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Abstract

Cloud computing has become ubiquitous due to its resource flexibility and cost efficiency.
Resource flexibility allows Cloud users to elastically scale their Cloud resources, for in-
stance, by horizontally scaling the number of virtual machines allocated to each application
as the application demands change. However, matching resource demands to applications
is non-trivial and applications experiencing highly dynamic workloads make it much more
difficult. Cost efficiency is primarily achieved through workload consolidation, i.e., by
co-locating applications on the same physical host. Unfortunately, workload consolidation
often comes at a performance penalty, as consolidated applications contend for shared
resources, leading to interference and performance unpredictability. Interference is partic-
ularly destructive for latency-critical applications, which must meet strict quality of service
(QoS) requirements. Another significant technological trend is the growing prevalence of
multi-socket systems in contemporary data centers. However, to the best of our knowl-
edge, existing proposals for QoS-aware resource allocation are, by design, not tailored to
multi-socket systems. Specifically, existing proposals do not support cross-socket shar-
ing of memory, which entails a sub-optimal use of multi-socket host’s aggregate memory
resources.

This thesis focuses on two aspects of Cloud resource management namely, QoS-aware
elasticity and resource arbitration, on two levels: inter-node resource management and
intra-node resource management. In the first level, we consider the number of virtual ma-
chines (VMs) as the main resource to allocate and de-allocate for horizontal auto-scaling
of an elastic service or application in the Cloud. In the intra-node resource manage-
ment, we treat the memory bandwidth in multi-socket system as the resource to arbitrate
among co-located applications. In both levels, the overall goal of this thesis is to provide
resource management mechanisms that automatically adapt the resources allocated to
data-intensive services to improve resource utilization while meeting service-level objec-
tives (SLOs).

In the context of inter-node resource management for auto-scaling of elastic Cloud ser-
vices, this thesis improves the usefulness of elasticity controllers by addressing some of the
challenges posed by current model-predictive control systems (such as training and tuning
of the controller and adapting it to different workload patterns). To enable elastic execu-
tion of Cloud-based services using model-predictive control, we propose, implement, and
evaluate OnlineElastMan, a self-trained proactive elasticity manager for Cloud-based
storage services. OnlineElastMan excels its peers with its practical aspects, including
easily measurable and obtainable performance and QoS metrics, automatic online train-
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ing, and an embedded generic workload prediction module. Our evaluation shows that
OnlineElastMan continuously improves its provision accuracy, minimizing provisioning
cost and SLO violations, under various workload patterns.

In the context of intra-node resource management, this thesis departs from the obser-
vation that, since state-of-the-art QoS-aware resource allocation systems disallow cross-
socket sharing of memory among consolidated applications, the memory bandwidth re-
sources of multi-socket hosts cannot be properly exploited. Therefore, this thesis aims
at filling that gap by designing, implementing and evaluating two novel techniques for
memory bandwidth allocation for multi-socket Cloud nodes. First, we propose BWAP,
a novel bandwidth-aware page placement tool for memory-intensive applications on non-
uniform memory access (NUMA) systems. BWAP takes the asymmetric bandwidths of
every NUMA node into account to determine and enforce an optimized application-specific
weighted interleaving. Our evaluations on a diverse set of memory-intensive workloads,
show that BWAP achieves up to 4× speedups when compared to a first-touch baseline
policy (as provided by Linux’s default). Second, we propose BALM, a QoS-aware memory
bandwidth allocation technique for multi-socket architectures. The key insight of BALM,
is to combine commodity bandwidth allocation mechanisms originally designed for single-
socket with a novel adaptive cross-socket page migration scheme. Our evaluation shows
that BALM can safeguard the SLO of latency-critical applications, with marginal SLO
violation windows, while delivering up to 87% throughput gains to bandwidth-intensive
best-effort applications compared to state-of-the-art alternatives.

All solutions proposed and presented in this thesis, namely OnlineElastMan, BWAP
and BALM, have been implemented and evaluated on real-world workloads. The result
indicates the feasibility and effectiveness of our proposed approaches to improve inter-
resource and intra-resource management through QoS-aware elastic execution and effective
arbitration of resources among consolidated workloads in Cloud nodes.
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Sammanfattning

Molntjänster har blivit allmänt förekommande på grund av dess resursflexibilitet och
kostnadseffektivitet. Resursflexibilitet gör det möjligt för molnanvändare att skala sina
molnesurser elastiskt, till exempel genom att horisontellt skala antalet virtuella mask-
iner till varje applikation när applikationen kräver förändring. Att matcha resurskrav
till applikationer är dock inte trivialt och applikationer som upplever mycket dynamiska
arbetsbelastningar gör det mycket svårare. Kostnadseffektivitet uppnås främst genom
arbetsbelastningskonsolidering, dvs genom samlokalisering av applikationer på samma
fysiska värd. Tyvärr har arbetsbelastningskonsolidering ofta en prestationsstraff, efter-
som konsoliderade applikationer strider om delade resurser, vilket leder till störningar
och oförutsägbarhet. Störningar är särskilt avledande för latentkritiska applikationer,
som måste uppfylla strikta kvalitetskrav (QoS). En annan betydande teknologisk trend
är den växande förekomsten av system med flera socklar i samtida datacenter. Såvitt vi
vet är emellertid befintliga förslag för QoS-medveten resurstilldelning enligt design inte
skräddarsydda för den växande förekomsten av multisockelsystem i samtida datacenter på
varuhusskala. Specifikt stöder befintliga förslag inte korssockeldelning av av minne, vilket
innebär en suboptimal användning av multisockelvärdens sammanlagda minnesresurser.

Denna avhandling fokuserar på två aspekter av molnresurshantering, nämligen QoS-
medveten elasticitet och resursarbitering, på två nivåer: inter-nod resurshantering och
intra-nod resurshantering. I den första nivån betraktar vi antalet virtuella maskiner (VM)
som den viktigaste resursen för att allokera och avdela för horisontell automatisk skalning
av en elastisk tjänst eller applikation i molnet. I resurshanteringen inom noden behandlar
vi minnesbandbredden i multisockelsystem som en resurs för att arbitrera bland samplac-
erade applikationer. På båda nivåerna är det övergripande målet för denna avhandling
att tillhandahålla resurshanteringsmekanismer som automatiskt anpassar de resurser som
allokeras till dataintensiva tjänster för att förbättra resursutnyttjandet samtidigt som man
når servicenivåmål (SLO).

Inom ramen för resurshantering mellan noder för automatisk skalning av elastiska mol-
ntjänster förbättrar denna avhandling användbarheten av elasticitetsstyrenheter genom
att ta itu med några av de utmaningar som nuvarande modell-förutsägbara styrsystem (så-
som utbildning och inställning av styrenheten anpassa den till olika arbetsbelastningsmön-
ster). För att möjliggöra elastisk körning av molnbaserade tjänster med hjälp av modell-
förutsägbar kontroll, föreslår vi, implementerar, och utvärderar OnlineElastMan, en
självutbildad proaktiv elasticitetshanterare för molnbaserade lagringstjänster. OnlineE-
lastMan utmärker sina kamrater med sina praktiska aspekter, inklusive lätt mätbara
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och uppnåbara prestanda och QoS-mätvärden, automatisk onlineutbildning och en in-
bäddad generisk arbetsbelastningsmodul. Vår utvärdering visar att OnlineElastMan
kontinuerligt förbättrar sin leveransnoggrannhet, minimerar provisioneringskostnader och
SLO-överträdelser, under olika arbetsbelastningsmönster.

I samband med resurshantering inom noder avviker denna avhandling från iakt-
tagelsen att eftersom toppmoderna QoS-medvetna resurstilldelningssystem inte möjlig-
gör delning av minne mellan olika konsoliderade applikationer, är minnesbandbreddens
resurser multi-socket-värdar kan inte utnyttjas ordentligt. Därför syftar denna avhan-
dling till att fylla det gapet genom att utforma, implementera och utvärdera två nya
tekniker för allokering av minnesbandbredd för molnnoder med flera socklar. Först föres-
lår vi BWAP, ett nytt bandbreddsmedvetet sidplaceringsverktyg för minnesintensiva ap-
plikationer på icke-enhetligt minnesåtkomstsystem (NUMA). BWAP tar hänsyn till de
asymmetriska bandbredderna för varje NUMA-nod för att bestämma och genomdriva en
optimerad applikationsspecifik viktad sammanflätning. Våra utvärderingar av en mängd
olika minnesintensiva arbetsbelastningar visar att BWAP uppnår upp till fyra gånger
snabbare jämfört med en grundläggande princip för första tryck (som tillhandahålls av
Linux standard). För det andra föreslår vi BALM, en QoS-medveten teknik för tilldel-
ning av minnesbandbredd för arkitekturer med flera socklar. Nyckelinsikten med BALM
är att kombinera mekanismer för tilldelning av råvaror för bandbredd som ursprung-
ligen designades för enkelsockel med ett nytt adaptivt korssockel sidmigrationsschema.
Vår utvärdering visar att BALM kan skydda SLO för latentkritiska applikationer, med
marginella SLO-överträdelsefönster, samtidigt som det ger upp till 87% genomströmn-
ingsvinster till bandbreddsintensiva bästa-försöksapplikationer jämfört med toppmoderna
alternativ.

Alla lösningar som föreslagits och presenteras i denna avhandling, nämligen OnlineE-
lastMan, BWAP och BALM, har implementerats och utvärderats på verkliga arbetsbe-
lastningar. Vår experimentella utvärdering indikerar genomförbarheten och effektiviteten
av våra föreslagna tillvägagångssätt för inter-resurs- och intra-resurshantering som syftar
till att förbättra resursutnyttjandet genom QoS-medveten elastisk körning i molnet och
effektiv skiljedom av resurser mellan konsoliderade arbetsbelastningar i molnnoder.
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Resumo

A Computação na Nuvem tornou-se onipresente devido à sua flexibilidade de recursos e
eficiência de custos. A flexibilidade de recursos permite que os utilizadores da Nuvem
escalonem elasticamente os recursos da Nuvem que utilizam – por exemplo, escalando
horizontalmente o número de máquinas virtuais alocadas a cada aplicação – à medida que
a sua carga de trabalho (e a consequente necessidade de recursos) varia. A eficiência de
custos é alcançada principalmente por meio da consolidação da carga de trabalho, ou seja,
colocando múltiplas aplicações no mesmo nó físico.

Esta tese foca-se em dois aspectos da gestão de recursos de Nuvem, a saber, elastici-
dade e arbitragem de recursos, na presença de requisitos de QdS, em dois níveis: a gestão
de recursos entre nós e a gestão de recursos dentro de cada nó. No nível inter-nó, consid-
eramos o número de máquinas virtuais como o principal recurso a alocar e desalocar para
escalonamento automático horizontal de um serviço ou aplicação elásticos na Nuvem. Mais
precisamente, esta tese aborda alguns dos desafios práticos associados aos controladores
de elasticidade que recorrem a controlo preditivo baseado em modelação. Mais precisa-
mente, propomos, implementamos e avaliamos o OnlineElastMan, um gerenciador de
elasticidade proativo auto-treinado para serviços de armazenamento baseados na Nuvem.
Em relação ao Estado da Arte atual, o OnlineElastMan introduz vantagens práticas,
nomeadamente por se basear em métricas de carga de trabalho e QdS que são fáceis de
obter em sistemas reais, por suportar o auto-aperfeiçoamento automático e dinâmico dos
modelos de controle, assim como um módulo genérico de previsão de carga de trabalho.
A avaliação experimental do OnlineElastMan mostra que a nossa proposta melhora
continuamente a sua precisão de provisionamento, minimizando os custos associados e as
violações de QdS, sob vários padrões de carga de trabalho.

No nível intra-nó, esta tese trata a largura de banda da memória em sistemas multi-
socket como o recurso essencial a arbitrar entre aplicações co-localizadas. A tese parte da
observação de que, como os sistemas de alocação de recursos de última geração não per-
mitem que aplicações residentes no mesmo nó partilhem memória entre sockets, a largura
de banda de memória total de nós multi-socket não pode ser completamente explorada.
Esta tese visa preencher essa lacuna desenhando, implementando e avaliando duas novas
técnicas para alocação de largura de banda de memória para nós multi-socket na Nu-
vem. Primeiro, propomos BWAP, uma nova ferramenta de posicionamento de páginas de
memória que optimiza a largura de banda de memória em sistemas de acesso não uniforme
à memória (NUMA, em inglês). A avaliação experimental, feita recorrendo a um conjunto
diversificado de cargas de trabalho com uso intensivo de memória, mostra que a BWAP
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melhora o desempenho até 4× quando comparada com a política trivial first-touch (a opção
por omissão em Linux). Em segundo lugar, propomos BALM, uma técnica de alocação
de largura de banda de memória baseada em QdS para arquiteturas multi-socket. A ideia
essencial da BALM é combinar mecanismos de alocação de largura de banda existentes
em sistemas reais, originalmente projetados para uso em nós de socket único, com um
novo esquema de migração de páginas entre sockets. Experimentalmente, mostramos que,
em comparação com o Estado da Arte, a BALM consegue cumprir os requisitos de QdS
das aplicações dessa categoria, apenas com períodos marginais de violação temporária;
ao mesmo tempo que alcança ganhos de débito até 87% para as restantes aplicações sem
requisitos de QdS que correm no mesmo nó multi-socket.

Todas as soluções propostas e apresentadas nesta tese, nomeadamente OnlineElast-
Man, BWAP e BALM, foram implementadas e avaliadas em cargas de trabalho do mundo
real. A avaliação experimental descrita neste documento demonstra que as contribuições
permitem melhorar a utilização de recursos da Nuvem através da execução elástica e da
arbitragem eficaz de recursos entre cargas de trabalho consolidadas num mesmo nó, tudo
tendo em conta os requisitos de QdS.
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Chapter 1

Introduction

The business models for Cloud and data center computing emphasize re-
source flexibility and cost efficiency [2–4]. Resource flexibility allows Cloud
users to elastically scale the compute, storage and network resources, as
the need arises. Since users only pay for the resources used to serve their
demand, elastic provisioning enables users reduce the cost of hosting their
applications in the Cloud, while meeting requirements on quality of ser-
vice (QoS), performance, availability and scalability of the applications.
The changing demands of each application can be handled by efficiently
managing the available resources. Assuming a multi-node distributed in-
frastructure of the Cloud or a data center, resource management can be
achieved in two levels: inter-node (across nodes) and intra-node (within
individual nodes) resource management. Inter-node resource management
involves provisioning additional nodes to run more virtual machines (VMs)
to meet applications demands, often distributing workloads among VMs to
achieve high performance, scalability, and availability of services. Often, this
is referred to as horizontal scaling (scaling out or in). In contrast, intra-node
resource management is performed in the context of each individual Cloud
node (in a bare-metal server or in VM).

Self-management, such as self-healing or auto-scaling, in a Cloud-based
service can be achieved by using autonomic managers that monitor the
workload and service performance and act whenever needed to meet their
management objectives [5]. Typically, each elastic service or application de-
ployed in the Cloud, such as an elastic key-value storage service, has its own
elasticity manager. The elasticity manager monitors workload or/and some
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service-level objective (SLO) metrics, e.g., service latency, and auto-scales
(expands or shrinks) the service by requesting or releasing resources (e.g.,
VMs or virtual hardware resources assigned to each VM) used by the ser-
vice, in response to changes in its workload or SLO metrics. In this way,
the service only uses the amount of resources that it needs to handle its
workload and to meet its SLOs.

In addition, cost efficiency in the Cloud is also achieved through work-
load consolidation, i.e., by co-locating applications on the same physical
host. Workload consolidation also improves resource utilization. In a Cloud
environment, scheduling jobs from multiple users on the same physical host
increases utilization and reduces costs (rental costs and power costs). Con-
temporary multicore nodes used in data centres and Cloud are designed to
allow clusters of cores to share various hardware resources, such as last-level
caches (LLCs), memory controllers, and interconnects. These per-node re-
sources, including cores, need to be managed efficiently to ensure consistent
performance and QoS, especially in a multitenant environment [6]. Since dif-
ferent co-located applications may now contend for limited shared resources,
managing intra-node resources becomes an arbitration challenge (more than
an allocation one).

Among the co-located applications, some have QoS requirements, as de-
termined by one or more service-level objectives (SLOs). As typically SLOs
include latency requirements and constraints, such applications are com-
monly called Latency-Critical applications (LCAs). In contrast, an appli-
cation with no QoS requirements determined by SLOs, is meant to run in
some best-effort fashion that aims to maximize its throughput (minimize
its execution time). In the context of resource allocation, such applications
with no SLOs are usually called Best-Effort applications (BEAs).

The co-located applications contend for shared resources, such as net-
work and storage bandwidth, CPU cores, LLC, and memory. Therefore,
noisy neighbour phenomena are prone to arise, in which the demand that
some applications place on some shared resources degrade the performance
of other co-located applications, up to a point where LCAs start suffering
from SLO violations. Therefore, consolidating LCAs and BEAs in the same
host poses a challenging QoS-aware resource allocation problem: the shared
resources should be allocated in such a way that safeguards the SLO of the
LCAs while maximizing the throughput of the BEAs.

Apart from aforementioned workload consolidation, another significant
technological trend is the growing prevalence of non-uniform memory access
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(NUMA) systems in contemporary data centers. In many warehouse-scale
data centers, dual-socket (or even larger) machines already constitute the
largest share of hosts [7]. Contention for shared resources on multicore pro-
cessors is a well-known problem. Studies have shown that for a large class of
memory-intensive applications, memory bandwidth has been shown to be the
most performance-critical shared resource, especially in NUMA systems [8–
12]. To prevent performance interference among the consolidated workloads,
the importance of efficient partitioning techniques for memory bandwidth is
expeditiously increasing [13, 14]. To the best of our knowledge, proposals
for memory bandwidth partitioning in scenarios of workload consolidation
only focus on single-socket systems [10, 14–16]. Consequently, this research
focuses on memory bandwidth allocation in NUMA systems. The studies on
other resources (e.g., cache, memory and cores) can be used in conjunction
with this research to provide a comprehensive solution for the resource al-
location problem in NUMA systems. The studies on extending our memory
bandwidth management framework to other resources is a subject to future
work.

This thesis focuses on two fundamental aspects of Cloud resource man-
agement, namely QoS-aware elasticity and resource arbitration, in the con-
text of the infrastructure as a service (IaaS) Cloud service model, where
virtualized computing resources are provided in the form of virtual machines
(VMs). The thesis focuses on two levels: inter-node resource management
and intra-node resource management. In the first level, we consider the num-
ber of virtual machines (VMs) as the resource to allocate and de-allocate
for horizontal auto-scaling of an elastic service or application in the Cloud.
Specifically, VMs are added when needed to handle an increasing workload
and removed when the workload drops. Hence, the QoS of an application
can be satisfied by scaling out or in (adding or removing VMs) in response to
changes in its workload. In resource management on the second level, i.e.,
in the intra-node resource management, we treat the memory bandwidth
in a NUMA system as the resource to arbitrate (allocate and de-allocate)
among co-located applications. This NUMA system can be a node within a
Cloud. In this level, the memory bandwidth of a NUMA host is partitioned
among the co-located applications in order to maintain a desired level of
QoS for LCAs while maximizing the throughput of BEAs. In both levels,
the overall goal of this thesis is to provide resource management mechanisms
that automatically adapt the resources allocated to data-intensive services
to improve resource utilization while meeting SLOs.
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In the context of inter-node resource management for auto-scaling of elas-
tic Cloud services, this thesis improves the usefulness of elasticity controllers
by addressing some of the challenges posed by current model-predictive con-
trol systems (such as training and tuning of the controller and adapting it
to different workload patterns). In particular, the thesis examines the use-
fulness of an elasticity controller while deploying it in a Cloud environment.

In the context of intra-node management of memory bandwidth in a
NUMA Cloud node, this thesis advocates that, in order to properly utilize
over-provisioned memory resources in multi-socket hosts, state-of-the-art
QoS-aware resource allocation systems need to be generalized to allow cross-
socket sharing of memory among consolidated applications. To achieve that,
the memory partitioning mechanisms on which existing solutions rely need
to be redesigned to address the new constraints of multi-socket architectures.

1.1 Thesis statement
In inter-node Cloud resource management, well-designed elasticity man-
agers using model-predictive control and online model training enable elastic
execution in the Cloud that improves resource utilization while meeting SLOs
of the Cloud-based services and applications. In addition, elastic auto-scaling
of Cloud-based services with elasticity managers optimizes the overall cost
of Cloud resources used by these services.
In intra-node Cloud resource management, well-designed QoS-aware mem-
ory bandwidth partitioning techniques can ensure marginal SLO violation
windows while delivering better performance for bandwidth-intensive best-
effort applications on multi-socket Cloud nodes.

1.2 Problem Definition and Research Questions
In this section, we briefly present the key problems that need to be addressed
when allocating VMs in the Cloud for horizontal scaling and when allocating
memory bandwidth in a NUMA Cloud node.

VM allocation in the Cloud for horizontal scaling. An elastic ap-
plication can be scaled to adapt to changing workloads. Applications of this
nature typically include a load balancer (dispatcher or master) and a col-
lection of identical servers (workers). In a cluster environment, those would
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be physical servers but, in Cloud environments, servers are hosted in VMs.
Therefore, the terms servers and VMs can be used interchangeably.

The VMs reside on physical machines (PMs) in a Cloud. We aim to
minimize the service provisioning cost while maintaining the desired SLOs
through horizontal scaling, i.e., dynamically acquire and release VMs to ac-
commodate varying application loads. Often, horizontal scaling is conducted
automatically by an elasticity controller.

Recent works have focused on improving elasticity controllers’ accuracy
by building different control models with various monitored/controlled met-
rics [17–24]. However, to the best of our knowledge, none of such works have
considered the practical usefulness of a model-predictive elasticity controller,
which involves the following challenges. First, an elasticity controller usu-
ally needs to be tailored according to a specific application. Sometimes, it
requires complicated instrumentations to the provisioned application or it is
difficult or even impossible to obtain the metrics to build the control model.
Furthermore, even with all the metrics, it needs a tremendous and tedious ef-
fort to define and train the control model [25]. A general training procedure
involves redeploying and reconfiguring the application and collecting and
analyzing data by running various workloads against many application con-
figurations. Second, the hosting environment of the provisioned application
may change due to some unmonitored factors, for example, platform inter-
ference or background maintenance tasks. Hence, even with well-trained
control models, the elasticity controller may not adjust well to these fac-
tors and therefore lead to inaccurate control decisions [24, 26]. Third, it is
always too late for the elasticity controller to react to a workload increase
when the workload is already saturating the application [23]. Thus, we argue
that the prediction of the workload is a compulsory element to an elasticity
controller [27].

Memory bandwidth allocation in a NUMA node (Cloud node).
Although the QoS-aware resource allocation problem is not new, the recent
emergence of novel hardware-based resource partitioning mechanisms has
unveiled the opportunity for a new generation of QoS-aware resource allo-
cation approaches. One notable example of such mechanisms is the support
for hardware-based partitioning of LLC and memory bandwidth as provided
by Intel Resource Director Technology (RDT) [28]. Recent proposals such
as PARTIES [15] and CLITE [16] take advantage of such new mechanisms
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to enforce QoS-aware resource allocation with unprecedented effectiveness.
Unfortunately, PARTIES and CLITE, as well as the vast majority of their
predecessors, are, by design, tailored to single-socket architectures only.

A common approach to deploy such solutions in a multi-socket host is
to distribute applications among sockets [9, 29, 30] and consider the re-
sources contained in each socket (CPU cores, LLC, memory) as exclusively
shared among the applications in that socket. This way, each socket can be
considered as an independent workload consolidation island, which can be
managed by an independent instance of some QoS-aware resource allocation
system. The only resources that require cross-socket allocation are external,
OS-managed resources such as disk or network [15].

While simple in practice, this strict approach prevents an application
running in a given socket to place data pages on remote memory nodes
(from other sockets). This essentially disallows cross-socket sharing of mem-
ory, which entails a sub-optimal use of multi-socket host’s aggregate memory
resources. This limitation is especially relevant given the increased preva-
lence of memory-intensive applications among data center workloads, whose
performance strongly depends on how efficiently memory bandwidth is allo-
cated [9, 14, 29].

As an example, consider the case where a memory-intensive best-effort
application (BEA) runs in one socket and saturates the local memory band-
width, while a CPU-intensive latency-critical application (LCA) runs on
another socket and only places a negligible access demand on the local mem-
ory. Clearly, allowing the bandwidth-intensive BEA to place a portion of its
pages in the idle remote memory node in order to benefit from an improved
aggregate memory bandwidth, while not causing any harmful interference
with the LCA, would be considerably more efficient.

Furthermore, this problem is inherently dynamic, as running applications
may have distinct phases with different resource usage patterns, while active
applications leave upon completion, and new ones may join at any time.
Therefore, appropriate solutions should react to such changes by efficiently
reallocating resources within negligible SLO violation windows.

Research Questions. In summary, this thesis aims at addressing two
main research questions.

1. How can the number of VMs allocated to applications be adjusted ef-
ficiently to the currently experienced workload and anticipated future
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workload?
We address this research question by focusing on the specific class
of distributed storage systems, one of the most important types of
services that are deployed in the Cloud. More precisely, the following
two main design issues need to be considered in order to address and
answer the above research question.

a) How to build an "out-of-the-box" generic elasticity controller frame-
work?

b) How to design a generic workload prediction module, which is ad-
justable to multiple workloads?

To address the first issue, we aim at building an elasticity controller
that is applicable to most distributed storage systems that scale hori-
zontally. This controller should be deployed and adopted by different
applications without complicated tailoring/configuring efforts. Fur-
thermore, this research problem is of practical nature and aims at eval-
uating whether the proposed elasticity manager can be implemented
efficiently with real Cloud-based applications. To address the second
design issue, we aim to make the elasticity controller proactive, such
that it can provision VMs in advance and avoid performance degrada-
tion. Stateful services such as storage systems need to be initialized
with data. Spawning/removing VMs also takes a considerable amount
of time. Therefore, it is always too late for the elasticity controller to
react to a workload increase when the workload is already saturating
the application. Previous works [18, 23] have demonstrated that, in or-
der to keep the SLO commitment, a storage system needs to scale out
in advance to tackle a workload increase since scaling a storage system
involves non-negligible overhead. To make the workload prediction
module as general as possible, it should produce accurate workload
prediction for various workload patterns. Hence, the performance of
a proactive controller largely depends on the accuracy of workload
prediction, which varies for different workload patterns.

2. How to elastically adjust the memory bandwidth of a multi-socket NUMA
host allocated to data-intensive services to improve resource utilization
while meeting SLOs of QoS-based services and maximizing throughput
of best-effort applications?
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In order to address the above research question, the following two main
research issues need to be considered.

a) How to allocate memory resources of a NUMA host in a way that
optimizes the throughput of a given application?

b) How to design efficient QoS-aware memory bandwidth allocation
for multi-socket Cloud nodes?

Regarding the first issue, contemporary NUMA systems are charac-
terized by asymmetric bandwidths and latencies. When one deploys a
parallel application on a NUMA system, its threads allocate and ac-
cess pages that need to be physically mapped to the available NUMA
nodes. This raises a crucial question: where should each page be
mapped for optimal performance? When the application is memory-
intensive, a common strategy is to uniformly interleave pages across
the set of worker nodes, i.e., the nodes on which the application
threads run. This strategy is based on the rationale that, for a large
class of memory-intensive applications, bandwidth – rather than ac-
cess latency – is the main bottleneck. Therefore, interleaving pages
across nodes provides threads with a higher aggregate memory band-
width [11]. However, this approach fails to maximize memory through-
put in modern asymmetric NUMA systems by considerable margins.
Furthermore, as noted by different authors [31, 32], the memory band-
width of a NUMA system is particularly hard to determine accurately,
since it is sensitive to interconnect congestion and local-remote con-
tention on memory controllers phenomena which, in turn, depend on
the memory demand patterns of the deployed application(s). Hence,
optimal placements are eminently application-specific.
With respect to the second issue, as mentioned earlier, to properly uti-
lize over-provisioned memory resources in multi-socket hosts, state-of-
the-art QoS-aware resource allocation systems need to be generalized
to allow cross-socket sharing of memory. This generalization requires
additional extensions to embrace the additional complexity of multi-
socket workload consolidation scenarios. Therefore, several challenges
have to be addressed to support such scenarios. Striking a balance
between optimizing BEAs throughput and satisfying LCAs SLO most
of the time is also challenging, especially under highly dynamic work-
loads. Runtime solutions inevitably add overhead, as they present an
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extra layer into the system to monitor and manage executing appli-
cations. For example, application memory behavior profiling and mi-
grating large amounts of memory can be extremely costly. Therefore,
it is important that these operations are done in a way that minimizes
overhead as much as possible.

1.3 Research Methodology

The work of this thesis is based on empirical studies conducted by designing
and implementing proof-of-concept prototypes of proposed solutions, evalu-
ated by experiments on real-world workload. Specifically, we first quantify
an identified problem and propose a solution. Then, we evaluate the pro-
posed solution and analyze the results. This section describes the approach
we followed in this dissertation to conduct the research work, including prob-
lem definition, design and evaluation of solutions, and the challenges faced
throughout the thesis work and how we have addressed them.

