
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at IEEE 39th International Conference on
Distributed Computing Systems - ICDCS 2019.

Citation for the original published paper:

Bahri, L., Girdzijauskas, S. (2019)
Trust Mends Blockchains: Living up to Expectations
In: IEEE 39th International Conference on Distributed Computing Systems (ICDCS),
Dallas, July 7-10 2019

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-251639

Trust Mends Blockchains: Living up to Expectations
Leila Bahri

Royal Institute of Technology (KTH)
Stockholm, Sweden

lbahri@kth.se

Sarunas Girdzijauskas
Royal Institute of Technology (KTH)

Stockholm, Sweden
sarunasg@kth.se

Abstract—At the heart of Blockchains is the trustless leader
election mechanism for achieving consensus among pseudo-
anonymous peers, without the need of oversight from any third
party or authority whatsoever. So far, two main mechanisms
are being discussed: proof-of-work (PoW) and proof-of-stake
(PoS). PoW relies on demonstration of computational power, and
comes with the markup of huge energy wastage in return of the
stake in cyrpto-currency. PoS tries to address this by relying
on owned stake (i.e., amount of crypto-currency) in the system.
In both cases, Blockchains are limited to systems with financial
basis. This forces non-crypto-currency Blockchain applications to
resort to “permissioned” setting only, effectively centralizing the
system. However, non-crypto-currency permisionless blockhains
could enable secure and self-governed peer-to-peer structures for
numerous emerging application domains, such as education and
health, where some trust exists among peers. This creates a new
possibility for valuing trust among peers and capitalizing it as the
basis (stake) for reaching consensus. In this paper we show that
there is a viable way for permisionless non-financial Blockhains
to operate in completely decentralized environments and achieve
leader election through proof-of-trust (PoT). In our PoT construc-
tion, peer trust is extracted from a trust network that emerges
in a decentralized manner and is used as a waiver for the effort
to be spent for PoW, thus dramatically reducing total energy
expenditure of the system. Furthermore, our PoT construction is
resilient to the risk of small cartels monopolizing the network (as
it happens with the mining-pool phenomena in PoW) and is not
vulnerable to sybils. We evluate security guarantees, and perform
experimental evaluation of our construction, demonstrating up to
10-fold energy savings compared to PoW without trading off any
of the decentralization characteristics, with further guarantees
against risks of monopolization.

Index Terms—Blockchain, Proof of Work, Bitcoin, Distributed
Ledger, PoW is expensive, Proof of Trust, PoW alternative

I. INTRODUCTION

Blockchain technology appeared with the decentralized
crypto-currency known as Bitcoin and proved that money
could be created and exchanged within pure peer-to-peer (P2P)
environments without the need of any form of centralized
authority or trusted entity. More interestingly, Blockchain
made this possible without the need for managing or certifying
identities. The solution was an arrangement of techniques from
cryptography along with rules and guidelines from diverse
domains, such as distributed systems, economics, and game
theory; all put together to form a functioning self-sustained
decentralized currency system managed by the open public.
Among all the pieces that form the technology, the heart
of Blockchains is the consensus mechanism that provides a

consistent state of the system among trustless and anonymous1

peers.
Transactions in a Blockchain system are publicly announced

to all the participating peers who are responsible for verifying
the transactions they hear of and for adding the valid ones to
a shared ledger. This shared ledger is organized in the form of
blocks that are chronologically ordered and cryptographically
chained to each other to generate a tamper-proof data structure
called blockchain.2 Managing this blockchain of transactions
in a pure P2P environment, with the Byzantine nature that it
imposes, requires a consensus mechanism to agree at each new
epoch on the next block to extend the blockchain and on who
will propose it.

In Bitcoin Blockchain system, as well as in most operational
Blockchains available so far3, consensus is achieved by a
cryptographic hash puzzle that allows sealing blocks together
and, even more importantly, that enables agreement on the next
block that will be extending the blockchain. The cryptographic
hash puzzle consists in generating a hash number that is
smaller than a given agreed upon value in the Blockchain
network, known as the difficulty level. The characteristics of
cryptographic hashing provide both a tamper-proof quality
to the blockchain, as every new block includes a hash of
the previous block it extends, as well as a computationally
intensive puzzle to produce (by chance) a hash number that
is smaller than the given difficulty level. This enables a
randomized leader election in which every peer is forced
to prove computational capacity, and leaders are selected
proportionally to the amount of work they performed. Indeed,
at every new epoch, the first peer to solve the puzzle would
have demonstrated a proof-of-work (PoW), that the other nodes
can easily verify, and based on which the peer is accepted as
the leader that proposes the next block. PoW also provides an
implicit defense against sybils by ensuring the “one CPU-one
vote” rule.

PoW is very costly. Unfortunately, PoW is an energy exhaus-
tive mechanism, where the difficulty level is adjusted based on
the computational capacity of the system, thus as more nodes

1We refer here to public Blockchains where identities are not managed.
Although such systems are technically anonymous, they practically can only
guarantee pseudo-anonymity depending on usage patterns and peers practices.

2We differentiate between Blockchain, with big B, as the technology that
comprises all the components of the system in terms of rules, mechanisms,
protocols, etc., and between blockchain which refers to the ledger of chained
blocks of transactions.

3e.g., Ethereum Blockchain

B
A C

D
FE

S H Z V
k

Header

Payload

Graph Digest

Header

Payload

Graph Digest

Header

Payload

Graph Digest

Bt Bt+1 Bt+2

…

C

…

w = t

w = 1 BA C

D E

H Z V
k

w = t+1

w = 2
Q

A

BA C

D E

H Z V
k

Q

w = t+2

w = 3

Graph digest
included in
block Bt-1

X Y

Graph digested in
Block Bn-1 is the trust
graph of Block Bn

B

Node subject to trust decay Transactor node of block

BA C

D E

H Z V
k

Q

w = t+3

w = 4

W Node in recovery from decay

The trust graph of
Block Bt+3

A bootstrap phase
with pure PoW

…

[TD1 = {B,C}; TD2 ={E,F}; TD3 ={D,A};
TD4 ={S,H,Z,V,K}]

[TD1 = {B,A}; TD2 ={D,E}; TD3 ={C,Q};
TD4 ={H,Z,V,K}]

[TD1 = {B,E}; TD2 ={D,Q}; TD3 ={C,A};
TD4 ={H,Z,V,K}]

[TD1 = {E}; TD2 ={C,D,Q}; TD3 ={B,A};
TD4 ={H,Z,V,K}]

Fig. 1. An overview of the proposed PoT construction with its basic elements: first, a trust network is built based on trust links (outgoing edges) explicitly
expressed by each node. At every epoch, the constructed version of the network is committed to the blockchain using a secure digest. New edges are subject
to a damping strategy and are weighted based on their age, where w=0 when an edge first appears in a block version and is incremented as it continues
appearing in subsequent block versions. A trust metric is computed for every node based on the emerged trust network. Nodes are assigned to trust divisions
(TD) based on their achieved trust measure. Members of each trust division are entitled to run a low complexity PoW proportional to their trust. When a node
is selected as the epoch’s leader, its trust is subject to an exponential decay for the subsequent blocks with recovery proportional to its starting trust value.

come with more CPUs, cost per transaction inevitably grows.
For instance, in 2016, it was estimated that Bitcoin miners had
been mining at an average rate of 1018 hashes per second. In
less than a year span, this rate has increased to 1021 order of
magnitude.4

In addition to its prohibitive cost, putting PoW in practice
has shown that it is easily vulnerable to the trap of centraliza-
tion where a small elite of powerful/rich peers end-up dominat-
ing the system. This is demonstrated today in Bitcoin by the
mining pools phenomena, and the giant mining data-centers
that monopolized the system, effectively disincentivising any
further participation of individual peers [1].

