termination of a single thread. This is done as
follows, where statement S represents a task:

local X in thread S X=unit end ... {Wait X} end

The main thread creates a new thread whose body is S X=unit. The new thread
will bind X after S is finished, and the main thread detects this with a {Wait X}. A
statement S finishes when it reduces to skip in its thread. Other threads may be created

8.3. LOGIC VARIABLES IN CONCURRENT AND DISTRIBUTED SETTINGS173

proc {BarrierSync Ps}
proc {Conc Ps L}

case Ps of P|Pr then X Ls in
L=X|Ls
thread {P} X=unit end
{Conc Pr Ls}

else
L=nil

end
end
L

in
{Conc Ps L}
{ForAll L proc {$ X} {Wait X} end}

end

{BarrierSync [proc {$} E1 end % Task 1
proc {$} E2 end % Task 2
proc {$} E3 end]} % Task 3

Figure 8.9: Barrier synchronization

during the execution of S; these are independent of S. If the task is executed remotely,
then binding X sends a single message to the main site, which owns X. This informs
the thread of the task’s completion. The message sent back to the task’s site is a simple
acknowledgement that does not affect the barrier’s latency, which is one message.

We generalize this idea to multiple tasks. The general scheme is as follows:

local X1 ... Xn in
thread S1 X1=unit end
thread S2 X2=unit end
...
thread Sn Xn=unit end
{Wait X1} ... {Wait Xn} S

end

The main thread waits until all Xi are bound. When Si terminates then its thread binds
Xi=unit. When all tasks terminate then all Xi are bound, so the main thread runs S.

Assume now that the tasks are distributed over a set of sites. Each Xi is owned
by the main thread’s site. Therefore binding Xi=unit sends a message from the task
site to the main site. When all variables are bound, the main thread resumes execution.
Concurrently, the main site sends a message back for each message it received. These
messages do not affect the barrier’s latency.

174 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

proc {NewSimpleLock ?Lock}
Cell = {NewCell unit}

in
proc {Lock Code}

Old New in
try

{Exchange Cell Old New} {Wait Old} % Enter
{Code} % Body

finally New=unit end % Exit
end

end

Figure 8.10: Distributed locking

Distributed locking

If a program fragment may be executed by many threads, then it is important to be able
to guarantee mutual exclusion. A thread that attempts to execute the fragment should
block and be queued. Multiple requests should be correctly queued and blocked inde-
pendent of whether the threads are on the same site or on another site. We show that it
is possible to implement this concisely and efficiently in the language. As explained in
Section 8.3.3, Figure 8.10 shows one way to implement a lock that handles exceptions
correctly.3 If multiple threads attempt to access the lock body, then only one is given
access and the others are queued. The queue is a sequence of logic variables. Each
thread blocks on one variable in the sequence, and will bind the next variable after
it has executed the lock body. Each thread desiring the lock therefore references two
logic variables: one to wait for the lock, and one to pass the lock to the next thread.
Each logic variable is referenced by two threads.

If the threads are on different sites, then the queue is distributed. A single message
will be sent to transfer the lock from one site to another. This implements distributed
token passing, which is a well-known distributed algorithm for mutual exclusion [25].
We explain how it works. When a thread tries to enter the lock body, the Exchange
gives it access to the previous thread’s New variable. The previous thread’s site is New’s
owner. When the previous thread binds New, the owner sends the binding to the next
thread’s site. This requires a single message.

Remote method invocation (RMI)

Let us invoke an object from within a thread on a given site. Where will the object
execute? On a network-transparent system there are several possible answers to this
question. Here we give just enough information to justify our RMI implementation.
For a full discussion of the issues we refer the reader to [131, 132]. In Mozart, objects

3A thread-reentrant lock is defined in [132].

8.3. LOGIC VARIABLES IN CONCURRENT AND DISTRIBUTED SETTINGS175

proc {NewStationary Class Init ?StatObj}
Obj={New Class Init}
S P={NewPort S}
N={NewName}

in
proc {StatObj M}

R in
{Send P M#R}
if R=N then skip
else raise R end
end

end
thread

{ForAll S
proc {$ M#R}

thread
try {Obj M} R=N
catch X then R=X end

end
end}

end
end

Figure 8.11: RMI definition: Create a stationary object from any class

176 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

% Create class Counter on local site
class Counter

attr i
meth init i <- 0 end
meth inc i <- @i+1 end
meth get(X) X=@i end
meth error raise e(some_error) end end

end

% Create object Obj on remote site
{CS proc {$} Obj={NewStationary Counter init} end}

% Invoke object from local site
{Obj inc}
{Obj inc}
local X in {Obj get(X)} {Print X} end
try {Obj error} catch X then {Print X} end

Figure 8.12: RMI example: A stationary counter object

synchronously migrate to the invoking site by default. Therefore the object executes
locally with respect to the invoking thread. This makes it easy for the object to syn-
chronize with respect to the thread. If the object raises an exception, then it is passed
to the thread. Object migration is implemented by a lightweight mobility protocol that
serializes the path of the object’s concurrent state pointer among the invoking sites.

It is possible in Oz to define a generic procedure that takes any object and returns
a stationary object, i.e., such that all its methods will execute on the same site. This
works because Oz has first-class messages and dynamic typing [58]. This is not possi-
ble in Java [45]. Figure 8.11 defines NewStationary, which given any object class,
creates a stationary object of that class. It works by wrapping the object inside a port,
which is a stationary entity to which messages can be sent asynchronously. Therefore
the object always executes on the same site, namely the site on which it was created.
As before, the object synchronizes with respect to the invoking thread, and exceptions
are passed to the invoking thread. The logic variable R is used both to synchronize and
to pass back exceptions.

Figure 8.12 defines Obj remotely and invokes it from the local site. For example,
{Obj get(X)} {Print X} queries the object and prints the result on the local site.
The object responds by binding the variable X with the answer. Since the local site
owns X, the binding request sends one message from the remote site to the local site.
With the initial invocation, this gives a total message latency of two for the remote call,
just like an RPC. There is a third message back to the remote site that does not affect
the message latency.

8.3. LOGIC VARIABLES IN CONCURRENT AND DISTRIBUTED SETTINGS177

public class List {
final unknown int car;
final unknown List cdr;

List(unknown int car, unknown List cdr) {
this.car=:=car;
this.cdr=:=cdr;

}
public void cons(unknown int car, unknown List cdr) {

this.car=:=car;
this.cdr=:=cdr;

}
}

Figure 8.13: List implementation in CC-Java

8.3.5 Adding logic variables to other languages

This section shows how to add logic variables in an orthogonal way to Java and ML,
representative examples of object-oriented and functional languages.

Java

[121] has recently defined and implemented a Java variant, CC-Java (Concurrent Con-
straint Java), which replaces monitors by logic variables and adds statement-level
thread creation. Except for these differences, CC-Java has the same syntax and se-
mantics as Java.

CC-Java provides logic variables through a single new modifier, unknown, which
can be used in declarations of local variables, fields, formal parameters, and functions.
For example, a variable i declared as unknown int i; is initially assigned an
unknown value. Standard Java variables can be freely replaced by unknown variables.
The result is always a legal CC-Java program. Variables with Java types will never be
assigned unknown values–any attempt will suspend the thread until the value is known.

An unknown variable is bound by the new operator “=:=”, which does unifica-
tion. Each of the two operands can be known (i.e., be a standard Java variable) or
unknown. Doing i=:=23 binds i to 23. For correctness, the assignment operator
“=” must overwrite (not unify) an unknown variable on the left-hand side. Declaring
an unknown variable as final means that it is only assigned once, i.e., when it is de-
clared. An final unknown variable is therefore equivalent to an Oz logic variable.
An unknown variable is equivalent to an Oz cell that points to a logic variable.

Figure 8.13 shows how to implement lists in CC-Java. Each list pair contains two
logic variables, and therefore lists can be partially instantiated just like in Oz. Using

178 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

public class StreamExample {
// Return list of integers from n to max-1
static List generate(int n, int max) {

final unknown List l;
unknown List ptr=l;
for (int i=n; i<max; i+=1) {

final unknown List tail;
ptr=:=new List(i,tail);
ptr=tail;

}
ptr=:=null;
return l;

}

// Return (a + sum of elements of list l)
static int sum(unknown List l, int a) {

int sum=a;
unknown List ptr=l;
while (ptr!=null) {

final unknown int x;
final unknown List ls;
ptr.cons(x,ls);
sum+=x;
ptr=ls;

}
return sum;

}

// Generate a list and sum its elements
public static void main(String[] args) {

unknown List l;
int sum;
thread l=:=generate(0,1500);
sum=sum(l,0);
System.out.println(sum);

}
}

Figure 8.14: Stream communication in CC-Java

8.3. LOGIC VARIABLES IN CONCURRENT AND DISTRIBUTED SETTINGS179

logic variables does not imply any memory penalty for lists: when compiled to Oz,
a CC-Java list pair uses just two memory words. Threads can synchronize on the
instantiation state of lists.

Figure 8.14 uses these lists to write the stream communication example of Fig-
ure 8.6 in CC-Java (see Section 8.3.4). The thread statement of CC-Java is used
to generate the list in another thread. The example has been written in a natural style
in Oz and CC-Java, where Oz uses recursion and CC-Java uses iteration to define the
generate and sum functions. Comparing the two examples, we see that there is
very little difference in clarity between these two styles. Their run-time efficiencies
are comparable.

When examining the CC-Java program, two observations can be made. First,
the example has two synchronization points: the statements ptr.cons(x,ls) and
sum+=x inside the sum function. The former waits until ptr contains a list pair and
the latter waits until x is an integer. Second, the example shows that both final
unknown and unknown variables are useful. The former are used as part of data
structures that should not change. The latter are used in loops that need a new logic
variable in each iteration. The new variable is created with an assignment statement,
e.g., ptr=ls creates a new variable referred to by ptr.

It is straightforward to compile CC-Java to either Oz or Java. A prototype CC-
Java to Oz compiler has been implemented that understands the full Java syntax and
compiles most of the Java language. Benchmarks show that CC-Java and Oz have
comparable performance on the Mozart implementation of Distributed Oz. Both CC-
Java and Oz on Mozart have performance comparable to Java on JDK 1.1.4, except
that threads are much faster in Mozart [59, 58].

We outline how to implement a CC-Java to Java compiler. All Java code that does
not use logic variables is unchanged. For each class C of which unknown instances
are declared, the compiler adds a second class definition UnknownC to the Java code.
The class UnknownC includes all methods of C and additional methods to unify the
variable and to obtain its value. At each point where the value of an object of class
UnknownC is needed, the compiler inserts a call to obtain the value. If the value is not
yet available, then the calling thread is suspended until the value becomes available
through unification.

ML

[117] has recently shown how logic variables can be added as a conservative extension
to a functional language very similar to Standard ML. We outline how the extension is
done. Several new operations are added, including the following:

• lvar: unit -> ’a. The operation lvar() creates a fresh logic variable
and returns its address.

• <-: ’a * ’a -> ’a. The operation x <- y binds x, which must be a
logic variable, to y.

180 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

• ==: ’a * ’a -> ’a. The operation x == y unifies x and y. This raises
an exception if x and y are not unifiable.

• wait: ’a -> ’a. The operation wait x is an identity function that blocks
until its argument is nonvariable.

• spawn e. This operation spawns a new thread evaluating expression e and
returns ().

Execution states map addresses to any ML entity including primitive values, records,
and reference cells. Execution states are extended so that a state may also map an
address to a logic variable or to another address. The entity corresponding to an address
is obtained by iterating the state function until the result is no longer an address. This
iteration is the dereferencing operation. If a thread needs an entity and encounters a
logic variable, then it blocks until the entity is available.

With this extension, existing ML programs continue to work and logic variables
may be freely intermixed with ML entities. ML provides explicit stateful entities
which are called references and behave like typed Oz cells. As in Oz and CC-Java,
the combination of logic variables and state allows to easily express powerful con-
current programming techniques. Smolka outlines the semantics of the extension and
illustrates some of these programming techniques.

8.4 Basic concepts and notation

This section introduces the basic concepts and notation used for the CU and RCU
algorithms, which do centralized unification. Most of this notation remains valid for
the distributed algorithms. The extra notation they need will be given later on.

8.4.1 Terms and constraints

In the usual case, a variable will be bound to a data structure. However, because of
unpredictable network behavior, it may also be necessary to bind variables to variables
or data structures to data structures. The result should not depend on the order in
which the bindings occur. This justifies using a constraint system (D,C) to model the
data structures and their bindings [67]. The domain D is the set of data structures of
interest; for generality we assume these are rational trees, i.e., rooted directed graphs.
The constraints C model bindings; we assume they are equalities between terms that
describe sets of trees. For example, the constraint x = f (y) means that the trees de-
scribed by the variable x all have a root labelled f and a single subtree, which is a tree
described by the variable y. In this way, we express clearly what it means to bind terms
that may contain unbound variables. If y is not bound, then nothing is known about the
subtree of x.

We introduce a uniform notation for terms, which can be either variables or trees
that may contain variables. Terms are denoted by u, v, w. Variables are denoted by x,

8.4. BASIC CONCEPTS AND NOTATION 181

y, z. Nonvariable terms are denoted by t, t1, t2. A term can either be a variable or a
nonvariable. A nonvariable term is a record of the form f (x1, ...,xn) with arity n ≥ 0,
where x1, ..., xn are variables, and where the label f is an atomic constant taken from a
given set of constants. A constraint has the general form

V

i ui = vi where ui and vi are
terms. A basic constraint has the form x = u.

To bind u and v means to add the constraint u = v to the system. This is sometimes
called telling the constraint. The operation of binding u and v is called unification.
This is implementable in a time and space essentially equivalent to that needed for
manipulating data structures in imperative languages [127]. For more on the constraint-
solving aspects of unification see [67].

For the purpose of variable-variable unification, we assume a partial order between
terms such that all variables are in a total order and all nonvariable terms are less than
all variables. That is, we assume a transitive antisymmetric relation less(u,v) such
that for any distinct variables x and y, exactly one of less(x,y) or less(y,x) holds. In
addition, for any nonvariable term t and any variable x, less(t,x) holds. The algorithm
uses the order to avoid creating binding cycles (e.g., x bound to y and y bound to x).
This is especially important in a distributed setting.

8.4.2 Configurations

A configuration c = (α;σ;µ) of a centralized execution is a triple containing an action
α, a store σ, and a memo table µ:

α =
V

i ui = vi ∧
V

i false ∧
V

i true σ =
S

i xi← ui µ =
S

i xi = yi

The action α is a multiset of three kinds of primitive actions, of the form u = v, false,
and true. The equation u = v is one kind of primitive action. The notation x← u
represents the binding of x to u. The store is a set of bindings. All variables xi in the
store are distinct and there are no cycles xa1←xa2 , ..., xan−1←xan , xan←xa1 . It is easy to
show that configurations always have this form in the CU algorithm.

The notation x← u,σ will be used as shorthand for {x← u}∪σ. The function
lhs(σ) =

S

i xi gives the set of bound variables in σ, which are exactly the variables on
the left-hand sides of the binding arrows.

The memo table µ is used to store previously-encountered variable-variable equal-
ities so that the algorithm does not go into an infinite loop when unifying terms rep-
resenting cyclic rational trees. For example, consider the equation x = y with store
x← f (x)∧ y← f (y). Dereferencing x and y and decomposing the resulting equation
f (x) = f (y) gives x = y again (see Section 8.5). This loop is broken by putting x = y in
the memo table and testing for its presence. The memo table has two operations, ADD
and MEM, defined as follows:

ADD(x = y,µ) = µ∪{x = y}
ADD(x = t,µ) = µ
MEM(x = u,µ) = true if x = u ∈ µ
MEM(x = u,µ) = false otherwise

182 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

If the number of variables is finite, then the number of possible variable-variable equa-
tions in the memo table is finite also. Therefore all possible loops are broken. In the
off-line case this is always true. In the on-line case this is true if the finite size property
holds (see Section 8.8).

8.4.3 Algorithms

We define an algorithm as a set of reduction rules, where a rule defines a transition re-
lation between configurations. The algorithms in this article all have a straightforward
translation into an efficient imperative pseudocode. We do not define the algorithms in
this way since it complicates reasoning about them. Rule reduction is an atomic oper-
ation. If more than one rule is applicable in a given configuration, then one is chosen
nondeterministically. A rule is defined according to the following diagram:

α α′
σ; µ σ′; µ′

C

A rule becomes applicable for a given action α when the actual store matches the store
σ given in the rule and the optional condition C is satisfied. The rule’s reduction atom-
ically replaces the current configuration (α;σ;µ) by the result configuration (α′;σ′;µ′).

Both the centralized and the distributed algorithms are defined in the context of a
structure rule and a congruence.

Structure
α1∧α2 α′1∧α2

σ; µ σ′ ; µ
′ if

α1 α′1
σ; µ σ′ ; µ

′

Congruence

{

α1∧α2 ≡ α2∧α1

true∧α≡ α

Because of the congruence, the primitive action true may occur an arbitrary number of
times. This is not true of the other primitive actions, which form a multiset.

8.4.4 Executions

An execution e of a given algorithm is a (possibly infinite) sequence of configurations
such that the first configuration is an initial configuration and each transition corre-
sponds to the reduction of one rule:

c1
R1−→ c2

R2−→ ·· ·
Rn−1
−→ cn

In any execution, distributed or centralized, we assume that the rules are reduced in
some total order. This is done without loss of generality since the results we prove
in this article will hold for all possible executions. Therefore, reductions that are not
causally related may be assumed to execute in any order.

An initial configuration of the CU algorithm is of the form (α1; /0; /0), where α1 is
a finite conjunction of equations and the store and memo table are both empty. A ter-
minal configuration (if it exists) is a configuration where no rules are applicable. The

8.5. CENTRALIZED UNIFICATION (CU ALGORITHM) 183

last configuration of a finite execution is not necessarily a terminal configuration; it
is simply the configuration that has no successors. A valid configuration is one that
is reachable by an execution of a given algorithm. We speak of centralized execu-
tions (using the CU or RCU algorithms, see Sections 8.5 and 8.7.2) and distributed
executions (using the DU algorithm, see Section 8.6).

8.4.5 Adapting unification to reactive systems

A store represents a logical conjunction of constraints. Adding a constraint that is in-
consistent with the store results in the conjunction collapsing to a “false” state. This
behavior is incompatible with a long-lived reactive system. Furthermore, it is expen-
sive in a distributed system since it requires a global synchronization. Rather, we want
an inconsistent constraint to be flagged as such (e.g., by raising an exception), with-
out actually being put in the store. This requires two modifications to the unification
algorithm:

• Incremental tell, i.e., information that is inconsistent with the store is not put in
the store [116]. The CU and DU algorithms both implement incremental tell by
decomposing a rational tree constraint into the basic constraints x = y and x = t
and by not collapsing the store when an inconsistency is detected with a basic
constraint. Inconsistency is represented as a new action “false” instead of being
incorporated into the store. This new action can be used to inform the program,
e.g., by raising an exception.

• Full failure reporting, i.e., every case of inconsistency is flagged to the pro-
gram. Neither the CU nor the DU algorithms do this. If the inconsistent equa-
tion x = y is present more than once, then the CU algorithm flags this only once.
The DU algorithm flags the inconsistency of (x = y)s only once per site s. That
is, both algorithms are guaranteed to flag an inconsistency only once per memo
table. Inconsistencies can be flagged more often by introducing more memo ta-
bles. This may sometimes do redundant work. For example, if equations reduce
within a thread and each thread is given its own memo table, then multiple occur-
rences of an inconsistent equation will be flagged once per thread. The Mozart
implementation will flag an inconsistency at least once per program-invoked uni-
fication (see Section 8.9).

8.5 Centralized unification (CU algorithm)

This section defines the CU algorithm, an algorithm for rational tree unification. The
definition is given as a set of transition rules with an interleaving semantics. That
is, rule reductions do not overlap in time. Only their order is important. Nothing is
lost by using an interleaving semantics, since we prove properties that are true for all
interleavings that are valid executions [5].

184 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

The CU algorithm is the base case for the DU algorithm of Section 8.6. There
are many possible variant definitions of unification. The definition presented here is
deterministic and constrained by the requirement that it must be extensible to a prac-
tical distributed algorithm. That is, the use of global conditions is minimized (see
Section 8.6.1).

8.5.1 Definition

We define the CU algorithm by the following seven rules.

INTERCHANGE
u = x x = u
σ; µ σ; µ

less(u,x)

BIND
x = u true
σ; µ x← u,σ; µ

less(u,x),x /∈ lhs(σ)

MEMO
x = u true

x← v,σ; µ x← v,σ; µ
less(u,x),
MEM(x = u,µ)

DEREFERENCE
x = u v = u

x← v,σ; µ x← v,σ; ADD(x = u,µ)
less(u,x),
¬MEM(x = u,µ)

IDENTIFY
x = x true
σ; µ σ; µ

CONFLICT
t1 = t2 false
σ; µ σ; µ

t1 = f1(x1, ...,xm), t2 = f2(y1, ...,yn),
(f1 6= f2∨m 6= n)

DECOMPOSE
t1 = t2

V

1≤i≤n xi = yi

σ; µ σ; µ
t1 = f (x1, ...,xn),
t2 = f (y1, ...,yn)

8.5.2 Properties

To prove total correctness of the on-line algorithm, we need the following entailment
property of the CU algorithm. We will prove that the DU algorithm implements the
CU algorithm. It follows that the entailment property also holds for the DU algorithm.

Logical formula of a configuration. A configuration c = (α;σ;) has an associated
logical formula ε(c) = εa(α)∧ εs(σ), where:

εa(α1∧α2) = εa(α1)∧ εa(α2)
εa(u = v) = u = v
εa(true) = true
εa(false) = false

εs(σ1∪σ2) = εs(σ1)∧ εs(σ2)
εs({x← u}) = x = u

8.6. DISTRIBUTED UNIFICATION (DU ALGORITHM) 185

Theorem 8.5.1 ((Logical equivalence property)). In every transition ci → ci+1 of
every execution of the CU algorithm, the logical equivalence ε(ci)↔ ε(ci+1) holds
under the standard equality theory.

Proof. By standard equality theory we mean the theory E given by [84] (page 79),
minus the acyclicity axioms (i.e., rule 4). This theory has the usual axioms imply-
ing nonequality of distinct symbols, term equality implies argument equality and vice
versa, substitution by equals is allowed, and identity. What we want to prove is
E |= ∀̄ε(ci)↔ ε(ci+1), where the quantification is over all free variables. This is a
standard result in unification theory [50, 26, 87, 52].

cor 1 ((Entailment property or CU total correctness)). Given any initial configura-
tion c1 = (α1; /0; /0) of the CU algorithm. Then the algorithm always reaches a terminal
configuration cn = (αn;σn;) with ε(cn)↔ ε(c1). Furthermore, αn consists of zero or
more false actions, and if there are zero, then εs(σn)↔ εa(α1).

Proof. Again, this is a standard result in unification theory. The equivalence follows
from the previous theorem.

8.6 Distributed unification (DU algorithm)

This section defines a distributed algorithm for rational tree unification. The section is
organized as follows. Section 8.6.1 explains how to generalize the CU algorithm to a
distributed setting. Section 8.6.2 sets the stage by giving the basic concepts and nota-
tion needed in the DU algorithm. Section 8.6.4 defines the DU algorithm in two parts:
the non-bind rules, which are the local part of the algorithm, and the bind rules, which
are the distributed part. Finally, Section 8.6.5 compares the CU and DU algorithms
from the viewpoint of the dereference operation.

8.6.1 Generalizing CU to a distributed setting

A distributed algorithm must be defined by reduction rules that do local operations
only, since these are the only rules we can implement directly. To be precise, two
conditions must be satisfied. First, testing whether a rule is applicable should require
looking only at one site. Second, reducing the rule should modify only that site, except
that the rule is allowed to create actions annotated with other sites. In the distributed
system these actions correspond to messages. Rules that satisfy these two conditions
are called local rules. A distributed algorithm defined in terms of local rules is a
transition system in an asynchronous non-FIFO network [124].

We would like to extend each CU rule to become a local rule in the distributed
setting. In this way, we maintain a close correspondence between the centralized and
distributed algorithms, which simplifies analysis of the distributed case. Furthermore,
this minimizes costly communication between sites.

The first step is to annotate the rule’s actions and bindings with sites. Each CU rule
reduces an input action and may inspect a binding in the store. We annotate the input

186 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

V
B

I
Is

Bs

All variables
Bound variables
Bound variables on site s
Initiated variables
Initiated variables on site s

V B Bs

IIs

Figure 8.15: Bound variables and initiated variables

action by its site and the binding by the same site. This is correct if we assume that a
binding will eventually appear on each site that references the variable. We annotate
the output action by the same site as the input action. A “true” output action does
not need a site. Actions may remain unannotated, in which case the DU algorithm
does not specify where they are reduced. This set of annotations suffices for the rules
INTERCHANGE, IDENTIFY, CONFLICT, and DECOMPOSE to become DU rules. An
important property of CONFLICT is that an inconsistency is always flagged on the site
that causes it.

The three remaining CU rules cannot be so easily extended since they have glob-
al conditions. To be precise, BIND has the unboundness condition x /∈ lhs(σ),4 and
MEMO and DEREFERENCE both have the memoization condition MEM(x = u,µ). It
turns out that the memoization condition can be relaxed in the distributed algorithm,
so that it becomes a local condition there. In this way, the MEMO and DEREFERENCE

rules become local rules. The idea is to give each site its own memo table, which
is independent of the other memo tables. Section 8.7.2 proves that this relaxation is
correct, but that redundant local work may be done.

The unboundness condition of BIND cannot be eliminated in this way. Implement-
ing it requires communication between sites. The single BIND rule therefore becomes
several local rules in the distributed setting. The BIND rule is replaced by four rules
that exchange messages to implement a coherent variable elimination algorithm.

The resulting DU algorithm consists of ten local rules, namely six non-bind rules
(Section 8.6.4) and four bind rules (Section 8.6.4). The six non-bind rules do not send
any messages. Of the four bind rules, only INITIATE and WIN send messages. All
rules test applicability by looking at one site only, except for WIN and LOSE, which
use information tied to a variable but not tied to any particular site, namely a flag
unbound(x)/bound(x) and a binding request (x∼ u).

4The opposite condition, confirming the existence of a binding, is local.

8.6. DISTRIBUTED UNIFICATION (DU ALGORITHM) 187

8.6.2 Basic concepts and notation

We introduce a set S = {1, ...,k} of k sites, where k ≥ 1. We model distributed execu-
tion by placing each action and each binding on a site. A primitive action or binding
ξ is placed on site s by adding parentheses and a subscript (ξ)s. The same ξ may be
placed on several sites, in which case the resulting actions or bindings are considered
separately. A configuration of a distributed execution is a triple (A;Σ;M) consisting of
an action A, a store Σ, and a memo table M. We denote the action, store, and memo
table on site s by As, Σs, and Ms, respectively.

Store

The store Σ contains sited bindings (x← u)s, sited binding initiations (x←⊥)s, and
flags to denote whether a variable is bound or not (bound(x) or unbound(x)). A store
has the form:

Σ = Γ∪
[

s∈S

Σs

Σs =
[

xi∈Bs

(xi← ui)s∪
[

xi∈Is

(xi←⊥)s

Γ =
[

xi∈B

bound(xi)∪
[

xi∈V−B

unbound(xi)

It is easy to show that configurations always have this form in the DU algorithm. The
set V consists of all variables in A and Σ. The set B⊆V contains all the bound variables.
The set Bs ⊆ B contains all the bound variables whose binding is known on site s. The
set I ⊆ V contains all the variables whose binding has been initiated on some site but
whose binding (if it exists) is not yet known on that site. The set Is ⊆ I contains all the
variables whose binding has been initiated on site s but is not yet known on that site.
In terms of the bind rules of Section 8.6.4, B corresponds to those variables for which
the WIN rule has reduced. I corresponds to those variables for which the INITIATE

rule has reduced but the corresponding ARRIVE rule has not yet reduced. Figure 8.15
illustrates the relationship between these five sets.

Two utility functions are used in the algorithm definition:

lhs(Σs) = {x|∃u.(x← u)s ∈ Σs∨ (x←⊥)s ∈ Σs}

var(Σs) = lhs(Σs)∪{x|∃y,u.((y← u)s ∈ Σs∧u≡ f (...,x, ...))}

The function lhs(Σs) returns all bound and initiated variables of Σs. It generalizes the
function lhs(σ) defined in Section 8.4.2. The function var(Σs) returns all variables
mentioned in Σs, even if not bound.

Initial configuration

The initial configuration is (Ainit;Σinit; /0), with initial actions Ainit that are all equations
and Σinit = {unbound(xi) | xi ∈V}. We have initially B = /0 and I = /0.

188 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

Same as centralized setting
true Null action

falses Failure notification on site s
(u = v)s Equation on site s

New for distributed setting
x∼ u Binding request

(x⇐ u)s Binding in transit to site s

Table 8.1: Actions in distributed configurations

Action

An action A is a multiset containing two new primitive actions in addition to the three
primitive actions of the centralized setting (see Table 8.1). The new actions are needed
to implement the distributed operations of the algorithm. The exact meaning of these
actions is defined by the reduction rules that manipulate them. Intuitively, the action
x∼ u represents a message requesting the binding of x to u. For a given x, exactly one
such action will cause a binding to be made; all others are discarded. The algorithm
does not specify where the binding decision is made. An actual implementation can
make the decision in a centralized or distributed way. In the Mozart implementation,
the decision is centralized; it is made on the site where the variable was initially de-
clared (see Section 8.9). The action (x⇐ u)s represents a message containing a binding
to x that may eventually become visible in Σs. As long as x is not in var(Σs) then the
binding stays “in the network”.

Memo table

The global memo table M is the juxtaposition of all the local memo tables. That is,
M = {(x = y)s|x = y ∈ Ms}. Each local memo table Ms is a set of variable-variable
equalities that has identical structure to the centralized memo table µ.

8.6.3 An example

Figure 8.16 gives an example execution that does distributed variable elimination. In
this figure, thin solid arrows represent actions or bindings. Vertical bars “ ” denote rule
reductions, which happen in the numbered order shown. Thin dotted arrows represent
causal links.

Initially, site 1 has equation (x = a)1 and site 2 has equation (x = b)2. Both sites
do an INITIATE rule, which puts binding initiations (x←⊥)s in both local stores. This
ensures that the two equations cannot reduce until the binding arrives. We say that the
equations are suspended. Equation (x = b)2 is the first to do a WIN rule, and b therefore
becomes the global binding of x. The other equation is discarded by the LOSE rule.
The binding (x⇐ b) is sent to all sites. It arrives at each site through the ARRIVE rule.
At that point, the suspended equations (x = a)1 and (x = b)2 become reducible again.
The equation (x = a)1 will cause an inconsistency to be flagged on site 1.

8.6. DISTRIBUTED UNIFICATION (DU ALGORITHM) 189

∼(x a)

∼(x b)

∼(x a)

⊥)(x

(x b)

(x b)

⊥)(x
(x b)

(x b)⊥)(x

(x b)
(x b)

2. Initiate

1. Initiate

Site 2

Site 1
5. Arrive

6. Arrive

(x=b)

(x=a)

(x=a)
suspended

Binding in transit
Binding

Legend

Equation(x=a)
Binding request
Binding initiation

(x=b)
suspended

(x=b)
reducible

3. Win

4. Lose

reducible
(x=a)

Figure 8.16: Distributed unification with (x = a)1 and (x = b)2

8.6.4 Definition

The DU algorithm has a close relationship to the CU algorithm. The structure and
congruence rules continue to hold in the distributed setting. The only centralized rule
that is changed is the BIND rule; it is replaced by the four bind rules below. It is
clear from inspection that all six non-bind DU rules have identical behavior to the
corresponding CU rules, if the CU rules are considered as acting on a single site.

Non-bind rules

These rules correspond exactly to the non-bind rules of the centralized algorithm. An
inconsistency is flagged on the site that causes it by the action falses.

INTERCHANGE
(u = x)s (x = u)s

Σ; M Σ; M
less(u,x)

MEMO

(x = u)s true
(x← v)s,Σ;

Ms∪M
(x← v)s,Σ;

Ms∪M

less(u,x),
MEM(x = u,Ms)

DEREFERENCE

(x = u)s (v = u)s

(x← v)s,Σ;
Ms∪M

(x← v)s,Σ;
ADD(x = u,Ms)∪M

less(u,x),
¬MEM(x = u,Ms)

IDENTIFY
(x = x)s true

Σ; M Σ; M

190 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

CONFLICT
(t1 = t2)s falses

Σ; M Σ; M
t1 = f1(x1, ...,xm), t2 = f2(y1, ...,yn),
(f1 6= f2∨m 6= n)

DECOMPOSE
(t1 = t2)s

V

1≤i≤n(xi = yi)s

Σ; M Σ; M
t1 = f (x1, ...,xn),
t2 = f (y1, ...,yn)

Bind rules

These rules replace the BIND rule of the centralized algorithm. The binding initiation
(x←⊥)s and the condition x /∈ lhs(Σs) in the INITIATE rule together ensure that only
one binding attempt can be made per site.

INITIATE
(x = u)s x∼ u∧ (x = u)s

Σ; M (x←⊥)s,Σ; M
less(u,x), x /∈ lhs(Σs)

WIN
x∼ u

V

s∈S(x⇐ u)s

unbound(x),Σ; M bound(x),Σ; M

LOSE
x∼ u true

bound(x),Σ; M bound(x),Σ; M

ARRIVE
(x⇐ u)s true

Σ; M (x← u)s,Σ−{(x←⊥)s}; M
x ∈ var(Σs)

8.6.5 Dereference chains

A dereference chain in a store σ is a sequence of bindings x1← x2, ..., xn−1← un with
n ≥ 1 and un unbound. We say the value of x1 in store σ is un. To find un given x1, it
is necessary to follow the chain. A major difference between CU and DU is that CU
always constructs dereference chains, whereas DU with eager variables forbids deref-
erence chains to cross sites. Instead, DU copies remote terms to make them local. In
a centralized setting, pointer dereferencing is fast, so the penalty of using dereference
chains is small. This makes sharing terms very cheap. In a distributed setting, pointer
dereferencing across sites is slow and it makes the current site dependent on the other
site. This makes copying terms preferable.

Copying terms instead of creating dereference chains introduces redundant work.
It is possible to reduce this work at the cost of more network operations. For example
one can eagerly bind to variables and lazily bind to (big) nonvariable terms. This
guarantees that a cross-site dereference chain has a maximum length of one.

DU with lazy variables allows dereference chains to cross sites. When the value
is needed, the binding is requested from the owner. If the binding is another variable,
then the process is repeated. Each iteration of this process corresponds to a dereference
operation.

[123] presents a centralized binding algorithm that avoids all dereference chains.
Variables that are bound together are put into a circular linked list. When one of them
is bound to a value, the list is traversed and all members are bound. This makes ac-
cessing a variable’s value a constant-time operation, at the price of making binding

8.7. OFF-LINE TOTAL CORRECTNESS 191

Distributed Centralized
Action true true

falses false
(u = v)s u = v

x∼ u true
(x⇐ u)s x← u

Store bound(x) true
unbound(x) true
(x←⊥)s true
(x← u)s x← u

Table 8.2: Mapping from distributed to centralized configurations

more expensive. Taylor finds no significant performance difference between this algo-
rithm and the standard algorithm when both are embedded in a Prolog system whose
performance is comparable to a good C implementation.

8.7 Off-line total correctness

This section proves that the DU algorithm behaves as expected. We first define a map-
ping from any distributed to a centralized execution. Then we define a modification
of the CU algorithm, the RCU algorithm, that models the redundant work done by the
distributed algorithm. Then we prove safety and liveness properties by reducing the
DU algorithm to the RCU algorithm. From this we show that the DU algorithm is
correct.

We distinguish between the off-line total correctness and the on-line total correct-
ness. In the off-line case, we have to show that the distributed algorithm terminates
and gives correct results for any placement of a fixed set of initial equations. This can
be done without any fairness assumptions. This is not true for the on-line case, which
is handled in Section 8.8.

8.7.1 Mapping from distributed to centralized executions

The proofs in this section are based on a mapping m from any distributed configuration
(A;Σ;M) to a corresponding centralized configuration (α;σ;µ). Distributed executions
are mapped to centralized executions by mapping each of their configurations. The
mapping m was designed according to the reasoning of Section 8.6.1. We show that
m has very strong properties that lead directly to a proof that the distributed algorithm
implements the centralized algorithm.

A primitive action is mapped to either a primitive action or a binding. A binding is
always mapped to a binding. Other store contents map to true. In this way we can map
any distributed configuration to a centralized one:

(A;Σ;M)
m
−→ (α;σ;µ) = (ma(A);ms(A,Σ);mm(M))

192 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

Table 8.2 defines the mappings ma and ms for primitive actions and store contents. The
mapping for all of A and Σ is the union of these mappings for all primitive actions in
A and all store contents in Σ. The centralized memo table is the union of the tables on
each site, namely mm(M) =

S

s∈S Ms.
The following diagram relates a distributed execution e and its corresponding cen-

tralized execution m(e):

(A;Σ;M)
e
−→ (A′;Σ′;M′)

m ↓ ↓ m

(α;σ;µ)
m(e)
−→ (α′;σ′;µ′)

To show total correctness, i.e., that the distributed algorithm is an implementation of
unification, we need to show both safety and liveness properties. A sufficient safety
property is proved in Section 8.7.3: given any distributed execution e, the correspond-
ing m(e) is a correct centralized execution. A sufficient liveness property is proved in
Section 8.7.4: given any e, its execution eventually makes progress. That is, if the last
configuration of m(e) is nonterminal, then the last configuration of e is nonterminal
and continuing e will always eventually advance m(e). In the distributed execution,
the non-bind rules and the WIN rule are called progressing rules since they advance
the centralized execution (see Table 8.3). The other rules are called non-progressing.

8.7.2 Redundancy in distributed unification (RCU algorithm)

This section defines and justifies a revised version of the CU algorithm, the RCU algo-
rithm, that models the redundant work introduced by distributing rational tree unifica-
tion. There are two sources of redundant work in the DU algorithm. The first source
is due to the decoupling of binding initiation from binding arrival. A binding initiation
for (x = u)s inhibits reduction of all equations of the form (x = v)s. When a binding
arrives on a site, these reductions become possible again, including the reduction of
the original equation (x = u)s. To make the original equation disappear, several rule
reductions are needed including a DEREFERENCE, one or more IDENTIFY, and possi-
bly a DECOMPOSE. This redundant work can be avoided in the implementation (see
Section 8.9.5).

The second source of redundant work cannot be avoided in the implementation. It
is due to each site having its own local memo table. Memo tables are needed because
of rational trees with cycles. However, they are in fact a general caching technique
that avoids doing any unification more than once. In the distributed algorithm, the
information stored in each site’s memo table is not seen by the other sites. Therefore
each site has to reconstruct the part of the centralized memo table that it needs.

To model the local memo tables it suffices to weaken the memo table membership
check. This affects the two rules MEMO and DEREFERENCE. Assume there are k sites.
We introduce a weaker membership check MEMk that is true only if the equation has
been entered at least k times. This is implemented by extending the memo table to
store pairs of an equation and the number of times the equation has been entered:

8.7. OFF-LINE TOTAL CORRECTNESS 193

ADD(x = y,µ) = µ∪{(x = y,1)} if (x = y,) /∈ µ
ADD(x = y,µ) = µ−{(x = y, i)}∪{(x = y, i+1)} if (x = y, i) ∈ µ
ADD(x = t,µ) = µ
MEM(x = u,µ) = true if (x = u,) ∈ µ
MEM(x = u,µ) = false otherwise
MEMk(x = u,µ) = true if (x = u, i) ∈ µ∧ i≥ k
MEMk(x = u,µ) = false otherwise

The R-MEMO rule uses the new definition of MEM. The R-DEREFERENCE rule uses
MEMk and the new definition of ADD. If an equation has been entered from 1 to k−1
times then both rules are applicable. This is an example of using nondeterminism to
model distributed behavior in a centralized setting.

Now we can update the CU algorithm to model the two sources of redundant work.
We model memo table redundancy by replacing MEMO and DEREFERENCE by R-
MEMO and R-DEREFERENCE. We model bind redundancy by replacing BIND by
R-BIND, as defined below. The three new rules are as follows:

R-BIND
x = u x = u
σ; µ x← u,σ; µ

less(u,x),x /∈ lhs(σ)

R-MEMO
x = u true

x← v,σ; µ x← v,σ; µ
less(u,x),
MEM(x = u,µ)

R-
DEREFERENCE

x = u v = u
x← v,σ; µ x← v,σ; ADD(x = u,µ)

less(u,x),
¬MEMk(x = u,µ)

Theorem 8.7.1 ((RCU total correctness)). Given any initial configuration. Then the
following two statements hold:

1. The RCU algorithm terminates.

2. All terminal configurations of the RCU and CU algorithms are logically equiva-
lent to each other according to the definition of Section 8.5.2.

Proof. We handle termination and correctness separately.

1. We know that CU terminates. The redundant work introduced by RCU has the
following effect:

• Bind redundancy. The R-BIND rule introduces extra rule reductions. The
number of extra reductions is 2 if u is a variable and 2+a if u is a nonvari-
able and a is its arity.

• Memo table redundancy. The memo table size for RCU is at most k
times that of CU, which is finite. Hence only a finite number of extra rule
reductions can be done.

2. For both bind and memo table redundancy, the additional equations are always
duplicates of existing equations or equations of some previous configuration.

194 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

Distributed rule Centralized rule
MEMO R-MEMO

DEREFERENCE R-DEREFERENCE

INTERCHANGE INTERCHANGE

IDENTIFY IDENTIFY

CONFLICT CONFLICT

DECOMPOSE DECOMPOSE

INITIATE SKIP

WIN R-BIND

LOSE SKIP

ARRIVE SKIP

Table 8.3: Correspondence between distributed and centralized rules

Therefore they add no additional information and the Entailment property still
holds.

This completes the proof.

8.7.3 Safety

Theorem 8.7.2 ((DU safety)). If e is any execution of the DU algorithm, then m(e) is
an execution of the RCU algorithm, and the sequence of rules reduced in m(e) can be
constructed from e.

Proof. We will prove that Table 8.3 correctly gives the centralized rule of m(e) cor-
responding to a distributed rule in e. A “SKIP” rule means that no rule is executed.
The proof is by induction on the length of execution e. In the base case, the initial
configuration c1 of e has an empty store and memo table, and a set of equations placed
on different sites. Therefore m(c1) is a valid initial configuration for the centralized
algorithm.

In the induction case, we assume that the theorem holds for an execution e. We
need to show that for each distributed rule applicable in the last configuration of e, that
doing this rule maps to doing a corresponding centralized rule. We do a case analysis
over the distributed rules. Section 8.7.3 covers the non-bind rules and Section 8.7.3
covers the bind rules.

