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Abstract

Struggling with the volume and velocity of Big Data has attracted lots of interest towards stream pro-
cessing paradigm, a paradigm in the area of data-intensive computing that provides methods and solutions
to process data in motion. Today’s Big Data includes geo-distributed data sources. In addition, a major part
of today’s Big Data requires exploring complex and evolving relationships among data, which complicates
any reasoning on the data. This thesis aims at challenges raised by geo-distributed streaming data, and the
data with complex and evolving relationships.

Many organizations provide global scale applications and services that are hosted on servers and data
centers that are located in different parts of the world. Therefore, the data that needs to be processed are
generated in different geographical locations. This thesis advocates for distributed stream processing in
geo-distributed settings to improve the performance including better response time and lower network cost
compared to centralized solutions. In this thesis, we conduct an experimental study of Apache Storm, a
widely used open-source stream processing system, on a geo-distributed infrastructure made of near-the-
edge resources. The resources that host the system’s components are connected by heterogeneous network
links. Our study exposes a set of issues and bottlenecks of deploying a stream processing system on the
geo-distributed infrastructure. Inspired by the results, we propose a novel method for grouping of geo-
distributed resources into computing clusters, called micro data centers, in order to mitigate the effect of
network heterogeneity for distributed stream processing applications. Next, we focus on the windowed ag-
gregation of geo-distributed data streams, which has been widely used in stream analytics. We propose to
reduce the bandwidth cost by coordinating windowed aggregations among near-the-edge data centers. We
leverage intra-region links and design a novel low-overhead coordination algorithm that optimizes commu-
nication cost for data aggregation. Then, we propose a system, called SpanEdge, that provides an expressive
programming model to unify programming stream processing applications on a geo-distributed infrastruc-
ture and provides a run-time system to manage (schedule and execute) stream processing applications across
data centers. Our results show that SpanEdge can optimally deploy stream processing applications in a geo-
distributed infrastructure, which significantly reduces the bandwidth consumption and response latency.

With respect to data with complex and evolving relationships, this thesis aims at effective and efficient
processing of inter-connected data. There exist several domains such as social network analysis, machine
learning, and web search in which data streams are modeled as linked entities of nodes and edges, namely
a graph. Because of the inter-connection among the entities in graph data, processing of graph data is
challenging. The inter-connection among the graph entities makes it difficult to distribute the graph among
multiple machines to process the graph at scale. Furthermore, in a streaming setting, the graph structure
and the graph elements can continuously change as the graph elements are streamed. Such a dynamic
graph requires incremental computing methods that can avoid redundant computations on the whole graph.
This thesis proposes incremental computing methods of streaming graph processing that can boost the
processing time while still obtaining high quality results. In this thesis, we introduce HoVerCut, an efficient
framework for boosting streaming graph partitioning algorithms. HoVerCut is Horizontally and Vertically
scalable. Our evaluations show that HoVerCut speeds up the partitioning process significantly without
degrading the quality of partitioning. Finally, we study unsupervised representation learning in dynamic
graphs. Graph representation learning seeks to learn low dimensional vector representations for the graph
elements, i.e. edges and vertices, and the whole graph. We propose novel and computationally efficient
incremental algorithms. The computation complexity of our algorithms depends on the extent and rate of
changes in a graph and on the graph density. The evaluation results show that our proposed algorithms can
achieve competitive results to the state-of-the-art static methods while being computationally efficient.

Keywords: stream processing; geo-distributed infrastructure; edge computing; streaming
graph; dynamic graph



Sammanfattning
Att kämpa med volymen och hastigheten hos Big Data har väckt mycket intresse för strömbehan-

dlingsparadigmet, ett paradigm inom dataintensiv databehandling som ger metoder och lösningar för att
bearbeta data i rörelse. Det som idag kallas "Big Data" omfattar geodistribuerade datakällor. Dessutom
kräver en stor del av dagens Big Data att man utforskar komplexa och föränderliga relationer mellan data,
vilket komplicerar alla resonemang om datamängden. Denna avhandling riktas mot utmaningar som upp-
kommer i samband med geodistribuerade strömmande data och data med komplexa och föränderliga rela-
tioner.

Många organisationer tillhandahåller globala applikationer och tjänster som finns på servrar och dat-
acenter lokaliserade i olika delar av världen. Därför genereras de data som behöver bearbetas på olika
geografiska platser. Avhandlingen förespråkar distribuerad strömbehandling i geodistribuerade tillämp-
ningar för att förbättra prestanda, inklusive bättre svarstid och lägre nätverkskostnad jämfört med centralis-
erade lösningar. I den här avhandlingen genomför vi en experimentell studie av Apache Storm, ett allmänt
använt open source-processbehandlingssystem, på en geografisk distribuerad infrastruktur som består av
resurser "nära-kanten". De resurser som är värdar för systemets komponenter är anslutna med heterogena
nätverkslänkar. Vår studie avslöjar en uppsättning problem och flaskhalsar med att distribuera ett strömbe-
handlingssystem på den geodistribuerade infrastrukturen. Inspirerade av resultaten, föreslår vi en ny metod
för gruppering av geodistribuerade resurser i datakluster, benämnda "mikrodatacenter", för att mildra ef-
fekten av nätverkets heterogenitet för distribuerade strömbehandlingsapplikationer. Därefter fokuserar vi
på en fönsterbaserad aggregering av geo-distribuerade dataströmmar, vilket har använts i stor utsträckning
i analys av dataströmmar. Vi föreslår en reduktion av bandbreddskostnaden genom att samordna fönstrade
aggregeringar bland datacentra "nära kanten". Vi erbjuder intra-regionala länkar och utformar en ny koordi-
nationsalgoritm med låg overhead som optimerar kommunikationskostnaden för dataaggregering. Därefter
föreslår vi ett system, som kallas SpanEdge, som ger en uttrycksfull programmeringsmodell för att förena
programmeringen av strömbehandlingsapplikationer i en geografiskt distribuerad infrastruktur och ger ett
runtime-system för att hantera (schemalägga och exekvera) strömbehandlingstillämpningar som spänner
över flera datacentra. Våra resultat visar att SpanEdge optimalt kan distribuera flödesbehandlingstillämp-
ningar i en geo-distribuerad infrastruktur vilket avsevärt minskar bandbreddskonsumtionen och svarsför-
dröjningen.

Med avseende på data med komplexa och föränderliga relationer, syftar denna avhandling till fungerande
och effektiv behandling av sammankopplade data. Det finns flera domäner som social nätverksanalys,
maskininlärning och webbsökning där dataströmmar modelleras som länkade enheter av noder och kanter,
nämligen en graf. På grund av sammankopplingen mellan enheterna är utarbetandet av grafdata utmanande.
Sammankopplingen mellan grafenheterna gör det svårt att fördela grafen mellan flera maskiner för att bear-
beta grafen storskaligt. Vidare, i en strömuppställning kan grafstrukturen och grafelementen kontinuerligt
förändras när grafelementen strömmar. En sådan dynamisk graf kräver stegvisa beräkningsmetoder som
kan undvika överflödiga beräkningar på hela grafen. I denna avhandling föreslås inkrementella beräkn-
ingsmetoder för behandling av dataströmmar som kan minska behandlingstiden medan som högkvalitativa
resultat bibehålls. I denna avhandling introducerar vi HoVerCut, ett effektivt ramverk för att öka strömn-
ingsgrafikpartitioneringsalgoritmer. HoVerCut är horisontellt och vertikalt skalbar. Våra utvärderingar visar
att HoVerCut påskyndar partitioneringen väsentligt utan att försämra kvaliteten på partitioneringen. Slutli-
gen studerar vi oövervakat representationslärande i dynamiska grafer. Grafrepresentationsinlärning syftar
till att lära sig lågdimensionella vektorrepresentationer för grafelementen, dvs kanter och bågar och hela
grafen. Vi föreslår nya och beräkningsmässigt effektiva inkrementella algoritmer. Beräkningskomplex-
iteten för våra algoritmer beror på omfattningen och graden av förändringar i ett diagram och på grafens
densitet. Utvärderingsresultaten visar att våra föreslagna algoritmer kan uppnå konkurrenskraftiga resultat
jämfört med state-of-the-art statiska metoder samtidigt som de är beräkningseffektiva.
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Chapter 1

Introduction

MORE than a decade ago, the term Big Data was coined to address emerging com-
pute and storage challenges caused by massive growth in the amount of data.
The growth in the amount of data is due to several factors among them are the

growing realization on the insights that can be extracted from data and data-driven decision
making, and the decreasing cost and the advancement of data storage technologies [9]. Or-
ganizations have realized opportunities in collecting and processing data and have started
to collect more data even if they may not know exactly what kind of useful information
they can extract from the data at the moment. Big Data is like a gold mine that one needs
to dig into it and there may be a piece of gold in it.

In particular, Big Data refers to data that are considerably larger, faster, and more com-
plex such that the previous generation of solutions and tools for maintaining and process-
ing the data (such as relational databases) fall short [10]. In the literature, Big Data is
usually recognized by the three "V"s volume, velocity, and variety [10]. Volume refers to
the amount of data that is generated. The amount of data has grown from the Terabyte to
Petabyte scale and pretty soon is expected to reach the Zettabyte scale. Velocity refers to
the speed that the data is generated. Organizations are dealing with data being generated at
a high rate such as streams of voice, video, text messages, and social interactions in social
network applications such as Facebook, mobile applications data, streams of bank transac-
tions, streams of server logs being generated, and streams of sensor data. Finally, variety
represents all types of data including unstructured, semi-structured, and structured data.

By the advancements in data-intensive computing, new methods and paradigms have
emerged to scale compute and storage systems to cope with the volume of Big Data [11].
Distributed storage systems such as Hadoop Filesystem [12] and batch programming mod-
els such as MapReduce [13] have enabled collection and process of massive amount of
data sets through highly scalable and distributed batch processing across hundreds or thou-
sands of servers [10]. Dealing with the velocity of Big Data has attracted lots of interest
towards the stream processing paradigm, which provides methods and solutions to process
data in motion (data streams) [14]. There are many organizations that have already passed
beyond ingesting millions of events a day. For example, Walmart reported in 2010 one
million customer transactions every hour [15]; T-Mobile needs to process more than 17
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CHAPTER 1. INTRODUCTION

billion events per day for performing network quality analysis [16]. The high velocity of
Big Data has created a need for continuous gathering, processing, and analyzing streams of
data efficiently and in a timely manner.

In recent years, several advanced distributed stream processing systems have been de-
veloped [17, 18] that have contributed to the success of stream processing paradigm. In
addition to the systems (such as Apache Storm [17], and Apache Samza [19]) that support
pure stream processing, some data processing frameworks (such as Apache Spark [20], and
Flink [21]) provide a unified environment for implementing both batch and stream pro-
cessing applications [22]. However, there are still several open challenges for effective
and efficient stream processing. Today’s Big Data includes autonomous data sources with
distributed and decentralized control [23]. Global scale applications are deployed on a geo-
distributed infrastructure, i.e., a large number of servers distributed all over the world. In
addition, a major part of today’s Big Data requires exploring complex and evolving rela-
tionships among data, which complicates any reasoning on the data [23]. The rest of this
section explains the challenges raised by geo-distributed data, and the data with complex
and evolving relationships.