We approach the problem by first studying related works and literature.
We have studied the state-of-the-art approaches for VM allocation in the
Cloud for horizontal scaling and memory bandwidth allocation in NUMA.
Consequently, we have identified important limitations of the approaches
and algorithms that define the state-of-the-art in the fields of our research,
namely, resource allocation and management in the Cloud and NUMA Cloud
nodes. The studied approaches and algorithms enable elastic execution of
Cloud services while meeting SLOs, as well as improve performance and
resource utilization. We have exposed open issues to be addressed and un-
explored directions towards better approaches. We justify and empirically
verify the existence of the problems by running extensive experiments in
real-world settings. For example, in BWAP (Chapter 4), we start by empir-
ically studying the performance for different page placement strategies on a
range of memory-intensive applications from different domains on different
NUMA machines.

We implement our proposed solutions from scratch or augment existing
solutions whenever possible. All our implementations are open source and
are publicly available. The links to the public repositories are available in the
corresponding papers and also provided in the chapters of the thesis. Exper-
iments were performed on real systems and platforms, including multi-socket
NUMA servers and a private Cloud that runs the OpenStack software stack.
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The experiments were executed using scripts to ensure the reproducibility
of experiments. The experiments were conducted using benchmarks and
real-life applications. The benchmarks consisted of memory-intensive ap-
plications from several benchmark suites, i.e., NAS [1], PARSEC [33] and
SPLASH [34]. These benchmarks represent a wide diversity of application
domains, which are typically throughput-oriented, and they are also used
as such in related work on QoS-aware resource allocation. Real-life applica-
tions such as Memcached [35], Cassandra [36] and Xapian [37] were used as
the LCA workloads in our experiments. To compare performances, LCAs
SLO violation times and BEAs execution times were measured and collected.
Other than that, backend-bound stall cycles, memory access patterns, and
memory bandwidth consumption were collected to provide a more in-depth
understanding of the results presented in Chapter 4 and 5. The results
presented in this thesis are the average of at least 5 runs with a standard
deviation of less than 2% of the mean value.

1.4 Thesis Contributions

The two main research questions discussed in Section 1.2 are addressed via
three novel contributions, which are presented in this section.

OnlineElastMan. We address the first research question of enabling and
achieving elastic execution of Cloud-based services using QoS-aware model-
predictive control by proposing, implementing and evaluating OnlineE-
lastMan, that is a self-trained proactive elasticity manager for Cloud-based
storage services. OnlineElastMan excels its peers with its practical as-
pects, including easily measurable and obtainable performance and QoS
metrics, an automatically online trained control model, and an embedded
generic workload prediction module. This makes OnlineElastMan an
"out-of-the-box" elasticity controller, which can be deployed and adopted by
different storage systems without complicated tailoring/configuring efforts.
Specifically, OnlineElastMan requires monitoring the two most generic
metrics, i.e., incoming workload and service latency, which are obtainable
from most storage systems without complicated instrumentation. Using the
monitored metrics, OnlineElastMan analyzes the workload composition
in-depth, including read/write request intensity and the requested item’s
data size, which define the dimensions of a control model. OnlineElast-
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Man can easily plug in more interesting dimensions if needed. After fixing
the dimensions, a multi-dimensional control model can be automatically
built and trained online while the storage system is serving requests. After
a sufficient amount of warm-up on the control model, OnlineElastMan
can issue accurate control decisions based on the incoming workload. Fur-
thermore, the control model continuously improves itself online to adjust to
unknown/unmodeled events of the operating environment. Additionally, a
generic workload prediction module is also integrated to facilitate the deci-
sion making of OnlineElastMan. It allows OnlineElastMan to scale
the storage system well in advance to prevent SLO violations caused by work-
load increase and scaling overhead [23]. Specifically, the prediction module
aggregates multiple prediction algorithms and chooses the most appropriate
prediction algorithm based on the current workload pattern using a weighted
majority selection algorithm. Experiments using OnlineElastMan with
Cassandra indicate that OnlineElastMan continuously improves its pro-
vision accuracy, i.e., minimizing provisioning cost and SLO violations, under
various workload patterns. This contribution is presented in Chapter 3.

BWAP is a novel bandwidth-aware page placement tool for memory-
intensive applications on NUMA systems. Page placement is one way of
allocating memory bandwidth resources in NUMA systems. Therefore, we
start by empirically studying the performance for different page placement
strategies on a range of memory-intensive applications from different do-
mains on different NUMA machines. Our findings i) shed new light on the
page placement problem, showing that common practices that rely on the
obsolete assumption of a symmetric architecture are largely sub-optimal on
contemporary NUMA systems, ii) expose unexplored directions towards bet-
ter page placement strategies. To overcome these inefficiencies, we propose
BWAP. In contrast to existing solutions, BWAP takes the asymmetric band-
widths of every NUMA node into account to determine and enforce an opti-
mized application-specific weighted interleaving. We experimentally evaluate
BWAP on a diverse set of memory-intensive workloads, from PARSEC[33],
SPLASH [34] and NAS [1], showing that BWAP achieves up to 4× speed-
ups when compared to a first-touch baseline policy (as provided by Linux’s
default). This represents a 66% improvement over the performance gains
that the most commonly used placement policies attain over the same base-
line. These benefits are particularly relevant in scenarios where multiple
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co-scheduled applications run in disjoint partitions of a large NUMA ma-
chine or when applications do not scale up to the total number of available
cores. To the best of our knowledge, this is the first proposal for bandwidth-
aware page placement in heterogeneous memory systems to be evaluated on
real commodity machines, i.e., not based on simulation [38–40]. BWAP is
presented in Chapter 5.

BALM is a QoS-aware memory bandwidth allocation technique for multi-
socket architectures. As a first contribution, we study the hardware mecha-
nism of Intel RDT for memory bandwidth allocation (MBA) in a multi-
socket scenario (MBA being the state-of-the-art mechanism for memory
bandwidth allocation). We show that, in order to use MBA to fix harmful
memory bandwidth interferences between a bandwidth-intensive BEA and
an LCA, one may need to limit the memory bandwidth of the BEA (via
MBA) well beyond the limit that an optimal allocation would require. As
we detail in Chapter 5, this limitation can mean an unnecessary through-
put reduction of BEAs by a considerable margin, relatively to an optimal
allocation. This limitation constitutes a fundamental limitation that re-
stricts the ability of state-of-the-art QoS-aware resource allocation systems
to embrace the power of multi-socket hosts fully. BALM is, to the best
of our knowledge, the first that address this open question. The key in-
sight of BALM is to combine commodity bandwidth allocation mechanisms
originally designed for single-socket with a novel adaptive cross-socket page
migration scheme. By doing so, BALM can overcome the efficiency limi-
tations of the original mechanisms when deployed in multi-socket scenarios.
BALM relies on this novel approach to allow multiple LCAs and BEAs to
run together in the same multi-socket host while sharing over-provisioned
memory resources. Our experimental evaluation with real applications on
a dual-socket machine shows that BALM can overcome the efficiency lim-
itations of state-of-the-art. BALM can safeguard the SLO of LCAs, with
marginal SLO violation windows, while delivering up to 87% throughput
gains to bandwidth-intensive BEAs compared to state-of-the-art alterna-
tives. BALM is detailed in Chapter 5.



1.5. LIST OF PUBLICATIONS 13

1.5 List of Publications
Most of the contents of this thesis is based on the following papers, which
have been peer-reviewed.

I David Gureya and João Barreto. Profiling for Asymmetric NUMA
Systems. 11th EuroSys Doctoral Workshop (EuroDW 2017).

II David Gureya, Rodrigo Rodrigues, Paolo Romano, Pramod Bhatotia,
Vivien Quéma and João Barreto (2018, April). Asymmetry-aware Page
Placement for Contemporary NUMA Architectures. 8th Workshop on
Systems for Multi-core and Heterogeneous Architectures (SFMA 2018).

III Ying Liu, Daharewa Gureya, Ahmad Al-Shishtawy and Vladimir
Vlassov. OnlineElastMan: Self-Trained Proactive Elasticity Manager
for Cloud-Based Storage Services. In 2016 International Conference on
Cloud and Autonomic Computing (ICCAC), pages 50–59, 2016.

IV Ying Liu, Daharewa Gureya, Ahmad Al-Shishtawy, and Vladimir
Vlassov. Onlineelastman: Self-trained proactive elasticity manager
for cloud-based storage services. Cluster Computing, 20(3):1977–1994,
September 2017.

V D. Gureya, J. Neto, R. Karimi, J. Barreto, P. Bhatotia, V. Quema, R.
Rodrigues, P. Romano, and V. Vlassov. Bandwidth-Aware Page Place-
ment in NUMA. In 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 546–556, 2020.

VI David Gureya, João Barreto and Vladimir Vlassov. Brief Announce-
ment: BALM: QoS-Aware Memory Bandwidth Partitioning for Multi-
Socket Cloud Nodes. In 2021 ACM Symposium on Parallelism in Al-
gorithms and Architectures (SPAA’21), 2021

VII David Gureya, João Barreto and Vladimir Vlassov. Generalizing
QoS-Aware Memory Bandwidth Allocation to Multi-Socket Cloud Servers.
To appear in IEEE International Conference on Cloud Computing (IEEE
CLOUD’21).

The content of Chapter 3 is based on Papers II and III, while the content
of Chapter 4 is based on Papers I, II and V, and the content of Chapter 5
is based on Paper VI and Paper VII.



14 CHAPTER 1. INTRODUCTION

For all the papers, the author of the thesis is the main contributor of
the work. First, he contributed to the conception and development of the
idea. Second, the author of the thesis led and was responsible for the pro-
totype implementations and carrying out the experimental evaluation using
synthetic micro-benchmarks and real applications. Lastly, he was a major
contributor to the writing of the paper.

1.6 Dissertation Outline
The rest of this thesis is organized as follows: Chapter 2 provides the back-
ground information and the related works to this thesis. The subsequent
chapters present the detailed contributions of this thesis. Specifically, Chap-
ter 3 explains OnlineElastMan, then BWAP is discussed in Chapter 4
and Chapter 5 presents BALM. Finally, Chapter 6 summarizes our work
and presents possible directions for future work.



Chapter 2

Background and Related
Work

This chapter presents the background and the related work of this disserta-
tion. As mentioned in Chapter 1, this thesis presents solutions for resource
allocation in the Cloud with a focus on inter-node and intra-node resource
management. Therefore, this chapter presents the concepts, theories, and
tools used in this dissertation in both scopes, inter-node and intra-node re-
source management. Regarding inter-node resource management, our focus
is on VM allocation for autoscaling, while in intra-node resource manage-
ment, we focus on memory bandwidth allocation in a NUMA machine.

2.1 Cloud Computing and Elastic Services

According to the National Institute of Standards and Technology (NIST),
Cloud computing is defined as "a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing re-
sources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management effort or
service provider interaction" [41].

This model highlights five essential features [42], which we briefly present
below:

• On-demand self-service: The ability to automatically provide com-
putational resources such as service time and network storage when
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needed.

• Broad network access: Capabilities are delivered over the network
and accessed via standard mechanisms, allowing heterogeneous thin
or thick client platforms to make use of the computational resources.

• Resource pooling: Cloud subscribers are served by pooling the Cloud
provider’s resources in a multi-tenant model where different physi-
cal and virtual resources are dynamically assigned or reassigned to
subscribers based on their demand. The resources include storage,
processing, memory, network bandwidth among others. Additionally,
details such as resource location, specific configurations, and failures
are abstracted from the subscriber.

• Rapid elasticity: Cloud services can be elastically provisioned and re-
leased, in some cases automatically, to quickly scale in and out based
on demand. The Cloud provider provide an illusion of unlimited re-
sources, allowing customers to request resources in any quantity at
any time.

• Measured service: Cloud resource usage could be monitored, con-
trolled, and reported to provide transparency to both the Cloud provider
and the user of the service. In cloud computing, a metering capabil-
ity 1 is used to control and optimize resource use. Just like utility
companies sell services such as municipality water or electricity to
subscribers, Cloud services are also charged per usage metrics - pay
as you go. Cloud operators utilize a consumption-based model i.e.,
the more a resource is utilized, the higher the bill. To keep consumers
satisfied with a system, it is important to keep real time constraints
on its performance without compromising service quality.

Furthermore, NIST’s definition of Cloud computing considers three main
service models:

• Infrastructure-as–a-Service (IaaS): Provides information technology
and network resources such as processing, storage, and bandwidth, as
well as management middleware. Examples include Amazon EC2 [3]
and Google Compute Engine [4]. In this thesis, we focus on the IaaS
model.

1Typically this is done on a pay-per-use or charge-per-use basis
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• Platform-as-a-Service (PaaS): Provides programming environments
and tools hosted and supported by Cloud providers that can be used
by consumers to build and deploy applications onto the Cloud infras-
tructure.

• Software-as-a-Service (SaaS): Provides hosted vendor applications.

Cloud computing, with its pay-as-you-go pricing model, provides an at-
tractive solution to host the ever-growing number of web applications [43].
This is mainly because it is difficult, especially for startups, to predict the
future load that might be imposed on the application and thus to predict
the amount of resources needed to serve that load. Another reason is that
the capital expenditure of buying, powering and maintaining the physical
infrastructure is avoided in the Cloud pricing model.

To leverage the Cloud pricing model and to efficiently handle the dy-
namic workload, Cloud services are designed to be elastic. An elastic ser-
vice can scale horizontally at runtime by provisioning additional resources
without disrupting the service. The benefit of elastic resource allocation
to Cloud systems is to minimize resource provisioning costs while meet-
ing service-level objectives (SLOs). With the emergence of elastic services,
and more particularly elastic key-value stores, that can scale horizontally
by adding/removing VMs, organizations perceive potential in being able to
reduce cost and complexity of large-scale Web 2.0 applications.

In the following subsections, we introduce some fundamental notions of
Cloud computing.

Virtualization

Cloud service providers usually rely on virtualization-based approaches to
build their stack. Virtualization enables multiple operating systems and ap-
plications to be run on the same physical server simultaneously, i.e., it creates
an abstraction layer that masks the complexity of the hardware. Thus, ap-
plications can be deployed and scaled promptly through rapid provisioning
of the virtualized resources. This deployment and scaling are done through
virtualization techniques, typically virtual machines (VMs) or containers. In
the VM alternative, a hypervisor allows multiple operating systems to share
a single physical host, such that each operating system appears to have its in-
dependent resources. Examples of widely-used hypervisors include VMware
ESXi, Xen, Hyper-V, and KVM [44]. In contrast in the containerization
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alternative (also called operating system virtualization), the virtualization
layer runs as an application within the operating system. One of its main
advantages over hardware-based virtualization is that it allows faster start-
up time and less overhead [14, 45]. Therefore, containerization is considered
as a lightweight virtualization solution. However, the use of containers poses
security implications since it is challenging to implement the same level of
isolation between containers as VMs do [44].

Cloud service providers have recently introduced the bare-metal Cloud
service [46], where a Cloud user can rent dedicated physical servers. Hence,
the user has exclusive, full access to the hardware. This provides the user
with the same level of performance isolation and security as the PM. How-
ever, bare-metal Cloud services have a severe limitation in cost-efficiency, as
a PM can only be rented to one user at a time.

Since virtualization is a fundamental part of Cloud computing, in this
thesis we discuss Cloud elasticity in the context of VMs.

Service Level Agreement

The QoS that is expected from a Cloud service provider is defined as a
Service Level Agreement (SLA). Cloud service providers and Cloud ser-
vice consumers usually negotiate and agree upon SLAs. SLA can specify
the availability aspect and/or performance aspect of a service, such as ser-
vice uptime and service tail latency. SLA violation affects both the service
provider and the consumer. If the service provider violates the SLA, penal-
ties are paid to the consumers. From the consumer’s perspective, a violation
of SLA can result in degraded service and consequently lead to a decline in
profits. Therefore, commitment to SLAs is essential to both Cloud service
providers and consumers. An SLA is usually divided into multiple Service
Level Objectives (SLOs). SLOs are ways of measuring the performance of a
service provider regarding a particular service. SLOs are often quantitative
and have related measurements, e.g., service uptime or service tail latency
(e.g., 99% of the requests are fulfilled within 100ms).

Stateful and Stateless Services

Cloud services can be divided into two categories: stateless and stateful. Ex-
amples of stateless services include front-end proxies and static web servers.
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Distributed storage services are typical examples of stateful services, where
state/data need to be properly maintained.

Stateless services are intrinsically easy to scale [47], since autoscaling
can be done by merely spawning new VMs or deleting existing ones. In
contrast, scaling stateful services is challenging since only a particular subset
of servers host data of the popular item. For stateful services, scaling usually
requires state transfer and/or replication, which adds overhead to the scaling
process [19, 23]. Specifically, when scaling up a stateful service (spawning
VMs), a VM cannot function until appropriate states are transferred to it.
When scaling down a stateful service (removing VMs), a VM’s state must
be transferred to be handled by other VMs before it can be safely removed.
Moreover, if the scaling operations are not effectively handled, this scaling
overhead creates an additional workload for the other VMs in the system,
which can lead to performance degradation of the system. Thus, scaling a
stateful service is challenging.

Many large-scale web applications, such as social networks, wikis, and
blogs, are data-centric, requiring frequent data access [48]. They typically
leverage stateful elastic services, such as elastic key-value stores, as the data-
tier [21, 48]. This poses hard challenges on the data-tier of multi-tier appli-
cations because the performance of the data-tier is mostly governed by strict
SLOs [49]. With the rapid increase of the number of users, the poor scalabil-
ity of a typical data-tier with ACID [50] properties limited the scalability of
web applications. This has led to the development of NoSQL databases with
relaxed consistency guarantees and simpler operations in order to achieve
horizontal scalability and high availability. Examples of NoSQL data-stores
include, among others, key-value stores such as Voldemort [51], Dynamo [52],
and Cassandra [53].

In this thesis, we investigate the elastic scaling of stateful distributed
storage systems. Specifically, we focus on key-value stores, which typically
provide simple key-value pair storage with weak consistency guarantees. The
simplified data and consistency models of key-value stores enable them to ef-
ficiently scale horizontally by adding more VMs and thus serve more clients.
In a distributed storage system, service latency is one of the most commonly
defined SLOs [54]. Satisfying latency SLOs in back-end distributed storage
systems that serve interactive LCAs is desirable.
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Resource Management

Resource management is an integral part of the software infrastructure of
today’s data centres [2]. The mapping of user tasks to hardware resources
is managed by a resource manager. The resource manager also sets priori-
ties and quotas, as well as providing basic task management. An advanced
resource manager would provide a higher level of abstraction, automate
resource allocation, and allow sharing of resources at a finer level of granu-
larity. Resource management can be enforced both within individual nodes
(intra-node resource management) and across nodes (inter-node resource
management).

Given the high cost of server machines and their rapid depreciation, data
centre operators strive to get the most out of their investment. However,
production systems are generally underutilized, with just around 30% of
their capability being used on average [2]. This is particularly true for
data centres that host interactive latency-sensitive services [55, 56]. The
reasoning behind the idea is that leaving some headroom aids in achieving
low-latency. As a result, in order to achieve their (often) stringent SLOs,
such systems purposely over-provision resources to services.

Matching resource demands to application workloads is non-trivial, and
highly dynamic workloads make it much more difficult. As a consequence,
nodes may end up having resources that will never be used. Furthermore, a
contemporary data centre runs a wide range of applications. Therefore, the
request demands are diverse, and many nodes may end up having unused
resources [2].

Workload consolidation is a practical and widely used technique to im-
prove the resource efficiency of data centres and Cloud computing systems.
With workload consolidation, multiple workloads are consolidated on the
same physical machine. The primary design goal of the resource manager for
workload consolidation is to maximize the server resource utilization while
meeting SLOs and providing higher throughput (or trades off throughput
vs. fairness [14, 57]) for consolidated applications.

2.2 Inter-node resource management

Cloud data centres are made up of a large number of physical machines
(PMs). Cloud service providers offer VMs through virtualization technology
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such that customers can run their applications while facilitating the sharing
of PMs resources such as CPU, memory, and storage.

In a Cloud data centre, inter-node resource management comprises two
essential problems: scaling applications to multiple VMs within the data cen-
tre (VM autoscaling) or VM-to-PM allocation/placement. A relevant body
of research has addressed inter-node resource management by either focusing
on the VM-to-PM packing/placement or resource autoscaling [42, 44, 58].
The goal of VM-to-PM placement is to assign the allocated VMs to PMs in a
way that minimizes the operational costs, saves power consumption, and/or
generates higher revenues by accommodating more VMs in a single PM. In
contrast, the goal of VM autoscaling is to dynamically adjust the number
of VMs to meet the QoS requirements when an application’s demand for
resources changes.

In this thesis, we only consider the VM autoscaling problem.

VM allocation in the Cloud for autoscaling

In the following sections, we lay out the necessary background on VM au-
toscaling, including elastic scaling, elasticity controllers, and workload pre-
diction.

Elasticity

According to Herbst et al. "Elasticity is the degree to which a system is able
to adapt to workload changes by provisioning and deprovisioning resources in
an autonomic manner, such that at each point in time the available resources
match the current demand as closely as possible" [59]. The emergence of
large-scale interactive web applications imposes increased challenges to the
underlying provisioning infrastructure, such as scalability, highly dynamic
load, and partial failures. In order to respond to changes in workload pat-
tern, an elastic service is needed to meet SLOs at a reduced cost. Specifically,
VMs are spawned to handle an increasing workload and removed when the
workload drops.

Most of the existing elasticity solutions are tailored to the IaaS model,
and they are suited for client-server applications [3, 20, 23, 24, 27, 60–63].
In general, IaaS Clouds have an elasticity controller, which is responsible
for converting the Cloud user requirements to actions provided by IaaS
Clouds. The architecture of an elasticity controller generally follows the
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idea of MAPE-K (Monitor, Analysis, Plan, Execute-Knowledge) control
loop [64]. The controller uses monitoring data from applications and makes
scaling decisions.

In summary, Al-Dhuraibi et al. [44] formulated Equation 2.1, which sum-
marizes the concept of elasticity in Cloud computing. The equation denotes
that scalability is associated with elasticity. Scalability refers to the abil-
ity of a system to sustain increasing workloads by making use of additional
resources [59]. Equation 2.1 indicates that elasticity can be considered as
an automation of the scalability concept. Additionally, elasticity aims to
optimize the system resources at any given time.

Elasticity = scalability + automation︸ ︷︷ ︸
auto-scaling

+optimization (2.1)

Elastic Scaling

The goal of an autoscaling system is to automatically fine-tune acquired
resources of a system to minimize resource provisioning costs while meeting
SLOs. An autoscaling technique automatically scales resources according to
demand. Figure 2.1 shows the traditional and elastic provisioning of services
under a diurnal workload pattern. In the traditional provisioning approach,
a service is provisioned with the amount of resources needed for its maxi-
mum load in order to meet SLO at all times. As shown in Figure 2.1 (a), it
is clear that this approach wastes a considerable amount of resources when
the workload drops from its maximum level, hence resulting in high provi-
sioning cost. Figure 2.1 (b) illustrates elastic provisioning where the amount
of provisioned resources follows the changes in the workload. Elastic provi-
sioning saves a significant amount of resources compared to the traditional
provisioning approach. However, both approaches aim to guarantee a spe-
cific level of SLO. For instance, Figure 2.1 (c) depicts a latency-based SLO
compliance that is guaranteed most of the time. The main goal of a well
designed provisioning approach is to prevent SLO violations with the mini-
mum amount of provisioned resources, achieving the minimum provisioning
cost.
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Figure 2.1: (a) - traditional provisioning of services; (b) elastic provisioning
of services; (c) latency-based SLO compliance

Autoscaling Techniques

Different techniques exist in the literature that addresses the problem of
autoscaling. As a result of the wide diversity of these techniques, which
sometimes combine two or more methods, it is a challenge to find a proper
classification of autoscaling techniques [44, 65]. However, these techniques
could be divided into two categories: reactive and proactive. In outline,
the reactive approach reacts to real-time system changes such as an in-
crease in incoming workload while a proactive approach relies on historical
access patterns of a system to anticipate future needs so as to acquire or
release resources in advance. Each of these approaches has its own merits
and demerits [23]. Under both categories, the most widely used autoscal-
ing techniques range from threshold-based policies, reinforcement learning,
queuing theory, control theory to time series analysis.

• Reinforcement Learning (RL) is a machine learning approach that
enables learning through interactions between an agent and the en-
vironment. It operates on the basis of punishment and reward, bi-
asing agents towards actions that yield the maximum reward. This
technique is efficient when used against slowly-changing conditions.
Therefore, it cannot be applied to real applications that usually suffer
from sudden traffic bursts. RL has been applied successfully across a
range of domains supporting the automated control and allocation of
resources [66–70].

• Queuing Theory can also be applied to the design of elasticity con-
trollers. It refers to the mathematical study of the waiting lines or
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queues, taking into account the waiting time, service time, or arrival
rate. Queuing theory imposes hard assumptions that may not be valid
for real, complex systems. They are intended for stationary scenarios,
thus models need to be recalculated when conditions of the application
change. There are many works [71–74] that apply Queuing theory to
the design of elasticity controllers. For example, Ali-Eldin et al. [73]
model a Cloud service using queuing theory. Using that model they
build two adaptive proactive controllers that estimate the future load
on a service.

• Control Theory: Controllers that use control theory employ a model
of the application, hence the performance of such controllers depends
on the application model. Setting the gain parameters can be a difficult
task. Previous works [20, 75–77] have extensively studied applying
control theory to achieve fine-grained resource allocations that conform
to a given SLO. However, the offline training feature of the existing
approaches makes the deployment, model training and configuration
of the elasticity controller difficult.

• Time Series Analysis: In time series techniques, a given perfor-
mance metric is sampled periodically at fixed intervals and analysed
to make future predictions. Typically these techniques are utilized to
predict workload or resource usage and to derive a suitable scaling
action plan. For example, Gmach et al. [78] used a fourier transform-
based scheme to perform offline extraction of long-term cyclic work-
load patterns. CloudScale [79] and PRESS [80] perform long-term
cyclic pattern extraction and resource demand prediction to scale up.
Time series analysis is a purely proactive approach, whereas threshold-
based policies (used in Amazon [3] and RightScale [62]) is a reactive
approach. In contrast, reinforcement learning, queuing theory and
control theory could be used with both proactive and reactive ap-
proaches.

Elasticity Controllers

Elastic provisioning is usually conducted automatically by elasticity con-
trollers. The overall goal of the elastic controller is to guarantee that the
allocated resources match the current demand as closely as possible. To
support elasticity, a system is typically assumed to be scalable [44], i.e.,
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its capacity to serve workload be proportional to the number of service in-
stances deployed in the system. Moreover, the hosting platform needs to
have enough resources to allocate whenever requested. The illusion of un-
limited resources in the Cloud is central to the idea of provisioning services
elastically. The changing demands of an application can be handled by
dynamically scaling the system to satisfy the application demands. There
are two ways of scaling in a Cloud environment: vertical scaling (scaling
up or down) and horizontal scaling (scaling out or in). Vertical scaling
refers to adding/removing more resources (compute, memory, storage or
both) to/from each individual node to keep the performance at desired lev-
els [63, 74, 81, 82]. Horizontal scaling refers to adding/removing nodes,
which may be located at different locations. Often, load balancers are used
to distribute the load among the nodes. Horizontal scaling is the most
widely implemented method. Most Cloud providers such as Amazon [3] and
Azure [83] and many academic works [19, 21, 23, 24, 60] use this method.
Some works have also used a combination (hybrid) of horizontal and ver-
tical scaling. For instance, Dutta et al. [84] proposed a scaling framework
that combines vertical (adding resources to existing VM instances) and hor-
izontal scaling (adding new VM instances) to ensure that the application is
scaled in a way that optimizes both resource utilization and scaling-related
reconfiguration costs.

Elasticity Controllers in Practice

Most of the elasticity controllers available in public Cloud services and used
nowadays in production systems use threshold-based policies (rely on simple
if-then threshold-based triggers). Examples of such systems include Kuber-
netes [85], Amazon Auto Scaling (AAS) [3], Rightscale [62], and Google
Compute Engine Autoscaling [4]. The wide adoption of this approach is
mainly due to its simplicity in practice, as it does not require pre-training
or expertise to get it up and running. Policy-based approaches are suitable
for small-scale systems in which adding/removing a VM when a threshold is
reached (e.g., CPU utilization) is sufficient to maintain the desired SLO. For
larger systems, it might be non-trivial for users to set the thresholds and the
correct number of VMs to add/remove. Another limitation of these rule-
based approaches is that they are reactive, hence they only scale resources
after SLO violations have been detected. Therefore, end-users may experi-
ence performance degradation until the extra resources become available to
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fix the SLO violations.
Scryer [61] is Netflix’s predictive auto-scaling engine. It allows Netflix to

provision the right number of instances needed to handle the traffic of their
customers. Unlike systems such as AAS, Scryer predicts what the needs will
be prior to the time of need and provisions the instances based on those
predictions. However, its genesis was triggered more by its relatively pre-
dictable traffic patterns, which is not always true in a dynamic environment
such as the Cloud.

Research on Elasticity Controllers

Most of the elasticity controllers that go beyond simple threshold-based
policies, require a model of the target system to be able to reason about the
status of the system and decide on control actions needed to improve the
system. The system model is typically trained offline using historical data,
and the controller is tuned manually using expert knowledge of the expected
workload patterns and service behavior.