Non-bind rules

Decompose Assume that the distributed execution reduces a DECOMPOSE rule. Map-
ping the before and after configurations of the decomposition gives the following dia-

8.7. OFF-LINE TOTAL CORRECTNESS 195

gram:
(t1 = t2)s∧A

Σ;M
DEC
−→

V

i(xi = yi)s∧A
Σ;M

m ↓ ↓ m
t1 = t2∧ma(A)

ms(A,Σ);mm(M)
X
−→

V

i xi = yi∧ma(A)
ms(A,Σ);mm(M)

It is clear from inspection that rule X is a centralized decomposition.

Interchange, Identify, Conflict These three rules are handled in the same way as
the DECOMPOSE rule.

Memo It is clear that the MEMO rule maps correctly to an R-MEMO rule, since from
Ms ⊆ µ it follows that that MEM(x = u,Ms)⇒MEM(x = u,µ).

Dereference We now show that the DEREFERENCE rule maps to an R-DEREFERENCE

rule. We have the following diagram (where Σx = (x← v)s,Σ):

(x = u)s∧A
Σx;Ms∪M

DRF
−→

(v = u)s∧A
Σx;ADD(x = u,Ms)∪M

m ↓ ↓ m
x = u∧ma(A)

ms(A,Σx);mm(Ms∪M)
X
−→

v = u∧ma(A)
ms(A,Σx);mm(ADD(x = u,Ms)∪M)

We know less(u,x)∧¬MEM(x = u,Ms). Since each site has its own local memo table,
there can be only one redundant equation per site. Therefore¬MEM(x = u,Ms) implies
that ¬MEMk(x = u,µ). That is, if at least one local memo table does not contain x = u,
then the centralized memo table contains x = u less than k times. It follows that rule
X is exactly an R-DEREFERENCE rule. This shows that relaxing the memoization
condition to do only a check on the local part of the memo table is correct but may
introduce one redundant equation per site.

Bind rules

Initiate
(x = u)s∧A

Σ;M
INI
−→

x∼ u∧ (x = u)s∧A
(x←⊥)sΣ;M

m ↓ ↓ m
x = u∧ma(A)

ms(A,Σ);mm(M)
X
−→

x = u∧ma(A)
ms(A,Σ);mm(M)

It is clear from inspection that X is a SKIP rule. After the SKIP, we know that less(u,x).

196 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

Win
x∼ u∧A

unbound(x),Σ;M
WIN
−→

V

s∈S(x⇐ u)s∧A
bound(x),Σ;M

m ↓ ↓ m
ma(A)

ms(A,Σ);mm(M)
X
−→

ma(A)
(x← u),ms(A,Σ);mm(M)

It is not immediately clear that transition X maps to a rule. We will show that X maps
to an R-BIND rule. First, we show that x = u is in ma(A). From x∼ u we know that an
INITIATE has been done and unbound(x) means no WIN has yet been done; together
this means that A contains (x = u)s, which maps to x = u. Second, less(u,x) because
the INITIATE requires this and its truth is never altered. Third, x /∈ lhs(ms(A,Σ)) since
no WIN has been done and the only way to get a centralized binding for x is through a
WIN. Taken together, these three statements imply that the centralized transition is an
R-BIND reduction.

Lose, Arrive These rules trivially map to a SKIP rule.

This proves the theorem.

8.7.4 Liveness

It remains to show that the DU algorithm always terminates in a configuration that
maps to a terminal configuration of the RCU algorithm. The main step is to show that
the DU algorithm always “makes progress”, in the sense of this section. As a corollary,
it follows that the DU algorithm is deadlock-free. We first prove a small lemma about
the non-progressing rules.

Lemma 1 ((Finiteness of non-progressing DU execution)). Given any valid config-
uration d of the DU algorithm, then the number of consecutive non-progressing rules
that can be reduced starting from d is finite. The resulting configuration d ′ satisfies
m(d′) = m(d).

Proof. The proof is by induction on the length of the execution e of which d is the last
configuration. We assume that the lemma holds for all configurations of e before d.
We show that it holds for d by enumerating all possible executions of non-progressing
rules. Consider all rules that manipulate actions based on the same variable-term pair
(say, x and u). Denote a configuration in which a non-progressing rule is applicable
by the name of that rule. Denote by X a configuration in which no rules or only
progressing rules are applicable. By inspecting the rules, we deduce the following
graph of causal relationships:

InitiateArrive X
Lose X

X

8.7. OFF-LINE TOTAL CORRECTNESS 197

Progressing
rules applicable

No rules applicable

Nonprogressing
rules applicable

Figure 8.17: Non-progressing transitions in the DU algorithm

That is, applying INITIATE possibly leads to a configuration in which LOSE is appli-
cable, and so forth. A graph identical to this one exists for all variable-term pairs.
In all resulting sequences there are no cycles. Therefore a configuration in which
some non-progressing rules are applicable will eventually lead to one in which no non-
progressing rules are applicable.

Theorem 8.7.3 ((DU liveness)). Assume that e is any execution of the DU algorithm
such that the last configuration of m(e) is nonterminal in the RCU algorithm. Then
the last configuration of e is nonterminal and any execution that has e as the initial
segment will eventually reduce a progressing rule in its continuation beyond e.

Proof. Assume a distributed execution e with last configuration di such that c = m(di)
is nonterminal. We must show that ∃ j > i : di → ·· · → d j−1 → d j where d j−1 →
d j is an application of a progressing rule. Any execution starting from di and doing
non-progressing rules as long as possible must initially follow the state diagram of
Figure 8.17. Applying the lemma, we can assume that no non-progressing rules are
applicable in d j−1. It remains to show that a progressing rule is always applicable
there. We do a case analysis over the RCU rules. Let the RCU configuration be c, so
that m(d j−1) = c. For each rule, we apply the inverse of mapping m, and we attempt
to infer whether a progressing rule is applicable.

Interchange

Assume that the INTERCHANGE rule is applicable in c. Therefore less(u,x) holds and
c contains u = x. For some site s, d j−1 contains (u = x)s. Therefore the INTERCHANGE

rule is applicable in d j−1.

R-Memo, R-Dereference

Except for the memo table, the conditions for these two rules are identical. For both
R-MEMO and R-DEREFERENCE, c contains x = u and x← v and we know less(u,x),
Therefore for some site s, d j−1 contains (x = u)s. For this site, d j−1 contains one of
(x← v)s or (x⇐ v)s. The case (x⇐ v)s is impossible by the lemma, since in that case
one of ARRIVE or INITIATE is applicable depending on whether or not (x←⊥)s is in

198 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

the store. If MEM(x = u,Ms) then a MEMO is applicable. Otherwise, a DEREFERENCE

is applicable.

R-Bind

Both less(u,x) and x /∈ lhs(σ) hold. For some site s, d j−1 contains (x = u)s. This
site must also contain (x← ⊥)s, since otherwise an INITIATE is applicable. Since
x /∈ lhs(σ), we know unbound(x), so the x ∼ u of the INITIATE still exists and a WIN

rule is applicable.

Identify, Conflict, Decompose

These are straightforward.

This proves the theorem.

8.7.5 Total correctness

Theorem 8.7.4 ((DU total correctness)). Given any finite multiset of equations, then
placing them on arbitrary sites and executing the DU algorithm will terminate and
result in a configuration that maps to a configuration equivalent to that of a terminating
CU execution.

Proof. From DU safety, any results obtained are correct results for the RCU algorithm.
From DU liveness and the Finiteness Lemma, the DU algorithm will terminate and
reach this correct result. From RCU total correctness, the result is equivalent to the
result of a terminating CU execution.

8.8 On-line total correctness

In the real system, it is almost never the case that unification is initiated with a fixed
set of equations and runs to termination without any interaction with the external envi-
ronment. Rather, the algorithm will be running indefinitely, and from time to time an
equation will be added to the current action. This is the on-line case. The interesting
property is not termination, but whether the equation will be entailed by the store in a
finite number of reductions (finite entailment). In this section, we extend the CU and
DU algorithms to the on-line case, and we show that the extended algorithms satis-
fy the finite entailment property. We use the standard weak fairness assumption that
any rule instance applicable infinitely often will eventually be reduced. We show that
this is not enough to guarantee that the equation will be entailed, but that we need an
additional property, the finite size property, to bound the amount of work needed to
incorporate the equation in the store.

8.8. ON-LINE TOTAL CORRECTNESS 199

y

x

x y f(x1, ..., xn)x

x

f/n

...x1 xn

Figure 8.18: Mapping the store to its graph

8.8.1 On-line CU and DU algorithms

We extend the CU algorithm (from now on called the off-line CU algorithm) with a
new rule:

INTRODUCE
true u = v
σ; µ σ; µ

This rule is always applicable and adds a new equation to the action when it reduces.
The extended algorithm, also called the on-line CU algorithm, therefore does not ter-
minate. We extend the DU algorithm in a similar way by an INTRODUCE rule that
introduces (u = v)s for an arbitrary site s.

8.8.2 Finite size property

Any store σ can be mapped to a graph with two kinds of nodes, variables and records.
The graph is defined in a straightforward way from the store’s bindings (see Fig-
ure 8.18):

• A binding x← y maps to variable nodes x and y, with a directed edge from x to
y.

• A binding x← f (x1, ...,xn) maps to a set of variable nodes x, x1, ..., xn and a
record node f /n, with directed edges from x to f /n and from f /n to every x1,
..., xn.

Given a variable node x, we define graph(x,σ) as the subgraph of σ’s graph whose
nodes and edges are reachable from x. We also define size(x,σ) as the number of
edges in this subgraph. This quantifies the size of the data structure attached to x.

Given a valid configuration with store σ, it is clear that size(x,σ) is finite. However,
the size may be unbounded when considering all configurations of a given execution.
This leads us to define the following property. We say a variable x has the finite size
property for the execution e if:

∃n≥ 0 : ∀(;σk;) ∈ e : size(x,σk)≤ n

200 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

That is, there is a finite upper bound on the size of x that holds for the whole execution.
We say that an equation u = v has the finite size property if all its variables do. The
finite size property is used to avoid infinite executions caused by race conditions in two
cases:

1. Dereference chains that increase in length indefinitely. For example, consider
the equation x0 = y0, which is accompanied by the infinite sequence of pairs
of equations xi = xi+1 and yi = yi+1, starting with i = 0. These equations are
added by an INTRODUCE rule at the appropriate times. We assume that the
ordering condition enforces that lower-indexed variables are bound to higher-
indexed variables. For each i starting with 0, if xi = xi+1 and yi = yi+1 are both
introduced and bound before xi = yi is dereferenced, then the store will never
entail x0 = y0.

2. Nested terms that increase in depth indefinitely. For example, consider the equa-
tion x0 = y0, which is accompanied by the equations xi = f (xi+1) and yi =
f (yi+1), starting with i = 0. For each i starting with 0, if xi = f (xi+1) and
yi = f (yi+1) are both introduced and bound before xi = yi is decomposed, then
the store will never entail x0 = y0.

It is remarkable that these two infinite executions are possible even with the weak
fairness assumption. One way to avoid infinite executions would be to give the IN-
TRODUCE rule lower priority than the others, i.e., as long as another rule is applicable,
do not reduce an INTRODUCE rule. But this does not model the real world, in which
equations can arrive at any time. The finite size property does not have this deficiency.
It does not restrict in any way when new equations are introduced. Rather, it forbids
introducing any sequence of equations that would cause a problem.

The finite size property can be enforced easily for dereference chains by requiring
that all new variables have higher order than all existing variables. Then the total length
of all dereference chains that need traversing is bounded by the number of variables in
the system when the equation is introduced.

In the case of nested structures, the finite size property can be enforced by avoid-
ing to unify terms whose nesting depth is potentially unbounded. This seems to be
a reasonable condition because when a potentially infinite unification is necessary in
practice, then it is sufficient that it always makes progress, not that it completes (see,
e.g., the streams of Section 8.3.4). The weak fairness assumption is enough by itself
to guarantee progress of infinite unifications and eventual termination of finite unifi-
cations. The finite size property ensures that a unification that is intended by the pro-
grammer to be finite will actually be finite during the execution. These two conditions
suffice for all practical programs we know of.

8.8.3 Total correctness

Under what conditions will the store entail a given equation after a finite number of
reductions? First, there must be no detected inconsistencies (false actions) within the

8.8. ON-LINE TOTAL CORRECTNESS 201

context of the given memo table. Second, the amount of work needed to incorporate
the equation into the store must be finite (finite site property).

An inconsistency is detected at most once per memo table. This is true for both the
centralized and distributed algorithms as well as the Mozart implementation. In the
CU algorithm, there is only one memo table, so an inconsistency is detected at most
once. In the DU algorithm, there is a memo table per site, so an inconsistency can be
detected once per site.

Theorem 8.8.1 ((Finite entailment of on-line CU)). Given any valid configuration c
of the on-line CU algorithm that contains the equation u = v. Given any execution e
that contains c and satisfies the finite size property for u = v. Then e will eventually
contain either a false action or a store that entails u = v.

Proof. We are given that size(u = v,σk) has a finite upper bound in e. Therefore
graph(u = v,σk) has a finite limit graph. Let V denote the set of variables in this graph.
Denote the store corresponding to the limit graph as σV . Since V has a finite limit, the
set µV = {x = y∈ µk|x,y∈V}, i.e., of equalities in µk whose variables are in V , also has
a finite limit. When this limit is reached, then consider the equations αV , part of αk,
whose variables are all in V . Consider an execution starting with (αV ;µV ;σV), without
the INTRODUCE rule, and that reduces rules in the same order as e does. This is a
continuation of an off-line CU execution. If no false actions occur, then the Entailment
Property (see Section 8.5.2) implies that eventually we end up with a store that entails
u = v.

We now extend this result to the distributed case. First we extend the DU algorithm
to an on-line DU algorithm by an INTRODUCE rule that introduces an equation on any
site. It is easy to see that safety continues to hold. We now show liveness and finite
entailment for the on-line DU algorithm.

Theorem 8.8.2 ((Liveness of on-line DU)). Given weak fairness and any distributed
execution e of the on-line DU algorithm such that m(e) is nonterminal, then continuing
e will always eventually reduce a progressing rule.

Proof. Minor modification of the proof of DU liveness, using weak fairness to com-
pensate for the INTRODUCE rule.

Theorem 8.8.3 ((Finite entailment of on-line DU)). Given any valid configuration d
of the on-line DU algorithm that contains the equation (u = v)s. Given any execution
e that contains d and such that m(e) satisfies the finite size property for u = v. Then e
will eventually contain either a falses action or a store on site s that entails u = v.

Proof. We outline the proof. The execution on site s has a local memo table Ms for site
s. We consider this execution to be a centralized execution with memo table µ = Ms.
By the previous theorem, the result holds for the centralized execution. Therefore the
result holds also for the distributed execution on site s.

202 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

8.9 The Mozart implementation

The Mozart system contains a refined version of the on-line DU algorithm, called
“Mozart algorithm” in what follows. Section 8.9.1 summarizes how the implemen-
tation differs with respect to the on-line DU algorithm. Section 8.9.2 introduces the
distribution graph, which is the framework in which the Mozart algorithm is defined.
Then Section 8.9.3 defines the properties of the network and the notation used to de-
fine the distributed algorithm. After these preliminaries, the algorithm itself is defined.
Section 8.9.4 defines the local algorithm and Section 8.9.5 defines the distributed al-
gorithm.

8.9.1 Differences with on-line DU

The Mozart algorithm refines the on-line DU algorithm by making concrete decisions
regarding several aspects that were left open. Furthermore, the Mozart algorithm does
several optimizations to improve performance and has several extensions including a
model for failure detection and handling. This section summarizes these refinements,
optimizations, and extensions.

Refinements

Separation into local and distributed algorithms The Mozart algorithm consists
of two parts: a purely local algorithm (corresponding to the DU non-bind rules, see
Section 8.9.4) and a distributed algorithm (corresponding to the DU bind rules, see
Section 8.9.5). A thread wishing to tell an equation invokes the local algorithm. To
bind a distributed variable to another one or to a record, the local algorithm invokes
the distributed algorithm. The thread blocks, waiting for a reply. When the variable
binding is known locally, then the thread continues.

The owner site Each distributed variable is managed from a special site, the owner
site, which is where the variable was originally created. This site contains the variable’s
unbound/bound flag and other information, e.g., the register list (see below).

Variable ordering The Mozart algorithm implements the order relation less(u,v)
as follows. Records are less than distributed variables are less than local variables.
Distributed variables are totally ordered, local variables are totally ordered per site,
and records are unordered. Local variables are ordered according to a per-site index i
that is incremented for each new variable.5 Distributed variables are ordered according
to a pair (s, i) where s is the site number on which the variable was initially created and
i is the index of the variable on that site. From this ordering relation it follows that if
the number of sites is finite and data structures with unbounded depth are not created,
then the Mozart algorithm satisfies the finite size property (see Section 8.8.2).

5For local variables, the index is simply the variable’s address.

8.9. THE MOZART IMPLEMENTATION 203

Optimizations

Globalization The Mozart algorithm distinguishes between local and distributed
variables (see Section 8.9.5).

Variable registration A variable binding is not sent to all sites, but only to registered
sites (see Section 8.9.5).

Grouping nested data structures Binding a nested data structure to a distributed
variable is done by the Mozart algorithm as a single operation (see Section 8.9.5).

Winner optimization When a variable is bound to a term, then the term does not
have to be sent back to the site that initiated the binding (see Section 8.9.5).

Asynchronous streams To allow streams to be created asynchronously, variables are
given a set of registered sites as soon as they are globalized (see Section 8.9.5).

Extensions

Lazy and eager variables The laziness property affects the moment when the vari-
able is registered. Eager proxies are registered immediately. Lazy proxies delay regis-
tration until a binding attempt is made (see Section 8.9.5).

Read-only logic variables Standard logic variables have two operations, reading the
value and binding. For security reasons, it is often useful to prohibit binding, for
example, when passing the variable to a less-trusted site [92].

Garbage collection Distributed garbage collection is based on a credit mechanism
that collects all garbage except cross-site cycles between stateful entities (see Sec-
tion 8.9.2).

The failure model The Mozart algorithm is conservatively extended with a model
for failure detection and handling that reflects network and site failures to the language
level (see Section 8.9.2).

Thread (with references)Record (with fields) Unbound variable

Figure 8.19: The three node types of the language graph

204 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

8.9.2 The distribution graph

We model distributed executions in a simple but precise manner using the concept of
distribution graph. We obtain the distribution graph in two steps from an arbitrary
execution state of the system. The first step is independent of distribution. We model
the execution state by a directed graph, called language graph, in which a record, an
unbound variable, and a thread each correspond to one node (see Figure 8.19). The
edges in this graph denote the node’s references: a record and a thread refer to other
nodes; an unbound variable has no references.

In the second step, we distribute the execution over a set of sites. Assume a finite
set of sites and annotate each node by its site (see Figure 8.20). If a variable node, e.g.,
N2, is referenced by at least one node on another site, then map it to a set of nodes, e.g.,
{P1,P2,P3,M}. This set is called the access structure of the original node. An access
structure consists of one proxy node Pi for each site that referenced the original node
and one owner node M for the whole structure. The resulting graph, containing both
local nodes and access structures where necessary, is called the distribution graph. The
execution of the distributed algorithm is defined in terms of this graph. A logic variable
with an access structure is called a distributed variable (as opposed to a local variable).
A variable referenced on more than one site certainly has an access structure.

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

N1 P1 P2 P3 N3N3N2N1

Site 1 Site 2 Site 3 Site 1 Site 3Site 2

M

Language graph Distribution graph

access structure for N2

Figure 8.20: An access structure in the distribution graph

Each access structure is given a global name n that is unique system-wide. In
Distributed Oz, n is the pair (s, i) that is also used to order the distributed variables.
The global name n encodes (among other things) the owner site s. Furthermore, a
proxy node is uniquely identified by the pair (n,s′), which contains the proxy’s site s′.
On each site, n indexes into a table that refers to the proxy. This allows to enforce the
invariant that each site has at most one proxy.

Messages are sent between nodes in access structures. In terms of sites, a message
is sent from the source node’s site to the destination node’s site. The message may
contain a subgraph of the distribution graph. Just before the message leaves the source
site, a new access structure is created for each local variable in the subgraph. The
message refers only to proxy nodes, not to local variables. When the message arrives,
the subgraph becomes known at the destination site. Each proxy node is looked up in
the site table. If it is not present, then a new proxy node is created and entered in the

8.9. THE MOZART IMPLEMENTATION 205

table. This extends an existing access structure with one new proxy. The process of
creating or extending an access structure is called globalization (see Section 8.9.5).

The behavior of a distributed variable is defined as a protocol between the nodes of
its access structure. In general, nodes other than variable nodes can also have access
structures, and therefore obey a protocol. The Distributed Oz implementation uses
four non-trivial protocols. Three are designed for specific language entities, namely
variables, object records, and state pointers. Variables use a variable binding protocol,
which is part of the distributed unification algorithm and is presented in this article.
Object records use a lazy replication protocol. State pointers use a mobile state pro-
tocol. The fourth protocol is a distributed garbage collection algorithm using a credit
mechanism. Garbage collection is part of the management of access structures, and it
therefore underlies the other three protocols. See [7, 132, 131, 54] for more informa-
tion on these protocols.

Distributed garbage collection

Distributed garbage collection is based on a credit mechanism, a variant of reference
counting [99]. The credit mechanism interfaces with the local garbage collectors on
each site. All distributed garbage is removed except for cross-site cycles between
stateful entities.

The global name of an access structure is associated with a pool of credits. The
owner site lends credit to sites and messages that refer to the global name. A owner
site has an integer corresponding to the total number of credits lent. A proxy site must
hold at least one credit for the access structure. The proxy site keeps a count of how
many credits it has borrowed from the owner site. If local garbage collection removes
the proxy node, then its credit is returned to the owner site. The global name can be
reclaimed at the owner site when no more borrowed credits exist. The owner node
itself can be reclaimed if it has both no global name and no local references. When
that happens, the distributed variable becomes local again–we say it is localized (see
Section 8.9.5).

The failure model

The failure model is designed according to the principle that a program should be able
to make all decisions regarding failure behavior [130, 54, 19]. That is, the imple-
mentation does not make any irrevocable decisions by default. Full treatment of the
model is beyond the scope of this paper. We briefly summarize the main ideas. The
failure model considers failures at the level of individual language entities, e.g., log-
ic variables. The model covers permanent site failures and temporary and permanent
network failures. The model has two effects at the language level:

• It extends each operation on an entity to have three possible results. If there is
no failure then the operation succeeds. If there is a failure, then the operation
either waits indefinitely until the problem goes away or aborts and is replaced
by a user-defined procedure call. The call can retry the operation. There are

206 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

Local variableRecord Proxy Owner Thread

Figure 8.21: The five node types of the distribution graph and their message interfaces

no default time-outs; it is up to the program to decide whether to continue to
wait or not. For example, an entity can be configured so that all operations wait
indefinitely on network failures (in the hope that they are temporary) and raise
an exception on a permanent site failure.

• It allows to eagerly detect a problem with an entity, i.e., without having to do an
operation on the entity. When a user-specified failure condition is detected then
a user-defined procedure is called in its own thread. The failure condition does
not necessarily keep the entity from working, i.e., it can just give information.
For example, a remote proxy site failure will often have no effect at all on the
binding of a logic variable, but it may nonetheless be important to be notified of
this failure.

This failure model is fully implemented as part of the Mozart system. We are currently
developing more powerful abstractions in Oz on top of this model.

8.9.3 Basic concepts and notation

Network

Consider a single owner node M, a set of k proxy nodes Pi with 1 ≤ i ≤ k, and a set
of m thread nodes Ti with 1 ≤ i ≤ m. All nodes have state and interact according
to Figure 8.21. Thread, proxy, and owner nodes send messages to each other and
perform internal operations. Record and local variable nodes interact only with thread
nodes. Let these nodes be linked together by a network N that is a multiset containing
messages of the form d : m where d identifies a destination (proxy, owner, or thread
node) and where m is a message.

The Mozart algorithm is defined using reduction rules of the form

Condition
Action

.

Each rule is defined in the context of a single node. Execution follows an interleav-
ing model. The local algorithm imposes an order on how its rules are fired; see the
pseudocode definition of Section 8.9.4. The distributed algorithm imposes no such
order.

At each reduction step, a rule with valid condition is selected. Its associated actions
are reduced atomically. A rule condition consists of boolean conditions on the node

8.9. THE MOZART IMPLEMENTATION 207

Node Attribute Type
Any node id NodeId

type {RECORD,LOCVAR,PROXY,MANAGER,THREAD}
Record label Atom
(N.type=RECORD) arity Integer

args array[1..arity] of Node
Local variable state {UNBOUND, BOUND(Node)}
(N.type=LOCVAR) eager {FALSE, TRUE}
Proxy state {UNBOUND, INITIATED, BOUND(Node)}
(N.type=PROXY) eager {FALSE, TRUE}

reg {FALSE, TRUE}
owner NodeId

Owner state {UNBOUND, BOUND(Node)}
(N.type=MANAGER) reglist set of NodeId
Thread
(N.type=THREAD)

Table 8.4: Node state

state and one optional receive condition Receive(d,m). The condition Receive(d,m)
means that d : m has arrived at d. Executing a rule with a receive condition removes
d : m from the network and performs the action part of the rule. A rule action consists of
a sequence of operations on the node state with optional sends. The action Send(d,m)
asynchronously sends message m to node d, i.e., it adds the message d : m to the
network.

We assume that the network and the nodes are fair in the following sense. The net-
work is asynchronous, and messages to a given node take arbitrary finite time and may
arrive in arbitrary order. All rules that are applicable infinitely often will eventually
reduce.

Node state

Table 8.4 defines the state of the five node types by listing the attributes of each node.
All nodes have attributes “id” and “type”, which have constant values. The types
NodeId, Atom, and Integer are atomic types implemented in a straightforward way. In
the real system, threads, proxies, and owners have more attributes, for example, threads
have an execution state and proxies and owners maintain information for distributed
garbage collection.

Utility operations

The memo table uses the function clearmemo(), the procedure add(N1,N2,M) and the
boolean function mem(N1,N2,M). The latter two are exactly the ADD and MEM oper-
ations defined in Section 8.4.2. The other operations are defined as follows:

208 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

eq(N1,N2) = N1.id=N2.id
locvar(N) = N.type=LOCVAR
disvar(N) = N.type=PROXY
nonvar(N) = N.type=RECORD
var(N) = locvar(N) ∨ disvar(N)
bound(N) = if var(N)→ N.state=BOUND() fi
initiated(N) = if disvar(N)→ N.state=INITIATED fi
deref1(N) = if var(N) ∧ bound(N)→

N1 where N.state=BOUND(N1) fi
compatible(N1,N2) = if nonvar(N1) ∧ nonvar(N2)→

N1.arity=N2.arity ∧ N1.label=N2.label fi
proxyids(N) = if locvar(N)→ {}

[] disvar(N)→
if bound(N)→ proxyids(deref1(N))
[] not bound(N)→ {N.id} fi

[] nonvar(N)→
S

1≤i≤N.arity proxyids(N.args[i]) fi

8.9.4 The local algorithm

Figure 8.22 defines the local algorithm, which executes in each thread that does a
unification. The definition follows closely the non-bind rules of Section 8.6.4, where
a rule corresponds to a guard and its body. The two main differences are that the local
algorithm maintains a memo table that is shared among the rules and that a sequential
order is imposed on rule reductions. The if is a guarded command that suspends until
at least one of its guards is true.

In the implementation, executions of the local and distributed algorithms are not
interleaved. Rather, the local algorithm is executed atomically until it exits (either
normally or through an exception) or until it blocks after sending a binding request.

Each invocation of unify is done within a thread. The unification completes in
two ways: when it terminates normally or when an inconsistency is detected, in which
case a failure exception is raised. During the unification, the thread will block when
waiting for a binding request to complete. This works as follows. The first thread that
tries to bind a variable will send a binding request (INITIATE rule). Other threads that
try to bind the same variable on the same site will not send any message. All threads
then block at the if: no guard is true because the variable satisfies disvar(N1) ∧ not
bound(N1) ∧ initiated(N1). As soon as the binding arrives, bound(N1) is true and the
if becomes reducible. All threads can then continue.

The local algorithm is optimized to bind local variables locally. With a suitable
data representation, the algorithm is implementable very efficiently [48, 127]. The
implementation does binding in place and dereferencing inline. Common cases of uni-
fication such as parameter passing and local variable initialization do not need binding
nor dereferencing, but reduce to single register moves or stores.

The local memo table is implemented by means of forwarding pointers between
variables [52]. That is, when the equation x = y is encountered for the first time,

8.9. THE MOZART IMPLEMENTATION 209

procedure unify(N1,N2)
define memotable M
define procedure inner unify(N1,N2)

if /**** INTERCHANGE ****/
var(N2), less(N1,N2)→ inner unify(N2,N1)

[] /**** IDENTIFY ****/
var(N1), eq(N1,N2)→ skip

[] /**** MEMO ****/
var(N1), less(N2,N1), bound(N1), mem(N1,N2,M)→ skip

[] /**** DEREFERENCE ****/
var(N1), less(N2,N1), bound(N1), not mem(N1,N2,M)→
add(N1,N2,M)
inner unify(deref1(N1),N2)

[] /**** BIND ****/
locvar(N1), less(N2,N1), not bound(N1)→
N1.state← BOUND(N2)

[] /**** INITIATE ****/
disvar(N1), less(N2,N1), not bound(N1), not initiated(N1)→
N1.state← INITIATED
Send(N1.owner,binding request(N2))
clearmemo(M)
inner unify(N1,N2)

[] /**** DECOMPOSE ****/
nonvar(N1), nonvar(N2), compatible(N1,N2)→
for i:=1 to N1.arity do inner unify(N1.args[i],N2.args[i])

[] /**** CONFLICT ****/
nonvar(N1), nonvar(N2), not compatible(N1,N2)→
raise failure exception

fi
end

in
clearmemo(M)
inner unify(N1,N2)

end

Figure 8.22: Distributed unification part 1: Local algorithm

210 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

/**** WIN ****/

Receive(M.id,binding request(N)) ∧ M.state=UNBOUND
∀i ∈M.reglist: Send(i, binding in transit(N))
M.state← BOUND(N)

/**** LOSE ****/

Receive(M.id,binding request()) ∧ M.state=BOUND()
skip

/**** ARRIVE ****/

Receive(P.id,binding in transit(N)) ∧ (P.state=UNBOUND ∨ P.state=INITIATED)
∀i ∈ proxyids(N): Send(i, reg)
P.state← BOUND(N)

/**** Variable registration ****/

Receive(P.id,reg) ∧ P.reg=FALSE
P.reg← TRUE
Send(P.owner,register(P.id))

Receive(P.id,reg) ∧ P.reg=TRUE
skip

Receive(M.id,register(PId)) ∧ M.state=UNBOUND
M.reglist←M.reglist ∪ {PId}

Receive(M.id,register(PId)) ∧ M.state=BOUND(N)
Send(PId,binding in transit(N))

Figure 8.23: Distributed unification part 2: Distributed algorithm

8.9. THE MOZART IMPLEMENTATION 211

a forwarding pointer is installed from x to y. This allows a very fast check of memo
table membership. Namely, if x = y or y = x is encountered later on, then dereferencing
will reduce the equation to y = y, which does no further work. The forwarding pointers
are installed in the context of a single atomic unification operation. They are removed
when the local algorithm exits or blocks.

Other operations can be performed on a site while a unification is blocked. For
correctness, the forwarding pointers must be removed whenever execution leaves the
local algorithm. This is modeled in Figure 8.22 by creating a new memo table when
unify is called and by clearing the memo table after an INITIATE rule. This means that
the memo table starts from empty at each atomic execution of the local algorithm. The
Mozart algorithm therefore potentially does more redundant work than the on-line DU
algorithm, because the DU algorithm never clears the local memo tables.

8.9.5 The distributed algorithm

Figure 8.23 defines the distributed algorithm, which extends the DU bind rules of Sec-
tion 8.6.4 with globalization and variable registration. The implementation does three
other important optimizations, namely grouping nested data structures, the winner op-
timization, and asynchronous streams. For clarity, we do not define the latter formally,
but rather show how to extend the protocol to include them. We also explain how to
extend the protocol for lazy and eager variables.

Globalization

Newly-created variables are always local. When a message is sent referencing a local
variable, then a new distributed variable is created and the local variable is bound to it.
This is called globalizing the local variable. An access structure is created when a local
variable is globalized. When the message arrives then a new proxy will be created for
the distributed variable if none exists on the arrival site. Therefore globalization is part
of the Send and Receive operations [7]. The inverse operation, localization, consists
of removing the access structure when the variable is only referenced on one site (see
Section 8.9.2). The distributed variable becomes a local variable again.

All variables have a boolean attribute “eager” that determines whether the variable
is eager or lazy. This attribute affects only the network operations of the distributed al-
gorithm. Assume we have a local variable L with L.state=UNBOUND and L.eager=b.
After globalizing, the original site contains three nodes, L, P, and M, with the following
states:

L.state=BOUND(P)
P.state=UNBOUND, P.eager=b, P.reg=b, P.owner=M.id
M.state=UNBOUND, M.reglist=if b then {P.id} else {} fi

Variable registration

In the DU algorithm, a binding arrives on a site if the variable exists in the site’s store.
In the Mozart algorithm, the variable’s owner keeps track of the sites that reference

212 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

the variable. A site that receives a distributed variable for the first time (i.e., when a
term containing the variable first arrives on the site) has to register with the owner in
order to receive the variable’s binding. In Figure 8.23, first the ARRIVE rule reduces,
which sends reg messages to all proxies in the binding. The reg message causes all
unregistered proxies to register with their owner. When a variable is bound, then a
binding in transit message is sent to all registered sites. If the variable is already bound
when the register message arrives then the binding is sent back immediately.

Grouping nested data structures

The DU algorithm binds only a single record, namely the top level of the structure,
and the rest is transferred when the top level binding arrives at a site. The Mozart
algorithm binds a complete tree in a single operation. In this way, it avoids the creation
of distributed variables for the intermediate nodes. For example, the unification x1 =
f (g(a)), is represented in the DU algorithm as three actions x1 = f (x2)∧ x2 = g(x3)∧
x3 = a. In the DU algorithm, the arrival of x1 ⇐ f (x2), enables the arrival of x2 ⇐
g(x3), and similarly for x3. In the Mozart algorithm, the binding x1⇐ f (g(a)) arrives
in one step, so the variables x2 and x3 are never created.

Winner optimization

The winner is the proxy that sent a successful binding request(N). This proxy does not
need to be sent N since it already exists on the proxy’s site. The proxy can be sent a
simple acknowledgement that its binding request was successful.

This optimization avoids the redundant work done by the R-BIND rule (see Sec-
tion 8.7.2). It requires the following protocol extensions: the extended proxy state
INITIATED(N) where N is the binding, the extended message binding request(N,PId)
where PId identifies the winning proxy, and the new message binding ack from the
owner to the winning proxy. When the proxy receives binding ack, then it retrieves N
from the INITIATED(N) state.

Asynchronous streams

A variable that is exported from its owner site can be preregistered. That is, the destina-
tion site is added to the owner’s reglist without waiting for a registration message. This
is correct if there is a FIFO connection to the destination site. Preregistering variables
allows elements to be added to streams asynchronously. The example of Section 8.3.4
relies on this behavior.

Let us look closely to see what happens. Assume variable X0 exists on sites 1
and 2. Binding X0=m1|X1 on site 1 causes m1|X1 to be sent to site 2. X1 will be
preregistered, i.e., MX1.reglist←MX1.reglist∪MX0.reglist when the binding leaves
site 1. If X1 is bound on site 1, then its binding will be sent immediately to site 2
without waiting for a registration request from site 2.

If preregistration is not done, then adding elements to a stream requires a round trip
message delay for each element. This is because remote proxies have to be registered

8.10. RELATED WORK 213

before they can receive a binding. In our example, binding X0=m1|X1 on site 1 causes
m1|X1 to be sent to site 2. When it arrives, an X1 proxy is created on site 2 and
promptly registers with site 1. Binding X1=m2|X2 on site 1 will not send the binding
to site 2 until the registration arrives on site 1. Therefore each new element appears on
site 2 only after a round trip.

Lazy and eager variables

Lazy and eager logic variables are defined informally in Section 8.3.2. In terms of the
on-line DU algorithm, they differ only in the scheduling of the ARRIVE rule. To be
precise, laziness is a property of a variable proxy, not of a variable. A proxy is lazy
if the reduction of ARRIVE is delayed until after INITIATE reduces on that site. If no
such delay is enforced then the proxy is eager.

In terms of the Mozart algorithm, this is implemented by registering lazy and eager
proxies at different times. Eager proxies are registered as soon as they appear on a site
(see ARRIVE rule in Figure 8.23). Lazy proxies are only registered after the INITIATE

rule is reduced (see Figure 8.22), that is, when a binding request is made.
When two proxies are bound together, the result must be eager if at least one of

the two was eager. When a local variable is bound to a proxy, the proxy must become
eager if the local variable was eager. Implementing this requires replacing the reg
message by three messages: (1) in the ARRIVE rule, reg becomes reg if eager, (2) in
the INITIATE rule, a new message reg always is sent, and (3) in the BIND rule, a new
message reg and make eager is sent if the local variable is eager.

8.10 Related work

There are two main streams of related work. Some distributed implementations of
concurrent logic languages do distributed unification (see Sections 8.10.1 and 8.10.3).
Some imperative or dataflow language implementations have a kind of synchronizing
variable (see Section 8.10.2). To our knowledge, the present article gives the first
formal definition and total correctness proof of a practical algorithm for distributed
rational tree unification. The present article also clearly explains for the first time the
advantages of using logic variables in a distributed system.

8.10.1 Concurrent logic languages

Many concurrent logic languages have been implemented in distributed settings. These
systems do not use logic variables primarily to improve latency tolerance and network
transparency. Rather, logic variables are integral parts of their execution models, and
the distributed extensions must therefore implement them. We summarize the dis-
tributed unification algorithms used in Flat GHC, Parlog, Pandora, DRL, and KLIC.

214 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

Flat GHC, Parlog, and D/C-Parlog

Among early implementations doing some form of distributed unification are a Flat
GHC (Guarded Horn Clauses) implementation on the Multi-PSI [65], a Parlog imple-
mentation on a network of workstations [43], and designs for distributed implemen-
tations of Parlog, Pandora, and D/C-Parlog [81, 82]. Pandora extends Parlog with
determinacy-driven execution (the Andorra model). D/C-Parlog extends Parlog with
linear real-number constraints, namely equations, inequalities, and disequalities. All
the above algorithms are defined informally by explaining what happens with argu-
ments of different types. No formal definitions nor correctness arguments are given.

The Parlog implementation contains an algorithm due to [43]. Variables exist on
one site and have remote references, which is similar to the owner/proxy model of the
Mozart algorithm. Variable-variable unification avoids binding cycles by ordering the
variables, as is done in the DU algorithm. All remote references to variables are lazy
and dereference chains may cross sites. Preregistering is not done, so asynchronous
streams are not possible.

Like early Prolog systems, Foster’s algorithm does neither an occur-check nor
memoization. When unifying two cyclic structures it may go into an infinite loop.
The algorithm has proxy registration (called “ns read”) similar to the Mozart algo-
rithm and a novel form of registration (called “read”) that sends the binding only when
the variable is bound to a nonvariable term. This is used to get the value for operations
that need a nonvariable.

DRL

DRL [35] (Distributed Real-time Logic language) is a concurrent logic language ex-
tended with features for distribution and soft real-time control. Distribution is intro-
duced by allowing computations on different sites to communicate through shared log-
ic variables. In DRL, the representative of a logic variable on a site is called a logic
channel. A logic channel is always statically marked with a direction, which is either
output or input. For a given logic variable, only one channel is marked output. Bind-
ing the output channel to a term causes the term to appear at all corresponding input
channels. The binding blocks until the term contains only ground subterms and logic
channels. It follows that variables can be transferred between sites only if they are
statically declared as logic channels.

Logic channels can be connected together. This operation is called “unification”
in DRL, but the shared logic variables are not actually unified together. To be precise,
no variable elimination is done, but communication links are set up between variables.
Connecting two output channels causes a future binding of one of them to be sent also
to the other. Connecting an input channel to another channel suspends until the input
channel receives a value. It follows that dependencies on intermediate sites are not
removed.

8.10. RELATED WORK 215

KLIC

KLIC [44] is an efficient portable implementation of the concurrent logic language
KL1 (Kernel Language 1) for distributed and shared-memory machines. KLIC achieves
these goals by compiling into C. On one processor running a series of representative
benchmarks, the performance of KLIC approaches that of C and C++ implementations.
The distributed implementation of KLIC does distributed unification [106], including
binding variables to variables. However, the algorithm has several curious properties:
binding cycles can be created when binding variables to variables, inconsistencies are
ignored, and a variable may be bound to different values on different sites. Apparently,
the algorithm is only intended to be used in settings where there is no possibility of
inconsistency.

8.10.2 Languages not based on logic

We first compare logic variables with futures and I-structures (see Section 8.10.2),
which have been used to improve expressiveness of parallel languages and perfor-
mance of parallel systems. Then we briefly discuss traditional distributed architectures
and how they could be extended to incorporate logic variables (see Section 8.10.2).

Futures and I-structures

The purpose of futures and I-structures is to increase the potential parallelism of a
program by removing inessential dependencies between calculations. They allow con-
currency between a computation that calculates a value and one that uses the value.
This concurrency can be exploited on a parallel machine. To our knowledge, they have
not been used in distributed programming. We compare futures and I-structures with
logic variables (see also Section 8.3.4).

The call (future E) (in Lisp syntax) does two things: it immediately returns a
placeholder for the result of E, and it initiates a concurrent evaluation of E [49]. When
the value of E is needed, the computation blocks until the value is available. We model
this as follows in Oz (where E is a one-argument procedure):

fun {Future E}
X in

thread {E X} end
X

end

This can be written more compactly as fun {Future E} thread {E} end end.
A future differs from a logic variable in that it can only be bound by the concurrent
computation that is created with it. Futures should not be confused with read-only
logic variables, which are not tied to any computation. (see Section 8.9.1 and [92]).6

An I-structure (for incomplete structure) is a single-assignment array whose ele-
ments can be accessed before all the elements are computed [12, 133, 64]. It permits

6Read-only logic variables are confusingly referred to as “futures” in the cited article.

216 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

concurrency between a computation that calculates the array elements and a computa-
tion that uses their values. When the value of an element is needed, then the computa-
tion blocks until it is available. An I-structure differs from an array of logic variables
in that its elements can only be bound by the computation that calculates them.

