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Abstract

Distributed hierarchical file systems typically decouple the storage and serving of
the file metadata from the file contents (file system blocks) to enable the file system
to scale to store more data and support higher throughput. We designed HopsFS
to take the scalability of the file system one step further by also decoupling the
storage and serving of the file system metadata. HopsFS is an open-source, next-
generation distribution of the Apache Hadoop Distributed File System (HDFS)
that replaces the main scalability bottleneck in HDFS, the single-node in-memory
metadata service, with a distributed metadata service built on a NewSQL database
(NDB). HopsFS stores the file system’s metadata fully normalized in NDB, then it
uses locking primitives and application-defined locks to ensure strongly consistent
metadata.

In this thesis, we leverage the consistent distributed hierarchical file system meta-
data provided by HopsFS to efficiently build new classes of applications that are
tightly coupled with the file system as well as to improve the internal file system
operations. First, we introduce hbr, a new block reporting protocol for HopsFS
that removes a scalability bottleneck that prevented HopsFS from scaling to tens
of thousands of servers. Second, we introduce HopsFS-CL, a highly available
cloud-native distribution of HopsFS that deploys the file system across Availability
Zones in the cloud while maintaining the same file system semantics. Third, we
introduce HopsFS-S3, a highly available cloud-native distribution of HopsFS that
uses object stores as a backend for the block storage layer in the cloud while again
maintaining the same file system semantics. Fourth, we introduce ePipe, a databus
that both creates a consistent change stream for HopsFS and eventually delivers
the correctly ordered stream with low latency to downstream clients. That is,
ePipe extends HopsFS with a change-data-capture (CDC) API that provides not
only efficient file system notifications but also enables polyglot storage for file
system metadata. Polyglot storage enables us to offload metadata queries to a
more appropriate engine - we use Elasticsearch to provide a free-text search of
the file system namespace to demonstrate this capability. Finally, we introduce
Hopsworks, a scalable, project-based multi-tenant big data platform that provides
support for collaborative development and operations for teams through extended
metadata.



Sammanfattning

Distribuerade hierarkiska filsystem kopplar vanligtvis bort lagring och hanteringen
av filens metadata från filens innehåll (filsystemets block) för att göra det möjligt
för filsystemet att skala bättre för att lagra mer data och stödja högre genomströmn-
ing. Vi utformade HopsFS för att ta skalbarheten i filsystemet ett steg längre genom
att även koppla bort lagring och hantering av filsystemets metadata. HopsFS är en
öppen källkod, nästa generations distribution av Apache Hadoop Distribuerade
Filsystem (HDFS) som ersätter den huvudsakliga skalbarhetsflaskhalsen i HDFS,
en nod som lagrar all metadata i minnet, med en distribuerad metadatatjänst
byggd på en NewSQL-databas (NDB). HopsFS lagrar filsystemets metadata fullt
normaliserat i NDB, och använder sedan låsande primitiver och applikations-
definierade lås för att säkerställa starkt konsistent metadata.

I denna avhandling använder vi den konsistenta distribuerade hierarkiska filsys-
temmetadata som tillhandahålls av HopsFS för att effektivt bygga nya klasser av
applikationer som är tätt kopplade till filsystemet samt för att förbättra filsystemets
interna funktioner. Först introducerar vi hbr, ett nytt blockrapporteringsprotokoll
för HopsFS som tar bort en skalbarhetsflaskhals som hindrade HopsFS från att
skalas till tiotusentals servrar. För det andra introducerar vi HopsFS-CL, en mycket
tillgänglig molnbaserad distribution av HopsFS som distribuerar filsystemet över
tillgänglighetszoner i molnet samtidigt som samma filsystemsemantik bibehålls.
För det tredje introducerar vi HopsFS-S3, en mycket tillgänglig molnbaserad
distribution av HopsFS som använder objektlagring som en backend för block-
lagringslagret i molnet samtidigt som samma filsystemsemantik bibehålls. För
det fjärde introducerar vi ePipe, en databus som båda skapar en konsistent förän-
dringsström för HopsFS och så levererar korrekt beställd ström med låg latens till
nedströmsklienter. Det vill säga ePipe utökar HopsFS med ett CDC-API (Change-
data-capture) som inte bara ger effektiva filsystemmeddelanden utan också möjlig-
gör polyglot-lagring för filsystemets metadata. Med polyglot-lagring kan vi avlasta
metadatafrågor till en mer lämplig sökmotor - vi använder Elasticsearch för att
tillhandahålla en fritext-sökning i filsystemets namnområde för att visa denna
förmåga. Slutligen introducerar vi Hopsworks, en skalbar, projektbaserad big
data-plattform om stödjer flera användare och ger stöd för samarbetsutveckling
och drift för team med hjälp av utökad metadata.
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Thesis Overview
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11
Introduction

Not Dead Yet!
Hierarchical File Systems Won’t Die.

— Tony Mason, Margo Seltzer

O
ver the past decades, file systems have been the defacto standard
to organize and store users’ data. Files and directories are
organized in a tree where inner nodes represent directories, and

the leaves represent files. The increased demand for bigger file systems
to support the increasingly growing data has lead to the development of
distributed hierarchical file systems. Typically, these file systems decouple
the storage and serving of the file system’s metadata from the actual
file system’s data to enable higher throughput, better availability, and
scalability. The Hadoop Distributed File System (HDFS) [1] is one of the
most prominent file systems developed in that domain to support big data
platforms. HDFS mainly consists of a metadata server, called Namenode,
and a set of data servers called Datanodes. The file system’s metadata is
stored in the metadata server’s main memory, while the actual file’s data
is split into blocks that are replicated across the datanodes.

HDFS suffered from bottlenecks that limited its scalability, preventing it
from supporting larger clusters. The metadata server (Namenode) is the
major scalability bottleneck in the HDFS architecture, where the memory



is limited to the amount of memory that be handled on the heap of the
Java virtual machine. This memory limitation, typically around 300-500

GB, limits the number of files and directories that a cluster can store and
limits the metadata server’s throughput and performance. As a solution,
we took the scalability one step further by decoupling the storage of the
metadata from the serving of the metadata. We developed HopsFS, a
next-generation distributed hierarchical file system, to mitigate the HDFS
scalability bottlenecks. HopsFS leverages the recent improvements in the
NewSQL databases, a new class of distributed databases with a shared-
nothing architecture, and supports cross partition transactions.

HopsFS stores the file system’s metadata fully normalized in a shared-
nothing, distributed database. More specifically, HopsFS stores the meta-
data for files and directories in an inodes table where each file or directory
is mapped to a single row. HopsFS ensures consistent access to the file
system’s metadata through the use of transactions and primitive locking
supplied by the database layer, as well as application-defined locking
provided by HopsFS. HopsFS consists of three main layers; the metadata
storage layer, the metadata serving layer, and the block storage layer. The
default and recommended metadata storage layer is NDB. The metadata
serving layer consists of multiple stateless metadata servers. The block
storage layer consists of multiple datanodes that store the data blocks
for the file system’s files. The decoupling of the metadata storage from
the metadata serving opened up the file system potential to support new
classes of application. It also enabled the development of algorithms and
protocols to ensure the high availability and scalability of the file system
in different and new environments.

Decoupling the storage and serving of the file system’s metadata enables
the scalability of the file system. However, it can result in inconsistencies
between the metadata storage layer and the block storage layer. Thus,
it requires introducing a periodic synchronization protocol between the
metadata layer and the block storage layer to ensure the consistency of
the file system’s metadata and its blocks. In HopsFS and HDFS, this
synchronization protocol is called block reporting, where each datanode
in the cluster periodically sends information about its local blocks. The
network and processing overhead of the existing block reporting protocol
increases with cluster size, which would ultimately limit the cluster scala-
bility. We developed hbr, a new block reporting protocol for HopsFS to
tackle the existing protocol bottlenecks enabling HopsFS to scale to tens
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1of thousands of block storage servers.

HopsFS was developed mainly for on-premise installations, where an
administrator manages the cluster of machines. To deploy HopsFS in the
cloud, cloud service providers recommend deploying across availability
zones to ensure availability in case of failures of an availability zone. Avail-
ability zones are, in fact, data centers that are connected with low-latency
links to form a region. Each availability zone has independent power and
networking infrastructure, reducing the probability of correlated failures
of all availability zones in a given region. A service is considered highly
available (HA) in a region if it can survive the failure of an availability
zone. Internally, HopsFS uses synchronous replication protocols at the
metadata storage layer, which requires low-latency (sub-millisecond) be-
tween servers. However, recent cloud networking advancements between
availability zones have made it more viable to deploy HopsFS in the cloud.
We developed HopsFS-CL, a redesign of HopsFS, that natively provides
high availability across availability zones while maintaining the same file
system semantics.

