
DOCTORAL THESIS IN SOFTWARE AND COMPUTER SYSTEMS

STOCKHOLM, SWEDEN 2014

Gossip-Based Algorithms for
Information Dissemination and Graph
Clustering

FATEMEH RAHIMIAN

KTH ROYAL INSTITUTE OF TECHNOLOGY

INFORMATION AND COMMUNICATION TECHNOLOGY

Gossip-Based Algorithms for Information
Dissemination and Graph Clustering

FATEMEH RAHIMIAN

Doctoral Thesis in
Information and Communication Technology

Stockholm, Sweden 2014

TRITA-ICT/ECS AVH 14:09
ISSN 1653-6363
ISRN KTH/ICT/ECS/AVH-14/09-SE
ISBN 978-91-7595-108-9

KTH School of Information and
Communication Technology

SE-164 40 Kista
SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges
till offentlig granskning för avläggande av teknologie doktorandexamen i datalogi
Torsdag den 22 Maj 2014 klockan 13:00 i sal E i Forum IT-Universitetet, Kungl
Tekniskahögskolan, Isafijordsgatan 39, Kista.

Swedish Institute of Computer Science
SICS Dissertation Series 68
ISSN 1101-1335.

© Fatemeh Rahimian, May, 2014

Tryck: Universitetsservice US AB

iii

Abstract

Decentralized algorithms are becoming ever more prevalent in almost all
real-world applications that are either data intensive, computation intensive
or both. This thesis presents a few decentralized solutions for large-scale (i)
data dissemination, (ii) graph partitioning, and (iii) data disambiguation. All
these solutions are based on gossip, a light weight peer-to-peer data exchange
protocol, and thus, appropriate for execution in a distributed environment.

For efficient data dissemination, we make use of the publish/subscribe
communication model and provide two distributed solutions, one for topic-
based and one for content-based subscriptions, named Vitis and Vinifera re-
spectively. These systems propagate large quantities of data to interested
users with a relatively low overhead. Without any central coordinator and
only with the use of gossip, we build a novel topology that enables efficient
routing in an unstructured overlay. We construct a hybrid system by inject-
ing structure into an otherwise unstructured network. The resulting structure
resembles a navigable small-world network that spans along clusters of nodes
that have similar subscriptions. The properties of such an overlay make it
an ideal platform for efficient data dissemination in large-scale systems. Our
solutions significantly outperforms their counterparts on various subscription
and churn scenarios, from both synthetic models and real-world traces.

We then investigate how gossiping protocols can be used, not for overlay
construction, but for operating on fixed overlay topologies, which resemble
graphs. In particular we study the NP-Complete problem of graph parti-
tioning and present a distributed partitioning solution for very large graphs.
This solution, called Ja-be-Ja, is based on local search and does not require
access to the entire graph simultaneously. It is, therefore, appropriate for
graphs that can not even fit into the memory of a single computer. Once
again gossip-based algorithms prove efficient as they enable implementing
light-weight peer sampling services, which supply graph nodes with partial
knowledge about other nodes in the graph. The performance of our parti-
tioning algorithm is comparable to centralized graph partitioning algorithms,
and yet it is scalable and can be executed on several machines in parallel or
even in a completely distributed peer-to-peer overlay. It can be used for both
edge-cut and vertex-cut partitioning of graphs and can produce partition sizes
of any given distribution.

We further extend the use of gossiping protocols to find natural clusters
in a graph instead of producing a given number of partitions. This problem,
known as graph community detection, has extensive application in various
fields and communities. We take the use of our community detection algo-
rithm to the realm of linguistics and address a well-known problem of data
disambiguation. In particular, we provide a parallel community detection
algorithm for cross-document coreference problem. We operate on graphs
that we construct by representing documents’ keywords as nodes and the
co-location of those keywords in a document as edges. We then exploit the
particular nature of such graphs, which is coreferent words are topologically
clustered, and thus, can be efficiently discovered by our community detection
algorithm.

To Amir Hossein

vii

Acknowledgements

It is a long journey, the life of a PhD student, full of ups and downs, joys and
disappointments, failures and successes. But you should never lose hope, specially
if you are, like me, surrounded with amazing people who generously give their time,
support and advice to you.

Foremost, I would like to express my deepest gratitude to my advisor, Profes-
sor Seif Haridi. Your broad knowledge and expertise, your incredible enthusiasm
and your continuous fatherly support, provided me with a great opportunity and
excellent atmosphere for doing research. Without you this dissertation would never
have been materialized. I will be forever indebted to you. Thank you sir!

I would like to thank my second advisor Dr. Šarūnas Girdzijauskas. I could not
imagine having a better mentor than you. You generously gave me all the time and
support I needed, showed me how to do research and gave me the most insightful
guidance. Words can not explain how grateful I am to you, for you bore with me
through all ups and downs. Labai ačiū!

I also would like to thank my co-advisor, Dr. Jim Dowling. I am extremely
grateful to you for the illuminating discussions, your constructive feedbacks and
invaluable support. Go raibh maith agat!

My deepest appreciation goes to Dr. Amir Hossein Payberah. I am thankful to
you not only for your enormous contributions to the work presented in this thesis,
but also for your generous help and support during the whole course of my studies.
Yek donya Mamnoonam! I dedicate this work to you with all my love and gratitude.

I would like to thank Professor Márk Jelasity for our collaboration on graph
partitioning. It has been an honor working with you and benefiting from your
extensive knowledge. Köszönöm!

I am very much obliged to Professor Amr El-Abbadi and Dr. Ceren Budak for
broadening my knowledge in the field of streaming data processing. Thank you!

My special thanks go to Dr. Sverker Janson at SICS. You are an amazing
manager, always full of inspiration and great advices. Tack så mycket!

I am grateful to Martin Neumann for many fruitful and enthusiastic discussions
we had on the topic of graph processing. Dankeschön!

I am thankful for the assistance given to me by Thinh Le Neuyen Huu for the
work on locality awareness in publish/subscribe systems.