Two-level addressing

Systems with support for distributed computing commonly provide two-level address-
ing. This provides the ability to use local and remote references interchangeably. Ref-
erences that arrive on a site are automatically converted to the local form if they refer to
local entities. Typical examples include Java RMI [90], CORBA [96], and the Ericsson
OTP (Open Telecom Platform) [11, 138].

Two-level addressing can be extended to provide weak logic variables (see also
Section 8.3.1). It suffices to add an “unknown” state to variables: (1) threads block
when the variable is unknown, (2) when the value is available, all remote references
to the variable leave the unknown state, and (3) no forwarding chains are created if
a reference travels among many sites. There should be no overhead if the variable is
on one site only. To provide full logic variables this is further extended with variable-
variable unification. As the CC-Java implementation illustrates, dynamic typing is not
necessary (see Section 8.3.5).

8.10.3 Sending a bound term

A basic operation in distributed unification is sending a bound term across the network.
[76] investigate the costs of this operation and sketch an algorithm to send only that
part of a term required by a consumer. Sending too little increases the message latency,
since multiple requests will be done. Sending too much increases network load and
memory consumption at the consumer. The proposed algorithm sends exactly that part
of a term required by a consumer. For example, a list appending procedure requires
only the spine of the list, and not the terms in the list. The algorithm uses “consumption
specifications”, simple tree grammars extended with an additional terminal Remote.
These specifications can be given by static analysis or by programmer annotation.

8.11 Conclusions

This article has examined the use of logic variables in distributed computing. We have
shown that if the logic variables are well-implemented, then common distributed pro-
gramming idioms can be written in a network-transparent manner, and they behave
efficiently when distributed. We have defined the CU algorithm, a centralized algo-
rithm for rational tree unification, and the DU algorithm, its conservative extension to
a distributed setting. The DU algorithm replaces the centralized BIND rule by four
rules that do coherent variable elimination. We show that the DU algorithm has good
network behavior for common distributed programming idioms. We prove that the DU

8.12. ACKNOWLEDGEMENTS 217

algorithm is a correct implementation of unification, and we bound the amount of extra
work it can do compared to the CU algorithm. We show that both lazy and eager logic
variables are implemented by the DU algorithm. They differ only in the scheduling of
a single reduction rule.

We extend both the CU and DU algorithms to the on-line case, in which new equa-
tions can be introduced indefinitely during execution. We show that if a weak fairness
condition holds and if all variables in the equation satisfy the finite size property, then
any introduced equation will eventually be entailed by the store.

The Mozart system implements the Distributed Oz language and was publicly re-
leased in January 1999 [94]. Mozart contains an optimized version of the on-line DU
algorithm. Distributed Oz, also known as Oz 3, conservatively extends Oz 2 to allow
an efficient distributed network-transparent implementation [54, 132, 55]. Oz 2 has a
robust centralized implementation that was officially released in February 1998 [34].
Oz 3 keeps the same language semantics as Oz 2 and extends it with support for mo-
bile computations, open distribution, component-based programming, and orthogonal
failure detection and handling within the language. Oz 2 programs are portable to Oz
3 almost immediately.

8.12 Acknowledgements

This research is funded in Sweden by the Swedish national board for industrial and
technical development (NUTEK) and SICS. This research is partially funded in Bel-
gium by the Walloon Region. The development of Mozart at DFKI is supported by the
BMBF through Project PERDIO (FKZ ITW 9601).
Author’s addresses: S. Haridi and P. Brand, Swedish Institute of Computer Science,
S-164 28 Kista, Sweden; email: {seif; perbrand}@sics.se; P. Van Roy, Department
of Computing Science and Engineering, Université Catholique de Louvain, B-1348
Louvain-la-Neuve, Belgium; email: pvr@info.ucl.ac.be; M. Mehl and R. Scheidhauer,
German Research Center for Artificial Intelligence (DFKI), D-66123 Saarbrücken,
Germany; email: {mehl; scheidhr}@dfki.de; G. Smolka, Universität des Saarlandes,
D-66123 Saarbrücken, Germany; email: smolka@ps.uni-sb.de.

Michael Mehl implemented the distributed unification algorithm in the Mozart sys-
tem. Per Brand and Erik Klintskog have extended it to incorporate orthogonal failure
detection and handling. Iliès Alouini and Mustapha Hadim gave many valuable com-
ments on this article. We thank the other members of the Mozart projects at SICS,
DFKI, and UCL. Finally, we thank the referees for comments that let us vastly im-
prove the presentation.

218 CHAPTER 8. LOGIC VARIABLES IN DISTRIBUTED COMPUTING

Chapter 9

A Fault-Tolerant Mobile-State
Protocol

A Fault-Tolerant Mobile-State Protocol
and Its Language Interface

Per Brand1,
Peter Van Roy2,
Raphaël Collet3,
and Erik Klintskog4

1perbrand@sics.se, Swedish Institute of Computer Science, S-164 28 Kista, Sweden
2pvr@info.ucl.ac.be, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
3raph@info.ucl.ac.be, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Bel-

gium
4erik@sics.se, Swedish Institute of Computer Science, S-164 28 Kista, Sweden

219

220 CHAPTER 9. A FAULT-TOLERANT MOBILE-STATE PROTOCOL

9.1 Abstract

Mobile-state protocols are important for distributed object systems. We define a lightweight
mobile-state protocol that has a well-defined behavior for site and network failures.
The protocol is implemented as part of the Mozart platform for distributed application
development based on the Oz 2 language. The protocol provides enough information
to the language layer so that we can use the platform to program common fault-tolerant
algorithms completely in Oz 2. We formally define the semantics of the network layer
and the language interface, and we prove that the protocol correctly implements the
language interface.

9.2. INTRODUCTION 221

9.2 Introduction

We define a lightweight mobile-state protocol that has a well-defined behavior for site
and network failures. The protocol is part of the Mozart system, a platform for general-
purpose distributed application development based on the Oz 2 language [94, 51, 54,
7]. Mozart combines efficient network-transparent distribution with a failure model
that allows programming fault-tolerant behavior in Oz 2. The protocol is defined on
top of a network layer and provides a well-defined language interface. We formally
define both language and network semantics with their failure models, and we prove
that the protocol correctly implements the language interface.

Mobile object system. The mobile-state protocol implements a cell, an updatable
pointer that is the basic stateful entity in the Oz 2 language [132]. Cells are the heart
of the Oz 2 concurrent object system [58, 131]. The protocol is a fault-tolerant exten-
sion of the distributed mobile-state protocol defined in [132, 131]. In Section 9.6 we
prove that the protocol satisfies the cell language semantics if the manager site (see
Section 9.5) remains running and accessible and the cell’s state pointer is not lost (see
Section 9.3.2).

Design goals. The mobile-state protocol has the following design goals. It does not
sacrifice performance in the common case of no failures. It has the same performance
as the non-fault-tolerant protocol of [132]. When there are failures, it provides enough
information to the language layer so that common fault-tolerant algorithms can be
implemented there [6]. The failure model is designed to cover the vast majority of
failures occurring in general-purpose distributed systems, namely site failures (fail-
stop) and both temporary and permanent communication failures [78]. The protocol
never makes a unilateral decision about a course of action to take when there is a
failure. The language layer, i.e., the application, can always make the decision. For
example, the protocol will not time-out by default and it can be interrupted at any time
by the application while it is waiting. Time-outs, if desired, are easily installed at the
application level. Applications written without fault tolerance in mind may block but
will not show incorrect behavior if there is a failure.

Collaborative tool development. One example of the usefulness of this proto-
col is a high-performance collaborative design tool that we are developing in Oz 2
for geographically-separated design teams [47]. Our current tool consists of 20,000
lines of Oz 2 and runs on the Mozart system. It implements a coherent graphic editor
and whiteboard, has high performance even over very slow networks, does full and
automatic remote code loading, and is fault-tolerant.

Related work. The language-based approach of this paper has some similarities
to the metaobject approach of the FRIENDS system [37] and to the language-based
approach of the FT-SR language and system [109]. Two main differences are that mo-
bility is a basic ingredient of our protocol and that we give a detailed formal definition
with correctness proof of the implemented protocol.

Outline of the paper. The Mozart system consists of four levels of abstraction (see
Figure 9.1): OZL (Oz 2 language layer, Section 9.3), RML (reliable message layer,
Section 9.4), DGL (distribution graph layer, Section 9.5), and TCP (standard transport

222 CHAPTER 9. A FAULT-TOLERANT MOBILE-STATE PROTOCOL

OZL

RML

Language layer

Distribution graph layer

Reliable message layer

Oz language entities and their operations
Primitive entities: thread, cell, record, procedure, variable

Reliable byte stream with time-out

Node types: thread, cell, record, procedure, variable
Two new node types: proxy, manager
Protocols between nodes define distributed semantics

Site failure detectionStandard TCPTCP

DGL

Delimited messages
Unlimited retry on time-out
Non-FIFO message passing
TCP connection cache

This paper defines:

with fault model and
proves the protocol
correct

- cell semantics
- mobile-state protocol
- network semantics

Figure 9.1: Abstractions in the Mozart implementation

layer [27, 139]). The focus of this paper is on the mobile-state protocol, which is part
of the DGL. The protocol uses the RML operations to implement cells for the OZL.
The protocol guarantees that all sites see the same sequence of state updates. The RML
obeys a well-defined failure model. This paper shows how the RML failure model is
reflected into the OZL so that fault tolerance can be implemented within Oz 2. All the
formal treatments are included as appendices, so that the paper’s claims can be verified
if desired.

9.3 Language semantics (OZL)

From the application programmer’s point of view, the mobile-state protocol imple-
ments a cell, which is the basic stateful entity in the Oz 2 language [132]. We give a
summary of the language semantics, distributed semantics, and fault-tolerant seman-
tics of cells.5

The full language interface of Sections 9.3.3 and 9.3.4 consists of a failure mod-
el and three cell operations, Exchange, Probe, and Insert. The failure model is
defined in terms of individual cells, where each cell has an internal error state. The op-
erations’ semantics are defined with five reduction rules. The rules’ operation depends
on the internal error state.

9.3.1 Language semantics of cells

The Oz 2 execution model consists of fair, sequential dataflow threads observing a
shared store [51]. Cells have two basic operations, which are executed within threads:
creating a new cell and updating a cell’s content. For brevity, we limit the discussion
to the update, called exchange. In the call {Exchange C X Y}, C references a cell
and X and Y are references into the store. The exchange is executed atomically. After

5Appendix 9.8.6 gives a full treatment.

9.3. LANGUAGE SEMANTICS (OZL) 223

ok nsok ns

sokok ns sok

sl/homesl/foreign

sl/foreign

sl

ok
sl/k
sl State lost everywhere

State lost everywhere except site k
Normal operation

Normal operation, state at proxy
Normal operation, state not at proxy

sl/home
sl/foreign

sl

Manager site down, state at proxy
Manager site down, state not at proxy
State lost everywhere
Network inactive (add to any of above)netdown

Local error states (proxy knowledge of global state)

Global error states

sl/k slok

Figure 9.2: Local and global error transitions of a cell

the execution, Y is a reference to the cell’s new content and X becomes a reference to
the cell’s old content.

9.3.2 Distributed semantics of cells

The distributed semantics is an extension of the language semantics that specifies how
the reduction is partitioned among multiple sites. In the case of a cell, there is always
one site, say Sj, that contains the current content and that has the right to update the
content. We say that this site has the cell’s state pointer. Executing an exchange on site
Si atomically causes the cell’s new content to come to site Si. This semantics is at the
heart of a mobile object system that has the defining property that mobile objects are
always executed locally [131]. The object state is always brought to the site containing
the thread that executes the method.

9.3.3 Cell failure model

The cell failure model is part of the fault-tolerant semantics of cells. Each cell has a
global error state and each cell proxy has partial knowledge of this global state (see
Figure 9.2). A cell can be in three global states: normal operation (ok), state pointer
lost everywhere except on site k (sl/k), and state pointer lost everywhere (sl). Locally,
if operation is normal, the state toggles between not having and having the state pointer
(okns and oks). If something goes wrong locally, one can know that the state pointer
is lost everywhere (sl), everywhere except for the local site (sl/home), or everywhere
except possibly for one other site (sl/foreign). In addition to the above local state,
one can always know that the network is currently inactive (netdown). Generally but

224 CHAPTER 9. A FAULT-TOLERANT MOBILE-STATE PROTOCOL

not always, network inactivity is temporary. The proxy cannot determine whether the
network will ever become active again.

9.3.4 Fault-tolerant semantics of cells

The distributed semantics of exchange is extended to give a precise behavior when
failures occur. Two new operations, Probe and Insert, are provided to interact with
the fault-tolerant side of the protocol. The three operations have the following informal
definitions:

• {Exchange C X Y} completes atomically if there is no failure. If there is a
failure, then the exchange blocks and an optional handler is executed. The han-
dler call may be followed by a retry of the exchange, which is useful in the case
of temporary failures.

• {Insert C H R} where C references a cell, H references a one-argument pro-
cedure, and R references the redo flag (FALSE or TRUE). This installs a handler
on the cell C.

• {Probe C F} where C references a cell and F identifies a failure when it occurs.
The probe blocks until a failure is detected on its site. At that point, it binds F to
a value that identifies the failure (e.g., sl, ok+netdown, etc.).

In other words, if there are no failures then exchange is an atomic read-and-write op-
eration. If there is a failure, then probe allows it to be detected asynchronously and
insert allows it to be handled synchronously.

9.3.5 Usefulness of Probe and Insert

The Probe and Insert operations are all that one needs to program standard fault-
tolerant algorithms in Oz 2. For example, it is straightforward to install a failure treat-
ment routine that is invoked asynchronously in its own thread when a failure occurs on
a particular cell. We call such a routine a watcher [54]. Here is an Oz 2 program that
installs a watcher:

proc {InstallWatcher C Watcher}
F in % Declare local variable F

thread % Create a new thread
{Probe C F} % Wait until failure occurs
{Watcher C F} % Invoke watcher

end
end

The watcher is free to use Insert to install a handler that can do anything it likes,
e.g., replace the operation by an exception if there is a site failure or retry the operation
indefinitely if the network is inactive.

9.4. NETWORK INTERFACE (RML) 225

Using watchers, we have written a fault-tolerant version of a collaborative graphic
editor that is virtually unkillable. The fault-tolerant layer has been added as an orthog-
onal addition to the application, which was not originally fault-tolerant [6, 47]. The
editor runs on multiple sites; one site is special since it serializes all state updates for
coherence. If the special site dies, then an election algorithm is invoked among the
others [25]. If a non-special site dies, then the locks that it possesses on graphic enti-
ties are released. This means that as long as the editor exists on at least one running
site, it survives and it can even grow if additional sites are connected.

9.4 Network interface (RML)

This section briefly defines the Mozart network layer.6 The system consists of a set of
nodes communicating through a network. The network is assumed to be asynchronous
and unordered (i.e., non-FIFO).7 We model network inactivity and permanent site fail-
ures. Site failures are instantaneous and permanent. Network inactivity is detected
instantaneously. The network may or may not recover during the application’s execu-
tion. Messages in transit from a failed site may be lost. Messages to a failed site are
lost. Site failure can cause message loss but network inactivity never does.

There are two network operations. Send(Ni:Nj:M) sends message M from node Ni
to node Nj. The Receive(Ni:Nj:M) is part of a condition-action rule, which is defined
as follows:

Receive(Ni:Nj:M) ∧ Condition
Action

≡

do
∃ Ni:Nj:M ∈ Net ∧ Condition −→
Net← Net - {Ni:Nj:M}
Action

od
The network Net is a multiset of messages of the form Ni:Nj:M. In the full formal
definition, each site S has associated with it a “local” network NetS. When the site
fails, the messages in the local network are lost. Each rule in the protocol definition
is given its own branch in the nondeterministic iteration do–od. It follows that the
protocol is defined according to an interleaving semantics.

The network layer provides two conditions that can be used in rules: Sitedown(N)
is true iff N’s site is down and there are no messages in the network from N. This is a
permanent condition. Netdown(N) is true iff there is no network activity at N’s site.
This condition may be temporary. These two conditions are implemented on top of the
TCP protocol.

6Appendix 9.8.1 gives the full formal definition.
7Appendix 9.8.14 shows that FIFO communications are undesirable for network-transparent dis-

tributed programming.

226 CHAPTER 9. A FAULT-TOLERANT MOBILE-STATE PROTOCOL

9.5 Protocol definition (DGL)

Section 9.5.1 presents the protocol by means of a pedagogically-sound stepwise refine-
ment. Then Section 9.5.2 shows how the three language operations are integrated into
the protocol. Figures 9.3 and 9.4 in Appendix 9.8.4 give the proxy and manager state
diagrams for the full protocol.

9.5.1 Stepwise construction of the fault-tolerant protocol

We construct the fault-tolerant mobile-state protocol in stepwise fashion from its non-
fault-tolerant ancestor by adding new behaviors.8

The basic protocol

The basic, non-fault-tolerant mobile-state protocol is the subject of an earlier pa-
per [132]. The protocol is very simple. It manages the movements of the cell’s state
pointer. Each site has a node called a proxy. One special site has a node called the
manager. When a proxy needs the state pointer to do an exchange, it sends a “get”
message to the cell’s manager. The manager then sends a “forward” message to the
proxy that will eventually get the state pointer. The manager therefore serializes the
requests, guaranteeing that there is no starvation. At any moment in time, there exists
in the system a sequence of proxies that the state pointer will eventually traverse. This
sequence is called the “chain”. Formalizing the chain is the key idea used to prove the
protocol correct.

Protocol with chain management

The first improvement is to let the manager maintain a conservative approximation of
the chain. This is very simple: when the manager receives a “get” message, it appends
the requesting proxy to the chain and it sends a “forward” message to the preceding
one, so that the latter forwards the state pointer to the requesting proxy.

When a proxy receives a “put” message containing the state pointer, it sends a
new message, “gotit”, to the manager, When the manager receives the “gotit”, then it
removes from the chain all proxies before the proxy that sent the “gotit”.

M

P1 P2

M

P1 P2T T

2. get3. forward 5. gotit

4. put

1. request 5. proceed

8Appendix 9.8.4 gives the full formal definition.

9.5. PROTOCOL DEFINITION (DGL) 227

Bypassing a failed proxy

The second improvement consists of checking whether a proxy is running before for-
warding the content-edge to that proxy. Suppose proxy P1 has to forward the content
to proxy P2. If P1 detects that P2 has failed, then it sends a new message, “cantput”, to
the manager. To which the manager’s response is to send another “forward” message
to P1 to bypass the failed proxy. This means that the state pointer is not affected if sites
that do not possess it crash.

M

P1 P3

M

P1 P3�����
�����
�����
�����

P2 �����
�����
���
���
P2

3. forward
2. cantput

1. Sitedown(P2)

4. put

Determining whether the state is lost

The third improvement is to add an inquiry protocol that permits to detect when the
state pointer is definitely lost. This loss can happen in two ways:
1. The state pointer is at proxy P and P’s site crashes.
2. The state pointer has been sent over the network in a “put” message and the message
is lost because of a site failure (of the sender or the receiver).

Manager failure detection

The fourth and last improvement is to allow proxies to detect a manager failure. This
is useful in the following situations:

• Proxy P does not have the state pointer and wishes to execute an exchange. The
proxy knows that it will never receive the state pointer and it can directly signal
that fact to the thread.

• Proxy P has the state pointer and cannot forward it. The proxy knows that it will
keep the state pointer forever.

9.5.2 Definition of language operations

The exchange, insert, and probe operations of the language are defined in terms of
message exchange sequences (“protocols”) between a thread node and a proxy node.
There are three protocols corresponding to the three language operations defined in
Section 9.3.4, namely Exchange, Probe, and Insert.9 We summarize here the most
difficult case, Exchange. To do an {Exchange C X Y}, the thread first sends re-
quest(Ny) to the proxy. If there is no failure, the proxy replies with proceed(Nx). If

9Appendix 9.8.12 gives full definitions of all three operations.

228 CHAPTER 9. A FAULT-TOLERANT MOBILE-STATE PROTOCOL

there is a failure, the proxy replies with skip(H,F) or redo(H,F), where handler H is
a one-argument procedure and F describes the failure. The choice between skip and
redo is taken when inserting a handler as part of the Insert operation. The sequence
of messages between thread T and proxy P is a sentence of the following grammar:

Start ::= T:P:request(Ny) Reply
Reply ::= P:T:proceed(Nx) | P:T:skip(H,F) | P:T:redo(H,F) Start

If the reply is redo(H,F), then the exchange operation is not finished. On the contrary,
the thread will send another request to the proxy.

9.6 Correctness

To prove the protocol correct we proceed in three steps. First, we propose a protocol
invariant, that is, a succinct characterization of the system state at any moment in
time. Appendix 9.8.13 gives a logical statement I that extends the invariant of [132]
to express all the possible error cases. Second, we need to prove that this statement is
actually invariant, that is, that it is initially valid and that the protocol rules preserve
its validity (safety theorem). Finally, we need to prove that the protocol does what
it is supposed to do, namely correctly move and update the cell’s content (liveness
theorem). We state the safety and liveness theorems, which are the principal technical
results of this paper.

Theorem 9.6.1 (Safety theorem). The chain invariant I is an invariant of the mobile
state protocol.

PROOF. The proof is not difficult, but cumbersome due to the large number of
cases. We verify that the property I holds for the initial state and that it is preserved by
application of any rule. 2

Theorem 9.6.2 (Liveness theorem). If the cell content is requested at proxy P, then
exactly one of the following three statements is eventually true:
1. The manager site does not fail and the state pointer is never lost. Then P will
eventually receive the cell content exactly once.
2. The manager site does not fail and the state pointer is lost before the cell content
reaches P. Then P will never receive the cell content, but it will eventually receive
notification from the manager that the state pointer is lost.
3. The manager site fails before any information reaches P.

PROOF. We sketch the proof, which divides naturally into three parts. First, if there
are no failures in the chain, then we show that the state pointer advances in the chain.
This is essentially the proof of [132]. Second, if there are chain failures, then we show
that the state pointer correctly bypasses the failed proxies. Third, if the state pointer is
lost, we show that this is correctly deduced by the manager. If the manager does not
fail, then these three cases are correct. 2

9.7. CONCLUSIONS 229

9.7 Conclusions

We have precisely defined the fault-tolerant mobile-state protocol in the Mozart plat-
form, which implements the Oz 2 language. The protocol is at the heart of Mozart’s
concurrent object system. In the case when there are no failures, this protocol has
the same network overhead as its non-fault-tolerant ancestor [132]. In the case when
there are failures, the protocol provides sufficient hooks to the language layer to allow
common fault-tolerant algorithms to be implemented completely within the Oz 2 lan-
guage [6]. We prove that the protocol correctly updates object state as long as the state
itself is not lost and one other site (the manager site) does not crash.

Acknowledgements

This research is partly financed by the Walloon Region of Belgium.

230 CHAPTER 9. A FAULT-TOLERANT MOBILE-STATE PROTOCOL

9.8 Appendix

9.8.1 Formal definition of the network layer (RML)

Data

• A set of site identifiers Si, a set of node identifiers Ni, and a function site(Ni)
giving the site of Ni.

• The global network Net, which is a multiset of messages Ni:Nj:M, initially emp-
ty. For each site identifier Sk, a local network NetSk

, initially empty, which is a
multiset of messages Ni:Nj:M where site(Ni)=Sk.

• A set of boolean site failure variables sf(Si)∈ {FALSE, TRUE}, initially FALSE.
A set of boolean network inactivity variables nf(Si) ∈ {FALSE, TRUE}, initially
FALSE. The latter transit back and forth between FALSE and TRUE. We have
nf(Si)=TRUE iff site Si detects no network activity during a given time.

Primitive operations

We give the semantics of a reduction rule in terms of guarded commands:

Condition
Action

≡ do Condition −→ Action od

If there is more than one rule, then each rule is given a branch of the do. The primitive
operations PrimSend and PrimRec assume perfectly working NetSi

and Net networks
and sites. Failures are modeled at the next level.

PrimSendSk
(Ni:Nj:M) ≡ NetSk

← NetSk
+ {Ni:Nj:M}

PrimRecSk
(Ni:Nj:M) ∧ Condition

Action

≡ ∃ Ni:Nj:M ∈ NetSk
∧ Condition

NetSk
← NetSk

- {Ni:Nj:M}

Action

PrimSend and PrimRec (with Net instead of NetSk
) are defined analogously.

9.8.2 Network layer operations

We define the operations Send and Receive and the conditions Sitedown and Net-
down. Failures are modeled at this level.

Definition of Send

Send(Ni:Nj:M) ≡ PrimSendsite(Ni)
(Ni:Nj:M)

with two internal rules:

9.8. APPENDIX 231

NORMAL SEND PrimRecSk
(Ni:Nj:M) ∧ ¬sf(Sk) ∧ ¬nf(Sk)

PrimSend(Ni:Nj:M)
LOST SEND PrimRecSk

(Ni:Nj:M) ∧ sf(Sk) ∧ ¬nf(Sk)

skip

The second rule models the fact that when a site crashes, some of the messages sent
from this site may be lost in transit. In the real system, such messages are still partly
in a site buffer when the site crashes.

Definition of Receive

Receive(N1:N2:Msg) ∧ Condition
Action

is defined by the following rules:

NORMAL RECEIVE PrimRec(N1:N2:Msg) ∧ Condition ∧ ¬sf(site(N2)) ∧ ¬nf(site(N2))
Action

LOST RECEIVE PrimRec(N1:N2:Msg) ∧ sf(site(N2)) ∧ ¬nf(site(N2))
skip

Definition of Sitedown

Sitedown(N) is a site activity test that can be used as a condition in a Receive rule.
It is TRUE iff the site is down and there are no more messages from the site. When
executed in node Ni, it has the following semantics:

Sitedown(N) ≡ sf(site(N)) ∧ ¬∃ N:Ni:M ∈ Net

This definition assumes that site failure can always be detected.

Definition of Netdown

Netdown(N) is a network activity test that can be used as a condition in a Receive rule.

Netdown(N) ≡ nf(site(N))

If a Receive rule contains a Netdown(N) condition, then the corresponding “¬nf(site(N))”
condition is removed from the semantic definition given above. This allows us to define
a protocol that does something instead of nothing when the network is inactive.

9.8.3 Site and network failures

The following two rules are added to the above definitions.

232 CHAPTER 9. A FAULT-TOLERANT MOBILE-STATE PROTOCOL

NETWORK ACTIVITY TRUE
nf(Si)← ¬nf(Si)

SITE FAILURE ¬sf(Si)
sf(Si)← TRUE

The first rule models that a network may become inactive for some time, and then
become active again. The network layer implements the inactivity check by sending a
“ping” message regularly if no messages are sent or received by the site during a given
time. The second rule models a permanent site failure.

9.8.4 Formal definition of the mobile-state protocol (DGL)

We first give the node states (Appendix 9.8.4) and the state diagrams for proxy nodes
and manager nodes (Appendix 9.8.4). Then we define the protocol rules. Appendix 9.8.5
defines the basic protocol with chain management. This is the protocol of [132], where
the manager is extended to maintain an approximation to the chain. Appendices 9.8.5
and 9.8.5 taken together define an extension of the basic protocol where the state point-
er bypasses failed proxies. Appendices 9.8.5, 9.8.5, and 9.8.5 together define a further
extension where the manager can determine in some cases that the state is lost. Finally,
Appendices 9.8.5 through 9.8.5 define the full protocol, in which proxies also detect
manager failure and report it correctly.

Table 9.1 refines the information of Figure 9.2 and defines the function error(P)
that is used in the thread interface of Appendix 9.8.5. The table shows what the proxy
can know of the global error state. This information is passed to the handler when an
error is detected.

Node state

We define the attributes of each node involved in the protocol. The table below gives,
for each node type, the name of the attribute, its type and its initial value. Ti are
threads, M is manager and Pi are proxies.

9.8. APPENDIX 233

Attribute Type Initial value

thread Ti

id NodeRef GetThreadRef(i)

manager M

chain (NodeRef×Identifier)+ (〈GetProxyRef(1),P1.requestid〉)
current NodeRef×Identifier 〈GetProxyRef(1),P1.requestid〉
knowledge {OK, INQ, CW, SL} OK

proxy Pi

state {FREE, CHAIN} CHAIN(i=1), FREE(i 6=1)
content NULL | NodeRef N(i=1), NULL(i 6=1)
forward NULL | NodeRef NULL
backward NULL | NodeRef NULL
thread NULL | NodeRef NULL
newcontent NULL | NodeRef NULL
manager NodeRef GetManagerRef()
id NodeRef GetProxyRef(i)
requestid Identifier newId()
knowledge {OK, MF, SL, SLMF} OK

State diagrams

Figures 9.3 and 9.4 give the state diagrams for proxy and manager in the full protocol.
These diagrams show three of the refinements as well. The transitions in bold lines
give the basic protocol with chain management. Adding the transitions in dotted lines
gives the protocol that also determines whether the state is lost. Adding the transitions
in thin lines gives the full protocol that handles proxy bypassing and manager failure.

9.8.5 Basic protocol with chain management

P.1. Request
content and
reply to
thread

Receive(T:P:request(T,Ny)) ∧ P.content 6=NULL
Send(P:T:proceed(P.content))
P.content← Ny

P.2. Request
content

(a) Receive(T:P:request(T,Ny)) ∧ P.state=FREE ∧ P.knowledge=OK
Send(P:P.manager:get(P.id,P.requestid))
P.state← CHAIN
P.newcontent← Ny
P.thread← T

234 CHAPTER 9. A FAULT-TOLERANT MOBILE-STATE PROTOCOL

request /
proceed

request /
proceed

inquire
/ atMe

inquire
/ atMe

Sitedown(back)
/ cantrec

request /
proceed

inquire
/ atMe

not Sitedown(fwd)
/ put

not Sitedown(fwd)
/ put

Sitedown(back)
/ cantrec

Normal operation

Determining whether state lost

Manager failure detection

Condition/Action

request /
proceed

free

all

sent
get

got
put

got
fwd

got

sl / -

sl / -

inquire / beforeMe

inquire / beforeMe

put / proceed, gotit

put / proceed

Sitedown(back) / -

/ cantput

Sitedown(fwd)

MF

MF

MF

MF

MF

inq

inq

SL

SL

inq
&MF

inq
&MF

MFMF

MF MF

MF

MF

Sitedown(fwd)

MF

put / proceed, gotit

put / proceed

request / get

Sitedown(back) / -

forward / - forward / -forward / -

Figure 9.3: Proxy state diagram

9.8. APPENDIX 235

OK SL

INQ

CW

get / forward

get / forward

cantput /
(forward)

gotit / -

- / inquire

Sitedown(last) / -

cantrec / sl

Sitedown(not last) / *

afterMe / *

atMe / -

get / forward get / sl

gotit / -

cantrec / sl

Sitedown(last) / -

gotit / - beforeMe / -

Sitedown(last) / -

Figure 9.4: Manager state diagram

P.3. Accept
content

(a) Receive(P’:P:put(Nz)) ∧ P.knowledge=OK
Send(P:P.thread:proceed(Nz))
P.thread← NULL
Send(P:P.manager:gotit(P.requestid))
P.content← P.newcontent
P.backward← NULL

P.4. Accept
forward

Receive(M:P:forward(P’)) ∧ P.knowledge=OK
P.forward← P’

P.5. Forward
content

P.content=CVAL ∧ P.forward=P’ ∧ ¬Sitedown(P’)
Send(P:P’:put(CVAL))
P.state← FREE
P.content← NULL
P.forward← NULL
P.requestid← newId()

M.1. Serialize
content
request

(a) Receive(P:M:get(P,ri)) ∧M.knowledge 6=SL
Send(M:last(M.chain).1:forward(P))
append(M.chain,〈P,ri〉)

236 CHAPTER 9. A FAULT-TOLERANT MOBILE-STATE PROTOCOL

M.2. Receive
gotit

(a) Receive(P:M:gotit(ri)) ∧ 〈P,ri〉 ∈M.chain ∧M.knowledge=OK
erase before(M.chain,〈P,ri〉)
M.current← 〈P,ri〉

(b) Receive(P:M:gotit(ri)) ∧ 〈P,ri〉 6∈M.chain ∧M.knowledge=OK
skip

Bypassing a failed proxy

P.6. Can’t
forward
content

(a) P.content 6=NULL ∧ P.forward=P’ ∧ Sitedown(P’) ∧ P.knowledge=OK
Send(P:P.manager:cantput(P.requestid))
P.forward← NULL

M.3. Receive
cantput

(a) Receive(P:M:cantput(ri)) ∧M.knowledge=OK ∧
M.chain=C1•(〈P,ri〉,〈P’,ri’〉,〈P”,ri”〉)•C2

Send(M:P:forward(P”))
erase element(M.chain,〈P’,ri’〉)

(b) Receive(P:M:cantput(ri)) ∧M.knowledge=OK ∧
M.chain=C1•(〈P,ri〉,〈P’,ri’〉)

erase element(M.chain,〈P’,ri’〉)

Determining whether the state is lost

P.7. Receive
inquire and
reply to
manager

(a) Receive(M:P:inquire(P’,ri)) ∧ ri 6=P.requestid
Send(P:M:afterMe)

(b) Receive(M:P:inquire(P’,ri)) ∧ ri=P.requestid ∧ P.content 6=NULL
Send(P:M:atMe)

(c) Receive(M:P:inquire(P’,ri)) ∧ ri=P.requestid ∧ P.content=NULL
Send(P:M:beforeMe)
P.backward← P’

P.8. Can’t
receive
(detect
P.backward
failure)

(a) P.backward=P’ ∧ Sitedown(P’) ∧ P.knowledge=OK
Send(P:P.manager:cantrec)
P.knowledge← SL

P.9. Receive sl Receive(M:P:sl)
P.knowledge← SL

M.1. Serialize
content
request

(b) Receive(P:M:get(P,ri)) ∧M.knowledge=SL
Send(M:P:sl)

9.8. APPENDIX 237

M.2. Receive
gotit

(c) Receive(P:M:gotit(ri)) ∧ 〈P,ri〉 ∈M.chain ∧M.knowledge=SL
erase before(M.chain,〈P,ri〉)
M.current← 〈P,ri〉

(d) Receive(P:M:gotit(ri)) ∧ 〈P,ri〉 6∈M.chain ∧M.knowledge=SL
skip

(e) Receive(P:M:gotit(ri)) ∧ 〈P,ri〉=M.current ∧M.knowledge=CW
erase before(M.chain,〈P,ri〉)
M.knowledge← OK

M.4. Send inquire (a) M.knowledge=OK ∧M.current=〈P,ri〉=first(M.chain)
Send(M:P:inquire(NULL,ri)
M.knowledge← INQ

(b) M.knowledge=OK ∧M.current=〈P,ri〉 ∧ 〈P’,ri’〉=pred(M.chain,〈P,ri〉)
Send(M:P:inquire(P’,ri)
M.knowledge← INQ

M.5. Accept reply
of inquire

(a) Receive(P:M:afterMe) ∧M.knowledge=INQ
M.knowledge← OK
M.current← succ(M.chain,M.current)

(b) Receive(P:M:atMe) ∧M.knowledge=INQ
M.knowledge← OK

(c) Receive(P:M:beforeMe) ∧M.knowledge=INQ
M.knowledge← CW

M.6. Receive
cantrec

Receive(P:M:cantrec) ∧M.knowledge=CW
M.knowledge← SL
Send(M:Pi:sl) ? for each Pi after P in M.chain ?

M.7. Detect
proxy
failure

(a) 〈P,ri〉=M.current 6=last(M.chain) ∧ Sitedown(P) ∧M.knowledge 6=SL
M.knowledge← OK
M.current← succ(M.chain,M.current)

(b) 〈P,ri〉=M.current=last(M.chain) ∧ Sitedown(P) ∧M.knowledge 6=SL
M.knowledge← SL

Manager failure detection

P.3. Accept
content

(b) Receive(P’:P:put(Nz)) ∧ P.knowledge=MF
Send(P:P.thread:proceed(Nz))
P.thread← NULL
P.content← P.newcontent
P.backward← NULL

P.6. Can’t
forward
content

(b) P.content 6=NULL ∧ P.forward=P’ ∧ Sitedown(P’) ∧ P.knowledge=MF
P.forward← NULL

238 CHAPTER 9. A FAULT-TOLERANT MOBILE-STATE PROTOCOL

P.8. Can’t
receive
(detect
P.backward
failure)

(b) P.backward=P’ ∧ Sitedown(P’) ∧ P.knowledge=MF
P.knowledge← SLMF

P.10. Detect
manager
failure

Sitedown(P.manager) ∧ P.knowledge=OK
P.knowledge←MF

Thread interface

P.11. Report error (a) Receive(T:P:request(T,Ny)) ∧ error(P)=F ∧ F 6=ok ∧ P.hdl=(H,R)
Send(if R then P:T:redo(H,F) else P:T:skip(H,F))

(b) P.thread=T ∧ T 6=NULL ∧ error(P)=F ∧ F 6=ok ∧ P.hdl=(H,R)
Send(if R then P:T:redo(H,F) else P:T:skip(H,F))
P.thread← NULL

P.12. Probe Receive(T:P:probe) ∧ error(P)=F ∧ F 6=ok
Send(P:T:failure(F))

P.13. Insert Receive(T:P:insert(H,R))
P.hdl← (H,R)
Send(P:T:insertack)

9.8.6 Formal definition of the language semantics (OZL)

From the application programmer’s point of view, the mobile-state protocol imple-
ments a cell, which is the basic stateful entity in the Oz 2 language [132]. Appen-
dices 9.8.7 and 9.8.8 introduce the Oz 2 execution model and define the cell’s opera-
tional semantics independent of distribution and fault tolerance. This suffices to reason
about programs without mentioning the network. Appendix 9.8.9 refines this seman-
tics by adding a distribution model. This allows to reason also about the distribution
behavior in the case when there are no failures. Appendices 9.8.10 and 9.8.11 define a
failure model and add it to the semantics. This allows to reason about both distribution
and failure behavior.

The full language interface of Appendix 9.8.11 consists of a failure model and
three cell operations, Exchange, Probe, and Insert. The failure model is defined in
terms of individual cells, where each cell has an internal error state. The operations’
semantics are defined with five reduction rules. The rules’ operation depends on the
internal error state.

9.8. APPENDIX 239

Proxy state PSi (site i) Proxy’s knowledge Value of
Description of global error state error(P)

P.know=OK ∧ P.content 6=NULL ok ∨ sl/i oks

No known problem, state at P
P.know=OK ∧ P.content=NULL ok ∨ sl ∨ (sl/j ∧ j 6= i) okns

No known problem, state not at P
P.know=MF ∧ P.content 6=NULL sl/i sl/home

Manager site down, state at P
P.know=MF ∧ P.content=NULL sl ∨ (sl/j ∧ j 6= i) sl/foreign

Manager site down, state not at P
P.know=SL sl sl

State lost
P.know=SLMF sl sl

Manager site down, state lost

Netdown(P) error(P)+
Network inactive; add to any of above netdown

Table 9.1: Proxy states and error knowledge (definition of error(P))

9.8.7 Oz 2 execution model

The Oz 2 execution model consists of fair dataflow threads observing a shared store [51].
A dataflow thread can execute its next statement only when all values the statement
needs are available. Threads contain statement sequences Si and references into the
store. The only way for threads to communicate is through shared references.

The store is a set of two kinds of variables: variables that can be bound only once
(called logic variables, e.g., X, Y, Z), and variables that can be bound more than once
(called cells, n). It is important to have both in a distributed system. The distributed
protocol for logic variables is much more efficient than that for cells, and logic vari-
ables cover most cases of message passing [53]. Dataflow synchronization of threads
is implemented with logic variables.

The execution of an Oz 2 program is defined by the reduction of condition-action
rules, written as follows:

S1 S2

σ1 σ2
C

Rule reduction obeys an interleaving semantics, i.e., there is no overlap between rule
reductions. A rule becomes reducible when three conditions are satisfied: S1 is the
first statement of some thread, the actual store σ matches the store σ1 in the rule,
and boolean condition C is true. Reducing the rule replaces S1 by S2 in the thread.
Fairness between threads implies that a rule is guaranteed to reduce eventually when it
is reducible and when it refers to the first statement of a thread.

240 CHAPTER 9. A FAULT-TOLERANT MOBILE-STATE PROTOCOL

9.8.8 Language semantics of cells

Cells have two basic operations: creating a new cell and updating a cell’s content. For
brevity, we limit the discussion to the update, called exchange. It has the following
informal definition:

• {Exchange C X Y} where C references a cell. The exchange is executed atom-
ically by a thread. After the execution, Y is a reference to the cell’s new content
and X becomes a reference to the cell’s old content.

Exchange has the following language semantics:

EXCHANGE
{Exchange C X Y} X=Z

C=n, n:Z, σ C=n, n:Y, σ

For brevity, we denote a store of the form {α1}∪σ as α1,σ.

9.8.9 Distributed semantics of cells

The distributed semantics is an extension of the language semantics that specifies how
the reduction is partitioned among multiple sites. We annotate each statement and
store content by its site. For example, the statement {Exchange C X Y}i is initiated
on site i. A cell’s value is assumed to exist on exactly one site, e.g., (n:X)i denotes
that cell n’s content, namely X, exists on site i. We call the pair (n:X)i the cell’s state
pointer, and we assume that the state pointer exists on exactly one site.

For brevity, we omit the site annotation for a binding that exists on each site that
needs it. That is, instead of (C=n)1, (C=n)2, ... (C=n)k, we simply write C=n, where
variable C references the cell with name n.

With these notations, the distributed semantics of exchange is:

EXCHANGE
{Exchange C X Y}i (X=Z)i

C=n, (n:Z) j, σ C=n, (n:Y)i, σ

That is, executing exchange on site i atomically causes the cell’s new value to come
to site i. This semantics is the heart of a mobile object system that has the defining
property that objects are always executed locally [131]. The object state is always
brought to the site containing the thread that executes the method.

9.8.10 Cell failure model

We define the cell failure model as a prelude to giving the fault-tolerant language se-
mantics of cells. Each cell has a global error state and each cell proxy has partial
knowledge of this global state (see Figure 9.2 and Table 9.1). We denote a cell’s global
state by n:glob(f) and its local state on site i by n:loc(f)i. Each cell has one site, the
manager site, that plays a crucial role in the mobile-state protocol. This is explained
in Section 9.5.

9.8. APPENDIX 241

A cell can be in three global states: normal operation (ok), state pointer lost ev-
erywhere except on site k (sl/k), and state pointer lost everywhere (sl). Locally, if
operation is normal, the state toggles between not having and having the state pointer
(okns and oks). If something goes wrong locally, one can know that the state pointer is
lost everywhere (sl), everywhere except for the local site (sl/home), or everywhere ex-
cept possibly for one other site (sl/foreign). The transitions from sl/foreign to sl/home
to sl/foreign again are due to possible messages in transit (a “put” and a “forward”
message, see the protocol definition below). The final sl/foreign state is permanent.