Work in this area focuses on developing advanced models and novel ap-
proaches for elasticity control such as ElastMan [20], SCADS Director [19],
scaling HDFS [18], ProRenata [23], and Hubbub-scale [24]. Although achiev-
ing very good results, most of these controllers ignore the practical aspects
of their solution which might explain the slow adoption of such controllers
in production systems. For example, SCADS Director [19] is tailored for a
specific storage service with pre-requisites that are not common in storage
systems (fine-grained monitoring and migration of storage buckets). Elast-
Man [20], uses two controllers in order to efficiently handle diurnal and spiky
workloads but it requires offline manual training of both controllers. Lim
et al. [18] on scaling Hadoop Distributed File System (HDFS) adopt CPU
utilization, which highly correlates request latency, for scaling, but it relies
on the data migration API integrated into HDFS. ProRenaTa [23] minimizes
the SLO violation during scaling by combining both proactive and reactive
control approaches, but it requires a specific prediction algorithm and the
control model needs to be trained offline. Hubbub-Scale [24] and Augment
Scaling [86] argue that platform interference can mislead an elasticity con-
troller during its decision making. However, the interference measurement
needs the access of many low level metrics, e.g. cache counters, of the plat-
form.
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On the other hand, we focus on the research of the practical aspects of
an elasticity controller. Our proposal relies only on the most generic and
obtainable metrics from the system and alleviates the burden of applying an
elasticity controller in production. Specifically, the auto-training feature of
our solution makes its deployment, model training and configuration effort-
less. Furthermore, a generic and extendable prediction model is integrated
to provide workload prediction for various workload patterns.

Feedback versus Feedforward Control

In computing systems, a controller [87] or an autonomic manager [88] is
a software component that regulates the non-functional properties (perfor-
mance metrics) of a target system. Non-functional properties are properties
of the system such as the response time or CPU utilization. From the con-
troller’s perspective, these performance metrics are the system output. The
regulation is achieved by monitoring the target system through a monitoring
interface and adapting the system’s configurations, such as the number of
servers, accordingly through a control interface (control input). Controllers
can be classified into feedback or feedforward controllers depending on what
is being monitored.

In feedback control, the system’s output (e.g., response time) is moni-
tored. The controller calculates the control error by comparing the system’s
current output to the desired value set by the system administrators. De-
pending on the amount and sign of the control error, the controller changes
the control input (e.g., number of servers to add or remove) in order to re-
duce the control error. The main advantage of feedback control is that the
controller can tolerate noise and disturbance such as unexpected changes in
the behaviour of the system or its operating environment. Disadvantages
include oscillation, overshooting, and possible instability if the controller is
not properly designed. Due to the nonlinearity of most systems, feedback
controllers are approximated around linear regions called the operating re-
gion. Feedback controllers work properly only in the operating region they
were designed for.

In feedforward control, the system’s output is not monitored. Instead,
the feedforward controller relies on a model of the system that is used to cal-
culate the system’s output based on the current system state. For example,
given the current request rate and the number of servers, the system model
is used to calculate the corresponding response time and act accordingly
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to meet the desired response time. The advantages of feedforward control
include being faster than feedback control in reaching the optimum point
and avoiding oscillations and overshoot.

The major drawback of feedforward control is that it is sensitive to un-
expected disturbances that are not accounted for (modelled) in the system
model. Addressing this issue may result in a relatively complex system
model, compared to feedback control, that tries to capture all possible states
of the modelled system. Another approach is to apply online training that
continuously adapts the system model in order to reflect changes in the
physical system.

Workload Prediction

In order to achieve elasticity, it is important to know when and how to scale
resources assigned to applications. Although horizontal scaling provides a
larger-scale resource, it may take several minutes to boot a VM, and the new
VM needs to be initialized with data. Therefore, it is desirable to predict
workloads of Cloud services for better performance. This enables VMs to
be spawned/removed in advance before SLO violations happen.

A significant amount of literature exists that can be applied for predict-
ing the traffic incident on a service, i.e., [19, 23, 61, 80, 89]. In most cases, to
support different workload scenarios, more than one prediction algorithms
are used. To support different workload scenarios, at least more than one
prediction algorithm is used. In most cases, the pattern of the workload
to be predicted is defined. The most important aspect is how switching
between prediction algorithms is carried out.

For instance, AGILE [90] provides online, wavelet-based medium-term
(up to 2 minutes) resource demand prediction with adequate upfront time
to start new application servers before performance degrades i.e. before
application SLO is affected by the changing workload pattern. In addition,
AGILE uses online profiling to obtain a resource pressure model for each ap-
plication it controls. This model calculates the amount of resources required
to maintain an application’s SLO violation rate at a minimal level. AGILE
derives resource pressure models for just CPU without considering other
resources such as memory, network bandwidth, disk I/O, applications work-
load intensity etc. A multi-resource model can be built in two ways. Each
resource can have a separate resource pressure model or a single resource
pressure model can represent all the resources.
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2.3 Intra-node resource management

The most common approach in large data centres is to assign tasks to cores
by first allocating them to the least-loaded PMs (VM-to-PM placement),
and then allocating these tasks to resources of each PM (e.g., cores, mem-
ory, etc.) using a single-node resource manager (intra-node resource man-
agement) [91]. Consolidating LCAs and BEAs on the same PM is the key to
improving data centre utilization and operating efficiency [10, 15, 16, 91, 92].
Unfortunately, achieving this is difficult due to strict QoS requirements of
LCAs – failing to meet latency targets can result in the loss of millions
of dollars [16, 93]. Therefore, techniques to safely (without compromising
QoS) consolidate multiple LCAs with multiple BEAs on the same PM are
required for data centre operation efficiency and cost-effectiveness. Perfor-
mance interference among the consolidated workloads is one of the main
challenges of workload consolidation. It is mainly caused by the contention
over shared hardware resources on the underlying PM. Interference on shared
resources such as LLC, interconnect links and memory controllers can have
a severe impact on the end-user experience [9]. Therefore, it is important
to provide resource allocation techniques that manage interference between
consolidated applications and improve the usage of shared PM resources.

Resource Management in Single-socket Architectures

Prior work has extensively explored architectural and system software tech-
niques to tackle interference in workload consolidation environments. These
techniques can be grouped into three broad approaches. The first approach
is to simply avoid sharing resources with LCAs [10, 94–96]. This approach
preserves the QoS of the LCAs but lowers the resource efficiency of the un-
derlying system. The second approach avoids co-scheduling of applications
that may interfere with each other [55, 97–100]. Although this approach
improves resource utilization, it limits the options of applications that can
be co-scheduled and may require some offline/prior knowledge of the co-
scheduled applications.

Finally, interference can be eliminated by partitioning resources among
consolidated applications using OS- and hardware-level allocation techniques [10,
14–16, 94, 101–104]. This approach has several benefits: (1) it maximizes
resource utilization and throughput, or trades off throughput vs. fair-
ness [14, 57]; (2) it provides QoS for LCAs [10, 15, 16, 105]; (3) it protects
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Shared Resource Allocation Mechanism Software/Hardware
Allocation Tool

CPU Cores Core Affinity Linux’s cpuset cgroups
LLC Way Partitioning Intel CAT [28]

Memory Bandwidth Bandwidth Limiting Intel MBA [28]
Memory Capacity Capacity Division Linux’s memory cgroups
Disk Bandwidth I/O Bandwidth Limiting Linux’s blkio cgroups

Network Bandwidth Network Bandwidth Limiting Linux’s qdisc

Table 2.1: Examples of different shared resources on a NUMA machine, and
their allocation tool/interface.

from timing channel attacks, where a malicious program can steal secure
information, such as encryption keys, by sharing the LLC [101, 106].

Resource allocation mechanisms

With regards to resource partitioning in single-socket architectures, several
resource allocation mechanisms were developed to allow lightweight parti-
tioning of shared resources among consolidated applications to safeguard the
SLO of LCAs from the BEAs interference. Table 2.1 provides examples of
shared resources and corresponding allocation mechanisms. Each co-located
application can be allocated some fraction of the shared resource using exist-
ing hardware/software allocation tools. However, determining the optimal
allocation of these shared resources is challenging [16].

In contrast to the allocation mechanisms shown in table 2.1 that partition
a single resource, some mechanisms such as thread packing [107], clock mod-
ulation [108], and CPU scheduling [92] restrict the general resource usage
of an application. With thread packing, applications’ threads are dynam-
ically packed into fewer cores for power capping or resource partitioning.
Thread packing can be used with multi-threaded applications without re-
quiring any code or binary modifications. However, it cannot be applied to
single-threaded applications to partition memory bandwidth.

Clock modulation, also known as duty cycle modulation, enables sys-
tem software to specify the percentage of duty cycles. The corresponding
CPU then skips a similar portion of clock cycles without performing any
activities. Unlike thread packing, clock modulation can be applied to both
single-threaded and multi-threaded applications.
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Recently, CPU scheduling has been proposed to mitigate interference at
microsecond timescales [92]. This approach manages interference by con-
trolling how cores are allocated to applications. Fried et al. [92] has shown
that CPU scheduling can achieve both strict performance isolation and high
CPU utilization for co-located applications. However, CPU scheduling im-
poses new requirements on applications, such as the need to adopt a custom
runtime for scheduling and the need for applications (especially LCAs) to
expose their internal concurrency [92].

Since the main focus of this thesis is the allocation and arbitration of
memory bandwidth, we briefly highlight memory bandwidth partitioning
techniques. Memory bandwidth partitioning techniques have been exten-
sively studied to address memory bandwidth contention between the con-
solidated workloads [8, 13, 109–111]. Thread packing [107], CPU schedul-
ing [92], and clock modulation [108] are software mechanisms that have
been widely-used to partition memory bandwidth on commodity servers [13].
More recently, Intel released Memory Bandwidth Allocation (MBA) as part
of the RDT bundle that ships with Intel Xeon Scalable server processors.
MBA supports architecture-level memory bandwidth allocation. It provides
a programmable request rate controller that controls the traffic between level
two cache (L2) and LLC. Thus MBA provides approximate and indirect
per-core control over memory bandwidth. More importantly, MBA effec-
tively provides memory bandwidth partitioning without throttling any non-
memory-related activities (e.g., arithmetic instructions), unlike the men-
tioned software-based mechanisms. For example, the Intel MBA mechanism
can be used to provide 20% and 80% memory bandwidth to two consolidated
applications.

Resource allocation frameworks

Many systems use the aforementioned partitioning mechanisms to provide
strict performance isolation and high resource utilization for data center
servers [10, 13–16, 56, 57, 92, 105]. The available partitioning mechanisms
can be used by a higher-level resource allocation framework to implement
robust policies that achieve the overall objectives of a system (such as pro-
moting fairness, maximizing system-wide throughput, and providing QoS
for LCAs).

More recent research efforts [15, 16, 92] have focused on the QoS-aware
resource allocation problem where multiple LCAs and BEAs run together
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(where LCAs have QoS requirements and throughput-oriented BEAs need to
achieve high performance). PARTIES [15], CLITE [16] and Caladan [92]
aim to consolidate multiple LCAs with BEAs. PARTIES presents a signif-
icant improvement over Heracles [10] which was restricted to consolidating
only one LCA with multiple BEAs. PARTIES adopts a simple approach
to achieving the SLO targets of multiple consolidated LCAs. It evaluates
the observed performance by incrementally increasing/decreasing one re-
source (e.g., number of cores, memory bandwidth, memory capacity, etc)
for one LCA at a time. This process continues until (hopefully) the QoS
of all LCAs is met, at which point “leftover” resources are donated to the
BEAs. Although PARTIES is simple and effective, it has some inherent
inefficiencies in resource utilization because it ignores the performance of
throughput-oriented BEAs.

CLITE proposed a multi-resource partitioning technique based on Bayesian
Optimization to address this shortcoming. The goal of CLITE is to consol-
idate multiple LCAs with multiple BEAs while: (1) meeting the QoS re-
quirements of all LCAs, and (2) optimizing the BEAs’ performance. CLITE
employs Bayesian Optimization to sample a small number of points in large
configuration space to build a low-cost performance model of various re-
source partitioning configurations and then navigates this search space in-
telligently to identify near-optimal configurations.

Fried et al. [92] proposed Caladan, an interference-aware CPU scheduler.
Caladan consists of a centralized, dedicated scheduler core and a Linux Ker-
nel. The scheduler core collects control signals and performs resource alloca-
tion decisions, while the Linux Kernel efficiently adjusts resource allocations.
The scheduler core also differentiates between high-priority, latency-critical
applications (LCAs) and low-priority, best-effort applications (BEAs). Cal-
dan exclusively relies on core allocation to manage interference. Caladan’s
primary requirement is that LCAs need to expose their internal concurrency
to runtime, which may necessitate changes to existing code. Furthermore,
Caladan is unable to manage interference across NUMA nodes [92].

Among the proposed resource allocation frameworks, some notable ex-
amples have given significant attention to the challenges behind allocating
memory-related resources (e.g., cache and memory bandwidth) across co-
located applications. EMBA [57] introduced a performance model to guide
the use of MBA to improve system performance. CoPart [14] proposed a
resource manager that dynamically partitions the LLC (using Intel’s Cache
Allocation Technology (CAT)) and memory bandwidth (using MBA) to
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the applications. Although these approaches are designed for single-socket
servers, they also treat applications as of equal priority and lack any support
for QoS.

Resource Management in Multi-socket Architectures

Most PMs in contemporary data centres are multi-socket NUMA systems.
In many warehouse-scale data centres, dual-socket (or even larger) machines
already constitute the largest share of hosts [7]. In this section, we first
describe NUMA machines and their advantages. Second, we explain the
challenges introduced by NUMA and the techniques used to address these
challenges. Then, we conclude this chapter with the techniques for QoS-
aware resource allocation on multi-socket systems.

Organization of NUMA Machines

Parallel architectures with non-uniform memory access (NUMA) have emerged
as the norm in high-end servers. In a NUMA system, CPUs and memory
are organized as a set of interconnected nodes, where each node typically
comprises one or more multi-core CPUs as well as one or more memory
controllers. Each memory controller provides both local and remote threads
access to a partition of the physical address space. The non-uniform memory
access nature stems from this organization, since the memory access band-
width and latency depends on which node the accessing thread runs and
which node the target physical page resides on. Figure 2.2 and 2.3 shows an
example of a NUMA system. The key idea behind NUMA architectures is to
have multiple memory controllers which increases the available bandwidth
to the DRAM. Consequently, multiple memory controllers can be accessed
simultaneously, allowing a much higher aggregated bandwidth. In a NUMA
machine, the maximum available bandwidth is the sum of the maximum
bandwidth of each memory controller.

NUMA nodes are connected by interconnect links, hence the memory
accesses to remote memory are made via the interconnect links and incur a
higher latency. The interconnect technology differs between processors mod-
els. For instance, Intel processors use the QuickPath Interconnect (QPI)
technology or the recent Ultra Path Interconnect (UPI), while AMD proces-
sors use the HyperTransport (HT) technology or the recent Infinity Fabric
(IF) technology [112]. Both technologies are "packet-based" i.e., data that is
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Figure 2.2: Asymmetric NUMA machine, AMD Opteron 6168 Processors
with eight nodes, each hosting six cores. The width of interconnect links
varies, some links are 16 bit wide (e.g., between 0 and 1), some are 8 bit
wide and others are 8+ bit wide.

transmitted via the links (HT or QPI) is split into multiple packets of fixed
size. Each packet includes a header that indicates the source and destina-
tion of the packet. Where the processors are not directly connected, packets
can be routed and forwarded by processors to reach their destination. The
interconnect links and the cache coherence protocol provide the illusion of
a single DRAM connection shared by all processors, which immensely sim-
plifies the programming of multi-threaded applications.

Memory and Thread Placement in NUMA

Exploiting NUMA architectures efficiently is notoriously challenging for pro-
grammers. Locality and resource contention issues have been identified as
the two main problems to tackle [113–115]. Locality means that, for a thread
to perform well, the data it accesses should be as close as possible. Better
locality is expected to improve latency in two ways: it avoids remote wire
delays and most importantly, decreases congestion on the interconnect links.

Furthermore, resource contention can also affect the effective perfor-
mance and, sometimes, contradict the above expectations. If too many
threads use some shared resources at the same time, performance degra-
dation is to be expected. The interconnect links, the LLC and the mem-
ory controllers are examples of resources that can suffer from contention.
Therefore, when the effects of congestion become significant, an appropriate
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Figure 2.3: A NUMA node. It contains a set of cores and an associated set
of locally connected memory.

strategy should limit the number of remote memory accesses as much as
possible and to minimize contention on shared resources.

As shown in Figure 2.3, the cores of the same NUMA node typically
share a last level (L3) cache, the memory controller, and the interconnect
links. Assuming that all the cores of a NUMA node are performing very
memory-intensive computations, the bottleneck easily becomes the shared
local memory subsystem. Prior work has shown that memory controller con-
tention and interconnect congestion are key factors hurting performance [9].
Another problem that may significantly impact the performance of paral-
lel programs on a NUMA system is load imbalance across memory con-
trollers [11].

Multiple techniques have been developed to avoid these issues. Most
of these techniques try to improve thread placement or memory placement
automatically [9, 11, 12, 112, 116, 117]. When deploying an application
on a NUMA system, a number of complex questions arise, from how many
threads, to where to place threads and pages. As NUMA systems increase
their prominence, these problems receive increasing attention from the re-
search community.
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Regarding the problem of parallelism tuning, different techniques have
been proposed, mostly in the context of SMP architectures, both for stand-
alone and co-scheduled environments [118]. More recently, proposals like
SCALO [119] and NuCore [112] have addressed this problem in the context
of asymmetric NUMA systems.

Thread placement involves placing threads close to the data they are
accessing. Migrating a thread is costly and has many undesirable side ef-
fects (e.g., data that were in cache have to be fetched again from memory).
Thread migration also has to be carefully controlled to avoid creating CPU
imbalance (e.g., overloading a CPU while leaving another CPU idle). Thread
placement and scheduling is tightly coupled to the problem of page place-
ment. While efficient solutions to thread placement/scheduling need to take
into account where data is located, many systems (e.g. [112, 116]), do not
control data placement. Hence, they rely on the user/programmer/OS to
decide where to place pages of each application. Other solutions control both
thread and page placement holistically. Examples include autonuma [117],
kMAF [113], Asymsched [11], among others. Alternatively, some proposals
focus exclusively on the problem of page placement, like Carrefour [12].

The page placement strategies can be grouped into two categories: locality-
oriented page placement and bandwidth-oriented page placement.

Locality-oriented page placement. Locality-oriented page placement
aims at minimizing memory latency. This approach departs from the as-
sumption that, for a thread to perform well, the data it accesses should be
as close as possible. For many applications, the best option is to place pages
on the same nodes as the threads that are accessing such pages. The default
allocation policy is dependent on the operating system. For example, on
Linux, data is allocated on the node from which it is first accessed. This
is referred to as the first-touch (default) policy. The rationale behind this
heuristic is that, if a thread allocates data and continues to use it on the
same node, then data is likely to be accessed locally in the future. The lib-
numa library [120] can be used to force data to be allocated on a particular
node.

Memory allocation is typically static, i.e., once the data has been al-
located on a node, it stays on the node. This might not work well when
threads migrate between nodes or when data is accessed from multiple nodes.
It works best when memory accesses to allocated data is predictable and
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thread placement is known a priori. Memory migration can be used to move
data between nodes in a NUMA system after allocation. The main aim of
memory migration is to reduce the latency of memory access by moving
data close to the processor where the process accessing that data is running.
Memory migration is a dynamic technique (the same data can be migrated
several times depending on the application). Since moving data from node
to node incurs an overhead, memory migration is unsuitable for data that
are frequently accessed from different nodes. In Linux, system calls such
as move_pages and mbind can be used to migrate pages from a node to
another node.

Bandwidth-oriented page placement. Bandwidth-driven page place-
ment aims at maximizing the memory throughput of bandwidth-intensive
applications. The fundamental insight of this placement is that, for bandwidth-
intensive applications, their throughput improves if memory accesses are
distributed across all memories, proportionally to the bandwidth of each
memory. The OS can perform memory interleaving (spreading memory on
multiple NUMA nodes) automatically. In Linux, the numactl tool can be
used to this purpose. It is also possible to interleave memory of specific
data. Apart from improving memory throughput, memory interleaving also
aims at reducing memory controller contention and interconnect congestion.
Memory interleaving can be enforced statically (by placing data uniformly
on nodes during allocation) or dynamically (by periodically migrating data
to balance load between nodes).

Carrefour [12] designed and implemented an algorithm that integrates a
number of well-known mechanisms to place applications’ memory to avoid
traffic hotspots and prevent congestion in memory controllers and on in-
terconnect links. These mechanisms include: page co-location, page inter-
leaving, and page replication. Page co-location is about re-locating the
physical page to the same memory node as the thread that accesses it. It is
useful for pages that are accessed by a single thread or by threads co-located
on the same memory node. Page interleaving entails uniformly distribut-
ing physical pages across memory nodes. Interleaving comes in handy when
we have an imbalance on memory controllers and interconnect links, and
when pages are accessed by multiple threads. Interleaving allocation pol-
icy is typically provided by operating systems, but only with the option to
enable or disable it globally for the entire application. Page replication
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refers to placing a copy of a page on multiple memory nodes. Replica-
tion helps alleviate traffic hotspots by distributing the load across memory
controllers. Additionally, it eliminates remote accesses on replicated pages.
Unfortunately, replication has costs. Since we keep multiple copies of the
same page, we must synchronize their contents. Page table synchronization
is another potential source of overhead. Lastly, replication also increases the
memory footprint.

Linux provides several extensions [117, 121] to improve data access local-
ity in NUMA systems. For instance, AutoNUMA [117] migrates threads
closer to the memory they are accessing and/or migrates application data
to memory closer to the threads that reference it, thereby implementing
locality-driven optimization. Page fault statistics are used to determine
memory accesses. A daemon periodically unmaps pages. Page faults occur
when these pages are accessed, allowing AutoNUMA to compute statistics
on threads and page locations. When a page induces two consecutive page
faults from the same node, the page is migrated to the node. Unfortunately,
AutoNUMA does not take into account workloads with data sharing i.e., if
a page is accessed from multiple nodes, then it is either migrated constantly
between nodes (which creates unnecessary overhead) or it is ignored by the
algorithm.

Linux also provides an option to uniformly interleave part of address
space across memory nodes, but the decision when to invoke the interleav-
ing is left to the programmer or the administrator. When the application
is memory-intensive, a common strategy is to uniformly interleave pages
across the set of worker nodes, i.e., the nodes on which the application
threads run. This strategy is based on the rationale that, for a large class
of memory-intensive applications, bandwidth – rather than access latency –
is the main bottleneck. Therefore, interleaving pages across nodes provides
threads with a higher aggregate memory bandwidth [11]. Hereafter, let us
call this strategy uniform-workers. This is the essential approach of recently
proposed runtime libraries for NUMA systems (e.g., [11, 12] as well as the
recommended or default option for prominent database systems (e.g., [122–
124]). As previous research has shown, an unsuitable page placement can
impact the performance of memory-intensive applications by up to a factor
of 3 [12].

Windows and Solaris use the same allocation policy called the "home
node" policy [125, 126]. A "home node" is attributed to each application
by the kernel. The "home node" serves two main purposes: (i) when an
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application makes a memory allocation, data is preferably allocated on the
application’s home node and (ii) threads of an application are preferably
scheduled on the application’s home node. This policy works best when
threads of different applications can be clustered on different nodes without
causing CPU idleness. However, home node policy can create contention for
multi-threaded application, because all memory tends to be allocated on a
single node.

QoS-aware Resource Allocation for Multi-socket Architectures

To the best of our knowledge, all proposed solutions to the previous QoS-
aware resource allocation problem are restricted to a single-socket host. A
common approach to deploy such state-of-the-art systems in a multi-socket
host is to distribute applications among sockets [9, 29, 30] and consider the
resources contained in each socket (CPU cores, LLC, memory) as exclusively
shared among the applications in that socket. This way, each socket can be
considered as an independent workload consolidation island, which can be
managed by an independent instance of some QoS-aware resource allocation
system. The only resources that require cross-socket allocation are external,
OS-managed resources such as disk or network [15].

While simple in practice, this strict approach prevents an application
running in a given socket to place data pages on remote memory nodes (from
other sockets). This essentially disallows cross-socket sharing of memory,
which entails a sub-optimal use of multi-socket host’s aggregate memory
resources. This issue is especially relevant given the increased prevalence of
memory-intensive applications [9, 14, 29]. As an example, consider the case
where a memory-intensive BEA, A, runs in one socket and saturates the local
memory bandwidth, while a CPU-intensive LCA, B, runs on another socket
and only places a negligible access demand on the local memory. Allowing
A to place a portion of its pages in the idle remote memory node would
boost A by providing it with an improved (aggregate) memory bandwidth,
while not causing harmful interference with B.

Therefore, the state-of-the-art QoS-aware resource allocation systems
need to be generalized to allow cross-socket sharing of memory (as in the
previous example), in order to properly utilize over-provisioned memory
resources in multi-socket hosts.





Chapter 3

OnlineElastMan:
Self-Trained Proactive
Elasticity Manager for
Cloud-based Storage Services

The pay-as-you-go pricing model and the illusion of unlimited resources in
the Cloud call for the need to provision services elastically. The key insight
of elastic provisioning of services is to allocate/de-allocate resources dynam-
ically in response to the changes of the workload. It minimizes the service
provisioning cost while maintaining the desired service levels as defined by
SLOs. Model-predictive control [89] is often used in building such elasticity
controllers that dynamically provision resources. However, they need to be
trained, either online or offline, before making accurate scaling decisions.
The training process involves tedious and significant amounts of work as
well as some expertise, especially when the model has many dimensions and
the training granularity is fine, which has been proven to be essential in
order to build an accurate elasticity controller [21, 23].

In this chapter, we present OnlineElastMan, a self-trained proactive
elasticity manager for Cloud-based storage services. OnlineElastMan
automatically and continuously improves its provision accuracy, minimiz-
ing provisioning cost and SLO violations, as the services’ workload changes
as time goes by. Our experimental evaluation of OnlineElastMan us-
ing Cassandra key-value store showed that OnlineElastMan continuously
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improves its provision accuracy, i.e., minimizing provisioning cost and SLO
violations, under various workload patterns.

3.1 Problem Statement and Proposal Overview

There is a large body of work on elasticity controllers for the Cloud [18–24].
Most of them focus on improving the control accuracy of the controller by
introducing novel control techniques and models. However, the practical
issues regarding the deployment and application of the controllers are typ-
ically overlooked in literature. We examine the usefulness of an elasticity
controller while deploying it in a Cloud environment. Specifically, we in-
vestigate the configuration steps for an elasticity controller before it starts
provisioning services. Typically, it involves the following steps to set up an
elasticity controller.

1. Acquire metrics for the elasticity controller from the provisioned ap-
plication or the host platform.

2. Deploy the provisioned application in order to construct a training
case for the elasticity controller.

3. Configure the provisioned application according to the deployment.

4. Configure and run a specific synthesized workload against the appli-
cation.

5. Collect training data from the training case and train the control model
accordingly.

6. Repeat steps 2 to 5 until the control model is fully trained before
serving the real workload.

It is intuitively clear that the more metrics are considered in a control
model, the more accurate it will be. However, increasing the metric dimen-
sions of a control model comes with a significant amount of overhead during
the training phase. Specifically, training a control model with only 3 dimen-
sions results in 27 (33) training cases when only 3 trials/runs are conducted
for each dimension. This means that step 2 to step 5 needs to be repeated 27
times to train the control model. Obviously, it is extremely time-consuming
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to train a control model manually, especially when the model has many di-
mensions, which is needed for higher control accuracy. In this chapter, we
focus on the problem of training a control model for an elasticity manager
in the Cloud in an effective and seamless manner.

OnlineElastMan alleviates the training process with online training.
Specifically, the control model automatically trains and evolves itself while
serving the workload. After a short period of warm-up, the controller can
provision the underlying application accurately. Thus, it is no longer needed
to manually and repetitively reconfigure the system in order to train the
control model. Furthermore, in order to make OnlineElastMan as general
as possible, its input metrics are easily obtainable from the application (i.e.,
with little or even no instrumentation of the application). Specifically, it
directly uses the information in the incoming workload and SLO status as
the input metrics.

In addition, previous works [18, 23] have demonstrated that, in order to
keep the SLO commitment, a storage service needs to scale up in advance
i.e., proactively and not reactively, to tackle a workload increase since scal-
ing a storage service involves non-negligible overhead. Thus, we have made a
design choice to integrate a workload prediction module for OnlineElast-
Man. Again, to make it as general as possible, the workload prediction
module is able to produce accurate workload predictions for various work-
load patterns. Specifically, it has integrated several prediction algorithms
that are designed to cope with different time-series patterns. The most ap-
propriate prediction algorithm is chosen online using a weighted majority
selection algorithm.

3.2 Target System

We are targeting multi-tier web applications (the left side of Fig. 3.1). We
are focusing on managing the data-tier because of its major effect on the
performance of web applications, which are mostly data-centric [48]. For the
data-tier, we assume horizontally scalable key-value stores due to their pop-
ularity in many large-scale web applications such as Facebook and LinkedIn.
A typical key-value store provides a simple put/get interface. This simplic-
ity enables efficient partitioning of the data among multiple servers and thus
scales well to a large number of servers.