Cloud service providers offer object stores a cheap and scalable alternative
to distributed hierarchical file systems despite their lower performance and
relaxed metadata semantics. Object stores lack critical atomic operations
such as atomic directory rename, an essential operation for implementing
transactional operations in big data lake frameworks [2–4], and SQL-on-
Hadoop frameworks [5]. On the other hand, HopsFS provides strong
metadata semantics, ensuring atomic operations such as directory rename.
We developed HopsFS-S3 to leverage the scalability, high availability, and
low cost of object stores as well as the strong metadata semantics provided
by HopsFS. HopsFS-S3 is a redesign of HopsFS that transparently uses
object stores as a backend for the block storage layer in cloud deployments.

The externalizing of the file system’s metadata in a distributed database
enables the administrators to leverage the SQL API provided by the
database to draw insights from the file system’s metadata, for example,
“Which are the biggest files in the file system?”, “Which files have been
modified this week?” etc.. However, many such queries have the potential
to overload the metadata storage layer, which in turn will overload the
whole file system. Also, NDB doesn’t support full-text search functionality.
As the conventional database wisdom says, no size fits all; that is, we
need the most suitable engine to query the metadata with different query
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patterns supplied by the user without adding non-negligible overhead
to the file system. Therefore, we designed ePipe to provide replicated
metadata as a service with negligible overhead on HopsFS. ePipe is a
databus that streams the file system’s changelog and eventually delivers
the correctly ordered stream of changes to downstream subscribers. The
ePipe architecture is pluggable to allow different types of downstream
applications and different use cases.

HopsFS is extensible by design thanks to the externalization of the file
system’s metadata to the metadata storage layer (NDB). That allows us
to implement new abstractions and features on top of the file system,
without interrupting its internal operations, using extended metadata.
Moreover, we can ensure the strong consistency of these abstractions and
features using both transactions and foreign key constraints, assuring
the file system metadata’s integrity. Recent growth in machine learning
and analytics has led to specialized development and infrastructure roles
such as data scientist, data analyst, data engineer, and machine learning
infrastructure engineer. Teams with different roles often collaborate to
curate and analyze large datasets, necessitating developing a secure and
collaborative platform for storing and analyzing large datasets. We in-
troduce Hopsworks, a secure, scalable, multi-tenant, and collaborative
big data platform built on top of HopsFS. Hopsworks provides system
support for collaborative development and operations between the diverse
roles, where sensitive data can be securely stored on a shared cluster.
Hopsworks leverages the extended metadata of HopsFS to implement
three new abstractions projects, datasets, and users. A project is a set
of capabilities/privileges defined over a subset of users and a subset of
datasets. A dataset is a subdirectory in the file system that holds the user’s
data and can be securely shared with other users.

1.1 Thesis Statement

Consistent, customizable metadata in distributed hierarchical file
systems enables improvements in the scalability and high availabil-
ity of the file system and allows for new capabilities such as fast
free-text search, new security models, and cloud-native integration.
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11.2 Thesis Contributions

This thesis contribution is threefold. First, we show how HopsFS uses
modern NewSQL databases to store the file system’s metadata consistently,
providing higher throughput and better scalability than HDFS. Second,
we identify different bottlenecks with HopsFS that limit its scalability
and adoption in cloud environments. To tackle these bottlenecks, we
developed a new block reporting protocol (hbr) and two new extensions
to HopsFS (HopsFS-CL and HopsFS-S3) to enable efficient, scalable and
highly available deployments of HopsFS in the cloud. Third, we leverage
the extensibility of HopsFS to build different systems on top that both
extend the file system’s metadata and have strongly consistent lifecycles
for the extended files/directories. More specifically, we developed ePipe to
provide consistent replication of the file system’s metadata into different
stores, allowing efficient query and storage of the file system metadata.
We then developed Hopsworks to ease the development and operations
of different teams, enabling secure and multi-tenant access while using
the same HopsFS cluster.

1.3 List of Publications

The list of publications that are part of this thesis:

1. Scaling HDFS to more than 1 million operations per second with
HopsFS. Mahmoud Ismail, Salman Niazi, Mikael Ronström, Seif
Haridi, Jim Dowling. In Proceedings of the 17th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing, CCGRID 2017,
Madrid, Spain.

Author’s Contributions: The thesis author contributed to choos-
ing efficient design decisions and optimization techniques to allow
the proposed system (HopsFS) to scale to 1 million operations per
second. He also contributed to the implementation and experimenta-
tion of HopsFS. The thesis author wrote the majority of the text and
designed the figures in this paper. This paper won the 10th IEEE
International Scalable Computing Challenge (SCALE 2017).

2. HopsFS: Scaling Hierarchical File System Metadata Using NewSQL
Databases. Salman Niazi, Mahmoud Ismail, Mikael Ronström, Stef-
fen Grohsschmiedt, Seif Haridi, Jim Dowling. In 15th USENIX
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Conference on File and Storage Technologies, Santa Clara, California, USA,
2017.

Contributions: The thesis author contributed to the design, imple-
mentation, performance optimization, and evaluation of the pro-
posed system (HopsFS). He also contributed to the writing and
figures design of this paper. The thesis author is one of the two main
contributors to HopsFS.

3. Scalable Block Reporting for HopsFS. Mahmoud Ismail, August
Bonds, Salman Niazi, Seif Haridi, Jim Dowling. In IEEE International
Congress on Big Data (BigData Congress), Milan, Italy, 2019.

Contributions: The thesis author designed and implemented the
proposed protocol (hbr) presented in this paper. He also contributed
to developing and performing experiments and evaluations. He
wrote the majority of the text and designed the figures in this paper.
This paper won the Best Student Paper award in IEEE BigData-
Congress 2019.

4. Distributed Hierarchical File Systems strike back in the Cloud .
Mahmoud Ismail, Salman Niazi, Mauritz Sundell, Mikael Ronström,
Seif Haridi, Jim Dowling. In 40th IEEE International Conference on
Distributed Computing Systems (ICDCS), Singapore, 2020.

Contributions: The thesis author designed and implemented the
proposed system (HopsFS-CL) presented in this paper. He also
performed the experiments and evaluations, wrote the majority of
the text, and designed the figures in this paper.

5. HopsFS-S3: Extending Object Stores with POSIX-like Semantics and
more. Mahmoud Ismail, Salman Niazi, Gautier Berthou, Mikael
Ronström, Seif Haridi, Jim Dowling. In Proceedings of the 21st
International Middleware Conference Industrial Track, The Netherlands,
2020.

Contributions: The thesis author contributed to the design and
implementation of the proposed system (HopsFS-S3) presented in
this paper. He also performed the experiments and evaluations,
wrote the majority of the text, and designed the figures in this paper.

6. ePipe: Near Real-Time Polyglot Persistence of HopsFS Metadata.Mah-
moud Ismail, Mikael Ronström, Seif Haridi, Jim Dowling. In 19th
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1IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (CCGRID), Larnaca, Cyprus, 2019.

Contributions: The thesis author designed and implemented the
proposed system (ePipe) presented in this paper. He also performed
the experiments and evaluations, wrote the majority of the text, and
designed the figures in this paper.

7. Hopsworks: Improving User Experience and Development on Hadoop
with Scalable, Strongly Consistent Metadata. Mahmoud Ismail, Er-
mias Gebremeskel, Theofilos Kakantousis, Gautier Berthou, Jim
Dowling. In 37th IEEE International Conference on Distributed Comput-
ing Systems (ICDCS), Atlanta, GA, USA, 2017.

Contributions: The thesis author contributed to the design and
implementation of the proposed system (Hopsworks) presented in
this paper. He also wrote the majority of the text and designed the
figures in this paper.

Other publications by the author of the thesis that are not part of this
thesis:

1. Leader Election using NewSQL Database Systems. Salman Niazi,
Mahmoud Ismail, Gautier Berthou, Jim Dowling. In Distributed
Applications and Interoperable Systems (DIAS): 15th IFIP WG 6.1 Inter-
national Conference, DAIS 2015. Held as Part of the 10th International
Federated Conference on Distributed Computing Techniques, DisCoTec
2015, Grenoble, France, June 2-4, 2015.

2. HopsFS: Scaling Hierarchical File System Metadata Using NewSQL
Databases. Salman Niazi, Mahmoud Ismail, Seif Haridi, Jim Dowl-
ing. In: Sakr S., Zomaya A.Y. (eds) Encyclopedia of Big Data Tech-
nologies. Springer, Cham.https: // doi.org/ 10.1007/ 978- 3- 319-
77525- 8_146

1.4 Thesis Outline

This thesis is organized into two parts. The first part provides an overview
of the thesis. Chapter 2 gives an overview of the thesis context. Chapter 3

provides a summary of the thesis contributions, and Chapter 4 provides
the thesis conclusions and future work. The second part presents the
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thesis contributions in further detail as a collection of published research
papers.
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2
Thesis Context

In this chapter, we provide the essential background needed to understand
the context of the thesis contributions. First, we provide an overview of
the architecture of the Hadoop Distributed File System (HDFS) and its
pitfalls. Then, we give an overview of the architecture of HopsFS, its
improvements to HDFS, and its shortcomings.