Alternatives to PoW. These downsides of PoW has raised
concerns about its sustainability, as well as motivated the
investigation of other more energy efficient alternatives that
would provide similar or better security and decentralized
consensus guarantees. However, most of the suggested al-
ternatives5 rely either on the ownership of special physical
hardware (e.g. [2], [3], [4]), or trade-off the decentralization
of the system towards a permissioned Blockchain model with
consensus aciheved by variants of Practical Byzantine Fault
Tolerance (PBFT) protocols, such as in [5] [6]). One of the
plausible alternatives to PoW is the concept of Proof-of-Stake
(PoS) [7]. In PoS block leaders are selected based on the
amount of stake they own in the Blockchain system. The game
theoretical premise behind the approach is that peers with the
largest share, in terms of owned crypto-coins, have interest into
better serving the system to maintain its credibility and value,
hence incentivized to behave according to the protocols. PoS
promises a cleaner and much cheaper consensus mechanisms
compared to PoW, however it requires binding Blockchain
systems to a crypto-currency. Besides, it boosts the rich-gets-
richer effect with a mindset of, “the more you own the more
you are in charge”, or “the more you own, the more legitimacy
you have for leadership”, further shifting the system towards
centralization.

4See the graph of hash rates statistics of Bitcoin over the years at:
https://blockchain.info/charts/hash-rate?timespan=2years

5Most alternatives are discussed in forums and a few only have been
formalized in research papers.

Blockchains hit a dead-end. Although currently there is
a surge in interest in Blockchain technologies from different
domains with aspirations for establishing more decentralized
systems, Blockchain seems to hit a dead-end with reliance on
crypto-currencies as its main incentive and basis for security.
The excessively costly PoW results in expensive coins that pro-
hibit usage within non-financially incentivized domains. While
PoS sounds good in theory, to date, there is no operational
Blockchain ledger based on PoS alone without combining it
with PoW or some PBFT solution, not least because of the
aforementioned centralization effects as well as reliance on
the necessity to have an underlying crypto-currency. Finally,
there are frantic attempts to justify blockchain usage with
permissioned model which in effect undermines the whole
decentralized nature of the system, shifting it back to the
centralized territory. If Blockchain technology is to apply to
wider application domains and break out from this dead-end, a
new capacity is required to overcome the aforementioned chal-
lenges. There is a pivotal need for thinking outside of the box
and discovering new consensus mechanisms for Blockchains
that are cheaper and more energy efficient than PoW, that do
no rely on ownership of any specialty hardware, that do not
trade off the permissionless virtue, and that are not bound to
a crypto-currency for their operation.

Trust is the light at the end of the tunnel. Trust is
inherent to any collaborating environment, as peers can form
opinion about each other through time based interactions and
participation in shared undertakings [8]. Trust is expensive to
acquire, but is also easy to lose, thereby providing a powerful
and robust incentive mechanism to maintain correct behavior
in the system, especially in environments where participation
in the system is incentivized by a common goal and is not
linked to monetary gains as in crypto-currency based models.
Yet, when decentralization is properly and fully considered,
such as the in premissionless Blockchain model, trust is no
more discussed as an option and trustless is implied as if
a necessary ingredient to maintain decentralization. If trust
can emerge and be managed in a purely decentralized setting,
then this implication does not need to be true. Research from
domains such as mobile ad-hoc networks already provides the

answer, with decentralized reputation management schemes
[9]. We argue that decentralization does not need nor require
trustlessness.

Mending Blockchains with trust. We propose to capitalize
on natural collaborative trust as a form of stake that peers build
through their participation in the public Blockchain system,
without the need of underlying crypto-currency assumption.
We demonstrate the usage of a proof-of-trust (PoT) metric as
a waiver for the amount of work that peers need to demonstrate
for leader election. The objective is to minimize the amount
of energy spent on PoW as more trusted peers appear in the
network. That is, install a concept of “the more trusted you
are, the less work you are required to perform.” We assume
application scenarios where Blockchain is intended to provide
a decentralized service among peers collaborating to achieve a
common goal and where trust can be expressed among parties,
such as in the health or education domains. This stands as
a stark contrast to current ego-centric financial blockchains
where the sole interest and game-theoretic incentive of being
elected as a block leader is to earn crypto-currency. We have
already laid out the vision and initialized discussions around
the challenges towards achieving this goal in [10], without go-
ing into details of any viable solution. In this paper, we address
the challenges towards achieving these goals and materialize
a PoT construction as a Blockchain consensus viable solution
based on naturally emerging trust in the community.

In our PoT construction (see overview on Figure 1), every
peer participating in the system individually indicates the trust
towards some other peers it deems trustworthy. The trust is
continuously announced giving the rise of a trust network
that emerges in a decentralized manner and is stored on the
blockchain itself, providing a consistent and tamper-proof view
to all the participants. I.e, each peer can locally extract a trust
metric from the trust network embedded in the blockchain,
that will provide a consistent and unambiguous trust measure
for any peer across all the network. At each epoch, this trust
measure is used as a waiver for the difficulty of PoW to be
solved by each of the peers. Therefore, the probability to be
elected as the leader of a given epoch is proportional to the
gained trust in the network. To prevent sybil attacks and to
avoid top trusted peers from maintaining their rank throughout
the epochs and thus monopolizing the system, a decay penalty
is applied to each node right upon its election as an epoch
leader with a recovery proportional to its starting trust value.
Moreover, to further minimize the effect of sybil attacks, our
protocol ensures that the trust network will never evolve in
such a way which would allow newcomer nodes to reach the
top-trusted ranks of the system within a predefined number
of epochs, allowing timely detection of malicious behavior by
the majority of the system players.6 Our PoT mechanism while
still using PoW, is assured to use PoW only by a small ranked
set of participating peers, thus drastically reducing power
costs. In the rest of the paper, we formalize our proposed

6We build on the results in [11] which suggest that controlled network
evolution facilitates sybil detection in mobile ad hoc networks.

construction and demonstrate how each of its components
is designed to address the challenges of establishing a PoT
Blockchain system.

Overall, we summarize our contributions as:
• A PoT based consensus mechanism through trust net-

works for public, permisionless blockchains. We define
the emergence mechanism and maintenance of the trust
network and we formalize a PoT protocol that relies on
calibrating PoW by trust. The protocol offers resiliency
against monopolizing the network by the elite and pro-
tection of the network against sybils.