The minimum requirements to enable elasticity control of a key-value



44
CHAPTER 3. ONLINEELASTMAN: SELF-TRAINED PROACTIVE

ELASTICITY MANAGER FOR CLOUD-BASED STORAGE SERVICES

P

A

D
Elasticity

Controller

PP P

A A

DDD D

Presentation Tier

Application Tier

Data Tier

P

P

P

A

A

A

D

D D

D

D

C

P

A

A

D

D

AA

Multi-Tier Web Application

Each server executes in its own Virtual Machine, which

runs in a physical machine in a Cloud environment

Horizontal Scalability

(add more servers)

Deployed in a

Cloud Environment

Public / Private Cloud Environment

Physical

Machine

Virtual

Machine

Hosting

a Server

Figure 3.1: Multi-Tier Web Application with Elasticity Controller Deployed
in a Cloud Environment.

store are as follows. The store must provide a monitoring interface that
provides information about the current workload, and whether the service is
currently meeting the SLO or not. The store must also provide an actuation
interface that allows horizontal scalability by adding or removing servers. As
storage is a stateful service, actuation must be combined with a rebalance
operation, which redistributes the data among the new set of servers. Many
stores, such as Voldemort [51] and Cassandra [53], provide rebalancing tools.

We target applications running in the Cloud (right side of Fig. 3.1).
We assume that each service instance runs on its own VM; each physical
machine hosts multiple VMs. The Cloud environment hosts multiple ap-
plications (not shown in the figure). Such an environment complicates the
control problem mainly due to the fact that VMs compete for the shared
resources. This environmental noise makes it difficult to model and predict
the performance of that VMs (possibly running different services/applica-
tions) [127, 128].

Cassandra

We have chosen Cassandra as our targeted underlying distributed storage
system. Cassandra [36] is open-sourced under Apache licence. It is a dis-
tributed storage system which is highly available and scalable. It stores
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column-structured data records and provides the following key features:

• Distributed and decentralized architecture: Cassandra is orga-
nized in a peer-to-peer fashion. Specifically, each node performs the
same functionality in a Cassandra cluster. However, each node man-
ages a different namespace, which is decided by the hash function in
the DHT (distributed hash table). Comparing to Master-slave, the
design of Cassandra avoids a single point of failure and maximizes its
scalability.

• Horizontal scalability: The peer-to-peer structure enables Cassan-
dra to scale linearly. The consistent hashing implemented in Cassandra
allows it to swiftly and efficiently locate a queried data record. Vir-
tual node techniques are applied to balance the load on each Cassandra
node.

• Tunable data consistency level: Cassandra provides tunable data
consistency options, which is realized through different combinations
of read and write APIs. These APIs use ALL, EACH_QUORUM,
QUORUM, LOCAL_QUORUM, ONE, TWO, LOCAL_ONE, ANY,
SERIAL, LOCAL_SERIAL to describe read/write calls. For example,
the ALL option means Cassandra reads/writes all the replicas before
returning to clients. A detailed specification of each read/write option
can be found in [129].

• An SQL like query tools - CQL: The common access interface in
Cassandra is exposed using Cassandra Query Language (CQL). CQL
is similar to SQL in its semantics. For example, a query to get a
record whose id equals 100 results in the same statement in both CQL
and SQL (SELECT * FROM USER_TABLE WHERE ID= 100). It
reduces the learning curve for developers to use CQLs and get started
with Cassandra.

3.3 OnlineElastMan’s Architecture and Design

In this section, we present the architecture and design of OnlineElast-
Man. It relies on four main components, which Figure 3.2 depicts. At the
lowest level, a monitoring component is expected to be provided as part of
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the distributed storage service (Cassandra, in our case study). This com-
ponent collects and provides through some API, relevant workload metrics
and information about whether the underlying service’s SLO is currently
met or not. Then, above this component, three main components com-
prise the core of OnlineElastMan: workload prediction, online model
training, and elasticity controller. Figure 3.2 presents the architecture of
OnlineElastMan. Components operate concurrently and communicate
by message passing. Briefly, the workload prediction module takes input
from the current workload and predicts the workload for the near future
(the next control period). The online model training module updates the
current control model by mapping and analyzing the monitored workload
and the performance of the system. Then, the elasticity controller takes the
predicted workload and consults the updated control model to issue scal-
ing commands by calling the Cloud API to add or remove servers for the
underlying storage system.

Figure 3.2: OnlineElastMan Architecture.
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Figure 3.3: Building the SML model.

Workload and SLO Monitoring

Auto-scaling techniques require a monitoring component that gathers var-
ious metrics that reflect the real-time status of the targeted system at an
appropriate time granularity (e.g., per second, per minute, per hour). It is
essential to review the metrics that can be obtained from the target system
and the metrics that best reflect the status of the system. To ease the con-
figuration of the OnlineElastMan framework and to make it as general as
possible, we consider the target storage system as a black box. A monitor-
ing component is expected to be provided as part of the distributed storage
service (Cassandra, in our case study). This component collects and pro-
vides, through some API, relevant workload metrics and information about
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whether the underlying service’s SLO is currently met or not. We expect
that the workload metrics are defined to cover a set of relevant workload
features whose variation has a strong impact on the resulting performance
of the targeted storage system – and, therefore, on its ability to fulfill its
SLOs.

For our example storage system, i.e., Cassandra, for the workload met-
rics, the client requests that reach a Cassandra server are processed, and
three metrics are extracted:

• Read and write intensity, i.e., number of read invocations and write
invocations (respectively), per unit of time (e.g., reads per second and
writes per second).

• Average data size, i.e., the average data size requested in read invoca-
tions and sent in write invocations.

As for the SLO in our Cassandra example, we collect the 99th percentile
read latency to characterize the QoS behaviour of the system. The SLO is
satisfied when such value is below a pre-defined threshold. The workload
metrics can be obtained by sampling the traffic passing through the entry
points, e.g. proxies or load balancers, of the managed storage service(s). The
percentile latency, which defines and directly reflects the QoS, is collected
either from entry proxies or the storage service itself depending on the design
and workflows of storage services. In Section 3.4, we provide further details
on how we obtain these metrics with Cassandra, as well as other distributed
storage service.

Online Model Training

It is intuitively clear that with more provisioned resources (VMs), the sys-
tem is able to respond to requests with reduced latency. However, on the
other hand, we would also like to provision as little VMs as possible to save
the provisioning cost. Thus, the controlled latency range is always desired to
be slightly under (just satisfying) the percentile latency requirement defined
in the SLO to minimize the provisioning cost. We refer to this region as
optimal operational region (OOR), where a system is not very much
over-provisioned but satisfying the SLO. To achieve this goal, an elasticity
controller needs to estimate what the OOR is for a given system (at a given
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period). In order to keep the system operating in the OOR while the in-
coming workload is dynamic, an elasticity controller needs to react to the
workload changes and allocate/de-allocate VMs to the system.

OnlineElastMan devises a multi-dimensional Statistical Machine Learn-
ing (SML) model to determine/estimate OOR. This model correlates the
workload metrics (workload characteristics) with the SLO metric (such as
percentile latency). This SML model constitutes OnlineElastMan’s con-
trol model.

In an n-dimensional space, where n is the number of workload metrics
collected by OnlineElastMan, the SML model is a hyperplane that defines
the boundary between two zones, where the SLO is predicted to be satisfied
and violated, respectively. This hyperplane is built from a limited training
set, obtained from the monitoring component. Each element in the training
set corresponds to a point in the n-dimensional space of workload metrics
and is labeled according to whether the service was able to meet the SLO
with the workload represented by that point or not.

For instance, with 3 workload metrics (as in the Cassandra case study
described so far), the hyperplane is a 2-dimensional plane, as shown in Fig-
ure 3.6. If the number of dimensions is 2, then the hyperplane is just a line
(as shown in Figure 3.5).

This hyperplane allows us to estimate the OOR of a given VM in our sys-
tem. Intuitively, the OOR corresponds to the points located under but close
enough to the hyperplane. Furthermore, it allows us to estimate whether,
with the current workload, each VM is operating within its OOR and, if not,
how far that VM is from the OOR. As we detail later in the chapter, these
estimates enable the Elasticity Controller of OnlineElastMan to decide
how many VMs should be allocated or removed to ensure that the system
operates in its OOR. Next, we start by describing the SML model used in
OnlineElastMan, and then we explain how such model is built.

Multi-Dimensional Online Model

In contrast to previous proposals [19, 20, 23, 80] that rely on an offline
SML model, OnlineElastMan builds the model online and continuously
improves/updates the model while serving requests. The online training
feature frees system administrators from the tedious offline model training
procedure, which includes repetitive system configurations, system deploy-
ments, model updates, etc., before putting the controller online. Addition-
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ally, the continuously evolving model in OnlineElastMan enables the
system to survive with factors that are not considered in the model, e.g.
platform interference [60, 130].

Specifically, the online SML model is built with the monitored parame-
ters mentioned in Section 3.3. It classifies whether a VM is able to operate in
the OOR under the current workload, which breaks down to the read/write
intensity and the requested data size. Ideally, a storage node hosted in a
VM can either be operating under the SLO commitment or with the SLO
violation. Therefore, for a given VM, the SML model is a line that separates
the plane into two regions, in which the SLO is either met or violated, as
shown in Figure 3.5. Different SML models need to be built for different
VM flavours1 and different storage services hosted. While building the SML
model as depicted in Figure 3.3, several configurable parameters affect the
SML model accuracy. We discuss the most important ones next.

Granularity of the SML model: Since the collected data for the
model can be decimal, it is impossible to analyze the data with infinite
combinations. We group the collected data with a pre-defined granularity,
which makes a two-dimensional plane to be separated into small squares or
a three-dimensional plane to be separated into small cubes. These squares
and cubes are the groups where data are accumulated and analyzed. The
granularity of data groups can be configured depending on the memory limits
and the precision requirements of the SML model.

Historical data buffer: For data collected and mapped to each group,
we maintain a historical record for the most recent n reads and writes.

Confidence level: The historical data in each group is analyzed to
define whether the workload that corresponds to the data collected in this
group violates the SLO or not. To do so, we take into account a pre-defined
confidence level parameter. For example, the 95% confidence level implies
that 95% of all the read/write percentile latency sampled satisfy the SLO.

Update frequency: The SML model updates itself periodically with
a fixed configurable rate. A higher update frequency allows the SML model
to swiftly adapt to execution environment changes while a lower update fre-
quency makes the SML model more stable and tolerate transient execution
environment changes.

1A flavour is a VM instance type, or virtual hardware template. A flavour specifies
a set of virtual machine resources such as the number of virtual CPUs, the amount of
memory, and the disk space assigned to a VM instance.
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Figure 3.4: Classification using SVM.

Building the SML Model

To build the multi-dimensional SML model described in the previous section,
we resort to Support Vector Machine (SVM), a supervised machine learning
method. SVM have become popular classification techniques in a wide range
of application domains [131]. They provide good performance even in cases
of high-dimensional data and a small sets of training data. Using the “kernel
trick”, SVM is also able to find non-linear solutions efficiently [132]. Figure
3.4 shows the flow of a classification task using SVM. Briefly, we first train
the SML model offline using systematically profiled data. Then, we put the
SML model online to let it evolve itself.

Next, we describe how OnlineElastMan applies SVM to build each
VM’s SML model. Each instance of the training set (data point) contains
a class label and several features or observed variables. In our Cassandra
case study, the features are read intensity, write intensity and average data
size, while the class label is either 1 (SLO is met) or −1 (SLO is violated).
Recall that, the goal of SVM is to produce a model based on the training
set. Specifically, its goal is to find a hyperplane in an n-dimensional space
(where n denotes the number of features, i.e. workload metrics). Figures
3.5 and 3.6 depict two models in systems which consider 2 and 3 features,
respectively. Each model can be seen as a decision boundary that helps
classify whether, for some given point in the workload space (as characterized
by the n features of some particular workload) the VM is predicted to serve
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the workload while safeguarding the SLO (in case the point is below the
model) or not (otherwise).

To separate the two classes of data points, there are many possible hyper-
planes that could be chosen. The objective of SVM is to find a hyperplane
that has the maximum margin, i.e the maximum distance between data
points of both classes. Support vectors are data points that are closer to the
hyperplane and influence the position and orientation of the hyperplane.

More concretely, given a training set of instance-label pairs (xi, yi), i =
1, ..., l where xi ∈ Rn and yi ∈ {1,−1}l, the SVM classification solves the
following optimization problem [133]:

minw,b ‖ w ‖2 +C
∑

i

ξi (3.1)

subject to:
y(i)(wTxi + b) ≥ 1− ξi, i = 1, 2, . . . , l

ξi ≥ 0, i = 1, 2, . . . , l
(3.2)

Each training example (instance of a training set) is denoted as x, and
superscript (i) denotes the (ith) training example. y superscripted with (i)
represents class label corresponding to the (ith) training example. l denotes
the size of the training set, while n denotes the number of dimensions. The
parameter C in the SVM optimization problem is a positive cost factor that
penalizes misclassified training sets. A larger C discourages misclassification
more than a smaller C. The non-negative variables, ξi ≥ 0, were introduced
to enable the optimal separating hyperplane method to be generalised. The
ξi are a measure of the misclassification errors. w is known as the weight
vector. After solving the above equation, the SVM classifier predicts 1 if
wTx + b ≥ 0 and −1 otherwise. The decision boundary is defined by the
following equation:

wTx+ b = 0 (3.3)

Generally, the predicted class can be calculated using the following linear
discriminant function:

f(x) = wx+ b (3.4)

where x refers to a training example, w to the weight vector and b to the
bias term. wx refers to the dot product, which calculates the sum of the
products of vector components wixi. For example, in case of training set
with three features (e.g. x, y, z corresponding to reads per second, writes
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Figure 3.5: 2-dimensional SML model. Each point represent a training
example in 2-dimensional space (where 2 is the number of features, i.e.,
reads per second and writes per second). Each data point also has a class
label (1,−1). The red points (−1) signifies SLO is violated, while the green
points (1) signifies SLO is met. Support vectors are data points that are
closer to the model line and influence the position and orientation of the
line.

per second and average data size respectively), the discriminant function is
simply:

f(x) = w1x+ w2y + w3z + b (3.5)

SVM provides the estimates for w1, w2, w3 and b after training.
Given Equation 3.3, the SML model is a line (Figure 3.5) when only mon-

itoring read/write request intensity in the workload or a two-dimensional
plane (Figure 3.6) when another dimension, i.e., data size, is modeled. Fig-
ure 3.7 is a 2-dimensional projection of Figure 3.6, which shows that different
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Figure 3.6: 3-dimensional SML model taking into account request data size.

data sizes cause different separations of the 2-dimensional model space. It
indicates that data size plays an essential role to build an accurate control
model for storage systems. The line/plane separation in the model repre-
sents the maximum workload that a VM can serve under the specified SLO
(percentile latency).

Online model training: Using the SVM model training technique, the
performance model is updated periodically at the parameterized update
frequency using the data in the historical data buffer processed with
the configured/pre-defined/parameterized confidence level.

For generality, we assume that every VM can have a significant perfor-
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Figure 3.7: Top angle view of the SML model, where the model plane is
projected to a 2 dimensional surface and the shaded area is caused by the
varying data sizes.

mance difference even when they are spawned with the same flavour. This
can be caused by the interference from the host platform [60, 130] or back-
ground tasks, such as data migration [23]. Thus, an individual SML model
is built for each VM participating in the system. They automatically evolve
and update continuously while the system is serving workload. Periodically,
the updated SML models for each VM are sent to the elasticity controller
module to make scaling decisions.

Elasticity Controller

An elasticity controller makes scaling decisions in configurable control peri-
ods/intervals to prevent the system from oscillations. Any scaling decision
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taken by the elasticity controller is based on two main inputs. The first
input corresponds to the current workload metrics of each VM x, which we
denote wx.

The second input to the scaling decision is an estimate of the capacity of
each VM, cx. The capacity of a VM is the maximum workload that it can
handle under the SLO. It is inferred from the VM’s SML model. Specifi-
cally, the capacity of each VM is determined by calculating the intersection
point between its SML model and the line connecting the origin with the
point that corresponds to the current workload (i.e., the point corresponding
to read and write intensity, as well as average data size of the workload).
Note that, if the current workload point is beyond (i.e., above) the capacity
representation point in the model, then SLO is violated.

The responsibility of an elasticity controller is to keep the provisioned
system operating while satisfying the SLO. The strictest requirement is
that every VM operates while satisfying the SLO, which can be denoted
by ∀x ∈ N,wx < cx, where N is the complete set of all participating VMs.
However, this is not trivial to achieve without over-provisioning the system
in case the workload distribution is not well balanced. It is challenging to
balance workload in storage services with respect to each VM. This is be-
cause, as discussed in Section 2.1, storage services are stateful, i.e., usually
each VM is responsible only for a part of the total data stored. Thus, a
specific request can only be served by a specific set of VMs, which host the
requested data. Given that different storage services have different data dis-
tributions, as well as load balancing strategies, and that OnlineElastMan
is designed to be a generic framework to provision storage services elasti-
cally, we choose not to manage workload/data distribution for provisioned
systems. Furthermore, managing data distribution or rebalancing among
VMs is orthogonal to the design goal of OnlineElastMan. Nevertheless,
OnlineElastMan provides suggestions for workload distributions to each
participating VMs based on their capacity learnt from our SML models.

In order to tolerate load imbalance among VMs, OnlineElastMan
introduces an optional tolerance factor α when computing scaling decisions
to prevent too much over-provisioning. Specifically, a scaling up decision is
issued when the SLO violation cx < wx is observed from more than α VMs,
where α ≥ 0. When α = 0, there is no tolerance on load imbalance. The
number of VMs to add is calculated individually for each VM and aggregated
globally. The number of VMs (with the same flavour as cx) that is expected
to be added is given by wx−cx

cx
. Thus, when wx−cx

cx
< 0, it represents that a



3.3. ONLINEELASTMAN’S ARCHITECTURE AND DESIGN 57

VM has more capacity than the incoming workload. We aggregate results of
wx−cx

cx
on each VM flavour and ceil the aggregated results. When the result

on a specific VM flavour is negative, we do nothing because that indicates
that a scale up procedure involving that VM flavour is already ongoing. In
contrast, when the result on a specific VM flavour is positive, we add the
number of VMs of that flavour accordingly.

For scaling down, there is also a corresponding load imbalance tolerance
factor β. β denotes the number of VMs which are over-provisioned, in each
VM flavour. A scaling down procedure is triggered by first satisfying that
there is no VM that violates the SLO, which gives ∀i ∈ N,wi < ci, where
N is the complete set of all participating VMs. Then, the number of VMs
to de-allocate is calculated through a similar process comparing to scaling
up. The aggregated results of wx−cx

cx
on each VM flavours are floored after

subtracting β. Last, the corresponding number of VMs are de-allocated
when the floored results are greater than zero.

When a scaling up/down decision is made, the elasticity controller inter-
acts with Cloud API to request/release VMs. Where applicable, the elas-
ticity controller also calls the distributed storage service API to rebalance
data to the newly added VMs or to decommission the VMs that are about
to be removed. Adding/removing VMs to a distributed storage service in-
troduces a significant amount of data rebalancing load in the background.
This leads to fluctuations in sensitive performance measures, such as per-
centile latency. Usually, the extra data rebalancing load is not long-lasting.
So, this fluctuation can be filtered out in our SML model by properly set-
ting the confidence level and update frequency of OnlineElastMan
introduced in Section 3.3.

Workload Prediction

An optional but essential component of OnlineElastMan is the workload
prediction module. It is always too late to make a scaling out decision when
the workload has already increased since preparing VMs involves a non-
negligible overhead. This is especially relevant for storage services, which
require data to be migrated to the newly added VMs. Thus, there is a
prediction module that facilitates OnlineElastMan to make decisions in
advance.

Often, there are patterns that can be found in the workload, such as the
diurnal pattern [134]. These patterns become vague when the workload is
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distributed to each VM. Thus, we are not predicting the incoming workload
for each VM. Rather, the workload is predicted for the whole system. Then,
it is proportionally calculated for each VM based on the current workload
portion that is served by the VM. Finally, instead of using the current in-
coming workload to make a scaling decision in the previous section, we are
able to use the predicted workload as the input.

However, even predicting the workload for the whole system is not trivial
since many factors contribute to the fluctuation of the workload [135]. Some
workloads have a repetitive/cyclic pattern, such as diurnal patterns or sea-
sonal patterns, while some other workloads experience exponential growth
over a short period, which can be caused by market campaigns or special
offers. Considering that there are no perfect predictors and different ap-
plications’ workloads are distinct, no single prediction algorithm is general
enough to be suitable for most workloads. Thus, we have studied and ana-
lyzed several prediction algorithms that are designed for different workload
patterns, namely, regression trees [136] and five ARIMA models [137]
(first-order autoregressive, differenced first-order autoregressive,
exponential smoothing, second-order autoregressive and random
walk). Then, a weighted majority algorithm (Section 10) is used to select
the best prediction model. Note that as shown in Figure 3.2, for simplicity
of analysis and presentation, OnlineElastMan only predicts the read and
write intensities of the input workload. Next, we detail each algorithm.

Regression Trees model

Regression trees [136] do not have classes. Instead, there is a response
vector y which represents the response values for each observation in variable
matrix x. Regression trees predict responses to data and are considered
as a variant of decision trees. They specify the form of the relationship
between predictors (input variables) and response (output variable). We
first build a tree using the time series data consisting of the timestamped
workload metrics collected by the monitoring module, through a process
known as recursive partitioning (Algorithm 1) and then fit the leaf values to
the input predictors. Concretely, in our Cassandra case study, we consider
timestamped read and write intensity measurements. Particularly, to predict
a response, we follow the decisions in the tree from the root node all the
way to a leaf node which contains the response.
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Algorithm 1: Recursive Partitioning Algorithm
Data: A set of N data points, xi, i = 1,...,n
Result: A regression tree

1 if termination criterion exist then
2 Generate Leaf Node and allocate it a Given Value;
3 Return Leaf Node;
4 else
5 Identify Best Splitting test s∗;
6 Generate node t with s∗;
7 Left_branch(t) = RecursivePartitioning(< xi, yi >: xi = s∗);
8 Right_branch(t) = RecursivePartitioning(< xi, yi >: xi 6= s∗);
9 Return Node t;

10 end

ARIMA

The autoregressive moving average (ARMA) is one of the most widely used
approaches to time series forecasting. ARMA model is convenient for mod-
elling time series data which is stationary. In our case, the time series
data consist of timestamped read and write intensity measurements of in-
put workload. Stationary means that statistics calculated on the time series
are consistent over time, like the mean or the variance of the observations. In
order to handle non-stationary time series data, the ARMA model adopts a
differencing component to help deal with both stationary and non-stationary
data. This class of models with a differencing component is referred to as
the autoregressive integrated moving average (ARIMA) model. Specifically,
the ARIMA model is made up of an autoregressive (AR) component of
lagged observations, a moving average (MA) of past errors and a differenc-
ing component (I) needed to make a time series to be stationary. The MA
component is impacted by past and current errors while the AR component
shows the recent observations as a function of past observations [138].

In general, an ARIMA model is parameterized as ARIMA(p,d,q), where
p is the number of autoregressive terms (order of AR) i.e., the number of
lag observations in the model, d is the number of differences needed for
stationarity, and q is the number of lagged forecast errors in the prediction
equation (order of MA). The following equation represents a time series
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expressed in terms of the AR(p) model:

Y
′(t) = µ+ α1Y (t− 1) + α2Y (t− 2) + . . .+ αnY (t− p) (3.6)

Equation 3.7 represents a time series expressed in terms of moving av-
erages of white noise and error terms. In the equations, µ is a constant,
0 < α ≤ 1, 0 < β ≤ 1, and ε is white noise.

Y
′(t) = µ+ β1ε(t− 1) + β2ε(t− 2) + . . .+ βnε(t− p) (3.7)

In OnlineElastMan, apart from regression tree, we have integrated
five ARIMAmodels, which are the first-order autoregressive (ARIMA(1, 0, 0)),
the differenced first-order autoregressive (ARIMA(1, 1, 0)), the simple expo-
nential smoothing (ARIMA(0, 1, 1)), the second-order autoregressive (ARIMA(2, 0, 0))
and the random walk (ARIMA(0, 1, 0)). In our view, they can capture al-
most all the common workload patterns. For example, the first-order au-
toregressive model performs well when the workload is stationary and auto-
correlated while, for non-stationary workload, a random walk model might
be suitable. Then, the challenge is to detect and select the most appropriate
prediction model during runtime.

The Weighted Majority Algorithm

A Weighted Majority Algorithm (WMA) is implemented to select the best
prediction model during runtime. WMA is a machine learning algorithm
that is used to build a combined algorithm from a pool of algorithms [139].
WMA assumes that one of the known algorithms in the pool will perform
well under the current workload without prior knowledge about the accuracy
of the algorithms. WMA have many variations suited for different scenarios
including infinite loops, shifting targets and randomized predictions. We
present WMA in Algorithm 2. Specifically, for each workload metric being
predicted, the algorithm maintains a list of weights w1,...,wn. Each weight
estimates the prediction quality of a given algorithm. At each iteration of
WMA, the weight of each prediction algorithm is updated according to the
difference between the value that the algorithm predicted (for the work-
load metric under consideration) and the real value. More precisely, the
weights of those algorithms whose mispredictions was higher than a prede-
fined tolerance interval are penalized by multiplying their weights with a
fixed penalty factor m (0 ≤ m < 1). The prediction result from the most
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Figure 3.8: Architecture of the workload prediction module.

weighted algorithm (i.e., algorithm with the highest weight), is selected and
returned.

Algorithm 2: The Weighted Majority Algorithm
1 1. Initialize the weights w1, ..., wn of all the prediction algorithms to

a positive weight (1).
2 2. Return the prediction result of the prediction algorithm with the

highest weight.
3 3. Compare the predicted value with the real value, penalize the

prediction algorithms, which missed the prediction more than a
predefined tolerance interval n, by multiplying their weights with a
fixed penalty factor m (0 ≤ m < 1).

4 4. Wait until next prediction interval and go to 2.

The prediction module of OnlineElastMan is shown in Figure 3.8.
Additional prediction algorithms can be plugged into the prediction module
to handle more workload patterns.

Putting Everything Together

OnlineElastMan operates according to the flowchart illustrated in Figure
3.9. The incoming workload is fed to two modules, the prediction module
and the online training module. The prediction module utilizes the current
workload composition to predict the workload in the next control period
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using the algorithm described in Section 3.3. The online training module
records the current workload composition and samples the SLO metric (such
as service latency) under the current workload. Then, the module trains
the performance model with the update frequency. The actuation is
calculated based on the predicted workload for the next control period using
the updated performance model according to the algorithm explained in
Section 3.3. Finally, the actuation is carried out on the Cloud platform that
hosts the storage service.

3.4 Evaluation

We evaluate OnlineElastMan from two angles. First, we study the accu-
racy of the prediction module, which consists of six prediction algorithms. It
directly influences the provision accuracy of OnlineElastMan since it is
an essential input parameter for the performance model. Then, we present
the evaluation results of OnlineElastMan when it dynamically provisions
a Cassandra cluster with the application of the online multi-dimensional per-
formance model.

Our evaluation is conducted in a private cloud, which runs OpenStack
software stack. Our experiments are conducted on VMs with two virtual
cores (2.40GHz), 4GB RAM and 40GB disk size. They are spawned to
host storage services or benchmark clients. OnlineElastMan is configured
separately on one of the VMs. The overview of the evaluation setup is
presented in Figure 3.10.

Evaluation Environment

Underlying Storage System

Cassandra (version 2.0.9) is deployed as the underlying storage system and
provisioned by OnlineElastMan. Cassandra is chosen because of its pop-
ularity, as it is used as scalable backend storage by many companies, e.g.
Facebook. Briefly, Cassandra is a distributed replicated database, which
is organized with distributed hash tables. Since a Cassandra cluster is or-
ganized in a peer-to-peer fashion, it achieves linear scalability. Minimum
instrumentation is introduced to Cassandra’s read and write path, as shown
in Figure 3.11. The instrumented library samples and stores the service
latency of requests in its repository. OnlineElastMan’s data collector
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Figure 3.9: Control flow of OnlineElastMan.
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Figure 3.10: Different number of YCSB clients are used to generate workload
with different intensity. OnlineElastMan resizes the Cassandra cluster
according to the workload.

component periodically (after every 5 minutes in our experiments) pulls col-
lected access latencies from the repository on each Cassandra node. The
collected request samples from each Cassandra node are used by the pre-
diction module and the online training module of OnlineElastMan, as
shown in Figure 3.9. The Cassandra rebalance API is called to redistribute
data when adding/removing Cassandra nodes.

Workload Benchmark

We adopt YCSB (Yahoo! Cloud System Benchmark) (version 0.1.4) to gen-
erate workload for our Cassandra cluster. We choose YCSB because of
its flexibility to synthesize various workload patterns, including the varying
read/write request intensity and the size of the data propagated. Specifi-
cally, we configure YCSB clients with the parameters shown in Table 3.1.
In order to generate a stable workload for Cassandra, a fixed request rate
(1200 req/s) is set to each YCSB client hosted on a separate VM. We vary
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Figure 3.11: Cassandra instrumentation for collecting request latencies.