Many organizations provide global scale applications and services that are hosted on
servers and data centers that are located in different parts of the world [24, 25]. Social
network, media streaming, and online store services are few examples among several oth-
ers that usually span the globe. In such geo-distributed settings consist of geographically
distributed servers, the data to process and analyze are generated in different geograph-
ical locations. The common approach to process geo-distributed data is the centralized
approach, in which raw data is transferred from different geographical locations to a cen-
tral data center [26]. In accordance with the centralized approach, most of the existing
stream processing systems [27] are designed to work on a single data center. Even though
the centralized approach simplifies the design and implementation of stream processing
systems and applications, there are several factors that make the centralized approach in-
efficient. Transferring geo-distributed data to a central data center introduces significant
communication over wide-area network (WAN) between the original sources of data on
the network edge and the analytic applications hosted in the central data center. However,
the WAN bandwidth is expensive and can be scarce [28] and the amount of data generated
at the network edge has been growing rapidly. Furthermore, there are applications with
stringent time requirements (for example predictable and low latency processing time) that
can not tolerate the long communication latency over the WAN links. Another problem
with the centralized approach is the legal constraints on data collection. Sometimes data
can not be transferred to another geographical area because of the legal bounds to a certain
jurisdiction. The increase in the privacy concerns is expected to result in more regula-
tory constraints on data movement [29]. To overcome the drawbacks of the centralized
stream processing, this thesis provides methods, algorithms, and a system for effective
and efficient distributed stream processing over geo-distributed settings. This thesis argues
that well designed distributed stream processing in geo-distributed settings can improve
the performance including better response time and lower network cost compared to the
centralized approach.

With respect to data with complex and evolving relationships, this thesis aims at ef-
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1.1. THESIS STATEMENT

fective and efficient processing of inter-connected data. Inter-connected data modeled as
linked entities of nodes and edges is called a graph. Processing of graph data is impor-
tant in many domains such as social network analysis [30], machine learning [31], and web
search [32]. Because of the inter-connection among the entities in graph data, processing of
graph data is challenging. The inter-connection among the graph entities makes it difficult
to distribute the graph among multiple machines to process the graph at scale [33]. Further-
more, in a streaming setting, the graph structure and the graph elements can continuously
change as the graph elements are streamed. Such a dynamic graph requires incremental
computing methods that can avoid redundant computations on the whole graph [34]. This
is because graph computation algorithms are expensive and recomputing the algorithms on
the whole graph is too costly. Currently, existing solutions for processing of streaming and
dynamic graphs often trade-off between processing time and the quality of results. How-
ever, this thesis proposes incremental computing methods of streaming graph processing
that can boost the processing time while still obtaining high quality results.

The rest of this chapter first presents the thesis statement. Second, the thesis objectives
are presented. Following that research methodology of this thesis is explained. Then, the
contributions of this thesis are described. In the end, the thesis outline is given.

1.1 Thesis Statement
Well designed distributed stream processing in geo-distributed settings leads to improved
performance including better response time and lower network cost compared to central-
ized solutions. In addition, well designed incremental computing methods of streaming
graph processing boost the processing time while still obtaining high quality results.

1.2 Research Objectives
This thesis aims at improving the performance of data-intensive computing, specifically
focusing on distributed stream processing in geo-distributed settings, and processing of
streaming graphs. The main objectives of this thesis are set towards: (i) reducing the re-
sponse time and the network cost of distributed stream processing in geo-distributed set-
tings, and (ii) improving the processing time in the processing of streaming graphs.

With respect to distributed stream processing in geo-distributed settings, the primary
objectives in the thesis are:

• to mitigate the effect of network heterogeneity on distributed stream processing.

• to reduce the amount of data being transferred over expensive network links.

• to reduce the amount of communication over long latency network links.

As a secondary objective, this thesis seeks to provide a system solution that facilitates
programming stream processing applications for geo-distributed infrastructure.

With respect to the processing of streaming graphs, the main objectives are:
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• to improve the parallelization and state-sharing.

• to reduce the amount of computation.

Based on the thesis objectives, Chapter 3 presents the thesis contributions related to dis-
tributed stream processing in geo-distributed settings. Section 3.1 presents an experimental
study, which addresses some of the main issues and bottlenecks of deploying a stream pro-
cessing system on a geo-distributed infrastructure made of near-the-edge resources. Sec-
tion 3.2 proposes and evaluates a solution based on grouping near-the-edge resources into
micro data centers in order to mitigate the effect of network heterogeneity for distributed
data-intensive application components, such as stream processing applications. Section 3.3
presents an efficient method for windowed grouped aggregation (see Section 2.1.2) over
geo-distributed data streams. Finally, Section 3.4 presents a stream processing system to
provide a unified environment for programming stream processing in a geo-distributed in-
frastructure.

With respect to streaming graph data, specifically this thesis targets two important
stages in a typical pipeline of processing large graphs, namely graph partitioning and graph
representation learning. Graph partitioning (see Section 2.3.3) is to partition a graph into
sub-graphs such that it can be efficiently distributed between multiple computation units
(e.g., multiple machines). Graph representation learning (see Section 2.3.5) is to learn a
low-dimensional representation of the graph vertices, which can be input to downstream
machine learning tasks such as vertex classification, clustering, and graph visualization.
Chapter 4 presents the contributions of this thesis related to efficient processing of stream-
ing graph data, specifically, a parallel and distributed framework for online partitioning of
graph data presented in Section 4.1 and an efficient solution for incremental graph repre-
sentation learning presented in Section 4.2.

1.3 Research Methodology

The research work of this thesis is based on the empirical study. Specifically, we observe a
problem and propose a solution based on some testable hypothesis. Then, we evaluate the
hypothesis based on running some reproducible experiments. This section describes the
methods that we have used in this thesis to conduct the research work including the process
that we have taken to define the problems, and to design and evaluate the solutions. This
section also discusses the challenges that we have faced in different steps of the process
and how we have overcome them.

Our general approach for defining a problem domain is by studying related works and
literature. We have studied the state-of-the-art approaches for stream processing and we
have spotted their important limitations and unsolved problems. We set up experimental
environments and run extensive experiments to verify the existence of the problems empir-
ically. For example, in Paper I we evaluated Apache Storm in an emulated geo-distributed
infrastructure to find the limitations and the bottlenecks of using Apache Storm in such an
environment.
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We evaluate our work, by implementing the solutions from scratch or by augmenting an
existing implementation whenever possible. Our implementations are open source and are
publicly available. The references to the source codes are available in the corresponding
papers. To compare our solutions with the state-of-the-art solutions, we use either the actual
source code of the solutions (e.g., in Paper I, Paper II, and Paper V) or we implement the
solutions according to their published papers (e.g., in Paper III, and Paper VI). In order to
run the experiments, we use simulation, emulation, or real settings whenever it is practical.
For example, in Paper II, we simulate the network based on the real-world dataset and we
implement the network as a weighted graph. We assume the routing protocol is based on
the weighted shortest path among each pair of vertices. We use simulation because of the
high complexity of the network. In Paper IV, we use the CORE network emulator [35] in
order to emulate a geo-distributed infrastructure. We use emulation because it enables us
to run the actual software components while designing complex networks. In the case of
Paper V, we run the experiments on our servers. We use real-world datasets, as well as
synthetic datasets, to evaluate our solution. In Paper VI, we run our experiments on the
Cloud.

One of the main challenges in our research has been acquiring information about near-
the-edge data centers and resources on the network edge. This information is mainly con-
fidential and is not publicly available. Therefore, we collected the only open data available
from the community network Guifi.net [36], in order to simulate and emulate the resources
at the network edge. The other challenge is that the implementation of some of the state-
of-the-art solutions is not openly available. For example, in Paper III, we had to implement
the solution in the literature from scratch.

1.4 Thesis Contributions
The contributions of this doctoral thesis are as follows:

• An experimental study of Apache Storm, a widely used open-source distributed
stream processing system, on a geo-distributed infrastructure made of near-the-edge
resources (Paper I [1]). We investigate different placements of the Apache Storm
components on the geo-distributed resources. Our study exposes a set of require-
ments for the distributed stream processing system in order to be deployed and op-
erate in a geo-distributed infrastructure, as well as, a set of challenges related to the
underlying network connectivity.

• A novel method for grouping of geo-distributed resources into computing clusters,
called micro data centers, in order to mitigate the effect of network heterogeneity
for distributed data-intensive applications (Paper II [2]). We model geo-distributed
resources and their connections as a weighted graph. We estimate the connectiv-
ity inside each micro data center by the known modularity metric in graph theory.
We propose a novel decentralized community detection algorithm that increases the
modularity metric competitive to the state-of-the-art centralized community detec-
tion algorithm.
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• Reducing the bandwidth cost by coordinating windowed aggregations over data streams
among edge data centers (Paper III [3]). We define the theoretical minimum band-
width cost for aggregating data streams by means of coordination. Based on that, we
propose a low-overhead coordination method that can identify relevant data among
edge data centers and aggregate them effectively and efficiently, and send data streams
among the data centers in a timely manner.

• A geo-distributed stream processing system (Paper IV [4]). We propose SpanEdge
that provides an expressive programming model to unify programming stream pro-
cessing applications on a geo-distributed infrastructure and provides a run-time sys-
tem to manage (schedule and execute) stream processing applications across data
centers.

• A parallel and distributed vertex-cut partitioner for streaming graphs (Paper V [5]).
We address the scalability problem of the online vertex-cut partitioning algorithms
for streaming power-law graphs. We propose HoVerCut, a framework for boosting
the partitioning of streaming graphs. It can employ different partitioning heuristics
in a scalable fashion. HoVerCut utilizes an efficient tumbling window model to pro-
cess edges of the graph and efficiently shares the state information between multiple
instances of the partitioning algorithm.

• Efficient representation learning of dynamic graphs using random walks(Paper VI [6]).
Our method is based on the state-of-the-art unsupervised vertex representation learn-
ing, which contains two steps: (i) random samples (corpus) are generated by exe-
cuting truncated random walks on a graph, and (ii) inspired from the state-of-the-art
word representation learning technique, the skip-gram model is trained by the gen-
erated random samples. We propose computationally efficient algorithms for vertex
representation learning that extend random walk based methods to dynamic graphs.
The computation complexity of our algorithms depends upon the extent and rate of
changes—the number of edges changed per update—and on the density of the graph.

1.5 Thesis Outline
The rest of this thesis is organized as follows: Chapter 2 explains the background informa-
tion and the related works to this thesis. Chapter 3 presents the contributions of this thesis
related to stream processing across a geo-distributed infrastructure. Chapter 4 discusses
our contributions on two important problems for streaming graph processing, namely graph
partitioning and graph representation learning. Finally, Chapter 5 discusses the summary
of our work, conclusions, and discusses the future works.
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Chapter 2

Background

AS explained in Chapter 1, this thesis spans methods and solutions for data-intensive
computing with the focus on streams, graphs, and geo-distribution. Therefore, this
chapter presents the theories, concepts, and tools used in this doctoral thesis under

the sections stream processing, geo-distributed infrastructure, and graph analysis. First, this
chapter explains the stream processing paradigm and the related topics including window-
ing, windowed aggregation, and Apache Storm, a widely used stream processing system in
the industry. Next, this chapter gives background information about geo-distributed infras-
tructure, and Community Network Cloud as a special case of resources at the network edge.
In the end, the concepts related to graph analysis including graph partitioning, community
detection, and graph representation learning are explained.

2.1 Stream Processing

Stream processing plays an important role in the area of Big Data. In many domains data
are generated continuously and hence, there is a need for continuous processing of the data.
The core assumption in stream processing is that the data is continuous and unbounded.
Stream processing is applicable in almost any domain where we are challenged with the
velocity and volume of Big Data. For example, it can be applied in stock markets for the fast
analysis of market data [37], and in transportation for intelligent traffic management [38]
and navigation [39]. Other applications of stream processing include spam detection [40],
fraud detection [41], online detection of denial of service [42], sentiment analysis in social
networks [43], and many others [44].

In stream processing, the data in motion is called data stream, for example a stream of
sensor readings, a stream of tweets, and a stream of bank transactions. A data stream is
made of atomic data items each called a tuple (Figure 2.1), e.g., a sensor reading tuple, a
tweet tuple, and a bank transaction tuple. A source of a data stream is called a streaming
data source [14]. For example, a temperature sensor is a streaming data source that con-
tinuously emits temperature data at a specific rate. Some other examples of data sources
include web browsers, sensors such as traffic and sound sensors, mobile devices, network
and telecommunication switches, and server logs.
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Figure 2.1: A demonstration of a data stream and a stream processing application.
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Figure 2.2: A dataflow graph for the word count example.