In addition to the above local state, one can always know that the network is cur-
rently inactive (netdown). The complete local state is a pair, e.g., okns+netdown,
sl/home+netdown, and so forth. Generally but not always, network inactivity is tempo-
rary. The proxy cannot determine whether the network will ever become active again.

9.8.11 Fault-tolerant semantics of cells

The distributed semantics of exchange is extended to give a precise behavior when
failures occur. Two new operations, probe and insert, are provided to interact with the
fault-tolerant aspect of the protocol. The three operations have the following informal
definitions:

• {Exchange C X Y} completes atomically if there is no failure. If there is a
failure, then the exchange blocks and an optional handler is executed. The han-
dler call may be followed by a retry of the exchange, which is useful in the case
of temporary failures.

• {Insert C H R} where C references a cell, H references a one-argument pro-
cedure, and R references the redo flag (false or true). This installs a handler
on the cell C.

• {Probe C F} where C references a cell and F identifies a failure when it occurs.
The probe blocks until a failure is detected on its site. At that point, it binds F to
a value that identifies the failure (sb or sl).

In other words, if there are no failures then exchange is an atomic read-and-write oper-
ation. If there is a failure, then insert allows it to be detected synchronously and probe
allows it to be detected asynchronously. The exchange can be dynamically replaced
by a handler. This allows arbitrary fault-tolerant behavior to be programmed in the
language.

The precise semantics of these three operations is defined by five reduction rules.
In these rules, the store holds the cell’s global error state sg as n:glob(sg), the local
error states sl (i.e., per site) as n:loc(sl)i for site i, and the local handler procedures H
and redo flags R as n:hdl(H,R)i. The notation (α1,α2) means to reduce α1 and α2

sequentially. The notation {H F} means to apply the procedure H to the argument F.

EXCHANGE
{Exchange C X Y}i X=Zi

C=n, (n:Z) j, σ C=n, (n:Y)i, σ n:glob(ok) ∧ n:loc(ok)i

242 CHAPTER 9. A FAULT-TOLERANT MOBILE-STATE PROTOCOL

REDO

{Exchange C X Y}i ({H F};{Exchange C X Y})i

C=n,
n:hdl(H,true)i, σ

C=n, (F= f)i,
n:hdl(H,true)i, σ

n:loc(f)i∧ f 6= ok

SKIP

{Exchange C X Y}i {H F}i

C=n,
n:hdl(H,false)i, σ

C=n, (F= f)i,
n:hdl(H,false)i, σ

n:loc(f)i∧ f 6= ok

INSERT

{Insert C H R}i skipi

C=n, (R=r)i, σ
C=n, (R=r)i,
n:hdl(H,R)i,
σ−{n:hdl(_,_)i}

r ∈ {false,true}

PROBE
{Probe C F}i (F= f)i

C=n, σ C=n, σ n:loc(f)i∧ f 6= ok

The EXCHANGE rule updates the local error state to become oks.

9.8.12 Formal definition of the language-protocol interface (OZL-
DGL)

We define the exchange, insert, and probe operations of the language in terms of mes-
sage exchanges between a thread node and a proxy node. The proxy definition is given
in Appendix 9.8.5. The thread definition is here.

When we say the language executes an operation, we mean that a thread in a run-
ning program executes the operation. In terms of the DGL, a thread is a node whose
state consists of an instruction sequence and a task stack. The thread node attempts
to execute the first instruction in the sequence. It does this by initiating a sequence
of message exchanges with other nodes. We call such a sequence a “protocol”. An
important invariant of the system is that all non-proxy nodes always reference nodes
on the same site. Therefore a thread always references a node on the same site, and so
we can consider communication between them to be completely reliable.

A cell consists of a set of proxy nodes, at most one per site. Each proxy node has
zero or more thread nodes that reference it. A thread executes a language operation on a
cell by exchanging messages with a cell proxy. There are three protocols corresponding
to the three language operations defined in Section 9.3.4, namely Exchange, Probe,
and Insert. In this section we define the protocols that implement these language
semantics. Because threads are sequential, it turns out that the protocols can be written
compactly as sequential procedures instead of in the more cumbersome reduction-rule
notation.

9.8. APPENDIX 243

Exchange

The {Exchange C X Y} operation is defined by a protocol between its thread and a
cell proxy. Infinite sentences are possible in this protocol. This is perfectly acceptable;
it means that the application decides infinitely often that it should continue to wait. An
application may postpone a decision indefinitely. This means that a complete sentence
may not appear during execution. This is perfectly acceptable also. The exchange
protocol is defined as follows:

function exchange(P,T,Ny)
Send(T:P:request(Ny))
return exch loop(P,T,Ny)

end

function exch loop(P,T,Ny)
Receive(P:T:Msg)
case Msg of
proceed(Nx) then return Nx
redo(H,F) then apply(H,F); return exchange(P,T,Ny)
skip(H,F) then apply(H,F); return NULL

end end

Argument P corresponds to the cell C, argument T references the thread, and Ny cor-
responds to Y, the cell’s new content. If the exchange returns with a non-NULL value
Nx, then Nx references the cell’s previous content. In that case the thread unifies Nx
with X.

Probe

The {Probe C F} operation is defined as follows:

function probe(P,T)
Send(T:P:probe); Receive(P:T:failure(Nf)); return Nf

end

Argument P corresponds to the cell C and argument T references the thread. The probe
returns with a reference Nf describing the failure. The thread then unifies Nf with F.

Insert

The {Insert C H R} operation is defined as follows:

procedure insert(P,T,H,R)
Send(T:P:insert(H,R)); Receive(P:T:insertack)

end

Argument P corresponds to the cell C, argument T references the thread, argument H
references the handler, a one-argument procedure, and argument R references the redo
flag. The insert operation returns when the handler has been successfully inserted at
the proxy.

244 CHAPTER 9. A FAULT-TOLERANT MOBILE-STATE PROTOCOL

9.8.13 Protocol invariant

The following invariant is derived from the mobile state protocol of [132]. To simplify
the use of the local networks NSi

, we will use the notation N∗, defined as:

N∗ = N∪
[

sites Si

NSi

Here is the invariant:

I ≡ Ip ∧ Ia ∧ Ib ∧ Ic ∧ Id ∧ Io ∧ Im ∧ Ik (9.1)

Ip ≡ {1, . . . ,k}= A]B]C]D (9.2)

Ia ≡ A = {a1, . . . ,a j}∧ j > 0 (9.3)

∧ ∀i : 1≤ i≤ j : Pai .state = CHAIN (9.4)

∧ ∀i : 1≤ i < j : Nai =

{

m ∈ N∗
∣

∣

∣

∣

m = :ai:forward()
∨m = ai: :cantput()

}

∧



















Pai .forward = NULL∧Nai = { :ai:forward(ai+1)}
∨ Pai .forward = ai+1 ∧Nai = /0
∨ Pai .forward = NULL∧Nai = {ai:M:cantput()}∧ sf(site(Pai+1))
∨ Pai .forward = NULL∧Nai = /0∧ sf(site(M))
∨ sf(site(Pai))

(9.5)

∧ Pa j .forward = NULL (9.6)

∧ ∀i : 1 < i≤ j : Pai .backward ∈ {NULL,ai−1} (9.7)

Ib ≡ ∀i ∈ B : Pi.state = CHAIN∧Pi.forward = NULL∧Pi.backward = NULL (9.8)

∧



















Pi.knowledge ∈ {OK,MF}∧∃ i:M:get() ∈ N∗

∨ Pi.knowledge = OK∧∃M:i:sl ∈ N∗

∨ Pi.knowledge = SL
∨ Pi.knowledge ∈ {OK,MF}∧ sf(site(M))
∨ sf(site(Pi))

(9.9)

Ic ≡ ∀i ∈C : Pi.state = FREE∧Pi.forward = NULL∧Pi.backward = NULL

∧¬sf(site(Pi)) (9.10)

Id ≡ ∀i ∈ D : sf(site(Pi)) (9.11)

Io ≡ StateLost⇔¬∃i : 1≤ i≤ k : Owner(Pi) (9.12)

∧ Owner(P)⇔















P.content = NULL∧¬sf(site(P))∧¬sf(site(P’))
∧∃ P’:P:put() ∈ Nsite(P’)

∨ P.content = NULL∧∃ :P:put() ∈ N∧¬sf(site(P))
∨ P.content 6= NULL∧¬sf(site(P))

(9.13)

∧ ∀i : 1≤ i≤ k :

{

i 6= a1⇒ Pi.content = NULL
Owner(Pi)⇒ i = a1

(9.14)

∧ There is at most one message put in N∗. (9.15)

Im ≡ ∃ chain C : M.chain = C• (〈a1, Pa1 .requestid〉, . . .〈a j , Pa j .requestid〉) (9.16)

∧ M.chain = (〈c1, r1〉, . . . ,〈cm, rm〉)

⇒

{

∃l : 1≤ l ≤ m : M.current = 〈cl , rl〉
∀i : 1≤ i < l : Pci .requestid 6= ri ∨¬Owner(Pci)

(9.17)

Ik ≡ ∀i : 1≤ i≤ k :

{

Pi.knowledge ∈ {MF,SLMF}⇒ sf(site(M))
Pi.knowledge ∈ {SL,SLMF}⇒ StateLost

(9.18)

∧ M.knowledge = SL⇒ StateLost (9.19)

∧ M.current = 〈P, r〉∧¬sf(site(P))∧¬sf(site(M))

⇒



























M.knowledge = INQ⇔















M:P:inquire() ∈ N∗

∨ P:M:beforeMe ∈ N∗

∨ P:M:atMe ∈ N∗

∨ P:M:afterMe ∈ N∗

∃ P:M:afterMe ∈ N∗⇒ P.requestid 6= r
∃ P:M:cantrec ∈ N∗⇒ StateLost

(9.20)

9.8. APPENDIX 245

9.8.14 Undesirability of FIFO in network-transparent distribution

FIFO connections are inherently undesirable for transparent distribution since they
impose dependencies between independent message streams. In particular, a thread
sending big messages across a FIFO connection forces other threads to slow down. To
show this, let T1 and T2 be threads such that T1 sends big messages of size T and T2

sends small messages of size t over a network with bandwidth b (bytes/sec). Consider
the following two cases:

1. FIFO. Assume that T1 and T2 send the same number of messages, i.e., each time
T1 sends a message, T2 sends one message. The rate (number of messages/sec)
of T1 is b/(T + t), which is also the rate of T2. So the mean rate is b/(T + t).

2. Non-FIFO. Assume that both T1 and T2 can dispose of a bandwidth of b/2. The
rate of T1 is b/2T and the rate of T2 is b/2t. So the mean rate is (1/T +1/t)b/4.

One can verify that the mean rate is better with non-FIFO than with FIFO:

b
4
(

1
T

+
1
t
)≥

b
T + t

With non-FIFO, each thread is guaranteed 1/n of the bandwidth if there are n threads.
If a thread does not need this much bandwidth, then its leftover bandwidth is shared
among the other threads. With FIFO, a thread has no guaranteed share of the band-
width. Its share depends on the size of the messages sent by all other threads. A
compute-bound thread can be forced to become I/O-bound.

Analogous results hold for latency. Across a well-designed non-FIFO connection,
message latency is close to the network’s basic latency. Across a FIFO connection,
message latency may increase without bounds.

The following analogy may help to clarify things. The south of France is a pop-
ular vacation destination, and many northern Europeans go there by car. There are
two kinds of roads: the Routes Nationales, with one lane for each direction, and the
Autoroutes, with two or three lanes for each direction. Any vacation-goer will tell you
that the Routes Nationales are terrible. You are forced to go as slow as the slowest
caravan. On the other hand, the Autoroutes are great. If you meet a slow caravan, no
problem–just switch lanes and pass it. A system for transparent distributed computing
should behave like an Autoroute and not like a Route Nationale.10

10Feel free to add a bad pun about the Infobahn.

246 CHAPTER 9. A FAULT-TOLERANT MOBILE-STATE PROTOCOL

Part III

Design Philosophy

247

Overview of Part III

The approach that we take in this part of the thesis is to begin by going back to basics
and define what we mean by a programming system and how we judge them. We begin
with centralized non-concurrent programming systems and end up with a set of criteria
to use for evaluating distributed programming systems. This are then used to evaluate
Mozart and other systems.

In chapter 10 we define what is meant by a programming system and establish cri-
teria by which to evaluate such systems. We set the stage by categorizing programming
systems into three different types, centralized non-concurrent, centralized concurrent
and distributed. The focus of the chapter is on centralized and non-concurrent pro-
gramming systems, i.e. those programming systems where there is the most commu-
nity experience. There should be little that is controversial here; rather the chapter is
an abstract recapitulation of those criteria that can be used to judge the quality of these
programming systems. We find that, on this level of abstraction, that there are three
important perspectives by which the quality of programming systems are measured. In
centralized non-concurrent programming, most programming systems/languages are
by these criteria fairly good - all this is so well-established that this is usually taken for
granted. Indeed, we are forced to exemplify programming systems that by our criteria
are deficient by historic and artificial examples.

The chapter 11 we discuss concurrent programming systems. We shall see that
the same abstract criteria (used in chapter 10) can be used to judge such systems,
and, in particular, the extensions that are made to cater for concurrency. There is less
community experience here, which is maybe why we find ’poor’ systems (according
to our criteria) in use today. We shall see that concurrent programming involves units
of computation (threads or processes) that interact and synchronize with each other
in accordance with what we call the sharing model. The three sharing models are
message-passing, data-flow, and shared objects (or state). Prototypical examples are
Erlang [138], KLIC [44], and Java [120]. Mozart/Oz is unusual in that is designed to
cater for all three sharing models.

In chapter 12 we discuss the three sharing models of concurrent programming sys-
tems in more detail. Given that Mozart/Oz is unique in catering for all three sharing
paradigms we need to address the question of whether all three sharing models are
needed. As we shall see, all sharing models are conceptually useful.

In chapter 13 we discuss the necessity of having all sharing models as primitives
in the implementation. It can be (and is) argued that they need not all be primitive
or native in the implementation. This is because, to a certain degree, one model is

249

250

programmable in another. We briefly describe how this is achieved. We note that the
programmed abstractions do carry some performance penalties, and do not capture all
useful features.

Proponents of mainstream concurrent object-oriented systems, which are single
paradigm, often take the view that shared objects are enough. We obviously disagree
with this. Some of the arguments for good implementation support for data-flow and
message-passing for concurrency (without considering distribution) are beyond the
scope of this thesis, having to do with consequences and likelihood of programming
errors rather than language expressiveness, or system performance. The practical ad-
vantages of declarative concurrency - as opposed to shared state concurrent program-
ming which is prone to deadlocks and race conditions is discussed in [129]. Be that
as it may, in this chapter we show that there are some advantages in catering for all
three sharing models in a concurrent setting. Perhaps, more importantly, we also lay
the groundwork for considering the three sharing models in the context of distribution.

In chapter 14 we introduce distributed programming systems and consider the ad-
ditional factors that need to be considered for an evaluation based on our three criteria.

In chapter 15 we describe the two known approaches to the design of distributed
programming systems. One approach, the assembler of distributed programming is to
directly reflect up to the user the underlying additional mechanism (other than com-
putation) that forms the basis of distributed programming, message-passing between
machines. The other approach is to extend a concurrent programming language/system
to distribution, or better yet to integrate the distributed programming model with the
concurrent programming model. We call this approach the integrated approach. Inte-
grated distributed programming systems will make use of one or more of the sharing
models from concurrent programming. This is only natural as distributed program-
ming subsumes concurrent programming - any distributed programming system also
caters for the special case when all threads/processes happen to be running on the same
machine.

In chapter 16 the integrated approach to the design of distributed programming sys-
tems is evaluated. This may also be seen as an evaluation of the Mozart Programming
System for two reasons. Firstly Mozart supports all three sharing models (most oth-
ers support only one) and thus subsumes many other integrated programming systems.
Secondly, Mozart has also gone further than others in smoothly integrating distribution
into a sound concurrent framework. In this chapter the criteria established in chapter
10 will be used extensively.

Mozart, it will be argued demonstrates more than the feasibility and usefulness
of Mozart itself, one particular distributed programming system, but much more. It
demonstrates the viability of the integrated approach in general and lays out the path
that distributed programming languages/systems should take to ensure that the system
measures up to the established criteria. In this chapter we also show that the in the
distributed setting that the case for integral support of all three sharing models is very
strong.

In chapter 17 we conclude and briefly consider future work. Here we summarize
those aspects of Mozart/Oz that we have shown to be essential in a good distribut-

251

ed programming language/system. In the final section on future work we first briefly
describe features that by all the experience, knowledge and principles expressed in
this thesis should have been, but for various reasons never were, incorporated into
the Mozart system. Finally, we consider aspects of distributed programming lan-
guages/systems that we believe to be open research questions. Here, in the context
of integrated distributed programming systems, the path ahead is unclear.

252

Chapter 10

Programming Systems

In this chapter we will begin with some basic definitions and concepts. Thereafter we
will consider the properties and characteristics of programming systems. Our attention
will be focused on centralized programming systems, programming systems designed
for the programming of a single machine. At this point in time such systems are both
better understood and considerably more mature than distributed programming sys-
tems. We will attempt to characterize some of the most important criteria for judging
the quality of programming systems. These criteria will later be used when distributed
programming systems are considered and evaluated.

10.1 Basic concepts and definitions

10.1.1 Distributed and Centralized Systems

A distributed system is a set of autonomous processes connected by a network. We
take a general view so the system has the following properties.

• The processes are usually, but need not be, located on different computers.

• The network need not be homogeneous, and communication delays may not only
vary greatly between machines, but may be unpredictable.

• The probability of localized faults is not negligible including faults in the net-
work.

Note that we are not limiting ourselves to machines connected by a LAN but in-
clude WAN and even wireless networks. The system may be heterogeneously connect-
ed where some processes can communicate via a fast local network but others only over
slow modems. Also the system extends (or may extend) across administrative domain
boundaries.

The contrast to a distributed system is, of course, a centralized system. A central-
ized system runs exclusively on one machine.

253

254 CHAPTER 10. PROGRAMMING SYSTEMS

10.1.2 Application Domains

As the whole purpose of a programming system is to provide the programmer with
a good tool to build applications we need to consider applications. Throughout this
dissertation we exclude hard real-time applications from our consideration. Other ap-
plications can be roughly divided into three application domains:

1. Centralized non-concurrent

2. Centralized concurrent

3. Distributed

Centralized applications run on one machine. A centralized concurrent application
is an application that is modeled in terms of concurrent processes or threads. From
the modeling point of view the processes execute independently of one another, or
in parallel, occasionally synchronizing and exchanging information with one another.
Usually the processes or threads do not actually execute in parallel, rather the processes
time-share the same machine or processor.

Process is the generic term used in theoretical work on concurrency. In concurrent
systems the term thread is often used instead. There is some degree of confusion in
terminology here. One source of confusion is that the term process is also used for
operating system processes. Usually, and we will use the term in this sense, thread is
used when the concurrent processes run in the same address space, and process when
they do not. We use the term process in the programming system sense, whenever we
need to consider operating system processes, we will use the term OS-process.

There are two important differences between threads and processes in concurrent
programming systems. The separate address spaces protects processes from each oth-
er. But this is only crucial in systems based on unsafe languages like C, where pointer
arithmetic can (inadvertently) lead to a situation where one thread modifies another
thread’s local data. In safe languages like Java, Mozart, or Erlang the issue does not
arise. The second difference is important from a performance point of view. As threads
share the same address space threads may pass large data structures between one an-
other by reference. Processes will need to create a copy of the data structure in each
process address space1.

Most of the time we will be considering threads/processes that reside within one
OS-process. For brevity, when we do not need to make the distinction between pro-
cesses and threads, where our focus is on units of concurrency we will use the term
thread rather than the more cumbersome thread/process.

Concurrent applications rely on some underlying scheduler that in some fashion
allots portions of execution time to all runnable threads, i.e. threads that are not blocked
waiting for input from other threads. In general there is more than one, so that the
scheduler at regular intervals stops the one currently running thread (preemption) and
schedules another runnable thread.

1This is the case in Erlang even when the Erlang processes reside within the same OS-process - and
as Erlang is a safe-language it does not rely on the memory protection of the OS.

10.2. CHARACTERIZING PROGRAMMING SYSTEMS 255

Sometimes concurrency is strictly necessary for modeling the application. This is
where the interaction between threads is so complex and unpredictable that it would be
difficult if not impossible for the programmer to manage this himself. Most simulations
are of this category, e.g. agent simulation or discrete-event simulation. Sometimes
concurrency is used mainly to achieve fairness. A server, for instance, is continuously
receiving requests, and although it is possible to serve only one request at a time,
fairness considerations make this undesirable.

Concurrent applications may, of course, actually be executed in parallel. For in-
stance, on a shared-memory multiprocessor concurrent threads may be executed in
parallel. It is generally acknowledged that the trend in applications is that concurrency
becomes ever more important.

A distributed application is an application that is realized by (or built on top of) a
distributed system. Such an application is running on more than one machine. Dis-
tributed applications are, of course, inherently concurrent in the sense that there are
threads or processes executing concurrently on the different machines. They may or
may not be concurrent within a single machine.

The reason that some applications are distributed may be due to an inherent geo-
graphical separation of parts of the application, e.g. a chat-room. Alternatively, the
application may have been distributed for reasons of scalability, e.g. in a server cluster,
where distribution is used to achieve parallelism.

10.2 Characterizing Programming Systems

Programming systems are the tools by which programmers program applications. Pro-
gramming systems may be categorized by the application domains over which they are
suitable. Thus we recognize centralized programming systems that do not provide for
concurrency, those that do, as well as distributed programming systems.

The distinction between centralized and distributed programming systems is thus
very straightforward, merely reflecting the type of applications that may be developed.
However the term programming system is not a precise concept. In particular the
boundaries of what should be considered as part of a programming system proper and
what lies outside is unclear. We need to clarify this in order to be able to discuss and
compare different kinds of distributed programming systems.

10.2.1 Programming Languages, Compilers, and Runtime Systems

Let us consider centralized programming systems. At the heart of a (centralized) pro-
gramming system one finds a programming language, a compiler, and a runtime sys-
tem. The programming language is the language in which the programmer instructs
the computer. The compiler and the runtime system bridge the gap between the pro-
gramming language and the machine.

An application developer needs, of course, to thoroughly understand the program-
ming language, but this is not enough. In addition the good programmer needs to have

256 CHAPTER 10. PROGRAMMING SYSTEMS

a mental model of performance. This model of performance includes such aspects as
execution speed, memory requirements, and real-time properties. The model may not,
and usually does not need to be a strict mathematical model allowing the programmer
to predict speed and memory usage exactly, but does need to serve as a guide when
choosing between different programming constructs to achieve the same end that dif-
fer in performance aspects.

The performance and hence the performance model of a programming system is
just as dependent on the compiler and runtime system as they are on the program-
ming language itself. It is quite possible for programming systems based on the same
programming language, to differ greatly in performance. This is easily overlooked
because mature centralized programming systems, based on the same programming
language, rarely actually do differ to any large degree. In the course of time program-
ming systems with poorer performance fall by the wayside, a sort of ’survival of the
fittest’ for programming systems.

Differences do still exist, of course, and they are not necessarily minor. Later we
give some examples. But, we should note, that for the really extreme differences one
must look at immature programming systems. The Prolog programming language was
invented in the 70s with an implementation based on interpretation on source code lev-
el. The introduction of WAM - virtual machine technology in Edinburgh Prolog gave
a Prolog system that was faster by several orders of magnitude. All subsequent Prolog
systems, e.g. SICStus, were based on this technology and the immature interpreter-
based Prolog programming systems disappeared.

It our belief that distributed programming systems of today, unlike centralized pro-
gramming systems are immature. This will be made clear later. Currently we are
leading up to a definition of a programming system and it is important not to exclude
immature systems from consideration.

10.2.2 Libraries and Tools

We have said that programming systems consist of a programming language, compiler,
and runtime system. But in addition to these the typical program developer will make
use of numerous tools and libraries. Should these be considered part of the program-
ming system?

We take the view that tools like debuggers and profilers are not part of the program-
ming system. That we take this view is mainly a matter of definition but can be justi-
fied. Tools like these reflect human imperfection in the face of great complexity. Even
good programmers write buggy programs and may need a debugger to determine the
cause of the problem despite good understanding of the programming language. And
even with good understanding of the performance model as well as the programming
language writing optimal programs is very difficult and profilers can be of help. The
problem is that programs are usually by necessity large and complex. Were program-
ming limited to small toy programs there would be little need for debuggers, profilers,
analyzers etc.

The situation with libraries is different. Programming systems are generally pre-

10.2. CHARACTERIZING PROGRAMMING SYSTEMS 257

sented as having both a programming language and a number of standard libraries. One
can ask who decides and by what criteria and given functionality is to be considered a
language feature or a library feature. To a certain degree the decisions have been made
by the developers of the programming system themselves with criteria based on tra-
dition, pedagogy, importance of the feature, stability of the feature over time, or even
upon personal preference or how the programming system was implemented. There
may be very good reasons behind the division between language and library features,
in the context of learning, using, and maintaining a particular programming system.
But this is not necessarily conducive to a comparison of programming systems, partic-
ularly when comparing over a wide range of systems and languages.

The one objective feature that can be used to distinguish the different types of
libraries is if the library functions are fully expressible in the programming language
itself. Libraries that are so are there mainly for convenience. This includes reuse, so
this is not to say that this is not important in practice. One example is a library for
sorting lists, sets, etc. We take the orthodox view that these libraries are not part of the
programming system. We call these kinds of libraries proper libraries2

Native libraries are libraries that are not fully expressible in the language itself. To
include all native libraries, even those dealing with i/o, graphics, and standard operat-
ing system services (e.g. file system) in the concept of programming system, makes
the programming system very large. Our view, is that it is better to err on the including
too much side, rather than too little. This definition may make different programming
systems very much alike in aspects where the systems interface with standard operat-
ing system services (e.g. file system services). But, when comparing systems, we can
quickly skip over the similarities and concentrate on the differences.

To naively exclude all so-called libraries from the programming system proper fails
to capture essential properties that are needed when comparing programming systems.
For example, the malloc library is an essential part of programming systems based on
the C programming language, while new is considered part of C++, and Java program-
ming languages. In C free is considered a library function, delete is part of C++, while
Java handles memory reclamation automatically and needs no counterpart. Compari-
son of these programming systems is much simplified if malloc, free, delete and new
are all considered C language constructs, i.e. are part of the C programming system.
Another example is that while the primitive for locking objects is considered to be
part of the Oz programming language, the corresponding function in Java and C# are
presented to the programmer as a library function. A final example, is that while the
arithmetic operators, plus (+) and minus (-) are usually presented as language features
in imperative languages, many declarative programming systems treat them as library
functions.

Finally there are libraries or features that in the implementation are native, but
could be expressed in the programming language itself. The libraries/features have
been made native for performance reasons. As we view the programmer’s perfor-
mance model as an intrinsic part of the programming system we consider these li-

2Proper to indicate that this is what you expect from the ’library’ intuition, just as is the case for say
a U.S. public library- you expect to find books written in English, not French

258 CHAPTER 10. PROGRAMMING SYSTEMS

braries/features as part of the programming language and hence programming system.
An example is objects in Mozart. The kernel Oz programming language has no objects,
instead objects and classes are programmable abstractions. The semantics of objects is
given by the abstraction. Nevertheless objects are native or primitive in the implemen-
tation for efficiency reasons. Good Oz/Mozart programmers are aware of this, if only
indirectly, as reflected in the programmer’s model of performance.

10.2.3 Definition of Programming System

With this introduction we are ready to define a programming system.

A programming system is a system to construct programs within a given applica-
tion domain that when run on a computer produces the desired behavior. A program-
ming system consists of two parts, the programming language and execution system.

The programming language consists of a set of primitive constructs each with a
well-defined behavior (semantics) upon execution. Included in the language are all
features/libraries that are native (i.e. not expressible in the language itself).

The execution system is responsible for handling the execution of programs written
in the given language and includes the compiler, runtime system, and possibly a virtual
machine.

It should be noted that our definition makes the concept of a programming system
broad, but objective. For instance, for centralized concurrent applications one pro-
gramming system would be the JVM together with the threads package offered by the
operating system and the Java Enterprise native libraries. Usually the threads package
and the native libraries are not considered part of the language. In Mozart, threads and
concurrency is built into the virtual machine and is considered part of the language
core, but arithmetic is not.

Another example that illustrates the broad scope of our definition of programming
language is the security manager of Java 1.2. This is presented to programmers as
a library, but the library is not only native but also tightly integrated into the virtual
machine. The security manager prevents an untrusted component from subverting a
trusted component by traversing the execution stack on potentially dangerous system
calls (e.g. opening a file) to ensure that the point of origin is not in the untrusted
component.

10.3 Qualities of programming systems

There exist many different programming languages, and they all have their enthusiasts,
and there is much debate about the various merits and demerits of different languages.
We do not consider this here, but concentrate on some important qualities that are
agreed upon by all or most: abstraction, awareness and control.

10.3. QUALITIES OF PROGRAMMING SYSTEMS 259

10.3.1 The quality of abstraction

Whatever the programming system being used, the underlying reality when centralized
applications are executed is a processor executing machine instructions. It is possible,
but not feasible for anything but the most simple of programs, to program directly in
machine code, i.e. code that is directly understood by the hardware. It is just too
complicated, with too many low level details to consider, and it is too easy to make an
error.

The history of the development of centralized programming systems is the devel-
opment of ever more layers of abstraction on top of the underlying machine (and on top
of lower levels of abstraction). The programmer then develops his/her programs using
the abstractions; the abstractions in turn are taken by other programs and transformed
directly or indirectly into machine instructions that are run directly on the hardware or
interpreted at a low level (emulation).

The main abstraction provided to the programmer is the programming language.
The purpose of the programming system is to take the abstract program and to trans-
form it so as to be able to execute the program on hardware. We need to give a name to
this quality of a programming system, and we will use the term abstraction. Everything
else being equal the higher level of abstraction the better the programming system.

Abstraction may serve to provide the programmer with constructs that are sim-
pler and more powerful than what the corresponding machine instructions would be.
Sometimes the abstraction goes further than this and low-level details are completely
abstracted out, i.e hidden. Typical example of hiding are details of memory layout,
register use, and sometimes memory management.

Automatic memory management illustrates the quality of abstraction at its high-
est level. Deallocation of structured memory is done automatically by the system
in the process of garbage-collection, relieving the programmer of all responsibility
for memory management. All other things being equal a programming system with
garbage-collection is by virtue of greater abstraction superior to one without, i.e. Java
is superior to C++ or C.

Because all other things are not equal, C (or C++) is not a dead programming
language. For a full comparison, we need to consider the two other important qualities
of good programming systems.

10.3.2 The quality of awareness

The programmer also needs a model of performance of the program constructs. The
programmer needs this model to be able to choose between different programming
techniques to achieve the same goal. The model of performance in a centralized pro-
gramming system must include both aspects of execution speed and memory use. This
model need not be and rarely is a precise mathematical model letting the program-
mer predict the performance of his/her program exactly. The performance model does,
however, have to provide the programmer with a rough idea of performance, at least for
programming in the small. Large complex programs are more difficult and additional

260 CHAPTER 10. PROGRAMMING SYSTEMS

support in the form of tools may be required.
We will use the term awareness for this quality. Good awareness means that the

performance of the program is reasonably predictable and understandable. Without
awareness, without a good performance model, the programming system would be
a black-box that the poor programmer could do little more with than insert his/her
programs and hope for the best.

For example most C++ or Java programmers know that iteration is more effi-
cient than recursion. There is a major difference in space complexity for most C++-
programming systems 3. Also, while the time-complexity is the same, recursion is
slower due to the greater overhead of subroutine calls by some factor. The program-
mer will therefore tend to use iteration rather than recursion whenever possible, at least
for time-critical portions of his/her program.

In this case the poor performance of recursion over iteration is a property of the pro-
gramming system rather than the programming language per se. Few C++-compilers
support tail-call optimization. The Java Virtual Machine does not support tail-call op-
timization either. If they did so by the best state-of-the-art methods there would not be
any difference between tail recursion and iteration. We note that tail-call optimization
is supported in C#, to the extent that there is no difference in space-complexity.

10.3.3 The quality of control

The abstraction and hiding that the programming system provides is not, in general,
without some cost in terms of performance. Theoretically at a lower level you can
achieve all that can be achieved at a higher level, and almost always more. In practice
there are all kinds of reasons that some performance is lost in the various translations
from higher-level constructions to low-level ones. One reason is that the law of dimin-
ishing returns sets in for compiler writers, another that various program invariants that
a compiler might use for optimization are not even expressible in the programming
language (e.g. that two C variables cannot be aliased).

We call this performance difference between high and low level, the performance
gap. For centralized programming systems the reference low level is assembler. At
this point this may seem academic, programming in assembler is generally imprac-
tical, and we usually want to compare programming systems with each other. Our
reasons for this comparison will become clear later. For now we make two observa-
tions. First, If we compare the performance of two different programming systems we
are in a sense measuring their relative performance gap. Second, if we can show that
some programming system has a small or negligible performance gap then from the
performance point-of-view we can be satisfied even without considering other existing
or even potential programming systems.

The contrary is, of course, also true. If we can show that some programming system
has a very large performance gap then we can conjecture that the programming system
is either doomed to die or to evolve. Maybe better transformation techniques, i.e.

3but Gnu C++ does last-call optimization

10.3. QUALITIES OF PROGRAMMING SYSTEMS 261

better compilers or better runtime systems, will improve the performance to acceptable
levels. Alternatively, maybe the abstraction, the programming language, needs to be
augmented. Furthermore, a low performance gap would seem to be a necessary trait if
a programming system is to become popular (though by no means sufficient).

We will use the term control to describe this quality of a programming system. A
system with good control has low performance gap, and a system with poor control has
a large performance gap. The intuition behind this term is that the programmer should
have sufficiently good control to write programs that perform reasonably well.

An example, of a programming system with poor control was the first Prolog
(logic-programming) system of the early 70s. Execution proceeded by source-level
interpretation and the language was of little interest until the development of the War-
ren Abstract Machine (WAM), a virtual machine for Prolog, around 1980. Suddenly
the performance gap for transformational programs decreased from a factor of several
hundreds to approximately three (later improved by native-code compilation to one).
The key factor here was the development of the proper implementation techniques.

Another example concerns the lack of state (mutables). Declarative programming
languages, i.e. both logic programming languages like Prolog, and functional program-
ming languages like ML had for a long time no provision for true state. Stateful change
could be expressed in these systems but it was not true state in the sense that the imple-
mentation did not actually change the value of memory cells. For many programmers
with an imperative programming language background, where state and destructive as-
signment was used everywhere, these programming languages seemed very strange. In
particular, some of the techniques to work around the lack of true state (e.g. difference
lists) were tricky, and while they served their purpose, they were motivated solely by
efficiency considerations in a declarative programming environment. The declarative
programming language community did, however, show that state was not as necessary
as might be at first supposed over a significant range of applications.

Nevertheless, the lack of mutable state was a severe handicap for many applica-
tions. The performance gap was on the level of algorithmic complexity. For example,
in stateful systems array updates can be achieved in constant time with no space over-
head, whereas in early Prolog systems the time and space complexity was linear in
array size4. During the course of time many of these types of programming languages
have been augmented with provisions for true state. These augmentations involved
major changes in the model that programmers used, so in a sense these systems rep-
resent different programming languages than the pure declarative programming base
upon which they were first built.

The reason that we are belaboring centralized programming systems with poor
control is that, when we later extend the notion of control to distributed programming
systems, we do find that many systems of today offer very poor control. For the most
part we take good control in centralized programming systems for granted, which is
fair enough given 50 years of community experience, but it may blind us to the fact that
we cannot take this for granted when it comes to distributed programming systems.

4In favorable cases this could be improved to logarithmic by use of tree data structures - but there
was no way - within the language to keep the tree balanced, so there were no guarantees

262 CHAPTER 10. PROGRAMMING SYSTEMS

We give one final, but artificial, example of a centralized programming system
with really poor control. At first sight the system is absurd, but the question we should
ask, is if there exist distributed programming system counterparts, if it can be so that
popular distributed programming system are as deficient in control as the example.

Imagine a variant of C++, call it C–, that did not provide iteration, but only re-
cursion. From a language point-of-view, considering only expressivity this might be
considered legitimate; recursion is more general and iteration can always be expressed
as recursion, but not necessarily vice versa (without tedious explicit stack operations).
One could even argue that the language is simpler than C++.

If our fictitious C–programming system did not provide good tail-recursion opti-
mization the system would be very deficient in the control aspect. The space require-
ments for a deep stack would be unacceptable, and the programmer would be tempted
(or required) to program on a lower level, i.e. include his/her own assembler routines
to achieve iteration. If the C– programming system did provide tail-recursion opti-
mization things are little different; the lack of control is not on the level of algorithmic
complexity, but is once again a constant factor.

10.3.4 How good control is needed?

An important question is how good control is needed, or put another way, what is an
acceptable level of performance gap.

At first sight is seems clear that a performance gap on the level of algorithmic
complexity is rarely acceptable. When we look at general-purpose centralized pro-
gramming systems used today we find no differences on this level when it comes to
memory or execution overhead. The only examples that we can find on such program-
ming systems are historical, these systems being superseded by better systems. We
saw earlier that programming systems must either cater for tail-call optimization for
recursion or provide for iteration. Declarative programming languages usually have
some provision for dealing with state.

We should note however that a performance difference does exist between pro-
gramming systems with automatic memory management and those without when it
comes to real-time properties. Even with the best garbage-collection techniques there
is a difference. For certain types of hard real-time applications this is crucial and they
are (and should be) programmed in languages like C.

But what about a constant factor performance gap? This is even less clear-cut and
no precise answer is possible. In the end, the question of acceptable performance gap
is application-dependent. Nevertheless, we will try to give a ball park estimate.

In the mid 80s the author during undergraduate studies worked as a programmer at
a company that will remain nameless. The task was to hand-code various time-critical
portions of a large program (or more accurately to edit the compiler generated assem-
bler). This was done in a desperate attempt to improve the performance. Presumably
this was done at some expense, as the author was one of many involved, yet was done
with the awareness that the best that could be hoped for was at best 20% improvement.
Such activity would seem to be very uncommon today. Of course, since then not on-

10.4. CONCURRENT PROGRAMMING SYSTEMS 263

ly have compilers improved, but hand-coding has become more difficult with modern
microprocessors.

We see a general trend where the emphasis is more on reliability and/or ease of pro-
gram development rather than on optimality. This is undoubtedly due to three factors,
improved hardware, improved tools (e.g. better compiler and better garbage-collection
techniques) and the greater complexity of today’s applications.

A good example is the rise of Java in the 90s. For the first time a language that hides
memory management, i.e. has garbage-collection, entered the mainstream (though
they had been around in academia for quite some time). Explicit memory management
on the application level, with C, C++, and many other languages, made for many pro-
gramming errors. Hiding memory management, with implicit allocation and garbage
collection, both eases program development and makes for fewer errors. This has a
performance penalty in execution time but has become acceptable for a wide range of
applications.

The best state-of-the-art emulation techniques (i.e. byte code interpretation) usual-
ly carry a performance penalty of roughly 3 times. If this were generally acceptable,
there would not have been the interest in JIT technologies that there are.

For centralized programming we can therefore say, and this is a really rough esti-
mate, that a performance gap between 1.2 to 3 is often a fair trade-off. This does not
mean that larger performance gaps would always make the system uninteresting, we
might be willing to pay a larger price for really useful abstractions for some types of
applications.

10.3.5 The challenge in developing programming systems

Low-level programming languages/systems invariably provide both good awareness
and control. More generally the lower the level of abstraction the easier it is to ensure
awareness and control. At the extreme lower end, good awareness and control are
automatic when the level of abstraction is zero, i.e. programming in assembler.

The challenge when developing programming systems is thus twofold. Firstly, the
abstractions offered must be expressive and useful. This would seem to be main point
judging by the multitude of books expounding the virtues of various programming sys-
tems/languages from this point of view. However, there is also the second challenge;
that the abstractions offered are obtained without sacrificing awareness and control.
When it comes to centralized programming systems for we have come to expect, and
rightly so with 50 years of experience, that all have reasonably good awareness and
control at least when it comes to non-concurrent applications.

10.4 Concurrent programming systems

Concurrent programming systems allow the programmer to model a number of con-
current or parallel activities (threads). Concurrency is thus a form of parallelism on
the level of the program structure. The threads executing in parallel may, from time

264 CHAPTER 10. PROGRAMMING SYSTEMS

to time, exchange information and synchronize but for much of the time they execute
independently.

Concurrency is supported by virtually all operating systems. In the early days
of computing when most machines were multi-user machines such support was, of
course, necessary. (As it is these days, when the single-user wants to do many things
at the same time). Concurrency is also useful on the application level. Any simulation
of real world activities will be concurrent, as the real world is highly concurrent.

The poor man’s concurrent programming system is to use the concurrency offered
by the operating system together with inter-process communication. We will not con-
sider this in detail here, other than to say that this is generally considered unacceptably
heavyweight, inefficient and cumbersome as a general purpose concurrent program-
ming system. A large variety of concurrent programming systems/languages have been
developed to alleviate this problem.

In some sense, the goals involved in achieving concurrency and parallelism are
diametrically opposed. Concurrent systems strive to provide the illusion of many pro-
cessing units or machines on a single machine. Parallelism, on the other hand, is of-
ten concerned with splitting, possibly automatically, a single-threaded application into
concurrent units as a preparation for running them in parallel on multiple processors.

Concurrent centralized programming subsumes traditional centralized program-
ming. Traditional (non-concurrent) programming is, from this point-of-view, concur-
rent programming with a single thread or process.

In the next chapter we will consider concurrent programming systems in more
detail. We will evaluate them according to our three criteria and describe the three
different sharing models upon which they are based.

10.5 Distributed programming systems

A distributed programming system is a programming system specifically designed and
tailored for developing distributed applications. Distributed programming systems do,
of course, subsume centralized programming systems. Local computation remains
the same. The task of programming the behavior of one site is, at least potentially,
relatively unchanged except where and when the site is engaged in coordinated activity
with other sites.

Does distributed programming subsume concurrent (centralized) programming? In
one sense this is fairly obvious, as concurrency is conceptual parallelism, even if im-
plemented via time-sharing on a single processor machine. Distributed applications,
will usually also be concurrent (and parallel), with activity on various sites proceeding
concurrently.