I thank Dr. Vladimir Vlassov, Professor Christian Schulte, Professor Alberto
Montresor, Dr. Ali Ghodsi, Dr. Tallat Shafaat, Dr. Cosmin Arad, Dr. Ahmad
Al-Shishtawy, Dr. Ian Marsh, Dr. Nima Dokoohaki, Dr. Roberto Roverso, Dr.
Raul Jimenez, Niklas Ekström and Alex Averbuch. It has been a great opportunity
working along side you and benefiting from your advices, experiences and warm
encouragements. Thank you all!

I am also obliged to my colleagues and fellow students at KTH and SICS, for
contributing to such a great environment for doing research.

I gratefully acknowledge the financial support I have received from End-to-End
Clouds project funded by the Swedish Foundation for Strategic Research (SSF)

viii

under the contract RIT10-0043.
Big thanks to my dear friends, without whom I could not get through the

hardships of this rather bumpy way. And finally, my dear family! How can I ever
thank you? Your endless love and support fills me with life. You are my source of
inspiration and I am forever indebted to you. Loads of love and thanks to you all!

Contents

Contents ix

I Thesis Overview 1

1 Introduction 3
1.1 Models and Assumptions . 5
1.2 Outline . 6

2 Background 7
2.1 Peer-to-Peer Overlays . 7
2.2 Gossiping Protocol . 8
2.3 Peer Sampling Services . 9
2.4 Topology Management . 10
2.5 Small-world Networks . 11

3 Thesis contribution 13
3.1 Information Dissemination . 13
3.2 Graph Partitioning . 15
3.3 Coreference Resolution . 17
3.4 Publications . 20

4 Conclusions 21

II Research Papers 23

5 Vitis: A Gossip-based Hybrid Overlay for Internet-scale Pub-
lish/Subscribe 25
5.1 Introduction . 27
5.2 Related Work . 30
5.3 Vitis . 32
5.4 Experiments . 40

ix

x CONTENTS

5.5 Conclusion . 47

6 Locality-awareness in a Peer-to-Peer Publish/Subscribe Network 51
6.1 Introduction . 53
6.2 Related Work . 54
6.3 Locality-aware Publish/Subscribe . 56
6.4 Evaluations . 60
6.5 Conclusions . 65

7 Subscription Awareness Meets Rendezvous Routing 67
7.1 Introduction . 69
7.2 Related work . 72
7.3 Architectural Model . 74
7.4 Vinifera . 74
7.5 Evaluation . 82
7.6 Conclusions . 87

8 JabeJa: A Distributed Algorithm for Balanced Graph Partitioning 89
8.1 Introduction . 91
8.2 Problem statement . 93
8.3 Related Work . 95
8.4 Solution . 96
8.5 Experimental evaluation . 101
8.6 Conclusions . 109

9 Distributed Vertex-Cut Partitioning 111
9.1 Introduction . 113
9.2 Problem statement . 116
9.3 Solution . 117
9.4 Experiments . 121
9.5 Related Work . 124
9.6 Conclusions . 126

10 Parallel Community Detection For Cross-Document Coreference 127
10.1 Introduction . 129
10.2 Terminology . 132
10.3 Solution . 133
10.4 Experiments . 136
10.5 Related Work . 140
10.6 Conclusion and Future Work . 143

Bibliography 145

Part I

Thesis Overview

1

Chapter 1

Introduction

“640K is enough for anyone, and by the way, what’s a network?”
- William Gates III, President of Microsoft Corporation, 1984

Far from the early predications, in the world we live today, in the heart of almost
every real-world application lies an essential need for big data management and

decentralized computations over a network of computers.
Since the emergence of Web 2.0 applications, users of Internet do not merely

consume data, but also produce data at a considerable rate. People share photos
and videos on social networks, write blogs, even advertise and sell personal items
on-line. The huge quantities of data that we have to deal with, does not contain
independent and unrelated data items. Quite the contrary, data in today’s world
is highly connected. The friends that we have in a social network connect us to
the rest of the people. Our common interests group us together. Even far from the
realm of social network, in a rather microscopic level of science, down to genomes
and protein networks, we can observe connected data.

Networks are mathematically modelled with graphs. A graph consists of nodes/ver-
tices and links/edges. For example, in a social network nodes represent users and
links represent the friendship relations. In some other use cases graphs are to be
constructed on the fly. For example, in a content dissemination network the links
are established for data exchange. Whether a graph models the actual data or the
path through which data can be transferred, it can grow very big. It may not even
fit into the memory of a single computer. Graph databases, for instance, will soon
require to span multiple machines not only for efficient storage and retrieval, but
also for efficient computations over data. Needless to say, traditional centralized
systems can no longer keep up to provide such resource demanding services. Also,
centralized algorithms that require frequent global operations over the entire graph
become prohibitively costly. Hence, decentralized solutions are becoming prevalent
in most of real-world applications. More precisely, we need mechanism that replace
the global operations with local ones and can work with only partial information.

3

4 CHAPTER 1. INTRODUCTION

Thanks to the research in the field of distributed systems and peer-to-peer net-
works, such a mechanism exists. It is called gossiping, a.k.a. epidemic protocol.
Gossiping is a light weight protocol for data exchange between neighboring nodes
in a graph or network. Just like a virus can be transfered from one guy to another
when they meet and spread in the whole society, two neighboring nodes of a graph
can infect each other with pieces of information. Over time more and more nodes
get infected and the information spreads in the graph. If these pieces of information
are effectively aggregated at the nodes, they can be utilized to replace the global
operations that exist in the centralized algorithms. In this thesis we employ gos-
siping to (i) build graphs, (ii) partition graphs, and (iii) extract information from
the graphs.