An application that processes one or multiple data streams is called a stream processing
application (Figure 2.1). The dataflow in a stream processing application is usually ex-
pressed as a graph (usually directed acyclic) called a stream processing graph or dataflow
graph. Nodes of the graph include operators, sources, and sinks. An operator has an input
channel to receive tuples and may generate outputs and contains some basic function or
complex logic unit that applies on the tuples. For example, in the case of a simple fire
alarm application, a filter operator takes temperature tuples as input and drops those tuples
with the temperature value below a specific threshold. The filter operator outputs a fire
signal only if the temperature is above the threshold. The source enables reading a data
stream from outside of a stream processing application, e.g., from a file system or a mes-
sage broker. The source receives data and acts as an adaptor to generate the data as a stream
of tuples. The sink is an endpoint that sends output results to an external service, e.g., a
database or a monitoring service. Similar to the source, a sink also acts as an adaptor for
those external services that consume the outputs of a stream processing application.

Figure 2.2 depicts the dataflow graph of an example stream processing application for
counting the number of words in a text file. In this example, there is a source node that
reads the file and converts it to a stream of lines. There are three operator nodes. The first
operator "Line to Word" converts the lines of texts to words. The second operator "Drop
Article Words" ignores article words and only emits non-article words to the next operator.
The last operator counts the number of each word and sends the number of each word to
the database sink to store the word count results.

The links between the nodes of a dataflow graph can be defined explicitly or implicitly
depending on the stream processing system, which provides the environment for develop-
ment and execution of stream processing applications. In the explicit model, the dataflow
graph of a stream processing application is built by explicitly connecting the elements of
the graph, i.e., sources, sinks, and operators. Apache Storm [17] is an example of a stream
processing system that supports the explicit model. The implicit model provides a high
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Figure 2.3: An example of an execution graph.

level abstraction in order to define the dependencies between the operators and types of the
data streams as their input and output. Then, the stream processing system builds the graph
in run time. Flink [21] and Spark [45] are two stream processing systems that support the
implicit model.

Every stream processing system offers a runtime environment in order to execute stream
processing applications. The common architecture of the runtime environment in the con-
temporary distributed stream processing systems is the master-worker architecture [17, 21,
46, 47]. The primary task of the master is to distribute and deploy stream processing ap-
plications across the workers. Upon the submission of a stream processing application to
the master, the master converts the dataflow graph of the application to an execution graph.
Each node of the execution graph is a task corresponding to a node in the given dataflow
graph. For each node of a dataflow graph there can be multiple task instances in the cor-
responding execution graph. The tasks run in parallel and the number of parallel tasks is
configurable in order to scale the application according to a workload. The configuration
of the number of parallel tasks depends on the stream processing system. Depending on
a stream processing system, the parallelism for nodes of a dataflow graph can be either
directly hinted or it can be dynamically adjusted by the system depending on a workload.
To execute a stream processing application, the master uses a scheduler that allocates the
tasks to the workers. The scheduler may assign multiple tasks to one worker or multiple
workers and may distribute the workers among several machines.

Figure 2.3 shows an example execution graph for the dataflow graph shown in Fig-
ure 2.2. In the execution graph (Figure 2.3), the File source runs with three parallel tasks,
and operators Line to Word, Drop Article Words, and Count each run with two parallel
tasks. Figure 2.4 demonstrates a sample deployment of the word count execution graph
on two workers. The figure also depicts the inter-worker dependencies among the tasks,
which incur communication over the network between the workers. The all-to-all depen-
dency between the Drop Article Words operator and the Count operator is because the
Count operator is split into two tasks. Each of the two tasks is responsible for counting a
set of words.

2.1.1 Windowing
Windowing is an important concept in stream processing. Windowing allows the stream
processing operators to temporarily store input tuples in a buffer called window before pro-
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Figure 2.4: The master-worker architecture.

cessing the tuples. This temporary buffer enables to split an unbounded data stream into a
smaller batch of tuples. Windowing is especially useful in aggregation queries, for exam-
ple, standing queries such as top 10 songs listened in the last hour or the most frequent event
in every 1000 events. Many stream processing systems support the windowing semantics
in their APIs [21, 45, 46, 48]. On the other hand, there are stream processing systems that
do not explicitly provide windowing primitives but it is possible to implement user-defined
windowing logics [17].

A window can be defined based on the number of tuples that the window includes be-
fore processing the tuples, count-based window, or based on the time of the tuples, time(-
based) window. A count-based window triggers computation on the buffered tuples when
the number of tuples reaches a certain threshold. A time-based window triggers the com-
putation based on a specified elapsed time from the start time of each window.

Two of the most common window types are tumbling window and sliding window. A
tumbling window splits a stream into non-overlapping windows. This means that there is
no overlap between the sets of tuples buffered in the two consecutive tumbling windows. In
case of a sliding window, consecutive windows can overlap and hence, there may be tuples
that belong to multiple windows.

Both tumbling window and sliding window can be either time-based or count-based.
A time-based tumbling window is defined by a time parameter, e.g., every 30 seconds, or
every 1 hour. But a count-based tumbling window is defined by the number of tuples, e.g.,
every 1000 tuples. Both, time-based and count-based sliding windows, have two parame-
ters: the window length and the trigger interval. For example, a time-based sliding window
with a length of 30 seconds and the trigger interval of 1 second allows processing every
second the tuples buffered in the last 30 seconds.

2.1.2 Windowed Grouped Aggregation

Aggregation of data streams has been widely used in streaming analytics [49, 50]. For
example, data stream aggregation is supported and provided in commercial services such
as Amazon Kinesis Analytics [51], and Azure Stream Analytics [52]. Some examples
of aggregate operators are counts, sum, min, and max. As mentioned in Section 2.1.1,
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windowing is mainly used in stream processing so that an unbounded stream data is split
into finite windows of tuples. Based on that, a windowed aggregation computes aggregates
of the tuples for each window. In addition, it is common to group tuples by one or a set
of tuple attributes and to compute aggregates for each group separately. For example, a
set of tuples may be grouped by their attributes such as city, country, age group, gender,
bandwidth class, and etc. More formally, a windowed grouped aggregation is defined by an
aggregate operator, a window, and a group-by clause. The group-by clause defines one or a
set of attribute(s) that the tuples with the same value for the given attribute(s) are grouped
together.

Some of the aggregate operators are associative and commutative, such as sum, min,
and max. This means that the aggregate can be computed by applying the aggregate op-
erator on tuples in any order. Both associative and commutative properties are desirable
because these properties enable to distribute and to parallelize the computation among mul-
tiple machines. For example, each machine can compute a partial aggregate on a subset of
tuples, e.g., a partial sum, and then send the partial aggregate to a single machine to com-
pute the final aggregate, e.g., the sums of partial sums. However, some of the aggregation
operators such as average that are not associative cannot be partitioned in the straight way
as explained. But it is still possible to partition and distribute the computation of interme-
diate results. For example, in the case of average aggregation, each machine can compute
the sum and count of tuples in its partition and then send the result to a single machine to
compute the average by having all the partial sums and counts.

Due to the importance of data stream aggregation, there have been many works on
efficient implementation of this widely used operation. One series of research works aim to
reduce the redundant computations that occur in aggregation with sliding windows [49,53–
55]. Another series of research works aim to optimize execution of aggregations between
multiple queries [49, 56–59]. Multiple aggregation queries may share redundant data and
computation due to their overlapping windows, predicates, or group-by clauses. In some
applications, the exact aggregate results are not required and therefore it is possible to
degrade the result when the processing resources are scarce to deal with a high workload.
This situation could happen for example because of a spike in the input stream rate. There
have been several works [60–63] on designing load shedding algorithms to remove some
parts of data while keeping the degradation of output data low. In Paper III, we propose a
solution for optimizing windowed aggregation in geo-distributed infrastructure.

2.1.3 Distributed Stream Processing with Apache Storm

Apache Storm [17] is an open-source, distributed, and scalable stream processing system
widely used in the industry. In Paper I we evaluate Apache Storm on a geo-distributed
infrastructure and in Paper IV, we augment our solution on Apache Storm.

The dataflow graph in Storm’s terminology is called a topology. The topology is made
of two types of nodes, the spouts and the bolts. A spout is similar to the source node in a
dataflow graph. The bolt can be either an operator node or a sink node. Each node in the
topology, depending on its parallelism parameter, can run with one or multiple instances of
the task.
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Figure 2.5: An example of a Storm topology for counting the number of words in a file.
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Figure 2.6: A demonstration of two types of stream groupings.

Figure 2.5 shows an example of the Storm topology for counting the number of words
in a text file. In this topology, a spout called File Spout reads the file and transforms its
content to a stream of tuples each wrapping a line of the text. The parallelism is set to two
for the spout so that there will be two instances of the spout tasks running in parallel. File
Spout sends the tuples to the bolt that splits each line to words and sends them as tuples to
the next bolt to count the number of the occurrences for each word.

The tasks are executed concurrently by multiple threads on a predefined number of
workers. Each thread is called an executor [64] and each worker is a process, which can
host one or multiple executors. In Storm, the parallelism of each node of a dataflow graph
can be defined manually. The stream grouping specifies how a stream should be partitioned
among the parallel tasks of a bolt. Storm offers some predefined stream groupings and also
supports the implementation of custom stream groupings. Two of the predefined stream
groupings in Storm are as follows:

• Shuffle:Tuples are uniformly randomly distributed across a bolt’s tasks (Figure 2.6(a)).

• Fields:Tuples are partitioned by a specified field. Tuples with the same value for that
field will always go to the same task (Figure 2.6(b)).

Storm has a master-worker architecture (Figure 2.7). The master is called Nimbus and
each worker is called a Supervisor. Nimbus is responsible to deploy stream processing
application topologies across supervisors. Nimbus employs a scheduler to plan the execu-
tion of tasks. The default scheduler of Nimbus uses a round-robin strategy, which aims to
evenly distribute the tasks among the Supervisors. Each Supervisor is instructed by Nimbus
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Figure 2.7: The architecture of Apache Storm.
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Figure 2.8: A demonstration of the two-tier geo-distributed infrastructure.

and manages processes (workers) hosted in its machine. Nimbus and Supervisors exchange
coordination messages through ZooKeeper [65], a reliable distributed coordination system.

2.2 Geo-Distributed Infrastructure
A geo-distributed infrastructure consists of a set of geographically distributed resources
that can host Internet-based applications and services. An example of a geo-distributed
infrastructure is a group of data centers located in different countries and continents. One of
the main reasons to use a geo-distributed infrastructure is to improve the quality of service
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by hosting applications closer to end-users. Placing applications closer to end-users will
reduce the network latency caused by distance and routing.

A geo-distributed infrastructure can have a hierarchical architecture with at least two
tiers. In a geo-distributed infrastructure with the hierarchical two-tier architecture, the first
tier consists of central data centers and the second tier consists of near-the-edge data centers
(Figure 2.8). Two examples of near-the-edge data centers are Cloudlets [66] and micro data
centers [67]. In the literature, the term Fog computing [68] has been extensively used to
refer to distributed computing on near-the-edge and edge devices that can host applications.
Central data centers are large data centers that are farther from the network edge but have
considerably more available resources than near-the-edge data centers. As we move from
the first tier toward the lower tiers in a multi-tier distributed infrastructure, the distance
to the network edge is reduced and hence, the network latency is reduced. It is usually
the case that the compute and storage resources are more limited in the lower tiers of a
geo-distributed infrastructure.