Clearly distributed programming systems subsume OS-process based concurrent
systems. In this case the operating system acts as the (pre-emptive) scheduler. If the
OS-processes in a distributed application all reside on the same machine, we are back
to our poor man’s concurrent programming system.

However, in another sense, distributed programming systems need not subsume

10.5. DISTRIBUTED PROGRAMMING SYSTEMS 265

concurrent programming systems. Distributed programming systems do not necessar-
ily need to support concurrency within a single OS-process. In some distributed appli-
cations there is no need for this, the only concurrency that exists is between (processes
on different) machines.

Although distributed programming systems need not subsume concurrent program-
ming systems, they often do. For example, in almost all client/server applications there
is considerable concurrency on the server side. When the server is a cluster for scala-
bility reasons there is still concurrency within each machine. Telecom switching soft-
ware, e-business, Internet messaging and gaming, Web services, to name but a few, are
all distributed applications that need both types of concurrency.

A distributed programming system that does not cater for concurrency within a
machine or OS-process is deficient in both abstraction and control. The programmer
does not have the abstractions to achieve what he/she wants to do on a single machine
though it is possible. Furthermore performance (control) is poor when the only concur-
rency available is on the level of the operating system. When his application calls for
fine-grained concurrency the application developer will be tempted to program his/her
own scheduler.

We will therefore focus on distributed programming systems that have a concur-
rent core, i.e. that provide for concurrency within an OS-process as well as between
machines. We defer further discussion of distributed programming systems to chapters
14 and 15.

266 CHAPTER 10. PROGRAMMING SYSTEMS

Chapter 11

Concurrent programming systems

In this chapter we discuss and evaluate concurrent programming systems according
to our three criteria of abstraction, awareness and control. The focus here is on the
concepts and constructs that distinguish concurrent programming from centralized se-
quential programming. Concurrent programming subsumes sequential programming
so the discussion and evaluation the we made in the previous chapter still holds - but
now there are additional factors to consider.

11.1 Abstraction

Concurrent programming systems provide the programmer, to some degree, with the
illusion of many processing units. In the thread model, these processing units share
the same memory. In the process model they do not. When considering the quality of
abstraction there are two considerations. First, how well the illusion is supported, and
second, the quality of the abstractions that govern thread interaction. Discussion of the
latter, thread interaction, is deferred until the next section.

On a single processor, only one thread or process can actually be executing at any
one time. The key to realizing concurrency is to share the processing unit between
the threads. So, at any one time, there exists in the system (at most) one running
thread, and multiple runnable and suspended threads. Runnable threads are threads
that are waiting to be executed, while suspended threads (if there are any) are those
that are currently blocked, waiting for some external or internal event. The illusion of
concurrency is achieved by stopping the currently executing thread and scheduling one
of the runnable threads.

The software component that chooses which of the runnable threads is to be exe-
cuted next is the scheduler. One option is to require the programmer to program his/her
own scheduler. A simple and fair strategy is to schedule threads in a round-robin fash-
ion. Other strategies that prioritize between threads may also be needed.

Clearly, by the principle of abstraction it is better that the scheduler be built into
the programming system. This relieves the programmer of the burden of programming
and debugging the scheduler. The round robin scheduling strategy can be made the

267

268 CHAPTER 11. CONCURRENT PROGRAMMING SYSTEMS

default, augmented by a model for assigning thread priorities. Today most concurrent
programming systems have a built-in scheduler.

We also need to consider how the currently executing thread is stopped to enable
the scheduling of some other runnable thread. One model is to require that the thread
explicitly yields control to the scheduler (e.g. the programming system consisting of
Rational Rose RT/C++). One drawback, of course, is that if a thread never yields
(by programming error) or yields very late, this prevents other threads from making
progress.

The alternative is that the system can stop the running thread at regular intervals.
This is preemption. There is a trade-off between the overhead of preemption and the
advantages of frequent task-switching. In the overhead of preemption is the cost for
stopping one thread, saving the state of the thread, choosing another thread, and per-
forming the appropriate initialization from the saved state of the new thread. Clearly
preemption is preferred, as the programmer no longer has to annotate his/her program
with appropriate yields and fairness is assured. This is much like the advantages of au-
tomatic memory reclamation, where the programmer doesn’t have to think of freeing
memory and is assured that there will be no memory leaks.

Another consideration is if threads or processes can be created dynamically or on
the fly or whether this is done statically at compile time. Clearly, a system that permits
dynamic creation of threads is strictly more powerful than one that does not.

The centralized precursor of Mozart, the concurrent programming system Oz, was
specifically designed for concurrency, and has all the advantages of the features de-
scribed in this subsection.

11.2 Awareness and Control

11.2.1 Processes versus Threads

Clearly it is important to be aware of the difference between the thread and process
models of concurrency. For unsafe languages (with pointer arithmetic) the process
model provides memory protection, threads do not. For safe languages OS-support for
memory protection is unnecessary and it is both possible and desirable to provide for
process support on the language level within one OS-process.

However there are large differences in the performance model between the two
paradigms. As representatives, consider two languages that were specifically designed
to support concurrency, Oz (or Mozart) supporting threads, and Erlang supporting pro-
cesses.

With threads, data structures can be quickly be (by reference) passed from one
thread to another. With processes, this is much slower, as the data needs to be copied.
On the other hand, garbage collection (memory reclamation) needs to be performed for
all threads within a process collectively. The most straightforward method is to stop
all activity and garbage-collect the entire memory. However, for memory-intensive
applications, this takes time, so the system has poor real-time properties. Sophisticated

11.2. AWARENESS AND CONTROL 269

(and complicated) garbage-collection schemes (e.g. generational, incremental, train
algorithm) can help to some degree, but there is still a difference.

From the control perspective concurrent programming systems should provide for
both concurrent threads and processes. However, we do not know of any such systems.

11.2.2 Lightweight versus Heavyweight Threads

The performance model of concurrent systems needs to provide a rough model of
the cost of threads, both in terms of processing power and memory. This is part of
awareness, and most systems seem to have this (even if the performance model comes
from the user community and not from the developers of the programming system).

The systems of today, however, vary considerably in the control aspect. This has to
do with the cost of threads, the cost of the thread abstraction. The two most important
costs are task-switching and memory requirements, which are unnecessarily high in
most systems. In particular this applies to mainstream systems such as Java (e.g. JEB)
and .NET.

That the costs of threads are unnecessarily high is proven by Mozart/Oz. We say
that Mozart threads are lightweight, as opposed to the heavyweight threads found in
other systems. In mainstream systems, on a PC, the maximum number of threads that
can be created without breaking the system or running out of memory is less than a
thousand, in Mozart/Oz the limit is on the order of a million [94]. Also, task-switching
is fast enough that the difference in execution time between performing two large tasks
concurrently and sequentially is negligible.

As discussed earlier, what do we expect when good abstractions like threads but
deficient in control are offered to programmers? Programmers will tend not to use
them, rather they will move down one level of abstraction and work there. This is
exactly what happens. Rather than making use of thread abstraction, wherever and
whenever concurrency needs to be modeled, the programmer does, to a certain degree,
his/her own scheduling and control-yielding. A pool of threads is created at start,
but not too many as each thread requires a considerable amount of memory. Threads
are taken from the pool, upon need, but if more threads are required than are in the
pool, tasks are queued. Long-lived tasks cannot be assigned to a thread and let go, but
must be programmed to yield control to the thread pool at regular intervals to achieve
fairness.

Of course, there is still some true concurrency as there is more than one thread in
the thread pool. The programming model is, thus, a hybrid one, with some concurrency
provided by the system and some managed explicitly. This is analogous to program-
ming procedures partly in a high-level language and partly in assembler (which is much
rarer today, than say, 20 years ago).

From the control aspect it is also important that the difference in execution time
between performing two large tasks concurrently or sequentially is small, as otherwise
the programmer may be tempted to transform that which is naturally modeled concur-
rently into a sequential computation, i.e. do his/her own concurrency management.

270 CHAPTER 11. CONCURRENT PROGRAMMING SYSTEMS

11.2.3 Conclusion

We saw earlier that the various non-concurrent programming languages/systems show
a reasonably high level of maturity by our criteria. They all demonstrate the qualities
of abstraction, awareness and control. There are still clear differences between sys-
tems/languages in abstraction and control but these differences represent fundamental
tradeoffs. The prototypical example is the difference between languages/systems with
automatic memory reclamation and those without. One group offers higher levels of
abstraction, the other group offers better control, and there is no known way to ’get the
best of all possible worlds’.

In this section we saw that concurrent programming languages/systems are not
quite in the same state of maturity. There are still systems in use where we can see
clear unnecessary deficiencies in the qualities of abstraction and/or control (i.e. that
do not reflect fundamental tradeoffs). This, reflects, we believe, the fact that there is
less community experience with fine-grained concurrency. Indeed, an awareness of the
need for fine-grained concurrent programming systems is fairly recent in the IT-sphere
and is connected with the rise of the Internet or distribution (e.g. servlet engines). (We
can note that Erlang which was developed in the early 1990’s originated in the telecom
world where the need for fine-grained concurrency goes back much further).

Chapter 12

Three Sharing Models

The threads (or processes) of concurrent programming systems need to be able to in-
teract with each other. Without the possibility of such interaction the threads could
only run in independently in parallel and never influence the action of other threads.
Sometimes this interaction is tightly synchronized in the sense that one thread is pas-
sive (or blocked) until some other thread performs the appropriate action. Interaction
does not necessarily need to be synchronized - the action of one thread can influence
the choice (i.e. branch) that another thread takes at some later time.

To our knowledge there exist three and only three distinct different mechanisms for
thread interaction in concurrent programming systems. In this chapter we will briefly
describe them. The perspective that we take is to consider this from the point of the
view of the nature of the language entities that the threads share.

12.1 Sharing models

We use the term language entity as a generic term to denote those things that may be
manipulated, used and referenced within a programming language. Primitive types
(e.g. integers), objects, records and functions are all examples of language entities in
various programming languages/systems.

Our focus here is on high-level programming languages, i.e. referentially safe lan-
guages with automatic memory management. Some language entities are referenced
exclusively by a single thread, while other entities may be shared. Threads interact
with each other by acting upon the shared entities.

We can categorize concurrent programming mechanism into three radically differ-
ent types by the sharing model.

1. Object-oriented

2. Data-flow

3. Message-oriented

271

272 CHAPTER 12. THREE SHARING MODELS

Reference systems that correspond to the three types are Java- based (object-oriented),
the subset of Oz/Mozart without objects and ports (data-flow) and Erlang (message-
oriented). We choose these three as they have all been extended to distribution as we
shall see in later chapters. For now we limit ourselves to the centralized (but concur-
rent) scenario.

In object-oriented sharing, threads share an object. The object encapsulates state.
A thread may act upon the object (e.g. call a method) changing the value of the state.
This will affect other threads in their invocations. Often, objects are protected by locks
to ensure that at most one thread is active within the object at any one time.

In message-oriented sharing threads share mailboxes. Threads interact by sending
messages to one another. A message is stateless, once sent it cannot be changed or
retracted. Threads regularly check their mailboxes.

In data-flow sharing threads share a single-assignment or data-flow variable. Threads
may be blocked waiting for the data-flow variable to be bound. When one of the threads
that share the variable binds the variable (and this can, of course, only be done once)
the value is made visible to other threads1.

In centralized concurrent programming systems threads, upon creation, are typi-
cally given an initial set of references, some of which are shared with other threads.
Note that the described sharing mechanisms provide for all the dynamicity in sharing.
A thread can only be given a reference to a language entity that it currently does not
hold (directly or indirectly) by the action of other threads.

1. A thread may put a reference that it holds into the state of a shared object.

2. A threads may put a reference it holds into a message it sends to another thread.

3. A thread may bind the reference to a shared data-flow variable.

In the rest of this chapter we will go into a little more detail on the three sharing
models.

12.1.1 Object-oriented sharing

We first look at object-oriented programming languages/systems. Except for code the
only types of entities that threads share directly are objects. Other types are shared
indirectly. Instance variables of shared objects may be used to communicate values
(e.g. integers, strings or object references), where one thread sets the instance variable
and others read it. Threads create and manipulate local objects but may any time also
share the object reference with other threads via an already shared object.

Synchronization between threads is achieved by locks, or from locks derived mech-
anisms (e.g. synchronized methods). When one thread holds the lock (or runs a syn-
chronized method) of a shared object, other threads attempting to take the lock are
blocked until the lock is released (or until the synchronized method call terminates).

1Unbound variables can also be bound to another without taking a value and this merges the value
to be, i.e. when one is bound to some value the other becomes bound to the same value. Usually threads
wait for variable to be bound to a non-variable, e.g. a data structure.

12.1. SHARING MODELS 273

The prototypical example of an object-oriented concurrent system is Java with
threads. In Java threads also share all classes via the name-space. Unlike object shar-
ing there is no need to explicitly pass class references from thread to thread within
a process. In (centralized) Java when a new thread is spawned (in the same process)
the parameters to the spawning call provide the initial sharing environment (except for
classes as described).

12.1.2 Message-oriented sharing

Message-oriented centralized programming systems are not common, but there is one
good example, and that is Erlang. Erlang is sometimes presented as a first-order func-
tional programming language. This is arguable but this need not concern us as we
are interested in concurrency and not the internal computations performed by a single
thread/process. In Erlang the concurrency is on the level of processes, and not threads.
The processes do not have shared memory. The Erlang processes should not be con-
fused with operating system processes, they are more fine-grained, and there can be
many Erlang processes within one operating system process.

Ignoring code-sharing (and one other mechanism that is described in section 12.1.5)
the only interaction between processes is via message-sending. Each process has an
associated mailbox, where processes may access messages directed to it. The da-
ta structures in Erlang, and hence message contents, are all stateless. They may be
records, primitive types, or references to processes. Threads may suspend on its mail-
box (receive statement), and wait until it receives a message or alternatively until it
receives a message of a certain format or pattern.

All code is implicitly shared (via a namespace) much as described for Java-based
systems. Messaging in Erlang is geared to many-to-one and one-to-one communica-
tion. There is no intrinsic support for one-to-many or many-to-many communication.

12.1.3 Data-flow sharing

In data-flow threads synchronize by blocking on non-availability of data. A limited
form of data-flow is present in message-oriented systems where threads block on non-
availability of messages. More general data-flow is achieved through the use of logical
variables or futures. Logical variables are known from logic programming languages
and concurrent constraint programming languages; futures originate in functional pro-
gramming languages. They have also been called single-assignment variables.

The basic idea of the data-flow variable is to separate the act of creating a place-
holder for some given data from the generation of the data itself. As data-flow is the
least common of the three paradigms we consider a producer/consumer example. One
thread produces (calculates) data that is consumed (used) by another.

At some point in the program a complex data structure is to be created with two
fields, struct(A B). At this point the values of the fields A and B are not yet known,
e.g. have not yet been calculated. A and B are data-flow variables. In due course
one by one the values of A and B become known and the values are filled in, i.e. the

274 CHAPTER 12. THREE SHARING MODELS

data-flow variables are instantiated. In the course of time the structure is evolving,
struct(A B)→ struct(1 B)→ struct(1 2). At first both values are unknown, later the
value of A becomes known to be the integer 1, and finally the value of B becomes
known to be the integer 2.

The reference to the created data structure may be passed to other threads at any
time. These other threads may then access the structure. If and when the accessing
thread needs the value of a data-flow variable the value may or may not be available.
If not the thread suspends, and waits until the value becomes known. This is data-flow
synchronization. In our example assume that the recipient thread attempts to access
the data structure when it is in the state struct(1 B). We consider two cases. In the
first case the thread first attempts to access the 2nd field B. The thread then suspends
waiting until B becomes known. In the second case the thread successfully accesses
the 1st field, and continues executing. Later the thread needs the value of the 2nd field,
which may or may not be available depending on the relative rates of progress between
the two threads.

There are two varieties of data-flow in programming systems. In the weaker form,
which we will call explicit data-flow, there is a programming distinction between ac-
cessing a future and accessing a normal field. Accessing a future is done by a special
program construct, which is more expensive and avoided if not needed [83]. In the
stronger form, implicit data-flow, there is no programming distinction whatsoever on
the consuming side. Suspension takes place whenever the value is needed but still un-
available. For instance, consider the course of an ordinary if-statement that compares
the value of a still uninstantiated (free) data-flow variable with a given value. Without
knowing the value the proper branch of the if-statement cannot be taken, so the thread
suspends.

Our example illustrates an important advantage of both forms of data-flow, that
consuming threads are subject to less delay. Without data-flow the producer would
have to wait until both A and B were known before passing the reference to the con-
sumer, even though the consumer may make some progress with only the value of
A.

Implicit data-flow has two advantages over explicit data-flow. One advantage is
that the consumer may be programmed the same way irrespective of how and when
the data becomes available, so that program changes on the producing side do not
necessitate program changes on the consuming side. Another advantage in centralized
systems is that data-flow synchronization between threads is actually less expensive
than synchronization via locking.

Examples of data-flow concurrent programming systems with implicit data-flow
are KLIC (GHC) [44] and Mozart (data-flow part). Explicit data-flow (futures) exists
in a number of programming languages (e.g. SML [126]).

12.1.4 Oz or Centralized Mozart

Oz (or centralized Mozart) is a multi-paradigm programming language that supports
all three sharing models.

12.1. SHARING MODELS 275

Message-sending is achieved by the use of the programming construct port. A port
acts as a mailbox reference for senders. Each port has associated with it a stream where
messages arrive, in FIFO-order for messages sent from the same thread, but otherwise
without any guarantees of ordering. Port references may be held by numerous threads
and the messages they send to the port are then interleaved on the stream: this allows
for many senders. The stream reference may also be shared between threads: this
allows for many readers. Thus all forms of message-sending, one-to-one, one-to-many,
many-to-one, and many-to-many are provided for.

Data-flow is implicit and consumption (i.e. reading data structures) can be pro-
grammed independently of production. This is not only convenient but also makes for
fewer programming errors as compared to programming with explicit state (i.e. ob-
jects). With data-flow threads synchronize naturally and automatically on data avail-
ability. The object-oriented style is characterized by the difficulty in achieving the
exact correct balance between insufficient synchronization which gives rise to race
conditions and over-synchronization which gives rise to deadlock.

Experience in Mozart shows, as described in [129], that a good programming rule
is to use shared state (shared objects) as sparingly as possible. In many applications it
is not needed at all. Mozart does provide for objects and these may be shared and the
object-oriented concurrency programming style is thus available when and if needed.

In the object-oriented part of Mozart classes (as well as procedures and functions)
are first class values, and can be created, manipulated, and passed by reference within
the programming language. Sharing a class is thus achieved in the same way as sharing
of objects. The initial sharing environment upon thread creation is typically given by
the rules of lexical scoping. The thread does therefore not necessarily have access to
all classes defined within the program, and cannot therefore necessarily create a new
object of arbitrary classes. Of course, in the centralized setting classes can be given
global scope giving all threads access to all classes defined within the program.

12.1.5 Other forms of thread interaction

Many systems have an additional mechanism whereby threads can interact. Unlike
the interactions associated with the three sharing models these are very seldom used
except in the context of exception handling and failure.

These mechanisms allow threads/processes to monitor and control one another on
the level of the thread/process. In Mozart this is the province of the thread library.
The system offers thread identifiers. These can be used to enquire about the status of a
thread (running, runnable, suspended, etc.) and can be used to stop a thread and inject
exceptions into a running thread. In Erlang there is a similar mechanism that links the
fine-grained processes.

The main use of these mechanism is for error discovery and handling. In this way
cascading process/thread failures may be programmed. Runaway threads, possibly
due to programming error, possibly to incorrect indata, may be stopped. Monitoring
threads can determine that other threads are in some strange state, e.g. infinite loop.

276 CHAPTER 12. THREE SHARING MODELS

We do not consider these mechanisms in any great detail. They are not part of the
core of concurrent programming.

12.2 Discussion

It is fairly obvious that the three sharing models and the associated programming con-
structs are conceptually useful. A multitude of real-world concurrent activities are
naturally modeled with one of these sharing models. Asynchronous message-passing
has its real-world counterparts in the human sphere of e-mail and snail-mail (usually
many-to-one), flyers and tv/radio media (both one-to-many and many-to-many). Bank-
ing systems use shared state (objects). Even such an everyday activity as people pass-
ing through a turnstile can be thought of shared state with a locking mechanism based
on sight preventing more than one person trying to use it at the same time. Delegation
in collaborative work makes use of single-assignment variables, each person or agent
is responsible for some part of a larger whole. Each subtask should, of course, be done
exactly once. Very often the natural latency tolerance of the model is used and some
progress can be made even when some subtask is not yet complete. Indeed, human ac-
tivity is often organized to minimize the disruptions caused by a slow person/agent and
the only stoppage allowed to occur is data-flow synchronization: it is just not possible
to make any progress until the relevant information has been provided as opposed to
always waiting for all subtasks to be completed before proceeding to the next step.

Chapter 13

Necessity of Three Sharing Models

13.1 Introduction

In the last chapter we saw that there were three different sharing models for concur-
rent programming systems: object-oriented, data-flow, and message-passing. Most
programming languages/systems provide only one of these as a primitive. The excep-
tion is Mozart/Oz which provides all three as primitive, i.e. directly supported by the
runtime.

Now, in a centralized system a case may be made that it is unnecessary to provide
more than one sharing model, as the others may be programmed. The ones that are not
provided directly by the implementation may then be made available as abstractions
on the (true) library level. Clearly this makes for a simpler implementation.

This argument largely holds in so far as expressiveness is concerned. If we limit
ourselves to explicit data-flow, ignoring implicit data-flow, it is relatively straightfor-
ward to program any one sharing model using the constructs of any other. This will
be shown in the following subsections. However, the programmed abstractions do in
some cases carry significant performance penalties, as will also be shown. We will
also show that implicit data-flow is not programmable within the object- or message-
oriented sharing models.

The point that we are making here is that a case may be made that you actually do
need to provide all three sharing models as primitives in the centralized case. When
Oz was originally developed in the early 1990’s the design choices were motivated
exclusively by the need of centralized concurrent programming. This was our starting
point; it is useful to provide for all three and the greater implementation complexity
can be dealt with.

In the following chapters we discuss Mozart and other distributed programming
systems. There the argument for needing all three sharing paradigms is much stronger.
Programming one sharing abstraction in terms on another (when possible) will impact
performance in the context of distribution directly. Primarily, the number of network
hops increases. Also the partial failure model will become complex. It is our view, that
whatever position one takes regarding the balance between the usefulness of providing
all three sharing models as primitive versus greater implementation complexity, that

277

278 CHAPTER 13. NECESSITY OF THREE SHARING MODELS

when distribution is taken into account the balance must invariably shift to provid-
ing all three.

13.2 Message-sending in object-oriented systems

We begin by considering object-oriented systems and consider how message-sending
can be programmed.

To achieve message sending in object-oriented systems (e.g. Java-based) we pro-
gram a mailbox class. A mailbox object is created with the two public synchronized
methods put and get. The sender uses the put method, the receiver the get method. The
receiver will suspend if the mailbox is empty, otherwise the earliest received message
will be returned. Internally the mailbox object maintains a buffer of received but not
yet read messages.

Note that the put and get methods are synchronized. Only one thread at a time
may work inside the mailbox object and its associated buffer object. Other threads will
suspend and then allowed inside the mailbox one by one in order. This is necessary to
avoid potentially harmful race conditions whereby messages could be lost.

The programmed abstraction described above does still not accurately reflect true
message-sending. In message-oriented systems, message-sending is asynchronous. In
a sense the sender merely puts his/her message in the mail and then continues. In
due course, without any explicit action by the sender or the receiver, the message
will arrive in the receiver’s mailbox. In object-oriented systems method invocation
is synchronous, so in the Java program the message will be both sent and placed in the
mailbox in the put method call. A more faithful encoding of asynchronous message-
sending would be to spawn a new auxiliary thread, give the message to it, and let that
thread invoke the put method.

The more asynchronous version is seldom used in centralized object-oriented sys-
tems of today, as the cost of thread creation is high. This is, of course, not a language
issue but a system implementation issue. Another alternative, which avoids continu-
ous thread creation, is to give each thread an buffer for outgoing messages (in addition
to the mailbox for incoming messages). Then an auxiliary thread is created for each
ordinary thread from the start, the task of which is to take messages (in order) from the
outgoing buffer and place them in the appropriate receiver mailbox.

Support for one-to-many or many-to-many communication is also programmable.
Each recipient group is mapped to a group mailbox object. Based on the mailbox ab-
straction described previously, the group mailbox has new methods where recipients
can be registered and deregistered. The group mailbox object maintains a buffer that
contains references to the individual mailboxes of the members of the group. An auxil-
iary thread serves the group mailbox object, taking each received message and sending
it to each and every group member.

Both the synchronous and asynchronous message-sending abstractions are more
expensive by some small constant factor than when message-sending is directly sup-
ported by the implementation or virtual machine. (In most implementations the con-

13.3. DATA-FLOW IN OBJECT-ORIENTED SYSTEMS 279

stant factor is much larger than necessary due to heavyweight thread implementation).

13.3 Data-flow in object-oriented systems

Explicit data-flow is also programmable in object-oriented systems using much the
same technique as was used for message-passing. An object is designed to hold the
data-flow variable. Instantiating the single-assignment variable is analogous to the put
operation in message sending, except that the data-flow variable can only be bound
once. In unification-based data-flow systems subsequent instantiations are either no-
ops, when the variable is bound twice to the same value, or fails 1 Reading the variable
is analogous to the get operation in the message sending abstraction.

Once again there are some (constant factor) performance advantages in making
data-flow primitive in the implementation. Note that implicit data-flow cannot be pro-
grammed in object-oriented systems.

13.4 Objects in message-oriented systems

In pure message-oriented or data-flow programming languages/systems there is no no-
tion of shared state. More precisely, there is no notion of state at all. From the perfor-
mance point-of-view this is problematic in single-threaded as well as multi-threaded
applications. The lack of state introduces a performance penalty that is on the level of
algorithmic complexity. With a stateful data structure such as an array an update of a
single element can be done in constant time. Pure declarative languages lack stateful
arrays. Instead the programmer works with stateless tuples (records). The correspond-
ing declarative counterpart of the update is to create a new tuple identical to the old
one except in one field - the updated one. While this may be logically satisfying the
cost of the update is now linear in the size of the array.

However, as noted before, most declarative programming languages/systems today
are not pure and generally provide for state at some level. Often (though not in Mozart)
stateful programming constructs are not smoothly integrated into the language/system.
In Erlang, for instance, there are process dictionaries. This provides for state on the
level of processes, but not in smaller scopes (visible only in subparts of the process or
process code) or larger scopes (visible to several processes).

Keeping in mind the drawbacks associated with lack of state within a single thread
we now turn our attention to shared state (or shared stateful objects). In message-
oriented programming processes/threads can be made to serve as shared objects. In-
vocations on shared objects are mapped to sending messages to the shared process.
The shared process serves the request and then sends a message containing the return
value back to the sender, indicating that the invocation is finished. Clearly, program-
ming the abstraction rather than making it primitive will entail a small constant factor

1This is simplified - complex data structures can also be unified and when the structures are compat-
ible unification proceeds by attempting to unify all the subterms, recursively (see paper 2 7).

280 CHAPTER 13. NECESSITY OF THREE SHARING MODELS

performance penalty. In passing, we also note that when the units of concurrency are
processes (e.g. in Erlang) that much copying will need to be performed on crossing
process boundaries.

13.5 Message-orientation in data-flow systems

A data-flow (logical) variable can serve as a stream, a communication channel, be-
tween threads. The receiver can be programmed as a recursive procedure that waits for
messages on its end of the stream. In this way one-to-one and one-to-many communi-
cation is easily and efficiently programmed.

However message-orientation generally allows for many-to-one (and possible many-
to-many) communication. In pure data-flow systems (like KLIC [44]) this can only be
achieved by use of explicit stream merging (e.g. binary merge). Although this can
more or less be hidden to the programmer, the merging operation is not without cost.
Sending a message is no longer a constant time operation but logarithmic in the num-
ber of receivers. Also the merge network consumes space (even when not used). Note
that this space consumption has no counterpart in message-oriented systems.

13.6 Objects in data-flow systems

In pure data-flow systems (like KLIC [44]) shared objects can be programmed. The
most straightforward way is to first program a message-oriented abstraction (as above),
and thereafter a shared object along the same lines as for message-oriented systems.
There is, of course, a serious performance penalty attached, both for the merge network
and also for the lack of state.

13.7 Data-flow in message-oriented systems

Explicit data-flow is easily programmable in message-oriented systems. A dedicated
process represents the data-flow variable or stream. Consumers register themselves in
the process and then wait for an appropriate message. The producer of the value will
send a message to all registered processes. This is more expensive than in data-flow
systems by some small constant factor when threads are the unit of concurrency. When
processes are the unit of concurrency, like in Erlang, there is an additional copying cost.

13.8 Implicit Data-Flow

One variety of the data-flow sharing model, implicit data-flow, is not programmable in
terms of other sharing models. The pros and cons of implicit data-flow as compared
to explicit data-flow in a centralized system are largely outside the scope of this thesis.

13.9. CONCLUSION 281

Nevertheless we will mention some that are useful in centralized programming but
even more so in distributed programming.

Implicit data-flow makes it possible to change the pattern of production of data in
producer components without changing the consumer components. Sometimes you
may want to change the consumer code but this is to increase the latency tolerance
(i.e. performance) that the data-flow variable provides by rearranging the accessing
order in consumer threads. This is useful in centralized concurrent applications where
the timings involved in the production of data are poorly understood or difficult to
model. (Clearly the uncertainties of data production timings and ordering will grow
when threads are distributed onto different machines).

The logical or single-assignment variable is useful for synchronization. Waiting on
data availability is not only natural, but also robust in the sense that an oversight on the
part of the programmer which gives one thread access to a partially uninitialized data
structure does not break the program. In a distributed context disassociating the act
of determining that a value should be produced from actual determination of the value
gives latency tolerance. This is described in papers 1 and 3 (chapters 6 and 8).

Another useful property of logical variables that can be emulated in explicit data-
flow constructions but is usually not, is the fact that unbound variables can be bound
together or merged. Whatever value the variable is eventually given will be visible to
threads that reference one or the other of the original variables. An example would
be that a server is queried twice for the same information, e.g. the server receives the
query(Q A) from the client where Q is the query and A is the answer - an unbound
variable. The server then spawns a computation (thread) to provide the answer; this
thread will eventually bind A. On the second query the server receives an identical
query, query(Q B). The server then needs merely to bind A to B.

13.9 Conclusion

In summary, we have seen that there are performance advantages in making the three
sharing paradigms primitive in centralized but concurrent systems. All the paradigms
were mutually programmable, if we equate data-flow with explicit data-flow. However,
we all saw that there were performance penalties involved in programming one sharing
model in terms of another.

In some cases the performance penalty was very serious, i.e. on the level of algo-
rithmic complexity. These were:

• Message-oriented sharing programmed in data-flow languages

• Object-oriented sharing programmed in data-flow languages

• Object-oriented sharing programmed in message-oriented languages

In other cases the performance penalty was less serious, involving some small con-
stant factor.

282 CHAPTER 13. NECESSITY OF THREE SHARING MODELS

• Data-flow in message-oriented systems

• Data-flow in object-oriented systems

• Message-oriented in object-oriented systems

Comparing the single–paradigm systems the limitations of both pure message-
oriented and data-flow systems are the most severe. Not surprisingly, there are very
few pure message-oriented or data-flow systems in use today. Often there is some
provision for state (objects).

Of the single paradigm systems only the object-oriented systems come close to
meeting our control requirements. Message-orientation and explicit data-flow can be
programmed, though there is a small constant factor in performance penalty. It can be,
and is, argued that this performance penalty is small and not significant for concurrent
centralized programming.

We can conclude that concurrent programming systems that offer all three sharing
paradigms, e.g. Mozart, are best from the control perspective. In addition, Mozart also
provides for implicit data-flow, which is not programmable in the other paradigms, so
Mozart is also best from the abstraction perspective.

We will reexamine the virtues and drawbacks of the various sharing models again
when we consider distributed systems. We will reconsider the consequences of pro-
gramming one sharing model in terms of another in the context of distribution. We
shall see that things change and the arguments for providing all three sharing models
becomes stronger. In this section, we have seen that a case may be made for the use-
fulness of providing all three sharing models (as primitives) already in the centralized
case.

Chapter 14

Distributed Programming Systems

In this chapter we begin to look at the three qualities of programming systems, ab-
straction, awareness and control for distributed programming systems. More exactly
we discuss the new aspects that need to be addressed for distributed programming sys-
tems. Distributed programming subsumes concurrent programming which subsumes
sequential programming - so all that has been said about such programming systems
will still apply.

Here we consider these qualities on an abstract level. A more detailed description
and comparison of distributed programming systems will be undertaken in the follow-
ing two chapters.

14.1 Abstraction

14.1.1 Transparency

Distribution transparency (network transparency) makes for good abstraction in dis-
tributed programming systems. In the distributed case we now have threads/processes
running on different machines as well as on the same machine. It is clearly advanta-
geous to be able to abstract out this difference as much as possible when programming.
The model of thread/process interaction is independent of thread/process location. The
most important practical consequence, if this goal can be realized, is that applications
will not have to be designed for any specific distribution structure of threads. For ex-
ample, consider an application with three threads A, B and C. In one scenario thread A
and B run on one machine and thread C on another while in the other scearnio thread
A runs on one machine and B and C on another. The program is the same.

Clearly, a distribution-transparent distributed programming model will subsume
a concurrent programming model. We need only consider the special case when all
threads/processes run on the same machine. Note that the argument for distribution
transparency does not say that the subsumed concurrent programming model is neces-
sarily identical to any existing concurrent programming model. Clearly, the subsumed
concurrent programming model must still be reasonable with respect to the qualities of

283

284 CHAPTER 14. DISTRIBUTED PROGRAMMING SYSTEMS

abstraction, awareness, and control. However, the distributed programming model may
be richer than a model designed exclusively for centralized concurrent programming.

Total distribution transparency is, however, depending on your point-of-view either
not possible or not desirable. We need to consider failure, or more particularly partial
failure. In the centralized concurrent case if the process crashes the entire application
fails, or put another way, the threads all fail together. In the distributed case a process
crash may in general cause a subset of threads to fail. More generally, in a distributed
application, there is a difference between all the scenarios where threads A and B both
run on the same machine, and those where they reside on different machines. In the
first case, the threads A and B are inexorably joined and live and die together. In the
second case, one may die while the other lives.

We see that different distribution structures cause different kinds of partial failure
situations and these are not distribution transparent. The only way to achieve a kind of
distribution transparency here would be to attempt to fail the entire application upon
the failure of any one machine. Even if this were doable it is clearly seldom desirable
as applications that stretch over a large number of machines would then be extremely
vulnerable to failure.

The only remaining alternative is to reflect this failure up to the programming lev-
el, where there is the option of either coping with the partial failure or possibly abort-
ing/killing the entire application. Coping with partial failure entails fault-tolerance
and programming systems may vary considerably in the support that they provide for
building fault-tolerant applications (see also section 2.4).

The situation is further complicated by the fact that failures cannot always be reli-
ably detected on WANs (the Internet). In many cases all a single machine or a thread
can know is that there is some communication problem and that the desired interac-
tion with a remote thread cannot currently be performed. Perhaps interaction will be
possible later, perhaps not.

The conclusion here is, that to achieve good abstraction distributed programming
systems should meet two criteria. Firstly the system should be distribution transparent
modulo failure. Secondly, the subsumed concurrent programming system (threads/
processes on the same machine) should also exhibit a good level of abstraction judged
by the same criteria as pure centralized concurrent programming systems.

14.1.2 Reference bootstrapping

In the chapter on concurrent programming systems we saw that threads interact through
shared entities.

Two threads that share the same stateful language entity can potentially interact
through the shared entity. We say that they are in the same sharing domain. The ex-
tended sharing domain is the transitive closure of threads in the same sharing domain.
Any two threads that belong to the same extended sharing domain but in different shar-
ing domains can potentially interact. For example, threads T1 and T2 share object O1
and threads T2 and T3 share object O2. Thread T1 and T3 are in the same extended
sharing domain but not in the same domain. If thread T2 puts a reference to object O2

14.2. AWARENESS 285

in O1 this will put threads T1 and T3 in the same sharing domain.
The important point here is that threads that are not in the same extended sharing

domain will never be able to interact. This gives rise to a bootstrapping problem, how
to give a thread the appropriate initial set of shared references. In centralized program-
ming, ignoring shared namespaces, which are problematic to extend to distribution,
threads are given an initial set of references by the thread that created it, and so on.
This can be ultimately traced back to the original thread, which has full control and
can plan for proper initialization of all of its descendants, recursively.

In the centralized case there is no need for threads that end up in different extended
sharing domains to ever connect. In the distributed case there is. Two threads are creat-
ed on two different machines independently need to bootstrap their shared references.
Distributed programming languages/systems thus need a new way to connect disparate
computations.

This illustrates that to be useful an integrated distributed programming language/system
will need to be strictly richer than its concurrent core.

14.2 Awareness

Before we consider the performance model of distributed programming systems, we
will briefly consider, once again, the performance model for centralized (possibly)
concurrent programming systems. The abstractions that centralized programming sys-
tems provide are ultimately translated to machine code, either directly or through the
action of low-level interpretation (virtual machine). Associated with the programming
system is a performance model that can be used to predict the cost associated with the
execution of the abstractions. The cost given by the performance model may be seen as
rough estimate of the number of machine instructions that are required to execute the
abstraction, somewhat augmented by an awareness of cache behavior, and hardware
registers.

In practice such a performance model is too cumbersome and imprecise to predict
the performance of non-trivial programs. This is not only because that actual perfor-
mance will depend on the specific hardware that the program will run on. The sheer
size and complexity of most applications makes predicting the performance of a pro-
gram developed from scratch based on such a fine-grained model impractical. (On the
other hand, it may give a good indication where to performance tune existing software).

Instead, the performance model is mostly used to judge the relative performance of
different programming constructs available to the programmer. Indeed, the program-
mer is not necessarily consciously aware of using a model and if asked, why he/she
chooses one construct over another, it will be put down to experience. The model is
most often used in the small, on the level of the procedure and subcomponents, com-
paring one possible implementation with another.

Another clear advantage of a relative performance model is that this makes the
model more or less hardware independent. Better hardware will make for faster pro-
gram execution, but the relative merits of different solutions remain roughly the same.

286 CHAPTER 14. DISTRIBUTED PROGRAMMING SYSTEMS

The absolute performance difference when moving from a slow to a fast processor
may be difficult to predict, memory-intensive applications do not speed up as much as
computation-intensive applications.

As distributed programming systems subsume centralized ones, the model of per-
formance will include all that which is important for centralized systems. The pro-
grammer will need this for all purely local computation.

But the performance model for distributed programming will need to contain much
more. The abstractions, in general, will ultimately be translated into both machine in-
structions and messaging. Abstractions may now involve sending messages, receiving
messages, and waiting for the receipt of messages.

There are many variations in network capacity and speed (e.g. LAN, WAN, wire-
less). To some degree this is analogous to variations in hardware for centralized pro-
gramming. Machines vary in clock frequency, cache size and characteristics and main
memory size to name but a few.

However, the spectrum of possibilities is much wider and absolute performance
much more difficult to predict. If the application needs to send large messages between
machines and then wait for a response, there will be a huge difference in absolute
performance if the connection is a low capacity modem rather than a dedicated high
speed LAN.

Just as was the case for centralized programming, we need a relative performance
model to weigh different constructs against each other. However, we now have three
different factors to consider.

• Local computation

• Latency (or number of network hops)

• Message size (bandwidth usage)

Interaction between remote threads will require messages to be sent. Certain kinds
of interactions (e.g. synchronous) will typically suspend the initiating thread until
the interaction completes. A deployment independent measure of the latency is the
number of network hops (two for simple RPC). Even if the operation is asynchronous
the number of network hops is important as there may be a thread at the other end
which is suspended waiting for the message to arrive.

One aspect of message sending is the size of a message. The larger the message the
more bandwidth is required. In general, when messages are large enough (or network
capacity is low enough), the time it takes to send a message is proportional to the size
of the message. A rough appreciation of the size of the messages is thus clearly part of
the performance model of the abstractions.

Compared to the centralized performance model there are now three factors to
consider, rather than one. Also absolute performance varies more with changes in
deployment (networks or hardware). This makes for a more complicated model. But
in many cases not unduly so. For instance, when different constructs are compared to
one another, if one construct is better than another in any one of the three factors and

14.3. CONTROL 287

equal or better in the other factors, it is to be preferred. So, sometimes the choice is
simple.

However, it is now also necessary to consider situations where there are tradeoffs
involved. How do we choose between constructs where one is better in one factor,
and the other in another? How do we weigh the different factors against one another?
Indeed, how common are these kinds of difficult choices? Clearly systems with good
awareness will provide the model to answer such questions.

14.3 Control

The performance gap of a distributed programming system reflects the cost of abstrac-
tion in non-optimal local execution, and non-optimal message sending. Non-optimal
local execution is when more (or more costly) machine code instructions are executed
than could be achieved by direct encoding. Just as the case for centralized program-
ming systems we are probably willing to pay a small constant cost for the ease of
programming at a higher level of abstraction. The only really new factor here is that
local execution will also encompass serialization or marshaling, i.e. the conversion
of data structures (including code) into a serial representation for sending over the
network. This needs to be reasonably efficient as well.

Non-optimal message sending is when a gain of performance could be achieved
by direct encoding of an application-specific protocol at a low level. The potential
non-optimality here is related to the two other awareness factors specified earlier, the
number of hops and message size. In one case, the performance gap is seen when
thread interaction is ultimately translated into more messages and/or more network
hops than in strictly necessary. This increases latency unnecessarily. In the other case,
the messages are all necessary in order to achieve the desired thread interaction but the
messages themselves are unnecessarily large and bandwidth demanding. This would
be the case, for example, when the serialized data-format is unnecessarily bloated or
verbose (e.g. XML).

A small performance gap may, as in the centralized case, be acceptable, but we
still expect that in time those distributed programming systems that gain acceptance
for general-purpose distributed programming will have a very small performance gap.
We also believe that minimizing the number of network hops is both very important
and, as shall be seen, ultimately also realizable, so that the acceptable performance gap
will come to be zero. We also expect that, ultimately, the data formats that survive (for
machine-to-machine communication) will be very compact, and that the acceptable
performance gap here is very low (not more than on the order of 10-20%).

14.4 New Abstractions and Old Assumptions

It is both natural and straightforward to design and build distributed programming
systems by extended centralized concurrent systems. Similarly it is natural to design
distributed programming systems for WAN environments by extending LAN-based

288 CHAPTER 14. DISTRIBUTED PROGRAMMING SYSTEMS

distributed systems or shared memory multiprocessor systems. However, this approach
is also inherently dangerous.