2.1 Hadoop Distributed File System (HDFS)

HDFS [1] is a distributed hierarchical file system that decouples the storage
of the file system’s metadata from the file system’s data, following the
design of the google file system (GFS) [6]. HDFS typically consists of
a single active metadata server (Namenode) and a set of block storage
servers (Datanodes). The metadata server stores the file system’s metadata
in memory, while the file data is split into blocks that are replicated across
the block storage servers for fault tolerance using a replication pipeline
protocol [1]. HDFS is an append-only file system that provides single
writer multiple reader semantics. Internally, the metadata server uses
a global lock to synchronize access to the file system’s metadata. The
metadata server is a single point of failure (SPOF). That is, if the metadata
server goes down, the whole file system becomes unavailable. To avoid
such a scenario, HDFS provides high availability (HA) setup based on an
active-standby failure model [7, 8], as shown in Figure 2.1.

An HA HDFS cluster typically consists of a single active metadata server,
a set of standby metadata servers, a set of Zookeeper nodes, and a set of



journal nodes. The active metadata server logs the file system operations
in a transaction log called the edit log, where each file system operation
is assigned with a monotonically increasing transaction_id. The edit
logs are written to a quorum of journal nodes for durability. The standby
metadata servers asynchronously read the journal nodes’ edit logs and
apply the changes locally in-memory. The Zookeeper nodes are used
for failover, to detect when the active metadata server fails and reliably
elect one of the standby metadata servers as the new active metadata
server. This architecture, however, does not address the limitations of the
single active metadata server. The number of files/directories stored on
the file system is limited by the size of the metadata server’s memory,
upper limited by the maximum size of the JVM heap [9]. Moreover, the
metadata server runs as a Java process where garbage collection pauses
are inevitable, which would potentially disrupt the metadata server’s
operations, which will likely affect the performance of the metadata
server [10, 11]. The failover is not instantaneous, depending on how up-
to-date the journal nodes are and how fast the zookeeper nodes detect a
failure.

NutFS 
Clients
NutFS 
Clients

HDFS 
Clients

Metadata
 Storage & Serving 

Block
 Storage 

DNs

Journal Nodes Zookeeper Nodes

NNs
ActiveStandby

Figure 2.1: An architecture diagram of HA HDFS. A typical cluster consists of a single active
metadata servers, a set of standby metadata servers, a set of journal nodes, a set of Zookeeper nodes,
and a set of datanodes.

2.1.1 File system operations
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Writing a file

To write a file to HDFS, the client first sends a request to the metadata
server (Namenode) to create the file; the metadata server adds the file to
the file system’s namespace and responds to the client. Then, the client
splits the file into blocks of configurable size (Default: 128 MB). For each
block, the client sends a request to the metadata server to add a new block.
The metadata server then randomly chooses a list of block storage servers
(Datanodes) based on the block placement policy and responds with the
list of the selected block storage servers, typically three servers. HDFS
uses chain replication where the client starts writing the block sequentially
to the first datanode in the list, then the datanode writes to the second
datanode in the list, and so on until reaching the last datanode in the
chain. The acknowledgment is sent in reverse order until it reaches the
client, and if more blocks need to be written, the client requests another
new block from the metadata server. The process repeats until all blocks
are written, and the file is closed.

Block reporting

HDFS uses a block reporting protocol to synchronize the state of the blocks
between the metadata server and the block storage servers to ensure the
file system’s consistency. Each block storage server periodically, every 6

hours, sends a block report containing information about all the block
replicas it has. The metadata server cross-checks the received block report
with the replicas map for that block storage server. Then, in case of
mismatches, the metadata server issue commands to account for these
mismatches, such as creating a new replica of an under replicated block
or removing a corrupt block.

Reading a file

To read a file from HDFS, the client sends a request to the metadata server
to locate the file. The metadata server responds with the list of the file’s
blocks and for each block, the list of block storage servers where the block
is stored. The client then starts reading the blocks in order while using
any of the replicas for each block.

2.1. Hadoop Distributed File System (HDFS) 13



2.1.2 File system notifications

HDFS implements a file system notification service (inotify) in the name-
node that provides notifications about changes on the file system to
clients [12, 13]. Clients will periodically poll the metadata server for
new transactions (file system operations) that happened after a given
transaction_id. HDFS INotify could be used to implement different
polyglot persistence scenarios for the file system metadata besides the
notification functionality, such as replicating the file system metadata into
different stores. Still, in practice, inotify introduces excessive overhead on
the metadata server. For this reason, the HDFS community has started
exploring alternative solutions such as starting a shadow metadata server
that responds only to inotify requests [12]. The metadata server also keeps
only a subset of the edit log in an in-memory cache, so reading an older
transaction will impose extra network round trips to read the data from
the journal nodes. As a solution, the metadata server should write the
edit logs locally and write to the journal nodes, but that will add a storage
constraint on an already overburdened metadata server. Another solution
would be to implement a caching mechanism for the most requested
transactions in memory to save some round trips to the journal nodes.

HDFS INotify currently has poor security support, working only with
superuser privileges, and it doesn’t support fine-grained watches over a
specific directory. The HDFS INotify service is intrusive by design and
could potentially overload the metadata server. Therefore, alternative
systems such as Trumpet [14] were developed to provide a non-intrusive
inotify service for HDFS. Trumpet periodically polls the edit logs from
the local file system of the metadata or a journal node. Then, it publishes
the transactions as events into a Kafka topic, that is used by the clients
to consume the events as it comes. However, polling the local file system
and publishing to Kafka adds non-negligible overhead that increases
the replication lag compared to the native inotify service provided by
HDFS. HDFS provides a find operation to search through the file system’s
namespace based on the file/directory name. This operation is inefficient
by nature since it scans the whole file system namespace without any
indexes.

14 Chapter 2. Thesis Context



C
h.

2

2.1.3 Authorization systems

HDFS supports traditional POSIX file system permissions and Access
control lists (ACLs) to protect and limit access to files and directories
from non-designated users and groups. Other systems in the Hadoop
ecosystem, such as Hive [5], Hbase [15], Kafka [16], etc., support differ-
ent methods to authorize users. That is why systems such as Apache
Ranger [17] and Apache Sentry [18] were developed to provide a central-
ized authorization service for different systems and components of the
Hadoop ecosystem. Ranger provides a centralized web interface where
administrators can create policies that manage access to various resources
(could be a file, directory, table, or column). These policies are stored
in an internal relational database in the Ranger server. Ranger provides
a set of plugins for each system/component of the Hadoop ecosystem.
The plugin is loaded as part of the running system. For instance, the
HDFS plugin is loaded as part of the metadata server (namenode). The
plugin periodically, every 30 seconds by default, polls the policies from
the Ranger server. The plugin intercepts the user request and checks
if the user has the necessary access rights to proceed as defined in the
user’s policies. In the HDFS plugin case, if policies are not specified, the
authorization proceeds with normal file permissions and ACLs checks.
Due to the plugins’ polling nature, inconsistencies may arise between the
Ranger server and the Ranger plugins. There is also the problem that
users need to understand the precedence rules between Ranger policies
and HDFS permissions and ACLs - a user may see in HDFS that a file
should be readable but not realize a ranger policy prevents file access.

2.1.4 S3A connector

Object stores have become the defacto standard for storage in the cloud
due to their low cost, scalability, and high availability. However, they
provide relaxed metadata semantics and lack critical file system operations
such as atomic directory rename. HDFS provides file system connectors
for different object stores such as Amazon S3 using S3A connector [19].
S3A mitigates the relaxed semantics of Amazon S3 by using S3Guard [20].
S3Guard is an experimental feature of the S3A connector that keeps
track of the objects (files) stored in S3 and its associated metadata in a
highly available consistent database (Amazon DynamoDB [21]). Internally,
for each operation on S3A that modifies the S3 objects, S3Guard writes
the changes to the database. Then, S3Guard consults the records from
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the database for any subsequent operation before proceeding with the
operation. That allows for improved performance and a consistent view
of the metadata, especially for operations such as directory listing and file
status. Still, due to the relaxed semantics of Amazon S3, newly created
or updated files may not be immediately available to read after create
or update operations. That is, readers may read stale data. Moreover,
directory rename operation is still not atomic, affecting systems that use
this operation for implementing commit protocols on top of HDFS such
as big data lake frameworks [2–4], and SQL-on-Hadoop frameworks [5].
For that reason, S3A implements a commit protocol that can consistently
work with Amazon S3 [22]

2.2 HopsFS

HopsFS [23,24] is a next-generation distribution of the Hadoop distributed
file system (HDFS) [1]. We designed HopsFS to tackle the limitations and
shortcomings of HDFS by replacing the single metadata architecture with
a distributed metadata architecture. As such, we decouple the storage
of the file system’s metadata from its access. The file system’s metadata
is stored fully normalized in a shared-nothing, in-memory, distributed
database, while multiple stateless metadata servers serve client requests.
HopsFS consists of three main layers, the metadata storage layer, the
metadata serving layer, and the block storage layer, see Figure 2.2. In
this section, we present a description of each of the layers that constitute
HopsFS. For more in-depth details about HopsFS refer to Paper I [24] and
Paper II [23].