Recently, there have been many research works aimed at reducing the network cost and
latency of data-intensive computing applications over geo-distributed data by distributing
the application components over geo-distributed infrastructure. However, most of the re-
search work has focused on the optimization of batch data processing [26,69–73], in which
the data is assumed to be non-continuous and finite.

There have been few works on optimizing data stream processing in geo-distributed
infrastructure. Some works [74–76] are based on the assumption that the approximated
output results are acceptable and therefore, propose load-shedding or adaptive result degra-
dation techniques. Heintz et al. [77] provide a solution to optimize network cost and latency
in windowed aggregation queries without any result degradation. There are also a series
of research works [78, 79] that provide solutions for the placement of stream processing
operators on arbitrary networks with the aim of reducing the bandwidth consumption and
response time.

This thesis proposes a method that coordinates windowed aggregation among edge data
centers to optimize the network cost (Paper III). Furthermore, this thesis presents SpanEdge
(Paper IV) that provides a run-time system to manage stream processing applications and an
expressive programming model to unify programming on a geo-distributed infrastructure.

2.2.1 Community Network Cloud

Section 3.1 of this thesis presents a case study of enabling stream processing on a geo-
distributed infrastructure built on top of a community network. Therefore, this section
provides background information about community networks and Community Network
Clouds.

Community network is an IP-based bottom-up network built by the citizens of a com-
munity and therefore, the topology of the network is self-provisioned. It is built of het-
erogeneous hardware that are geographically distributed across an area. Community net-
works often emerge as a solution for providing Internet access to the areas abandoned by
commercial telecoms [36]. Examples of community networks are Guifi.net [80] in Spain,
AWMN [81] in Greece, and Funkfeuer [82] in the German region.
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Community Network Cloud is an infrastructure built on top of a community network in
order to provide Cloud services [83, 84]. In Community Network Cloud, Cloud resources
are owned by community members. The resources are mainly co-located with the com-
munity network devices. Due to the proximity of the Cloud resources to end-users, these
resources can be considered as the edge resources in order to host low latency services.

Stream processing in Community Network Clouds share several similar network-related
challenges with stream processing in geo-distributed infrastructure, especially, edge re-
sources. Geographical distribution of the resources and network heterogeneity among the
resources in terms of bandwidth and latency are some of the challenges. In Paper I and Pa-
per II, we conduct our evaluations on a dataset that we collected from community network
Guifi.net [80].

2.3 Graph Analysis

As mentioned in Section 1.2, one of the objectives of this thesis is to provide solutions for
the efficient processing of streaming data modeled as a graph data structure. In addition,
in Paper II, we leverage graph analysis techniques to optimize the network performance
for distributed data-intensive applications. Therefore, this section covers the background
information and related works about graphs and graph mining techniques in the scope of
this thesis.

Graph or network data are fundamental structures that occur naturally in the real world,
for example, social networks, protein networks, communication networks, and the world
wide web. Graphs are the natural representation of a collection of entities and the rela-
tionships between them. In graph theory, an entity is usually called a vertex or node and a
relation between two entities are presented as an edge or link between the two correspond-
ing vertices. Graph’s vertices and edges can have attributes that represent some character-
istics of corresponding entities and their relations. For example, in case of a graph of a
social network, the vertices that represent the social network’s members (users) can have
attributes such as age, gender, and location while the edges can have attributes such as a
friend, spouse, sister, colleague, and so on.

Graphs can be directed or undirected. In a directed graph the direction of an edge is
only in one direction from the source vertex to the target vertex. However, in an undirected
graph, each edge is bidirectional between the two end vertices. Graphs can also be weighted
or unweighted. In a weighted graph, a value (weight) is assigned to each edge that defines
the importance of that edge. The weight can be derived from the edge attributes such
as cost, capacity, and etc. However, in an unweighted graph, all edges have the same
importance (weight).

Graphs as structured knowledge repositories already encode useful information about
their elements. For example, in a social network, vertices that are directly connected by an
edge can be considered as friends. One can further analyze to find common friends among
two vertices by a simple algorithm. However, graph analysis is more powerful than simply
finding common friends. It enables us to decode more interesting and deeper insights from a
given data. Graphs are being used in several domains such as optimizing routes for airlines,

17



CHAPTER 2. BACKGROUND

recommendation systems, detecting crimes, social network analysis, and genomics.
The rest of this section explains streaming graphs and dynamic graphs that are the

main focus of this thesis. It follows by explaining three of the important topics in graph
analysis namely graph partitioning, community detection, and graph representation learn-
ing. Graph partitioning and vertex representation learning are two of the important stages
in large scale graph analysis that are aimed by Paper V and Paper VI respectively. In
our research on partitioning geo-distributed resources to improve the network performance
(presented in Paper II), we use a novel technique based on community detection, which is
primarily used for social network analysis.

2.3.1 Streaming Graphs

In a streaming graph, the graph elements are processed as they are being streamed [85].
There are two different models for streaming graphs. A graph can be either streamed by
edges or by vertices. In the streaming by edge model, each tuple includes an edge with its
two end-vertices whereas in the streaming by vertex model, each tuple includes the data of
a vertex and its adjacent vertices.

The order in which the graph elements are streamed is called stream ordering. Three
common stream orderings include random, breadth-first search (BFS), and depth-first search
(DFS) [86]. In the random ordering, the graph elements are streamed by a random permu-
tation of the graph elements. In BFS and DFS, the ordering is generated by selecting an
element of each connected component of a graph uniformly at random and then the ordering
is given as a result of a BFS or DFS starting from the given element accordingly.

2.3.2 Dynamic Graphs

In the streaming setting, a graph can be seen as an unbounded stream of insertions, dele-
tions, and updates of the graph elements. Therefore, the graph elements and the graph
structure can continuously change over time. For example, users of a social network ac-
tively develop their connections, new web pages and new hyperlinks between the web pages
are created over time, and new bank accounts are created and new transactions between the
accounts are made every day.

Specifically, a graph that changes over time is called a dynamic graph. A dynamic
graph can be represented as a series of graphs Gt = {V t, Et}, where V t = {vt

1, ..., vt
n(t)},

edges Et = {et
1, ..., et

m(t)}, and t is a discrete series of times. A set of updates on the
elements of graph Gt creates a new snapshot of the graph at t + 1, graph Gt+1. Efficient
analytics for dynamic graphs require to take an incremental approach that can update the
analytic’s model based on the changes in the graph.

2.3.3 Graph Partitioning

Graph partitioning is a technique that is used for any application that involves distributing
large graphs across disks, machines, or data centers. The graph partitioning problem is
formulated as dividing a graph into a predefined number of balanced partitions (subgraphs)

18



2.3. GRAPH ANALYSIS

(a) Edge-cut partitioning. (b) Vertex-cut partitioning.

Figure 2.9: Graph partitioning models.

while minimizing cut cost [87]. The cut cost refers to the number of connections between
the graph elements of different partitions. For example in partitioning a graph among sev-
eral machines for distributed processing, the cut cost determines the extent of the network
communication across the machines.

There are two approaches to graph partitioning, namely edge-cut and vertex-cut par-
titioning. The edge-cut partitioning divides vertices of a graph into disjoint partitions of
nearly equal size and tries to minimize the number of edges across the partitions (Fig-
ure 2.9(a)). The vertex-cut partitioning divides edges into balanced partitions while mini-
mizing the number of replicated vertices (Figure 2.9(b)). The vertex-cut partitioning creates
better partitions than the edge-cut partitioning in case of the power-law graphs [88]. In a
power-law graph the majority of vertices are a relatively low degree (have few neighbors),
while a small fraction of them are the high degree (have many neighbors) [89]. Therefore,
in a power-law graph, cutting high-degree vertices with many neighbors allows achieving
better balanced partitioning compared to cutting edges.

Streaming graph partitioning is an approach for dividing graph elements among the
partitions as graph elements are received continuously over time. In fact, the goal is to find
good partitions with as little computation as possible [86]. In contrary to the traditional
graph partitioning methods, the streaming graph partitioning does not have a global knowl-
edge about the structure of the graph. Lack of global knowledge about the graph structure
makes it more challenging to make good partitioning, i.e., balanced partitions with mini-
mum connections between the partitions.

Most of the recent works on streaming graph partitioning lie in the category of edge-cut
partitioning algorithms. The research works [33,86,90] propose one-pass edge-partitioning
algorithms. Nishimura et al. [91] show that they can achieve a better performance than the
contemporary one-pass algorithms by re-streaming the data and improving graph partitions
iteratively. Existing streaming vertex-cut partitioning algorithms can be grouped into two
main categories: hashing algorithms and greedy algorithms. Hashing algorithms [92–94]
ignore the history of the edge assignments and rely on the presence of a predefined hash
function, while the greedy algorithms [92, 95, 96] use the history of the edge assignments
to make the next decision. Many of the aforementioned graph partitioning techniques are
integrated into several distributed graph processing systems such as PowerGraph [92] and
Apache Spark’s Graphx [88]. In Paper V, we address scalability problem in the state-of-
the-art streaming vertex-cut partitioning algorithms and propose a framework for scalable
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Figure 2.10: An example of a graph with two communities.

and parallel vertex-cut partitioning of streaming graphs.

2.3.4 Community Detection
A community in a graph is a subset of the vertices in the graph that the density of the
connections among them are much higher than the rest of the vertices in the graph [30].
The notion of community reveals meaningful information about the structure of graphs.
For example in a social network graph, vertices that belong to a community can be part
of groups, families, and friends. Another example is communities of a web graph that are
groups of pages having topical similarities. Figure 2.10 illustrates an example of a graph
with two communities.

The identification of communities is possible only for sparse graphs, where the number
of edges is considerably higher than the number of vertices and the distribution of edges
are heterogeneous. Detecting communities in a graph is an NP-hard problem and there has
been a lot of research in this area [30]. The idea in community detection is to cluster vertices
into communities without having knowledge about the number of communities. The main
difference between community detection and graph partitioning (see Section 2.3.3) is that
in graph partitioning the number of groups is given to the algorithm as input, but in case
of community detection we expect the algorithm to provide this information in its output.
This is why graph partitioning algorithms cannot be used for community detection.

There are several methods to measure the quality of the communities identified by a
community detection algorithm. The modularity is the most popular quality function [30].
The modularity quality function is based on the idea that random graphs are not expected
to have cluster structures. Therefore, we can reveal the possible existence of a community
by comparing the actual density of edges in a subgraph and the expected density of the
subgraph regardless of the community structure [97]. The expected edge density is calcu-
lated based on a selected null model. A null model is a graph that matches with the original
graph in some structural properties but without the community structure. Therefore, the
modularity can be written as follows:

Q = 1
2m

∑
c

∑
i,j∈Vc

(Aij − Pij)

where the first sum runs over all communities c, Vc is the set of all the vertices in community
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c, A is the adjacency matrix, m is the total number of edges, Pij is the expected number of
edges between vertices i and j in the null model. Even though in principle one can choose
any arbitrary null model, a null model with the same degree distribution of the original
graph is preferable. Modularity can be easily extended to weighted and directed graphs.
For example, in the case of a weighted graph, the degrees of the vertices can be replaced
by their strengths, i.e., sum of the edge weights.

Modularity-based methods [98, 99] are by far the most common methods for commu-
nity detection [30]. This category of methods directly or indirectly use modularity and the
motivation is to partition the graph such that to maximize the modularity. In Paper II, we
propose to use the modularity metric. We propose a novel decentralized community detec-
tion method to detect resource "communities" in a graph built of near-edge resource nodes
that increases the modularity metric.

2.3.5 Graph Representation Learning

Incorporating structural information about graphs into machine learning models is the ma-
jor problem in machine learning on graphs. This is unlikely in image processing systems,
where images can be simply presented by vectors of raw pixel-intensities and we know
that all the information that are needed to recognize objects in images are encoded in the
vectors. However, in the case of vertex (node) classification on graphs, it is not clear how
to encode local neighborhoods of a vertex or its global position in the graph into a feature
vector [31].