The dangers are two. The first danger is that the assumptions and invariants of
the base systems (before extension) are not accounted for sufficiently. One needs to
be very aware of the invariants that have in the course of time been interwoven into
the design of such systems. We look at some abstraction of the base system and say
- such a nice abstraction we must immediately extend it to distribution or extend it to
WAN-based distribution. We forget that associated with the abstraction are control and
awareness aspects that may rely heavily on invariants that no longer apply.

The second danger is oversimplification. New abstractions will be needed and
dogmatic reluctance to provide them will have severe consequences. It is useful to
shift the perspective and consider the two systems not only from the point of view of
extending the base system but also from the point of view of simplifying the distributed
programming system. We can then expect abstractions and distinctions that are present
and important in the distributed system to collapse in the base system. Two distinct
abstractions in the full-fledged distributed programming system, with very different
control and awareness properties, may in the base case be completely equivalent.

We will need new abstractions. We have already mentioned bootstrapping where
distribution (particularly, WAN-based distribution) introduces the need for a new con-
nection or thread initialization abstraction.

An example of a centralized invariant that needs to be reexamined is the use of a
global namespace (typically for code). This is not to say that global namespaces are
not useful in distributed computing, but only that they are the wrong default. Where
limited scope will do, it should be used. The property that a certain piece of code and
data only needs to be visible in a limited context should be explicit in the program and
not implicit in the programmer’s head. Often enough, in applications, this limits the
scope to a single machine (or even a single thread/process). This is important as such
local entities impose no burden whatsoever on the distribution support system.

Another related example is the primitive distributed programming system consist-
ing of an imperative programming language (e.g. C), threads/processes together with
distribution support based on shared memory. These distributed shared memory sys-
tems (DSM [122, 29]) have their origin in systems for shared memory multiprocessor
systems which were extended for distribution. There are three major drawbacks to this
approach (aside from the disadvantages associated with low-level imperative program-
ming languages). First, is that the granularity of the units in the consistency protocols,
memory pages, has no relation to units of granularity in the programming model (i.e.
data structures). This gives rise to the problem of false sharing, where the distribution
support system is working hard to keep data consistent to no purpose.

Another drawback with distributed shared memory is that locality is never assured.
All of the distributed programming systems that we focus on (Mozart, Erlang, Java,
etc.) have the property that there are entities that are assured to be local to a single
machine. This can only be broken by actions taken by the threads/processes on that
machine - it can never be broken from outside. All language entities in this happy
state can essentially be handled by the runtime as if the system was centralized. In

14.4. NEW ABSTRACTIONS AND OLD ASSUMPTIONS 289

a programming language with pointer arithmetic the action taken by other machines
may suddenly cause previously local data to become shared. This imposes a burden on
the runtime.

The third drawback to traditional distributed shared memory systems is the lack of
distinction between stateless and stateful data. In depth discussion of this is deferred
as this is not exclusive to distributed shared memory. Many distributed programming
systems also have this property and this will be covered in detail in the following
chapters.

There are, we claim, pitfalls associated with naively extending base systems to
distribution. In the following chapters we will see many examples of systems that have
plunged into these pitfalls. During the course of the Mozart work we were not able to
entirely avoid them either. Some of them we were able to climb out off. But in the
section on future work(chapter 17) the astute reader might think, and would be right to
do so, that not all the proposed future work reflects things that we never got around to
doing.

From the Mozart experience we expect that mature (future) distributed program-
ming languages/systems will be much richer than a purely centralized concurrent pro-
gramming system ever need to be. There will be many more abstractions and distinc-
tions.

Exactly how new the necessary additional abstractions will be does depend on the
concurrent programming language base. The centralized precursor of Mozart, Oz-3,
was rich in abstractions and distinctions that other languages lack. These were moti-
vated for reasons that had nothing to do with distribution. Properties like referential
safety, lexical scoping, higher-order, distinctions between stateless, stateful and single-
assignment data were originally motivated by considerations of programming power,
elegance, and defensive programming in the context of centralized concurrent pro-
gramming. As it turned out all these distinctions were just as important for an entirely
different reason - distribution.

290 CHAPTER 14. DISTRIBUTED PROGRAMMING SYSTEMS

Chapter 15

Two approaches to distributed
programming systems

15.1 Introduction

It is our view that there are only two approaches to building a distributed programming
system. The distinction is in the kinds of program constructs available to the applica-
tion developer for dealing with distribution, i.e. the non-centralized portions of his/her
application.

One approach is the message-passing approach. A centralized programming sys-
tem is augmented with the ability to send and receive messages between sites, process-
es, or threads. This is a straightforward approach as it exposes the underlying reality of
distributed applications to the programmer. Distributed applications do after all con-
sist of a collection of processes on different machines that exchange messages between
them, working together to achieve some common goal.

The other approach is the integrated approach, where the language constructs them-
selves are augmented for distribution. The rationale behind the name of the approach
is clear if we first consider a centralized but concurrent application. Threads reference
language entities and some language entities are referenced by more than one thread.
These language entities are shared between threads. The distributed programming sys-
tem is then augmented so that the language entities may also be shared between threads
on different machines.

15.2 Message-passing approach

15.2.1 Introduction

In the message-passing approach sites/processes/threads can send messages and re-
ceive messages. Messages are sent asynchronously, though the sender may block, or

291

292 CHAPTER 15. TWO APPROACHES TO DIST. PROG. SYS.

suspend waiting for a reply. Messages once sent cannot, of course, be unsent 1.
The simplest example of the message-passing approach to building a distribut-

ed programming system is to use a centralized programming system together with a
TCP/IP library. The programming language will then, in addition to the normal central-
ized constructs, also contain the socket interface functions; read, write, connect, accept
etc. The programmer had better understand the semantics of sockets, and needs, for
instance, be aware of the crucial difference between blocking and non-blocking reads
and writes. In addition, the programmer needs to be aware of the 50 or so various error
codes that the socket functions may return, and have a strategy to deal with them. The
programmer also needs, to some degree, have a model of the inner workings of the
TCP protocol; in particular he/she needs to have an appreciation of the time-outs that
TCP uses.

15.2.2 Messaging Service

As our focus is on Internet applications (wide-area networks) all message-passing will
ultimately be based on TCP/IP (or UDP) as this is the provided infrastructure. Howev-
er, more sophisticated messaging services can be constructed by abstracting over TCP
or UDP. If the messaging service is built on top of UDP then the messaging service
will also have to manage packet loss, duplication, and provide for some form of flow
control.

TCP services require the programmer to explicitly manage the opening and clos-
ing of connections. Messaging services can be built that open and close connections
automatically. The programmer need then only send and receive messages on logical
connections. The error conditions of TCP can be abstracted, and rather than relying on
TCPs hard-wired time-outs the programmer can configure or program his/her own.

The messaging service can also manage aspects of resource control. In TCP there
are generally limits both on how many connections one OS-process can hold open
at any one time and on how much data can be written (or read) in any one OS-call.
The messaging service can share the TCP physical connections between the logical
connections needed in the application. Also it can handle large messages transparently
to the application, buffering where necessary, so that the application will only receive
complete messages even if the message took many invocations of TCP to send.

Message-sending may be synchronous or asynchronous. This is mirrored in TCP
with blocking and non-blocking sends (writes). Introducing buffering in connection
with asynchronous sends could lead to memory overflow problems if not dealt with;
the messaging service will need to provide some mechanism for flow control on the
level of the application.

In many cases there will be concurrent activity within each site as well as between
sites. In the case where different threads send messages to the same receiver, over the
same or possibly different logical connections, the messaging service may choose ei-
ther to use the same physical connection or alternatively different physical connections

1We exclude rollback mechanisms for parallel simulation - they are much too costly to be considered
for distribution

15.2. MESSAGE-PASSING APPROACH 293

to deliver the messages. In the former case the logical connections are multiplexed.
The advantage of multiplexing is that it uses less operating system resources. There
are also disadvantages with multiplexing, at least if the messaging service is built on
top of TCP, as additional dependencies between threads are introduced.

15.2.3 Data-integrated message-passing

The messaging service, as described so far, requires that messages be passed to it as
sequences of bytes. This makes such a messaging service completely language inde-
pendent. This does not mean that the byte sequence does not represent structured data
that is linearized according to some standard or convention. Obviously this must be the
case if the receiving process is to understand the message. For interoperability some
standard format (e.g. XML) might be used. For applications where all programming
is done in the same language other (internal) formats can be used.

In a message-oriented distributed programming system messages will typically be
generated with the programming system first, often as complex data structures. In order
to use the messaging service the data structure must first be converted into a sequence
of bytes. This is sometimes called linearization and sometimes called marshaling. We
will use the term marshaling. At the receiving side the byte sequence is unmarshaled
and the corresponding data structure generated.

It is much more convenient to be able to pass the data structures of the programming
system directly to the messaging service. This is taking the first step toward integra-
tion, as the messaging service now understands the data representation used within the
programming system. Marshaling and unmarshaling are no longer performed by the
programmer but by the messaging service.

There are two varieties of such a messaging service. Either the messaging service
marshals the data immediately or alternatively when the communication channel is
free of undelivered previously sent messages. The former type we call an immediate
messaging service and the latter type we call a fully asynchronous messaging service.

There are important advantages with a fully asynchronous messaging service. The
program may run ahead of the ability of the network to deliver messages so that im-
mediate marshaling of the message will only fill the messaging service’s internal byte
buffers. Often, data representation within the programming system is more compact
than the marshaled equivalent, so if the message cannot be delivered yet, there are ad-
vantages in delaying marshaling (within limits, of course, eventually, if the network
cannot deliver messages sufficiently quickly, the producing threads/processes must be
stopped or slowed).

A complication with a fully asynchronous messaging service is that the message
must be protected from reclamation until the entire message has been marshaled and
possibly even longer. The message may not be garbage-collected. The messaging
service must therefore be designed so as to cooperate with the garbage-collector.

An important issue concerns the nature of the message contents, the data that is
sent. The interesting distinction here is not between data and code, but between state-
less and stateful language entities. Code in most programming systems is stateless, but

294 CHAPTER 15. TWO APPROACHES TO DIST. PROG. SYS.

data may or may not be. Examples of stateless data are primitive types, records (in
Mozart, Prolog, and many other declarative programming languages), and initialized
objects in Java where all instance variables are final. Objects are generally stateful, as
are structs and variables in C.

Passing all kinds of stateless language entities to the messaging service is unprob-
lematic. The difficulty is with stateful language entities. The application programmer
must be aware of the snapshot semantics of his/her messaging service. Say that the
stateful entity is subject to a series of state transitions S1→ S2→ S3. A reference to
the entity is given to the messaging service when it is in state S1 and it is sent in that
state. If later the sender examines the entity and sees S2 the sender should definitely
not come to the conclusion that S2 was sent.

If stateful messages are to be allowed then the messaging service cannot easily be
made fully asynchronous. Consider the case where the sending thread/process sends
the message with the entity in state S1 and later updates the entity to state S2. The
messaging service may send S1 or S2 depending on timing, or even worse may send
some intermediate state. Also, if there are other threads that reference the entity the
state may change due to the action of other threads during serialization. It can be
argued that it is the programmer’s responsibility to ensure that such race conditions do
not occur.

In any case, allowing stateful entities in messages has two important consequences.
Firstly, the programmer must be very aware of the snapshot semantics and carefully
synchronize his/her program. Secondly, it puts some hard constraints on the nature of
the messaging service.

Examples of messaging services are MPI (message-passing interface) [104] target-
ing C and C++ and the Java messaging service [2]. Both provide for resource control
above that of TCP/IP, and immediate messaging. Additionally, both provide for data
integration in various programming languages(C, C++ or Java). Note that in both cases
that the centralized programming model is based on programming with stateful entities
(structs and objects) while data-integration involves snapshot semantics.

15.2.4 Mailboxes and abstract addressing

Up till now we have considered message sending between sites that know about each
other. An important practical consideration for open distributed applications is that
this knowledge can also be communicated in messages. If sites A and B know of each
other (i.e. can send messages to each other) and sites B and C know each other then
site B should be able to communicate its knowledge of site C to site A so that site A
can send messages to site C.

The simplest naming mechanism is just an IP-address and port. This does not
distinguish between different incarnations using the same port, which may not be de-
sirable, and gives each process/site one single mail-box (or one per port), which may be
too limited. Another approach is to introduce some mail-box abstraction into the mes-
saging system. There may then be many mail-boxes within the same process. Mail-
boxes that belong to different processes are different (even when one process reuses

15.3. INTEGRATED APPROACH 295

the same IP-address and port that a previously terminated process used).

15.2.5 Abstraction, awareness, and control

Clearly the message-passing approach can provide the programmer with good aware-
ness and control. Each message sent requires one hop to arrive at its destination. If raw
byte sequences are sent then the programmer has a very clear appreciation of the size
of the message and hence the bandwidth requirements. Even with data-integration the
system can provide a rough model of the size of the serialized message.

That the message-passing approach gives good awareness and control is, of course,
no more surprising than the fact that assembler programming, in the centralized case,
also provides good awareness and control. In both cases the level of abstraction is very
low, and the mapping to the underlying primitive operations is relatively straightfor-
ward.

This brings us to the third quality, abstraction. The drawback to the message-
passing approach is twofold. Firstly it offers only a very low level of abstraction,
greater with data-integration than without, but still low. Secondly, in the context of
almost all programming languages, the programming system as a whole has two very
different models that the programmer must understand and work with. One model is
the programming language used for programming local computation while the other,
message-sending, deals with distribution.

15.3 Integrated approach

15.3.1 Introduction

The integrated approach takes its name from the desired property that distribution is
integrated into the programming language. In other words distribution is not handled
separately using a totally different model than the one that is used for concurrent cen-
tralized programming.

The integrated approach offers a promising alternative to message-passing. Poten-
tially it can provide a higher level of abstraction. We will see that some of the abstrac-
tions offered in such systems will involve the action of protocols which will map the
abstractions not to a single message being sent but rather to a set of messages carefully
coordinated to achieve a desired result. Finally in the integrated approach the abstrac-
tions used in local computation are integrated with those for distributed coordination,
making for fewer and more generic abstractions.

Another way to look at it is to imagine starting designing a distributed program-
ming language from scratch. This distributed programming language will abstract the
underlying machinery, computation within one process and basic message sending be-
tween processes (machines). This language will necessarily have abstractions for com-
puting within one process and mechanisms whereby processes/threads can interact and
synchronize. Clearly, from such a language a concurrent programming language can

296 CHAPTER 15. TWO APPROACHES TO DIST. PROG. SYS.

be derived - covering the case where the various computations (threads or processes)
reside within the same OS-process. Practical systems based on such a language will
surely optimize thread interaction within the same OS-process or same machine. Giv-
en that the distributed programming language/system was useful then the centralized
concurrent part of such languages/systems would be useful as well. Any well designed
general distributed programming language/system should therefore contain within it-
self a concurrent programming language/system (the concurrent core).

Integrated distributed programming languages/systems therefore subsume concur-
rent ones. This does not mean that the ultimate distributed programming language/
system necessarily looks and feels like a centralized concurrent programming system.
It probably contains many more constructs and distinctions than are needed for central-
ized concurrent programming, just as concurrent programming systems contain strictly
more than is needed for sequential programming (e.g. locks). Rather, if the distributed
programming language/system is stripped of that which is only relevant for distribu-
tion, we are left with a concurrent programming core.

So unless there is still some undiscovered useful thread interaction (sharing) mod-
el out there the concurrent programming core of today’s and tomorrow’s distributed
programming languages/systems will be based on one or more of the three concurrent
sharing models. We can thus categorize integrated programming systems in much the
same way as we have categorized concurrent programming systems. We have:

1. Object-oriented

2. Data-flow

3. Message-oriented

Reference systems that correspond to the three types are Java-based (object-oriented)
distributed programming systems (e.g. with RMI), the subset of Oz/Mozart without
objects and ports (data-flow) and Distributed Erlang (message-oriented).

15.3.2 Transparency

The main idea of the integrated approach is that the model of concurrency is (virtually)
the same for both distributed and concurrent programming. A distributed application
is just a concurrent application where threads are partitioned between sites. Threads
interact with each other and the interaction is the same irrespective of whether the
threads are on the same site or on different sites.

This reflects the quality of abstraction that we find desirable in a good program-
ming system. The same model of thread interaction applies within a site and between
sites. This simplifies programming in that there is only one model of thread interac-
tion rather than two, one for threads within one site and one for threads between sites.
Moreover the interaction between threads on different sites must necessarily involve
many steps of computation, serialization (marshaling), as well as the action of a coor-
dination protocol - a fairly complicated mechanism to implement, all encapsulated in
a high-level abstraction.

15.3. INTEGRATED APPROACH 297

There hare two properties of thread interaction that cannot be made completely
transparent. The first is the time it takes to perform the operation. Timings will in-
variably change when we go from a local operation to a remote operation. Finally,
distribution (or changes in distribution) introduces new types of errors due to network
partitioning and the crashing of sites. These manifest themselves in new types of par-
tial failure.

However, modulo these two factors, timings and failure, we want the semantics
of the programming language to be unchanged. Ideally, we should not be able to
observe any other difference whatsoever. Note that the differences, when maximum
transparency is achieved, are exclusively in non-functional aspects.

Integrated systems for distributed programming all strive toward transparency. This
can be seen in RMI (e.g. Java RMI), its predecessor RPC, Object Voyager, etc. But
currently most systems are only partially network-transparent. In Java RMI invoking
a remote object where all method parameters are simple types is transparent modulo
failure and timing. In this case Java RMI is maximally transparent. However when the
parameters are (stateful) local objects the remote method invocation is not transparent,
i.e. does not exhibit the same behavior as a local method invocation would.

Given that transparency is desirable, the question arises as to why so many systems
are only partially transparent (i.e. have many other non-transparencies over and beyond
timings and failure). The answer to this question is complex and involves many factors.
We will come back to this question in section 16.7.3.The two most important factors,
are (1) that transparency with reasonable control is difficult to implement, and (2) that
some programming languages (or abstractions) by their very nature can not both be
made transparent and efficient (or in terms of our three programming criteria cannot
offer good abstraction and control at the same time).

15.3.3 Partial failure

RMI also illustrates the fact that network transparency does not extend to time nor
failure. Remote method invocation will invariably be slower than method invocation on
local objects; we cannot expect anything else. Furthermore, remote method invocation
may produce an error if the site on which the object resides has crashed. This kind
of partial error cannot occur in a centralized system. Centralized systems also crash
but this causes the whole program to stop running. In a distributed system, one thread
performing a RMI may get an error, while another thread continues to work normally.

A distributed programming language will need to be richer than a concurrent one,
and offer new abstractions for dealing with partial failure. In Java RMI the language is
extended minimally in comparison with the concurrent core; partial failure is reflected
in new kinds of exceptions. It is doubtful if this is enough and good abstraction will
probably demand much more of future distributed programming systems. The Java
RMI mechanism is reactive only, and faulty remote objects are only discovered upon
use. In Mozart the mechanism of watchers provide proactive failure detection which is
sometimes useful. In Erlang processes can be linked, so that processes can be informed
(or killed) upon the failure of other processes. This is also clearly useful as a partial

298 CHAPTER 15. TWO APPROACHES TO DIST. PROG. SYS.

failure will generally make the continued action of other processes/threads meaning-
less. It is a good idea to kill these orphaned processes/threads as early as possible.
Note that Erlang chiefly targets LAN-based distributed systems where reliable failure
detection is possible.

In our view there is much remaining work to be done on how partial failure is best
reflected at the programming level. Outstanding research questions are how to cater for
different granularities and unreliable failure detection (WANs), both on the language
level and in the implementation. It seems reasonable that, depending on the applica-
tion, that failure will sometimes be most easily reasoned about on the level of individ-
ual language entities (e.g. failed object), sometimes on the level of threads/processes,
and sometimes on groups of threads/processes or other coarse-grained abstractions.
The ultimate distributed programming language/system will probably need to cater for
all these.

15.3.4 Reference bootstrapping

We saw earlier that in centralized concurrent systems it is easy to arrange that newly
created threads/processes are initialized with the appropriate set of references. This is
no longer the case with open distributed systems. We need an additional mechanism
to provide threads with the appropriate initial set of references.

A distributed counterpart of the bootstrapping mechanism of the centralized system
would be to spawn a new thread (with given references) on a new machine. Such a
mechanism can be very useful. For example, in the Mozart programming system the
ability to create threads with an initial set of references on other machines is provided
by the Remote library. However in general such mechanisms requires infrastructure
support that is neither generally available nor desirable (for security reasons) on wide-
area networks. Many distributed applications must be bootstrapped collaboratively.

Integrated systems therefore usually offer a mechanism to connect disjoint extend-
ed sharing domains. There are different models for achieving this, but the common
factor is that it depends on some facility outside the core language to communicate the
reference. As a simple example, a server may exist a fixed ip-address and port, clients
may connect to it, and be given an initial shared reference.

In Mozart this is provided by the Connection library. At runtime a textual repre-
sentation or ticket can be created to an arbitrary language entity in one Mozart process.
The ticket is then by external means communicated to another Mozart process (e.g. via
an e-mail). Feeding the ticket to this Mozart process will then create a fully functional
reference to the original entity. It is part of awareness to realize that those entities that
are referenced by tickets are referenced outside the system and beyond the control of
the runtime and therefore cannot safely be garbage-collected in the normal way. In
Mozart tickets come in a number of varieties. One kind can only be used once. This
is a semantic property and the system will refuse a second connection attempt. It al-
so simplifies memory reclamation; once a connection has been made the referenced
entity is subject to ordinary (distributed) memory reclamation rules. Other distributed
programming systems provide (or could provide) similar mechanisms as described for

15.3. INTEGRATED APPROACH 299

Mozart.
Note that in a centralized concurrent programming system there is only one way in

which a new thread is created. In our distributed programming system there are now
two, the normal way (bootstrapped upon creation) and cooperatively.

15.3.5 Object-oriented

Object-oriented distributed programming systems allow threads on remote machines to
share objects. Examples of pure object-oriented systems are Emerald [72], Java with
RMI[120], and ORCA[14]. Object Voyager and Mozart are examples of non-pure
object-oriented distributed programming system providing as they do, to a greater or
lesser extent, other sharing paradigms as well.

All the systems attempt, with varying success, to provide network transparency.
Method invocations on shared objects should behave the same irrespective of the lo-
cality of the thread that invokes it (modulo timings and failure). All these systems are
evaluated in a later section, in terms of our criteria abstraction, awareness and control.

In a distributed system one must also consider the sharing of classes and code and
here systems vary greatly in their level of ambition.

Emerald is an older system targeted at closed (distributed) systems and has no
provision for sharing code. In Java-based systems threads also share classes (code) via
two different mechanisms. First, they may be spawned this way. Secondly, the sharing
of an object (a dynamic property) indirectly shares the class. More precisely, threads
share a name space that indirectly references the class definitions. Sharing via the name
space can be troublesome in open systems as different classes (code) may be given the
same name. There is nothing preventing this. Together with the fact that actual code is
fetched locally, if possible, this means that the wrong code may be executed.

In Mozart classes (as well as procedures and functions) are first class values, guar-
anteed to be unique; they can be created, manipulated, and passed by reference within
the programming language. Sharing a class is thus achieved in the same way as sharing
of objects or any other kind of entity. This makes for a powerful system. For example,
by storing first class procedures and classes in objects one can create abstractions for
code revision. Code is fetched from the (stateful) object. Once execution has begun
with one version it will run to completion. Meta-facilities update the code in the object
upon need. With system support for memory reclamation of unreferenced code (just
like unreferenced data) older versions will be expunged when all threads executing
them terminate.

15.3.6 Message-oriented

The one example of a pure message-oriented distributed programming system is Dis-
tributed Erlang. Mozart also provides for message-oriented sharing.

Network transparency in this case means that message-sending constructs behave
the same way irrespective of the locality of the recipient thread or mailbox (modulo

300 CHAPTER 15. TWO APPROACHES TO DIST. PROG. SYS.

timings and failure). Both Distributed Erlang and Mozart (message-oriented part) are
network transparent.

Clearly, message-oriented distributed programming systems are the easiest to make
network transparent, as the message-passing paradigm is straightforwardly mapped
to the basic message-passing low level infrastructure. It could be said that message-
oriented distributed programming systems stand in the same relation to the basic message-
passing infrastructure as classical imperative programming languages/systems stand in
relation to assembler. The level of abstraction is low and the underlying infrastructure
is clearly visible.

In Erlang all code is implicitly shared (via a namespace) much as described for
Java-based systems. Once again the system targets closed systems and there is no
way to dynamically share code, though interestingly enough there are provisions for
dynamic updating of code revisions.

15.3.7 Data-flow

Mozart is the only distributed programming system that provides implicit data-flow.
Explicit data-flow is provided in Object Voyager. Object Voyager will be discussed
in detail later. It suffices for now to characterize Object Voyager as a Java-based dis-
tributed programming system that,to some extent, in an object framework incorporates
aspects of both message-sending and explicit data-flow.

Chapter 16

Evaluation of the Integrated Approach

16.1 Introduction

There are three important questions that need to be addressed about the integrated
approach to distributed programming systems. These questions apply to all three kinds
of sharing mechanisms, and any combination thereof.

• Is it useful?

• Is it possible?

• Is it practical?

The first question is the easiest to answer. We will argue that there almost exists a
consensus in the community on this point.

The second question is concerned about whether or not integrated general-purpose
distributed programming systems are at all possible. The main criteria here is network
transparency; the semantics of sharing between threads should be identical for sharing
within a site and across sites - modulo timing and failure.

The question of practicality is threefold. First, we consider the awareness aspect.
In particular, do the systems provide a reasonable model of performance? Second,
we consider the control aspect. Our comparison is with a message-passing system,
the assembler of distributed computing. Any distributed application, even if it takes
considerable effort, can always be encoded as a message-passing application.

Third, we consider failure. In any distributed application sites may crash and the
network may become partitioned. While a centralized application fails in its entirety,
distributed applications tend to fail in part. Applications need to take this into account,
possibly providing some error-recovery, and possibly terminating the application or
parts thereof. The question that must be posed is: does the integrated approach com-
plicate failure handling as compared to message-passing? (Even better, of course,
would be if failure modeling and handling were easier in the integrated approach).

In the discussion on the practicality, we will also need to reconsider the question
previously dealt with for centralized concurrent systems but now in the context of

301

302 CHAPTER 16. EVALUATION OF THE INTEGRATED APPROACH

distributed programming. Do we need all three sharing paradigms, or can we make do
with one or two?

16.2 Is it useful?

There are three main arguments for the usefulness of the integrated approach, if it can
be made to work. They are

• Simplicity

• Direct parallelization of concurrent programs

• Distributed computing community experience

The simplicity argument has already been touched upon. A slightly different for-
mulation is that given that the programmer prefers using one or more of the three shar-
ing paradigms for programming concurrent but centralized applications, why should
he/she have to abandon this style merely because the threads/processes reside on dif-
ferent machines. It is surely preferable to have the one model rather than two different
models, one for the centralized case, and one for the distributed one. This argument
even applies to message-oriented systems, without integration the programmer would
have two message-passing constructs, one within a site and one between sites. We also
note that simplicity is an important factor for improving code quality.

In the integrated approach any multi-threaded application can be easily distributed,
and thus parallelized. This merely involves distributing the threads/processes among
a group of sites. Care must, of course, be taken so that work is divided in such a way
as to minimize the synchronization and communication between sites. With complete
network transparency the task then becomes a matter of tuning the parallelized appli-
cation for performance. In many cases, this tuning is relatively straightforward, with
threads that interact frequently preferentially placed on the same site, and with the ap-
propriate choice of protocol. Note that here we are considering parallelizing an already
concurrent application, not making a sequential program concurrent (or a concurrent
program more concurrent) in order to then parallelize the program - this would call for
changing the application logic.

The work we have done is geared to systems for open distributed computing on
all kinds of networks, and in particular for the Internet. Classical work in distribut-
ed computing has mainly been concerned with programming systems or middleware
on closed LAN-based systems, often with hardware or infrastructure support that is
not available on WAN. Many of the issues in Internet distributed computing do not
arise. The range of applications of interest was limited, e.g. database applications and
high-performance scientific computing. Typically, after deployment there would be no
further need for code sharing. The application ran exclusively within one administra-
tive domain, and there were no new security considerations.

Nevertheless, the issues that were faced in this classical work, we also face in open
distributed computing. The problems that they addressed are a subset of those that

16.3. IS IT POSSIBLE? 303

we faced, though in many cases the classical solutions, relying on either invariants or
infrastructure that we do not have, are not directly applicable.

In this community, the desirability of network transparency, and other related trans-
parencies (distribution transparency, location transparency, etc) has long been acknowl-
edged. Another term that is frequently used is single-system image.

When we look at existing systems, concentrating on fundamentals, we will, for the
most part, ignore some minor limitations of current implementations that could easily
be improved. As an example in Distributed Erlang there is a fixed upper limit of 256
processes per application. Obviously, for some applications this is not enough. An
example is a collaborative application involving many users where at least one process
per user is needed.

16.3 Is it possible?

Mozart does demonstrate that the integrated approach can be made to work for all
three sharing models. For two of the sharing models it could be argued that this was
demonstrated long before Mozart was developed.

The integrated object-oriented approach was first demonstrated in the Emerald pro-
gramming system ([72, 71]) as long ago as the 1980’s. Emerald demonstrated com-
plete transparency, unlike the more recent Java-based object-oriented distributed pro-
gramming systems. That an integrated message-oriented approach is possible is, of
course, no surprise, as message-oriented concurrency is straightforward mapped to a
message-passing architecture. The possibility was also demonstrated in Distributed
Erlang [138].

Mozart was the first system to demonstrate the possibility of a integrated distributed
programming system with data-flow. This was realized by the variable protocol as
described in paper 3 (chapter 8)

16.4 Is it practical - dealing with code

Neither Emerald nor Distributed Erlang is really suitable for open distributed comput-
ing as they have no or little provision for sharing code. Code is implicitly shared via a
common namespace. Code can be shared when threads/processes are spawned on the
same machine or alternatively on different machines but within a shared file system.
Either there is no mechanism for connecting sites or alternatively there is no support
for sharing code when sites connect. Where a connection mechanism exists the sys-
tems lack transparency; where one does not exist (or if we discount it) the systems lack
vital functionality.

Unlike Emerald and Distributed Erlang some modern Java-based systems (RMI,
Voyager etc.) are targeting the Internet and do need to make provisions for the sharing
of code. The basic model for dealing with code is still centralized. Code is implicitly
shared in that threads share a common name space, and code is then referenced by
name. On top of this basic model an ad-hoc mechanism ensures that code is marshaled

304 CHAPTER 16. EVALUATION OF THE INTEGRATED APPROACH

and shipped between sites upon need. For instance, in RMI [90] if the receiver discov-
ers that it does not have code corresponding to a given name it asks the sender for a
copy.

In contrast, Mozart has first-class code constructions, i.e. classes or functions.
These classes and functions can then be used as parameters in method calls, alterna-
tively put in messages, which the recipients can then use transparently. The beauty of
higher order programming languages in a distributed setting is that model for sharing
code is the same as that for sharing other values, and with network transparency that
the sharing of code between threads is modeled the same way irrespective of whether
threads are on the same site or on different sites.

In concurrent programming languages/systems without higher order code is im-
plicitly shared; threads share a common name space. There both advantages and dis-
advantages with this scheme even in a centralized system. We will argue that the
disadvantages will be more heavily felt in open distributed computing.

The disadvantage with the name scheme is the potential of name clashes; what
is needed is some means to ensure that all names are unique. This may occur even
in centralized programming in programming in the large in projects where there are
many programmers that might choose the same name for different functionality. The
problem is ameliorated through the use of a hierarchical name space. Sometimes the
depth of the hierarchy is limited, sometimes not. Concepts such as packages, modules,
etc. are examples of the terms used in characterizing the name space.

In Mozart, classes, functions and procedures have token or pointer equality. Two
classes, functions or procedures are only equal if they refer to the same piece of code
that was originally generated by some compiler and thereafter replicated. This is sup-
ported in the implementation, and name clashes cannot occur.

The other side of the coin is that it is sometimes desirable to give the same name
to different pieces of code (different in the sense of having different origin). This is
the case with code revision and is an essential ingredient in the concepts of component
programming allowing one component to be updated independently of the other. With
names this is easy to achieve.

In Mozart there is a distinction between code that is to be used in a component
fashion and code that is not. Mozart has the notion of functors, which are referenced
and linked by name. In the distributed case when code is sent from one machine
to another there is a difference between sending a function or class versus sending a
functor. In both cases the receiver may already have all or some of the needed code,
but there is a difference. In the first case if the receiver already has the function or
class it is guaranteed to be identical, while in the second case the receiver will link
in a, hopefully, functionally equivalent (or at least conservatively extended) functor or
component. In the second case, there is, of course, no guarantee that the result will
work as expected.

In our view, in open distributed computing, the amount of interaction between
programs that have been independently developed increases, and thus the problem of
name collision is more acute. The ability to create and share code that is guaranteed to
be unique is, we believe, very useful.

16.5. IS IT PRACTICAL - AWARENESS 305

As a final remark, we believe that there are a number of outstanding issues in
distributed computing with components; issues that we have not addressed in Mozart.
The classical versioning problem is augmented by the question of locality. Given that
a piece of code is referenced by name where should the receiver fetch code referenced
by name that he/she does not have? Fetching from the sender is not necessarily the
most optimal in a heterogeneous network. Also fetching from the sender presupposes
that the sender has the relevant code. If the sender is merely delegating this burdens
the sender, as the sender must either store code he/she has no need for, or at the very
least store information as to where the code may be fetched.

16.5 Is it practical - awareness

The simpler the protocols that provide for network transparency, the less problematic
awareness is. Message-oriented systems have only one protocol, the trivial one, send-
ing a message between processes is done asynchronously and takes either zero or one
hop to arrive depending on whether the process is remote or local.

Even in more sophisticated systems, with more complex protocols, many systems
exhibit good network awareness.

RMI [90] is realized by a very simple protocol as well and offers good network
awareness. Objects are located at the site they were created on. Invocations take zero
or two hops depending on if the invoking thread is on the same site or not. The mobile
object protocol of Mozart (described in paper 3 in chapter 8) is more complicated than
RMI, but also provides fairly good awareness. In general, invoking a mobile object
takes 2 or 3 hops depending on where the manager is located. The operation can be
performed locally (0 hops) if the object has been cached on the site. This is the case
when the object has been invoked previously and no other site has invoked the object
in between.

In Emerald objects are also stationary by default, though they may be explicitly
moved. The two-hops property in Emerald is only guaranteed if the object is nev-
er moved. If the object is moved the invocation may take an arbitrary number of
hops as the message representing the invocation moves along the path of forwarding
references. This demonstrates poor network awareness as well as increased failure
vulnerability.

16.6 Is it practical - dealing with shared state

16.6.1 Introduction

In this section we consider shared state or shared objects. More precisely, we consider
shared state where the consistency model is sequential consistency. Sequential consis-
tency is the default consistency model of concurrent programming systems, and at the
same time the strongest consistency model that is possible to implement in most dis-
tributed systems (i.e. one that does not require absolute global time) [122]. Sequential

306 CHAPTER 16. EVALUATION OF THE INTEGRATED APPROACH

consistency also corresponds to our intuition of concurrency in the real world - there is
some order in which changes (i.e. updates) occur on an object and successive accesses
by an individual (agent or thread) will respect that order.

16.6.2 RMI and Mozart

In Java with RMI and in Object Voyager objects are always stationary [90, 120, 3].
An object is created on a given site, the home site, and is never moved from that site.
There may be an arbitrary number of references to the object from other sites, so-called
remote references. If a thread invokes a method in a remote object the thread is sus-
pended and a message is sent to the home site of the object. The message contains
the name of the method as well as the marshaled arguments. Upon receipt of the mes-
sage and unmarshaling of the arguments an auxiliary thread on the home site invokes
the method on the object. Upon termination of the method call the return argument is
marshaled and sent back to the original invoking site. At the original invoking site the
message is unmarshaled and the return value is passed to the original invoking thread
that is now woken. An important property of the stationary object protocol is that it
generally takes two hops for each method invocation (except in the special case of
method invocation at the home site).

In Mozart the stationary object abstraction as described in papers 1 and 3 (chapters
6 and 8) works in much the same way (considering only distribution and ignoring
differences in the amount of local computation). In Emerald objects are also stationary
by default, though they may be explicitly moved. The two-hops property in Emerald
is only guaranteed if the object is never moved. If the object is moved the invocation
may take an arbitrary number of hops as the message representing the invocation moves
along the path of forwarding references.

The mobile state protocol of Mozart is described in paper 2 (chapter 7). Objects
are seen to be composed of two parts, a stateless and a stateful part. The class and
methods (the code) are in the stateless part. The described protocol deals with the
stateful part, which can be moved from site to site, but exists in only one copy. When
the object is invoked it may be that the state is already present on that site, in which
case the operation is performed locally. Alternatively, the thread suspends and the
protocol ensures that the state will eventually arrive in marshaled form in a message.
Upon arrival, the state is unmarshaled and the thread woken and local execution of the
method commences. An important property of the protocol is that in the worst case it
takes three hops for the state to arrive. In the best case the state is already available
locally, due to a previous invocation, and it takes zero hops.

16.6.3 Use Case Analysis

We now analyze the performance of various shared object/state implementations. We
look at the network aspects, and ignore centralized computation aspects.

We make a number of simplifying assumptions. First we assume that the network
is symmetric, or rather that it is not asymmetric in a predictable way. We assume

16.6. IS IT PRACTICAL - DEALING WITH SHARED STATE 307

that latencies are either roughly the same between all sites, or at least varying in some
unpredictable manner 1. We also assume that the object state is generally used in its
entirety, or more precisely that we cannot easily partition the state and the invocations
such that invocations of different types consistently operate on only part of the state.

We may analyze method invocation patterns from the following viewpoints

• Site invocation pattern: random vs. repetitive

• Update frequency: read-intensive vs. write-intensive

• Number. of active references: many or few

• Numeber of passive references: many or few

• State size: large vs. small

A random site invocation pattern is one where object invocations take place ran-
domly within the sharing group. The contrast is the repetitive pattern where typically
one site/thread repeatedly invokes the object before some other site/thread does so. We
can distinguish between the read-intensive invocation pattern, where a great majority
of object invocations do not change the state of the object, i.e. merely read the state,
from a write-intensive one, where updates are fairly frequent. We can also distinguish
between shared objects that have many active references, i.e. sites that are actively
using the object regularly from those that have many passive references. We may also
distinguish between objects whose state size is large versus those whose state size is
small. The size measure, here, is the size of the marshaled representation of the state.
We assume that the programmer has a model that allows him to roughly estimate this
from the nature and type of data structure represented by the object.

Our first observation is that if the state is large enough then it is disadvantageous
to move it all, i.e. a stationary object offers the best performance. In the following
section we focus on objects where the state is of reasonable size.

16.6.4 Consistency Protocols

Classical results from distributed computing apply here. For instance, one can con-
sider cache coherency protocols. Although the actual protocols for open WAN-based
distributed computing will differ due to different assumptions it is doubtful if new
fundamental strategies will be found.

The three strategies are:

1. Stationary: the state can be kept in one locality and all operations on it are done
at this location

2. Mobile (or migratory, cached): - the state is moved to the place where the oper-
ation is performed. The state can be seen as a token - there is only one copy of
the state at any one time (globally).

1If hops have different but predictable weights this might be leveraged by the protocol.

308 CHAPTER 16. EVALUATION OF THE INTEGRATED APPROACH

3. Invalidation-based (or replicated): the state can be replicated freely. Whenever
there is more than one copy in the system the copies are read-only. A write
operation on the state requires that all copies but one are invalidated.

The third strategy has sub-varieties. One particular dimension that can be impor-
tant on networks with high latency is if after invalidation and update the new value is
propagated eagerly (at once) or lazily (when needed).

If the object invocation pattern is both random and write-intensive then with the
stationary object approach there is no performance gap (i.e. this is optimal) . The other
properties of the invocation pattern are of no interest here. If the object invocation
pattern is random and read-intensive it is better to replicate the state and use an invali-
dation protocol to maintain consistency. If the number of passive sites is low it would
be advantageous to replicate the object state eagerly. If the number of passive sites is
high then lazy replication is better.

Let us consider an example. Assume that the frequency of reads to writes is 100:1,
we have 10 sites, and a lazy replication protocol is used. Each site will then cyclically
access the state 100 times and then update it. During each cycle the state is updated
by other sites 9 times. Each access after an update (invalidation) takes 3 hops (to get a
copy of the state from the site with the one and only copy). This makes for 3 x 9 hops
for access operations. In addition, the invalidation operation during the one update
takes 4 hops or less. This is on the order of 30 hops for the entire cycle or 0.3 hops per
operation. Compare this to using stationary objects, where 2 hops per operation are
needed. Using the mobile state protocol of Mozart would be even worse with up to 3
hops per operation.

If the object invocation pattern is repetitive the situation is quite different. Let us
attempt to characterize this invocation pattern. We assume that each site repeatedly
does the following: first i invocations within the time interval t, and then does no
invocation for time 1− t. The involved sites are not otherwise synchronized. If we
consider one site the probability that during its invocation interval t that no other site
interferes by also requesting the state is approximately (1− t)N . The average number
of hops per invocation is therefore ((1− t)N ∗3)/i+3/i. When t is small in relation to
N, the second term dominates and the average number of hops is close to 3/i.

A summary is given in the table below (where ? indicates any value).
Invocation R/W Intensity No. Passive No. Active State Size Best Protocol

? Read Many ? Normal Lazy Invalid
? Read Few ? Normal Eager Invalid

Random Write ? ? Normal Stationary
Repetitive Write ? ? Normal Mobile

? ? ? ? Very Large Stationary

16.6.5 Conclusion

It is our belief that a system that offers distributed objects must from the control point
of view offer all of the above versions of distributed objects (stationary, mobile, and

16.7. PARTIALLY TRANSPARENT SYSTEMS 309

lazy and eager invalidation-based). For any system that does not offer them all there
is a performance gap on the level of algorithmic complexity (number of hops). Most
distributed programming systems offer only one, Mozart offers two, which is better,
but still not good enough. See also future work (chapter 17).