First we study how we can employ gossiping, to construct overlays that provide
large-scale publish/subscribe services. Publish/subscribe communication model is a
ubiquitous protocol for data dissemination in today’s applications, in which users
express their interest in form of subscriptions and get notified when some matching
information is published. News syndication, multi-player games, social networks,
and media streaming applications are a few examples of systems that are utilizing
the publish/subscribe communication model. Depending on the application, the
publish/subscribe service could be bandwidth intensive, as in streaming applica-
tions, or time critical, as in stock market applications, or may include a large num-
ber of subscriptions, as in social networks. We present two gossip-based distributed
algorithms, namely Vitis and Vinifera for topic-based and content-based subscrip-
tions, respectively. We use gossiping to cluster users with similar subscriptions
together and at the same time embed a structure into this unstructured overlay,
in order to make it navigable. The gossip protocol enables Vitis and Vinifera to
operate without a central coordinator and any global knowledge.

Next, we use gossiping for partitioning a graph across multiple servers or clus-
ters. This is a very important problem, because with the ever increasing size of
the graphs, it is crucial to partition them into multiple smaller clusters that can
be processed efficiently in parallel. Unlike the conventional parallel data process-
ing, parallel graph processing requires each vertex or edge to be processed in the
context of its neighborhood. Therefore, it is important to maintain the locality of
information while partitioning the graph across multiple (virtual) machines. It is
also important to produce equal size partitions that distribute the computational
load evenly between clusters. We present a gossip-based distributed algorithm,
called Ja-be-Ja for two types of graph partitioning, i.e., edge-cut and vertex-cut
partitioning.

Finally, we use gossip for extracting information out of raw data. In particular,
we address a linguistic problem that has to do with the classification of multiple
documents with respect to an ambiguous term, such that each class of documents
refer to a unique manifestation of the ambiguous term in reality. Note, this task
may not always be a difficult task for humans. When one comes across Mercury
in an article about the solar system, they instantly think of Mercury, the planet,
and not about Mercury, the chemical element or Freddie Mercury. For a computer

1.1. MODELS AND ASSUMPTIONS 5

though, such a disambiguation requires a considerable amount of processing. This
problem, i.e., the task of disambiguating manifestations of real world entities in
various records or mentions, is known as Entity Resolution or Coreference Resolu-
tion. We present a distributed solution to this problem, which is again based on
gossip. We construct a graph out of the context words of the ambiguous mentions
and then run a community detection algorithm to cluster this graph into several
components, each referring to a distinct meaning of the ambiguous word.

Although all our solutions are based on gossip, they are not designed for exactly
the same data distribution model. This is mainly due to the inherent differences in
the problems in the first place. In the next section we introduce two models and
point out which of our algorithms are designed for which model.

1.1 Models and Assumptions

In papers A, B and C, we frequently use the term node to refer to a processing unit,
for example a computer in a peer-to-peer network. In papers D, E and F, node refers
to graph nodes (or vertices). Since the peer-to-peer networks also resembles a graph,
in the former case nodes can also be considered as nodes of a graph.

All the algorithms that are presented in this thesis work can be executed in
a distributed environment. Using the graph processing terminology, all our al-
gorithms are vertex-centric, meaning that they are executed by the graph nodes
independently and in parallel. Two main models are considered:

One-host-multiple-nodes
This model is interesting for data centers or cloud environments, where each com-
puter hosts thousands of nodes at the same time. The host periodically executes the
algorithm over all the nodes that it holds. If an information exchange takes place
with other nodes on the same host, the communication cost is negligible. However,
information exchange across hosts is costly and constitutes the main body of the
communication overhead.

One-host-one-node
In this model, each node could be placed either on a different host, or processed in-
dependently in a distributed framework. This model is appropriate for frameworks
like GraphLab [1] or Pregel [2]. It can also be used in peer-to-peer (P2P) overlays,
where each node is an independent computer. In both cases, no shared memory is
required. Nodes communicate only using messages passing, and each message adds
to the communication overhead.

Our work on publish/subscribe systems are designed for a peer-to-peer environ-
ment. Our partitioning algorithm can be executed in a one-host-one-node model, as
well as the one-host-multiple-nodes model. Finally, our work on coreference resolu-
tion is designed for execution on one-host-multiple-nodes model. Note, the nature

6 CHAPTER 1. INTRODUCTION

of this problem does not match the one-host-one-node model. However, due to its
complexity it requires parallel execution in face of large quantities of data. That
is why our algorithm is designed for parallel execution on multiple machines, each
hosting a subset of input data.

1.2 Outline

In the next chapter we explore the necessary background for the thesis. In Chapter 3
we elaborate our main contributions and also identify the delimitation of this thesis
work. We conclude the work in Chapter 4. The complete publications, on which
this thesis is based, are presented in Part II. Chapters 5, 6, and 7 describe our work
on large-scale data dissemination. Our graph partitioning algorithms are presented
in Chapters 8 and 9. Finally, Chapter 10 presents our solution for the coreference
problem.

Chapter 2

Background

“Our knowledge can only be finite, while our
ignorance must necessarily be infinite.”

- Karl Popper

Since all our algorithms make use of gossip-based protocols in one way or another,
in this chapter we introduce gossiping protocols in the context of peer-to-peer net-
works, where they were first introduced. We explain how one can make use of
gossiping protocols to provide a peer sampling service, a service that is utilized in
most of our solutions. We also describe how a peer sampling service can be used to
construct and maintain a desired topology. The topology construction is primarily
important for our publish/subscribe solutions.

2.1 Peer-to-Peer Overlays

A peer-to-peer (P2P) overlay is an overlay network that exploits the existing re-
sources at the edge of the network. Each node is represented by a peer, and plays
the role of both client and server in the overlay network. Nodes cooperate to
provide a distributed service, without the need for a single or centralized coordina-
tor/server. The resources in such networks increase as more nodes join the network.
Thus, peer-to-peer networks can potentially scale to a large number of participating
nodes without having to dedicate powerful machines to provide the service. Bit-
Torrent is a well-known example of such networks. In a peer-to-peer network nodes
can join or leave the network continuously and concurrently. This phenomenon is
called churn. Also network capacities change due to congestion, link failures, etc.
Any such system, therefore, must handle churn in order to provide a reasonable
quality of service.