2.2.1 The metadata storage layer

The metadata storage layer is a NewSQL database [25] that is responsible
for the storage of the file system’s metadata. NewSQL databases are a
class of OLTP (Online transaction processing) relational databases that
typically offer SQL APIs while maintaining the ACID semantics at the
scale of NoSQL databases. These databases usually employ shared-noting,
in-memory, and distributed architecture. The default and recommended
database in HopsFS is NDB (Network database), the storage engine of
MySQL Cluster [26, 27]. NDB horizontally partitions the tables’ data
across datanodes in the NDB cluster. NDB provides high throughput, high
availability, and real-time performance through the use of features such
as row-level locking, application-defined partitioning (ADP), distributed
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Figure 2.2: An architecture diagram of HopsFS. HopsFS consists of three layers; the metadata storage
layer, the metadata serving layer, and the block storage layer. The default metadata storage layer is
NDB. Small files, files with size less than 128 KB, are stored with the file’s metadata in NDB.

aware transactions (DAT), as well as parallel cross-partition transactions.
Currently, we only support NDB as the metadata storage layer in HopsFS.
However, we provide a pluggable architecture using the DAL layer, as
shown in Figure 2.2, to allow the implementation of different database
connectors. Alternative NewSQL databases such as MemSQL [28] and
SAP Hana [29] can be used to implement the metadata storage layer,
while others, like VoltDB [30] are not recommended since they serialize
cross-partition transactions.

NDB Architecture

A typical NDB cluster consists of at least one management node, multiple
NDB datanodes, and one or more MySQL servers, as shown in Figure 2.3.
The management nodes are responsible for configuration and arbitration
in case of network partitions. The MySQL servers are responsible for
handling SQL queries submitted to the cluster. Besides SQL, NDB provides
a high-performance native APIs to interact with the cluster. Nodes that use
the native APIs are called API nodes (such as HopsFS metadata servers).
For fault tolerance, NDB replicates the tables’ data across NDB datanodes.
The NDB datanodes are organized into replication groups called node
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groups. The number of node groups is calculated as N/R, where R is a
configurable parameter to control the number of replicas in the cluster,
and N is the total number of datanodes in the cluster. The number of
datanodes within a node group is the NDB replication factor (R). For
example, as shown in Figure 2.3, given a default replication factor set to 2,
there are 4 NDB datanodes in the cluster organized into 2 node groups,
where each node group has 2 NDB datanodes. Each NDB datanode within
a node group contains a full replica of the tables’ data assigned to that
node group. That is, if an NDB datanode fails, the other nodes in the
node group could take over. The NDB cluster can survive as long as there
is still at least one alive NDB datanode in every node group, where a
datanode is declared dead if it misses four heartbeat intervals in a row
(20 seconds by default). For each partition in every node group, one NDB
datanode will be assigned as a primary replica while the other nodes will
be backup replicas. For durability, NDB datanodes record the in-memory
data changes to REDO and UNDO transaction logs on disk. Also, the
NDB datanodes asynchronously checkpoint all the in-memory data to
disk and then truncate the REDO and UNDO logs to bound the size of the
logs and shorten the datanode recovery time. Moreover, NDB provides a
global checkpointing protocol to write all on-going transactions and their
state to disk to survive cluster-level and datanode failures.

Metadata
 Storage 

NDB
Management

MySQL Servers

Datanodes

Node Group 1 Node Group 2

Figure 2.3: An architecture diagram of NDB. A typical cluster consists of at least one management
node, a set of datanodes, and one or more MySQL server nodes. The NDB datanodes are grouped into
different node groups depending on the configured replication level (2 by default).
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NDB Transactions

NDB supports only read-committed transaction isolation level to yield high
performance. Non-repeatable reads could occur in a transaction with
read-committed isolation level [31]. However, NDB provides a row-level
locking primitive, which can be used by applications to provide stronger
consistency requirements. In HopsFS, we use the row-level locking, sup-
plemented by an application-defined lock for subtree operations, see
Section 2.2.2, to ensure the strong consistency of the file system. Each
NDB datanodes runs a group of threads categorized according to their
functionality, such as local data manager (LDM) and transaction coor-
dinator (TC) threads. The number of these threads is configurable and
can be tuned to improve the performance of NDB. The LDM threads are
responsible for handling the different table’s partitions assigned to this
datanode. In contrast, the TC threads are responsible for handling all
transactions, including cross partition transactions, in the cluster.

NDB horizontally partitions a table across NDB datanodes based on the
MD5 hash of the primary key. Application-defined partitioning (ADP) is
a feature provided by NDB that allows application developers to override
the default NDB partitioning and define their partitioning scheme for their
tables. NDB also provides distribution-aware transactions (DAT), enabling
application developers to supply a transaction hint based on the partition-
ing scheme to enforce starting the transaction on an NDB datanode that
potentially has the required data for that transaction. Incorrect transaction
hints will not cause any inconsistencies since the transaction coordinator
will reroute the request to the appropriate local data manager (LDM) that
holds the required data.

For concurrency control, NDB uses the Strict Two-Phase locking proto-
col [32]. The transaction protocol starts by acquiring all the locks necessary
and does not release these locks until the transaction commit point is
reached. NDB always locks the primary replica first, then the backup
replicas to avoid deadlocks. NDB implements a non-blocking, distributed
commit protocol that uses the Two-Phase commit protocol (2PC) [33]
across rows while using a Linear Two-Phase Commit protocol (L2PC) for
each row [26]. The protocol works as depicted in Figure 2.4. First, the
transaction coordinator (TC) sends the Prepare message to the primary
replica, which propagates it to the backup replicas until it reaches the last
backup replica, which sends the Prepared message to the TC. Then, the
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Commit message is sent in the reverse order (to the last backup replica).
Once the Commit message reaches the primary replica, the locks are re-
leased on the primary replica, and a Committed message is sent to the TC.
Once the TC receives all the Committed messages from all the primary
replicas for all rows, the transaction is committed and an acknowledge-
ment is sent to the application. In parallel, to yield high performance, the
TC sends Complete message to the primary that forwards it to the backup
replica to release the locks on the backup replicas. Then, the backup
replicas respond with a Completed message to the primary replicas, which
in turn forward the Completed message to the TC. The backup replicas are
asynchronously updated after the transaction is committed, and the appli-
cation is acknowledged. Therefore, NDB ensures that all read requests are
routed to the primary replicas to avoid any inconsistencies.

A TC may fail while transactions are running. Therefore, NDB implements
a transaction take-over protocol that elects another TC, which reads the
state of all ongoing transactions and proceed with the transactions as
usual. An NDB cluster will survive as long as at least one datanode in
each node group is alive. NDB implements a node failure detection and
heartbeat protocols that are used by the surviving nodes on the cluster to
agree on which nodes have already failed. Moreover, to ensure liveness,
NDB provides timeouts such as TransactionInactiveTimeout to abort the
transaction in case of client failure or abandoning, and TransactionDead-
lockDetectionTimeout to abort the transaction in case of node failures, high
load, and deadlocks. HopsFS uses these timeouts, as mentioned earlier, to
implement a transaction retry mechanism.

NDB Operations

NDB supports different types of operations to access the database. We
order the operations based on their cost in NDB. This cost entails the
operation latency and throughput, as well as overhead on NDB. The order
is as follows:

1. Primary Key (PK): This operation reads/writes/updates a single
row in/from a table in NDB using appropriate locks (read, write, or
read-committed). NDB provides low latency and high throughput
for this type of operation. This operation is the most efficient type
of operation in NDB since it touches a single partition where the
primary key infers that partition. NDB, by default, distributes the
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Figure 2.4: A simple description of the NDB commit protocol while committing a transaction to
write two rows (r1, r2) to two different partitions. Pr1 is the primary replica for r1, while Br1 is the
backup replica for r1. Similarly for r2, Pr2 is the primary replica and Br2 is the backup replica.

rows in a table based on their primary key unless if an application-
defined partitioning is used, then NDB uses the partition key instead.
The partition key must be part of the primary key. Moreover, by
leveraging the distribution-aware transaction (DAT) feature, we can
ensure that the operation runs on the NDB datanode that holds the
rows for that partition.

2. Batched Primary Key (B): This operation is an extension to the
PK operation that leverages the batching technique used in the
traditional databases to provide higher throughput at the cost of
higher latency by making efficient use of the network bandwidth.
Batches of PK operations are executed as part of a single transaction.

3. Partition Pruned Index Scan (PPIS): This operation is an index
scan operation that is local to a single NDB partition. This operation
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requires defining an application-defined partitioning scheme for the
tables. NDB will ensure that rows with the same partition key will
always reside on the same partition. Moreover, by leveraging the
distribution-aware transaction (DAT) feature, we can ensure that the
operation runs on the NDB datanode that holds the partition.

4. Index Scan (IS): This operation is a regular index scan operation
that hit all partitions in NDB. Its cost scales linearly with the number
of partitions, compared to PPIS operation, that have a constant cost.

5. Full Table Scan (FTS): This operation reads all rows in all the parti-
tions in NDB without using any indexes.

HopsFS was designed such that most of the operations are PK, B and PPIS
operations while the IS operations are used in very limited non-critical
path situations, and FTS operations are avoided.