Programming systems with poor control can often be circumvented by moving to
a lower level. For instance, consider an application where object invocations are repet-
itive, programmed using a system with only stationary objects. In particular, consider
a Java RMI system. Assume also that the group of sites that share the target object is
known statically, as otherwise it is difficult without configuring the class loader. In-
stead of making the target object remote we could instead keep the target object local
(making use of copying semantics). We make use of proxy objects that may or may
not hold the correct copy of the target object, and one manager object. Both the man-
ager and proxy objects are made remote. All proxies know their manager. At startup
one proxy object has the true and local target object, and the manager knows which
proxy this is. Invocation of the proxy that is holding the target object is immediately
delegated to the target object. Invocation of other proxies will lead to invoking the
manager, which in turn will invoke the proxy holding the target. A copy of the target
will eventually arrive back to the calling proxy, changing the state of the proxy, and
delegating to the newly unmarshaled target object. Note that given our assumptions
this is a perfectly reasonable thing to do. But the solution is a just a poor man’s version
of our mobile object protocol. It is both less general and less efficient (e.g. fetching
the state will take four hops (rather than three).

We should note that in the Mozart system of 2000, stationary objects were an ab-
straction built on top of objects and ports and was not primitive in the system. The
drawback of this is that such stationary objects are inefficient when used locally. This
makes Mozart deficient in the control aspect.

As a final remark, there may useful relaxed consistency models for state that we
have not considered here. Sequential consistency may not be the only state semantics
that deserves to be integrated into a distributed programming language/system. The
motivation would be to be leverage the relaxed consistency and use a lighter consisten-
cy protocol. We did not investigate this.

16.7 Partially transparent systems

16.7.1 Introduction

Mozart does demonstrate complete network transparency for all three sharing paradigms.
Already in the 1980’s Emerald [72, 71] demonstrated network transparency for object-
oriented sharing and in the early 1990’s Distributed Erlang [138] for message-oriented
sharing. Despite this most modern distributed object-oriented programming systems
are only partially network transparent.

RMI, in Java or Object Voyager [90, 3] is only partially network transparent. The
invocation on the remote object may be made in the same way as invocations on local

310 CHAPTER 16. EVALUATION OF THE INTEGRATED APPROACH

objects, i.e. is transparent. Also as long as the parameters and return values are prim-
itive types, references to other remote objects, or local stateless objects transparency
is ensured. Transparency tends to break down when the parameters are stateful local
objects. The local object will be marshaled and a copy created at the caller site. There
are now two copies of the conceptually same object where both, in general, may be
updated, giving at some later time two inconsistent views of the state of the object.
Transparency can therefore only be obtained by very good programmer discipline, e.g.
by ensuring that the only objects that will be used as parameters to remote method
invocation are objects whose instance variables are all final.

Actually there are other non-transparent aspects to RMI. One important factor is
that locks are not reentrant over remote method invocations (but are so over local
method invocation), so it is quite possible that the distributed program deadlocks while
the corresponding centralized one would not. Note that subsequent to the work pre-
sented in this thesis some interesing java-based systems have been developed that are
considerably more transparent [10].

The non-transparency of other object-oriented systems is also discussed in paper 3
(chapter 8).

Given that the older Emerald system is network transparent one can ask why more
modern and popular systems are not. To answer this we must consider the distinction
between stateful and stateless data structures.

16.7.2 Stateful versus stateless

In Mozart there is a clear distinction between stateful and stateless language entities.
Object attributes and cells are stateful. Logic variables or single-assignment variables
are stateful but they can only change their state once. All other entities are stateless. In
particular, records and tuples are stateless complex data structures.

This distinction is the key to efficiency in a distributed setting. Whenever stateless
data structures are shared between sites they are safely replicated or copied. There is
no need for any kind of a consistency protocol (more or less, see also section 16.8.4).

In object-oriented programming languages objects are generally used for structur-
ing both stateful and stateless data. The distinction between the two very different
types of data is either not expressible or alternatively not generally maintained. In Java
an object where all instance variables are final is stateless after creation. Program-
mers may easily leave out the final declaration, indeed, in a centralized setting the only
purpose of final declaration is defensive programming - to trap erroneous attempts to
update the state. Furthermore, there is no way to express that an object becomes state-
less after initialization. The practical consequence of this is that Java programs abound
with stateless data structures masquerading as stateful ones.

16.7.3 Java paradox

If Java-based systems were to implement complete transparency then all objects, ex-
cept for those where all instance variables are final, would upon sharing be made into

16.7. PARTIALLY TRANSPARENT SYSTEMS 311

shared objects (e.g. remote). All accesses except at the original site would require
two network hops. Clearly this is unacceptable if the object is stateless and only mas-
querading as a stateful object.

Practical use of Java-RMI is based on the programming discipline that stateful ob-
jects that will be shared should be declared (i.e. compiled) as remote objects, and those
that are stateless when shared should not be declared as remote. The latter masquerad-
ing objects will when shared (e.g. used as a parameter in a remote method invocation)
be copied, which, of course, is exactly the right thing to do. This is very risky and
defensive programming would not be possible. Slightly better would have been to in-
troduce a new operation into the language, that fixates an object - i.e. makes the object
stateless. A fixated object can be freely replicated between sites, but, unlike the case
with an ordinary local object, attempts to update such a fixated object would result in
a runtime error. Non-fixated objects would be automatically made into remote objects
when and if shared. Such a system would then be transparent, or at any rate much more
so, if lack of reentrant locking is taken into account.

16.7.4 Distributed Erlang

Distributed Erlang, like Mozart, carefully distinguishes between stateful and stateless
data structures and is transparent. However in Erlang the kinds of language entities
that may be shared are extremely limited. Shared entities come in two basic types,
tuples which are stateless data structures and process identifiers which are stateful.

16.7.5 Conclusion

We conclude that the distinction between stateful and stateless language entities is
crucial in distributed programming languages. Probably, it is also important that the
programming model is such that the programmer is encouraged to use stateless entities
whenever possible. The system should provide the right default. By this argument it
would be better in a Java-like language where objects alone are the structuring mech-
anism to invert the default - programmers would have to declare instance variables as
non-final. Lack of programming discipline would then result in stateful objects mas-
querading as stateless, rather than the other way around. But this masquerade will be
discovered early in program testing when updates are attempted.

By the same logic, the system should provide abstractions to make stateless data
structures out of stateful ones. There are applications where a data structure is state-
ful in one phase of a program only to become stateless in a later phase. In Mozart
there are some useful abstractions associated with the built-in data types, arrays and
dictionaries (a dictionary is a dynamic key-value store). These are stateful data struc-
tures. The stateless versions are tuples (indexed by number) and records (indexed by
name or atom). The system provides abstractions to convert between the two types (or
more precisely, to construct the corresponding type with the same contents). Thus, the
programmer can capture the property that an entity during its lifetime changes from
stateful to stateless.

312 CHAPTER 16. EVALUATION OF THE INTEGRATED APPROACH

16.8 Stateless Data Structures

16.8.1 Introduction

In the previous section we saw the importance of the distinction between stateless and
stateful language entities. Stateless language entities are just so much easier to dis-
tribute. No heavyweight consistency protocols are necessary, structures can be freely
replicated between machines. Even this is not trivial as it involves marshaling at the
exporting site and unmarshaling at the importing site. Also the story does not end
there, as even with stateless language entities there are additional issues to consider.

In Mozart there are also different types of stateless language entities. In the con-
current language base there are two types, while in (distributed) Mozart there are three
distinct types in the distribution support subsystem.

In the language there is a clear distinction between language entities that have token
(or pointer) equality and those that have structural equality. Classes, procedures, func-
tions and objects (which internally may contain stateful instance variables or attributes)
all have token equality. Integers, records, and tuples all have structural equality. The
equality type determines the result of equality tests. Token equality means that entities
are only equal if they reference the same copy (i.e. derived from the same source).

For many types of language entities only one type of equality makes sense. Only
structural equality makes sense for integers. Integers that have been generated at differ-
ent program points are equal if they take the same value. All non-stateless entities are
only ever given token equality. For all but the simplest data structures token equality
is the easiest to implement (in a centralized system). Records and tuples are com-
plex data structures with structural equality, and this forms the basis of many useful
programming techniques.

Programming languages must define equality for all entities that can be subject to
equality tests. In a language like Oz/Mozart, where all entities are first class values,
this must be done for all language entities. Interestingly enough, in Oz/Mozart, there
is also a built-in data type (chunks) that can be seen as a token equality version of a
record.

16.8.2 Implementation of Token Equality

In transparent distributed programming systems care must be taken to preserve equal-
ity semantics. In a distributed programming system it is token equality (for stateless
data structures) and not structural equality that is the most demanding of the imple-
mentation. Firstly, equality must be recognized even when the same data structure
is imported at different times and possibly from different sources. Secondly, there
are many implementation advantages of making the internal representation of local
stateless entities and imported (and hence globalized) stateless entities as similar as
possible. For language entities with structural equality the second consideration does
not arise. The entity is constructed upon unmarshaling exactly the same way it would
have been had it been created locally.

16.8. STATELESS DATA STRUCTURES 313

In Mozart stateless entities that have token equality semantics are given globally
unique names. A table, called the gname-table, keeps track of all such entities that the
process or machine knows. The table is only needed and used upon import and export.
Garbage collection was augmented to clean-up the table on loss of local reference.

Note, that in Distributed Erlang that the issue does not arise. The only kinds of
entities in messages are stateless data structures with structural equality semantics and
stateful process identifiers.

16.8.3 Distribution Consequences

An interesting consequence of the Mozart implementation is that, for stateless enti-
ties with token equality, Mozart maintains the at-most-one-copy property. Each pro-
cess/site holds at most one copy (but arbitrarily many references) of the data structure.

This is not the case with structurally equivalent data structures. More precisely this
is not the case in the Mozart implementation nor in the Erlang implementation (nor, for
that matter, in Java if we consider stateless objects). Consider two threads/processes on
different machines that continuously pass back and forth a large tuple or record (say,
in a message). This will give good exercise to the marshaler, unmarshaler, and garbage
collector. In the case of Mozart it is quite different if the threads are on the same
machine as only a pointer will be passed between the threads. In the case of Erlang
where all structures are copied between processes there is little difference between the
sharing within and between sites (of course, sending messages within one OS-process
is faster and simpler than between different OS-processes).

The Mozart implementation (and others) could have been built to preserve the at-
most-one-copy property by a mechanism similar to that described for structures with
token equality. This would guarantee that there would be at most one copy per ma-
chine/process of all data structures with the same source. But is this desirable?

There is clearly a trade-off here as management of the gname table (see previous
subsection) does cost and costs even when no repeated import actually take place.
Maintaining the at-most-one-copy property is only important when both (1) the data
structure is large and (2) repeated imports is likely. For large structures the extra table
overhead is small compared to the marshaling/unmarshaling overhead.

Interestingly, in Mozart there is a strong tendency for stateless data structures with
token equality to be large and for those with structural equality to be small. Classes,
procedures, and functors (components) with token equality tend to be large. Integers
and atoms are small. Records and tuples (with structural equality semantics) tend to
be small. We see that Mozart has the right default. But there are many exceptions.
For instance, in Mozart there is a programming technique which is fairly common that
involves creating anonymous procedures and sending them to other sites. Not only are
such procedures typically small but they are guaranteed never to be used in equality
tests on the sending site. (Despite this they are handled in the same way as ordinary
procedures and are recorded in the gname table).

From the control point-of-view the right default is not enough. The semantic prop-
erties of token and/or structural equality is one thing while distribution behavior is

314 CHAPTER 16. EVALUATION OF THE INTEGRATED APPROACH

something else. It would be desirable to be able to annotate large records/tuples to
ensure the at-most-one-copy property independently of equality semantics. We might
also consider augmenting the language to support procedures/classes with structural
equality and record/tuples with token equality. (The built-in data type chunk in Mozart
has a slightly different interface compared to records - and thus is not quite a record
with token equality).

16.8.4 Lazy, eager and immediate

The distribution strategy for dealing with stateless data structures is replication. Fur-
thermore, after successful marshaling and unmarshaling of such a data structure the
dependency between sites is broken (i.e. the sender can crash without affecting the
receiver).

Nevertheless there are many varieties of this strategy. The first distinction is be-
tween eager and lazy replication. Eager replication triggers replication (which involves
marshaling at the sending site, sending and finally unmarshaling at the receiving site)
as soon as the entity becomes shared. Lazy replication sends only a reference when the
entity is shared: replication is only done when and if the receiver attempts to access
the entity.

The advantages with the eager approach are straightforward. The data is brought
over as quickly as possible to reduce latency and the dependency between the sites is
broken as quickly as possible so that the application is less likely to be perturbed by
partial failure.

The advantages with the lazy approach are less straightforward. There are two ad-
vantages. The first, which is probably less important, is that the lazy approach means
that sometimes the whole replication process (marshaling, sending and unmarshaling)
is completely avoided. This occurs when the entity is never actually accessed at the
receiver site. This does not only happen in exceptional circumstances, large data struc-
tures may be shared between sites where some sites access only smaller portions of the
structure.

The second advantage to the lazy approach is that this may allow us to avoid run-
ning out of memory.We exemplify the second advantage with an example from Mozart
which at the same time motivates the chosen default in Mozart. Object in Mozart are
complex objects. Only the instance variables (attributes) are stateful. The remaining
part of the object is stateless (possibly also including some single-assignment features).
In a large distributed simulation application numerous objects are partitioned between
sites. After initialization each object is connected (via instantiated features) to a small
subset of other objects. The objects form a simulation network and during the course
of the running application objects interact with their neighbors (via, for instance, the
stateful attributes). In an eager strategy each site would have copies of all objects,
as transitively all objects are reachable by following neighbor references. We would
quickly run out of memory. (In this case the marshaling/unmarshaling overhead is
less significant as the object network once initialized lives for a long time). In Mozart
shared objects (the stateless parts) are lazily replicated (and are characterized by the

16.8. STATELESS DATA STRUCTURES 315

at-most-one-copy).

For named entities there is a further consideration. By named entities we mean en-
tities that the implementation enforces the at-most-one-copy property upon. In Mozart
only the stateless entities with token equality are currently named, but as discussed in
the preceding section, other entities might benefit from naming in this implementation
sense as well. The immediate strategy is to send both the name and the contents upon
sharing. In this case the importing site upon discovering that it already has a copy of
the entity links in its copy and discards the received marshaled representation of the
contents. Another strategy, which we call the eager strategy sends the name only. Up-
on receipt of the name the receiving site will either link in its own copy or immediately
request the contents from the sender.

The immediate strategy is the most eager strategy of all and has all the advantages
associated with maximal eagerness. The eager (but not immediate) strategy can re-
duce bandwidth consumption considerably at the price of increased latency and some
transient dependencies between sites. Once again, Mozart has chosen suitable defaults
for the various kinds of language entities, but the strategy is determined exclusively
by entity type. We believe that all the three strategies are motivated in a distributed
programming system. Mozart shows the way but is currently deficient in control. The
ideal would be to disassociate the distribution strategy from the semantic (language)
properties. Stateless entities with token equality, like procedures, classes and func-
tions, could be annotated with an for the application appropriate distribution strategy.

16.8.5 Ad-hoc Optimizations

We should also make clear that the strategies for dealing with stateless entities, as
described, are fundamentally different in distribution behavior. For instance, laziness
affects the partial failure properties. There are also a number of ad-hoc optimizations
that distributed programming systems can make use of to lessen bandwidth consump-
tion without changing the distribution behavior.

In Mozart the marshaler ensures the at-most-one-copy of a data structure in any
one protocol message. Atoms in Mozart and Erlang are built-in data types much like
a string in Java except that the implementation ensures ensures the at-most-one-copy
within an OS-process. Each OS-process maintains an atom table to ensure this. Atoms
were developed for sequential programming and have many advantages over strings,
for example, they can be compared in constant time. However, when shared between
sites, the full string representation of the atom must be sent (each OS-process has its
own atom table totally unsynchronized with others). In Distributed Erlang there is, for
this very reason, associated with sender/receiver process pair a cache of recently used
atoms, in order to be able to use shorthand representations in the marshaled format (in
subsequent messages).

316 CHAPTER 16. EVALUATION OF THE INTEGRATED APPROACH

16.9 Data-flow

16.9.1 Protocol properties

Data-flow or single assignment variables can from the distribution point-of-view be
seen as constrained state. The state is constrained in how it can be updated or changed.
The implementation of the associated protocol leverages these constraints to make for
a lightweight consistency protocol. True state can be updated many times and this
requires a (relatively) heavyweight consistency protocol. This is not the case with
single assignment variables. The protocol described in paper 3 (chapter 8) can be
compared to the closest related true-state consistency protocol - invalidation with eager
replication. Compared to true invalidation protocols the variable protocol leverages the
single-assignment constraint and optimizes the eager invalidation protocol as follows:

• No invalidation messages need be sent

• The distribution infrastructure (proxy/skeleton network) can be dismantled au-
tomatically and safely after the one and only one eager propagation of the value.

The first point is due to the fact that all readers automatically synchronize (wait)
when the variable is still unbound, and the variable is never invalidated. The second
point reflects the fact that the distribution infrastructure (i.e. the network of skeletons
and proxies) is only needed once.

16.9.2 Constrained State

There are many conceptual advantages of data-flow in concurrent and distributed pro-
gramming. They are fully described in [129] under the concept of declarative con-
currency. Distribution introduces another advantage. The general formulation of the
rule is constrained state should be visible in the programming model. This is in or-
der to take advantage of the constraints in the consistency protocols. (It is not a bad
idea to make them visible from the point of view of program readability and defensive
programming as well).

Single-assignment is one such type of constrained state. There are clearly others
(aside from the already described stateless ones which can be seen as the most con-
strained of them all). On the language level we can think of incremental sets and bags
(familiar from Prolog). The state is constrained such that the only updates that are
allowed are those that add elements to the set/bag. There are clearly many applications
that could benefit from support for distributed sets/bags. We will not go further into
these possibilities here: this is beyond what we did with Mozart.

However, as we firmly believe that we have contributed to the methodology for
building distributed programming languages/systems, we now consider how we want
to think about sets in a distributed programming context.

First, we would give them a precise semantics and evaluate their usefulness. (The
mathematical concept of sets says nothing about the order in which two independent

16.10. ASYNCHRONOUS VERSUS SYNCHRONOUS 317

observers see elements being added). The next stage, if there is one, is to determine if
we need to augment the kernel or base language. At this stage we are concerned with
semantics only. For sets and bags , we probably will not need to, we can program a set
abstraction and put it into a library. There may, of course, be several alternatives here.
Next, this abstraction must be analyzed from the awareness and control aspects. Even
though the abstraction need not be primitive in the language it may need to be in the
implementation for control reasons. An important part of this analysis is to examine the
distribution behavior. It may be that all conceivable library abstractions involve more
networks hops, greater latency, or appreciably higher bandwidth use than we know to
be necessary. If so, the set/bag entity types should probably be primitive in the imple-
mentation. Note that this is exactly what was done with object in Mozart. Objects are
primitive in the implementation but their semantics is given by an abstraction making
use of cells higher-order procedures.

16.10 Asynchronous versus synchronous

16.10.1 Objects versus message-sending

In message-sending sharing processes/threads interact by sending messages to one an-
other. This is asynchronous and the sending process/thread immediately proceeds with
the next instruction. In object-oriented sharing processes/threads interact by method
invocations on shared objects. This is defined to be synchronous and the process/thread
must wait until the call returns. Sometimes the method will return a value that the in-
voking thread needs. But processes/thread must wait even when the method does not
return any value (e.g. returns void).

We begin by comparing these two programming constructs, message-sending in
general versus object invocations without return values. The objects are stationary
objects (i.e. the only type supported in most Java-based systems). The main differences
are:

• Exception propagation

• Invocation completion guarantee

• More precise failure detection

• Less delay

In remote method invocation exceptions encountered during method execution will
be propagated to the calling thread (unless caught). This is not the case with message-
sending. In this paradigm the calling thread continues execution and receives no in-
formation as to any problems at the receiving end. Of course, later on the sender may
deduce receiver problems by lack of expected response, or by the receipt of error-
reporting messages. In any case, awareness of the problem is delayed and the sending
thread which has continued execution may very well have done unnecessary work.

318 CHAPTER 16. EVALUATION OF THE INTEGRATED APPROACH

When the remote method invocation returns the invoking thread is assured that the
invocation has successfully completed. This guarantee almost, but not quite, captures
the intuition that the receiver has completed all induced activity. It does capture this on
the level of the object method call but not necessarily on the level of the programmer’s
model. For example, if during the invocation new threads were created to handle some
of the work then these may still be running when the method call completes.

Messages may be sent to failed machines (or machines that fail before they can
process the message). Either way the system provides no information as to failure,
or very imprecise information. In general, the sender does not know if the receiver
actually ever received the sent message.

Finally, the advantage of message-sending is that a sending thread need not wait.
Here we see the trade-off. The trade-off may be summarized as latency (delay) toler-
ance versus loss of precision about exceptional circumstances.

From the control perspective the system should provide both. The stationary ob-
ject RMI-paradigm is easily programmed in message-oriented systems. In Erlang the
instruction following the send will be a receive statement waiting for the appropriate
response. The converse, however, is in practice, more costly to achieve, at least without
lightweight threads. The method call can be done in its own especially created thread.
In distributed programming systems like Mozart that offer both sharing models both
constructs are commonly used.

The above argumentation can be generalized to reason about method invocations
that do return values but those values are not immediately needed. Note, that if the
value are needed immediately then message-sending systems would need to proceed
to a receive statement directly after sending the message, and would thus emulate syn-
chronous method invocation.

16.10.2 Object Voyager

Object Voyager [3] is an interesting system in that it is a Java-system that has rectified
a number of control deficiencies in classic Java RMI.

Firstly Voyager supports asynchronous method invocation, which can be seen as
more of message-sending construct than an object-oriented one.

Object Voyager also supports futures, in order to handle object invocation return
values in asynchronous method invocations. Futures are data structures that are passed
to asynchronous method invocation call to hold the return values (and/or exceptions)
when they become available. Threads access these futures by a another new special
construct and can be made to suspend until the return value eventually becomes known.
This is, of course, explicit data-flow.

In a limited sense, Object Voyager is just as much of a multi-paradigm program-
ming system as Mozart (although the group behind Voyager would never present it
in this way). Completely new types of entities and operations are introduced into the
language. Voyager programs may look like Java ones but can easily have completely
different behavior. Presumably Voyager programs only very occasionally make use of
the new possibilities.

16.11. PARTIAL FAILURE 319

The Voyager support for all three sharing paradigms for distribution is not only
ad-hoc but also limited. Data-flow is explicit only, the message-sending constructs are
limited to one-to-one and many-to-one communication, and the only kind of distributed
objects supported are stationary objects.

16.11 Partial Failure

16.11.1 Introduction

To evaluate integrated programming systems with regards to partial failure can only be
done in comparison with the assembler of distributed programming: local computation
and message sending. The most important question that must be answered is if inte-
gration hinders dealing with partial failure as compared to working at the lower level.
If integration makes dealing with partial failure more difficult, then integration implies
a con which needs to be weighed against all the pros that we have seen so far.

Of course, it would be even better if integration is actually beneficial with respect
to partial failure - if high-level integration makes dealing with partial failure easier
than at the lower level. If so, we would have an additional pro to add to the list of
advantages to the integrated distributed programming system approach.

What does dealing with partial failure entail? First failure must be detected. Upon
detection the process may initiate a cleaning up process - stopping activity that no
longer serves any useful purpose (e.g. calculating the answer to a query posed by
a failed process). Finally, and optionally, the process may initiate an error-recovery
process to achieve fault-tolerance (e.g. having sent a query to failed server process
attempt to send the same query to an alternative server).

16.11.2 Failure Detection

Without losing the essential qualities of failure at a low level we can make use of the
concept of a failure detector. Processes can send messages to other processes that it
knows about and by the action of failure detectors will be informed when these pro-
cesses it knows about fail. Failure detectors in most distributed programming systems
(and Mozart) are of the simplest kind - basing its decision exclusively on information
gleaned from monitoring the communication channel. More sophisticated failure de-
tectors are possible but we won’t consider this further. Failure detection is often built
into the messaging service (e.g. TCP/IP).

There are two kinds of failure conditions that a failure detector can report. The first,
is process failure. This condition indicates that it is known for sure that the process
has crashed. The second, is network failure, indicating that communication with the
process is currently disrupted. The first condition is called perm-fail in the Mozart
system, and the second temp-fail. Note that the second failure condition, unlike the
first, in general, may, but need not, be a temporary phenomenon. When a process,
from the point-of-view of another process, is in the state of network failure, we can

320 CHAPTER 16. EVALUATION OF THE INTEGRATED APPROACH

actually deduce very little with certainty. Network failure may hide process failure. In
some deployment environments (e.g. LANs) network failures as described here may
be rare, guaranteed to be very transient, or even non-existent. However, on WANs
network failures do occur.

The following invariants hold:

• If process A from the viewpoint of another process has been determined to be in
the state of perm-fail then eventually all other processes will be able to determine
that process A is in a non-normal state, i.e. either perm-fail or temp-fail.

• If process A has from the viewpoint of another process been determined to be in
the state of perm-fail then it will remain in that state forever.

Note that we do not assume the existence of any kind of consensus algorithm work-
ing here. It is possible for a process to be discovered to be in temp-fail state from the
viewpoint of one process without this fact becoming known to any others.

In low-level message-sending systems failures may be reported asynchronously or
alternatively only when an attempt to send a message is made. Asychronous failure
detection requires that the messaging service continually monitors all the known pro-
cesses.

16.11.3 Failure Detection in Integrated Programming Systems

In integrated programming systems, failure is detected on the level of language entities
and not on the level of the status of remote processes. This may not be so apparent in
message-oriented systems (like Erlang) or even in distributed object systems that only
offer stationary objects, as the level of abstraction over the messaging infrastructure is
low.

In message-oriented Erlang, failure is detected on the level of the fine-grained Er-
lang processes. Typically there are many Erlang processes within one OS-process. In
RMI failure is detected on the level of failed objects (i.e. objects whose invocation
gives rise to new kinds of exceptions). Note that process identifiers and remote object
references can be freely passed between machines, and that the identity of the machine
that hosts the failed remote object or failed Erlang process is hidden.

A failure model that detects permanently-failed and temporarily-failed language
entities closely mirrors failure on the lower level but is more abstract. What we have
abstracted out is the necessity of being aware of the mapping between process failures
and the programming constructs. A site may hold two process identifiers (Erlang) or
two ports (the Mozart message-sending construct). It may or may not be the case that
the two processes are hosted on the same machine. It may or may not be the case that
the two are inexorably joined and live and die together. Dealing with partial failure on
the entities can be done independent of this - each entity is dealt with separately. Both
may fail because they are hosted on the same machine - but both may also fail for other
reasons.

16.11. PARTIAL FAILURE 321

In previous sections, we have discussed many different types of potentially shared
semantic language entities, objects, ports, classes, procedures, records, single-assignment
variables etc. Many of them come in a number of varieties that are semantically equiv-
alent but have different distribution behavior. Stateless language entities can be as-
sociated with the lazy, eager and immediate protocols. Objects could be migratory,
stationary, lazily invalidated, or eagerly invalidated. All entities except for the imme-
diate and eager stateless entities can potentially fail.

We can use the following criteria over desired properties to evaluate our failure
model for integrated programming systems.

• Minimize the number new failure states.

• Non-failed entities should always work.

• Failure not more likely to occur.

• Failure not more unpredictable.

The two failure states, which we call perm-fail and temp-fail, are inherent in dis-
tributed systems. We may have to introduce additional ones, but clearly would prefer
not to.

The failure model should provide the assurance that entities that are not failed work
normally, i.e. transparency of language semantics. It should be possible to determine
that an entity has failed.

The system must be reasonably robust. It should be as robust as possible without
going so far as to try to make use of complex fault-tolerant mechanisms (which is
beyond the scope of what should be done on the language/system level, see also section
2.4). Put another way, it should not be easy to achieve greater robustness by moving
down a level of abstraction.

Furthermore, by the awareness criteria, failure should not be more unpredictable.
In particular we do not want strange third party dependencies that make reasoning
about failure difficult.

Most of the consistency protocols of Mozart are fairly simple and are mapped
straightforwardly to the underlying messaging framework. Their failure model is sim-
ple, and fulfill all the criteria above. Entities are always in one of three possible states,
normal, temp-fail or perm-fail. Perm-fail is a permanent condition. Entities may os-
cillate back and forth between normal and temp-fail. Entities of this type are stateless
entities annotated to be lazy, stationary objects and ports. Migratory objects and single-
assignment variables are analyzed later. First we provide an example of a distributed
programming system with very poor partial failure properties.

16.11.4 An example of poor integration w.r.t. partial failure

In the Emerald system [72, 71] distributed objects could not only be invoked remotely,
but they could also be moved. This, in a more explicit way, brings many of the benefits

322 CHAPTER 16. EVALUATION OF THE INTEGRATED APPROACH

of the Mozart migratory object protocol. Repeated invocations by a threads on one site
can be done locally.

The implementation supported this by using forwarding links. In general, these
forwarding links form a chain that could be long (i.e. bounded only by the number of
sites that reference the object). This made for poor awareness and control if the object
is repeatedly moved. The drawback was that if one of the sites along the forward-
ing path fails the object becomes unreachable (at least, by the normal mechanism, as
broadcast search could relocate the object in closed LAN-based distributed systems).

Returning to our three questions, the Emerald solution is characterized by difficul-
ties on all four points (ignoring broadcast backup). First, there is an additional failure
state, namely a partitioned failure state. Some of the processes see the object as nor-
mal, others as perm-failed. This can occur when a forwarding chain is broken in the
middle. Second, an entity may be determined as perm-fail by some processes and
normal by others - and this may last forever. Third, the existence of long forwarding
chains makes entities extremely vulnerable to failure. Fourth, failure becomes very un-
predictable. Failure is now dependent on an object’s history as reflected in the structure
of the forwarding chain.

16.11.5 Migratory objects

The migratory object protocol of Mozart presented in paper 2 (chapter 7) has poor
partial failure properties. Paper 4 (chapter 9) shows an augmentation of the protocol
with reasonable partial failure properties.

In particular, in our first naive migratory object protocol of paper 2, it was possible
for the protocol to be in such a state that entity would appear to be in the normal state
even thought the state had been lost and the entity irrevocably broken. This was fixed
in the protocol as described in paper 4. (The Mozart system implements the improved
protocol).

Despite this fix, there remain aspects of the augmented migratory object proto-
col together with the language interface that bear examination, together with the way
failure is reflected up to the programmer

First, unlike the simpler protocols (e.g. stationary objects) there are three parties
involved in the protocol. First there is the current holder of the state. There is only
one such holder at any one time (the protocol manages a handover when the state
moves from one site to another so we can, for this purpose, ignore the transient state
during state movement). Second, there is the coordinator. In the naive version, the
coordinator keeps track of the one and only current holder site of the state, but in the
augmented protocol it may upon rapid movement of the state need to keep a record of
a chain of sites. Note that if the state does not move very frequently - the normal case
- that the chain in the augmented protocol is occasionally two sites long but normally
one. The coordinator knows that the state is being held by one of the sites in the
chain but not necessarily which one. The chain is the key to preserving the property
of the naive protocol that requests for the state can be handled in a pipelined fashion
to reduce latency without losing the ability to detect failure. Finally, in addition to

16.11. PARTIAL FAILURE 323

the two aforementioned sites (the coordinator and state-holder) we have an arbitrary
number of other sites that contain references to the object.

In the Mozart system the coordination site is fixed - it is always the site where the
entity was originally created. If the OS-process holding the state crashes then the state
is lost and the object enters the perm-fail state. This information will be propagated
to some or all of the sites that hold references to the object. Sites that have placed
watchers (eager failure detection) on the object will be informed and sites that attempt
to do operations will be informed. Note that sites that only reference the object, have no
watchers on the entity installed, and never attempt to use the entity will not be notified.
This is as it should be; this clearly reflects the the programmer’s intent - despite the
reference the path of execution that has been taken does not require the object. It also
crucial to scalability - otherwise the coordinator would have to maintain a list of all
sites that reference the object, rather than just the site that is currently holding the state
and a few others. A property of the protocol in paper 4 is that when the coordinator
observes a crash in a member of the current chain (except of course, for the trivial but
common case that the chain consists of a single site) it must invoke a mini-protocol to
determine if the state is truly lost or not.

If a site that is neither holding the state nor taking the role of the coordinator crash-
es, this has, as expected, no affect on the failure state of the object.

The third and last possibility is that the site holding the coordinator crashes. This
makes the state unavailable to all but (possibly) one site - the current state-holder. The
entity must enter the state of perm-fail from the viewpoint of all but the state-holder.
Clearly the entity will not work for them, and indeed, with the coordinator dead they
cannot know if the state is lost as well. What about the site that is holding the state?
There are two possibilities, both with drawbacks. Either the entity is declared perm-
fail, despite the availability of the state on the site, or it is not, which is a split-brain
condition. We choose an intermediate position - and introduced a new failure state, or
more precisely, a new substate of the perm-fail state. The reason for the introduction
of the new state is to allow for the programming of fault-tolerance. As the state is
available at the state-holder site it can be extracted as a prelude to error-recovery. (Note
that the state is still intact so there is no problem with lost updates as in some replication
schemes). Similarly, there is also a new substate to the temp-fail failure state (when
the coordinator is subject to network failure)

We now consider migratory objects (based on the improved protocol of paper 4)
from the viewpoint of our four criteria. Depending on your viewpoint we either in-
troduce no new failure states or introduce two. However, the new states or substates
should be seen more as a hook into the implementation for building fault-tolerant sys-
tems. There are still three basic failure states. We fulfill the criteria that non-failed en-
tities always work. Failure is of migratory objects more likely compared to distributed
objects realized by stationary objects (or basic message-passing). There are now two
process failures that fail the entity rather than one. This seems both acceptable and
to be the best that can be done to obtain the benefits of locality without sophisticated
fault-tolerance instrumentation. Note, however that the protocol state of the coordi-
nator is small so possibly schemes for building fault-tolerant coordination functions

324 CHAPTER 16. EVALUATION OF THE INTEGRATED APPROACH

might be profitably used here (see also future work in chapter 17).
Failure is fairly predictable - crashes of the original creation site and other users of

the object can cause entity failure. We considered, but did not implement in the system,
an addition to the protocol, whereby state that is not used for a long time is shipped
back to the coordinator, in order to completely remove the dependence on the object’s
history. It is one thing to depend on other sites that are using the object at approximate-
ly the same time, it is quite another, if the object is long-lived and sporadically used,
to be dependent on sites that worked with object a long time ago.

Two small further improvements in the protocol that are not covered in paper 4 were
implemented. Triggers are introduced that cause the current state-holder to send the
state back to the coordinator without the coordinator explicitly asking for it. Normally,
the coordinating site will only ask for the state upon operations on the state just like any
other site. The first trigger was, for obvious reasons, controlled shutdown. The second
trigger was when the local garbage collector determined that the entity was no longer
referenced on that site. The last was important not only to relieve the site of the burden
of holding the state of an object it will never need but also because the coordinator and
state-holder would otherwise form a cycle in the distributed garbage collection sense.
Without this, the entity might not be reclaimed, despite the lack of references in the
system as a whole. (Note that the cycle here is an artifact of the implementation and
not a cycle due to cyclic references in dead data structures).

16.11.6 The Variable Protocol

The (data-flow, logical or single-assignment) variable protocol is described in detail in
paper 3 (chapter 8). This protocol also makes use of a coordinator. However, unlike
the migratory object coordinator, the coordinator eventually knows all sites that refer-
ence it. More precisely, the coordinator has a list of some of the sites that reference
it. Other references, including those that exist in protocol messages, will by the ac-
tion of the protocol later be registered via a dedicated message with the coordinator.
(Deregistering may also take place via the action of local garbage collection).

It is important to realize that the semantics of the logical variable is that all ref-
erences have equal rights and might potentially bind it and the variable can only be
bound once. Note, that the a variable to variable binding, which effect merges the fu-
ture value of both variables, is implemented as binding one variable to the other. The
most common pattern for variable usage is where there is one reader thread (possible
waiting for the variable to be bound) and one writer thread. However, situations where
there are many reader threads occur fairly regularly as well. In the distributed system
this means that the most common situation is where the variable is referenced from
two sites only, the coordinator and one other site, but that scenarios with many site
references are not uncommon.

We now consider the failure properties of variables. First we consider the number
of failure states. We have two new failure states. They should be seen as substates of
the normal failure perm/temp failure states. They were introduced to make maximal
use of the fact that the coordinator knows all its references. These new failure states

16.11. PARTIAL FAILURE 325

indicate that one or more of the processes that reference the variable is in the state of
perm-fail or temp-fail. The coordinator is still alive so the entity does still work.

The new failure states might, but need not, indicate that threads are in danger of
suspending forever. If the failed site contained the one writer thread then threads on
other sites will wait forever. The failure state is a hint that may or may not be heeded.
Clearly, the failed site could also be a reader thread.

Note that the correct default is to consider these new failure states as new versions
of the normal states. Note also that the new failure state is attempting to capture some-
thing that few distributed object systems attempt to do with objects. Threads may be
programmed to wait upon something happening to an object (e.g. RMI object) just as
they may be programmed to wait upon instantiation of a variable. Such threads also
run the risk of waiting forever.

The criteria that non-failed entities work is fulfilled. This is in the sense that live
processes can continue to work with the non-failed variable - e.g. one site can bind and
other sites read. The entity fails only upon coordinator failure, i.e. is not more likely
to occur than the base case. Failure is predictable; coordination always take place at
the site where the variable was first created.

16.11.7 Asynchronous and synchronous failure in integrated sys-
tems

There is a distinction between asynchronous and synchronous failure detection on
failed entities, just as is the case with detection on failed processes in low-level sys-
tems. Synchronous failure detection reflects failure that is detected upon attempting
to use or operate on a shared language entity. Asynchronous failure detection reflects
failure on entities irrespective of use.

This brings us to an important control consideration. A common pattern in all
sharing models is a cycle of preparatory local computation followed by an operation
on a shared language entity making use of the result of the local computation. The
preparatory local computation may be large, so it is useful to be able to stop this early
if the operation will in any case fail.

For this reason Mozart has two failure detection mechanisms, watchers which re-
port failure eagerly and handlers which report failure upon entity use (for instance, via
exceptions). A watcher is a user-defined procedure that is associated with a language
entity. Upon entity failure (or more precisely, upon the types of failure that the watcher
is configured to look for) the watcher procedure is invoked in its own thread. Watcher
procedures may be coded to engage in cleanup activities. For instance, the watcher
may kill or inject exceptions into running threads via first class thread references. The
watcher may also initiate appropriate mechanisms for achieving fault-tolerance.

Although the failure model is on the level of language entities, the implementation
still relies on failure detection on the level of OS-processes. When process failure is
discovered the implementation maps this failure onto entities, possibly changing the
failure state of the entity (normal, perm-fail or temp-fail). Watchers will be invoked
immediately while other failure states will be discovered first when operations are

326 CHAPTER 16. EVALUATION OF THE INTEGRATED APPROACH

attempted on the entity. The failure model introduces no overhead as compared to
low-level failure monitoring. except for the small overhead involved in performing the
process to entity mapping, which is only needed when failure is actually detected.

Many distributed programming systems lack asynchronous error detection. For
instance, in RMI, failure is reflected solely in exceptions on remote method invocation.

16.11.8 Other failure considerations and conclusion

The proposed partial failure model for integrated distributed programming systems
reflects partial failure on a per-entity basis. This integrates partial failure into the lan-
guage model and thus conforms to the ideals of integrated distributed programming
systems.

However dealing with partial failure is composed of three separate activities. First
is failure detection on the language level. This is what we have concentrated on. The
model can undoubtedly be refined but we believe we have demonstrated the feasibility
of this approach even for systems that support a wide range of both entity types and
consistency protocols.

The second activity is the cleanup activity, where work that is no longer useful
is stopped after failure has been detected. Does Mozart and/or other distributed pro-
gramming systems have good support for this? This is an open question. In Oz the
programmer can group threads and via first class thread references control such groups
(i.e. kill them) so there is some support, at least in theory. In the Mozart Programming
System threads were not fully instrumented for distribution, i.e. the Thread library
was not made network-transparent (in the Mozart release). The issue here was not
conceptual but rather lack of resources. Possibly, new grouping support (of threads
and entities) is needed to simplify this aspect of failure handling.

The third activity is the establishment of fault-tolerance. An error-recovery pro-
cedure is initiated that can replace the activity that was stopped by process or entity
failure. How closely the recovered system needs to mirror what would have happened
had no process failure occurred is application dependent.

There are many algorithms and approaches to making applications fault-tolerant.
Much of this is beyond the scope of the distributed programming language/system per
se. From the language and system point-of-view we do however need to analyze if
the distributed programming system has all the necessary hooks in order to plug-in
mechanisms from the field of fault-tolerant systems and methods. We need to consider
how to design the system such as to be able to easily integrate techniques of fault-
tolerance into the system. This issue is beyond the scope of this thesis but is part of
future work (see section 17).

16.12. THREE SHARING MODELS 327

16.12 Three Sharing Models

16.12.1 Introduction

The three sharing models were discussed in the context of centralized concurrent pro-
gramming systems (chapters 12 and 13). There we saw that, although any one sharing
model was programmable in terms of another, this involved performance penalties.
The really serious performance penalties, involving algorithmic complexity were pro-
gramming objects in pure data-flow or message-passing systems and programming
message-oriented in pure data-flow languages. In the concurrent setting the other three
abstractions had only a slight performance penalty (in reasonable implementations).
These three were programming data-flow with objects, message-sending with objects,
and data-flow with message-sending.

As pure data-flow languages are today very rare, for the aforementioned reason,
we don’t feel the need to reconsider making do with a pure data-flow language but
take for granted that data-flow is always complemented with at least one other sharing
paradigm.

We will however look at the other four cases in the context of distribution.

16.12.2 Protocol properties

We need to digress and explain some important properties of both the variable proto-
col (described fully in paper 3, chapter 8) and the state invalidation protocol (briefly
described earlier in section 16.6.4 but never implemented in the Mozart system). The
implementation of these protocols depend on being informed of first-time import of the
entity reference. They also depend on garbage-collection, i.e. they need to be informed
when the entity is no longer referenced on the current site. Note that if a reference has
been imported, then garbage-collected, and then reimported this is also considered a
first-time import. In the variable protocol the first-time import (but not subsequent
imports) triggers a register message to the coordinator and entity reclamation during
garbage-collection will trigger a deregister message.

In general, the more complex protocols depend on both export/import awareness
as well as garbage-collection awareness. This means that a fundamental property of
these transparency-preserving protocols is that they themselves are fundamentally non-
transparent as transparency means that the programmer does not see, nor care about,
the process or machine boundaries.

16.12.3 Objects and message-sending

We showed earlier that programming shared stationary objects in Erlang (i.e. message-
oriented system) is straightforward. The distribution behavior is identical (one message
to the object/process and one message back). Furthermore whatever slight performance
penalty there might be in the centralized case is surely insignificant in the distributed

328 CHAPTER 16. EVALUATION OF THE INTEGRATED APPROACH

case. The Erlang people are quite right to say that the message-oriented distribution
support in Erlang subsumes RMI but is strictly more powerful.