Feature engineering has been long studied for vertex feature extraction. However, fea-
ture engineering requires domain experts and it is often done by handcrafting features and
using feature extraction techniques [100, 101]. In general, handcrafted features are limited
and inflexible, and designing them can be time-consuming and expensive [31].

Recently, there has been a growing interest in general purpose methods for graph rep-
resentation learning, which is to learn latent, low-dimensional representation (represen-
tations) of graph vertices while preserving the graph topology structure and other useful
information [102]. Specifically, the graph representation learning learns a d-dimensional
vector for each vertex, where d is much smaller than the number of vertices. The repre-
sentations can be used as the features for vertices in many downstream machine learning
tasks such as classification of vertices, clustering, and link prediction [103,104]. The exist-
ing graph representation learning techniques can be categorized into two groups of unsu-
pervised and semi-supervised representation learning [102]. Unsupervised representation
learning techniques aim to learn the representations only based on the graph structure, i.e.,
vertices and edges. However, in semi-supervised techniques, the assumption is that the
vertices are labeled so beside the graph structure they can leverage the labels in learning
representations.

Contemporary graph representation learning methods can be grouped in five categories
of matrix factorization based, edge modelling based, deep learning based, random walk
based, and hybrid [102]. Matrix factorization based methods [105, 106] represent graphs
in the form of matrices and obtain representations by means of matrix factorization. These
category of methods are memory intensive and computationally expensive and their scala-
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bility is a major bottleneck. Edge modeling based methods use vertex-vertex connections
to learn graph representations. For example, LINE [107] captures the first order and second
order proximities among vertices. Since these methods only capture the observable vertex
connectivity information, they cannot capture the global structure of graphs. Deep learn-
ing based methods [108, 109] apply deep learning techniques such as autoencoder [110]
for learning network representations. Random walk based representation learning methods
create a collection of vertex sequences by means of truncated random walks. Random walk
based methods leverage the recent advancement in word representation learning [111,112]
to learn the representations. Specifically, in random walk based methods, the sequences of
vertices are treated as sample sentences extracted from text documents. DeepWalk [113]
and node2vec [114] are two of the random walk based representation learning algorithms.
Among different categories of graph representation learning from the algorithmic perspec-
tive, random walk based methods are one of the scalable methods. Hybrid methods [115]
use a combination of the other four aforementioned methods.

In Paper VI, we propose an incremental method for graph representation learning that
can learn graph representations competitive to state-of-the-art methods DeepWalk [113]
and node2vec [114] while being several times faster.
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Chapter 3

Optimizing and Unifying Stream
Processing over Geo-Distributed
Infrastructure

THIS chapter targets some of the important issues related to stream processing across
geo-distributed infrastructure. Resource nodes of a geo-distributed infrastructure
are connected through heterogeneous network connections. This means that the

network bandwidth, latency, and even the traffic cost can considerably vary between every
two resources of a geo-distributed infrastructure. The network heterogeneity arises new
challenges for stream processing. The network heterogeneity complicates the process of
placement of stream processing tasks on the resources. A naive non-optimal placement
of the components on the resources can lead to severe performance penalties by creating
performance bottlenecks and over-utilizing some network links. Furthermore, optimizing
the amount of data being exchanged between the resources becomes more important in such
a heterogeneous network. To that end, novel solutions are required to optimize allocation of
resources and inter-task communication in order to improve stream processing performance
and to provide required quality of service at a minimal cost.

This chapter first summarizes some of the problems related to the deployment of a
stream processing system on a geo-distributed infrastructure made of near-the-edge re-
sources connected with heterogeneous networks. Second, this chapter explains a novel
solution based on community detection in order to partition the near-the-edge resources
into clusters based on their network performance. It follows with the case of windowed
grouped aggregation and the proposed coordination algorithm that optimizes communica-
tion cost for data aggregation. In the end, this chapter explains a novel approach to unify
stream processing across central and near-the-edge data centers. The content of the next
sections are taken from Paper I, Paper II, Paper III, and Paper IV respectively.
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3.1 Evaluation of Apache Storm in a Geo-distributed
Infrastructure

In Paper I, we address some of the main issues and bottlenecks of deploying a stream
processing system on a geo-distributed infrastructure made of near-the-edge resources,
where resources that host the system’s components are connected by heterogeneous net-
work links. We take an experimental study approach in this regard. We have evaluated
Apache Strom [64], a widely used open-source distributed stream processing system, on
an emulated Community Network Cloud [83]. We have chosen the community network as
a geo-distributed infrastructure because of its similarity to other means of hosting appli-
cations near-the-edge, in which the network topology and connections are heterogeneous.
Another reason to use the emulated Community Network Cloud as a test-bed was availabil-
ity of real-world dataset of community network Guifi.net [80]. The dataset that we collected
from a small part of the network, named QMP Sants-UPC [116] allowed us to perform real-
istic emulation by using the CORE network emulator [35]. The network contains 52 nodes
and 112 bidirectional links.

In Paper I, we consider different placements of the Apache Storm components on
the geo-distributed resources. The evaluation exposes the following requirements for the
stream processing system in order to be deployed and operate in a geo-distributed infras-
tructure, as well as, the challenges related to the underlying network connectivity:

• Different placements of the Storm components on the distributed resources, can lead
to different tasks scheduling time, failure detection time, failure detection accuracy,
throughput, and the traffic overhead on the network. This is mainly because in a geo-
distributed infrastructure, network links are heterogeneous, some links can be over-
utilized, and the number of hops between the communicating resources can vary.
In order to facilitate efficient placement of the stream processing components, we
propose a component placement method based on partitioning of the geo-distributed
resources, that is described in Section 3.2.

• Stream sources, called spouts in Apache Storm (see Section 2.1.3), can be spread all
over the network. Therefore, the placement of bolts closer to their relevant stream
sources (spouts) can reduce the network traffic and increase the throughput of the
system. It is required for the Storm scheduler to be aware of the network topology and
the location of the stream sources in order to assign bolts efficiently to the resources.

• Apache Storm supports stream grouping that specifies how a task should distribute
outbound tuples between the parallel instances of the next task in an application
dataflow (see Section 2.1.3). However, the existing stream groupings in Apache
Storm are inefficient and not expressive for a geo-distributed infrastructure. There is
a need for novel stream groupings that can define streams to be partitioned among
bolts with respect to the architecture of a geo-distributed infrastructure.
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3.2 Smart Partitioning of Geo-Distributed Resources

Near-the-edge resources that can be used to host applications closer to data sources and
sinks are often connected by and co-located with network devices such as routers [68],
base-stations [117], or community network nodes [83]. As mentioned in the previous sec-
tion, placement of stream processing components on near-the-edge resources affects the
performance of the stream processing system. The problem is that the topology of the net-
work that connects near-the-edge resources is not necessarily optimal for hosting stream
processing components or any other distributed data-intensive application. Therefore, a
naive non-optimal placement of the components on the resources can lead to severe per-
formance penalties. For example, some links can become over-utilized, creating perfor-
mance bottlenecks. Data can flow through excessive number of links in the network, which
can degrade the performance of the whole network. Furthermore, some stream processing
components with high dependency and high data transfer rate may be dispersed among the
resources connected with poor links. In fact, all these issues can raise due to the heteroge-
neous network that connects the near-the-edge resources.

For an optimal placement of data-intensive application components on a geo-distributed
infrastructure, knowledge about the underlying network can be exploited. In Paper II, we
propose a novel method for partitioning a distributed infrastructure of near-the-edge re-
sources to computing clusters, each called a micro data center. Communications within
the resources of a micro data center are faster and cheaper than communications across
micro data centers and communications between micro data centers and a central data cen-
ter. Topology-aware distributed applications can increase their performance by exploiting
the information about the micro data centers when placing their application components.
Techniques such as rack locality have been extensively used inside central data centers for
efficient scheduling of data-intensive applications [118,119]. For example, in a central data
center, it is more efficient to place components of a distributed application inside the same
rack. This is because there is more bandwidth available for the nodes inside a rack and the
intra-rack communications are faster.

In Paper II, we model near-the-edge resources and their connections as a weighted
graph, where vertices represent near-the-edge resources and edges represent connections
between the resources. In the graph model, edge weights represent connection attributes
such as network latency and bandwidth. The model enables us to define the problem of
partitioning resources into micro data centers as a community detection problem (Sec-
tion 2.3.4), which is originally used in social network analysis [30]. In particular, the high
connectivity inside each micro data center of a distributed infrastructure represented as a
graph can be modeled and estimated by the known modularity metric in graph theory [30].
The modularity measures the fraction of edges that fall within the given groups minus the
expected such fraction if edges were distributed at random. We propose to use the modu-
larity metric to detect resource "communities" in a distributed infrastructure by clustering
near-edge resource nodes that increase the modularity metric. Figure 3.1 shows an example
of a graph of geo-distributed resources. In the graph on the left side, the nodes with the
same color are grouped as the resources of the same community (micro data center). How-
ever, the detection of community structures in a graph is an NP-hard problem and hence, it
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NP-Hard

Figure 3.1: Graph of a geo-distributed infrastructure before and after grouping into micro
data centers. The visualization does not represent the geographical location of the nodes.

is not feasible to find an exact solution.
To provide a general solution for near-the-edge resources with a centralized or decen-

tralized controller, in Paper II, we propose a novel decentralized community detection algo-
rithm in which each node of the graph only needs to communicate with its adjacent nodes
through message passing. The algorithm is an agglomerative algorithm [30], in which big-
ger communities are built by merging smaller communities. Our solution is based on biased
random walk, in which the random walker either stays in its current node or leaves it with
a probability that is inversely proportional to its degree. When performing a random walk
on a graph, starting from a random source node, the walker is more likely to get trapped in
the dense region where the source node belongs to. For example, in Figure 3.2, if a ran-
dom walker starts from node A and takes a few random steps, with higher probability the
random walker will still remain in subgraph G1. However, if the walker eventually enters
subgraph G2 then it is more likely to stay in G2 than to leave it.

Inspired by the idea of the random walk, we use multiple random walkers, starting
from each node of the graph. Each random walker is identified with a unique color. At
the beginning, each node is initiated with a unit of a unique color and in each iteration
the node sends out a fraction of its color through its outgoing edges to its adjacent nodes.
The amount of color to send out is proportional to the weight of edges. Finally, each node
selects the color that has the highest quantity in its neighborhood as its dominant color.
Nodes that observe the same dominant color are the ones that are located in the same dense
region of the graph, i.e., in the same community. More detailed description of the algorithm
can be found in Paper II.

Here, we present a summary of the evaluation of the proposed decentralize community
detection algorithm by using the dataset of the QMP Sants-UPC network (the dataset is also
explained in Section 3.1). Paper II includes the detail of the algorithm and the evaluation
settings. We compare three different algorithms: (i) a geolocation-based algorithm using
KMeans clustering; (ii) a centralized community detection algorithm integrated in Gephi

26



3.3. OPTIMIZING THE COMMUNICATION COST IN STREAM DATA AGGREGATION IN
GEO-DISTRIBUTED INFRASTRUCTURE

Figure 3.2: An example graph with two sub-graphs. A random walker starting from node
A has a higher probability to ends up at a node in subgraph G1 rather than a node in

subgraph G2.

graph visualization software [120] based on [99] and [105]; and (iii) our decentralized
community detection algorithm. The centralized and decentralized community detection
algorithms are denoted by C and D respectively and the KMeans clustering is denoted by K.
We also present the result of considering the whole graph as a single data center, denoted by
S. We consider bandwidth as the edge weights and assume that the routing protocol is based
on weighted shortest paths among every two node. Community detection algorithms are
run to find different number of communities, even though community detection algorithms
are not parameterized directly to find exact number of communities. For example, in case
of the decentralized algorithm, increasing the number of iterations leads to fewer number
of communities.