NDB Event API

NDB provides a publish-subscribe API called the Event API that allows
applications to subscribe for change events (write, update, or delete) on
tables on NDB. Then, NDB streams the committed changes on that table
to the corresponding subscribers. Each NDB datanode independently
generates a list of change events for the transactions it was involved in.
Then, using the Event API, the changes from all NDB datanodes are
grouped to form a consistent batch using their epochs, a logical clock
periodically incremented across all NDB datanodes. Once all the change
events from an epoch are received, the Event API sends these change events
to the subscriber’s application.

NDB implements a logical clock known as an epoch that is periodically
and atomically incremented across all nodes in the cluster using a leader
driven protocol [34]. Epochs are used to maintain a total order of events on
the cluster, that is required by various internal functions such as grouping
sets of committed transactions together for later use by the NDB Event API.
The epoch itself is a 64-bit number that consists of two parts; the Global
Checkpoint Index (GCI) and microGCI. The GCI is the 32 most significant
bits, incremented during a checkpoint by the Global Commit Protocol
(GCP), every 2 seconds by default. The microGCI is the 32 least significant
bits, which is incremented quite frequently, every 100 milliseconds by
default, by a GCP variation. The difference between any two successive
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epoch numbers is not guaranteed to be always one since every time the
GCI is incremented the microGCI is reset to zero.

An epoch contains zero or more committed transactions, and a transac-
tion can appear only in one epoch. Long-running transactions can span
multiple epochs, but they will only be recorded at the epoch in which
they are committed, for example, T7 as shown in Figure 2.5. Transactions
committed in epoch n+ 1 have happened after transactions committed in
epoch n. That is, row changes in epoch n+ 1 have happened after row
changes in epoch n. But within the same epoch, there is no guarantee over
the order of transactions. Concurrent transactions can only interact using
row locks, which enforces ordering over the transactions operating on the
same rows within the same epoch, for example, T2 and T3, as shown in
Figure 2.5. However, it is not the case for concurrent transactions working
on independent rows, for example, T5 and T6 as shown in Figure 2.5. Due
to these ordering properties, epochs only guarantee a partial order on
the events that make up the database changelog. The NDB Event API
leverages epochs to deliver a partially ordered stream of change events
happening on the rows in any table. Each NDB database node guarantees
that events happened in epoch n to be delivered before events happened
in epoch n+ 1.

T1(r1)

T3(r2)

T4(r3)

T2(r2)

T5(r4)

T6(r5)Client1

Client2

Client3

epoch0 epoch1 epoch2 epoch3

Transactions Happen-before relation

epoch1 {T1} -

epoch2 {T2, T3, T4} T2 → T3
T4 has no ordering guarantees

epoch3 {T5, T6, T7} No ordering guarantees

T7(r6)Client4
Tx Start
Tx Commit

Figure 2.5: Ordering of events within and across epochs. epoch1 contains T1 operating on row
r1, epoch2 contains T2, T3, T4 operating on rows r2,r2,r3 respectively, and epoch3 contains
T5,T6,T7 operating on rows r4,r5,r6 respectively. T2 and T3 are operating on the same rows,
but we can induce the desired ordering due to the lock T2 managed to acquire the lock first in this
case. However, in the case of T5 and T6 the transactions could appear in any order in the database
changelog.

NDB uses a global commit protocol (GCP) to increment the epoch number
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across all cluster nodes. The GCP is a variant of a 2-phase commit protocol
that piggybacks the new epoch in the second phase of the protocol. The
GCP follows a similar approach to the Single Mark algorithm described
in [35]. In the NDB cluster, one NDB node is elected as master. If the
current elected master fails, then another node is elected to take over as
master. NDB guarantees in-order (FIFO) delivery of messages between
nodes in the cluster. The protocol runs periodically at each NDB node.
It operates in two phases, a preparation phase where each NDB data
node freezes the current prepared transactions from beginning to commit.
In contrast, already committing transactions can continue to commit
normally, and ongoing transactions can continue working normally. In
the second phase, the master increments the current GCI and piggybacks
the newly assigned epoch number on the commit message to all nodes.
Then, each node unfreezes the transactions so they can start committing
and assign the new epoch to them. The GCP runs periodically every
TimeBetweenGlobalCheckpoints, 2 seconds by default. Another variation
of the GCP is the microGCP, which is used to increment the microGCI,
and it runs more frequently every TimeBetweenEpochs, 100 milliseconds
by default. The main difference between both protocols is that microGCP
doesnt cause the transaction logs that were updated during that microGCI
to be flushed to disk. A consequence of only flushing transaction logs at
the end of a GCP is that, on catastrophic system failure, only transactions
up to the last the completed GCI are recoverable.

HopsFS metadata

HopsFS stores the file system metadata fully normalized in NDB. The file
system metadata is represented as rows in tables on NDB. Each inode
(file/directory) is represented as a row in the inodes table. A file consists of
zero or more data blocks where the metadata for each block is represented
as a row in the blocks table. The data blocks are replicated where the
metadata for each replica is represented as a row in the replicas table.
Also, there are different tables to represent metadata for the different
states of the blocks and replicas, such as under replicated blocks, over
replicated blocks, and excess replicas. HopsFS has in total ≈ 90 tables
to represent the file system’s metadata and its supported features, such
as access control lists (ACLS). HopsFS leverages the ADP (Application-
defined partitioning) feature provided by NDB to ensure the locality
of the file system’s metadata. All the tables except the inodes table are
partitioned by the inodeId. That is, all the metadata related to an inode
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(file/directory) will reside on the same NDB partition (on a single NDB
datanode). However, the inodes table is partitioned by the parent inodeId.
That is, all the immediate children inodes will reside on the same NDB
partition. To avoid hotspots, HopsFS implements a random partitioning
scheme for the top-level directories.

2.2.2 The metadata serving layer

The metadata serving layer is responsible for handling file system requests
from potentially thousands of HopsFS and HDFS clients. In HopsFS,
metadata servers (namenodes) are stateless servers that, in parallel, access
and mutate the file system metadata stored on the metadata storage layer
(NDB). The metadata servers use the data access layer (DAL) to operate
on the file system’s metadata stored on NDB, see Figure 2.2.

HopsFS Transactions

The file system’s metadata operations are encapsulated in HopsFS trans-
actions that internally map to NDB transactions. HopsFS divides the file
system metadata operations into two categories; inode operations and subtree
operations. Inode operations operate on a single inode (file/directory) such
as create, read, and delete a file, while subtree operations are operating
on a subtree of the namespace such as move, rename and delete a direc-
tory, which could potentially have millions of children inodes. HopsFS
implements a concurrency control mechanism based on the pessimistic
concurrency control. It ensures that all file system metadata needed for a
transaction are locked with a shared or exclusive lock before the transac-
tion starts operating on those metadata [32]. HopsFS uses the row-level
locking primitive provided by NDB to serialize conflicting transactions,
which offers a fine-grained locking mechanism. On the other hand, HDFS
uses a single global lock to lock the whole namespace when processing
any file system operation (with a single concurrent write and multiple con-
current readers). Moreover, HopsFS implements an application-defined
lock for subtree operations to serialize conflicting subtree operations on
the namespace.

HopsFS uses hierarchical locking (implicit locking) mechanism to limit
the number of locks taken by the transaction without sacrificing the
correctness of the transaction [36]. HopsFS ensures that all file system
operations always start with an inode that is locked according to the file
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system operation type. Simultaneously, all the other associated metadata
are read with no lock (using read-committed). That is, the associated
metadata is guarded by the lock of their inode. All file system operations
are path-based, and in any given file system operation, only a subset of
the path components are mutated. Therefore, HopsFS only locks the last
component (inode) of the path, and in some cases, it also locks the second
last component while reading the rest of the path with no locks (using
read-committed).

For example ’mkdir /usr/local/mydir’ is a file system operation to create
a directory under the parent directory ’/usr/local’. In HopsFS, each path
component is represented in NDB as a row in the inodes table where
the path component name, parent inode id, and partition key are the
composite primary key of the table. Therefore, to create the directory
’/usr/local/mydir’, HopsFS will first traverse the path components and
reads their corresponding metadata from NDB. It will then evaluate the
metadata against the operation logic, such as checking the permissions
and quotas. Every metadata server in HopsFS implements an inodes
cache to cache the primary keys for each of the path components to avoid
multiple round trips to the database, that otherwise would be needed to
traverse the primary keys for the inodes.

Moreover, HopsFS uses the distribution-aware transaction (DAT) feature
provided by NDB to ensure the locality of HopsFS transactions. That is, a
HopsFS transaction runs on the NDB node with all/most of the needed
metadata for that transaction. To use the DAT feature, HopsFS requires to
provide the partition key for the inodes table at the start of the transaction.
For that, we leverage the inodes cache to get the required partition key for
the transaction to ensure the locality of the metadata.