• Experimental evaluation of the PoT construction on real
world trust networks of varying sizes. We study how
each of the parameters regulating PoT protocol affect the
efficiency and security of the Blockchain with evolving
trust networks of varying sizes. Our results demonstrate
the viability of our PoT construction, achieving a decrease
in the probability of monopolization by up to 80% as
compared to PoW without trust. Furthermore, the con-
struction is shown to limit the impact of sybils to less
than 2% for more than 30 epochs even when they connect
to honest nodes and represent 20% of the trust network.

The rest of this paper is organized as follows: in Section II
we discuss PoT w.r.t decentralization with an overview of the
issues and how we address them. In Section III we formalize
our PoT construction based on the results drawn from Section
II, and we define a PoT protocol that waives PoW based on
trust. We provide experimental evaluation of the construction
in Section IV. We finally conclude the paper in Section V with
a discussion on future work and further research directions that
this work opens.

II. DECENTRALIZATION AND CONSENSUS BASED ON
TRUST

The concept behind achieving a PoT Blockchain is to have a
mechanism by which trust values of participating peers can be
computed and agreed on in a decentralized fashion. These trust
values will represent the stake that peers own in the system,
and that could be used as part of the basis for achieving
consensus.

PoW is energy exhaustive and is susceptible to central-
ization over time, but its decade of operation in Bitcoin
has also made it the only consensus mechanism to prove
itself in practice within completely open and premissionless
P2P environments. In PoW, it is simple and easy to reach
consensus; i.e., whoever proves more work is simply accepted
by the others as the next leader. At equal importance, PoW
also provides the ability to verify the resulting blockchain and
to independently evaluate its validity. That is, anyone who
gets a copy of a blockchain can easily verify its compliance
to the protocol in place and know whether it is valid or not.
In designing our PoT alternative, the main goal is not to trade
off any of these decentralization qualities, that we formalize
under two main properties, verifiability and independence:

Verifiability property. Verifiability states that once a peer
proves its eligibility to be the next leader, all peers can verify

this proof. It also states that anyone who gets a version of the
blockchain can verify its validity.

Independence property. Independence states that both
leader eligibility and blockcain validty verification can be
performed by any peer using publicly available information
without the need for any other collaboration; hence indepen-
dently of any other peer.

To achieve this, two main problems need to be addressed:
1) defining a mechanism for decentralized trust management;
2) defining a consensus protocol that uses trust network.

A. Decentralized trust management

Trust represents the importance of peers as perceived by
some entity, which in our case is the open community. Build-
ing trust is a process which could be underatken under differ-
ent models, and the literature already offers a variety of trust
models (see for e.g., [12], [13], [14]). For community-based
trust, the starting point is usually a given trust network that
encodes who trusts whom in the system, and that is generally
modeled as a directed graph of which the nodes represent the
peers, and the edges represent the trust relationships between
them. The more incoming links a node has in the network,
the more trusted it is. Therefore, the first step is defining the
model based on which the underlying trust graph will emerge.

Trust networks could emerge in a variety of ways, such
as being extracted from a social network, inferred from the
interactions between peers in the underlying system, being
explicitly expressed by the peers announcing whom they trust,
etc. Within a public permissionless model where identities are
not centrally managed, the only viable options are either to
track interactions between peers as recorded in the blockchain
itself, or to allow a deliberate emergence of a trust network
where every peer individually announces whom she trusts at
every epoch. The first option requires that peers who manage
the Blockchain system be also stakeholders in the transactions
that take place and that are recorded in the blockchain. To
not make any assumptions with that regard, in this paper we
opt for the second option where peers freely and individually
express whom they decide to trust. Therefore, each peer
announces their trusted peers in the form of outgoing trust
links to them. These links are broadcasted in the network and
are independently collected by all the other peers to form
the resulting trust network. In order to have a unified and
accessible version of the trust network, it should be stored
in the blockchain itself. However, blockchains are known to
suffer from size limitations imposed on blocks for network
throughput considerations.7 Therefore, our solution is based
only on a secure digest of the trust network recorded in the
blockchain, thereby achieving the desired result in a scalable
fashion. As we explain in Section III below, an evolution of
the trust network is generated, at every epoch, by the current
block leader. A block leader is elected based on the version
of the trust graph agreed upon in the previous epoch (i.e., as
per the network digest committed in the preceding block).

7In Bitcoin, the block size is limited to a maximum of 1MB. Any block
bigger than that is considered invalid without further consideration.

The literature contains a plethora of algorithms for comput-
ing trust values based on a trust network (e.g., [13] [15], [16],
[17]). Any of these could be picked off of the shelf, given that
it provides acceptable running times.

B. Dynamics of a trust based consensus

Despite its main downside of high energy expenditure,
PoW provides nice security and operability properties under a
fully decentralized setting. More importantly, PoW provides a
clocking functionality with a guaranteed time window that is
large enough for a distributed system to effectively function
in epochs without the need of global synchronization. PoW
provides a decentralized chronological ordering functionality,
as a new block cannot appear until the block it extends have
appeared, and as running the PoW ensures that some time
(work) has been made between every two consecutive blocks.
For this, we do not suggest replacing PoW completely by
trust, but rather waiving its difficulty for the highly trusted
nodes. That is, the more trusted nodes perform low difficulty
PoW, whereas the less trusted nodes have to settle for higher
difficulty level. This will disincentivise the less trusted nodes
to join PoW altogether, making the pool of active miners
restricted to a smaller sub-set represented by the more trusted
nodes. Two main pitfalls appear: 1) waiving PoW by trust may
represent centralization problem in the hands of the smaller
trusted sub-set; 2) low difficulty PoW makes it cheaper to
create sybils. We address these pitfalls using two strategies: a
trust decaying penalty applied to block leaders, and a damping
strategy applied to new trust links in such a way that newcomer
nodes cannot abruptly appear in the top trusted sets.

Decaying trust.: Peers are assigned to groups based on their
achieved trust measure. We call these groups trust divisions.
Members of each trust division are entitled to mine at a
lower difficulty level proportional to their trust, giving peers
of the highest trust divisions higher chances to mine blocks
in the system. In order to avoid the pitfall of centralization
in the hands of top trust divisions, we need to ensure that
they are dynamic through time and that their populations are
continuously changing. After running experiments on two real
world trust networks we consistently find high fraction of
the same nodes popping up in top ranks. Therefore, a naive
straightforward PoT protocol that only waives PoW by trust
would result in having a small portion of the population taking
hold of all the network. More grievous, this will boost the rich
gets richer phenomena. Besides, nodes have interest in being
selected over and over again and a malicious block leader may
manipulate the trust graph by not including links that may
penalize her own rank, to increase chances for being selected
immediately again. A viable PoT construction needs to contain
mechanisms to counter such behavior, which we achieve by
applying a trust decay penalty for each block leader. This
ensures that any peer that has mined a block will fall back to
low trust divisions for a number of blocks, thus dramatically
decreasing its chances of being elected again in the near future
and opening room in high trust divisions for other nodes to
get upgraded. Furthermore, this equally limits the impact of

sybils as they cannot maintain high trust even if they manage
to achieve it by having trust links from honest trusted nodes.
We detail this further under Section III-C5.