Peer-to-peer overlays are mainly categorized into (i) structured, (ii) unstruc-
tured, and (iii) hybrid overlays. In a structured overlay, nodes acquire an identifier

7

8 CHAPTER 2. BACKGROUND

from a globally known identifier space and are arranged to form a well defined
topology. Such overlays should provide navigability, that is every node should be
able to route to any other node in few, usually logarithmic, number of steps. This
is achieved by utilizing a greedy distance-minimizing lookup service over the topol-
ogy. Chord [3], Pastry [4], Kademlia [5], Symphony [6], CAN [7], One-hop DHT [8]
and Oscar [9–11] are examples of the structured overlays.

One the other hand, unstructured overlays usually do not have a predefined
topology and nodes randomly discover and select each other to link with. Lookup in
these overlays usually takes the form of either flooding or random walk. Gnutella [12]
and Kaza [13] are two examples of unstructured overlays.

While structured overlays are more efficient in routing, they need to be con-
stantly maintained in the presence of churn in the network. On the other hand,
unstructured overlays are very robust and automatically adapt to the changes in
the network, though they can not guarantee a bounded routing time. Hybrid over-
lays exploit the best of the two worlds and are optimized for specific purposes. In
such an overlay, some links are chosen with predefined criteria that lead to bet-
ter routing performance, while some other links are selected randomly or based on
other characteristics that are important for the application. For example, in our
publish/subscribe systems, we construct hybrid overlays that are specially designed
for connecting users with similar subscriptions together.

2.2 Gossiping Protocol

The basic gossiping protocol is based on a symmetric information exchange between
pairs of nodes in a network. Each node has a local state, which is determined by the
logic of the application. For instance, it could indicate the node’s load or cluster
identifier. Whatever the state is, a node periodically shares it with its neighbors,
i.e., the nodes that are directly connected to it. The basic protocol is illustrated
in Algorithms 1 and 2. Every node p has two different threads, one active and one
passive. The active thread periodically initiates an information exchange with a
random neighbor q, i.e., node p sends a message containing its local state Sp to
node q. The neighbor selection policy that implements the function GetNeighbor()
depends on the nature of the application. Node p then waits for a response from
q, and when the response is received, p will update its current state. The passive
thread at each node, for example node p, waits for messages sent by other nodes,
and as soon as it receives a message, it will send back a reply containing its own state
Sp, and also updates its state with the newly received value. Note, the information
exchange is symmetric, since both participants send their states and receive each
other’s state. When nodes have both states, they run the Update() method, which
is again application dependent.

In the next section, we will see a few options for implementing this generic
function for building peer sampling services (PSS). We use PSSs in our publish/-
subscribe systems (Papers A to C) as well as our graph partitioning algorithms

2.3. PEER SAMPLING SERVICES 9

Algorithm 1 Generic Gossiping Protocol - Active thread at node p
1: procedure Gossip
2: q ← GetNeighbor()
3: Send Sp to q
4: Recv Sq from q
5: Sp ← Update(Sp, Sq)
6: end procedure

Algorithm 2 Generic Gossiping Protocol - Passive thread at node p
1: procedure RespondToGossip
2: Recv Sq from q
3: Send Sp to q
4: Sp ← Update(Sp, Sq)
5: end procedure

(Papers D and E). For the latter algorithms, in addition to a PSS, we have another
gossiping protocol, in which nodes’ states contains the partition they belong to as
well as the partitions they neighbors belong to. These information is exchanged
between pair of node and accordingly nodes update their state based in the received
information. Moreover, we use gossiping in our diffusion-based community detec-
tion (Paper F), where the state of nodes is their color inventory and the cluster
they belong to. In each round, nodes communicate not with a single neighbor, but
with all their neighbors. The update method is also implemented such that it takes
into accounts the incoming values from all neighbors. For more specific information
about nodes states and the update function for each algorithm, please refer to the
corresponding paper(s).

2.3 Peer Sampling Services

Peer sampling services (PSS) have been widely used in large scale distributed ap-
plications, such as information dissemination [14], aggregation [15], and overlay
topology management [16–19]. The main purpose of a PSS is to provide the partic-
ipating nodes with uniformly random sample of the nodes in the system. Gossiping
algorithms are the most common approach to implementing a PSS [20–26]. In a
gossip-based PSS, protocol execution at each node is divided into periodic cycles.
In each cycle, every node selects a node from its partial view and exchanges a sub-
set of its partial view with the selected node. Subsequently, both nodes update
their partial views. Implementations of a PSS vary based on a number of different
policies [21]:

1. Node selection: determines how a node selects another node to exchange
information with. It can be either randomly (rand), or based on the node’s
age (tail).

10 CHAPTER 2. BACKGROUND

Algorithm 3 T-Man - Active Thread
1: procedure ExchangeRT
2: neighbor ← selectRandomNeighbor()
3: buffer ← getSampleNodes() . provided by the peer sampling service
4: buffer.merge(RT) . RT is the local routing table
5: Send [buffer] to neighbor
6: Recv newBuffer from neighbor
7: buffer.merge(newBuffer)
8: RT ← selectNeighbors(buffer)
9: end procedure

Algorithm 4 T-Man - Passive Thread
1: procedure RespondToRTExchange
2: Recv buffer from neighbor
3: newBuffer ← getSampleNodes()
4: newBuffer.merge(RT)
5: Send [newBuffer] to neighbor
6: newBuffer.merge(buffer)
7: RT ← selectNeighbors(newBuffer)
8: end procedure

2. View propagation: determines how to exchange views with the selected node.
A node can send its view with or without expecting a reply, called push-pull
and push, respectively.

3. View selection: determines how a node updates its view after receiving the
nodes’ descriptors from the other node. A node can either update its view
randomly (blind), or keep the youngest nodes (healer), or replace the subset
of nodes sent to the other node with the received descriptors (swapper).

In our work, we employ a light-weight peer sampling service, for providing each
node with a uniformly random set of existing nodes in the system. Such service
allows our systems to work without the need for any global knowledge at any point.