Table 3.1: YCSB configuration

Number of Threads 16
Request Distribu-
tion

uniform

Record Count 100000
Read Proportion varied (0.0 - 1.0)
Update Proportion varied (0.0 - 1.0)
Data size varied (1 - 20) KB
Replication Factor 3
Consistency Level level ONE

the total amount of workload generated by adding or removing VMs that
host YCSB clients.

Multi-dimensional Performance Model

Our performance model is automatically trained when the input workload
varies. OnlineElastMan takes input from the monitored parameters as
specified in Section 3.3. Specifically, the workload features, including read
and write request intensity and request data size, and the corresponding
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Visualization of data and model training

(a) (b) (c)

(f)(e)(d)

Visualization of data and model training (projected view)

Figure 3.12: The training illustration of the 3 dimensional performance
model. (a), (b), and (c) are ordered by the length of training period. (d),
(e), and (f) are the visualization of (a), (b) and (c) with data size dimension
projected on the other 2 dimensions.

service latency, obtained from Cassandra instrumentation, are associated to
train the model. Details on model training is presented in Section 3.3.

In practice, the model starts empty and needs to get trained online
automatically for some time. This is because the model is application and
platform-specific. Thus, it needs a warm-up training phase. According
to our experiments, it takes approximately 20 to 30 minutes to train a
performance model from scratch. After the warm-up, the model can be
used to facilitate the decision making process of the elasticity controller
while serving the workload.

Figure 3.12 depicts the model built and used in our evaluation. It consists
of three input parameters or dimensions, i.e., read/write request intensity
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and the data size. The controlled parameter is the 99th percentile read la-
tency, which is set to be 35ms in our case. As shown in the figure, with
more training data, the model (the shaded surface) evolves itself to a more
accurate state. Practically, the performance model is dynamic and evolves
while serving the workload. So, it can automatically evolve to a more accu-
rate model that reflects the changes in the operating environment and the
provisioned storage system. To be specific, the model adapts to unknown
factors, such as application interference or platform maintenance, gradu-
ally using updated training data. A more accurate model leads to better
provision accuracy when the elasticity controller consults it.

In our experiments, we found out that the rate at which the model evolves
affects the accuracy of the decisions made by the controller. The confidence
level and update frequency (as introduced in Section 3.3) dictates how
fast the model evolves. Ideally, we should have enough confidence about
the status (violate SLO or satisfy SLO) of a data point before its status
changes. Setting the confidence level low and the update frequency high
may result in the model oscillating (unstable model), while the opposite
settings of these two parameters may delay the evolution of the model. In
our experiments, we set the confidence level as 0.5, i.e., if 50% of all read
and write latency queue samples satisfy the SLO, then the corresponding
data point satisfies SLO and vice versa. The update frequency is set to 5
minutes. For applications that have distinct phases of operations, to prevent
frequent retraining, one can maintain a set of models and dynamically select
the best model for the current input pattern [90]. This idea is left for future
work.

Evaluation of Workload Prediction

We evaluate the prediction accuracy of the workload prediction module using
a synthesized workload generated by YCSB. We have synthesized workload
with different shapes by increasing and decreasing the total request inten-
sity. Figure 3.13 presents the actual workload generated and the workload
predicted by our prediction module. In addition, the choice of the dominant
prediction algorithm proposed by the weighted majority algorithm is also
shown in the figure. As a result, our prediction module is able to achieve
as low as 4.60% on the Mean Absolute Percentage Error for such a dynamic
workload pattern.
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Figure 3.13: Workload prediction: the actual workload V.S. the predicted
workload.

Evaluation of OnlineElastMan over Cassandra

We set the goal of OnlineElastMan to keep the 99th percentile of read
latency to be 35ms as stated in the SLO. The evaluation is conducted with
control period set to be 5 minutes. Even though the workload of YCSB is
configured to be uniform in our case, we still observe a non-trivial difference
in the amount of workload served from different Cassandra storage VMs.
To make a trade-off between the uneven workload served on each VM and
preventing over-provisioning, we set the tolerance factors α = 1 and β = 0.5.

As shown in Figure 3.14, we start the experiment with 3 Cassandra VMs.
From 0 to 40 minutes, the multi-dimensional performance model is trained
and warmed up. The elasticity controller starts to function after 40 minutes.
From 40 to 90 minutes, the workload increases gradually. It is observable
that from 40 to 70 minutes, the system is over-provisioned, as the percentile
latency is far below the SLO boundary, as shown in Figure 3.15. This is
because the elasticity controller is set to operate with a minimum number
of 3 VMs, which corresponds to the replication factor of Cassandra. As the
workload increases, the elasticity controller gradually adds two VMs from
80th minute on. Then, the workload experiences a sharp decrease from 90
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minute, but the controller maintains a minimum of 3 Cassandra VMs. We
continue to evaluate the performance of OnlineElastMan with another
two rounds of workload increase and decrease with different scales (shown
from 150 to 220 minutes and from 220 to 360 minutes). The evaluation
indicates that OnlineElastMan is able to keep the 99th percentile latency
commitment most of the time. On the other hand, we observe a small
amount of SLO violations under the provisioning of OnlineElastMan. It
is because of the tolerance factor α and β, which allows us to tolerate some
imbalance of workload distribution to Cassandra nodes.

Figure 3.14: VMs allocated according to the predicted workload and the
updated control model.

3.5 Related work
The majority of elasticity controllers offered in public Cloud services and
deployed in production systems today use threshold-based policies (rely
on simple if-then threshold-based triggers). Examples of such systems in-
clude Kubernetes [85], Amazon Auto Scaling (AAS) [3], Rightscale [62], and
Google Compute Engine Autoscaling [4]. Threshold-based approaches are



70
CHAPTER 3. ONLINEELASTMAN: SELF-TRAINED PROACTIVE

ELASTICITY MANAGER FOR CLOUD-BASED STORAGE SERVICES

Figure 3.15: The aggregated 99th percentile latency from all Cassandra VMs
with the allocation of VMs indicated by OnlineElastMan under the dy-
namic workload.

appropriate for small-scale systems where adding/removing a VM when a
threshold (e.g., CPU utilization) is reached is sufficient to maintain the de-
sired SLO. However, setting the thresholds and the correct number of VMs
to add/remove may be difficult for users on larger systems. Additionally,
threshold-based approaches are reactive, hence they only scale resources af-
ter SLO violations have been detected. Therefore, end-users may experience
performance degradation until the extra resources become available to fix
the SLO violations.

Most of the elasticity controllers that go beyond simple threshold-based
policies require a model of the target system to be able to reason about the
status of the system and decide on control actions needed to improve the
system. The system model is typically trained offline using historical data,
and the controller is tuned manually using expert knowledge of the expected
workload patterns and service behavior. Recent work in this area mostly
focuses on developing advanced models and novel approaches for elasticy
control, such as ElastMan [20], SCADS Director [19], scaling HDFS [18],
ProRenata [23], and Hubbub-scale [24]. Although achieving very good re-
sults, most of these controllers ignore the practical aspects of the solution,
which slowed down the adoption of such controllers in production systems.
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In contrast, OnlineElastMan focuses on the research of the practical
aspects of an elasticity controller. It relies only on the most generic and
obtainable metrics from the system and alleviates the burden of applying
an elasticity controller in production. Specifically, the auto-training feature
of OnlineElastMan makes its deployment, model training and configura-
tion effortless. Furthermore, a generic and extendable prediction model is
integrated to provide workload prediction for various workload patterns.

Regarding workload prediction, a significant amount of literature exists
that can be applied for predicting the traffic incident on a service, i.e., [19,
23, 61, 80, 89]. To support different workload scenarios, at least more than
one prediction algorithm is used. In most cases, the pattern of the workload
to be predicted is defined, which is not in our case. The most important
aspect is how switching is carried out among the prediction algorithms.
However, this is not clearly addressed in most of these previous works. We
therefore propose a simple weighted majority algorithm to handle this.

In OnlineElastMan, since we do not know the pattern of our work-
load, we have chosen some of the types of ARIMA models that are commonly
encountered. For a time series that is stationary and autocorrelated, a pos-
sible model for it is a first-order autoregressive model. On the other hand,
if the time series is not stationary, the simplest possible model for it is a
random walk model. However, if the errors of a random walk model are
autocorrelated, perhaps a differenced first-order autoregressive model may
be more suitable. Nau Robert [137] presents a detailed explanation of these
models.

3.6 Summary
In this chapter, we presented the design and implementation of OnlineE-
lastMan, which is an "out-of-the-box" elasticity controller for distributed
storage systems. It includes a self-training multi-dimensional performance
model to alleviate model training efforts and provide better provision ac-
curacy, a self-tuning prediction module to adjust the prediction to various
workload patterns, and an elasticity controller to calculate and carry out
the scaling decisions by analyzing the inputs from the performance model
and the prediction module. The evaluation results of OnlineElastMan on
Cassandra show that OnlineElastMan is able to provision a Cassandra
cluster efficiently and effectively with respect to the percentile latency SLO.





Chapter 4

BWAP: Bandwidth-Aware
Page Placement

Page placement is a critical problem for memory-intensive applications run-
ning on a shared-memory multiprocessor with a NUMA architecture. As we
show in this chapter, state-of-the-art page placement proposals for NUMA
architectures fail to maximize memory throughput for many workloads. This
is especially true with modern NUMA systems, characterized by asymmetric
bandwidths and latencies, and sensitive to memory contention and intercon-
nect congestion phenomena.

In this chapter, we present BWAP, a novel page placement mecha-
nism based on asymmetric weighted page interleaving. BWAP combines an
application-agnostic, but architecture-aware analytical performance model
of the target NUMA system with on-line iterative tuning of page distribution
for a given memory-intensive application. Our experimental evaluation with
representative memory-intensive workloads shows that BWAP performs up
to 66% better than state-of-the-art techniques. These gains are particularly
relevant when multiple co-located applications run in disjoint partitions of
a large NUMA machine or when applications do not scale up to the total
number of cores. Some passages in this chapter have been quoted verbatim
from [140].
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4.1 Problem Statement and Proposal Overview

Parallel architectures with non-uniform memory access (NUMA) are emerg-
ing as the norm in high-end servers. In a NUMA system, CPUs and memory
are organized as a set of interconnected nodes, where each node typically
comprises one or more multi-core CPUs as well as one or more memory
controllers. The non-uniform memory access nature stems from this orga-
nization, since the memory access bandwidth and latency depends on the
node where the accessing thread runs and on the node where the target page
resides.

When one deploys a parallel application on a NUMA system, its threads
allocate and access pages that need to be physically mapped to the avail-
able NUMA nodes. This raises a crucial question: where should each page
be mapped for optimal performance? When the application is memory-
intensive, a common strategy is to uniformly interleave pages across the
set of worker nodes, i.e., the nodes on which the application threads run.
This strategy is based on the rationale that, for a large class of memory-
intensive applications, bandwidth – rather than access latency – is the main
bottleneck. Therefore, interleaving pages across nodes provides threads with
a higher aggregate memory bandwidth [11]. Hereafter, let us call this strat-
egy uniform-workers. This is the essential approach of recently proposed
runtime libraries for NUMA systems (e.g., [11, 12]), as well as the recom-
mended or default option for prominent database systems (e.g., [122–124]).

This work starts by questioning the effectiveness of the uniform-workers
strategy in contemporary NUMA systems. Two key characteristics of uni-
form-workers seem to be at odds with the systems it aims to optimize. First,
uniform-workers places pages at symmetric ratios across worker nodes, while
the bandwidth (and latency) of contemporary NUMA architectures is typ-
ically asymmetric across nodes [11]. Second, there are important scenarios
where an application’s threads are clustered together on a subset of NUMA
nodes – notably, when the application is deployed in a given node partition
of a co-scheduled system [141], or when the application does not scale be-
yond a subset of the available cores [112, 142]. If the remaining memory
nodes are idle or underused (e.g., by CPU-intensive applications), uniform-
workers will neglect an important portion of bandwidth. Hence, as we show
in Section 4.2, it is unsurprising that the memory bandwidth attained by
uniform-workers is considerably suboptimal for memory-intensive applica-
tions.
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To overcome these inefficiencies, we propose BWAP, a novel bandwidth-
aware page placement for memory-intensive applications on NUMA systems.
In contrast to uniform-workers, BWAP takes the asymmetric bandwidths of
every node into account to determine and enforce an optimized application-
specific weighted interleaving. Our proposal is inspired by recent research
for hybrid memory systems [38–40]. These works have shown that, when
a CPU (or GPU [39]) is served by different memory technologies (such as
NVRAM or DRAM) with differing bandwidths, an optimal placement is one
that (proportionally) place fewer pages at the lower-bandwidth memories.

Still, applying the same principle to the context of NUMA systems is far
from trivial. While previous bandwidth-aware proposals for hybrid mem-
ory systems relied on the premise that a given memory node provides the
same bandwidth to every core, that is no longer true in a NUMA system.
The same NUMA memory node may be accessible through different band-
widths by different threads, depending on each thread’s location within the
NUMA topology. This implies that optimizing page interleaving from the
perspective of a given worker node (as done by the recent proposals for
hybrid systems [38–40]) will not always yield the best overall performance.
Instead, the optimization problem needs to consider a complexW×N band-
width matrix, whereW and N denote the number of worker nodes and total
nodes, respectively. Furthermore, this bandwidth matrix is particularly hard
to determine accurately, since it is sensitive to interconnect congestion and
local-remote contention on memory controllers phenomena which, in turn,
depend on the memory demand patterns of the deployed application(s).
Hence, optimal placements are eminently application-specific.

Putting it all together, an efficient page placement for asymmetric NUMA
systems requires tuning N weights, taking into account complex phenomena
that depend both on the underlying NUMA architecture and the applica-
tion(s) itself. A naive approach is to search through theN -dimensional space
of possible weight distributions and measure the performance of each run
to find the optimal placement. This is often impractical for NUMA systems
of 4 nodes and beyond, since it easily falls in the range of hours or days to
find an optimized distribution of per-node weights for a given application.
An alternative approach is to model the usage of the memory system band-
width and analytically determine the optimal page placement. However, to
the best of our knowledge, the most successful analytical models of memory
throughput are limited to single-node scenarios [143].

BWAP tames aforementioned complexity by combining techniques from
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the two extremes of the solution space. In a first stage, BWAP builds a
memory bandwidth model of the target system. From this model, BWAP
calculates the optimal weight distribution that maximizes the performance of
a reference bandwidth-intensive application. The key insight behind BWAP
is that, after analytically determining that canonical weight distribution,
that distribution can be adjusted to fit the target application by applying
a scalar coefficient on each weight. In other words, BWAP reduces what
in theory is an N -dimensional optimization problem to the one-dimensional
problem of finding an appropriate scaling coefficient that best fits the ap-
plication. To achieve this, the second stage of BWAP relies on an iterative
technique, which, when the application starts, places its pages according
to the canonical weight distribution; then, on-the-fly, it uses an incremen-
tal page migration scheme that adjusts the weight distribution until a new
(local) optimum is found.

BWAP is implemented as an extension to Linux libnuma. It enriches the
original interface with a bandwidth-interleaved policy option that automat-
ically determines memory nodes to place the application pages on, and the
per-node weights to balance the page interleaving across the NUMA nodes.
BWAP is readily available and can be used transparently by any application,
with no changes to the OS kernel.
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Figure 4.1: (a): (a) Performance of popular page placement schemes
vs the placement found via n-dimensional search for Ocean_cp (OC),
Ocean_ncp (ON), SP.B, Streamcluster (SC) and FT.C [1] (2 worker nodes,
8 threads each). (b) The corresponding per-node weights as found by our
n-dimensional search.
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Figure 4.2: Node-to-node maximum bandwidths (GB/s) in machines A (8-
node AMD Opteron) and B (4-node Intel Xeon).

4.2 Motivation

To lay the groundwork, we selected different memory-intensive applications
from the PARSEC [33], SPLASH [34], and NAS [1] benchmark suites and
experimentally studied how different page placement strategies affect their
performance. We used an 8-node NUMA machine with the asymmetric
interconnect topology depicted in Figure 4.2a, on which each application
ran stand-alone on 2 worker nodes. A larger number of architectures and
baselines is evaluated in Section 4.4.

For each application, we measure its performance when its pages are
mapped with Linux default first-touch, the common practice uniform-workers,
and a uniform-all variant that uniformly interleaves pages across all nodes
(both workers and non-workers). We also performed a long offline search in
which we experimentally tested the performance of a large sample of weight
distributions. The search used the hill climbing technique to explore the
8-dimensional space of possible solutions. Each point in the search space
assigns to each memory node in the machine a weight that determines the
portion of pages that will be placed at that node. The starting point in
the search was uniform-workers. Each search covered approximately 180
iterations, taking more than 15 hours to complete for each application. For
each application, the search identified a number of slightly different con-
figurations that achieved performance within less than 3% from optimum.
Thus, the values discussed next are averages over a selection of the top-10
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best performing distributions for each application.
Figure 4.1a presents the performance of the baseline policies normal-

ized with respect to that of hill climbing. The results suggest that, while
uniform-workers and uniform-all considerably improve performance over
Linux’s default policy, they do not take full advantage of the bandwidth
of the underlying memory architecture in our NUMA system. To under-
stand why, we have studied the actual weight distributions obtained by hill
climbing, as depicted in Figure 4.1b and drawn the following three main
observations, which guided us towards the design of BWAP.

Observation 1: Pages are placed across all nodes, not just
worker nodes. In many modern architectures, even applications that
have moderate single-thread memory demands can easily saturate the lo-
cal memory controller when multiple threads share the same node. This
issue is further exacerbated if the application threads span across multiple
NUMA nodes, since a fraction of accesses to pages will now be remote, thus
limited by the bandwidth of the interconnect. These results suggest that,
for applications with high memory demands, page placement should not be
restricted to the worker nodes; instead, the available (even if limited) band-
width of non-worker nodes should be harnessed by placing on these nodes a
carefully selected fraction of the application’s pages.

Observation 2: Pages are interleaved unevenly across nodes,
with relevant cross-application variations. Every weight distribution
obtained by hill climbing is highly asymmetric, with nodes with lower mem-
ory access throughput receiving fewer pages. This clearly reflects the inher-
ent asymmetry of the underlying NUMA topology [11]. However, when we
compare the best weight distributions found for different applications, we
observe significant differences between applications, which we can explain by
two main factors. On the one hand, the complex contention effects, both at
the interconnect and memory controller [9], depend on the actual memory
demand that the application places on each memory node. On the other
hand, while memory bandwidth is the dominant bottleneck of some appli-
cations, others are more sensitive to memory latency. The former benefit
from exploiting the bandwidth of remote nodes to its full extent; the latter
call for approaches that, while spreading some pages remotely for increased
bandwidth, retain most pages locally for the sake of latency.

Observation 3: If one considers worker nodes and non-worker
nodes separately, proportional similarities emerge among per-node
weights. Let us pick two applications from our sample and compare the
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respective worker weights, as obtained by hill climbing, node by node. If
we multiply the weights of one application by some scalar coefficient such
that its aggregate worker weight becomes the same as the other application,
the per-node weight variance decreases. The same occurs by following the
same procedure for the non-worker nodes. In fact, if we cluster worker
nodes and non-worker nodes separately and perform the above scaling on
their (clustered) weight distributions, the average per-node coefficient of
variation decreases by 1/3.

These key observations enable us to build a practical best-effort solution
to bandwidth-aware page placement in asymmetric NUMA systems, which
we describe next.

4.3 BWAP: Bandwidth-Aware page Placement

Given a NUMA system and a parallel application running on a set of worker
nodes, the goal of BWAP is to devise and enforce an efficient interleav-
ing of the application’s pages across the NUMA nodes. Since application
threads access different memory nodes through potentially diverse band-
widths, BWAP assigns different weights to different nodes. A node’s weight
denotes the fraction of pages mapped to the node.

Figure 4.3 provides an overview of BWAP. BWAP pipelines two key
components, the Canonical tuner and the DWP tuner. The first one is ag-
nostic of the target application and runs offline. The second one is an online
component that, at run-time, departs from the first component’s output to
reach an improved application-specific page placement.

The inner workings of each component can be summarized as follows.
The Canonical tuner models our knowledge of the bandwidth of the NUMA
topology. Since the effective per-node bandwidth is sensitive to the demand
that applications pose on the system, the Canonical tuner assumes an ex-
tremely bandwidth-intensive application as its reference. Its output is a set
of canonical weight distributions, which optimize the memory throughput of
the reference application. If one considers different scenarios where the ap-
plication runs on different sets of worker nodes, the corresponding optimal
weight distributions might also differ. Hence, the Canonical tuner considers
different combinations of worker nodes as input and accordingly computes
the corresponding canonical weights.

As discussed in Section 4.2, the optimal weight distribution varies sub-
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stantially across distinct workloads. Therefore, the canonical weight distri-
butions, as produced by the Canonical tuner, may not be suited to other
applications than the idealized bandwidth-intensive application. Hence, for
a given worker node set, the canonical weight distribution is used as a hint
about the relative weight distributions to be employed for the worker set
and the non-worker sets of the target application. Then, by leveraging Ob-
servation 3 (Section 4.2), the DWP tuner converts the canonical weight
distribution to one that is optimized for the target application. This is
done by finding an appropriate value for a data-to-worker proximity fac-
tor (DWP), which determines how many pages will be assigned to the set of
worker nodes (retaining the canonical weight relations), while the remainder
will be shared within the non-worker nodes (also according to the canonical
distribution). The DWP tuner achieves this through an incremental page
migration mechanism that searches for a good value of DWP for the target
application. This stage is done on-the-fly, during the first seconds of the
actual execution of the application.

The following sections detail each component of BWAP.
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Calculating canonical weights

First, the Canonical tuner models the underlying machine and an idealized
canonical application running on it. Using the model, the Canonical tuner
computes the canonical weights.

System model

The Canonical tuner makes a set of simplifying assumptions on the under-
lying machine and the target applications. We show in Section 4.4 that
this model suffices for BWAP to be an effective best-effort approximation,
even when the assumptions we introduce next are not entirely met in re-
ality. We assume a cache-coherent NUMA machine comprising a set of N
nodes, N = {n1, n2, ..., nN}, where the set of nodes as a whole is entirely
managed by a single instance of an operating system. Each node contains
one or more multi-core CPUs, which globally provide C hardware threads.
For simplicity, we assume that every node’s local computing and memory
resources (like CPU frequencies, number of cores, or local memory band-
width) are identical. Furthermore, each node includes one or more memory
controllers providing access to the local memory of that node. We abstract
the memory controllers that are local to a given node as one single-channel
memory controller, whose bandwidth is the aggregate bandwidth of each
channel/memory controller in the real topology.

Threads may read and write pages that reside on the local node’s mem-
ory, and on any remote node’s memory. In the latter case, the read/write
request is sent through the interconnect, which provides full connectivity
among all nodes.

The interconnect topology is asymmetric, i.e., a thread running on a
given node will observe different bandwidths and latencies, depending on
the memory node it is accessing. The most obvious difference in bandwidth
and latency is between local and remote accesses. Among remote accesses,
different bandwidths and latencies may be observed, since distinct intercon-
nect links may have distinct bandwidths (possibly distinct bandwidths for
each communication direction), and paths between nodes can differ in num-
ber of hops (some nodes are directly connected, while others communicate
through multi-hop paths).

On top of the NUMA system characterized so far, our model assumes
a simplified parallel application, which we refer to as canonical application,
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that uses t threads, where t ≤ C × N . Threads are placed at a subset of
nodes,W ⊆ N , which we call worker nodes. For simplicity, we assume that t
is a multiple of the number of worker nodes, and the threads of the canonical
application are evenly distributed across the worker nodes. We assume that
parameters t and W have been previously tuned by some existing tool(s)
for optimal parallelism tuning (tuning of t) and thread placement (tuning of
W), e.g., [11, 112]. In addition, the above parameters do not change while
the application runs, and no other processes are co-located in the canonical
application’s worker nodes.

Further, we consider that the work performed and the memory access
patterns are similar among all the threads of the application. Within the
application’s address space, we distinguish between thread-private pages and
shared pages. We assume that the access volume to thread-private pages is
negligible when compared to the available memory bandwidth.

In contrast, we assume that the canonical application places an ex-
treme memory demand on the shared pages. Moreover, the workload of the
canonical application is bandwidth-intensive, such that the memory access
throughput that it attains is the dominant factor to its overall performance,
rather than memory access latency (and other overheads unrelated to mem-
ory). Hence, hereafter we focus on memory throughput to shared pages, and
omit latency from our equations. Furthermore, we assume that the canoni-
cal application accesses shared data predominantly in read-only mode; i.e.,
write accesses to shared pages are so rare that they have no relevant impact
on performance. Finally, we consider that the canonical application accesses
all shared pages with the same probability.

Shared pages are interleaved across all memory nodes in a weighted fash-
ion, where some nodes may receive more pages than others. No matter which
page interleaving is chosen, we assume the shared space fits the available
physical memory. Pages are interleaved according to a weight distribution,
D = {w1, w2, .., wN}, where wi denotes the fraction of shared pages that
node i will hold (such that

∑
wi = 1). Therefore, to maximize the per-

formance of the canonical application, we need to find the optimal weight
distribution that maximizes the overall throughput to shared data.

Finding the optimal weight distribution

Now we discuss how to find the optimal weight distribution for the canonical
application. We introduce the function bw(nsrc → ndst), which denotes the
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bandwidth that a given thread located at worker node ndst can use when
reading from a node nsrc. For presentation simplicity, we start by assuming
that function bw(nsrc → ndst) is well known for all node pairs in the system
and does not change for different weight distributions. We discuss how to
lift these assumptions in the next section.

Single-worker scenario. The simplest scenario is where all threads
run on a single worker node, nw. BWAP adapts the approach that Yu et
al. proposed in the context of data placement in SMP systems with het-
erogeneous DRAM-NVM memory hierarchies [40]. We start by considering
that the threads in nw need to read a total of S bytes of shared data be-
fore completing their work. Since the canonical application’s performance is
dominated by memory throughput, its execution time is determined by the
time that the threads in nw take to transfer S bytes from memory. Since
memory is interleaved among the memory nodes of the system, threads will
need to read from pages held at distinct nodes. Furthermore, since the
canonical application accesses any page with a uniform probability, the por-
tion that is read from each node i will be proportional to the weight of i;
more precisely, S × wi bytes.

Moreover, we consider that the data sets that nw reads from each node
in the system are transferred in parallel to nw. As Yu et al. have shown [40],
this approximation is relatively accurate for memory-intensive applications
in systems where the number of accessing threads in a node is substantially
higher than the number of source memory nodes.

Putting it all together, we can then determine the execution time of the
threads in nw as the time to complete the longest (parallel) transfer from
every memory node:

T = max
i∈N

S × wi

bw(ni → nw) (4.1)

If pages were uniformly interleaved (i.e., equal weights for all pages),
execution time would be determined by the time to transfer from the node
with the lowest bandwidth (to nw). Hence, to minimize execution time, one
can reduce the pages placed in that node (by decreasing the corresponding
weight) until it no longer incurs the longest transfer time. After that, an-
other node becomes the one that contributes with the longest transfer time
and its weight should also be reduced; and so forth. It is easy to show that
the resulting optimal solution consists of setting the weight of each node ni

as follows:
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wi = bw(ni → nw)∑
i∈N bw(ni → nw) (4.2)

Multi-worker scenario. We now generalize the previous solution to
scenarios where the canonical application has a higher parallelism level, thus
spans its threads across two or more worker nodes. In this scenario, the
execution time of the application is given by the time that (the threads
running at) the slowest worker node takes to complete, as follows:

T = max
nw∈W

(max
i∈N

S × wi

bw(ni → nw)) (4.3)

Like in the single-worker scenario, we can minimize the execution time
by adjusting the weight distribution. However, the multi-worker scenario
introduces a subtle challenge: the bandwidth that two distinct worker nodes,
nA and nB, may use when reading from a target node ni can be different.
In fact, changing the weight of ni to greedily optimize nA’s performance
can degrade nB’s performance, and vice-versa. Therefore, the optimization
of the weight distribution needs to take all the transfers by all the worker
nodes into account.

We achieve this by defining minimum bandwidth as the bandwidth of the
weakest path among the paths interconnecting a given target node to the
worker nodes as minbw(n) = minnw∈W bw(ni → nw), and by transforming
Equation 4.3 to employ this notion:

T = max
i∈N

S × wi

minbw(ni)
(4.4)

Finally, we can apply a similar optimization strategy as we do in the
single-worker scenario, but this time by considering the minimum bandwidth
values. Consequently, the optimal solution in the multi-worker case consists
of making each node’s weight proportional to its minimum bandwidth:

wi = minbw(ni)∑
i∈N minbw(ni)

(4.5)

Estimating bandwidth

The solution built so far assumes that the bandwidth between two nodes
(bw(nsrc → ndst)) is well known and does not change for different weight
distributions. We now question these assumptions and propose a practical
solution that does not depend on them.
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It is important to understand what main factors contribute to the band-
width that threads in a NUMA machine may effectively use. The value of
bw(nsrc → ndst) is limited by the nominal bandwidth of the path from nsrc

to ndst (if nsrc 6= ndst). However, the effective bandwidth that threads in
ndst get when reading from nsrc is also determined by the access demand
that the application places on the system, in different complex ways.