Damping new links.: In PoW, the difficulty level is adjusted
proportional to the computational capacity available in the
system. This disincentives peers from creating sybils as doing
so will result in dividing their computational power, thus ef-
fectively diminishing their mining capabilities. In PoT, trusted
peers are entitled to mine at lower difficulty levels, making
it also more feasible to create sybils. However, in order to
benefit from lower difficulty PoW peers need first to achieve
high trust in the trust network. Unfortunately, trust can be
maliciously boosted using sybils and the literature provides
many studies on this spam farm phenomena [18]. Solutions are
provided mostly basing on trust seeding, where a set of trusted
nodes is identified and the trust network evolves around it. This
includes white-listing, vouching, invitation based confirmation,
etc [19]. We consider that honest nodes in the network will
actively participate in the process of detecting sybils and
removing them from the network by adopting state-of-the-
art sybil defense mechanisms. In order to enable this, sybil
nodes should not able to abruptly achieve high trust in the
system so that honest nodes have the chance to observe and
contain their impact. Therefore, in PoT we introduce a control
mechanism on the evolution of the trust measure of newcomer
nodes by adopting a damping strategy to new trust links, where
their impact grows proportionally to the number of consecutive
epochs for which they have survived. We detail this further in
the following section.

III. POT CONSTRUCTION

In order to achieve all the requirements discussed above
and avoid the pitfalls, we build our PoT construction on two
pillars: 1) a decaying trust mechanism applied to block leaders
in order to prevent dominance of the network by a small trusted
clan and to detain the effect of sybils; 2) a controlled evolution
of the trust network to further limit sybils by preventing their
brisk rise in the trust ladder, thereby facilitating their detection.

An overview of the construction with all its elements is pro-
vided on Figure 1. The Blockchain system starts by going first
through a trust bootstrapping phase during which consensus is
achieved by pure PoW for a few number of blocks. During this
bootstrap phase, a trust graph emerges in parallel to the usual
creation of transaction blocks. At every new epoch (block)
peers in the network (i.e., miners) individually broadcast their
outgoing trust links. In addition to transaction payload, every
new block also commits a digest of the evolution of the
trust graph based on the trust links announced thus far. New
trust links in the network are subject to a damping strategy,
assigning to them weights that represent their age in the
system in terms of number of consecutive blocks during which
they have appeared. This damping mechanism favors old and
consistent trust links, making it slower for newcomer nodes
to boost their trust using new links. After the bootstrapping
phase, which ends after a fixed number of blocks s defined by
the protocol, the PoT phase starts and consensus changes from

PoW to PoT. In PoT, every peer has a trust value extracted
from the evolved trust graph. The trust graph is encoded in
the blockchain itself, making it possible for each peer to have
a unified view and to be able to retrieve trust values in an
ambiguous way.

Peers are ordered by their trust and are accordingly assigned
to a trust division based on the range where their trust value
falls. Each trust division has an associated PoW difficulty that
its members use for their mining. When a peer hits a solution
for PoW using the mining difficulty level of the trust division
she belongs to, she announces her block which the other
peers verify and accept as a valid extension of the consensus
blockchain. If more than one valid block is heard of at the
same time, the rule is to go for the block from the peer with
the highest trust value. Once a peer mines a block and it gets
appended to the blockchain, this peer’s trust gets subjected to
an exponential decay relative to the starting trust value. This
ensures that every block leader mines at a higher difficulty
level for a number of blocks after the one she has already
mined, decreasing by that their chances to mine blocks in the
near future.

In what follows, we formalize the elements of the proposed
PoT construction as well as the PoT consensus protocol.

A. The trust network

The trust network is composed of the trust links that peers
have deliberately announced in the Blockchain system. At
every epoch, the trust network corresponds to the version that
would have been committed in the last block of the blockchain.
We represent the trust network, at every epoch t, as a weighted
graph where nodes represent the peers in the Blockchain and
the edges the trust links announced with their age being their
corresponding weight. We represent this trust graph, at epoch
t as, TGt = (V,E,W), where
• V is the set of nodes (or peers), where each node
vi ∈ V announces itself to the network using a pair of
cryptographic signature keys, (SKi, V Ki). SKi is the
signing key secret to vi and V Ki is its corresponding
verification key, which also represents an identity for Vi
in the system.

• E is the set of relationship edges such that eij ∈ E
denotes a direct trust link from node vi to node vj ∈ V
that is announced and signed by vi.

• W is a function that assigns for every edge e ∈ E a
weight we(t) ∈ [0, 1].

We consider a trust algorithm that generates trust values for
nodes based on a weighted trust graph, such as for example
the ones in [17], [16], [15], or any other trust algorithm. We
refer to such algorithm by T A. Executing T A on the trust
graph generates for each node a trust value: T A(TGt): ∀vi ∈
V, vi.trust.

A digest of the trust graph TGt at epoch t is committed in
the block produced during that same epoch. TGt becomes the
trust graph based on which PoT consensus (see sub-section
III-C5 below) is achieved during epoch t+1. The data of the
graph itself could be stored on any medium, either locally at

the level of peers, in a cloud storage, or both. In any case,
each peer will make sure to get hold of the right trust graph
for each epoch based on the digest committed in the block of
one previous epoch.

B. The blockchain

The blockchain, as a data structure, consists of a sequence
of blocks ordered in time and sealed to each other with
a cryptographic lock. Blocks are generated in epochs, with
the rate of one block per epoch. System transactions are
broadcasted in the network, and peers have an agreed on
mechanism to evaluate transactions validity based on the
considered application. In every epoch, every peer prepares
her/his block of valid transactions that she heard of, and
participates in the leader election mechanism put in place. In
PoW, this done by solving a hash puzzle using brute force.
The first peer to find a valid solution announces it to the rest
of the network, and is also considered the leader elected for
the current epoch. The PoW hash puzzle consists at finding a
nounce such that hashing the prepared block along with the
nounce results in a hash value that is smaller than the set
difficulty level. To formally define a PoW blockchain, we first
define its valid block. We adopt similar notations to [20].

Definition 1: Valid PoW Block. Let H() : {0, 1}∗ → {0, 1}k
be a cryptographic hash function mapping input from {0, 1}∗
to {0, 1}k. A valid PoW block is defined as a triple B =
(h, b, ctr), where h ∈ {0, 1}k, b ∈ {0, 1}∗, ctr ∈ N, and B
satisfies a validity predicate, as follows:

valPoWblockD := (H(ctr, h, b) 6 D) = 1.
The parameters D ∈ N refers to the difficulty level of the

block B.
A blockchain, denoted as C is a sequence of valid blocks,

such that the rightmost block is called the head of the chain.
Let us denote the head as C.head. Any chain C, with head
C.head, can be extended to a new longer chain C′ by attaching
a new block B′ = (h′, b′, ctr′), such that h′ = H(ctr, h, b):
C′ = C||B′. The head of the new chain C′ becomes the new
block B′: C′.head = B′.