HopsFS ensures that the file system metadata are locked in the same
total order in all transactions to avoid deadlocks. That is, HopsFS tra-
verses the file system namespace using a left-ordered depth-first search.
Every HopsFS transaction runs in four phases, pre-transaction phase, lock-
acquire phase, transaction processing phase, and final phase to commit or
rollback the transaction. Figure 2.6 shows a template of a HopsFS trans-
action. A more detailed description of each of the HopsFS transaction
phases is as follows:

Pre-Tranasction phase: HopsFS gets the partition key associated with
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Pre-Transaction:
1. Get the partition for the path from the inodes cache.
2. Set the partition key for the transaction.

Begin Transaction
Acquire Locks:

3. Traverse the path locally in memory using the inodes cache.
4. Validate the path components read from the cache up to the

penultimate inode using a batch primary key operation.
5. If cache miss or invalid path components then

Traverse the path recursively up to the penultimate inode.
6. If ongoing subtree operation on the path then

Abort transaction and retry transaction after timeout.
7. Lock the last inode and/or the penultimate inode depending on

the operation.
8. Read all associated metadata for the resolved inodes and store

in the transaction cache.
Processing:

9. *Do the work needed by the file system operation*
Update

10. Commit the changes captured by the transaction cache
or rollback if the transaction is aborted

End Transaction

Figure 2.6: A template of a HopsFS transaction.

the file system path from the inodes cache. If there is no partition key
in the cache for the provided path, then a random partition key is
used. Note that using a random partition key will not compromise
the transaction’s correctness, see Section 2.2.1. HopsFS sets the
transaction partition key to be the key provided by the cache or
fallback to a random partition key.

Acquire Locks phase: HopsFS traverses the path locally in memory
using the inodes cache. It then validates the correctness of the cache by
reading the path components using batched primary key operation.
If some or all path components are invalid, then HopsFS updates
these components in the inodes cache accordingly and then falls back
to the recursive traversal mechanism. If an existing directory along
the path has an ongoing subtree operation, the transaction will abort
and retry again later to ensure the consistency of the file system’s
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metadata. So, for subtree operations, HopsFS follows an optimistic
concurrency control model. The last inode and in some cases, the
second last inode is locked based on the lock type required by the
operation (shared or exclusive). Then, all the metadata associated
with the resolved inodes is read as defined by the transaction. For
instance, if the last inode in the path is a file, then the file blocks,
their replicas, and the other associated metadata tables are read. The
resolved inodes and their associated metadata are kept in memory
in a transaction local cache.

Processing phase: HopsFS does the work required for processing the
file system operation. For instance, if a mkdir operation is being
processed, then HopsFS checks the permissions and quotas of the
parent directories and checks if the requested directory does not
exist, and then updates the inodes table to add a new directory.
During the processing phase, the transaction will read and update
the file system metadata in the transaction local cache.

Update phase: HopsFS commits the changes in the transaction local
cache to the database. If the commit succeeds, the transaction is
done. Otherwise, the transaction is aborted, and the changes are
rolled back from the database.

Leader Election

HopsFS implements a leader election service on top of the metadata
storage layer [37]. The metadata servers use the leader election service to
elect one of them as the leader. The leader election service runs every 2

seconds by default and ensures there is only one active leader at a time.
The leader metadata server is responsible for housekeeping operations,
such as sending commands to the datanodes to delete invalidated or over
replicated blocks or replicate under replicated blocks.

HopsFS Clients

HopsFS is compatible with HDFS APIs. Hence, both HDFS and HopsFS
clients can be used to access HopsFS. However, HopsFS clients are recom-
mended since they provide load balancing and faster failover. A HopsFS
client can connect to any of the metadata servers to execute file system op-
erations and queries for all active metadata servers in the cluster. HopsFS
clients provide three different policies to connect to the metadata servers.
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First, a round robin policy where the client selects a new metadata server
in round-robin every time it receives a request to execute a file system
operation. Second, a random policy, where the client selects a random
metadata server for every file system operation. Third, a sticky policy,
where the client selects a random metadata server and sticks with it until
it fails, then it selects another random metadata server. The sticky policy
is the default and recommended policy since it improves the hit-rate for
the inodes cache in the metadata servers.

2.2.3 The block storage layer

The block storage layer is responsible for storing the actual data of the file
system. The files are split into blocks of configurable size, typically 128

MB, which are replicated across different nodes in the blocks storage layer,
usually 3 nodes, similar to HDFS. The number of files and directories an
HDFS cluster can store is limited due to the metadata server’s scalability
bottlenecks. For that reason, HDFS recommends using even bigger block
sizes and discourages storing small files in the cluster. However, in reality,
the percentage of small files, < 1 MB, in production clusters is typically
high (> 50%) [38]. On the other hand, HopsFS does not have the same
limitation on the number of files due to the use of the distributed metadata
storage layer. Moreover, HopsFS leverages NVMe disks and the NDB
on-disk column feature to store the small files,< 1 MB, with their metadata
in NDB [38].

2.3 Current Limitations of HopsFS and HDFS

We introduced HDFS, the de facto standard distributed file system. HDFS
offers a single metadata server architecture that suffered from scalability
bottlenecks limiting the number of files/directories in a cluster, the size of
a cluster, increasing failover time during failures, and introducing garbage
collection pauses in the JVM. Then we introduced HopsFS, a version
of HDFS that uses a distributed metadata architecture to overcome the
scalability bottlenecks suffered by HDFS. HopsFS provides a consistent
distributed hierarchical file system metadata that can scale to much bigger
and larger clusters than HDFS without compromising the file system’s
consistency. However, HopsFS lacks support for efficient and fast search
as well as metadata replication functionality. Also, HopsFS implements
the same block reporting protocol as HDFS, which is inefficient by design
since its overhead grows linearly with the number of blocks stored in the
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block storage nodes. HopsFS lacks support for scalable and high available
deployments in cloud environments. Moreover, the externalization of the
file system metadata enables the development of new applications and
protocols to improve user experience and even further improve the file
system availability and scalability. In the next chapter, we provide our
contributions to tackle the limitations mentioned above.
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Thesis Contributions

In this chapter, we summarize the contributions of this thesis. We devel-
oped consistent distributed metadata in HopsFS by leveraging NewSQL
distributed databases, see Section 2.2, Paper I [24], and Paper II [23].
Then, we leveraged the extensibility of the metadata storage layer in
HopsFS to allow for the development of applications and protocols that
benefit from the underlying consistent file system metadata. First, we
leveraged the consistent metadata to improve the scalability and availabil-
ity of HopsFS for on-promise and cloud environments, see Section 3.1,
Paper III [39], Paper IV [40], and Paper V [41]. Second, we developed
new classes of applications that are tightly coupled with HopsFS, see
Section 3.2, Paper VI [42], and Paper VII [43].

3.1 Improving HopsFS high availability and scalability

The consistent distributed hierarchical file system metadata offered by
HopsFS became a building block for us to improve the performance
of HopsFS even further by enabling higher availability and scalability.
Firstly, we developed hbr a highly scalable block reporting protocol for
HopsFS to mitigate the scalability bottlenecks imposed by the existing
block reporting protocol. In hbr, we extended the file system’s metadata
by adding more tables for the new protocol while ensuring the consistency
and integrity of the file system’s metadata by redesigning the HopsFS file
system’s transactions related to block reporting. Secondly, we developed
HopsFS-CL, a highly available distribution of HopsFS in the cloud, to
enable deployments of HopsFS in the cloud across availability zones. In



HopsFS-CL, we modified the underlying metadata storage layer (NDB) to
add awareness for availability zones, also we extended the file system’s
metadata to be availability zone aware. Thirdly, we developed HopsFS-S3,
a highly available distribution of HopsFS that is backed by object stores
in the cloud, to enable consistent usage of object stores such as Amazon
S3 as a backend for storing the file system’s blocks. In HopsFS-S3, we
extended the file system’s block storage layer to use different object stores
as its backend without compromising the consistency of the file system.

3.1.1 hbr: Scalable block reporting for HopsFS

Decoupling the file system’s metadata from the actual file blocks has
helped distributed file systems to be more scalable. However, it introduced
other problems when it comes to ensuring synchronization between the
metadata and the blocks. HDFS and HopsFS use a synchronization
protocol called “block reporting” to ensure the consistency between the
block storage layer and the metadata layer (storage and serving). However,
the block reporting protocol is inefficient by design and limits the cluster’s
scalability due to its high network and processing overhead. Each block
storage server can potentially host millions of replicas. All the servers in
the block storage layer send state information for each of the replicas they
have to the metadata servers, which in turn cross-checks these replicas
with their stored state on the metadata storage layer. The burden of the
block reporting protocol is even more apparent with HopsFS since the
file system’s metadata resides in a distributed database (NDB) rather
than in-memory in the case of HDFS, leading to even higher overhead in
HopsFS [23].

We developed hbr, a hash-based scalable block reporting protocol that
removes the scalability bottlenecks of the existing block reporting protocol
by decreasing the network and processing overhead. We introduced the
concept of buckets as a logical collection of block replicas in the cluster.
Then, we formally defined the following three functions as part of the hbr
protocol:

1. assignment function: dynamically maps replicas to a specific bucket.
A replica can be only part of one bucket, and all replicas of the same
block should be part of the same bucket.