Figure 3.3 demonstrates quality of the network links in terms of minimum bandwidth
and latency inside micro data centers formed using the aforementioned algorithms. It is
clear that the decentralized community detection is performing competitive to the central-
ized community detection, forming micro data centers with higher connectivity, having
higher bandwidth, and lower latency compared to other algorithms. The micro data centers
obtained from KMeans clustering have considerably lower bandwidth and higher latency.
In addition, we can see that if we consider the whole resources as a single infrastructure,
we can end up placing our distributed application components among nodes that have very
low network connectivity.

Further evaluation results are available in Paper II. According to the results, by placing
distributed applications inside micro data centers we can considerably reduce the network
overhead and the network latency. Furthermore, the decentralized community detection
algorithm, proposed in Paper II, creates clusters with qualities competitive to the centralized
community detection method.

3.3 Optimizing the Communication Cost in Stream Data
Aggregation in Geo-Distributed Infrastructure

The previous section proposed a solution to mitigate the effect of network heterogeneity on
distributed stream processing in near-the-edge resources. The solution is based on grouping
the resources into micro data centers with relatively more efficient communication within
the micro data centers compared to inter-data center communication. Micro data centers
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(a) (b)

Figure 3.3: Mean of minimum available bandwidth (a) and latency (b) between each pair
of nodes co-located in the same micro data center when the routing protocol is the shortest

path between every two node.

enable us to place interacting stream processing components on the resources of the same
micro data center, expecting a better network performance between the resources of a micro
data center.

However, inter-micro data center communications and communications between micro
data centers and central data centers are unavoidable in many stream processing applica-
tions. One of the applications that is common to run on data streams across multiple data
centers is data aggregation. Stream data aggregation is a widely used task (as a standing or
ad-hoc query) in streaming analytics, which is to compute an aggregate, such as sum, av-
erage, etc., on a data stream. Stream data aggregation is typically performed as windowed
aggregation (Section 2.1.2). Global scale organizations run windowed aggregation queries
for constant monitoring and real-time analytics of their data, including user actions, server
logs, and sensor readings. Thus, data are constantly being collected on tens to hundreds of
geographically distributed edge data centers (such as micro data centers) that are proximate
to users.

A common approach for processing aggregate queries of geo-distributed data streams
follows a hub-and-spoke model, in which edge data centers stream tuples directly to a cen-
tral location (core). This approach is inefficient because it does not consider heterogeneity
of networks among edge data centers and the core. For example, the cost of communica-
tion among data centers in the same region, country, or continent is mostly, if not always,
lower than inter-region, inter-country, or inter-continent communications. Examples of this
phenomenon are evident in pricing policies of Amazon AWS, and Google Cloud.

In Paper III, we propose a solution that coordinates windowed aggregations among
edge data centers, and can significantly reduce bandwidth cost. Essentially, edge data cen-
ters connected with low-cost links can transfer and aggregate data streams among each
other before communicating with the core over expensive links. In Paper III, we define
the theoretical minimum bandwidth cost for aggregating data streams by means of coordi-
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nation. Based on that, we propose a low-overhead coordination method that can identify
relevant data among edge data centers and aggregate them effectively and efficiently, and
send the data streams among the edge data centers and the core in a timely manner.

In Paper III, we assume that a data stream is a stream of key-value tuples. Our coordi-
nated method uses predicted arrival rates of tuples with identical keys in each time window.
Each edge data center obtains the arrival rates by profiling its workload. The edge data
centers use the predictions for coordinating aggregations among themselves and deciding
the time to emit updates for each key. In general, accurate prediction of workloads requires
deep knowledge of the incoming workload and sophisticated selection and tuning of one or
several prediction algorithms. Like in previous research [121], we assume that the incom-
ing workload within a window follows a Poisson distribution. Therefore, we predict the
expected arrival rate for each key as a weighted average of historical arrival rates.

The edge data centers in a region use our coordination method to aggregate tuples with
identical keys. In every region, one edge data center is assigned as a role of coordinator.
All edge data centers in the region send to the coordinator information about the keys they
have observed. Based on this information, for each key, the coordinator selects one of the
edge data centers to serve as an aggregation point (AP) for that key, and sends the list of
APs to all edge data centers in the region. An edge data center assigned the role of AP for
a key is responsible to collect and aggregate updates for that key from all data centers in
the region that have received tuples with that key. An AP is also responsible for sending
aggregate updates to the core. Each edge data center sends aggregate updates for keys with
assigned APs to corresponding APs; whereas updates for the keys with no assigned APs
are sent directly to the core.

To schedule the updates departure from edge data centers, we use the method proposed
by Heintz et al. [121], where the authors model the available bandwidth in a edge data
center as a cache. In the cache model, the cache size determines the number of keys that
can be held for further local aggregation and the cache size dynamically changes during a
window, which is divided into multiple time steps. Each edge data center recomputes the
cache size and schedules updates at every time step, which may evict a set of keys from the
cache and hence, emit their updates. We design the coordinated method such that an edge
data center may emit each update either to the core or to an AP.

The rest of this section presents a summary of the evaluation from Paper III. The eval-
uation compares the coordinated aggregation method with the following four methods: (i)
the state-of-the-art oblivious aggregation method, in which edge data centers do not in-
teract with each other for computing partial aggregates, and independently optimize the
aggregation over data streams [121], (ii) an optimal version of the oblivious method, (iii) a
simple method called all-to-one, in which edge data centers send their updates for all keys
to a fixed aggregation point and that single aggregation point sends all the updates to the
core, and (iv) an optimal version of the coordinated method. The optimal methods (ii) and
(iv), which are based on offline batch algorithm processing the entire stream dataset, are
not practical and are considered here only for the purpose of performance evaluation of
other methods. As a proof of concept, we have implemented a prototype of all the afore-
mentioned methods in Java and we evaluate them by means of simulation. As for the data
stream traces, we use the dataset "UserVisits" from Big Data Benchmark [122], and syn-
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Figure 3.4: Comparison of the different aggregation methods with respect to network
transfers in terms of number of aggregate updates and network cost.

thetically generated workloads. The details about the stream traces are available in Paper
III.

Figure 3.4(a) presents edge-to-edge and edge-to-core network transfers in terms of
number of updates and the incurred network cost for the edge data centers in a single
region. In the experiment, there are 6 edge data centers in the region and the data set is
generated for 1000 unique keys. The keys are generated such that the distribution of iden-
tical keys among any possible combination of edge data centers are uniform. Figure 3.4(a)
shows that the coordinated method reduces the network transfer to the core by at least two
times compared to the oblivious method. Figure 3.4(b) depicts the relative network cost of
aggregation incurred by the different methods compared to the traffic cost incurred by the
optimal coordinated method. We assume that an edge to core update costs 18 times larger
than an edge to edge update. This is the average of inter-region network traffic cost com-
pared to intra-region traffic cost in Google Compute Engine [123]. Figure 3.4 shows that
even though the total number of updates are almost the same between the coordinated and
the oblivious methods, majority of the updates in the coordinated method are sent through
the cheap intra-region network. Therefore, as depicted in Figure 3.4(b), the coordinated
method incurs much lower network cost compared to the oblivious method.

3.4 A Unified Stream Processing System over
Geo-Distributed Infrastructure

Section 3.1 explained that, in general, streaming data sources and sinks are geographically
distributed that calls for distributed stream processing over a geo-distributed infrastructure
in order to enable and achieve efficient distributed stream processing. Distributed stream
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Figure 3.5: The dataflow graph of an example stream processing application and the local
and global task groupings.

processing over a geo-distributed infrastructure allows to place components of a stream
processing application close to their relevant data sources and sinks in order to reduce the
network traffic and improve the application performance. Most, if not all, of distributed
stream processing systems such as Apache Storm were designed to be deployed and op-
erate in a centralized data center and are not optimized for a geo-distributed infrastructure
with heterogeneous network, compute, and storage resources. For example, as discussed
in Section 3.1, the existing stream groupings in Apache Storm are inefficient and not ex-
pressive for a geo-distributed infrastructure. Programming and deploying complex stream
processing applications across (near-the-) edge data centers and central data centers are
challenging. This is because that data sources and sinks are large in numbers, and they are
geographically dispersed.

In Paper IV, we propose a solution called SpanEdge to tackle the aforementioned issues
in enabling and achieving efficient distributed stream processing in a geo-distributed in-
frastructure. SpanEdge provides an expressive programming model to unify programming
stream processing applications on a geo-distributed infrastructure, and provides a run-time
system to manage (schedule and execute) the stream processing applications across data
centers. In SpanEdge, data centers are categorized into two tiers, where central data centers
are in the first tier and edge data centers are in the second tier. The edge data centers are
close to data sources and sinks and they are meant to host low-latency services. The data
centers in the first-tier and second-tier communicate via WAN links that incur higher re-
sponse time and traffic cost compared to the communication between the edge data centers
in the second-tier and their proximate data sources and sinks.

SpanEdge has a master-worker architecture, which consists of a manager as the master
and several workers. The manager receives a stream processing application and schedules
the application’s components among the workers as tasks. A worker runs on a cluster of
compute nodes and executes the tasks assigned to it by the manager. There are two types
of workers: the hub-worker and the spoke-worker, where a hub-worker resides in a data
center in the first tier and a spoke-worker resides in a data center in the second tier near the
edge. SpanEdge is designed for an ecosystem with multiple heterogeneous streaming data
sources that are geographically dispersed. The data sources are different in types depending
on what kinds of data they collect, e.g., weather or traffic sensors, and there can be several
instances of each source type in different geographical areas.

To facilitate programming stream processing applications for a two-tier architecture,
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SpanEdge provides two new operator groupings, local-task grouping and global-task group-
ing, which enable development of stream processing applications for both edge and central
data centers in a unified environment. In SpanEdge, a stream processing application is pre-
sented as a dataflow graph of operators. By means of task groupings, the operators of a
stream processing application can be grouped either as a local-task or a global-task, where
a local-task refers to a group of operators that require to be close to the streaming data
sources; whereas a global-task refers to a group of operators that will be placed on a hub-
worker. The operators grouped in a local-task are placed close to the sources from which
they consume data. SpanEdge creates a replica of the local-task at each spoke-worker with
the corresponding data source types. The task groupings provide a general and extensible
model in order to develop any arbitrary operations.

Figure 3.5 shows an example of a dataflow graph of a stream processing application. In
this example, there is one type of data source S1 (e.g., a specific type of sensor, or a camera)
and two data sinks R1 (e.g., an alarm) and R2 (e.g., a monitoring system). Operators OP1
and OP2 (e.g., image compression, tuple sampling, filtering, aggregations, or any arbitrary
logic) are grouped as local-task L1. This means that OP2 can emit partial local results to
sink R1. Operators OP3 and OP4 are grouped as global-task G1, which receives data from
all the replicas of local operator OP2.

The role of the manager is to deploy the dataflow graph of stream processing appli-
cations across the two-tier infrastructure formed of edge data centers in the first tier and
central data centers in the second tier. The manager employs a component called sched-
uler, which converts the dataflow graph to an execution graph by assigning the tasks to
hub-workers and spoke-workers. To assign the tasks, the scheduler requires three types of
information: (i) a dataflow graph, (ii) a map of the streaming data sources to the spoke-
workers, (iii) the network topology between the workers. The scheduler uses the map of
streaming data sources to the spoke-workers in order to deploy the local-tasks in the spoke-
workers with the required data source types. The algorithms of the scheduler are explained
in detail in Paper IV.