By definition of the blockchain, the elements h and ctr, of
block B = (h, b, ctr), are parameters proper to management
and security: h represents the hash of the previous block and
serves the purpose of locking blocks to each other and ctr
represents nounce that proves the performed work. On the
other hand, element b is proper to the application and refers
to transaction payload.

Now that all required elements are defined, we shall instan-
tiate the PoT protocol.

C. The PoT protocol

Under the PoT protocol, in addition to the transaction
payload and the header meta-data as in PoW, every block
additionally includes a signature by the peer that commits
it to the blockchain, as well as a digest of the trust graph
constructed during the current epoch. That is, given block
Bt = (h, b, ctr), that is committed at epoch t by node
vi ∈ TGt−1.V , b is made up of the following elements:

• the transactions payload, p,
• the digest of the trust graph constructed at t, dig(t) =
H(TGt), where H() is a cryptographic hash function,

• a digital signature by node vi, δ = signSKi
(h, ctr).

The protocol operates in epochs. We assume the system is
bootstrapped in the very first few epochs, t = 1, t = 2, ...t =
s where s is the length of the bootstrapping phase, by pure
PoW. During this bootstrapping phase, each new block miner
adds, in addition to transaction payload, the evolved version
of the trust graph as the collection of trust links announced
thus far. We assume that by epoch t = s the trust graph TGs
converges to a trust network based on which peers can already
be differentiated from each other based on their achieved trust
values. Therefore, starting from epoch t = s+ 1 the effective
PoT phase starts, and peers execute trust algorithm T A on
TGs, the trust graph digested in the block mined at t = s, to
retrieve the corresponding trust values based on which PoW
will be waived.

1) Trust divisions: We need to generate the different diffi-
culty levels for each peer based on their achieved trust. This
could be done by applying a continuous waiver function that
generates difficulty values that are inversely proportional to
the input trust. However, this will create too much discrepancy
between the difficulty levels at which every single peer mines,
even when their trust values are not so different. Another
alternative is to apply a categorical waiver, in which peers
are assigned to groups that correspond to a certain trust range.
All members of each group mine at the same difficulty level.
We call these groups trust divisions. Trust divisions could be
established based on defined ranges of trust (e.g., trust higher
than value x delimits the first trust division, between values
x and y delimits the second trust division, etc.), or on ranges
from the probability distribution of trust given by the trust
graph (e.g., the fist trust division corresponds to the 90th
percentile, the second trust division to the 75th percentile,
etc.). Regardless of how trust divisions are established, we
consider a number r of trust divisions in the system denoted
as TD1, TD2, . . . , TDr, where TD1 is the first trust division
representing the first highest trust nodes, TD2 is the second
trust division representing the second highest trust nodes,
etc. Each trust division also corresponds to a difficulty level
diff(TDx), such that, diff(TDx) > diff(TDx−1), x ∈
N[2,r].

At every epoch t during the PoT phase (t > s), peers race
to solve the next block to extend the blockchain using the
difficulty level corresponding to the trust division they fall
into, as defined by their own trust value achieved in epoch
t − 1. Once a peer solves a new block it broadcasts it to the
network. The other peers verify the validity of the block, and
if valid accept it as the next extension to the blockchain. We
note that any peer in the network can, unambiguously and
consistently with all the other peers, retrieve the trust values
for each peer, identify trust divisions membership, as well as
the corresponding mining difficulties of each. This is because
the trust graph at t− 1 is made publicly known by consensus,
hence the independence and the verifiability properties are

maintained.
2) Trust decay and recovery: When node vi mines a block

that is committed to the Blockchain at epoch t, vi is thereafter
subject to an activity slow down, so as to ensure that a small
subset of highly trusted node does not dominate the network,
as well as to limit sybil attacks. This also plays as a deterrent
factor for vt not to work around the trust graph constructed
during epoch t by favoring the trust links that would boost its
own trust. Therefore, the trust of vt is subjected to a decay
procedure with quick decay and slow recovery proportional to
its initial trust at epoch t. For this, we make use of exponential
decay functions. An exponential decay function is expressed
as: N(t) = N0 · eλt, where t is time, N0 = N(0) is the value
of the decaying quantity at time 0, and λ is the decay constant.
Larger λ will make the quantity fade much more quickly. As
we want a slow recovery, we set λ ∈]0, 1]. The fraction 1

λ
represents the mean life time of the decaying quantity; that
is, the time at which the quantity is diminished to e−1 times
its initial value. Accordingly, at time k

λ the quantity will be
diminished to e−k times its initial value. Time in our system
is represented in terms of number of blocks, and so k could be
chosen so that the fraction k

λ represents the number of blocks
during which a node remains subject to the decay procedure.

At every epoch t, the TrustDecay procedure is executed
by peers to apply a decay factor to the miners of recent
blocks. The procedure takes as input the decay length factor
k, the decay constant λ, the current epoch t, and the current
blockchain. The procedure rolls back k

λ blocks starting from t
and decays the trust value of the leader of each of the visited
blocks.

procedure TRUSTDECAY(k, λ, t, the blockchain)

Set integer, α = k
λ

if α ≥ t then (not enough blocks in history)
α = 1

elseα = t− α
end if
for c from t to α do

vc.trust = vc.trust − vc.trust · eλ(t−c) (vc is the leader of
block mined at epoch c)

end for
end procedure

3) Damping new edges: In order to contain the escalation
of new nodes up the trust ladder, damping is applied to newly
appearing edges. This is achieved by assigning weights to
edges proportionally to the number of consecutive epochs for
which they survive; i.e., the weight of an edge starts at 0 when
it first appears and increases by a step τ ∈ [0, 1] each time it is
again in the next epoch until it reaches 1. That is, ∀e ∈ TGt.E
weight is assigned as follows:

we(t) =

we(t− 1) + τ, if e ∈ TGt−1.E
1, if {e ∈ TGt−1.E∧

we(t− 1) + τ > 1}
0, otherwise.

4) Valid PoT block: Given all the elements presented above,
a valid PoT block is defined as follows:

Definition 2: Valid PoT Block. Let Bt =
(h, (p, dig(t), δ), ctr), where δ = signSKt(h, ctr, dig(t))
with SKt being the signing key of node vt ∈ TGt−1.V
proposing the block Bt. Let TDx be a trust division, and
diff(TDx) be the difficulty level applied to TDx. Bt is
considered a valid PoT block at epoch t, iff: Bt is a valid
PoW block with difficulty diff(TDx) and vt belongs to trust
division TDx, based on its trust value vt.trust. That is, Bt
satisfies the following validity predicate:

valPoTblockd(Bt) := (valPoWblockd(Bt) ∧ vt ∈
TDx ∧ d = diff(TDx)) = 1.