First, it is known that the actual bandwidth of a single memory con-
troller is influenced non-linearly by the actual access demand to that con-
troller [143]. To complicate matters, the effective bandwidths, as perceived
from worker nodes, are also strongly affected by cross-thread and cross-node
interference [144]. The access demand on the memory controller at node
nsrc includes concurrent accesses from multiple threads running in the same
worker (either nsrc or a remote node); further, if the canonical application
spans multiple worker nodes, the memory demand on nsrc combines con-
tending accesses by threads residing on distinct nodes (besides local threads
at nsrc). Finally, bandwidth is also affected by interconnect congestion.
This may happen when multiple co-located threads access the same remote
memory node (through the same link), or when threads from different worker
nodes issue memory requests whose result is delivered through interconnect
paths that share one or more links. Therefore, it is clear that our initial as-
sumptions on bw(nsrc → ndst) are questionable. First, we relied on an exact
knowledge of bandwidth in a NUMA machine. Second, when searching for
the optimal weight distribution, we assumed that memory throughput was
immutable during that search.

BWAP follows a pragmatic approach to approximate the bw(nsrc → ndst)
function. More precisely, for a fixed set of worker nodes, we start by deploy-
ing a memory-intensive benchmark (representing the canonical application)
and uniformly interleaving the benchmark’s pages across all nodes in the
machine. We use a simple benchmark that spawns as many threads as the
available hardware threads on the worker nodes, and each thread performs a
random traversal of a shared array. At the same time, we rely on hardware
performance counters to monitor per-node memory throughput.

The profiled throughputs between each pair of nodes, nsrc and ndst, are
used as the values of bw(nsrc → ndst). This approach neglects the differences
in access demand that occur when page placement changes from the profile-
time uniform interleaving scenario to the final weighted interleaving scenario.
However, our results (in Section 4.4) confirm that, BWAP is still able to
devise efficient weight distributions.
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On the practical side, at installation time on a given machine, the Canon-
ical tuner needs to run the above profiling procedure for the relevant combi-
nations of worker node sets (with different sizes). The set of explored worker
node sets does not need to be exhaustive: i) a large number of worker node
sets can be filtered out since they are unlikely to be used by a rational user
(e.g., in a dual-socket machine with 2+2 nodes, a 2-worker set comprising
nodes at each socket, thus interconnected with a low bandwidth); ii) many
worker node sets are symmetrical, hence only one needs to be configured
(e.g., in a dual-socket machine with 2+2 nodes with symmetric links be-
tween sockets, the optimal weight distribution for the worker set comprising
two nodes on one socket is symmetrical to the set comprising the nodes on
the other socket).

On-line page placement tuning

The DWP tuner takes action when an application is launched. The tuner’s
API includes a main function BWAP-init, which should be called by the tar-
get application once it has allocated its initial shared structures. Note that
DWP tuner targets applications, which, after an initial stage, enter an exe-
cution stage with stable memory access behavior (identically to systems such
as Carrefour [12] and Asymsched [11]). The main argument of BWAP-init
points to the set of worker nodes on which the application is running.

The goal of the DWP tuner is to tune the weight distribution by search-
ing for an appropriate application-specific DWP. We recall that DWP de-
termines the balance between pages mapped to the set of worker and non-
worker nodes, while preserving the relative weight relations within the sets
of worker and non worker nodes. The canonical weight distribution corre-
sponds to DWP = 0, while DWP = 1 corresponds to the extreme where
all pages are mapped to the worker node set. This allows BWAP to be used
with both bandwidth-sensitive (low DWP) and latency-sensitive workloads
(high DWP).

Tuning data-to-worker proximity

Initially, the DWP tuner obtains a pre-computed canonical weight distribu-
tion for the worker node set. The application’s shared pages are initially
placed based on this weight distribution (DWP = 0).
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The BWAP library adapts DWP on-the-fly during the first seconds after
the application calls BWAP-init, based on hill climbing. Departing from
the DWP = 0, we periodically monitor average resource stall rates (stalled
cycles per second), by reading hardware performance counters via a portable
library [145]. It is well known that stalled cycles are strongly correlated to
execution time [142]. At each period, we collect n measurements over an
interval of t seconds. We then sort and discard the first and the last c
measurements to filter outliers. At each iteration, we compare the current
average stall rate with the previous one, and accordingly vary DWP by a
constant step, x. If the stall rate decreased, it is likely that increasing DWP
improved the overall performance. Hence, we continue increasing DWP.
Otherwise, it is likely that we found a (local) optimum and we stop the
hill-climbing.

At each iteration where we decide to increase DWP, applying the new
value is ensured by incrementally migrating pages from non-worker nodes
to worker nodes, where the number of pages that is removed from/added to
a given node is proportional to that node’s canonical weight. This ensures
that the relative canonical weights within the worker and non-worker node
set are preserved as DWP changes, as intended.

Initial placement and incremental migration

At each iteration, the DWP tuner needs to place pages according to a
weighted interleaving strategy. However, no direct support for weighted in-
terleaving exists in mainstream OSs. Hence, we have to build such support
for weighted-interleaved page placement. We achieve this by two alternative
means: at kernel and user levels. At the kernel level, we implemented a
new policy to support weighted interleaved memory allocation, exposed by
a new system call. We also added the weighted interleave option to numactl
tool and libnuma library to avoid the burden of application-level changes.

Our user-level alternative has the advantage of portability (avoiding the
need for patching the underlying kernel), yet at the cost of a less accurate
interleaving. Algorithm 3 summarizes our user-level page placement algo-
rithm. We start by determining the currently allocated page ranges that
are likely to hold shared data. This includes the .data and BSS segments,
as well as dynamic memory mappings. We divide each address range into
contiguous sub-ranges and, for each sub-range, we call mbind with the uni-
form interleaving option over a different set of nodes (line 8 in Alg. 3).
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Algorithm 3: User-level weighted interleaving approximation used
by the DWP tuner
Input: segment // Struct with start address and length
Input: nodes // Set of NUMA nodes and respective weights

1 begin
2 address← segment.startAddress();
3 weightprev ← 0;
4 while nodes 6= ∅ do
5 node← getNodeWithMinWeight(nodes);
6 weight← node.weight− weightprev;
7 size← |nodes| ∗ weight ∗ segment.length();
8 interleaveuniform(address, size, nodes);
9 nodes← nodes− {node};

10 address← address+ size;
11 weightprev ← node.weight;
12 end
13 end

More precisely, the first sub-range’s pages are interleaved over all nodes, the
second sub-range’s pages are interleaved over all nodes except the one with
the lowest weight, and so forth. The key insight is that, by setting the size
of each sub-range (line 7 in Alg. 3), we can ensure that the overall per-node
page ratios will be proportional to the desired weights.

This solution is not as accurate as the kernel-level alternative, since it
does not enforce that all the sub-ranges reflect the weighted interleaving.
Still, it ensures a best-effort shuffling of pages, while keeping the number
of mbind calls low. By using the MPOL_MF_MOVE and MPOL_MF_-
STRICT flags of mbind, this approach also works correctly (without kernel
modifications) when weight distributions are changed dynamically by the
DWP tuner. It is easy to show that, as DWP increases in each step, Algo-
rithm 3 will callmbind on sub-ranges that were previously mapped according
to the same or a wider interleaving. In this case, mbind seamlessly performs
the necessary page migrations. The reverse migration/operation is currently
unsupported by mbind.
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Co-scheduled variant

The mechanism described so far assumed a stand-alone application that
runs on a subset of nodes and also has the remaining nodes idle to place
its pages. However, as mentioned in Section 2.3, many NUMA systems
will consolidate workloads in a single physical machine in order to minimize
idle hardware resources. Workload consolidation is today an active research
topic, both in academia and industry (e.g., with Intel’s recent introduction of
Resource Director Technology [28] into its high-end processors). Recall from
Section 2.3 that a common formulation of the problem considers one or more
latency-critical applications (LCAs) that are supposed to perform as well as
if they were accessing isolated resources (e.g. memory); and one or more
best-effort applications (BEAs) that benefit if provided with some resources
that are originally assigned to the former workloads [10, 15, 16, 92]. Recent
proposals to this problem [10, 14–16, 57, 92] focus only on single-socket
scenarios. In BWAP, we improve on this by enabling the allocation of the
bandwidth of the full set of NUMA nodes across two or more applications
running in disjoint worker nodes.

We consider a simpler allocation problem (than the one presented in
Section 2.3), where every application is seen as best-effort (i.e., no SLOs),
but some BEAs are high-priority and others are low-priority. Specifically,
we can consider one high-priority BEA, A, that has a low memory intensity;
and a low-priority BEA, B, that is memory-intensive. It is desirable that
B places some of its pages on the nodes where A runs (i.e., B’s non-worker
nodes), so B can benefit from the spare bandwidth of those nodes. However,
such memory consolidation strategy should not degrade A’s memory perfor-
mance. To support this scenario, the DWP tuner supports a co-scheduling
variant, where the iterative search comprises two stages, both coordinated
by an external process that monitors the stall rates of both applications.
The rationale of this 2-stage approach is that, below a given DWP of B,
the demand that A will pose on the local nodes of A will start having a
noticeable degradation of A’s performance. Hence, the search should only
consider DWP values that are above that lower bound.

The first stage determines an approximation of such bound. The moni-
toring process measures the stall rate of A, increasing the DWP of B as long
as the stall rate of A keeps decreasing. When A’s stall rate stabilizes, the
search has found a local maximum of A’s performance, which is probably a
good approximation of the lower bound on the DWP of B. At that point
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on, the second stage starts and proceeds as described in Section 4.3-2 (i.e.,
now guided by the stall rate of B).

As a final remark, we note that there are two aspects that the DWP tuner
does not currently handle automatically. First, in the co-scheduled variant,
we assume that some external tool/hint [12] has classified each workload
as memory-intensive or not. Second, the programmer is expected to call
BWAP-init when the program is about to enter its stable phase. The first
limitation can be addressed by using the number of memory accesses per
instruction (MAPI) to classify workloads as either memory-intensive or not
(like in Carrefour [12] ). As for the second limitation, one may consider
looking at the periodic variation of the MAPI metric and only trigger the
DWP tuner when such variation is below a given threshold.

4.4 Evaluation

Our evaluation answers two key questions: 1. What performance advan-
tage does BWAP bring to memory-intensive applications on NUMA systems
compared to state-of-the-art page placement policies like Carrefour [12] or
Asymsched [11], which rely on uniform interleave to place shared pages?
2. Considering each main component of BWAP separately, how effective is
it and what overheads does it introduce?

We consider several state-of-the-art page placement policies, i.e., the
Linux’s default policy (first-touch), uniform interleaving across workers (uni-
form-workers), uniform interleaving across all nodes (uniform-all), and au-
tonuma [117].

Among the different policies evaluated, uniform-workers is especially rel-
evant since it is the core strategy that state-of-the-art proposals adopt when
placing pages across memory nodes of a NUMA system. Among others, this
includes proposals like Carrefour [12], Asymsched [11], and the bandwidth-
aware policies proposed by Baek et al.[40]. Since other recent bandwidth-
aware page placement proposals do not support NUMA (e.g. [38, 39]) they
are not represented here.

Although Carrefour and Asymsched resort to uniform-workers, they
complement it with two main optimizations: namely the detection and co-
location of private pages, and the replication of read-only pages. We do not
evaluate these features since they require kernel modifications and no patch
was available for our operating system versions. Still, we note that such op-
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Table 4.1: Memory access characterization of the evaluated benchmarks, as
obtained by NumaMMA [146] tool on machine B running each benchmark on
a full worker node. The trends of each benchmark do not change significantly
for higher number of workers (results omitted for space limitations).

Benchmark BW Requirements Memory Access Pattern
Reads

(MB/s)
Writes
(MB/s)

Private
Accesses (%

Shared
Accesses (%)

Ocean_cp (OC) [34] 17576 6492 79.3% 20.7%
Ocean_ncp (ON) [34] 16053 5578 86.7% 13.3%

SP.B [1] 11962 5352 19.9% 80.1%
Streamcluster (SC) [33] 10055 70 0.2% 99.8%

FT.C [1] 5585 4715 95.0% 5.0%

timizations are orthogonal to our paper, since they can directly complement
the mechanisms proposed in BWAP.

Besides these alternatives, we evaluate complete BWAP and an incom-
plete variant, denoted BWAP-uniform, which disables the Canonical tuner.
This variant departs from uniform-all as its initial weight distribution and
only runs the DWP tuner.

For space limitations, the weighted page interleaving in BWAP is en-
forced with the portable, user-level option. By enabling the kernel-level
variant, we observed only marginal gains (at most 3%) and reach the same
main conclusions. The parameters of the DWP tuner of BWAP (Section
4.3) are set as follows: n = 20, c = 5, t = 0.2, and x = 10%. We chose these
values by optimizing the parameters for a particular setting (benchmarks
Ocean_* on machine A), then used those values for every other bench-
mark/machine/experiment.

For our evaluation, we have selected memory-intensive benchmarks from
NAS [1], PARSEC [33] and SPLASH [34] suites. We intentionally omit
benchmarks with low memory intensity, since page placement has marginal
impact on their performance. Although BWAP’s design assumes read-only
and shared-only pages, we evaluate how it performs as a best-effort approach
with workloads that do not fit those assumptions. Therefore, our selection
of benchmarks promotes diversity with regard to the ratios of read vs. write
accesses, and thread-private vs. shared accesses. The memory access char-
acteristics of each benchmark is shown in Table 4.1, which confirms that
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most benchmarks are far from the assumptions underlying BWAP’s design.
Specifically, three of the benchmarks: OC, ON and FT.C – have more than
79% of thread-private memory accesses. Benchmarks also differ in their scal-
ability, as Table 4.4 summarizes. As for the datasets, we used the largest
available datasets, i.e., the native inputs for PARSEC and SPLASH and
the CLASS B and C datasets for NAS. Each of these datasets fits in the
memory of each node. We use execution time, averaged over 5 runs, as the
performance metric.

All the benchmarks are multithreaded applications with a malleable
thread pool. For thread placement, we used the usual rule of thumb that is
adopted, for instance, by AsymSched [11]: threads are grouped together on
the subset of worker nodes with the highest aggregate inter-worker band-
width. To minimize scheduling-related overheads (e.g., core over-subscription,
simultaneous multithreading, thread migration), we pin each thread to a
distinct core. We leave the interaction of page placement and OS-guided
thread scheduling as future work. The page size used in our experiments is
the Linux default page size (4KB). Integrating BWAP with large pages in
NUMA systems [147] is left as future work.

We ran our experiments on 2 NUMA systems of different scales and
asymmetry. Machine A is a 4-socket AMD Opteron Processor 6272, with 8
memory nodes, 8 cores per node, 64GB DRAM, running Linux 4.17. Ma-
chine A is representative of a high-end NUMA system with a strongly asym-
metric interconnect topology. As it is evident in Figure 4.2a, interconnect
links exhibit ample disparities in link bandwidth, sometimes affecting even
different directions of the same link. Machine B is a 2-socket Intel Xeon
CPU E5-2660 v4. In contrast, Machine B is a smaller-scale machine with
a simpler topology. It has 4 NUMA nodes (using Cluster-on-Die mode),
7 cores per node, 32GB DRAM, running Linux 4.4. In this case, memory
bandwidth still exhibits asymmetries, however less pronounced than in ma-
chine A. While the lowest bandwidth in machine A was 5.8× lower than the
highest bandwidth (i.e., local memory bandwidth), that amplitude drops to
2.3× in machine B.

Overall performance evaluation

To compare the performance of BWAP to page placement alternatives, we
measure the performance of benchmarks when using different placement
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Figure 4.4: Speedup vs uniform workers (co-scheduling, machine A)

policies. We focus on two representative execution scenarios: co-scheduled
and stand-alone.

Co-scheduled scenario. In this scenario, two benchmarks share the same
NUMA machine (for instance, hosted by a Cloud provider), as assumed in
Section 13. We assume that one benchmark, A, is not memory-intensive and
the other, B, is. Hence, while A will place pages locally for improved latency,
B will resort to BWAP to scatter its pages across all nodes (including the
non-worker nodes where A resides) in order to optimize B’s throughput,
while not degrading A’s.

Figures 4.4, 4.5b and 4.5a compare the performance of each application
B on the co-scheduled scenario. We consider different allocations of worker
nodes to application B: 1, 2, and 4 worker node(s) in machine A; 1, and 2
worker node(s) in machine B. In all cases, A runs on the remaining nodes.
As for application A, we run Swaptions [33]. In all our co-scheduled experi-
ments, we did not observe relevant changes to the performance of Swaptions
when application B placed some of its pages on the nodes of A, so we omit
the performance results of this application in this analysis.

Stand-alone scenario. In this scenario, the NUMA machine is entirely
available for application A, which can be deployed with any number of
threads/workers. Hence, a rational user will run the application with its
optimal parallelism level (assumed to be tuned a priori). Note that, for
each application, its optimal parallelism level may differ depending on the
page placement policy. Figures 4.5c and 4.5d show how each application
performs when running with the different page placement alternatives in
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Worker nodes Corresponding weights i.e. w1,w2,.. (%) Workers
variance

Non-workers
variance

0 29.2, 17.4, 12.8, 11.4, 8.9, 5.9, 8.7, 5.7 N/A 17.111
0,1 19.3, 19.2, 14.3, 14.3, 8.3, 8.6, 7.7, 8.3 0.005 9.927

0,1,2,3 9.8, 15.9, 16.1, 16.1, 11.4, 10.9, 9.6, 10.2 9.723 0.623
All 14.7, 12.7, 12.8, 14.7, 11.6, 11.1, 10.6, 11.8 2.382 N/A

Table 4.2: Canonical weights computed by the Canonical tuner for varying
number of workers for machine A. The weights are in an ascending order
with respect to node numbers i.e. w1 represents weight for node 1, w2
represents weight for node 2 and so forth.

this scenario. The performance of the BWAP-uniform variant is discussed
in Section 4.4.

Analysis of the results. The results for both scenarios confirm that, as
expected, the best performing solutions are those that fully exploit the avail-
able memory bandwidth by placing shared pages across all nodes (uniform-
all and BWAP), rather than restricting placement within the boundaries of
the worker node set (uniform-workers and autonuma).

Unsurprisingly, first-touch is usually the worst alternative for multi-
worker scenarios by substantial margins, since it tends to centralize many
shared pages on a single node (where the initializing threads run) as stud-
ied before [12, 148, 149]. Our results show that, even in a single worker
scenario, binding the entire application’s memory locally to the only worker
node is suboptimal for memory-intensive applications. Among the solutions
that spread pages across all nodes, BWAP achieves the best performance or,
with less favourable applications, performs comparably to the best solution
(uniform-all). More precisely, BWAP is able to outperform both uniform-
workers and autonuma by up to 1.66×, and uniform-all by up to 1.50×.
As expected, the largest speedups of BWAP are observed on machine A,
which has the most asymmetric topology. This confirms our main claim
that, for some types of workloads, trivial uniform interleaving policies are
not appropriate to exploit the full bandwidth of complex NUMA systems.

One important trend is that the benefits of BWAP over the uniform
interleaving alternatives drop when more workers are involved. This is ev-
ident in the co-scheduled scenarios (as the number of workers increases).
Further, in the stand-alone scenario, this explains why BWAP only achieves
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relevant gains for those applications whose optimal parallelism level is lower
than the total number of nodes. This trend can be explained by two fac-
tors. First, as applications use an increasingly larger worker node set, the
worker vs. non-worker dichotomy fades away. Thus, the gains from tuning
DWP decrease. A second, less intuitive factor, is that, as one enlarges the
worker node set, the inter-worker canonical weight distributions (as devised
by our Canonical tuner) tend to uniformity. This trend is clear in Tables
4.2 and 4.3. The main insight behind this is that, although the interconnect
topology is asymmetric from the perspective of each node (regarding the in-
dividual connections to the other nodes), the set of outgoing and incoming
connections of all nodes share similar profiles: for instance, in machine A,
every node is connected to 1 close node (i.e. very high bandwidth), 2 very
far nodes (i.e. very low bandwidth), etc. In a configuration with few worker
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Worker nodes Corresponding weights i.e. w1,w2,...(%) Workers
variance

Non-workers
variance

0 33.9,24.6,21.2,20.3 N/A 0.001
0,1 29.6,28.6,22.0,19.8 0 0
All 25.0,25.0,25.0,25.0 0 N/A

Table 4.3: Canonical weights computed by the Canonical tuner for varying
number of workers for machine B. The weights are in an ascending order
with respect to node numbers i.e. w1 represents weight for node 1, w2
represents weight for node 2 and so forth.

nodes, it may happen that a pair of very far nodes is included in the worker
set, but not all pairs, which will introduce asymmetry and induce diverse
weights. In contrast, as the worker node set grows, then eventually all very
far node pairs become part of that set, thereby resulting in a increasingly
uniform weight distributions.

Let us now focus on the subset of benchmarks with non-negligible thread-
private memory bandwidth demand, namely OC, ON and FT.C. For such
benchmarks, consider the set of thread-private pages that belong to the
threads running in a given worker node. In theory, the optimal placement of
such pages should consider that worker node only (and regard every other
node as non-worker). However, both components of BWAP are, by design,
based on the simplifying assumption that every page is accessed from every
worker node. This approximation allows BWAP to decide the placement of
every page similarly, independently of each page’s actual worker node set
(i.e., the full worker node set in the case of shared pages; a specific worker
node in the case of thread-private pages).

Despite this approximation, BWAP is still able to obtain important per-
formance gains with those benchmarks whose ratios of thread-private ac-
cesses are at odds with the above assumption (OC, ON and FT.C). The
performance benefits obtained with these benchmarks follow the same trend
as discussed above: the performance advantage of BWAP over the remain-
ing alternatives is especially evident when the set of worker nodes is smaller;
it decays as we enlarge the worker set, becoming comparable to the best-
performing alternative when worker nodes span across all nodes in the ma-
chine.

A more careful analysis allows us to shed some light on these results. We
start by observing that the memory demand that these benchmarks place
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on thread-private pages is sufficiently high to saturate the local memory
bandwidth. We support this observation by the fact that, when we place
thread-private pages exclusively locally to the thread that accesses each page
(with the first-touch policy), their performance degrades relatively to the op-
posite extreme of uniform-all. Therefore, the thread-private access demand
of these benchmarks calls for page placement strategies that interleave pages
across multiple nodes to maximize the available thread-private bandwidth.

Based on this observation, we note that, among the evaluated strategies
that resort to page interleaving to meet the above requirement, BWAP’s
best-effort approach is the most effective one in scenarios where the number
of worker nodes is small – either one or two in our experiments. Specifi-
cally, when there is only a single worker node, BWAP is trivially accurate
for thread-private pages. However, when there are two worker nodes, then
BWAP will wrongly decide to place some thread-private pages in the nearest
node instead of the local node (unlike to an optimal placement that takes
thread-private pages into account). Still, our results suggest that the im-
pact of such an inherent inaccuracy is modest. This can be explained by
the fact that the bandwidth ratio between the local node and the nearest
remote node is much lower (1.7× in machine A, 1.8× in machine B) than the
bandwidth ratio between the local node and the farthest nodes (5.1× in ma-
chine A, 2.3× in machine B). Consequently, despite its inaccurate modelling
of thread-private accesses, BWAP still outperforms alternative approaches
whose placement decisions lead to even larger inaccuracies: those that rely
on uniform interleaving do not take bandwidth heterogeneity into account
at all (thus it places high number of pages in the farthest nodes); while
those that simply place thread-private pages locally fail to exploit the ad-
ditional bandwidth of the non-worker nodes. Overall, these results suggest
that BWAP’s approximated approach is accurate enough to be advantageous
with a wide set of memory-intensive applications.

Detailed analysis of BWAP’s components

We study the gains and overheads of BWAP components.

Canonical tuner. Looking at Figures 4.4 and 4.5, we can compare the
performance of the full BWAP with BWAP-uniform. The difference be-
tween these alternatives denote the effective contribution of Canonical tuner.
Our results show that, for most cases where BWAP outperforms uniform-
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workers and uniform-all, the larger speedup slice is due to the Canonical
tuner (which is evident by observing how the results of BWAP-uniform and
BWAP differ). Concretely, enabling the Canonical tuner attains speedups of
up to 1.32× relatively to the uniform variant of BWAP. Further, the highest
relative gains happen in machine A, which can be explained by its highest
asymmetry. In contrast, the simpler and less asymmetric topology of ma-
chine B makes BWAP essentially perform similarly to BWAP-uniform. This
highlights that, in machines with pronounced bandwidth asymmetries, sim-
ple approaches based on uniform interleaving or 2-level weighted interleaving
(like BWAP-uniform) are substantially suboptimal; however, in more sym-
metrical machines, simpler solutions may be an acceptable choice.

DWP tuner. Continuing the previous analysis, we can compare uniform-
all with BWAP-uniform to infer the actual benefits that the DWP tuner
contributes (i.e., departing from uniform-all rather than from the canonical
distribution). Figures 4.4 and 4.5 show that, while BWAP-uniform out-
performs uniform-all in many scenarios, that is not always the case. This
can be explained by taking into account two considerations. First, for some
scenarios, the optimal DWP is 0. In this case, BWAP-uniform produces
the same interleaving as uniform-all, but with the overhead of the online
iterative search. Table 4.4 details the optimal DWP for each application in
each co-scheduled scenario. This table yields a high correlation between the
null DWP cases and the cases where BWAP-uniform does not outperform
uniform-all. On the positive side, Table 4.4 also shows many cases where
adapting DWP allowed BWAP-uniform to choose intermediate values that
clearly outperform uniform-all. This results in performance gains of up to
1.49× relatively to uniform-all (which are further increased if we consider
the combination of both BWAP components).

Overhead and accuracy of DWP tuner. Finally, we study the accu-
racy and overheads of the DWP tuner. To evaluate both aspects, we have
manually deployed each application (at a given machine and scenario) with
different static values of DWP and measure the corresponding execution
times and average stall rates. This allows us to understand, what the opti-
mal DWP is, what is the corresponding (maximum) performance, and the
stall rate curve effectively guides us towards finding the optimal DWP. By
comparing with the value that our DWP tuner chooses and the resulting
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Machine A Machine B
Application 1 Worker 2 Workers 4 Workers 1 Worker 2 Workers

SC 48.00% 0% 23.80% 100% 100%
OC 14.10% 0% 0% 0% 0%
ON 14.10% 16% 0% 0% 0%

SP.B 0% 0% 0% 15.20% 22.20%
FT.C 0% 16.30% 0% 30.30% 0%

Table 4.4: Ideal number of worker nodes and DWP values computed via
BWAP iterative search (Co-scheduled scenario).

execution time, we can assess how close to optimal our search gets and at
which overhead.

Our complete experiments with the entire selection of applications con-
firmed that stall rate is effectively correlated to execution time and its vari-
ation with DWP is essentially convex. Furthermore, the DWP tuner was
able to successfully find the optimal DWP by a maximum error margin of 1
iterative step for all cases we evaluated. Figure 4.6 illustrates this with the
Streamcluster application on machine A.

Regarding execution overhead, in the experiments discussed in Section
4.4, we measured a maximum overhead of 4% over all the applications.
We found that the overhead of DWP tuner can be increased by two main
factors: i) higher optimal values of DWP, since the search starts at the
opposite extreme and each iteration costs time and page migrations; and ii)
lower execution times, which do not allow to amortize the cost of the search
and benefit from resulting optimized page placement.

User-level vs. Kernel-level placement mechanisms. As Section 4.3
discusses, user-level alternative has the advantage of requiring no changes to
the kernel, yet at the cost of a less accurate interleaving. However, our results
with our selection of applications suggest that this theoretical difference in
accuracy of each page placement alternative does not have a relevant impact
on the overall performance. More precisely, overall, kernel-level placement is
able to outperform user-level placement by up to 3%. Figure 4.7 illustrates
this with the Streamcluster application.
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4.5 Related Work

When deploying an application on a NUMA system, a number of complex
questions arise, from how many threads, to where to place threads and
pages. As NUMA systems increase their prominence, these problems receive
increasing attention from the research community. Optimizing thread and
memory placement on NUMA systems has been extensively studied [11, 12,
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112, 113, 116, 119, 150–158].
Linux provides extensions[117, 121] to improve data access locality in

NUMA systems. However, these extensions do not account for the intercon-
nect asymmetry and do not improve bandwidth for communicating threads.
For instance, autonuma[117] implements locality-driven optimization by mi-
grating threads closer to the memory they access, and/or by migrating data
to the memory closer to the threads. Linux also provides an option to uni-
formly interleave part of address space across memory nodes. BWAP com-
plements these strategies by providing a novel bandwidth-aware alternative
to the uniform interleaving.

Considering proposals for page placement, we distinguish proposals aim-
ing at minimizing memory latency (e.g., [113, 117]) and proposals aiming
at optimizing memory bandwidth (e.g., [11, 12]). Depending on the ap-
plication, the main bottleneck can be latency or bandwidth, or somewhere
between those extremes. In contrast to the proposals that focus on either
of extremes, BWAP takes this spectrum into account with its DWP tuner.

Apart from page placement, other approaches have been proposed to
improve memory performance in NUMA systems. Carrefour [12] replicates
read-only pages accessed from multiple nodes. It also detects private pages
and places them close to the corresponding thread. Shoal [148] and Smart
Arrays [149] introduce programming abstractions that enable a runtime layer
to choose the most appropriate page placement, data layout or replication,
while taking into account the underlying memory topology and the run-
time behaviour of the application. Shoal and Smart Arrays adopt uniform
interleaving as one of their NUMA-aware page placements. BWAP is less
intrusive, since the application only needs to be linked with and activate
DWP tuner. Still, the design principles behind BWAP’s placement policy
can also be applied to improve these systems.