2.4 Topology Management

The overlay topology management is one of the applications that benefits from
peer sampling services. In this thesis, we utilize T-man [16], which is a generic
protocol for topology construction and management. In T-man, each node, p,
periodically exchanges its routing table (RT) with a neighbor, q, chosen uniformly
at random among the existing neighbors in the routing table. Node p, then, merges
its current routing table with q’s routing table, together with a fresh list of the
nodes, provided by the underlying peer sampling service (Algorithms 3, lines 2-
7). The resulting list becomes the candidate neighbors list for p. Next, p selects
a number of neighbors among the candidate neighbors and refreshes its current
routing table. The same process will take place at node q (Algorithm 4). The core

2.5. SMALL-WORLD NETWORKS 11

idea of our topology construction is captured in the neighbor selection mechanism,
referred to as selectNeighbors in Algorithms 3 and 4. Such flexibility in neighbor
selection makes it possible to construct any desirable topology, from a single ring
or random graph, to any complex topology like torus, etc.

2.5 Small-world Networks

The small-world phenomenon refers to the property that any two individuals in
a network are usually connected through a short chain of acquaintances. The
existence of such chains have been long studied by researchers in different sciences,
ranging from mathematics and physics to sociology and communication networks.

In 2000, Kleinberg [27] argued that there exist two fundamental components
to this phenomenon. One is that such short chains are ubiquitous and the other
is that individuals are able to find these short chains, using only local informa-
tion. Kleinberg introduced the notion of distance and showed that in a small-world
network two nodes are connected not uniformly at random, but with a probabil-
ity that is inversely proportional to their distance. More precisely, nodes u and v
are connected to one another with probability d(u, v)−α, where d(u, v) denotes the
distance between the two nodes, and α is a structural parameter. Different values
for α yields a wide range of small-world networks, from random to regular graphs.
However, Kleinberg mathematically proved that a greedy routing algorithms works
best only if α is equal to the number of dimensions in the network. In other words,
navigation in a r-dimensional small-world network is most efficient only if nodes u
and v are connected to each other with probability d(u, v)−r.

Many peer-to-peer systems, such as Symphony [6], Oscar [9, 11] and Mer-
cury [28], have already used Kleinberg’s ideas to introduce overlay structures that
are efficient in routing. We are also inspired by these works, in order to ensure a
bounded routing complexity in our overlays.

Chapter 3

Thesis contribution

“Not everything that can be counted counts, and
not everything that counts can be counted”

- William Bruce Cameron, Sociologist, 1963

In this thesis we show how a decentralized gossiping protocol can be used to (i)
construct overlays that are efficient for information dissemination, (ii) partition big
graphs into partitions of any given number or size, and (iii) find communities in a
graph that we construct to solve the cross-document coreference problem. In the
next sections, we list our detailed contributions, as well as the delimitation of our
work, in each of the mentioned fields separately.

3.1 Information Dissemination

The amount of data in the digital world surrounding us is increasing very rapidly.
According to a study by IBM, “15 petabytes of data are created every day - 8 times
the volume housed in all US libraries” [29]. Thus, finding the relevant information
is becoming more like looking for a needle in a haystack. Publish/subscribe sys-
tems, or pub/sub systems for short, leverage this problem by providing users with
only the information they are actually interested in. Users of such systems utilize
a subscription service to express their interest in specific data by either subscribing
to a priori-known categories of data or defining filters over the content of the infor-
mation they want to receive. These subscription models are called topic-based and
content-based, respectively [30]. In both models, whenever some new data appears
in the system, the interested subscribers are notified.

Currently, the majority of these systems use a client/server model and rely on
dedicated machines to provide subscribe services. However, with a rapidly growing
number of users on the Internet, and a highly increasing number of subscriptions,
it is becoming necessary to use decentralized models for providing such a service at
a reasonable cost. Moreover, the centralized model raises a privacy problem, since

13

14 CHAPTER 3. THESIS CONTRIBUTION

all the user interests are revealed to a central authority, while in the real life most
users are reluctant to give away their personal interests for various privacy reasons.
Therefore, researchers have turned to peer-to-peer overlays, as an alternative design
paradigm to the centralized model. Peer-to-peer overlays, if well implemented,
exploit the resources at the edges of the network to provide a scalable service at a low
or almost no cost. The available resources in a peer-to-peer network grow/shrink
when more nodes join/leave the system. However, continuous joins and fails in such
networks should be gracefully handled in order to provide a reasonable quality of
service. Many peer-to-peer publish/subscribe systems have been proposed so far.
However, they either

• require a potentially unbounded number of connections per node, which ren-
ders the system unscalable, or

• are potentially inefficient in routing, which results in large message delivery
latencies, or

• put a heavy and/or unbalanced load on the nodes, which could ultimately
lead to rapid deterioration of the system’s performance once the nodes start
dropping the messages or choose to permanently abandon the system.

The main contributions on the subject of information dissemination are pre-
sented in form of two systems, Vitis [31, 32] and Vinifera [33], for topic-based and
content-based publish/subscribe models, respectively. These contributions, which
have been fully presented in Chapters 5, 6 and 7, can be summarized as follows:

• introducing novel algorithms for how to construct an overlay that adapts to
user subscriptions and exploits the similarity of interests. With the use of
gossip, we effectively cluster together the nodes with similar or overlapping
subscriptions, while every node maintains only a bounded number of con-
nections. These clusters are later exploited to reduce the amount of traffic
overhead that is generated in the network.

• introducing a novel algorithm for leader election inside clusters by using only
the undergoing gossiping protocol. These leaders, called gateways in Vitis
terminology, are utilized to connect clusters of nodes with similar interest,
while the generated traffic overhead is kept low.

• building efficient data dissemination paths over the clusters by enabling ren-
dezvous routing over unstructured overlays. This is achieved by injecting
structure into an otherwise unstructured overlay, using the ideas in the Klein-
berg’s model. We guarantee that the event delivery time complexity is in
logarithmic order.

• introducing load balancing mechanisms that adapt the overlay structure to
the load of the published messages.

3.2. GRAPH PARTITIONING 15

• combining multiple techniques from various fields, including gossiping, struc-
tured overlays and hashing techniques, to construct systems that outperform
the existing state-of-the-art solutions.