The difficulty levels of trust divisions could be set using
different heuristics, exactly like the difficulty in Bitcoin PoW
is designed to adjust so as to keep the duration of epochs to be
roughly 10 minutes. This duration is also known as the block
time, referring to the average time it takes for the network
to produce a new block. From an efficiency perspective, the
smaller the block time the better it should be as transactions
get confirmed more rapidly. On the other hand, a very small
block time could affect the stability and the consistency of
the system, mostly because of network latency. Besides, the
block time is also related to the security of the blockchain.
We postpone this discussion to the next subsection, and we
focus here on the fact that the setup of trust divisions and
their corresponding difficulty levels could be statically defined
in the protocol, as they can be dynamically adjusted in the
network, as it is with the difficulty level in Bitcoin for instance.

5) PoT consensus: Given all the elements provided thus far,
we summarize the PoT consensus protocol in Table I. At the
start of every epoch t, the state of the consensus blockchain
C is assumed to be known to all the peers in the network.
This includes knowledge of the trust graph at epoch t − 1.
Trust divisions and their corresponding difficulty levels are
also known as part of the protocol. First, nodes compute the
trust algorithm T A on the trust graph at t − 1 and then
apply the TrustDecay() procedure to decay the trust of recent
block leaders. All nodes that appear in TGt−1 are eligible to
participate in mining the block at epoch t. They engage in
the process of solving a PoW hash puzzle with the difficulty
level corresponding to the trust division under which they fall.
When node vz ∈ TGt−1.V finds a solution, it broadcasts the
proposed block Bz to the rest of the network. If the block
is a valid PoT one, it is accepted by the other peers and is
appended to the blockchain C. If not, then the peers ignore
the non valid proposed block and continue back to step 3 by
which all eligible nodes continue trying to find a valid block
to propose. In case the proposed block is valid and accepted
as the new head of the blockchain, the block leader vz is
subjected to the trust decaying procedure from the next epoch.
Epoch t ends, and the trust graph encoded in Bz is now the
effective trust graph for epoch t+ 1.

Concurrent blocks and branches. More than one valid
block could be solved at the same time; that is, peers could
simultaneously hear of more than one valid block. In such a
case, the rule is to go with the block suggested by the highest
trust peer. Besides, due to network latency and the dynamic

TABLE I
POT CONSENSUS PROTOCOL

1. Start of epoch t:
These elements are known: the trust graph TGt−1, the trust divisions with their difficulty levels, as well as the consensus blockchain, C

2. ∀vi ∈ TGt−1.V Compute algorithm T A on TGt−1 and apply TrustDecay() procedure to get effective vi.trust for every vi
3. ∀vi ∈ TGt−1.V Solve PoW with difficulty diff(TDx), such that vi.trust qualifies it to belong to DTx
4. vz ∈ TGt−1.V Solves candidate block Bz . vz is qualified to mine at difficulty d
5. vz → all the network Broadcast Bz
6. All peers in the network Verify Bz as per Definition 2

If validPoTblockd(Bz) do step 7; otherwise, go back to step 3
7. All the network Extend blockchain: C.head = Bz
8. End of epoch t

nature of the connectivity network, some peers may hear of a
valid block B only, while others may hear about A only. This
is also exhibited in existing PoW systems, as blockchains tend
to develop in multiple branches. As all peers will eventually
end up learning about each other branches, the rule to solve
this issue is to always go for the longest branch heard of so far.
In our PoT construction, the priority goes to the most trusted
branch; that is, the longest branch rule is replaced by the most
trusted branch, where the trust of a branch is the sum of the
trust values of the miners of its blocks as in the epoch when
each one of them mined his/her block.

D. Security analysis

A blockchain is said to be secure if it ensures the persistence
and the liveliness of its content [20]. Persistence dictates
that if an honest peer states that a block is part of the
blockchain, any other honestly responding peer will also report
the same; whereas liveliness refers to the quality that if a valid
block is appended to the consensus blockchain it will become
persistent. Persistence and liveliness are both related to how
old (also interpreted as how deep) a block is in the blockchain.
The older (deeper) a block is in the blockchain the higher
is the certainty by which its persistence and liveliness hold,
as making any change to that block requires rebuilding all
the blocks that follow it. In PoW rebuilding blocks requires
computational power that is fast enough to compete with
the rest of the network that is continuously extending the
blockchain. In PoT, rebuilding blocks requires either a high
trust measure to qualify for low difficulty PoW, or ownership
of a computational power that can cover the gap between low
difficulty mining allowed for trusted nodes and high difficulty
mining available for non trusted nodes. We assume that this
gap between the two difficulty levels is large enough so
as no existing computational power can cover it. Therefore,
rebuilding blocks requires achieving a proof of trust which
cannot be acquired without announcing and signing incoming
trust links from some of the peers in the rest of the network.
More importantly, a malicious peer needs not only to achieve
a high trust measure to qualify for higher trust divisions, but
also needs to maintain this trust over time. This is prevented
through the trust decay mechanism; thus, for an attack to
succeed, the attacker needs to consistently own/collude with
the nodes in the highest trust divisions; i.e., needs to own at
least 50% of nodes in every trust division. Therefore, while a

TABLE II
SUMMARY OF THE THREE DATASETS USED IN OUR EXPERIMENTS

Dataset Number of nodes Number of edges
Dataset1 5,881 31,677
Dataset2 1,899 59,835
Dataset3 1,632,803 30,622,564

50% attack in PoW can happen with the ownership of more
than 50% of the total computational power in the system, in
PoT this needs consistent ownership of 50% of nodes in at
least all top trust division that have chances to be elected. Such
sybil penetration is hard to conceive under honest-majority
trust networks [12] [14].

IV. EXPERIMENTAL ANALYSIS

We run experimental analysis with two main objectives: 1)
study the effect of the decaying procedure on the distribution
of block miners across trust divisions; 2) evaluate the impact
of controlling the evolution of newcomer node trust w.r.t the
emergence of sybil behavior.

A. Datasets and setup

We perform our expriments on three real world datasets
encoding who trusts whom in a network. The three datasets
are retrieved from [21], and Table II represents their summary.
Dataset1 refers to the bitcoinOTC dataset in [21] respectively.
The original bitcoinOTC dataset contains 35592 edges repre-
senting trust values ranging from -10 to 10 per edge. In Dataset
1, we prune only those edges with a positive tust value. We do
no consider these values in weithing edges as we assign our
own based on different experimental setups as is shown below.
Dataset2 refers to the CollegeMsg dataset in [21], representing
an email exchange graph. Dataset3 is the largest with over
1.5 million nodes and over 30 million edges. It represents the
Pokec dataset in [21] providing the friendship network of the
most popular social network in Slovakia (Pokec). Friendships
in Pokec are directed, so we consider them as trust links.
Dataset1 and Dataset2 are temporal, with edges timestamped
based on their order of appearance in the network; thus it is
possible to slice each of the two datasets into evolutionary
snapshots. For Dataset3 we used the results from [22] to
reconstruct possible evolution timelines of a given network
based on degree assortativity. We get 50 evolution snapshots
for Dataset3, and 10 for each of Dataset1 and Dataset2. We