Recently, some authors have studied the problem of bandwidth-aware
page placement for different heterogeneous memory systems [38–40, 159,
160]. All these works consider a tiered memory architecture consisting
of two or more types of memory nodes with heterogeneous performance
characteristics (bandwidth, latency, etc). Moreover, all works share the
fundamental insight that, performance of bandwidth-intensive applications
improves if memory accesses are distributed across all memories, propor-
tionally to the bandwidth of each memory. NUMA systems, as addressed
by BWAP, are also characterized by heterogeneous bandwidths, even when
every NUMA node relies on the same memory technology (e.g., DRAM).
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Hence, BWAP shares the same bandwidth-aware placement principle with
the previous works. However, the problem of bandwidth-aware page place-
ment in NUMA systems has crucial differences (as Section 4.1 highlights),
with new challenges that render the above-mentioned proposals either inap-
propriate or strongly suboptimal for NUMA systems. The aforementioned
proposals for bandwidth-aware page placement either do not support NUMA
systems [38] or use the uniform-workers policy to distribute pages across
(hybrid memory) NUMA nodes. Hence, BWAP can complement or extend
these techniques to support NUMA systems whose nodes comprise hetero-
geneous hybrid memory hierarchies.

This work is also related to workload consolidation techniques for cloud
computing systems and data centres. Recent works have focused on opti-
mizing memory throughput in these scenarios by employing last-level cache
and memory bandwidth partitioning [14–16, 57] across co-scheduled appli-
cations. While these works focus on single-node systems where two or more
applications share the same CPU, as discussed in Section 2.3, BWAP tar-
gets multi-node NUMA systems where each node is exclusively allocated to
one application at most. Works such as [31, 32] propose effective tools to
characterize (either through an analytical model or through an empirical
procedure) the NUMA topology. These can be integrated into BWAP to
allow BWAP to devise a more accurate canonical distribution.

4.6 Summary

Although new thread placement approaches for asymmetric NUMA systems
have recently emerged, today’s usual techniques for page placement still rely
on the obsolete assumption of a symmetric architecture.

This chapter presented BWAP, a novel approach for asymmetric bandwidth-
aware placement of pages in NUMA systems. Our evaluation shows that
BWAP improves the gains of state-of-the-art policies by up to 66%, on com-
modity NUMA machines. The gains of BWAP are especially evident in
co-scheduled scenarios and when the application does not scale up to the
available hardware parallelism.

As a concluding remark, while far from trivial, the design of BWAP is
inherently best-effort, since it relies on important simplifying assumptions
about the workloads and the underlying system. Therefore, our contri-
butions can be seen as the first step that opens avenues for follow-up re-
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search on bandwidth-aware page placement for NUMA systems. BWAP also
shows promising benefits in workload consolidation scenarios where two or
more applications run in disjoint sockets. However, it does not support dy-
namic scenarios, where the overall system behaviour may change over time.
BWAP also lacks support for QoS. In the next chapter, we present BALM,
a QoS-aware memory bandwidth allocation technique for multi-socket cloud
servers, to address these shortcomings.





Chapter 5

BALM: QoS-Aware Memory
Bandwidth Partitioning for
Multi-Socket Cloud Nodes

In the previous chapter, we presented BWAP, which enables bandwidth
allocation of the full set of sockets across two or more applications running
in disjoint sockets. However, BWAP does not support dynamic scenarios,
where the overall system behavior may change over time. Most importantly,
BWAP lacks support for QoS.

In this chapter, we present BALM, to address these shortcomings. BALM
is a QoS-aware memory bandwidth allocation technique for multi-socket ar-
chitectures. The key insight of BALM is to combine commodity bandwidth
allocation mechanisms originally designed for single-socket with a novel
adaptive cross-socket page migration scheme. Our experimental evaluation
with real applications on different dual-socket machines shows that BALM
can overcome the efficiency limitations of state-of-the-art. BALM can en-
sure marginal SLO violation windows while delivering substantial through-
put gains to bandwidth-intensive best-effort applications when compared
to state-of-the-art alternatives. Some passages in this chapter have been
quoted verbatim from [161].
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Figure 5.1: QoS-aware bandwidth allocation in a dual-socket across multiple
BEAs and LCAs.

5.1 Problem statement

Recent papers [10, 15, 16, 92] formulate the problem of QoS-aware resource
allocation problem as follows. In a given server, multiple LCAs and BEAs
run together. The LCAs are governed by an SLO. The SLO should be
guaranteed most of the time (e.g., 99% of time). In contrast, BEAs have no
SLO. These applications run in background, utilizing any spare resources
(left by the LCAs) according to some best-effort policy to maximize the
BEA’s throughput.

This work aims at reaching beyond the state-of-the-art by generaliz-
ing QoS-aware resource allocation to workload consolidation in multi-socket
servers, with a specific emphasis on cross-socket memory bandwidth alloca-
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tion. Hence, we need to complement the previous problem definition with
additional restrictions to embrace the additional complexity of multi-socket
workload consolidation scenarios such as the one that Figure 5.1 illustrates.

In a multi-socket system, each socket comprises multiple multi-core CPUs
and memory nodes. For presentation simplicity, and without loss of gener-
ality, let us assume that each socket only holds a single CPU and a single
memory node. The threads running at a given CPU can both access the lo-
cal memory node, as well as the remote memory nodes. Hence, the different
memory nodes form a non-uniform memory access (NUMA) architecture.

We assume that some application placement system (e.g., [11, 116]),
selects which applications run on a given host/socket. We also assume the
common setting where the threads of any given application all run on the
same socket of the host.

Among the shared resources in a multi-socket system, we restrict our
focus to the allocation of memory bandwidth. Therefore, we assume that
the applications may only interfere through memory bandwidth contention,
while contention on other kinds of resources is negligible or has been taken
care of by some other means.

We assume the pages of an LCA are exclusively mapped to the local
memory node. In contrast, BEAs are allowed to place their pages across
multiple memory nodes, to benefit from the spare memory bandwidth. For
an important class of BEAs, memory bandwidth, rather than access latency,
is the main bottleneck. It is well studied that, for such bandwidth-intensive
applications, interleaving its pages across the available nodes (both local
and remote) can maximize throughput since it provides its threads with a
higher aggregate bandwidth [11], ideally with larger fractions of pages in the
memory nodes that offer higher bandwidth [140].

We further assume that the LCAs running on a given socket do not sat-
urate the bandwidth of the corresponding local memory node by themselves
(i.e., if we exclude the memory usage by BEAs). Consequently, any SLO
violation on a given socket can always be fixed by reducing, to some extent,
the memory demand placed by the BEAs on that socket’s local memory.
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Figure 5.2: Impact of co-locating Memcached (LCA) with Ocean_cp (BEA)
on a dual-socket machine (each on a different socket). Left: tail latency of
Memcached for different loads; horizontal red line shows the target SLO.
Right: Performance of Ocean_cp with different allocation approaches, where
Memcached operates at 80% of its max load.

5.2 Performance of MBA and page migration in
multi-socket architecture

We start by introducing a simple example that will guide our presentation in
the following sections. Let us consider a dual-socket machine, in which we co-
locate one LCA, Memcached [35], in socket 0; and one BEA, Ocean_cp [34],
in socket 1 (Section 5.5 provides details on the machine and workloads). As
expected, the LCA places all its pages locally. In this example, we assume its
SLO is that the tail latency (99th percentile), as perceived from the client-
side, must be at most 1ms. In contrast, the BEA is bandwidth-intensive
and, to attain an optimized throughput, benefits from interleaving its pages
across both memory nodes (as already studied in Chapter 4).

Initially, the LCA is running under negligible load and, consequently,
meeting its SLO. Therefore, the BEA can safely place a portion of its pages
on the remote memory node (where the LCA resides), thus taking advan-
tage of the extra bandwidth. In our example, the BEA initially employs a
weighted interleaving approach [140] with 60% of its pages mapped locally,
and the remaining ones mapped remotely, which we found to maximize the
BEA’s throughput (see Section 5.5). Figure 5.1 illustrates these initial page
mappings.
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Later on, the LCA load increases, as more clients connect to it and
thus raise the number of requests per second (RPS). When that occurs,
the LCA accordingly increases its (local) memory access demand, requiring
a higher memory bandwidth to continue satisfying its SLO. However, the
bandwidth demand that the BEA is initially placing on the same memory
node (due to its remote pages) interferes with the new bandwidth demand
of the LCA. Hence, beyond a given load, the LCA no longer meets its SLO.
Figure 5.2 shows the sensitivity of the LCA to memory bandwidth allocation
under different loads (RPS) and interference. When the LCA operates at
low to medium load (e.g., 20%, 40% and 60% of its maximum load), no
SLO violations are observed. However, at higher loads (i.e., when more
clients connect to it and thus boost the number of requests per second), the
bandwidth of socket 0’s memory node saturates and SLO violations become
evident and even dominant. The peaks in Figure 5.2 are as a result of
co-located BEA having multiple phases with distinct memory intensities.

Hereafter, when an LCA does not meet its SLO, we say that the system
is in an invalid configuration. Otherwise, the system is said to be in a
valid configuration. Whenever the system enters an invalid configuration,
we can employ some bandwidth allocation mechanism to transition to a
valid configuration again (i.e., fix the SLO violation(s)). As formulated
in the previous section, that transition should ideally: i) move to a valid
configuration as soon as possible; and ii) reach a configuration that, among
the available valid configurations, maximizes the throughput of the BEA.

Next, we provide background on existing mechanisms for memory band-
width allocation. As we show next, all such mechanisms exhibit important
shortcomings when employed to implement QoS-aware memory bandwidth
allocation in multi-socket architectures.

MBA and other single-socket mechanisms

Recall from Section 2.3 that thread packing [107] and clock modulation
[108] are software mechanisms that have been widely-used for partitioning
memory bandwidth in single-socket systems. More recently, Intel released
MBA as part of the RDT bundle that ships with Intel Xeon Scalable server
processors. MBA supports architecture-level memory bandwidth allocation.
MBA provides per-core control over memory bandwidth by injecting a delay
value to each outgoing request from level two (L2) cache to the LLC, as
depicted in Figure 5.1. The MBA setting of each core can be dynamically
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adjusted (e.g., the MBA level can be changed from 100% (i.e., no throttling)
to 10% in steps of 10%). The rest of the discussion is focused on MBA, since
it is one of the main state-of-the-art mechanisms for memory bandwidth
allocation [13]. Still, the main conclusions that we draw next are general to
any single-socket-based mechanism.

Although MBA is originally designed to allocate memory bandwidth
across applications running on a single socket, nothing prevents it from
being used in a multi-socket setting.

In fact, to fix the SLO violation in our example, we might employ MBA
to throttle down the memory demand of the BEA, as Figure 5.1 illustrates.
For instance, one simple approach is to set the MBA level of the BEA on
socket 1 to its lowest value (MBA = 10). This approach can fix the SLO
violations almost instantaneously, in less than 600 ms. However, this method
comes with a relevant cost on the performance of the BEA, since MBA is
not only slowing down both its remote accesses (as needed to cure the SLO
violation), but also its local memory accesses (by the same MBA delay).

To better quantify this performance penalty, Figure 5.2 (right) shows the
performance of the Ocean_cp (BEA). It compares the performance of the
BEA when set with the lowest value of MBA (set due to an SLO violation)
against two extreme approaches: an unshared alternative, where the BEA
exclusively maps its pages locally, hence memory bandwidth is not shared;
and an unmanaged alternative, where no partitioning mechanisms are used.
(The pgm (page migration) bar is discussed in the next subsection.) As ex-
pected, unmanaged achieves significantly higher throughput than MBA but
fails to safeguard the SLO. On the other hand, unshared safeguards the per-
formance of the LCA, but it uses each socket’s resources sub-optimally. For
example, when the LCA operates at a low load, the BEA can substantially
benefit by placing some of its pages on the remote memory node without
violating the SLO. This benefit comes at a cost when the LCA operates at
a high load (where SLO violations are evident).

Hence, partitioning memory bandwidth is far from trivial in multi-socket
scenarios and state-of-the-art solutions that we are aware of (such as MBA)
are clearly sub-optimal when used outside the usual single-socket case. There-
fore, to make QoS-aware workload consolidation practical in a multi-socket
system, an alternative approach is needed to increase the system’s utiliza-
tion to reach close to unmanaged and, at the same time, safeguard LCA’s
QoS with minimal vulnerability windows, as achieved with MBA.
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Page migration

In theory, when an SLO violation is detected, migrating pages of the noisy
neighbour BEA(s) away from the memory node where the victim LCA runs
can be an alternative to MBA (or other single-socket mechanisms). Intu-
itively, if a subset of some BEA’s pages is migrated away from the saturated
memory node (towards other memory nodes currently with more spare band-
width), then a fraction of memory accesses by the BEA (those that target
locations in the migrated pages) will no longer translate to memory demand
on the former node. Therefore, the SLO violation can be fixed by migrat-
ing a selection of pages that contains a large-enough fraction of the BEA’s
near-future accesses.

We borrow this observation from previous works on page placement for
multi-socket systems [11, 12, 140]. A recent proposal, BWAP [140], has
shown a weighted interleaving approach, where each memory node holds a
specific fraction of the application’s pages, is typically better than an uni-
form interleaving – provided the weights are adequately tuned, considering
different factors related to the computer architecture and the memory ac-
cess behavior of the workload [140]. As detailed in Chapter 4, BWAP’s
approach departs from an initial weight configuration and, through an on-
line hill-climbing process, either proportionally expands (i.e., increases the
weights of the remote nodes) or contracts (i.e., increases the weights of the
local nodes) the weight distribution until it finds an optimum. The hill-
climbing is guided by observing how backend-bound stall cycles (obtained
by hardware performance counters) evolve after each expansion/contraction.

Although BWAP is not originally designed to solve the QoS-aware band-
width allocation problem in multi-socket systems, it can be converted into a
memory bandwidth allocation mechanism, as Figure 5.1 illustrates. When a
BEA is suspected to be causing an SLO violation in another LCA, one only
needs to run the above online migration process in the direction (expansion
or contraction) that decreases the weight on the local memory node of the
LCA.

In contrast to MBA (and other single-socket mechanisms), page migra-
tion is able to adjust memory access demand on a per-memory node gran-
ularity. Hence, upon an SLO violation, in theory there is a weighted page
interleaving of the BEA that reduces the access demand on the saturated
memory node, as needed to fix the SLO violation, but does not (unneces-
sarily) reduce the demand on the remaining (unsaturated) memory nodes.
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This allows this mechanism to fix SLO violations while providing consider-
able throughput gains to the BEAs. This is evident when, in Figure 5.2, we
compare the throughput that page migration can attain when compared to
MBA.

However, on the downside, page migration has substantial costs. Not
only it requires intensive data movement across different memory nodes,
but it also has well known expensive management overheads – most notably,
kernel memory management and synchronization [162]. The worst-case sce-
narios arise when the BEAs have large data sets and/or the amplitude of
the SLO violation is high. Hence a large number of pages will need to be
migrated. Consequently, fixing the SLO violation in our particular example
via page migration takes more than 2 seconds (needed to move around 7
GBytes of pages to fix the SLO in this particular example).

Therefore, page migration’s latency is higher than that of MBA by many
orders of magnitude. Such latency implies prohibitively long SLO violation
windows, which is at odds with the requirement that SLO violations should
last only for negligible periods. For this reason, page migration is unsuitable
to QoS-aware memory bandwidth allocation, if used as a stand-alone mech-
anism. Not surprisingly, we are not aware of any proposed solution that
relies on page migration to solve QoS-aware memory bandwidth allocation.

5.3 BALM
This section presents BALM, a novel approach to QoS-aware memory band-
width allocation in multi-socket hosts. BALM combines MBA and page
migration in an unprecedented way that eliminates each mechanism’s short-
comings while delivering the best of both worlds. While the general approach
of BALM is easily generalized to multi-socket systems of large sizes, this pa-
per focuses on dual-socket systems only. We leave the evaluation of BALM
in larger systems to future work. Section 5.3 first provides an overview of
its novel features. Section 44 then describes the main algorithm that puts
all such features together.

Overview

The key insight behind BALM is that, by using MBA and page migration
together as a 2-dimensional allocation mechanism, we unveil new opportuni-
ties to eliminate SLO violations. To illustrate this claim, Figure 5.3 depicts



5.3. BALM 113

Figure 5.3: Performance of Ocean_cp colocated with Memcached operat-
ing at max load on a dual-socket machine. Each cell shows the speedup
of Ocean_cp over the unshared approach for different configurations. The
arrows denote the transitions of different mechanisms when fixing SLO vio-
lations: MBA (green), page migration (white), BALM (blue).

the example from Section 5.2 in a 2-dimensional perspective. Each dimen-
sion represents the single parameter that tunes each allocation mechanism:
with page migration, the ratio between the local and remote interleaving
weights (yy axis)1; with MBA, the MBA level assigned to the BEA (xx
axis). The heat map values at each cell in the matrix denote the BEA’s
speedup over the unshared approach (i.e., the configuration in the top-left
extreme).

Recalling the example, the BEA and LCA are deployed at opposite sock-
ets. Initially, the LCA is running under a negligible load. Thus, BALM
accordingly chooses the configuration that maximizes BEA’s throughput– it
places pages in a local-to-remote ratio of 0.6:0.4, with no MBA throttling.
Later on, the LCA enters a high load phase. Consequently, some configura-
tions become invalid. These are marked with ’X’ in Figure 5.3. Since the

1The local-to-remote ratio is the portion of local pages to the portion of remote pages.
The figure shows only the portion of local pages.
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initial configuration is one of such invalid configurations, an SLO violation
occurs. Ideally, it should be fixed by quickly transitioning the BEA from
the initial invalid configuration to some configuration that, among the valid
alternatives, maximizes the BEA’s throughput.

The matrix in Figure 5.3 sheds light on the virtues and limitations of
MBA and page migration when used alone to handle SLO violations. Using
MBA alone restricts the space of available valid configurations to those lo-
cated on the same row as the initial configuration; hence, it is fast but will
not reach the optimal valid configuration in this example. In turn, using
page migration alone can only exploit the configurations in the first column;
thus, it can reach the optimal valid configuration, albeit by slow steps.

In contrast, BALM exploits both mechanisms to fix the SLO violation.
This unveils the entire 2-dimensional space. BALM takes advantage of such
an opportunity by exploring new configuration paths that are not available
when either MBA or page migration is used alone. These new paths enable
BALM to combine the virtues of each own mechanism. To illustrate this,
Figure 5.3 depicts the path that BALM will follow to solve the SLO viola-
tion in our example. It is easy to see that this path heals the SLO violation
as quickly as using MBA alone, while eventually reaching the valid configu-
ration that maximizes the BEA’s throughput (as page migration does).

In a nutshell, BALM finds this path in two steps. Upon detecting an
SLO violation, BALM first sets MBA to its most restrictive level, to try to
fix the violation as fast as possible. Next, BALM incrementally migrates
pages to make the BEA (slowly) converge to the best local-to-remote ratio.
Since, as each page migration step completes, the bandwidth demand on
the saturated memory node is also alleviated, BALM gradually releases the
MBA throttling when it observes that doing that still leaves the system in
a valid configuration. Therefore, we expect BALM to (i) be as quick as
MBA in fixing SLO violations, while (ii) converging to the same optimal
valid configuration that the page migration will reach.

The example described so far is over-simplified, thus omitting several
challenges that arise in real settings. We next describe the advanced features
of BALM that address each challenge.

Uncertain and dynamic workloads. The 2-dimensional grid informa-
tion in Figure 5.3 is not known a priori (neither the speedup values nor the
valid configurations). Additionally, these values change dynamically as each
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application’s workload switches to different phases with different memory
access characteristics. Hence, to find an appropriate valid configuration,
BALM resorts to an online hill-climbing search, which gradually finds its
way to the optimal valid configuration depicted in Figure 5.3. To accomplish
this, BALM relies on a monitoring component, which continuously samples
each LCA’s SLO metrics and provides frequent system-wide diagnostics of
the QoS health of the LCAs; namely, whether any SLO violations are al-
ready happening or prone to happen, and at which sockets they occur. Such
diagnostics feed into the BALM controller, which uses such information to
decide when to trigger a new reconfiguration cycle and infer the outcome of
each adaptation action (enforced on a BEA).

Multiple LC applications. While the previous example considered only
one LCA and one BEA, BALM needs to support QoS-aware memory band-
width allocation in general scenarios where multiple LCAs and BEAs may
be co-located at each socket of the machine. Since the system may have
multiple LCAs, a bandwidth-intensive BEA may now incur SLO violations
on more than one LCA. Therefore, BALM needs to collectively monitor
the SLO of the ensemble of LCAs at its detection and adaptation stages.
Therefore, the notion of valid configuration needs to be extended to a con-
figuration in which every LCA in the system has its SLO met; otherwise, a
configuration is invalid if at least one LCA’s SLO is violated. Let us revisit
the previous example and now assume that, instead of a single LCA, there
are multiple LCAs on that same socket. It is easy to show that this redefini-
tion of valid/invalid configuration automatically enables BALM’s approach
to correctly handle more general scenarios where multiple LCAs share the
same socket, as long as it is the opposite socket as the BEA’s.

Handling of cross-socket and intra-socket interference. In a gen-
eral scenario, multiple LCAs may also be running on the same socket as
the BEA. Hence, if the BEA places a high demand on the local memory,
it can now (also) interfere local LCAs. In other words, besides SLO viola-
tions due to cross-socket interference (as depicted in the previous example),
intra-socket interference may also trigger (local) SLO violations. BALM
deals with both situations by choosing the right page migration direction
when healing. Cross-socket interference is alleviated by remote-to-local mi-
gration (i.e., stepping up in Figure 5.3), whereas intra-socket interference
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triggers local-to-remote migration (i.e., stepping down). Furthermore, since
the LCAs may be running at different sockets, using page migration to al-
leviate local (resp., remote) memory pressure and fix an intra-socket (resp.,
cross-socket) SLO violation can have the collateral effect of introducing new
cross-socket (resp., intra-socket) SLO violations.

To prevent this pathological side effect, BALM needs to ensure that
such adaptation path does not enter invalid configurations (which would
incur new SLO violations). BALM ensures this by collectively monitoring
the SLO of every LCA after each page migration step is taken, and by rolling
back to the previous (valid) configuration once a new SLO violation is found.
A consequence of this measure is that, in complex scenarios such as the one
illustrated above, an optimal valid configuration that totally disables MBA
throttling of the BEA (i.e., MBA 100) may no longer exist.

Handling of multiple noisy neighbours. Finally, one needs to con-
sider that more than one BEA may now simultaneously enter a bandwidth-
intensive phase. Therefore, when BALM detects an SLO violation, it can
aggregate the result of multiple BEAs accessing the same memory node.
Hence, to fix the violation, BALM may need to adapt (via MBA and page
migration) more than one BEAs. Therefore, the 2-dimensional problem de-
scribed so far has its dimensionality multiplied by the number of BEAs.
BALM tames this complexity by considering one BEA at a time, starting
by those that, in the near past, have consumed the most memory band-
width of the memory node where SLO violations have been detected. Intu-
itively, by following this heuristic, BALM tries to fix the SLO violation(s)
as soon as possible by first adapting those BEAs that are most likely the
root of the problem. To acquire memory bandwidth usage on a per-socket
and per-application basis, BALM employs the Memory Bandwidth Mon-
itoring (MBM) feature of the Intel RDT technology. For each BEA, the
2-dimensional online search described above is carried out. When the search
completes, BALM has reached either a valid or an invalid configuration. In
the former case, the SLO violations have been healed, and no more BEAs
need to be adapted. In the latter case, the memory bandwidth diet imposed
on the current BEA was not enough to fix the SLO violations, thus BALM
moves to the next BEA in the queue.
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Algorithm 4: BALM’s main control loop
1 begin
2 retries = 0;
3 while true do
4 {color, SLOlocation} = evaluateSLO(LCA);
5 if color ∈ {yellow, red} then

/* SLO violation(s) happening/prone to occur, so we need to adapt
BEAs (strongest contributors first) */

6 orderedBEAs = orderByMemUsage(SLOlocation);
/* 1. Try to fix violation(s) ASAP with aggressive MBA */

7 for each BEA in orderedBEAs do
8 color = setMBA(BEA, minMBA);
9 if color ∈ {grey, green} then

10 break;
11 end
12 for each BEA in orderedBEAs do
13 if |SLOlocation| == 1 then
14 if SLOlocation = BEA.socket then dir=outbound;
15 else dir=inbound;
16 else
17 dir = none;
18 end

/* Slowly, adapt the BEAs to find a better valid
configuration */

19 while (BEA.MBA< 100) do
20 if ∈ {grey, green} then

/* 2a. There is room to alleviate MBA */
21 color = incMBA(BEA);
22 end
23 if color ∈ {yellow, red} then

/* 2b. Try to fix violation by migrating enough
pages away from victim */

24 color = migratePagesUntilGrey(BEA, dir);
25 if color ∈ {yellow, red} then
26 break;
27 end
28 end
29 end
30 end

/* Could not fix the SLO after adapting every BEA */
31 if color == red then
32 if retries>MAXRETRIES then throw

CannotFixSLOViolationException ;
33 else retries++;
34 end
35 else retries=0;
36 end
37 else if color == green then
38 retries = 0;
39 if BEAs = BELoadChanged() then
40 optimizeConfig(BEAs);
41 end
42 end
43 end
44 end
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Algorithm

The architecture of BALM comprises a memory bandwidth allocation com-
ponent and a monitoring component. The former component controls the
MBA and page migration mechanisms to adjust how each BEA uses the
available memory bandwidth of the multi-socket host. The latter continu-
ously collects LCA’s SLO metrics (e.g., tail latency) to detect violations and
throughput of the BEAs. Regarding SLO violations, the outcome can be:
red, which means that at least one LCA is in an invalid configuration, i.e.,
at least one SLO violation is occurring; yellow, which means that, although
the system is in a valid configuration, at least one SLO violation is likely to
occur soon, since at least one LCA’s SLO metric is less than thryellow below
the SLO target; green, when the system is in a resourcefully valid state, since
every LCA meets its SLO target by a large enough margin (as defined by
thrgreen); and grey otherwise (between yellow and green). Upon yellow or
red states, the monitoring component also indicates in which sockets reside
the LCAs that are prone to or experiencing SLO violations (resp.).

At the heart of BALM lies the controller, which dynamically adjusts
memory bandwidth allocations between consolidated applications using fine-
grained monitoring and memory bandwidth partitioning, to satisfy LCA’s
QoS and maximize BEA’s performance. For presentation brevity, in this
section, we refer to the controller as simply BALM. BALM reacts to input
fed by the monitoring component by triggering actions in the memory band-
width allocation component. Algorithm 4 summarizes the decision making
flow of BALM. Periodically, it reads the latest system-wide SLO evaluation
provided by the monitoring component. Two very distinct actions may arise
depending on such evaluation.

Healing SLO violations. BALM’s most critical action occurs when it
learns that an SLO violation is happening (red) or prone to occur (yellow).
In this case, the BEAs are first ordered according to the memory bandwidth
that they have recently consumed from the problematic memory node(s), in
decreasing order (line 6).

BALM handles yellow or red situations in two main phases. The first
phase aims at quickly preventing or fixing (resp.) the SLO violation(s) by
aggressively enabling MBA at its most restrictive level (MBA 10) to each
BEA in the ordered list until the system moves to a green state (lines 7-10).
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The second phase then takes place, which attempts to maximize the
throughput of the BEAs affected by the first phase, one by one in the same
order, by adapting the memory bandwidth allocated to them. For each
such application, the second phase executes a 2-dimensional hill-climbing,
combining MBA steps and page migration steps. Upon each step, the system
SLOs are evaluated again, since this outcome determines the next step to
take in the online search. Therefore, the second phase typically takes much
more time than the first one. In a best-case scenario, when this phase
completes, every BEA will be running with no MBA restrictions (MBA
100), at the local-to-remote page ratio that optimizes its throughput while
ensuring a green state. However, as we detail next, that might not always
be possible.

Each iteration starts by checking if the system is in a green state. If
so, then probably there is enough spare memory bandwidth to alleviate
the current MBA restriction (i.e., increase MBA level) without raising a
new SLO violation (lines 17-19). In contrast, the second step is taken only
when the system is in a danger state (yellow or red). This step consists
of migrating enough pages of the BEA away from the socket where the
SLO violation is prone to/already happening until the system returns to a
green state (lines 20-21). Pages are migrated using the weighted interleaving
migration technique of BWAP [140], complemented with an SLO validation
that, upon migrating a fraction of pages in the desired direction, checks
whether the system has entered a green state (and returns) or not (migrates
an additional fraction, if available).

A given BEA can take multiple iterations to converge to the ideal configu-
ration, with no MBA restriction (MBA 100) and the optimal local-to-remote
page ratio (among the valid alternatives). However, each iteration does not
necessarily run both steps. For instance, in the example in Figure 5.3: a
first iteration has an MBA and a page migration step; the same holds for
the second iteration; however, the following iterations only run the MBA
step.

In some worst-case scenarios, BALM will not be able to find a valid
configuration where every BEAs run MBA-free. A first, obvious case is
when there exists no valid configuration. When BALM suspects it is in
such a situation, it throws an exception, which is expected to be handled by
some higher layer that will solve the problem through stronger measures –
such as migrating some applications to another host in the data center.