However distributed objects need not be stationary, indeed, for many application
patterns mobile or invalidation-based objects are better - and this is on the level of
algorithmic complexity. These kinds of distributed objects are not programmable in
Erlang proper, for the reasons described in the last subsection. Possibly, with the aid
of some non-transparent low-level hooks into the implementation, they could be but in
that case the end result would in any case be a re-implementation of the consistency
protocols, partly in Erlang and partly on a lower-level (i.e. the hooks).

In chapter 13 we saw that message-sending is programmable in terms of objects.
In a distributed context most of the argumentation carries over to programming dis-
tributed message-sending in terms of stationary objects. However it is crucial that the
abstraction is truly asynchronous and this requires the creation of an auxiliary thread.
This may be acceptable performance-wise if threads are lightweight (Voyager could
not take this approach as threads are not lightweight in Java).

16.12.4 Data-flow abstractions

In chapter 13 we discussed abstractions to implement explicit data-flow in object-
oriented systems. If the distributed counterpart makes use of stationary objects the
resultant protocol corresponds roughly to a lazy version of the variable protocol (see
paper 3, chapter 8) which is not what you want. Single-assignment variables are gen-
erally very transient entities and the dependency between sites should be broken as
quickly as possible (but this does not mean that variables cannot or should not be-
come bound to lazy stateless data structures). The property of the variable protocol
that the distribution infrastructure is quickly dismantled upon variable binding is also
lost. Variable-variable bindings (i.e. when two unbound single-assignment variables
are merged) are also problematic.

To base data-flow on migratory objects is even worse, and will involve many ad-
ditional network hops. To base data-flow on eager invalidation objects most closely
captures the qualities of the variable protocol. Here the main difference is in the au-
tomatic dismantling of the distribution infrastructure. This reasoning is, of course,
somewhat academic. We know of no system that has smoothly incorporated inval-
idation protocols in a system supporting distributed objects - let alone one that has
demonstrated explicit data-flow on top. Recent work in Java [97] does, however, sup-
ply some invalidation-based protocol support for distributed objects.

Programming data-flow in message-oriented systems like Erlang is just as prob-
lematic as programming invalidation-based objects in Erlang using message-sending
constructs (as described in previous subsection).

Chapter 17

Conclusion and Future Work

We believe that, in the course of time, mature distributed programming systems will be
developed that are characterized by good abstraction, awareness and control. This will
probably take some time - we are still in the beginning of this development. Along the
way various systems and languages will be developed only to later be superseded by
better systems.

We also believe that we have, with the Mozart Programming System, contributed
to this search for the ultimate (or just very good) distributed programming system. We
believe that there are a number of system and language properties that Mozart exhibits
that good distributed programming systems must and ultimately will have.

In this final chapter, the first part is devoted to summarizing those properties that
Mozart either has or has to some degree, that are essential in good distributed pro-
gramming systems. These are properties that eventually, as the field matures and the
dust finally settles, that all distributed programming systems will need to survive the
coming Darwinian struggle for supremacy. These are properties we feel that we have
demonstrated in the Mozart work.

The second part of this chapter is devoted to future work. We begin by describing
extensions that could be incorporated into Mozart. Some of these features we just did
not have the resources to realize, others have been gleaned from our experiences in
the Mozart project. We also mention some implementations aspects that would benefit
from reengineering.

Finally, we briefly describe aspects of distributed programming that are still open
research questions. These are aspects that we expect the community to tackle in the
coming years, but where, today, it is difficult to see the correct approach let alone the
final solution.

17.1 Necessary Qualities of Distributed Programming
Systems

We believe that good distributed programming systems will have the following char-
acteristics:

329

330 CHAPTER 17. CONCLUSION AND FUTURE WORK

• Good concurrent core

• Higher order (all entities are first class values)

• Complete range of semantic entities

• Complete protocol choice for good control

The concurrent core should support fine-grained concurrency and offer a fair preemption-
based built-in scheduler. The programmer should never need to program his/her own
thread pool nor a scheduler. For good performance on the same machine the system
should support threads. Possibly, depending on future garbage-collection algorithmic
development, the system should also support fine-grained processes as well.

The programming model for dealing with code and data should be as integrated as
possible, i.e. the system should support first-class procedures/functions/classes. The
distribution of code and stateless data are not inherently different. Sometimes the pro-
grammer wants to create a procedure or class in one thread (machine) and share it with
other threads (machines); sometimes he/she wants to share a stateless data structure.
The programmer wants uniqueness guaranteed. In other cases, the programmer wants
to work within a namespace - a named procedure/class or named data structure. From
the control point of view the system should leverage that the recipient may already
have a copy.

The system should offer a complete range of semantic entities. This may be advan-
tageous from the point-of-view of program readability - as for instance, when the dis-
tinction between single-assignment and multiple-assignment variables is visible. More
important is that awareness model will rank the various entities. The golden control
rule is to prefer the one associated with the weakest consistency model that captures
the programmer’s intent. This means that there will be many varieties of shared state.

The system should offer a complete protocol choice for languages entities. One
way is to associate with each type of semantic language entity a rich set of annotations.
These annotations specify the consistency protocol associated with the entity, or rather
the flavor as the consistency protocol is partly determined by entity type. The golden
rule here is to determine, possibly with the aid of some tool in a late development
state, the usage pattern and then pick the most optimal consistency protocol. Note that
Mozart is not complete in this sense. Even for sequentially consistent state Mozart
provides only two consistency protocols (we recognize the need for at least four).

Protocol choice, as discussed extensively in the last chapter, is primarily concerned
with performance in the distributed system sense, i.e. the number of hops, delays, the
number of messages and sizes of messages. This choice controls which of a number
of functionally equivalent protocols should be chosen to get the best performance -
which is a non-functional property. There may be other such choices covering other
non-functional properties such as failure and security (see future work).

The completeness of entity types and protocol choice are related. There are entity
types that may be derived from other entity types (e.g. sets from lists). Useful entity
types need not necessarily be primitive in the system but may be encaptured in libraries.

17.2. FUTURE WORK 331

From the distribution point-of-view, however, each such library entity must face an acid
test. Does the composite consistency protocol of the composite entity as defined in the
library provide the necessary control? Could a better consistency protocol be derived
by making the entity primitive in the implementation so as to be able to directly couple
the best consistency protocol with the entity? If the library versions do not provide
a complete choice then the entity must be made primitive. This does not necessarily
mean that this type of language entity has the same dignity as others, functionally it
can be derived using other primitive entities. It is only primitive in the implementation
to provide the proper control.

In the Mozart programming system, we went further than other systems in provid-
ing for a complete range of entities and a complete range of protocol choice. Though
Mozart is not complete with respect to either, it does show it it both possible and practi-
cal to make distributed programming systems that come much closer to completeness.
We also believe that with the right system software architecture completeness is possi-
ble without undue complexity. This is discussed more in future work.

We should also note that there are many language features of Oz/Mozart that
are outside the scope of this discussion. This does not mean that author does not
have an opinion (just like almost everyone else who works with programming lan-
guages/systems). We do not, in this thesis, consider those aspects of programming lan-
guages/systems where distribution does not change the balance between the pros and
cons of different paradigms or constructs. Neither do we make strong claims where
distribution does affect the balance, but it is not unclear how to weigh the new pros and
cons. The best example of this is the tradeoff between explicit and implicit data-flow.
Distribution makes for more unpredictability in timings. This favors implicit data-flow
which is resilient to production order changes. However, implicit data-flow also com-
plicate failure handling, introducing as it does transient dependencies between sites.
Distribution adds both new pros and new cons to this discussion.

17.2 Future Work

In the last chapter we saw that Mozart also falls short with respect to our vision of
well-designed integrated programming systems. That Mozart falls short is, of course,
not solely due to lack of time and resources, but also, that our vision today is not quite
what it was when we began the Mozart work. We, too, were overly influenced by the
centralized programming heritage.

Today we have the benefit of hindsight and can formulate the design principles and
target criteria for integrated distributed programming languages/systems more clearly
and concisely. This, we believe, is one of the major outcomes of the Mozart work.

One important aspect of future work is to complete the system according to the
principles outlined in this thesis. First, there is the matter of those language entities that
were never given a distribution behavior, that were never made transparent. Examples
are the built-in data types arrays and dictionaries. Today these entities do not work
when shared between sites. One of the reasons that these were left for later was, that

332 CHAPTER 17. CONCLUSION AND FUTURE WORK

though they were clearly stateful entities, there were uncertainties about the granularity
of the protocol support. An array, for example, can be seen as a stateless data structure
containing a vector of stateful attributes, one for each array element. In this view the
consistency of each array element is dealt with separately. This has the advantage
that sites that are updating/accessing different array elements do not interfere with
each other at all. This fine-grained view has major disadvantages as well. We have
additional space requirements for all the required distribution infrastructure for the
array elements. More latency is introduced for operations involving more than one
array element. Alternatively, an array can be seen as a single monolithic stateful entity.
Intermediate views are also possible. From the control perspective we need to offer all
useful types.

Another aspect to completing the system is to implement a complete set of proto-
cols, and provide the user some means to (orthogonally to functionality) specify the
most optimal protocol. Invalidation protocols for stateful entities were, for example,
never implemented.

The vision of completeness as regards types of language entities and the associ-
ated protocol choices is a vision that arose rather late in the Mozart work. In the
early ground-laying work, the vision that we worked with was more to extend all the
language entities of Oz to transparent distribution. The software architecture of the
Mozart system, as released in 2000-2001, reflects this. The way the system was de-
signed makes it a major undertaking to add new language entities and new protocols
to the system. We realized that to make the goal of completeness realizable that the
software architecture must be reworked to allow for incremental and encapsulated en-
tity and protocol addition. The system needs to be open and easy to extend with new
entities and new protocols. This incrementality will not only significantly ease sys-
tem development but will allow easy addition of new consistency protocols as new
distributed algorithms upon which to base them are developed by the community.

A language and system aspect that needs to be looked into is dynamic relinking
for dealing with resources. Functors do provide a means to transfer code between
sites with dynamic linking, but this is not enough. The problem can be formulated
as an identity problem. The mechanisms in Mozart are mostly based on the most
conservative identity model. Entities are only considered identical if they have the
same source. For many entity types this is the key to transparency. For example, if the
reference to a local object is exported to another site, then we have a shared object. The
consistency of this object is maintained by a consistency protocol. For this to work it
must be considered the same object. A site is not allowed to substitute this reference
with something else. The question is: can we relax this very strict view on the identity
relation?

Functors in Mozart do provide a means to relax the identity relation. It will link
properly packaged code based on the names of functors, substituting in local copies
with the same name. However once linked code cannot be unlinked. This is inconve-
nient. For instance, it may limit delegation; a site cannot, in general, take a functor,
link it, begin to use it and then later try to delegate execution of some subtask (e.g.
send a first-class procedure to a computation server). This is a limitation of Mozart

17.2. FUTURE WORK 333

that should be rectified.

Relaxed identity, is not only important for dealing with code but also for dealing
with resources. Typical resources are the file system and the window system (graphics).
The distinction between resources and code is slightly blurred in Mozart, as resources
are typically packaged inside a functor. Upon analyzing resource usage it quickly
becomes apparent that upon export that the semantics that you want is application
dependent, even for the same resource. Consider, for example, the file system. In one
application a specific file needs to be opened and read. If this work is to be delegated
to a machine that does not have access to the same file system, then the reference must
refer to the same file system. Here we can imagine treating the file system in the same
way as we do stationary objects. Upon export a distribution infrastructure is initialized
to transfer request back to the original site. In another application a temporary file is
created, used, and then later expunged. In this case it does not matter which file system
is used. Substituting the local file system is the correct thing to do.

Here we see a fundamental uncertainty about the semantics of the ’language entity’
the file system. For this reason, in the Mozart system, resources like the file system
simply do not work outside the original site (i.e. cause exceptions when used outside
the original site). Care was taken that such references could be exported, so they did
not break the system when not used. Care was also taken that such references when
reimported to the original site would work again. The rationale behind this choice was
to expose the unclarity. Inadvertent export and subsequent use of resources would be
discovered in exceptions. If dynamic linking was desired the programmer could use
functors. If static linking is desired, the programmer can wrap the resource inside a
stationary object. Nevertheless these work-arounds are limited and inconvenient and
better integration of resources, in particular, and relaxed identity, in general, should be
pursued. Interesting is that when we take the language view on the entity ’file systems’
that they can be both stateful (reading a specific file) and stateless (creating a new file).
Only in the stateless case is relinking at all possible.

Finally, there is the question of security. This needs to be considered both in the
distributed programming language and the system or implementation, taking into the
account the possibility of malicious action. The language Oz/Mozart has many of the
properties that are known to be desirable for security. This is covered in paper 1 (chap-
ter 6) in the section on language security. However, security was never a major focus in
the Mozart work and strengths of the core language do not extend to system libraries.
This needs to be looked into. As regards the implementation very little was done.
There are at least three obvious actions that should be taken, but there may be more.
These are (1) the unmarshaler must be made robust (so that malicious sites cannot
cause a crash), (2) entities must be made unguessable in the distributed implementa-
tion and (3) communication must be encrypted. For control, a trust model is probably
needed to be able to turn off security enhancements that induce large overheads upon
establishing trust between parties.

334 CHAPTER 17. CONCLUSION AND FUTURE WORK

17.3 Outstanding Research Questions

We said earlier that future distributed programming languages/systems will offer a
complete range of semantic entities. This clearly includes stateless, single-assignment
and multiple-assignment stateful. But what else does it include? What makes the range
complete?

There are many different kinds of entities with distinct associated consistency se-
mantics that are weaker than sequential consistency. Many of these may turn out to be
useful over a range of applications so a distributed programming system should cater
for them. For example, we have time-bounded eventual consistency, where readers are
only guaranteed that the value that they see is not too much out of date. Clearly this
type of consistency requires, in general, less synchronization and fewer messages than,
say, invalidation-based sequential consistency protocols. Exactly what constitutes the
full range of useful primitive entities and protocols is an open question.

There are still open questions concerning partial failure. To begin with, there is the
issue of how best to reflect this on the programming level. An important consideration
is granularity. Is failure on the level of individual entities practical or do we need ways
to group entities/threads to capture partial failure on a coarse-grained level. Often the
programmer would like to make the application at least partly, fault-tolerant. There are
techniques for achieving fault-tolerance. We know that fault-tolerant abstractions can
be created: but what kind of system support do they need? How can the programming
system best interface with mechanisms for fault-tolerance?

Bibliography

[1] Distribution subsystem. http://dss.sics.se.

[2] Java messaging service. Available at
http://java.sun.com/products/jms.

[3] Object voyager. http://objectspace.com/voyager.

[4] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and Inter-
pretation of Computer Programs. The MIT Press, Cambridge, Mass, 1985.

[5] Mack W. Alford, Leslie Lamport, and Geoff P. Mullery. Basic Concepts, in
Distributed Systems–Methods and Tools for Specification, An Advanced Course,
chapter 2. Lecture Notes in Computer Science, vol. 190. Springer Verlag, 1985.

[6] Iliès Alouini. Orthogonal fault tolerance based on watchers. Unpublished, 1998.

[7] Iliès Alouini and Peter Van Roy. Le protocole réparti de Distributed Oz (in
French). In Colloque Francophone sur l’Ingénierie des Protocoles (CFIP 99),
pages 283–298, Nancy, France, April 1999.

[8] Edward G. Amoroso. Fundamentals of Computer Security Technology. Prentice
Hall, 1994.

[9] James Andrews. The logical semantics of the Prolog cut. In International Logic
Programming Symposium (ILPS 95), December 1995.

[10] Yariv Aridor, Michael Factor, and Avi Teperman. cJVM: A single system image
of a JVM on a cluster. In International Conference on Parallel Processing,
pages 4–11, 1999.

[11] Joe Armstrong, Mike Williams, Claes Wikström, and Robert Virding. Concur-
rent Programming in Erlang. Prentice-Hall, Englewood Cliffs, N.J., 1996.

[12] Arvind and R. E. Thomas. I-Structures: An efficient data type for functional
languages. Technical Report 210, MIT, Laboratory for Computer Science, 1980.

[13] Tomas Axling, Seif Haridi, and Lennart Fahlen. Concurrent constraint pro-
gramming virtual reality applications. In the 2nd International Conference on
Military Applications of Synthetic Environments and Virtual Reality (MASEVR
95), Stockholm, Sweden, 1995. Defence Material Administration.

335

336 BIBLIOGRAPHY

[14] Henri E. Bal, Frans E. Kaashoek, and Andrew S. Tanenbaum. Orca: A language
for parallel programming of distributed systems. IEEE Transactions on Software
Engineering, 18(3):190–205, March 1992.

[15] Henri E. Bal, Jennifer G. Steiner, and Andrew S. Tanenbaum. Program-
ming languages for distributed computing systems. ACM Computing Surveys,
21(3):261–322, September 1989.

[16] Paul S. Barth, Rishiyur S. Nikhil, and Arvind. M-structures: Extending a paral-
lel, nonstrict, functional language with state. In Functional Programming and
Computer Architecture, Berlin, August 1991. Springer-Verlag.

[17] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure calls.
ACM Transactions on Computer Systems, 2(1):39–59, February 1984.

[18] Per Brand, Nils Franzen, Erik Klintskog, and Seif Haridi. A platform for con-
structing virtual spaces. In Virtual Worlds and Simulation Conference (VWSIM
’98), January 1998.

[19] Per Brand, Peter Van Roy, Raphaël Collet, and Erik Klintskog. A fault-tolerant
mobile-state protocol. In preparation, 1999.

[20] Brent Callaghan. WebNFS—The file system for the World-Wide Web. White
paper, Sun Microsystems, Mountain View, Calif., May 1996.

[21] Luca Cardelli. A language with distributed scope. ACM Transactions on Com-
puter Systems, 8(1):27–59, January 1995.

[22] Christer Carlsson and Olof Hagsand. DIVE—A platform for multi-user virtual
environments. Computers and Graphics, 17(6), 1996.

[23] Nicholas Carriero and David Gelernter. Coordination languages and their sig-
nificance. Communications of the ACM, 35(2):96–107, February 1992.

[24] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation and perfor-
mance of Munin. In the 13th ACM Symposium on Operating System Principles,
pages 152–164, New York, 1991. ACM.

[25] Randy Chow and Theodore Johnson. Distributed Operating Systems and Algo-
rithms. Addison-Wesley, San Francisco, Calif., 1997.

[26] Alain Colmerauer. Prolog and Infinite Trees. Academic Press, 1982. In Logic
Programming, Keith L. Clark and Sten-Åke Tärnlund, eds.

[27] Douglas E. Comer. Internetworking with TCP/IP. Vol. 1: Principles, Protocols,
and Architecture. Prentice-Hall, Englewood Cliffs, N.J., 1995.

BIBLIOGRAPHY 337

[28] The Mozart Consoritum. Various documentation. Technical report, 1999.
In Mozart documentation, available at http://www.mozart-oz.org/
documentation.

[29] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems
Concepts and Design 2nd ed. Addison-Wesley, Reading, Mass., 1994.

[30] Jon Crowcroft. Open Distributed Systems. University College London Press,
London, U.K., 1996.

[31] M. Dahm. Doorastha: a step towards distribution transparency, 2000.

[32] Steve Deering. Host extensions for IP multicasting. Technical Report RFC1112,
IETF, August 1989.

[33] DFKI Oz version 2.0, 1996. Available at http://www.ps.uni-sb.de.

[34] DFKI Oz version 2.0, February 1998. Available at
http://www.ps.uni-sb.de.

[35] M. Diaz, B. Rubio, and J. M. Troya. DRL: A distributed real-time logic lan-
guage. Comput. Lang., 23(2–4):87–120, 1997.

[36] Ericsson. Open Telecom Platform—User’s Guide, Reference Manual, Installa-
tion Guide, OS Specific Parts. Telefonaktiebolaget LM Ericsson, Stockholm,
Sweden, 1996.

[37] J.C. Fabre and T. Perennou. A metaobject architecture for fault tolerant
distributed systems: The Friends approach. Technical report, Laboratoire
d’Analyse et d’Architecture des Systèmes (LAAS), Toulouse, January 1997.

[38] K. E. Kerry Falkner, P. D. Coddington, and M. J. Oudshoorn. Implementing
Asynchronous Remote Method Invocation in Java. Technical Report DHPC-
072, 1999.

[39] K. Fischer, N. Kuhn, and J. P. Müller. Distributed, knowledge-based, reactive
scheduling in the transportation domain. In the 10th IEEE Conference on Arti-
ficial Intelligence and Applications, New York, March 1994. IEEE.

[40] K. Fischer, J. P. Muller, and M. Pischel. A model for cooperative transportation
scheduling. In the 1st International Conference on Multiagent Systems (ICMAS
95), pages 109–116, June 1995.

[41] François Fluckiger. Understanding Networked Multimedia: Applications and
Technology. Prentice-Hall, 1995.

[42] Mike Foody. Let’s talk (Special report building networked applications). BYTE,
22(4):99–102, April 1997.

338 BIBLIOGRAPHY

[43] Ian Foster. Parallel implementation of Parlog. In International Conference on
Parallel Processing, pages 9–16. IEEE Computer Society, 1988.

[44] Tetsuro Fujise, Takashi Chikayama, Kazuaki Rokusawa, and Akihiko Nakase.
KLIC: A portable implementation of KL1. In Fifth Generation Computing Sys-
tems (FGCS ’94), pages 66–79, December 1994.

[45] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification.
Addison-Wesley, 1996. Available at http://www.javasoft.com.

[46] James Gosling and Henry McGilton. The Java language environment. White
paper, Sun Microsystems, Mountain View, Calif., May 1996.

[47] Donatien Grolaux. Editeur graphique réparti basé sur un modèle transactionnel
(A distributed graphic editor based on a transactional model). Technical report,
Université catholique de Louvain, June 1998. Mémoire de fin d’études.

[48] David Gudeman. Representing type information in dynamically typed lan-
guages. Technical Report TR93-27, University of Arizona, Department of Com-
puter Science, September 1993.

[49] Robert H. Halstead, Jr. MultiLisp: A language for concurrent symbolic compu-
tation. ACM Transactions on Programming Languages and Systems, 7(4):501–
538, October 1985.

[50] Seif Haridi. Logic Programming based on a Natural Deduction System. PhD
thesis, Royal Institute of Technology, Stockholm, 1981.

[51] Seif Haridi and Nils Franzén. Tutorial of Oz. Technical report, 1999. In Mozart
documentation, available at http://www.mozart-oz.org.

[52] Seif Haridi and Dan Sahlin. Efficient implementation of unification of cyclic
structures. Ellis Horwood Limited, 1984. In Implementations of Prolog, J. A.
Campbell, ed.

[53] Seif Haridi, Peter Van Roy, Per Brand, Michael Mehl, Ralf Scheidhauer, and
Gert Smolka. Efficient logic variables for distributed computing. ACM TOPLAS
(to appear), 1999.

[54] Seif Haridi, Peter Van Roy, Per Brand, and Christian Schulte. Programming
languages for distributed applications. New Generation Computing, 16(3):223–
261, May 1998.

[55] Seif Haridi, Peter Van Roy, and Gert Smolka. An overview of the design of
Distributed Oz. In the 2nd International Symposium on Parallel Symbolic Com-
putation (PASCO 97). ACM, July 1997.

BIBLIOGRAPHY 339

[56] Seif Haridi, Peter Van Roy, and Gert Smolka. An overview of the design of
Distributed Oz. In the 2nd International Symposium on Parallel Symbolic Com-
putation (PASCO 97), New York, July 1997. ACM.

[57] Bernhard Haumacher and Michael Philippsen. Exploiting object locality in
JavaParty, a distributed computing environment for workstation clusters. In
CPC2001, 9th Workshop on Compilers for Parallel Computers, pages 83–94,
June 2001.

[58] Martin Henz. Objects for Concurrent Constraint Programming, volume 426 of
The Kluwer International Series in Engineering and Computer Science. Kluwer
Academic Publishers, Boston, November 1997.

[59] Martin Henz. Objects in Oz. PhD thesis, Saarland University, Fachbereich
Informatik, Saarbrücken, Germany, June 1997.

[60] Martin Henz. Objects in Oz. Doctoral dissertation, Saarland University, Saar-
brücken, Germany, May 1997.

[61] Martin Henz, Stefan Lauer, and Detlev Zimmermann. COMPOzE—Intention-
based music composition through constraint programming. In the International
Conference on Tools with Artificial Intelligence, New York, November 1996.
IEEE.

[62] Martin Henz, Gert Smolka, and Jörg Würtz. Object-oriented concurrent con-
straint programming in Oz. In Pascal Van Hentenryck and Vijay Saraswat, ed-
itors, Principles and Practice of Constraint Programming, pages 29–48, Cam-
bridge, Mass., 1995. The MIT Press.

[63] Martin Henz and Jörg Würtz. Using Oz for college timetabling. In E. K. Burke
and P. Ross, editors, the International Conference on the Practice and Theory
of Automated Timetabling, volume 1153 of Lecture Notes in Computer Science,
pages 162–177, Berlin, 1996. Springer-Verlag.

[64] Robert A. Iannucci. Parallel Machines: Parallel Machine Languages. The
Emergence of Hybrid Dataflow Computer Architectures. Kluwer, Dordrecht,
the Netherlands, 1990.

[65] N. Ichiyoshi, T. Miyazaki, and K. Taki. A distributed implementation of Flat
GHC on the Multi-PSI. In Fourth International Conference on Logic Program-
ming, pages 257–275. The MIT Press, May 1987.

[66] Institute for New Generation Computer Technology, editor. Fifth Generation
Computer Systems 1992, volume 1,2. Ohmsha Ltd. and IOS Press, 1992. ISBN
4-274-07724-1.

[67] Joxan Jaffar and Michael Maher. Constraint logic programming: A survey. J.
Log. Prog., 19/20:503–581, May/July 1994.

340 BIBLIOGRAPHY

[68] Pankaj Jalote. Fault Tolerance in Distributed Systems. PTR Prentice-Hall, 1994.

[69] Sverker Janson and Seif Haridi. Programming paradigms of the Andorra Kernel
Language. In International Symposium on Logic Programming, pages 167–183,
October 1991.

[70] Sverker Janson, Johan Montelius, and Seif Haridi. Ports for objects in con-
current logic programs. In Research Directions in Concurrent Object-Oriented
Programming. The MIT Press, 1993.

[71] Eric Jul. Object Mobility in a Distributed Object-Oriented System. PhD thesis,
Univ. of Washington, Seattle, Wash., 1988.

[72] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-grained
mobility in the Emerald system. ACM Transactions on Computer Systems,
6(1):109–133, February 1988.

[73] Setrag Khoshafian and Marek Buckiewicz. Introduction to Groupware, Work-
flow, and Workgroup Computing. J. Wiley and Sons, 1995.

[74] Erik Klintskog, Anna Neiderud, Per Brand, and Seif Haridi. Fractional weighted
reference counting. In LNCS 2150, 2001.

[75] Michael Knapik and Jay Johnson. Developing Intelligent Agents for Distributed
Systems. McGraw-Hill, 1998.

[76] Evelina Lamma, Paola Mello, Cesare Stefanelli, and Pascal Van Hentenryck.
Improving distributed unification through type analysis. In Euro-Par ’97 Par-
allel Processing, volume 1300 of Lecture Notes in Computer Science, pages
1181–1190. Springer-Verlag, 1997.

[77] Butler W. Lampson. Reliable messages and connection establishment. In Sape
Mullender, editor, Distributed Systems, pages 251–281, Reading, Mass., 1993.
Addison-Wesley.

[78] J. C. Laprie. Dependability: A unifying concept for reliable computing and fault
tolerance. In 7th International Conference on Distributed Computing Systems,
pages 129–146, September 1987.

[79] Doug Lea. Concurrent Programming in Java. Addison-Wesley, 1997.

[80] Lone Leth and Bent Thomsen. Some Facile chemistry. Technical Report ECRC-
92-14, ECRC, Munich, Germany, May 1992.

[81] Ho-Fung Leung. Distributed Constraint Logic Programming, volume 41 of
Series in Computer Science. World Scientific, Singapore, 1993.

[82] Ho-Fung Leung and Keith L. Clark. Constraint satisfaction in distributed con-
current logic programming. J. Symbolic Computation, 21:699–714, 1996.

BIBLIOGRAPHY 341

[83] B. Liskov and L. Shrira. Linguistic support for efficient asynchronous procedure
calls in distributed systems. In In Proceedings of the SIGPLAN’88 Conference
on Programming Language Design and Implementation, pages 260–267, june
1988.

[84] John Lloyd. Foundations of Logic Programming, Second Edition. Springer-
Verlag, 1987.

[85] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann, San Francisco,
Calif., 1996.

[86] Michael Maher. Logic semantics for a class of committed-choice programs.
In Proceedings of the Fourth International Conference on Logic Programming
(ICLP 87), pages 858–876, Melbourne, Australia, May 1987. The MIT Press.

[87] Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM
Transactions on Programming Languages and Systems, 4(2):258–282, April
1982.

[88] Martin Müller, Tobias Müller, and Peter Van Roy. Multiparadigm programming
in Oz. In Donald Smith, Olivier Ridoux, and Peter Van Roy, editors, Workshop
on the Future of Logic Programming, International Logic Programming Sym-
posium (ILPS 95), December 1995.

[89] General Magic. Telescript Developer Resources. General Magic.

[90] Sun Microsystems. The Remote Method Invocation Specification, 1997. Avail-
able at http://www.javasoft.com.

[91] Michael Mehl, Ralf Scheidhauer, and Christian Schulte. An abstract machine
for Oz. In Manuel Hermenegildo and S. Doaitse Swierstra, editors, Program-
ming Languages, Implementations, Logics and Programs, Seventh Internation-
al Symposium, PLILP’95, volume 982 of Lecture Notes in Computer Science,
pages 151–168, Utrecht, The Netherlands, September 1995. Springer Verlag.

[92] Michael Mehl, Christian Schulte, and Gert Smolka. Futures and by-need syn-
chronization for Oz. Draft, Programming Systems Lab, Universitt des Saarlan-
des, May 1998.

[93] K. Mehlhorn and A. Tsakalidis. Data structures. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science – Volume A: Algorithms and Com-
plexity, pages 301–341. Elsevier, The MIT Press, 1990.

[94] Mozart Consortium. The Mozart Programming System version 1.2.3, December
2001. Available at http://www.mozart-oz.org/.

[95] Lee Naish. Negation and Control in Prolog, volume 238 of Lecture Notes in
Computer Science. Springer-Verlag, 1986.

342 BIBLIOGRAPHY

[96] Randy Otte, Paul Patrick, and Mark Roy. Understanding CORBA: The Common
Object Request Broker Architecture. Prentice-Hall PTR, Upper Saddle River,
N.J., 1996.

[97] Michael Philippsen and Matthias Zenger. JavaParty — transparent remote ob-
jects in Java. Concurrency: Practice and Experience, 9(11):1225–1242, 1997.

[98] David Plainfossé and Marc Shapiro. A survey of distributed garbage collection
techniques. In Proc. Int. Workshop on Memory Management, Kinross, Scotland
(UK), September 1995.

[99] David Plainfossé and Marc Shapiro. A survey of distributed garbage collection
techniques. In the International Workshop on Memory Management, Lecture
Notes in Computer Science, vol. 986, pages 211–249, Berlin, September 1995.
Springer-Verlag.

[100] Andreas Podelski and Gert Smolka. Operational semantics of constraint logic
programs with coroutining. In International Conference on Logic Programming
(ICLP 95), pages 449–463, 1995.

[101] K. Popov, V. Vlassov, P. Brand, and S. Haridi. An efficient marshaling frame-
work for distributed systems. In Victor E. Malyshkin, editor, Parallel Com-
puting Technologies, 7th International Conference (PaCT 2003), volume 2763
of LNCS, pages 324–331, Nizhni Novgorod, Russia, September 15–19 2003.
springer. A revised version to appear in Future Generation Computer Systems,
May 2005.

[102] Konstantin Popov, Vladimir Vlasov, Mahmoud Rafea, Fredrik Holmgren, and
Seif Haridi. Parallel agent-based simulation on a cluster of workstations. In
Proceedings of EUROPAR’03, pages 470–480. springer, August 2003. Extended
version will also appear in Systems Analysis Modelling Simulation Journal,
2004.

[103] Konstantin Popov, Vladimir Vlasov, Mahmoud Rafea, Fredrik Holmgren, and
Seif Haridi. Parallel agent-based simulation on a cluster of workstations. Par-
allel Processing Letters, 13(4):629–641, December 2003.

[104] Michael J. Quinn. Parallel Programming in C with MPI and OpenMP. McGraw
Hill, 2003. ISBN 007-123265-6.

[105] J. A. Robinson. A machine-oriented logic based on the resolution principle. J.
ACM, 12:23–41, 1965.

[106] Kazuaki Rokusawa, Akihiko Nakase, and Takashi Chikayama. Distributed
memory implementation of KLIC. New Generation Computing, 14(3):261–280,
1996.

BIBLIOGRAPHY 343

[107] Vijay Saraswat and Martin Rinard. Concurrent constraint programming. In Pro-
ceedings of the 17th ACM Symposium on Principles of Programming Languages
(POPL 90), pages 232–245, San Francisco, CA, USA, January 1990.

[108] Vijay A. Saraswat. Concurrent Constraint Programming. The MIT Press, 1993.

[109] Richard D. Schlichting and Vicraj T. Thomas. Programming language support
for writing fault-tolerant distributed software. IEEE Transactions on Computers,
44(2):203–212, February 1995.

[110] S. Schmeier and Schupeta Achim. PASHA II—Personal assistant for scheduling
appointments. In the 1st International Conference on the Practical Application
of Intelligent Agents and Multi-Agent Technology (PAAM 96), Lancashire, Unit-
ed Kingdom, 1996. The Practical Application Company.

[111] Christian Schulte. Oz Explorer: A visual constraint programming tool. In Lee
Naish, editor, Proceedings of the Fourteenth International Conference on Logic
Programming, pages 286–300, Leuven, Belgium, July 1997. The MIT Press.

[112] Christian Schulte. Programming constraint inference engines. In Gert Smol-
ka, editor, Proceedings of the Third International Conference on Principles
and Practice of Constraint Programming, volume 1330 of Lecture Notes in
Computer Science, pages 519–533, Schloß Hagenberg, Austria, October 1997.
Springer-Verlag.

[113] Christian Schulte and Gert Smolka. Finite domain constraint programming in
Oz. A tutorial. Technical report, DFKI and Saarland University, December
1999. Available at http://www.mozart-oz.org/.

[114] Ehud Shapiro. The family of concurrent logic programming languages. ACM
Computing Surveys, 21(3):413–510, September 1989.

[115] Gert Smolka. An Oz Primer. Programming Systems Lab, Saarland University,
Saarbrücken, Germany, 1995. Available at http://www.ps.uni-sb.de.

[116] Gert Smolka. The Oz programming model. In Computer Science Today, volume
1000 of Lecture Notes in Computer Science, pages 324–343. Springer Verlag,
1995.

[117] Gert Smolka. Concurrent constraint programming based on functional program-
ming. In Chris Hankin, editor, Programming Languages and Systems, volume
1381 of Lecture Notes in Computer Science, pages 1–11, Lisbon, Portugal,
1998. Springer-Verlag.

[118] Gert Smolka, Christian Schulte, and Peter Van Roy. PERDIO—Persistent
and distributed programming in Oz. BMBF project proposal. Available at
http://www.ps.uni-sb.de, February 1995.

344 BIBLIOGRAPHY

[119] Bjarne Stroustrup. The C++ Programming Language, Third Edition. Addison-
Wesley, 1997.

[120] Sun Microsystems. The Java Series. Sun Microsystems, Mountain View, Calif.,
1996. Available at http://www.javasoft.com.

[121] Andreas Sundström. Comparative study between Oz 3 and Java. Technical
report, Uppsala University and Swedish Institute of Computer Science, July
1998.

[122] Andrew S. Tanenbaum. Distributed Operating Systems. Prentice-Hall, Engle-
wood Cliffs, N.J., 1995.

[123] Andrew Taylor. High-Performance Prolog Implementation. PhD thesis, Basser
Department of Computer Science, University of Sydney, June 1991.

[124] Gerard Tel. An Introduction to Distributed Algorithms. Cambridge University
Press, Cambridge, United Kingdom, 1994.

[125] Tommy Thorn. Programming languages for mobile code. ACM Computing
Surveys, 29(3):213–239, September 1997.

[126] Jeffrey D. Ullman. Elements of ML Programming. Prentice Hall, 1998.

[127] Peter Van Roy. 1983–1993: The wonder years of sequential Prolog implemen-
tation. J. Log. Prog., 19/20:385–441, May/July 1994.

[128] Peter Van Roy, Per Brand, Seif Haridi, and Raphaël Collet. A lightweight re-
liable object migration protocol. In Henri E. Bal, Boumediene Belkhouche,
and Luca Cardelli, editors, Internet Programming Languages, volume 1686 of
Lecture Notes in Computer Science. Springer Verlag, October 1999.

[129] Peter van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer
Programming. MIT Press, 2004. ISBN 0-262-22069-5.

[130] Peter Van Roy, Seif Haridi, and Per Brand. Distributed programming in Mozart
– A tutorial introduction. Technical report, Mozart Consortium, December
2001. Available at http://www.mozart-oz.org/.

[131] Peter Van Roy, Seif Haridi, Per Brand, and Gert Smolka. Three moves are not as
bad as a fire. In Workshop on Internet Programming Languages, International
Conference on Computer Languages (ICCL 98), Chicago, IL, USA, May 1998.

[132] Peter Van Roy, Seif Haridi, Per Brand, Gert Smolka, Michael Mehl, and Ralf
Scheidhauer. Mobile objects in Distributed Oz. ACM Transactions on Program-
ming Languages and Systems, 19(5):804–851, September 1997.

[133] Arthur H. Veen. Dataflow machine architecture. ACM Computing Surveys,
18(4):365–396, December 1986.

BIBLIOGRAPHY 345

[134] Dan S. Wallach, Dirk Balfanz, Drew Dean, and Edward W. Felten. Extensi-
ble security architectures for Java. In 16th Symposium on Operating System
Principles, October 1997.

[135] Joachim P. Walser. Feasible cellular frequency assignment using constraint pro-
gramming abstractions. In the 1st Workshop on Constraint Programming Appli-
cations, CP 96, August 1996.

[136] David H. D. Warren. Applied Logic–Its Use and Implementation as a Program-
ming Tool. PhD thesis, University of Edinburgh, 1977. Reprinted as Technical
Note 290, SRI International.

[137] D. Weyns, E. Truyen, and P. Verbaeten. Distributed threads in java, 2002.

[138] Claes Wikström. Distributed programming in Erlang. In the 1st International
Symposium on Parallel Symbolic Computation (PASCO 94), pages 412–421,
Singapore, September 1994. World Scientific.

[139] Floyd Wilder. A Guide to the TCP/IP Protocol Suite. Artech House, Norwood,
MA, 1998.

Swedish Institute of Computer Science
SICS Dissertation Series

01: Bogumil Hausman, Pruning and Speculative Work in OR-Parallel PROLOG,
1990.
02: Mats Carlsson, Design and Implementation of an OR-Parallel Prolog Engine,
1990.
03: Nabiel A. Elshiewy, Robust Coordinated Reactive Computing in SANDRA, 1990.
04: Dan Sahlin, An Automatic Partial Evaluator for Full Prolog, 1991.
05: Hans A. Hansson, Time and Probability in Formal Design of Distributed Systems,
1991.
06: Peter Sjödin, From LOTOS Specifications to Distributed Implementations, 1991.
07: Roland Karlsson, A High Performance OR-parallel Prolog System, 1992.
08: Erik Hagersten, Toward Scalable Cache Only Memory Architectures, 1992.
09: Lars-Henrik Eriksson, Finitary Partial Inductive Definitions and General Logic,
1993.
10: Mats Björkman, Architectures for High Performance Communication, 1993.
11: Stephen Pink, Measurement, Implementation, and Optimization of Internet Proto-
cols, 1993.
12: Martin Aronsson, GCLA. The Design, Use, and Implementation of a Program De-
velopment System, 1993.
13: Christer Samuelsson, Fast Natural-Language Parsing Using Explanation-Based
Learning, 1994.
14: Sverker Jansson, AKL - - A Multiparadigm Programming Language, 1994.
15: Fredrik Orava, On the Formal Analysis of Telecommunication Protocols, 1994.
16: Torbjörn Keisu, Tree Constraints, 1994.
17: Olof Hagsand, Computer and Communication Support for Interactive Distributed
Applications, 1995.
18: Björn Carlsson, Compiling and Executing Finite Domain Constraints, 1995.
19: Per Kreuger, Computational Issues in Calculi of Partial Inductive Definitions,
1995.
20: Annika Waern, Recognising Human Plans: Issues for Plan Recognition in Human-
Computer Interaction, 1996.
21: Björn Gambck, Processing Swedish Sentences: A Unification-Based Grammar
and Some Applications, June 1997.
22: Klas Orsvärn, Knowledge Modelling with Libraries of Task Decomposition Meth-
ods, 1996.
23: Kia Höök, A Glass Box Approach to Adaptive Hypermedia, 1996.
24: Bengt Ahlgren, Improving Computer Communication Performance by Reducing
Memory Bandwidth Consumption, 1997.
25: Johan Montelius, Exploiting Fine-grain Parallelism in Concurrent Constraint Lan-
guages, May, 1997.
26: Jussi Karlgren, Stylistic experiments in information retrieval, 2000
27: Ashley Saulsbury, Attacking Latency Bottlenecks in Distributed Shared Memory
Systems, 1999.

BIBLIOGRAPHY 347

28: Kristian Simsarian, Toward Human Robot Collaboration, 2000.
29: Lars-Åke Fredlund, A Framework for Reasoning about Erlang Code, 2001.
30: Thiemo Voigt, Architectures for Service Differentiation in Overloaded Internet
Servers, 2002.
31: Fredrik Espinoza, Individual Service Provisioning, 2003.
32: Lars Rasmusson, Network capacity sharing with QoS as a financial derivative
pricing problem: algorithms and network design, 2002.
33: Martin Svensson, Defining, Designing and Evaluating Social Navigation, 2003.
34: Joe Armstrong, Making reliable distributed systems in the presence of software
errors, 2003.
35: Emmanuel Frecon, DIVE on the Internet, 2004.
36: Rickard Cöster, Algorithms and Representations for Personalised Information Ac-
cess, 2005
37: Per Brand, The Design Philosophy of Distributed Programming Systems: the
Mozart Experience, 2005
38: Sameh El-Ansary, Designs and Analyses in Structured Peer-to-Peer Systems, 2005