As a proof of concept, we implemented a prototype of SpanEdge by augmenting Apache
Storm [64] with our solution. In order to evaluate SpanEdge in different deployment sce-
narios, we emulate a geo-distributed infrastructure using the CORE network emulator [35].
We consider a geo-distributed infrastructure consists of 2 central and 9 edge data cen-
ters. The designed stream processing application is inspired by Yahoo’s Storm performance
test [124]. SpanEdge is compared against a standard central deployment architecture for
stream processing. Figure 3.6 shows the overall bandwidth consumption in the two dif-
ferent deployment scenarios, namely, central deployment and SpanEdge geo-distributed
deployment. The data generation rate is fixed but the number of data sources are increased
from 4 to 16. By increasing the number of data sources, the amount of data that needs to
be processed also increases. As it can be seen, SpanEdge significantly reduces the overall
bandwidth consumption between the data centers. This is because, in the case of a cen-
tral deployment, the raw streaming data needs to be transferred to the central data centers.
While in the case of SpanEdge, the data before being transferred between data centers is
already processed near the edge by the spoke-workers. More details about the evaluation
are available in Paper IV.
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Chapter 4

Boosting the Performance of Streaming
Graph Processing

DATA-INTENSIVE computing in many domains deals with data streams that are in the
form of interconnected data, i.e. streaming graph data [125]. In a streaming graph,
the data stream is modelled as a stream of graph elements, namely edges and

vertices. For example, in a social network new users joining the network can be modelled
as a stream of vertices and existing users adding friendships can be modelled as a stream
of edges. In a streaming setting, the graph is dynamic and its structure changes over time.
Effective and efficient processing of streaming and dynamic graphs call for fast online
methods and algorithms that process the data streams as they are generated. In addition,
well-designed incremental methods and algorithms are required to reduce the computation
overheads incurred by the changes in the graph while producing high quality results.

Graph partitioning (see Section 2.3.3) and graph representation learning (embedding)
(see Section 2.3.5) are two important operations in processing of large graphs. Graph par-
titioning is necessary to reduce inter-machine communications in distributed processing of
large graphs [86]. Graph representation learning seeks to learn low dimensional vector rep-
resentations for the graph elements and the whole graph. Graph representation facilitates
machine learning tasks and visualization on graph data [31].

This section aims at the two aforementioned problems, i.e., partitioning and repre-
sentation learning, on streaming graphs. First, this section discusses a summary of our
framework for fast partitioning of streaming graphs, which is explained in detail in Paper
V. Second, a summary of our incremental method for representation learning of dynamic
graphs is explained. The details of our work on graph representation learning is available
in Paper VI.

4.1 Boosting Vertex-Cut Partitioning for Streaming
Graphs

Vertex-cut partitioning is an effective partitioning method for graphs that have few high-
degree vertices and many low-degree vertices, also known as power-law graphs (see Sec-
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Figure 4.1: HoVerCut’s architecture.

tion 2.3.3). Many real-world graphs have power-law degree distribution such as graphs of
social networks, Internet, and the graph of the world wide web. In vertex-cut partition-
ing, edges are divided into nearly balanced partitions while some of the vertices may be
replicated among the partitions.

To the best of our knowledge the PowerGraph Greedy algorithm [92] and HDRF [95]
have shown the best partitioning results for power-law streaming graphs. Even though
these algorithms are online and incremental, they are centralized and do not scale. To
the best of our knowledge, the only distributed implementation of these algorithms have
been by implementing multiple oblivious partitioners, each partitioning a part of the graph
without sharing any information with other partitioners. Even though employing oblivious
partitioners scales well by increasing the number of parallel partitioners, but the quality of
partitions dramatically drop [126].

In Paper V, we present a parallel and distributed vertex-cut partitioner for streaming
graphs, namely HoVerCut (Paper V). HoVerCut is scalable while it creates partitions as
good as the centralized algorithms. HoVerCut partitions a graph by streaming an exclusive
subset of the graph edges to a configurable number of subpartitioners. Each subpartitioner
uses a windowing technique that brings about a light-weight state sharing with other sub-
partitioners. HoVerCut decouples the partitioning policy from the partitioning state for
efficient parallelism. Each subpartitioner holds a local state, which contains the informa-
tion required by the partitioning policy. HoVerCut maintains the global system state in a
shared storage accessible by all subpartitioners. Subpartitioners read and update the shared
state periodically and asynchronously. The more subpartitioners refer to the shared state,
the more updated information they receive, and consequently better decisions they make,
but the slower the system will be. Figure 4.1 depicts the architecture of HoVerCut.

In Paper V, we present the results of a comprehensive evaluation of HoVerCut. HoV-
erCut is compared to the state-of-the-art algorithms HDRF [95] and Greedy [92] on open
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4.2. EFFICIENT REPRESENTATION LEARNING USING RANDOM WALKS FOR
DYNAMIC GRAPHS

Partitioning time [s] Replication Factor
Dataset HDRF HoVerCut (H) Greedy HoVerCut (G) HDRF HoVerCut (H) Greedy HoVerCut (G)

AS 33 1 28 1 1.99 2.00 2.24 2.24
PSN 72 2 66 3 3.90 3.89 3.89 3.89
LSN 138 5 123 5 2.76 2.76 2.83 2.83
OSN 415 11 371 11 5.57 5.54 5.29 5.29

Table 4.1: Summary of the partitioning results for HDRF, Greedy, HoVerCut(H) and
HoVerCut(G). The LSRD is 0.00% in all the experiments.

real-world and synthetic datasets with power-law degree distribution. The four real-world
datasets that are used in the evaluation include autonomous systems (AS) [127] with |V | =
1.7M and |E| = 11M , Pokec social network (PSN) [128] with |V | = 1.6M and E =
22M , Live journal social network (LSN) [129, 130] with |V | = 4.8M and |E| = 48M ,
and Orkut social network (OSN) [131] with |V | = 3.1M and |E| = 117M . AS is the
dataset of a subgraph of routers comprising the internet. PSN is the dataset of a popular
social network in Slovakia. LSN is a subgraph of a free online community that allows its
members to maintain journals and blogs. OSN is the dataset of a free online social network.

Table 4.1 summarizes the performance of the different partitioning algorithms on the
aforementioned real-world datasets. This experiment is done on a single machine. The
window size and the number of subpartitioners are set to 32 for HoVerCut. In the table, the
replication factor is the average number of replicated vertices, and the load relative stan-
dard deviation (LRSD) is the relative standard deviation of edge size in each partition. The
value zero for LRSD indicates equal size partitions. In addition, HoVerCut(H) and HoVer-
Cut(G) represent the results of HoVerCut with the partition policy set to HDRF and Greedy
respectively. As Table 4.1 shows, HoVerCut is performing 28 up to 37 times faster than the
other two algorithms while the replication factor and the LRSD of the partitions made by
HoVerCut is as good as the other algorithms. More details about the experimentation are
available in Paper V.

4.2 Efficient Representation Learning Using Random
Walks for Dynamic Graphs

An important part of many machine learning workflows on a graph is vertex representation
learning, i.e., learning a low-dimensional vector representation for each vertex in the graph.
Recently, several powerful techniques [113,114,132] for unsupervised representation learn-
ing have emerged, which learn low dimensional vector representations for the vertices only
based on the graph structure. These unsupervised representation learning techniques have
shown state-of-the-art performance in downstream predictive tasks such as vertex classi-
fication and edge prediction. The unsupervised learning is based on two main stages of
neighborhood sampling of vertices in a graph and training the skip-gram neural network
of [112], which is a model for learning representations of words in natural language pro-
cessing. The neighborhood sampling is done by executing truncated random walks in a
graph. Random walks can capture structural properties of the graph at scale [113].
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However, most of the previous research on unsupervised representation learning is
based on static graphs whereas most real-world graphs are dynamic, i.e., they change over
time. Currently, it is an open research question that how methods based on random walks
and skip-gram model can be used for representation learning of dynamic graphs. For a
dynamic graph, the random walks must be re-generated for every snapshot of the graph in
time, in order to capture the changing graph structure and update the vertex representations,
and the downstream predictive model, accordingly.

The workflow for vertex representation learning on a dynamic graph consists of the fol-
lowing steps: (i) update the graph, (ii) generate random walks, (iii) learn vertex represen-
tations (embeddings), (iv) train the downstream learning task (e.g., vertex classification).
Steps (ii) and (iii), i.e., generating random walks and learning vertex representations, are
the most resource-intensive steps in the workflow. In Paper VI, we focus on steps (ii) and
(iii) and introduce incremental algorithms with different trade-offs for generating random
walks and learning vertex embeddings efficiently.

The baseline solution for neighborhood sampling for dynamic graphs is to re-generate
random walks for the latest snapshot of the graph every time the graph is changed. We call
this algorithm Static. Static is equivalent to running the first-order/second-order random
walk proposed in DeepWalk [113] / node2vec [114]. However, re-generating all random
walks on every graph snapshot, is inefficient and incurs unnecessary computation. In Paper
VI, we propose two algorithms that can track changes in the graph and their computation
cost depends on the extent of the changes. The algorithms consider changes in a graph
based on first order affected vertices, which are those vertices that are in the set of added or
removed edges in a graph. The formal definition of an affected vertex is explained in Paper
VI.

Our first proposed algorithm, called Unbiased Update, is based on modifying the ran-
dom walks generated on the previous snapshot of the graph (Gt) such that the updated set
of walks are statistically indistinguishable from the walks created by Static on Gt+1, i.e.,
re-generating all the random walks. The Unbiased Update algorithm finds all the random
walks that have at least one affected vertex, namely affected walks, and resumes the random
walk for only the affected walks. Unbiased Update ensures that the random walks are un-
biased, i.e., statistically indistinguishable from re-generating all the random walks. To that
end, Unbiased Update resumes an affected walk from the first occurrence of an affected
vertex in that random walk. Our second algorithm Naïve Update, instead of modifying
a random walk by searching for affected vertices among random walks, only re-generates
random walks for the set of affected vertices. Therefore, Naïve Update has the least compu-
tation cost and is faster than Static and Unbiased Update. However, Naïve Update generates
biased random walks due to its bias towards the random walks initiated for affected ver-
tices. The details about the computation complexity of the algorithms are available in Paper
VI.

The baseline algorithm to learn vertex representations is by training the skip-gram neu-
ral network of [112]. Vertex representations are learnt from a random initialization for each
vertex. The skip-gram model is trained by the sample target-context pairs generated from
a corpus, which is created by random walks. For simplicity, we call this baseline algo-
rithm Retrain. In Paper VI, we propose algorithm Incremental, which trains the skip-gram
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model incrementally by initializing the skip-gram neural network variables from the pre-
vious snapshot including the corresponding vector representations for each vertex. For a
new snapshot of the graph, the skip-gram model is only trained by newly generated sam-
ples. Our evaluations show that training the skip-gram model with only the new samples
generated from our random walk algorithms can result vertex representations competitive
to Static and Retrain but several times faster.

To evaluate our algorithms, we have implemented the random walk methods in Scala,
and the skip-gram model in python with TensorFlow framework [133]. This section presents
a summary of the results on three real-world datasets Cora (|V | = 2, 485 and |E| =
5, 069), Wikipedia (|V | = 2, 357 and |E| = 11, 592), and CoCit (|V | = 42, 452 and
|E| = 194, 410). The detail about the evaluation setup and more evaluation results are
available in Paper VI. As in previous research [134, 135], we initiate a graph by randomly
selecting a subset of edges and at each step we add a number of randomly selected edges to
the initial graph in order to create a new snapshot of the graph. The vertex representations
are given to a one-vs-rest logistic regression classifier. The classifier is set to split the train
and test data 10 times and we present the mean Macro-F1 score. We evaluate the perfor-
mance of our incremental algorithms for learning vertex representations, i.e., random walk
algorithms Unbiased Update and Naïve Update combined with our incremental method
for training the skip-gram model Incremental. We compare the incremental representation
learning algorithms against our implementation of DeepWalk [113]/node2vec [114], which
re-generates all the random walks and re-trains the skip-gram model, i.e., algorithm Static
combined with Retrain.