2. hash function: generates a fixed size hash that identifies a replica.
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3. hash combiner function: combines hashes of replicas in the same
bucket to generate a unique hash code identifying the whole bucket.

Moreover, we leverage the incremental block reporting protocol to build
up the state of buckets independently across the metadata layer and the
block storage layer, where each side will keep a hash for each bucket using
the three functions that we have introduced. For example, if a replica state
has changed on the block storage layer side. The hbr protocol first uses the
assignment function to identify to which bucket this replica belongs then,
using the hash function it calculates a unique hash identifying the current
replica state, then using a hash combiner function it calculates the hash for
the newly updated bucket. Now that both sides (the metadata layer and
the block storage layer) have built their state information in the buckets,
the block reporting protocol is as simple as comparing the buckets hash
between the metadata layer and the block storage layer. In the case of
invalid buckets, the hbr fallback to the default block reporting for that
specific bucket. The hbr protocol functions are overridable as long as they
satisfy the properties defined for each function.

In experiments based on real-world workloads, we show that hbr scales
up to three orders of magnitude compared to the vanilla block reporting
while reducing the block report size and latency by up to three orders
of magnitude than the vanilla block reporting protocol. This work was
awarded the best student paper award at IEEE BigDataCongress, 2019, in
Milan. For more details about hbr, refer to Paper III [39].

3.1.2 HopsFS-CL: Highly Available HopsFS in the cloud

Cloud service providers offer cloud infrastructures built around the con-
cepts of regions and availability zones (AZs). Regions are data center
locations around the globe with large geographical distances between re-
gions. A single region consists of one or more availability zones (typically
three) that are physically separated data centers with independent power,
networking, and cooling. Availability Zones within the same region are
connected with low-latency links. Cloud service providers recommend
deploying applications across availability zones to ensure high availability
during availability zone failures.

We introduce HopsFS-CL, a redesign of HopsFS that is highly available
across AZs in the cloud. We redesigned all the HopsFS layers from the
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metadata storage layer to the metadata serving layer to the block storage
layer to be AZ-aware and favor local AZ communications. The changes
we made to the different layers of HopsFS are as follows:

• The metadata storage layer: We implemented AZ-awareness by in-
troducing a new configuration parameter to NDB called ’Location-
DomainID’ that is used to tag nodes in the cluster with their AZ.
Nodes within the same AZ should use the same LocationDomainID.
We also added two new features to NDB as table options ’Read
Backup’ and ’Fully Replicated’ options to allow read requests to be
served from both the primary and the backup replicas. Internally,
we changed the NDB commit protocol, see Section 2.2.1, to imple-
ment these two features. Then, we changed the node ordering and
transaction coordinator selection algorithm to take into account the
newly introduced LocationDomainID and the two table features
favoring nodes within the same AZ. We changed all the HopsFS-CL
tables to be Read Backup enabled to ensure that read requests will
be routed to both the primary and backup replicas.

• The metadata serving layer: We introduced a new configuration pa-
rameter to the metadata servers similar to the LocationDomainID to
mark nodes with their corresponding AZ. Metadata servers within
the same AZ should have the same LocationDomainID. We also
changed the leader election service to include the locationDomainId
as part of the metadata server description. Moreover, we changed
the metadata server selection policy to favor metadata servers within
the same AZ as the client.

• The block storage layer: We implemented a new block placement policy
to ensure that at least one replica of every block resides in every AZ.

Figure 3.1 shows an example deployment of HopsFS-CL across three AZs.
We use the LocationDomainId to identify nodes within the same AZ. For
example, N1, N2, M2 are in the same zone, and their locationDomainId
will be the same. The metadata replication factor is set to 3, and we place
each NDB datanode from the same node group in a different zone. The
nodes N1, N5, and N3 form a node group. That is, each node has a full
copy of the tables’ data assigned to that node group, see Section 2.2.1,
similarly, the nodes N2, N4, and N6 form the other node group. Each AZ
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has an NDB management node, while one of the nodes is elected as an
arbitrator to break the ties in case of split-brain scenarios during network
partitions. Each AZ has a group of metadata servers and block storage
servers. One of the metadata servers is elected as the leader to perform
housekeeping operations. If it fails, a new one will be elected using the
leader election service in HopsFS, see Section 2.2.2.
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Figure 3.1: A diagram of HopsFS-CL deployed across three AZs. The metadata replication factor is
set to 3. The nodes N1, N3, and N5 form a node group while N2, N4, and N6 forms the other
node group. M1 is the management node in Zone 1, M2 is the management node in Zone 2, and
M3 is the management node in Zone 3. M1 acts as an arbitrator. NN4 is the leader metadata
server in the cluster.

In experiments based on a real-world workload from Spotify, HopsFS-CL,
deployed in HA mode over 3 AZs, delivers up to 1.66 million ops/s (100
million ops/min), up to 36% higher than vanilla HopsFS, while preserving
the same HopsFS semantics. For more details about HopsFS-CL, refer to
Paper IV [40].

3.1.3 HopsFS-S3: Extending Object Stores with POSIX-like semantics

Object stores have become the defacto standard for storage in the cloud
due to their low cost, scalability, and high availability. However, they
have adopted eventual consistency semantics with no support for critical
atomic operations such as directory rename and listing. On the other
hand, HopsFS provides strong consistency with a POSIX-like semantic
where directory rename and listing are atomic operations.

We developed HopsFS-S3 as a hybrid distributed file system that leverages
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the benefits of both HopsFS and object stores. In HopsFS-S3, we redesign
the block storage layer to allow object stores to be used as a storage
backend for the file system’s blocks. We leveraged the heterogeneous
storage APIs in HopsFS to implement a new storage type named Cloud,
allowing for fine-grained control over which subtrees of the namespace
to be stored in the cloud. We then added new configurations to HopsFS,
allowing users to specify their object store credentials and name (bucket
name in case of S3). There are two alternative approaches to redesign
HopsFS to work with object stores. The first approach is client-based,
where the client has direct access to the object stores skipping the block
storage layer. The second approach is block storage proxy, where the block
storage servers act as a proxy server to the object store. In this work, we
favored the latter approach since it requires minimal changes to the writing
and reading protocols in HopsFS, allowing for a pluggable architecture,
see Figure 3.2. Our implementation of HopsFS-S3 is pluggable, allowing
connecting different types of object stores to HopsFS-S3. Currently, we
fully support Amazon S3 and have limited support for the Azure blob
store.

We store the files’ blocks as objects in the object store in a two-level
tree structure. The first level, we call block-containers, is the directories
(prefixes in S3). Each directory has a fixed number of objects, the number
of objects per block-container is configurable, and the default is set to
500. One of the main problems in S3 is that overwriting an object is
eventually consistent meaning, that it can lead to an inconsistent state
while reading the object (returning an out-dated version rather than the
last written). For that, we investigated the different types of file system
operations in HopsFS and identified which of those operations are affected
by the eventual consistency semantics of the object store. The file system
operations in HopsFS can be categorized into metadata operations and data
operations. The metadata operations change the file system metadata,
which is not affected by the object store’s eventual consistency semantics.
On the other hand, we need to redesign the data operations such that we
can ensure strong consistency semantic on top of the object stores. More
specifically, for an append operation in HopsFS, first, it checks for the last
block of the file if it is complete or not (if the block size is less than the
configured block size, 128 MB by default). If the last block is not complete,
HopsFS reopens the last block and appends the new data until complete.
Otherwise, a new block is created. In such a scenario, inconsistencies may
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arise. For that reason, we implemented variable-sized blocks per file. That
is, for every new append operation, a new block is created. Another type
of operation that needs redesign is the block reporting protocol to ensure
a consistent view of the files’ blocks between the metadata storage layer in
HopsFS-S3 and the object store. We implemented a simple protocol where
the leader metadata server periodically creates block reporting tasks for
each block-container in the object store (prefix in S3). Then every metadata
server will pick up one of the tasks to cross-checks its metadata in both
HopsFS-S3 and the object store. We use a timeout mechanism to tackle
the eventual consistency in directory listing in the object store APIs.

NutFS 
Clients
NutFS 
Clients

HopsFS 
Clients

NDB

Metadata
 Storage 

Metadata
 Serving 

Block
 Storage 

Object Store

DNs

Leader
DAL

Figure 3.2: A diagram of HopsFS-S3. It consists of three main layers, the metadata storage layer, the
metadata serving layer, and the blocks storage layer. The block storage servers act as proxy server to
the object stores in the cloud.