• implementing and evaluating these systems in simulation, using both synthet-
ically generated and real-world data traces.

Delimitations

• Durability. Durability refers to the property that a generated data item will
survive in the system permanently. This property is of great importance for
many applications, specially database systems. A publish/subscribe system
can also be augmented by a durable storage system, which guarantees the
persistency of events, as well as subscriptions. A lot of research is going
on to design distributed storage systems and key-value stores which provide
such guarantees. However, these works are orthogonal to our work and are
considered out of the scope of this document.

• Content filtering and matching techniques. There are some interesting
work on how to filter data content in the overlay networks [34–36]. However,
these works are orthogonal and can be complementary to our solutions. In
particular, we can utilize [34] on top of our dissemination trees in order to
better filter out the published content.

• Security attacks and byzantine behaviors. Although security issues are
practically important in real-world systems, the research work to address such
issues are also orthogonal to our work and are considered out of the scope of
this research. We assume all nodes behave in accordance with the protocols.
However, node and link failures are handled in our systems.

3.2 Graph Partitioning

Finding good partitions is a well-known and well-studied problem in graph the-
ory [37]. In its classical form, graph partitioning usually refers to edge-cut parti-
tioning, that is, to divide vertices of a graph into disjoint clusters of nearly equal
size, while the number of edges that span separated clusters is minimum. There are
some studies [38–40], however, that show tools that utilize edge-cut partitioning do
not achieve good performance on real-world graphs (which are mostly power-law
graphs), mainly due to unbalanced number of edges in each cluster. In contrast,
both theory [41] and practice [42, 43] prove that power-law graphs can be efficiently
processed in parallel if vertex-cuts are used. In contrast to edge-cut partitioning, a
vertex-cut partitioning divides edges of a graph into equal size clusters. The ver-
tices that hold the endpoints of an edge are also placed in the same cluster as the
edge itself. However, the vertices are not unique across clusters and might have to

16 CHAPTER 3. THESIS CONTRIBUTION

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����

����
����
����
����

(a) Edge-cut

����
����
����

����
����
����

���
���
���

���
���
���

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����

����
����
����
����

(b) Vertex-cut

Figure 3.1: Partitioning a graph into three clusters

be replicated (cut), due to the distribution of their edges across different clusters.
A good vertex-cut is one that requires minimum number of replicas. Figure 3.1
illustrate the difference between these two types of partitioning.

We focus on processing extremely large-scale graphs, e.g., user relationship and
interaction graphs from on-line social networking services such as Facebook or Twit-
ter, resulting in graphs with billions of vertices and hundreds of billions of edges.
The very large scale of the graphs we target poses a major challenge. Although a
very large number of algorithms are known for graph partitioning [44–51], includ-
ing parallel ones, most of the techniques involved assume a form of cheap random
access to the entire graph. In contrast to this, large scale graphs do not fit into the
main memory of a single computer, in fact, they often do not fit on a single local
file system either. Worse still, the graph can be fully distributed as well, with only
very few vertices hosted on a single computer.

We provide a distributed balanced graph partitioning algorithm, called Ja-be-
Ja, both for edge-cut and vertex-cut partitioning. Choosing between edge-cut and
vertex-partitioning depends on the application, and Ja-be-Ja, to the best of our
knowledge, is the only algorithm that can be applied in both models. Ja-be-Ja is
a decentralized local search algorithm and it does not require any global knowledge
of the graph topology. That is, we do not have cheap access to the entire graph
and we have to process it only with partial information. Each vertex of the graph
is a processing unit, with local information about its neighboring vertices, and a
small subset of random vertices in the graph, which it acquires by purely local
interactions. Initially, every vertex/edge is assigned to a random partition, and
over time vertices communicate and improve upon the initial assignment.

Our algorithm is uniquely designed to deal with extremely large distributed
graphs. The algorithm achieves this through its locality, simplicity and lack of
synchronization requirements, which enables it to be adapted easily to graph pro-
cessing frameworks such as Pregel [2] or GraphLab [1]. Furthermore, Ja-be-Ja can
be applied on fully distributed graphs, where each network node represents a single
graph vertex.

To evaluate Ja-be-Ja for edge-cut partitioning, we use multiple datasets of dif-
ferent characteristics, including a few synthetically generated graphs, some graphs
that are well-known in the graph partitioning community [52], and some sampled
graphs from Facebook [53] and Twitter [54]. We first investigate the impact of
different heuristics on the resulting partitioning of the input graphs, and then com-

3.3. COREFERENCE RESOLUTION 17

pare Ja-be-Ja to Metis [45], a well-known centralized solution. We show that,
although Ja-be-Ja does not have cheap random access to the graph data, it can
work as good as, and sometimes even better than, a centralized solution. In partic-
ular, for large graphs that represent real-world social network structures, such as
Facebook and Twitter, Ja-be-Ja outperforms Metis [45].

For vertex-cut partitioning, we will compare our solution with a state-of-the-
art system [55], and we show that Ja-be-Ja not only guarantees to keep the size
of the partitions balanced, but also outperforms its counterparts with respect to
vertex-cut.

The main contributions on this subject are published in two papers, Ja-be-
Ja [56] and Ja-be-Ja-vc [57], for edge-cut and vertex-cut partitioning, respec-
tively. These papers are fully presented in Chapters 8 and 9.

Delimitations

• Edge-cut partitioning for the graphs with weighted vertices can not be readily
addressed with Ja-be-Ja. The reason is Ja-be-Ja requires the initial color
distribution to be an invariant. It is for exactly this reason, that graph vertices
can not change their colors independently and have to find some other vertices
to swap their color with. However, this will only work if the two swapping
vertices are of equal weights. If vertices have different weights, the color
distribution before and after the swap will not be the same. Likewise, Ja-
be-Ja-vc is not readily applicable to vertex-cut partitioning for graphs with
weighted edges.