0

15

30

t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

Dataset2
Without decay With decay

%
ne

w
 e

sc
al

at
ed

Epochs

0

6

12

t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

Dataset1

Without decay With decay

%
ne

w
 e

sc
al

at
ed

Epochs

0

10

20

30

40

t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16

Dataset3
Without decay With decay

Epochs

%
ne

w
 e

sc
al

at
ed

Fig. 2. The effect of TrustDecay() procedure on the dynamics of highest trust divisions in terms of percentage of new nodes appearing between epochs
with and without applying decay on the three datasets

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10

Graph evolution (% growth)
Escalation w/o edge damping
Escalation w/ edge damping

Epochs

Datset1

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10

Graph evolution (%growth)
Escalation w/o edge damping
Escalation w/ edge damping

Epochs

Datset2

Av
g.

 tr
us

t g
ro

w
th

 in

0

20

40

60

80

100

1 3 5 7 9 11131517192123252729313335373941

Graph evolution (% growth)
Escalation w/ edge damping
Escalation w/o edge damping

Epochs

Datset3

Av
g.

 tr
us

t g
ro

w
th

 in

Av
g.

 tr
us

t g
ro

w
th

 in

Fig. 3. The effect of applying edge damping on the escalation of newcomer nodes across trust divisions (growth of nodes trust across time). The x-axis
represents time in epochs. The y-axis represents the average % of growth of nodes trust as the graph evolves relative to the first epoch.

0

5

10

15

20

25

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

Without decay With decay

Tracked first 10 block leaders

%
 o

f b
lo

ck
s a

dd
ed

 b
y

le
ad

er

Fig. 4. Number of blocks added over a 100 epoch observation window by
same set of 10 tracked block leaders.

consider each of the snapshots as the version of the trust graph
in a block.

We simulate PoT operation by using Pagerank algorithm
[17] to generate trust measures for each peer. For the
TrustDecay() procedure we set the decay constant λ to 0.5
and k to 5, making the decay procedure applied 10 blocks
back at each epoch. For damping new edges, we use the
increment step τ = 0.1, so that an edge needs to appear
for 10 consecutive epochs before its weight saturates at 1.
For trust divisions, we set them based on percentiles with a
5% step: TD1 corresponds to nodes whose trust value in the
95th percentile, TD2 to nodes whose trust value in the 90th
percentile but not in the 95th, etc. In order to simulate the
results of low difficulty PoW, we use a Bernoulli distribution
process to first select a trust division with probability equal
to the average trust of the peers it contains. Then we pick up
uniformly at random one of the peers from the highest trust
division that passed the Bernoulli trial. As the lowest trust
divisions have very minimal chances to be elected, we focus
all our experiments on studying the dynamics of the five first
trust divisions; i.e., up to the 75th percentile.

B. Dynamics of trust divisions

We start by studying the dynamics of trust divisions in
terms of the percentage of new nodes appearing in a trust
division compared to the previous epoch, with and without
using trust decay. The highest trust divisions are characterized
by slow evolution, with only a few new nodes added to their

sets at each epoch. We run the experiment with the setup
explained above on the three datasets twice, first by applying
the TrustDecay() and second by not considering any decay.
We observe, at each epoch, the percentage of new nodes
appearing in trust divisions TD1 and TD2, which we refer
to as the trusted set (i.e., nodes in the 90th percentile). Figure
2 provides the observed results, contrasting the percentage of
new nodes appearing at each epoch when decay is applied to
when it is not applied. As we can see on the figure, applying
decay introduces up to 80% more changes in the set of highly
trusted nodes compared to no decay, as well as ensures a
constant change in the trusted set. This is especially important
as the trust graph starts stabilizing with fewer edges being
added over time. For example, for Dataset3 the graph starts
to stabilize starting from epoch t10 and changes to the trusted
set at that epoch is less than 7% when decay is not applied.
However, applying decay increases the changes in the trusted
set to above 19%.

To further study the effect of decay on preventing nodes
from dominating the system, we simulate the development
of the blockchain on Dataset1 and we focus on the set of
nodes selected as leaders for the first 10 blocks (L1, L2, ..,
L10). By the 11th epoch, we stabilize the graph at its final
evolution snapshot and we keep simulating the development
of the blockchain for 100 blocks more, selecting block leaders
by the simulated low difficulty PoW over top trusted divisions
as explained under subsection IV-A above. We run the same
process twice, with and without decay. Under each case, we
track the leaders of the first 10 blocks and observe when
they appear as leaders again in the upcoming 100 blocks. We
provide the results in Figure 4, where we can see that 66
out of the 100 blocks in the observation window have been
added by one of the first 10 leaders. However, when decay
was applied, only 3 of the 10 first block leaders were again
selected during the following 100 blocks with a total of only
5% of the blocks added by the same set, making it robust to
risks of monopolization.

C. Newcomer nodes escalation dynamics

We study the time it takes for newcomer nodes to escalate
across trust divisions on the three datasets under two different
scenarios: trust graph evolution 1) without applying damping
to new edges, and 2) with damping where the weight of an
edge starts at 0 when it first appears and is incremented by
0.1 whenever the edge appears again in the subsequent epoch.
As the trust graph grows (new nodes and edges are added),
we observe the percentage of nodes that have been escalated
to an upper trust division compared to one previous epoch.
Figure 3 shows the results for each of the three datasets, where
the x-axis represents time in terms of epochs, and the y-axis
refers to the average percentage of growth in node trust as the
trust graph evolves. The results show that the percentage of
escalated nodes when edges are not damped is hugely affected
by the changes in the trust graph. On the other hand, the
escalation is smoothed across epochs when the damping is
applied; i.e., changes due to the evolution of the graph do not
dramatically affect the escalation of nodes under the edge-
damping scenario compared to what happens under the no-
damping one. Besides, the growth of node trust under the
edge-damping scenario is considerably reduced. For example,
on the three datasets, the rate of node escalation was contained
by up to 68% in average. This ensures that newcomer nodes
cannot swiftly appear in the highest trust divisions making it
possible for honest nodes to detect sybil behavior and respond
to it before a sybil newcomer gains substantial chances to be
elected for a block.

To get better insight on the eventual speed of infiltration
of sybils and their potential impact on the system, we make
further experiment based on Dataset3, by assuming 20% of
the nodes to be sybil. Sybils are known to organize in patterns
that are different than honest ones, however some sybils may
succeed at infiltrating within areas of honest nodes, thus
looking as honest themselves [11] [19]. Therefore, the best
that sybils could achieve is to imitate honest behavior and to
get incorporated within the clusters of honest nodes (have other
honest nodes trust them). For this, at each epoch, we consider
that 20% of newcomer nodes selected uniformly at random
from the set of honest nodes connected to the trusted set are
sybil and we label them as such. We label the other 80% as
non-sybil. We track the escalation of the nodes labeled as sybil
across the subsequent epochs and we observe their percentage
under each of the trust divisions at each epoch. Figure 5
shows the results. As we can see on the figure, it is only
after more than 30 epochs that no more than 2% of the sybil
nodes escalate to the first trust division TD1. 10% of the sybil
nodes made it to TD3 by the 26th epoch, whereas less than
0.5% made it to the first trust divisions by that time. We also
note that this could be further contained by the edge damping
factor. In our experiments we considered an increment of 0.1,
making edges saturate after 10 blocks only. Lower increment
to edge weight will provide higher containment.