A second worst-case scenario is when both sockets simultaneously suffer
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from SLO violations (either happening or prone to). In this case, the migra-
tion step is skipped (i.e., function migratePagesUntilGreen does nothing),
since there is no chance of migrating pages in either way (from an invalid
configuration). Consequently, the SLO violation can only be fixed/prevented
by resorting to MBA.

Thirdly, we note that the algorithm that handles SLO violations assumes
that the system remains in a steady state – regarding the set of deployed
applications and their load – until the BEAs have all been adapted to the
final valid configuration. If a significant change to that steady state occurs,
it is easy to show that the algorithm might no longer converge to an ap-
propriate configuration. In the worst extreme, a sudden disruption in the
middle of the algorithm may push it towards an invalid configuration. In
this case, BALM will repeat the whole procedure, up to a given number
of retries (line 25). Meanwhile, if the system stabilizes, BALM will finally
reach the desired (valid and optimized) configuration.

Re-configuring upon workload changes. When every LCA meets its
SLO target by a safe margin (i.e., system state is green), some BEA pages
may be moved back to the remote node to optimize its performance (line
31). This allows the excess memory bandwidth to be reclaimed, improving
overall system utilization.

As a final note, we highlight the importance of appropriately setting the
thryellow and thrgreen thresholds. Larger values of thryellow make BALM
more proactive at detecting imminent SLO violations; however, they also
render BALM susceptible to false alarms, which hurt resource efficiency.
Larger values of thrgreen may lead to low resource utilization, while smaller
values increase the risk of BALM choosing under-provisioned configurations
which quickly lead to new SLO violations.

5.4 Implementation

We have implemented BALM as a user-level controller that polls the SLO
metric and memory bandwidth utilization of applications and interacts with
the OS (Linux) and hardware to adjust memory bandwidth allocations. The
controller is pinned on core 0, taking at most 10% of its core utilization.
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SLO monitoring. We rely on the existence of per-application monitoring
plug-ins, which can reside at either the client or server sides. Each such plug-
in monitors the SLO metric of a given LCA. For instance, with Memcached,
we use a client-side component that measures the tail latency of requests
(more details in Section 5.5). Alternatively, the application can also be
instrumented to report all the necessary performance metrics such that the
cloud provider has access to them (in a private cloud, internal applications
are already instrumented [15]). Lastly, one can also facilitate monitoring
through cloud platforms or third party applications.

Page migration mechanism. The page migration mechanism of BALM
uses the approximated online page placement open source tool proposed in
BWAP [140]. We complement BWAP with an SLO validation component
that checks whether the system is in violation or not when a fraction of
pages is migrated in the desired direction.

MBA mechanism. We use an interface provided by Intel to throttle
MBA dynamically at runtime [163]. MBA is a per-core mechanism. How-
ever, for efficiency, BALM does not tune MBA on a per-thread granularity.
Instead, BALM tags all the threads of the same BEA with a unique class
of service (CLOS), when the BEA starts. When BALM needs to apply a
new MBA level to the BEA, BALM simply sets the MBA level of the cor-
responding CLOS. This implicitly throttles all threads of the BEA by the
new MBA level.

As a final remark, we note that in architectures where MBA is unavail-
able, BALM can exploit any alternative bandwidth allocation mechanism
(e.g.,thread packing [107] and clock modulation [108]), with similar expec-
tations: achieve comparable SLO violation times as the baseline technique,
while maximizing BEA throughput.

5.5 Evaluation

Our evaluation addresses two key questions: 1. What performance advan-
tage does BALM bring to memory-intensive BEAs on dual-socket NUMA
systems? 2. How effective is BALM in fixing SLO violations?
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Experimental methodology

To answer each question, we study how BALM and other state-of-the-art
alternatives handle QoS-aware memory bandwidth allocation in different
dual-socket workload consolidation scenarios. We use the execution time
of BEAs and SLO violation time of LCAs as the performance metrics that
provide quantified answers to each question, respectively. Every experiment
is repeated 5 times, so the results presented in this section are average of
such runs.

Dual-socket machines. We evaluate BALM on two dual-socket ma-
chines, a smaller machine (Machine A) with fewer cores per socket, and
a bigger one (Machine B). Machine A’s specifications: Intel Xeon Silver
4114 CPU, 2 NUMA nodes, 10 cores per node, 128GB DRAM (64GB per
node), running Linux 4.15. Machine B’s specifications: Intel Xeon Gold
5218 CPU, 2 NUMA nodes, 16 cores per node, 64GB DRAM (32GB per
node), running Linux 4.19. Both support MBA, with 8 available levels.

LCA workloads. To quantify the impact of memory bandwidth interfer-
ence and allocation, we consider Memcached [35] and Xapian [37] as LCAs
in our experiments. Memcached is a high-performance, distributed object
caching system that is mainly used to speed up web requests by caching
data and objects in memory. In modern cloud services, such distributed in-
memory key-value stores have become a critical tier. Several big companies,
such as YouTube, Facebook, and Twitter, widely use Memcached [164].

We use Memcached 1.5.22, compiled from its official source. For each
LCA instance in the evaluated scenarios, we run Memcached with the de-
fault/recommended number of threads, i.e., 4 threads pinned to 4 physical
cores. We also assign 8 cores on each machine to handle network interrupts
(IRQ). It is well studied that allowing application threads to share cores with
IRQ handlers leads to lower throughput and higher latency [15, 165]. Ex-
cept where stated, our default Memcached deployment is 10 million items,
each with a 30B key and a 200B value; the SLO target is set to 1ms for
99th percentile latency, which is in line with the experimental deployment
methodology in previous works [15, 16, 165, 166].

We use an in-house, open-loop workload generator, similar to Muti-
late [167], as the client for Memcached. Clients run on machines on the
same network as machine A/B, where Memcached runs. The load generator
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uses exponential inter-arrival time distribution, similar to the query distri-
butions at Facebook [15, 164, 168]. We also limit input loads to read-only,
which corresponds to the majority of requests in production systems, e.g.,
95% of Memcached requests at Facebook [15, 164].

Xapian is an open-source search engine included in the Tailbench suite [54].
We used Tailbench’s default configuration for Xapian. The search index is
built from a snapshot of the English version of Wikipedia. We use the open-
loop load generators provided by Tailbench [54]. The load generator chooses
the query terms randomly, following a Zipfian distribution. This has been
shown to model online search query distributions well [54]. The SLO target
is set to 5ms for 99th percentile latency.

We assume that the SLO of the LCAs is defined by tail latency (99th

percentile) of request-to-response latency, as observed on their clients’ sides.
Similarly to other works on QoS-aware resource allocation [15, 16, 166], we
first study the impact of increasing input load on the tail latency of each
LCA to determine estimate reasonable targets for its SLO and quantify the
maximum achievable throughput (RPS) that our platform can sustain. We
run each LCA in isolation, starting from a low load (requests per second,
RPS) and gradually increase the load until it starts dropping requests on
the server-side. Figure 5.4 shows the relationship between tail latency and
input load (RPS) for each LCA, in machine A. Both LCAs exhibit a rapid
increase in tail latency after exceeding a certain load threshold. We set the
target SLO as the 99th percentile latency of the curve’s knee, as indicated
by the horizontal line in Figure 5.4. Consequently, the RPS at the knee of
the curve is denoted as the max load, which is the maximum throughput
that the platform can sustain without violating SLO in an interference-free
system.

To monitor the SLO of the LCA instances, BALM’s monitoring compo-
nent keeps a sliding window of all the recent requests that have occurred in
the last n seconds and polls the SLO metric, such as tail latency at m mil-
liseconds interval (which is fine-grained). We configure BALM with n and
m to 3 seconds and 20 ms, respectively. This choice of parameters allowed
the SLO metric to be calculated over large-enough samples, which reduce
measurement noise; while allowing BALM to react quickly after a sample
yields an SLO violation.

Further, we set the threshold parameters of BALM that trigger the yel-
low and green states (thryellow and thrgreen, resp.) discussed in section 44
to 5% and 20% below the target SLO metric (resp.). We chose these two
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thresholds based on a sensitivity analysis on a subset of examined applica-
tions. Then, we used those values for every other application/experiment.

BEA workloads. For the bandwidth-intensive BEAs, we used memory-
intensive benchmarks from several benchmark suites, i.e., NAS [1], PAR-
SEC [33] and SPLASH [34]. Table 5.1 lists all the benchmarks used for
our evaluation. These benchmarks represent a wide diversity of application
domains which are typically throughput-oriented, which are also used as
such in related QoS-aware resource allocation works (e.g., [16, 92]). The
selection criterion was as follows: we measured each benchmark’s memory
traffic and selected the benchmarks that incur higher memory traffic when
allocated with a single socket’s full resources. All the evaluated benchmarks
are multi-threaded. We pin the threads of each benchmark on the cores al-
located to it. All BEAs are characterized by multiple phases with different
memory intensities. The spikes in Figure 5.2 illustrate this for OC. The
thread count of all the evaluated applications is shown in Table 5.2.

Benchmark Bw. requirements (GB/s DescriptionReads Writes
MG.C (MG) [1] 26.31 7.16 Multi-Grid on a sequence of meshes

Ocean_cp (OC) [34] 23.81 8.48 Simulates large-scale ocean movements
SP.C (SP) [1] 20.48 10.76 Scalar Penta-diagonal solver

UA.C (UA) [1] 16.79 5.40 Unstructured Adaptive mesh,
dynamic and irregular memory access

Blackscholes (BS) [33] 2.50 0.35 Option pricing with Black-Scholes Partial Diff. Equation (PDE)
EP.B (EP) [1] 0.01 0.01 Embarrassingly Parallel

Swaptions (SW) [33] 0.01 0.01 Financial analysis

Table 5.1: Evaluated BE benchmarks

Scenario Socket 0 Socket 1
A Memcached (4 threads) OC/MG/SP/UA (8 threads)

B Memcached (4 threads) +
OC/MG/SP/UA (8 threads)

Xapian (4 threads) + SW (4 threads) +
BS (2 threads) + EP (2 threads)

Table 5.2: The thread count of the evaluated applications

Alternative solutions. We compare BALM with MBA and page migra-
tion (pgm), each used stand-alone; as well as the unshared and unmanaged
approaches highlighted in Section 5.2. We note that state-of-the-art sys-
tems such as PARTIES [15] or CLITE [16] are large frameworks that handle
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Figure 5.4: Tail latency with increasing load (RPS) of Memcached (left) and
Xapian (right). The vertical line shows the max load, while the horizontal
line shows the target SLO. The y-axis is logarithmic.

multiple shared resources. BALM should be seen as a future component
of such frameworks, but not a replacement. Therefore, comparing BALM
with them would not be fair, as they address broader problems. Instead, we
compare BALM against the lower-level mechanisms that such frameworks
use to specifically handle memory bandwidth.

Co-location Scenarios. To evaluate whether BALM achieves its goal
of optimizing the performance of BEAs while safeguarding the SLO of the
LCAs, we consider two co-location scenarios, which Table 5.2 summarizes.
Scenario A takes place in the smaller machine, A. Here, we consolidate two
applications only, one LCA and one BEA. These are naturally placed in
opposite sockets.

In contrast, scenario B takes place in machine B. Having more cores
available, in this scenario, we consolidate six applications. Hence, we have
a larger scale, with more applications to monitor and manage; and a more
dynamic environment, with frequent workload changes, not only due to ap-
plications starting/ending, but also due to phase changes within each ap-
plication. The application mix comprises: Memcached and Xapian (LCAs);
BS, EP and SW (BEAs with low to moderate memory intensity); and one
bandwidth-intensive BEA (either OC, MG, SP, or UA, each one selected
in a distinct experiment). Therefore, two applications stand out for their
bandwidth demand: Memcached and the bandwidth-intensive BEA. Hence,
although all 6 applications need to be monitored and managed, the main
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challenge in scenario B is to address any harmful interference arising between
the latter two applications.

Although there are many possible application-to-socket combinations,
what essentially distinguishes all of them is whether the two bandwidth-
intensive applications reside at the same socket or on opposite sockets. For
space limitations we only show results of scenario B for the same-socket
scenario. We note that our experiments with both applications on opposite
sockets yielded very similar conclusions as with scenario A.

For each experiment, one bandwidth-intensive BEA is chosen (OC, MG,
SP, or UA). Both LCAs (Memcached and Xapian) run for the whole exper-
iment. The load of Xapian is fixed at 100% for the whole experiment, while
the load of Memcached varies, in phases, from 10% to 100%. At the begin-
ning of each Memcached phase, we simultaneously launch all 4 BEAs – the
chosen bandwidth-intensive BEA, and BS, EP and SW). Each Memcached
phase ends as soon as every BEA has completed (note that different BEAs
execute for different periods), then the next phase starts.

BEAs Characterization. Figure 5.5 characterizes the performance of
the bandwidth-intensive BEAs when they are allocated different amounts
of local-to-remote ratio2 and MBA level. Similarly to Figure 5.3, each cell
presents each BEA’s throughput obtained in a given configuration, normal-
ized to that of the system state of the unshared approach (i.e., the top-left
cell). A first observation that stems from this overall characterization is
that the performance of the benchmarks can be significantly improved by
exploiting cross-socket page placement configurations, which optimize the
utilization of spare memory bandwidth. Of course, due to interference with
other LCAs (when these enter high-load periods), some of the cells that
exhibit the best performance for each BEAs might trigger temporary SLO
violations, thus should be avoided. Second, different benchmarks have dis-
tinct optimal configurations: OC, MG, and SP require a local-to-remote
ratio of 0.6:0.4, 0.5:0.5, and 0.7:0.3 to achieve optimal performance.

Finally, note the benchmarks achieve similar performance with different
system states. For instance, UA achieves similar performance when it is
allocated 0.6:0.4 local-to-remote ratio and 100% MBA level and 0.5:0.5 local-
to-remote ratio and 40% MBA level.

2The local-to-remote ratio l : r is the portion of local pages l to the portion of remote
pages r = 1 − l. The figure shows only the portion of local pages.
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Figure 5.5: Performance impact of page placement and MBA on BE bench-
marks
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Figure 5.6: Performance of BEAs and SLO violation time of high-load LCA
for scenario A (top row plots) and scenario B (bottom row plots). The plots
show the speedup of BEAs (x-axis) and SLO violation time of LCA (y-axis)
that can be achieved by different mechanisms when LCA is running at the
fraction of its max load indicated by the % values.

Results

Scenario A. Figure 5.6 (top) presents the results for each metric (BEA
performance and LCA SLO violation time) in scenario A, for increasing LCA
loads.

As expected, when the LCA runs at a modest load levels, no SLO vio-
lation occurs and the BEA achieves its maximum performance since it runs
with no bandwidth allocation restrictions – regardless of which mechanism
is used. This corresponds to the bottom-right point at each plot in Figure
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5.6.
However, as we increase the LCA load beyond a critical level (which,

depending on the bandwidth intensity of each BEA, ranges between 70% and
90% of max load), QoS violations arise at increasing frequency and intensity.
These trigger the different mechanisms to allocate less memory bandwidth
to the BEA, thus reducing its throughput. Figure 5.6 (top) also makes it
evident that, in such high load situations, each mechanism handles the SLO
violations with very distinct effectiveness. As one increases the LCA load
beyond a critical level, the mba curve quickly expands towards the left-hand
extreme of the plot (i.e., sacrifices the throughput of the offending BEA),
while pgm quickly grows upwards (i.e., taking an increasingly longer time
to heal SLO violations). These trends confirm the preliminary observations
from Section 5.2.

In contrast, BALM’s curves in the same plots manage to stay closer to
the initial optimal point (the low-load point). Hence, BALM handles in-
creasing LCA loads at relatively lower costs on both axis. Most importantly,
if we chose a given LCA load and observe how each mechanism performs
at both criteria, then it becomes clear that BALM’s performance on each
axis is typically close to the alternative mechanism that is best-performing
in that axis. For instance, with OC, the SLO violation time of BALM at
80%/90%/100% (resp.) of the LCA’s max load are just 0%/17%/5% (resp.)
above mba’s marginal values. These results can be better understood in Fig-
ure 5.7, which details how both BALM and mba dynamically react to load
peaks (and the corresponding SLO violations) in a specific experiment. If,
instead, we consider the throughput of OC, we conclude that BALM is just
1%/4%/6% (resp.) below the performance that pgm achieves on that dimen-
sion. This translates to BALM outperforming mba and unshared by up to
1.78× and 1.4×, resp.. To understand why BALM does not always achieve
the same BEA throughput as pgm, recall that BALM activates MBA until
the page migration process completes, which temporarily hinders the BEA.

The above results confirm that BALM attains the virtues of each ex-
treme (mba and pgm), making BALM a well-balanced compromise between
both conflicting criteria.

To better understand the SLO violation times, Figure 5.7 shows a de-
tailed dynamic analysis of how each solution reacts to SLO violations as
time goes by. For space limitations, we only show the results for the OC
BEA when the LCA is operating at 100% of its max load, in scenario A.
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Figure 5.7: Tail latency of Memcached co-located with OC for different
mechanism. Memcached is operating at 100% of its max load. The red
horizontal line shows the target SLO.

Scenario B. The results of Scenario B are shown in Figure 5.6 (bottom).
The main conclusions that we draw for scenario A also hold in scenario B.
As before, the results show that the best-performing mechanism in terms of
BEA performance are BALM and pgm. More precisely, BALM is able to
outperform MBA approach by up to 1.87×. Additionally, both BALM and
mba exhibit lower QoS violation times than pgm. The main distinctive trend
of scenario B is that the time spent on page migration (by pgm and by the
second phase of BALM) is longer. This is because QoS violations are more
severe, since both the high-load LCA and bandwidth-intensive BEA are
consolidated on the same socket, thus more pages need to be migrated away
from the local socket. Finally, we observed that, in situations of extreme
memory bandwidth interference, only using mba is insufficient to fix SLO
violations, therefore the SLO violation can last until (at least) one of the
conflicting applications switches to a lower-load phase. Contrary, BALM ’s
more aggressive combination of mba and pgm is able to fix the SLO violation
even before the workloads change. Figure 5.6 (bottom) (d) is an example of
the above situation.

5.6 Related Work

Recall from Section 2.3, that interference can be eliminated by partition-
ing resources among consolidated applications using OS- and hardware-
level isolation techniques [10, 14–16, 94, 101–104]. This approach has the
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following benefits: (1) it maximizes resource utilization and throughput,
or trades off throughput vs. fairness [14, 57]; (2) it provides QoS for
LCAs [10, 15, 16, 105]. BALM’s approach falls under this approach. BALM
implements a robust policy that guarantees QoS by effectively employing
OS-level page migration and hardware-level MBA mechanisms.

Recent proposals [15, 16, 92] have focused on the QoS-aware resource
allocation problem that is the departing point to our reformulation in Sec-
tion 5.1, where LCAs are consolidated with BEAs, to safeguard the SLO of
LCAs while maximizing the throughput of BEAs. However, to the best of
our knowledge, existing proposals to that problem, have consolidated appli-
cations run in a single socket system. This recent research has inspired our
proposal. We differentiate from these works, as our focus is on multi-socket
servers.

Memory bandwidth partitioning has been recently used to enhance per-
formance and fairness. EMBA [57] introduced a performance model to guide
the use of MBA to improve performance. CoPart [14] proposed a resource
manager that uses Intel RDT to dynamically partition the LLC and mem-
ory bandwidth to the applications. Still, these approaches are designed for
single-socket servers. Further, they treat applications as of equal priority,
thus lack support for QoS.

The most relevant works to BALM are Caladan [92], BWAP [140], PAR-
TIES [15], Heracles [10] and CLITE [16]. These systems rely on resource
partitioning to guarantee cross-application isolation. However, these sys-
tems are designed for single-socket servers. Moreover, both PARTIES and
Heracles do not exploit hardware support for memory bandwidth partition-
ing. The lack of hardware support for memory bandwidth isolation compli-
cates and constrains the efficiency of any system that dynamically manages
workload consolidation [10]. Caladan rely exclusively on core allocation to
manage multiple forms of interference. However, Caladan is unable to man-
age interference across NUMA nodes [92]. A recent alternative has been
proposed in BWAP [140], which enables cross-socket memory bandwidth al-
location among two or more applications running in disjoint sockets. How-
ever, BWAP does not support dynamic scenarios, where the overall system
behavior may change over time. Most importantly, BWAP lacks support for
QoS and does not exploit MBA.
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5.7 Summary
This chapter presented BALM, a QoS-aware memory bandwidth alloca-
tion technique for multi-socket architectures. The key insight of BALM is
that, by combining commodity bandwidth allocation mechanisms originally
designed for single-socket, with a novel adaptive cross-socket page migra-
tion scheme, we can overcome the efficiency limitations of today’s state-of-
the-art when deployed in multi-socket scenarios. Our experimental evalu-
ation with real applications on different dual-socket machines shows that
BALM can ensure marginal SLO violation windows while delivering sub-
stantial throughput gains to bandwidth-intensive best-effort applications,
when compared to state-of-the-art alternatives.





Chapter 6

Conclusions and Future
Work

In this thesis, we have worked towards optimizing the amount of Cloud re-
sources used by applications and improving utilization of Cloud resources,
by elastically adapting the resources allocated to data-intensive services and
by consolidating workloads. With elastic provisioning, we aim to minimize
the service provisioning cost while maintaining the desired SLOs through
horizontal scaling, i.e., dynamically acquiring and releasing VMs to accom-
modate varying application needs. Regarding workload consolidation, we
aim at improving the resource utilization of data centre and Cloud comput-
ing systems while preserving (or meeting) QoS requirements of Cloud-based
services and improving the throughput of bandwidth-intensive best-effort
applications in the Cloud. In order to provide and evaluate solutions for
QoS-aware elasticity and resource arbitration for consolidated workloads,
we have considered Cloud resource management on two levels: inter-node
resource management and intra-node resource management. In the first
level, we have studied how to improve the practical usefulness of an elas-
ticity controller while deploying it in a Cloud environment, targeting dis-
tributed data stores. In resource management at the second level, i.e., the
intra-node resource management, we have studied how to properly utilize
over-provisioned memory resources in multi-socket hosts, to enable state-
of-the-art QoS-aware resource allocation systems to be generalized to allow
cross-socket sharing of memory.

In the context of inter-node resource management, to enable and achieve
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QoS-aware elastic execution in the Cloud, we have designed and imple-
mented OnlineElastMan, an "out-of-the-box" generic elasticity controller,
which can be deployed and adopted by different storage systems without
complex training and configuring efforts. Chapter 3 presented OnlineE-
lastMan in detail. OnlineElastMan excels its peers with its practical
aspects, including easily measurable and obtainable performance and QoS
metrics, an automatically online trained control model, and an embedded
generic workload prediction module. As a result, OnlineElastMan con-
tinuously improves its provision accuracy, i.e., minimizing SLO violations
and provisioning cost, under various workload patterns.

In the context of intra-node resource management for efficient execu-
tion of consolidated workloads in Cloud nodes, the thesis focused on the
memory bandwidth of the multi-socket NUMA system as the resource to
allocate and arbitrate. To the best of our knowledge, existing proposals
for memory bandwidth allocation are, by design, tailored to single-socket
architectures only, which is at odds with the growing prevalence of multi-
socket systems in contemporary warehouse-scale data centres. Hence, the
state-of-the-art resource allocation systems need to be generalized to allow
cross-socket sharing of memory. To achieve this, the low-level memory par-
titioning mechanisms on which existing solutions rely need to be redesigned
to address the new constraints of multi-socket NUMA architectures. Two
solutions, BWAP [140] and BALM [161] were designed and implemented to
address these constraints.

Chapter 4 presented BWAP [140], a novel page placement mechanism
based on asymmetric weighted page interleaving. BWAP is an extension of
the libnuma library that relies on a novel combination of analytical mod-
elling and on-line iterative tuning. Our results show that there is an un-
explored opportunity in incorporating the asymmetry of NUMA topologies
when placing pages of memory-intensive applications. Furthermore, to the
best of our knowledge, BWAP is the first proposal for bandwidth-aware page
placement in heterogeneous memory systems evaluated on real commodity
machines, i.e. not by simulation [38–40].

Chapter 5 presented BALM [161], a QoS-aware memory bandwidth al-
location technique for multi-socket systems. The key insight of BALM
is to combine commodity bandwidth allocation mechanisms originally de-
signed for single-socket (such as Intel’s Memory Bandwidth Allocation) with
a novel adaptive cross-socket page migration scheme. By doing so, BALM
can overcome the limitations of the original mechanisms when deployed in
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multi-socket scenarios. Our evaluation shows that, compared to state-of-
the-art alternatives, BALM ensures marginal SLO for latency-sensitive ap-
plications while delivering throughput gains to best-effort applications.

In summary, this thesis has proposed methods, algorithms, and tools for
improving the resource utilization of data centre and Cloud computing sys-
tems while meeting SLOs of latency-critical applications and improving the
performance of best-effort applications. Specifically, a model-predictive con-
trol supported by online model training enables and achieves effective and
efficient elastic execution in the Cloud, where an autonomic elastic service
dynamically grows (scales out) or shrinks (scales in) as needed in order to
adapt to observed or predicted changes in its workload. The elastic autoscal-
ing of Cloud-based services with elasticity managers also allows reducing
the amount of Cloud resources used by an elastic service, and as a conse-
quence, reducing the cost of the used Cloud resources and improving Cloud
resource utilization. Additionally, QoS-aware memory bandwidth partition-
ing techniques can ensure marginal SLO violation windows while delivering
better performance for bandwidth-intensive best-effort applications running
on multi-socket Cloud nodes. We have addressed the research questions
presented in this thesis with novel solutions, and all the proposed solutions,
namely OnlineElastMan, BWAP and BALM, have been implemented
and evaluated on a limited set of real-world workloads. Our experimental
evaluation indicates the feasibility and effectiveness of our proposed ap-
proaches to inter-node resource and intra-node resource management aimed
at improving resource utilization through QoS-aware elastic execution in the
Cloud and effective arbitration of resources among consolidated workloads
in Cloud nodes.

6.1 Future Work

In future, the research works presented in this thesis can be extended in
several dimensions as described below. We present them below, organized
according to the main contributions of this thesis.

• OnlineElastMan:

– First, it would be useful to extend the control model of Onli-
neElastMan with more comprehensive metrics, e.g., CPU uti-
lization, network statistics, disk I/Os, etc.
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– Second, OnlineElastMan, which is inherently centralized, can
be decentralized for better scalability and fault tolerance. Onli-
neElastMan is essentially stateless, as states are only preserved
and used in the prediction and model training modules, which can
be generated/trained during runtime. Thus, we envision decen-
tralization to be technically viable without fundamental changes
to the underlying algorithms.

• BWAP:

– Account for workloads with relevant write and/or thread-
private access volumes. As discussed in section 4.3, we as-
sume that the canonical application is mostly read-only regard-
ing shared data. However, this is not true for most real world
applications, as shown in Table 4.1. Additionally, we assume a
negligible impact of thread-private pages on the overall memory
throughput. Therefore, BWAP can be generalized to account
for these factors. Ideally, the profiled throughput between each
pair of nodes should consist of the read, write and local band-
widths. Profiling and including these extra parameters into the
Canonical tuner equations is currently an open problem. To
handle these and additional factors with BWAP, the techniques
of previous work e.g., Integer Programming (IP) [112] can be in-
corporated into Canonical tuner in the future. NuCore [112]
has shown that employing IP achieves high accuracy and low
overhead.

– Account for workloads with non-uniform access distribu-
tions to the shared address space. BWAP also assumes that
an application accesses all shared pages with the same probabil-
ity. However, some applications have skewed access distributions,
where a large portion of the application’s footprint is infrequently
accessed [169]. Therefore, our mechanism need to distinguish
frequently accessed pages (hot) from infrequently accessed ones
(cold) for such applications to improve their performance. Some
existing mechanisms take advantage of the Accessed bit in the
page table entry (PTE) which is set by the hardware each time the
PTE is accessed [170]. Others rely on hardware counters (sam-
pling) to gather page accesses statistics [12]. Detecting hot pages
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is an area of ongoing research [12, 39, 170] which requires mon-
itoring at high frequency, resulting in unacceptable slowdowns.
Hence, it might be worthwhile to investigate methods to detect
hot pages and support mapping of these pages to high bandwidth
links without significantly impacting performance. Consequently,
rarely accessed pages can be mapped to low bandwidth links.

– Heterogeneous memory subsystems. BWAP can also be
extended to support NUMA systems whose nodes have hybrid
memory subsystems (e.g. DRAM and NVRAM). Recent works
have studied the problem of page placement on emerging hy-
brid memory hierarchies [39, 40]. These works usually consider
a single-node system, where the physical address space is parti-
tioned across different memory technologies with heterogeneous
performance characteristics, such as bandwidth, latency, write-
endurance and persistence. While page placement in this context
is a fundamentally different problem than the one that we ad-
dress, they clearly complement each other. In that sense, BWAP
can be combined with recent solutions for single-node hybrid
memory hierarchies.

• BALM:

– First, BALM can be enhanced with extra features based on the
use of available hardware technologies, in order to support QoS-
aware allocation of other kinds of resources that are not handled
by BALM.

– Second, while BALM is designed and implemented to support
systems with a larger and more complex socket topology, the
actual effectiveness of BALM still needs to be experimentally
evaluated in such settings.
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