3.3 Coreference Resolution

Resolving entities in a text may not always be a difficult task for humans. When
one comes across Mercury in an article about the solar system, they instantly think
of Mercury, the planet, and not about Mercury, the chemical element or Freddie
Mercury. For a computer though, such a disambiguation requires a considerable
amount of processing. This problem, i.e., the task of disambiguating manifestations
of real world entities in various records or mentions, is known as Entity Resolution
or Coreference Resolution. The ambiguity arises from the fact that the same word
can refer to multiple entities. Often disambiguation is required across multiple
documents. For example, there are various articles across the web that contain
news about Mercury. Given a set of such documents with an ambiguous mention
(Mercury, for example), the Cross-Document Coreference problem seeks to group
together those documents that talk about the same entity in real world (e.g., one
group for the planet, one for the chemical element, etc.).

This problem is challenging because: (i) often the number of underlying entities
and their identities are not known (e.g., we do not know how many different Mer-
curies are to be discovered), and (ii) the number of possible classifications grows
exponentially with the number of input documents.

18 CHAPTER 3. THESIS CONTRIBUTION

A widely used approach to this problem, known as Mention-Pair model, is to
compute a pair-wise similarity value based on the common keywords that exist in
each pair of documents [58]. If two documents are found similar more than a pre-
defined threshold, they are classified together. However, this requires huge amount
of computations. The high complexity of the Mention-Pair model renders it im-
practical for web-scale coreference, where we have to process millions of documents
in a reasonable time. Even after the costly computation step, a clustering step is
required to partition the mentions into coreferent groups. The clustering itself is a
challenging task and is known to be NP-hard.

We propose a novel approach to coreference resolution, which does not require
separate classification and clustering steps. Instead, we transform the problem to a
vertex-centric graph processing task. This enables us to take advantage of the recent
advances in graph processing frameworks, such as GraphChi [59] or GraphLab [1],
and apply our algorithm to extremely large graphs.

To construct the graph, we create two types of nodes. One type represents the
ambiguous word, which we assume is given in advance. Another type of nodes
represents the unambiguous words that surround the ambiguous word in each doc-
ument. Since we do not know whether or not different mentions of the ambiguous
word are referring to the same real-world entity, we create as many nodes as the
number of documents mentioning them. The unambiguous words might as well
appear in multiple documents. For them, however, we do not create a new node, if
they already exist. Finally, we add an edge between two nodes, if their correspond-
ing words co-occurred in the same document. Consequently, each single document
is represented by a full mesh, or clique, of all its keywords.

We will then observe that some cliques overlap, which indicates that their corre-
sponding documents have a similar context. In fact, the main insight to our work is
that the topological community structure of the constructed graph identifies similar
contexts and thus, is an accurate indicator of the coreference classification. Based
on this fact, we propose a novel community detection algorithm for coreference
resolution. Our algorithm is diffusion based and exploits the fundamentals of flow
networks. In such a network each node has a capacity and each edge can transfer a
flow, just like a pipe, between two nodes. We envision multiple flows in our graph,
one per community. To distinguish these flows, we assign a distinct color to each
of them.

Initially each single document constitutes a distinct community, i.e., it will be
assigned to a unique color. All the nodes that belong to a document will get
a unit of the color of their document. Therefore, those nodes that are shared
between documents, will receive multiple units of colors. However, each node always
identifies itself with only a single color, which has the highest collective volume in
its neighborhood, so-called the dominant color. Nodes continuously exchange parts
of their colors with their neighbors by diffusing the colors through their links.
Therefore, the available volume of color at nodes, and accordingly the dominant
color in their vicinity, changes during the course of algorithm. We will show that
with appropriate diffusion policies it is possible to accumulate one distinct color

3.3. COREFERENCE RESOLUTION 19

in each of the well connected regions of the graph. Finally, the ambiguous nodes
that end up having the same dominant color are considered to be coreferent. Since
our constructed graph is sparse, the overhead of such computation remains low.
Moreover, we can produce more accurate results, compared to the state of the art.
This twofold gain is owed to the combination of two ideas, that constitute our main
contributions:

• a technique for transforming the expensive coreference problem, into a graph
problem, in which the coreferent words belong to the same topological com-
munity structure. The graph that we construct is sparse, because those doc-
uments that have dissimilar contexts, will have very few or even no direct
connections. The computations on the graph are performed per edge basis,
i.e., only if there is an edge between two nodes, they will communicate some
flows. Hence, the irrelevant documents which are weakly connected, if not dis-
connected, will not impose any computation in the graph. At the same time,
a more thorough search of the solution space is possible, as we are not lim-
ited to pair-wise similarity discoveries only. Instead, similarity between any
number of documents is naturally captured within the community structures
that emerge from the inter-linked context words.

• a novel node-centric diffusion-based community detection algorithm that mainly
uses local knowledge of the graph at each node. Hence, it allows for highly
parallel computations and usage of the existing graph processing frameworks.

We run our algorithm on different datasets, which are transformed to graphs
with distinct structural properties. For example, on a baseline dataset for person
name disambiguation, we produce a classification with an F-score 15% higher than
that of the state of the art algorithm by Singh et al. [60]. Moreover, on a dataset
provided in the Word Sense Induction task of SemEval 2010, we achieved as good
F-score as the best reported result. However, we considerably outperform the other
solutions with respect to a complementary accuracy metric, which measures the av-
erage number of items in each clusters. The full paper is presented in Chapter 10.

Delimitations

• To discover which word(s) is (are) ambiguous, is a different problem which is
orthogonal to our work and out of the scope of this document.

• Tagging the classified entities, i.e., annotating the entities with the correct
label requires external knowledge, for example from Wikipedia or DBpedia,
and is orthogonal to our work, hence, out of the scope of this document.

20 CHAPTER 3. THESIS CONTRIBUTION

3.4 Publications

• F. Rahimian, S. Girdzijauskas, A. Payberah, and S. Haridi, Vitis: A gossip-
based hybrid overlay for Internet-scale publish/subscribe, in IEEE Interna-
tional Parallel & Distributed Processing Symposium, 2011.