The observed results demonstrate that the progress of new-
comer nodes in PoT is slow enough to enable the detection and

0

10

20

30

40

50

60

70

80

90

100

9 14 19 24 29 34 39 44

TD1 TD2 TD3 <TD4
Epochs

%
 o

f S
yb

il
pe

r t
ru

st
 d

iv
is

io
n

Fig. 5. Percentage of sybil nodes per trust division across epochs. TD1
represents the trusted set.

containment of sybil nodes by the community using any of the
state-of-the-art sybil detection mechanisms [11]. Moreover, the
decay strategy provides consistent changes in the trusted set
even when the trust graph stabilizes with minimal evolution.
Besides, the size of the first trust division is observed to be
7.8% in average, but also never more than 9.8% of the size
of the trust graph at every epoch and for all datasets. This
suggests that the pool of nodes doing PoW is limited to less
than 10% of the population, resulting in corresponding energy
savings compared to when all the population engage in PoW.
Our results show that PoT Blockchains are viable, and are
dramatically more energy efficient.

V. CONCLUSION AND FUTURE WORK

Blockchain is a promising technology for the development
of more P2P applications under various domains; however,
the hopes on what the technology can deliver seem to be
overestimated. Most Blockchain platforms in operation so far
have a financial nature as they rely on an underlying crypto-
currency, where either PoW or PoS is used for consensus. PoW
is a beast that survives on increasingly burning huge amounts
of energy, while PoS relies on crypto-currencies and on the
dynamics of wealth distribution with risks of over control
by the richest peers. For non-financial Blockchains the only
available solutions are restrained to the permissioned model,
shifting the system back to centralization. In this paper, we
leverage on natural trust to enable non-financial Blockchains
without trading off the permissionless characteristic. Our PoT
construction achieves consensus based on a trust network that
emerges and that is managed in a completely decentralized
fashion. We design our solution to be resilient both to the
risk of monopolization by a small trusted cartel and to the
impact of sybil nodes. Experimental evaluation on real world
trust networks shows that PoT can make up to 10-fold sav-
ings on energy consumed by PoW without trading off the
decentralization guarantees while being even more resilient
to monopolization. Altogether, PoT allows Blockchains to live
up to community expectations.

There are many possibilities to extend the model. For
instance, PoT could be based on community membership
and multiple blockchains managed collaboratively by different
communities from the trust graph. As future work, we plan to
work on these extensions as well as to analyze different trust
ranking mechanisms other than pagerank.

REFERENCES

[1] B. Johnson, A. Laszka, J. Grossklags, M. Vasek, and T. Moore, “Game-
theoretic analysis of ddos attacks against bitcoin mining pools,” in
International Conference on Financial Cryptography and Data Security.
Springer, 2014, pp. 72–86.

[2] F. Zhang, I. Eyal, R. Escriva, A. Juels, and R. van Renesse, “Rem:
Resource-efficient mining for blockchains.” IACR Cryptology ePrint
Archive, vol. 2017, p. 179, 2017.

[3] M. Milutinovic, W. He, H. Wu, and M. Kanwal, “Proof of luck: An
efficient blockchain consensus protocol,” in Proceedings of the 1st
Workshop on System Software for Trusted Execution. ACM, 2016,
p. 2.

[4] A. Biryukov and D. Khovratovich, “Tradeoff cryptanalysis of memory-
hard functions,” in International Conference on the Theory and Appli-
cation of Cryptology and Information Security. Springer, 2014, pp.
633–657.

[5] J. Sousa, A. Bessani, and M. Vukolic, “A byzantine fault-tolerant
ordering service for the hyperledger fabric blockchain platform,” in
2018 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 2018, pp. 51–58.

[6] J. Zou, B. Ye, L. Qu, Y. Wang, M. A. Orgun, and L. Li, “A proof-of-
trust consensus protocol for enhancing accountability in crowdsourcing
services,” IEEE Transactions on Services Computing, 2018.

[7] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” in Annual Interna-
tional Cryptology Conference. Springer, 2017, pp. 357–388.

[8] J. Golbeck, Computing with social trust. Springer Science & Business
Media, 2008.

[9] J.-H. Cho, A. Swami, and R. Chen, “A survey on trust management for
mobile ad hoc networks,” IEEE Communications Surveys & Tutorials,
vol. 13, no. 4, pp. 562–583, 2011.

[10] L. Bahri and S. Girdzijauskas, “When trust saves enegry-a reference
franework for proof-of-trust (pot) blockchains,” in The Web Conference
2018. ACM Digital Library, 2018, pp. 1165–1169.

[11] A. Vasudeva and M. Sood, “Survey on sybil attack defense mechanisms
in wireless ad hoc networks,” Journal of Network and Computer
Applications, 2018.

[12] J.-H. Cho, A. Swami, and R. Chen, “A survey on trust management for
mobile ad hoc networks,” IEEE Communications Surveys & Tutorials,
vol. 13, no. 4, pp. 562–583, 2011.

[13] A. Jøsang, R. Ismail, and C. Boyd, “A survey of trust and reputation
systems for online service provision,” Decision support systems, vol. 43,
no. 2, pp. 618–644, 2007.

[14] W. Sherchan, S. Nepal, and C. Paris, “A survey of trust in social
networks,” ACM Computing Surveys (CSUR), vol. 45, no. 4, p. 47, 2013.

[15] R. Falcone, G. Pezzulo, and C. Castelfranchi, “A fuzzy approach to a
belief-based trust computation,” in Workshop on Deception, Fraud and
Trust in Agent Societies. Springer, 2002, pp. 73–86.

[16] F. Hendrikx, K. Bubendorfer, and R. Chard, “Reputation systems: A
survey and taxonomy,” Journal of Parallel and Distributed Computing,
vol. 75, pp. 184–197, 2015.

[17] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.

[18] Y. Du, Y. Shi, and X. Zhao, “Using spam farm to boost pagerank,” in
Proceedings of the 3rd international workshop on Adversarial informa-
tion retrieval on the web. ACM, 2007, pp. 29–36.

[19] K. Zhang, X. Liang, R. Lu, and X. Shen, “Sybil attacks and their
defenses in the internet of things,” IEEE Internet of Things Journal,
vol. 1, no. 5, pp. 372–383, 2014.

[20] J. A. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone
protocol: Analysis and applications.” in EUROCRYPT (2), 2015, pp.
281–310.

[21] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[22] K.-K. Kleineberg and M. Boguná, “Evolution of the digital society
reveals balance between viral and mass media influence,” Physical

Review X, vol. 4, no. 3, p. 031046, 2014.