Figure 4.2 depicts the Macro-F1 score of the downstream classification task using the
vertex representations on different snapshots of the networks. We present the scores for the
first snapshot and for the two snapshots chosen from the middle and the end of experiment.
We have observed the same trend for the results of the other snapshots. Figure 4.3 also
demonstrates the total run time of the random walk and the skip-gram training algorithms
on the final snapshot of the graphs normalized to the run time of the DeepWalk algorithm.
As Figure 4.2 shows, the representations computed incrementally at every snapshot of the
graphs are competitive to the representations that are created by processing the whole graph
for every snapshot. This is while our incremental algorithms are several times faster than
DeepWalk (Figure 4.3). In addition, Unbiased Update results slightly better representations
than Naïve Update as Unbiased Update considers all the affected vertices in the expense of
more computation time (Figure 4.3).
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Figure 4.2: Multi-class vertex classification results for different representation learning
methods on different datasets. As it can be seen, the performance of our methods are

competitive to that of DeepWalk and Unbiased Update performs slightly better than Naïve
Update. 9% of labelled data are used for training. The initial number of edges in G0 for
Cora (a), Wikipedia (b), and CoCit (c) are 50%, 10%, and 4% of total number of edges

accordingly.
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Figure 4.3: Run time of different methods normalized to the run time of DeepWalk (Static
and Retrain). As it can be seen, our incremental methods are several times faster than

DeepWalk. The run time includes the time for generating random walks and training the
skip-gram model.
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Chapter 5

Conclusion and Future Work

THIS thesis has proposed methods, algorithms, and tools for improving the perfor-
mance of data-intensive computing, specifically focusing on distributed stream
processing in geo-distributed settings, and processing of streaming graphs. With

respect to the performance of distributed stream processing in geo-distributed settings, this
thesis aims at mitigating the effect of network heterogeneity, reducing the amount of data
being transferred over expensive network links, reducing the amount of communication
over long latency network links, and facilitating programming stream processing appli-
cations for geo-distributed settings. With respect to processing of streaming graphs, this
thesis targets to improve the parallelization and state-sharing, and to reduce the amount of
redundant computation.

In the rest of this chapter, first, a summary of the results of this thesis on achieving its
objectives are discussed. Second, this chapter explains the possibilities, limitations, and
environmental aspects of this thesis. In the end, the future work is presented.

5.1 Summary of Results

Most of the existing stream processing systems are designed and optimized to work in-
side a central data center. To study and detect the limitations of deploying a distributed
stream processing system on a geo-distributed infrastructure, we evaluated Apache Storm,
an open-source distributed stream processing system, on a geo-distributed infrastructure
made of near-the-edge resources. The evaluation exposed some new requirements for the
stream processing system in order to be deployed and operate in a geo-distributed infras-
tructure, as well as, the challenges related to the heterogeneous network that connects the
near-the-edge resources: (i) the performance of Apache Storm highly depends on the place-
ment of the Storm components on distributed resources of the geo-distributed infrastruc-
ture, (ii) the placement of bolts closer to their relevant stream sources (spouts) can reduce
the network traffic and increase the throughput of the system, and (iii) there is a need for
novel stream groupings that can define streams to be partitioned among bolts with respect
to the architecture of a geo-distributed infrastructure.

To mitigate the network heterogeneity and to facilitate the placement of stream pro-
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cessing components on geo-distributed resources, we proposed partitioning of the geo-
distributed resources based on community detection. To that end, we modeled near-the-
edge resources and their connections as a weighted graph. We call each partition of the
resources a micro data center. In particular, we estimated the high connectivity inside each
micro data center of a distributed infrastructure by the modularity metric. We proposed to
use the modularity metric to detect resource "communities" in a distributed infrastructure
by clustering near-edge resource nodes that increase the modularity metric. To provide a
general solution for near-the-edge resources with a centralized or decentralized controller,
we proposed a novel decentralized community detection algorithm that increases the modu-
larity metric competitive to the state-of-the-art centralized community detection algorithm.
We showed that micro data centers increase the minimum available bandwidth in the net-
work to up to 62%. Likewise, the average latency can be reduced to 50%.

Next, we discussed the windowed aggregation of geo-distributed data streams, which
is widely used in streaming analytics. We defined the theoretical minimum bandwidth
cost for aggregating data streams by means of coordination among edge data centers that
receive partial streams from data sources and coordinate their actions to achieve efficient
stream aggregation. Based on that, we proposed a novel low-overhead coordination method
that identifies relevant data among edge data centers and aggregates them effectively and
efficiently, and sends the aggregates among the data centers in a timely manner. We showed
that our method reduces the bandwidth cost up to∼ 6×, as compared to the state-of-the-art
solution.

In order to provide a unified stream processing system in a geo-distributed infrastruc-
ture, we proposed SpanEdge that utilizes near-the-edge micro data centers in order to re-
duce network communication over WAN links and consequently, to avoid the incurred
network latency. SpanEdge categorizes the data centers in two-tiers, where the first tier
includes central data centers and the second-tier includes near-the-edge data centers. To fa-
cilitate programming stream processing applications for a two-tier architecture, SpanEdge
provides two new operator groupings, local-task grouping and global-task grouping, which
enable development of stream processing applications for both edge and central data centers
in a unified environment. SpanEdge provides a run-time system to manage (schedule and
execute) stream processing applications across data centers. We implemented a prototype
of SpanEdge as a proof of concept by augmenting the Apache Storm stream processing sys-
tem with our solution. Our results show that SpanEdge significantly reduces the bandwidth
consumption and the response latency.

With respect to graph data, this thesis has aimed at two important problems in graph
processing, namely graph partitioning, and graph representation learning. We discussed the
scalability problem of vertex-cut partitioning algorithms for streaming power-law graphs.
Our solution, HoVerCut, deploys the state-of-the-art partitioning heuristics in a distributed
and scalable fashion without degrading the quality of partitions. HoVerCut decouples the
partitioning policy from the partitioning state, and utilizes an efficient tumbling window
model to share the state between multiple parallel and distributed instances of the partition-
ing algorithm. Our evaluations, on both real-world and synthetic graphs, showed that HoV-
erCut significantly speeds up the partitioning process. For example, HoVerCut partitions
a social network graph with 117 million edges about 37 times faster than a state-of-the-art
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partitioner.
In the end, we proposed an incremental method for vertex representation learning of dy-

namic graphs. Our method is based on unsupervised vertex representation learning, which
contains two steps. First, random samples are generated by executing truncated random
walks on a graph. Second, the skip-gram model is trained by the generated random sam-
ples to learn the representation of vertices. We defined the notion of affected vertices that
represent changes in a graph when the graph is updated. Based on that, we proposed three
incremental and computational efficient random walk algorithms that their computation
cost depends on the extent of the changes in the graph. In addition, we proposed an in-
cremental algorithm for learning vertex representations using the skip-gram model. We
showed that our proposed algorithms can achieve competitive results to the state-of-the-art
static methods while being computationally efficient and 9 times up to 160 times faster.

5.2 Possibilities

In our research on partitioning geo-distributed resources to improve the network perfor-
mance (presented in Paper II), we introduced a method for grouping geo-distributed re-
sources into micro data centers based on their network connectivity. Our method facilitates
network-aware placement of stream processing applications by introducing micro data cen-
ters and therefore, improving the performance of stream processing applications.

In the work aimed at unifying stream processing over central and near-edge data center
(presented in Paper IV), we proposed SpanEdge, which enables new applications with low-
latency requirements, e.g., mission-critical applications that require quick decision making.
To that end, application components with low-latency response time requirements are de-
ployed in the second-tier data centers in proximity to the areas where their output results
are consumed.

In the research on distributed stream processing in geo-distributed settings (presented
in Paper II, Paper III, and Paper IV) one of the main objectives is to reduce the bandwidth
cost, which is a significant component of the operating expense (OPEX) among other in-
frastructure expenses.

With respect to the privacy and data movement limitations, in Paper III and Paper IV,
our solutions advocate for keeping the raw data with legal constraints within the area of
their jurisdiction, avoiding transferring the raw data to other geographical areas.

In the research on streaming graph data (presented in Paper V and Paper VI), we pro-
pose efficient solutions for partitioning and embedding of streaming graphs. Streaming
graphs are a large part of the today’s typical workloads that many organizations and com-
panies are struggling with, e.g., graphs of social networks, bank transactions, IoT devices,
protein interactions, and etc. Our solutions for graph partitioning and graph representation
learning boost machine learning pipelines on streaming graphs. Our graph partitioning and
graph representation learning methods are parallel and scalable for large graphs.
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5.3 Limitations

There are some limitations to this work that can be considered as open problems as well. In
the research on partitioning geo-distributed resources to mitigate the effect of network het-
erogeneity (presented in Paper II), we assume that the computing nodes are homogeneous
and have the same amount of resources (CPU and memory). Furthermore, our assumption
in the evaluation is that the network is static, even though, the nodes can be dynamically
added/removed to/from the network. In our work SpanEdge (presented in Paper IV), it is
needed to specifically annotate components of a stream processing application in order to
be placed close to the network edge. Another limitation with SpanEdge is our assumption
on the amount of provisioned resources on near-the-edge data centers. We assume that
near-the-edge data centers are provisioned with enough resources to handle the workload
received from their proximate data sources. However, near-the-edge data centers may have
limited resources and hence, may require to prioritize applications or use load shedding
techniques.

5.4 Environmental Aspects

This thesis by its own nature is a step toward efficient processing of streaming data. This
thesis does not rely on any method that could be a threat or could harm society. From
the privacy point of view, the methods proposed in this thesis do not rely on exploiting
any information of individuals or any sensitive data. For example, in research on dis-
tributed stream processing in geo-distributed settings (presented in Paper II and Paper IV),
our solutions exploit network data without requiring knowledge about the content of the
data being transferred over the network. In research on streaming graph processing (pre-
sented in Paper V and Paper VI), our methods leverage meta-data of a graph (the graph
structure) and do not rely on data of the graph entities. From the point of view of sustain-
ability and environmental impact, our solutions presented in this thesis optimize network
consumption and reduce computation, which reduce energy consumption. Furthermore, by
improving the response time of stream processing applications, this thesis enables novel
mission-critical applications that can reduce risks and can increase safety in many areas
such as traffic management and smart grids.

5.5 Future Work

The results of this thesis encourage to extend the research works discussed in this the-
sis in several dimensions. In the work aimed at unifying stream processing over central
and near-edge data centers (presented in Paper IV), further research is required to enable
SpanEdge to dynamically schedule stream processing applications according to changes in
the network conditions and available resources on near-the-edge data centers. In addition
to bandwidth, CPU and memory may be scarce resources in edge data centers. Considering
the scarcity of CPU and memory in edge data centers creates new challenges and increases
the complexity of both defining the optimization problem and its solution. To that end,
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studying the existing online schedulers [136,137] that are proposed for central data centers
can be a good start point.

In the research aimed at optimizing windowed aggregation over geo-distributed data
streams (presented in Paper III), we plan to investigate on fault tolerance in the windowed
aggregation of geo-distributed data streams. Data centers may become inaccessible due to
network and server failures. Different type of failures may cause redundant or late updates.
Another dimension for future work is to consider workload distributions other than Pois-
son, having long-term trends, peaks, or other patterns. We would like to investigate other
workload prediction methods based on ARIMA or machine learning techniques.

In the research on streaming graph data (presented in Paper V and Paper VI), we pro-
pose and evaluate our solutions for the addition of edges and vertices to a dynamic graph.
Even though the addition of edges cover many applications, it is an interesting dimension to
direct our research towards the removal of edges and vertices. Therefore, we would like to
investigate the importance and impact of edge and vertex removal from a dynamic graph on
problems such as graph partitioning and graph representation learning in our future work.
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