In experiments based on a real-world workload, HopsFS-S3 delivers up to
20% higher performance than EMRFS and up to 3.4X the aggregated read
throughput than EMRFS. We also demonstrate that metadata operations
in HopsFS-S3 are up to two orders magnitude faster than EMRFS. For
more details about HopsFS-S3, refer to Paper V [41].
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3.2 New Classes of applications

The consistent distributed hierarchical file system metadata offered by
HopsFS enabled the development of new classes of applications that are
both extend file system’s metadata and have strongly consistent lifecy-
cles for the files/directories they extend. Firstly, we developed ePipe a
replicated metadata as a service to enable consistent replication of the file
system’s metadata and its extended metadata, with low replication lag
and negligible overhead on the file system. ePipe enables different new
use cases for the file system, such as efficient and fast metadata search,
notifications services, and extended metadata. In ePipe, we leveraged the
event API provided by NDB. We also extended the file system’s meta-
data and transactions to ensure the correctness and consistency of the
file system changelog. Secondly, we developed Hopsworks, a multi-tenant
and collaborative big data platform, to improve the user experience with
big data platforms. In Hopsworks, we developed a completely new ap-
plication that leverages the file system’s metadata’s extensibility while
ensuring integrity and correctness.

3.2.1 ePipe: Polyglot Persistence for HopsFS metadata

The metadata storage layer (NDB) of HopsFS offers a SQL API that al-
lows administrators to issue queries on the file system metadata without
affecting the metadata serving layer. However, NDB is an OLTP (Online
transaction processing) database that does not efficiently support complex
queries and aggregations. Conventional wisdom says that there is no
single database that can efficiently process all query patterns on meta-
data [44]. Therefore, we designed ePipe, a replicated-metadata as a service
that replicates the file system’s metadata from NDB to different data stores
with low replication lag and negligible overhead on the metadata storage
and serving layers. Moreover, ePipe provides notification services similar
to inotify in conventional file systems.

The main challenge with ePipe is to ensure the consistency of the replicated
metadata to external databases. Therefore, we formally defined a system
model for HopsFS metadata operations and a consistency requirement
that ePipe has to maintain while replicating to external databases. We
ensure that all operations happening on a single file/directory will always
be replicated in the same order as seen by HopsFS.

We extended HopsFS to log file system operations into a special logging
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table (frol) within the same file system transaction. Then, we leveraged
the NDB Event API, see Section 2.2.1, to stream the changelog from
the logging table to ePipe. We implemented an efficient re-ordering
algorithm to ensure the ordering of the file system operations with respect
to our consistency requirement. ePipe offers a pluggable architecture
allowing it to connect to different types of downstream data stores such
as Elasticsearch, as well as applications that can receive notifications
about changes happening on the file system. Moreover, we presented
different use cases of ePipe, such as enabling fast metadata search using
Elasticsearch, attaching extended metadata to files and directories, and
synchronizing metadata changes between different data stores.

In experiments based on a real-world workload, we show that ePipe has a
negligible overhead on HopsFS, and delivers up to 56X higher throughput
than existing solutions such as HDFS Inotify, see Section 2.1, with constant
low replication lag. For more details about ePipe, refer to Paper VI [42].

3.2.2 Hopsworks: Improving user experience and data management

Data management was not a consideration in the original design of Apache
Hadoop. Moreover, over the past years, many new systems have been
added to the Hadoop ecosystem, such as Hive, HBase, and Impala. All
of these systems have their metadata system introducing metadata silos
between these systems. That motivated the development of new central-
ized systems such as Apache Ranger and Apache Sentry to control the
shared metadata (permissions and polices) between different services in
the Hadoop ecosystem, see Section 2.1.3. However, to keep all systems syn-
chronized, they typically use polling techniques, potentially introducing
metadata inconsistencies giving access to unauthorized users, or revoking
access from authorized users.

We introduce Hopsworks, a secure, scalable, multi-tenant, and collab-
orative big data platform built on top of HopsFS. Using a distributed
database to store the file system’s metadata allows for the development
of centralized metadata that can be shared and extended by different
systems without sacrificing the metadata integrity. Hopsworks leverages
the extensibility of HopsFS to introduce three new data management con-
cepts Projects, Datasets, Users to implement a project-based multi-tenant
security model. Projects are separate entities that contain datasets, users,
and other Hopsworks enabled services, see Figure 3.3. Internally, projects
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and datasets map to subtrees in the HopsFS’s namespace. Hopsworks
enables secure sharing of datasets between projects and supports dynamic
role-based access control to sensitive data on a shared cluster. For every
project a user is a member of, they have a role. Any application running
in Hopsworks only assumes a single role, so users can be prevented from
accessing data outside a given project based on their role in that project.
Hopsworks provides a user-interface where users can authenticate and
manage their projects and datasets. Users can then run jobs using different
data-parallel processing frameworks such as Spark and Flink, use stream-
ing services such as Kafka, use interactive notebook frameworks such as
Jupyter. For more details about Hopsworks, refer to Paper VII [43].

Figure 3.3: A logical diagram of a Hopsworks cluster with two projects (Project X and Project Y), and
two users (Alica and Bob). Each project has resources such as datasets, users, kafka topics, and hive
databases. Project Y has two data owners (Bob and Alice) and has a shared dataset with Project X
(X:Dataset1). Project X has one data owner (Alice) and a data scientist (Bob).
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4
Conclusions and Future Work

The consistent distributed hierarchical file system metadata proved to be
an essential asset that enables the development of new applications and
protocols tightly coupled with the file system. Our work in this thesis
focused on two aspects of the file system: (1) improving scalability and
availability for on-premise and cloud environments, (2) developing new
applications that extend the file system metadata, and provide consistency
guarantee with respect to files and/or directories.

Firstly, we investigated the different issues with HopsFS that limits its
scalability and availability, and we identified three different issues. First,
the block reporting protocol is limiting the scalability of HopsFS due to its
high network and processing overhead imposed on the metadata storage
and metadata serving layers. Second, HopsFS was not developed with
availability zone awareness in mind, which prevented highly available
deployments in the cloud. Third, the block storage layer of HopsFS
uses only local disk volumes in the block storage servers to store the
file system’s blocks, which prevented highly available deployments in
the cloud. To overcome the aforementioned issues, we developed hbr,
HopsFS-CL, and HopsFS-S3. hbr is a new scalable block reporting protocol
for HopsFS that improves the network and processing overhead by up to
three orders of magnitude than the vanilla block reporting. hbr enables
HopsFS clusters to scale to 10s of thousands of block storage nodes.
HopsFS-CL is an extension of HopsFS that is highly available across
availability zones. HopsFS-CL deployed across three availability zones
provides similar performance to HopsFS deployed in one availability zone.



Furthermore, it improves the throughput over the vanilla HopsFS across
three availability zones by up 36%. HopsFS-S3 is an extension of HopsFS
that allows plugging object stores such as Amazon S3 as a backend for the
block storage servers. HopsFS-S3 improves the availability of HopsFS in
the cloud by using object stores instead of local volume disks and delivers
up to 20% better performance than the Amazon Elastic MapReduce File
system (EMRFS).

Secondly, we investigated the different applications that are needed to
improve the usability of the file system. We identified the need for a consis-
tently replicated metadata-as-service and multi-tenant big data platform
that builds upon HopsFS to improve the user experience. First, we de-
veloped ePipe a replicated metadata-as-service that consistently replicates
the file system’s metadata with negligible overhead and low replication
lag. ePipe enables different use cases for the file system’s metadata, such
as fast metadata search and notification services. Second, we developed
Hopsworks, a multi-tenant and collaborative big data platform that builds
upon HopsFS. Hopsworks provides a project-based, multi-tenant security
model where a project is a sandbox that holds a collection of datasets,
Kafka topics, users, and jobs (data-parallel processing frameworks such as
Spark), interactive notebooks.

In the future, we are planning to take the HopsFS high availability one
step further by supporting deployments across regions besides availability
zones. First, we plan to investigate different deployment modes, such as
active-active and active-standby modes. The active-active mode is more
challenging to implement and maintain file system consistency across re-
gions while providing acceptable performance (lower latency). It requires
implementing a coordination service in HopsFS to coordinate between
different writes happening in different regions. The active-standby mode
is more viable to develop and maintain. For that, we are looking at leverag-
ing ePipe and NDB Events API to replicate the file system metadata with
fine-grained control across regions. We are also currently investigating
alternative designs for HopsFS-S3 to provide dual access to HopsFS and
S3. Instead of storing the files’ blocks in the object store, we will store the
whole files to maintain the same namespace structure allowing users to
view the same file system namespace from HopsFS and the object store.

Moreover, in Hopsworks, we are currently leveraging the HopsFS’s ACLs
(Active Control Lists) to provide more fine-grained access control on
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Datasets. We are also currently investigating adding support for prove-
nance and governance APIs by leveraging the metadata’s extensibility
in HopsFS and the CDC APIs of ePipe. These APIs allow users to track
the application’s ownership and the associated usage graph of all of its
artifacts (files), easing debugging and allowing reproducibility of appli-
cations running on top of Hopsworks. Another sought-after feature is
fine-grained snapshotting and versioning of Datasets. We plan to inves-
tigate efficient techniques to support this feature on top of HopsFS by
leveraging the metadata’s extensibility. We are also exploring the possi-
bility of using the metadata storage layer to store the application state of
Apache Flink instead of local RocksDB instances, allowing for efficient
and fast reconfiguration and recovery.
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