• F. Rahimian, T. L. N. Huu, and S. Girdzijauskas, Locality-awareness in a
peer-to-peer publish/subscribe network, in Distributed Applications and Inter-
operable Systems, Springer, 2012.

• F. Rahimian, S. Girdzijauskas, A. H. Payberah, and S. Haridi, Subscription
awareness meets rendezvous routing, in AP2PS 2012, The Fourth Interna-
tional Conference on Advances in P2P Systems, 2012.

• F. Rahimian, A. H. Payberah, S. Girdzijauskas, M. Jelasity, and S. Haridi,
Ja-Be-Ja: A distributed algorithm for balanced graph partitioning, in Proc. of
the 7th IEEE International Conference on Self-Adaptive and Self- Organizing
Systems (SASO), IEEE, Sep. 2013.

• F. Rahimian, T. L. N. Huu, and S. Girdzijauskas, Distributed vertex-cut par-
titioning, in Distributed Applications and Interoperable Systems, Springer,
2014.

• F. Rahimian, S. Girdzijauskas, and S. Haridi, Parallel Community Detection
for Cross-Document Coreference, 2014.

List of the publications that are not included in this thesis.

• A. Payberah, J. Dowling, F. Rahimian, and S. Haridi, gradientv: Marketbased
p2p live media streaming on the gradient overlay, in Distributed Applications
and Interoperable Systems, Springer, 2010.

• A. Payberah, J. Dowling, F. Rahimian, and S. Haridi, Sepidar: Incentivized
market-based p2p live-streaming on the gradient overlay network, in Interna-
tional Symposium on Multimedia, 2010.

• A. Payberah, J. Dowling, F. Rahimian, and S. Haridi, Distributed Optimiza-
tion of P2P Live Streaming Overlays, Springer Computing, Special Issue on
Extreme Distributed Systems: From Large Scale to Complexity (Computing),
June 2012.

Chapter 4

Conclusions

“Success is not final, failure is not fatal: it is the courage to continue that counts.”
- Winston Churchill

We believe that without parallel and distributed algorithms, big data processing
will become prohibitively costly and the new advances in the emerging computing
frameworks will not be effectively uitilized. Hence, developing decentralized algo-
rithms that can operate on partial data on top of these computing frameworks is
absolutely necessary. Our work is a small step in that direction.

We employed the power of gossip to solve various problems, including data
dissemination, partitioning and disambiguation. Gossiping enables all our solutions
to work with partial knowledge and with a very low communication overhead.
Thus, our algorithms can be executed efficiently and effectively in a distributed
environment.

Our solutions for data dissemination scale to very large networks, while produc-
ing a relatively low overhead. Data is delivered to the interested users (subscribers)
reliably and fast. Even in the presence of failures the delivery rate of the system
remains high. In particular, we presented Vitis, a topic-based publish/subscribe
system, which scales with the number of nodes as well as the number of topics in
the overlay. The main contribution of this work is a novel hybrid publish/subscribe
overlay that exploits two ostensibly opposite mechanisms: unstructured cluster-
ing of similar nodes and structured rendezvous routing. We employed a gossiping
technique to embed a navigable small-world network, which efficiently establishes
connectivity among clusters of nodes that exhibit similar subscriptions. We also
give a theoretical bound on the worst case delay. Moreover, we showed how we
can embed locality information into the overlay topology, that is, how to make the
connections between nodes to better reflect the physical network connections. We
introduced a notion of distance in the neighbor selection mechanism of Vitis and
studied how we can exploit locality-awareness in-line with the subscription corre-
lations. Finally, we showed that Vitis adapts to biased rates of events that are

21

22 CHAPTER 4. CONCLUSIONS

published on different topics, and builds more efficient groups for hot topics, thus,
improving the overall performance of the event dissemination.

We also presented Vinifera, a content-based publish/subscribe system that uses
a gossip-based technique to construct a topology that not only resembles a small-
world network, but also connects the nodes with similar subscriptions together. On
top of this hybrid overlay, we utilized a rendezvous routing mechanism to propa-
gate node subscriptions in the overlay. Together with an order preserving hashing
technique and an efficient showering algorithm we enabled range queries, and at the
same time, we employed a load balancing technique to deal with the potential non-
uniform user subscriptions. The combination of all these techniques are seamlessly
integrated within a single gossiping layer, thus keeping Vinifera simple, lightweight
and robust.

For graph partitioning, we provided Ja-be-Ja, an algorithm that to the best of
our knowledge, is the first distributed algorithm for balanced edge-cut partitioning
that does not require any global knowledge. To compute the partitioning, nodes of
the graph require only some local information and perform only local operations.
Therefore, the entire graph does not need to be loaded into memory, and the algo-
rithm can run in parallel on as many computers as available. We showed that our
algorithm can achieve a quality partitioning, as good as a centralized algorithm.
We also studied the trade-off between the quality of the partitioning versus the cost
of it, in terms of the number of swaps during the run-time of the algorithm.

We also presented Ja-be-Ja-vc, a distributed and parallel algorithm for vertex-
cut partitioning. Ja-be-Ja-vc partitions edges of a graph into a given number
of clusters with any desired size distribution, while the number of vertices that
have to be replicated across clusters is low. In particular, it can create balanced
partitions while reducing the vertex-cut. Ja-be-Ja-vc is a local search algorithm
that iteratively improves upon an initial random assignment of edges to partitions.
It also utilizes simulated annealing to prevent getting stuck in local optima. We
compared Ja-be-Ja-vc with two state-of-the-art systems, and showed that Ja-be-
Ja-vc not only guarantees to keep the size of the partitions balanced, but also
outperforms its counterparts with respect to vertex-cut.

Finally, we presented a graph-based approach to coreference resolution. We
showed that by using a graph representation of the documents and their context,
and applying a community detection algorithm we can speed up the task of coref-
erence resolution by a very large degree. The accuracy of coreference resolution
could also be improved at the same time, because we are able to search beyond
only pair-wise comparisons. The graph that we construct enables us to discover
any existing closeness/similarity between any subset of documents. Thus, we can
explore the solution space more freely and more smartly.

