
Task Scheduling on Manycore Processors
with Home Caches

Ananya Muddukrishna, Artur Podobas, Mats Brorsson, and Vladimir Vlassov

KTH Royal Institute of Technology, Sweden

Abstract. Modern manycore processors feature a highly scalable and software-
configurable cache hierarchy. For performance, manycore programmers will not
only have to efficiently utilize the large number of cores but also understand and
configure the cache hierarchy to suit the application. Relief from this manycore
programming nightmare can be provided by task-based programming models
where programmers parallelize using tasks and an architecture-specific runtime
system maps tasks to cores and in addition configures the cache hierarchy. In this
paper, we focus on the cache hierarchy of the Tilera TILEPro64 processor which
features a software-configurable coherence waypoint called the home cache. We
first show the runtime system performance bottleneck of scheduling tasks obliv-
ious to the nature of home caches. We then demonstrate a technique in which
the runtime system controls the assignment of home caches to memory blocks
and schedules tasks to minimize home cache access penalties. Test results of our
technique have shown a significant execution time performance improvement on
selected benchmarks leading to the conclusion that by taking processor architec-
ture features into account, task-based programming models can indeed provide
continued performance and allow programmers to smoothly transit from the mul-
ticore to manycore era.

1 Introduction

Faced with increasing performance demands, chip manufacturers have begun to intro-
duce manycore processors with tens to hundreds of cores in major electronics domains.
Manycore processors support a large number of cores using highly scalable architec-
tural features such as a distributed cache hierarchy, a high bandwidth on-chip network
and multiple memory controllers.

Writing software which can scale to all cores of a manycore processor is a formidable
task. In addition to mapping parallelism efficiently onto cores, manycore program-
mers must pay close attention to memory behavior and on-chip communication of their
applications. To further complicate the matter, manycore processors expose a variety
of software-controllable architecture features which must be configured properly to
achieve the best application performance.

Task-based programming models such as OpenMP, OmpSs [1], Cilk Plus and Intel
TBB represent an important step towards easy parallel programming on shared memory
machines. These models essentially allow the programmer to forget about threads and
focus on expressing application parallelism using structures known as tasks. Tasks are
internally scheduled on threads by a dynamic component called the runtime system.

I. Caragiannis et al. (Eds.): Euro-Par 2012 Workshops, LNCS 7640, pp. 357–367, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

358 A. Muddukrishna et al.

By balancing the task load on threads, existing runtime systems have been able to pro-
vide good portable performance on several generations of multicore processors [2]. To
continue with the same performance trend on manycore processors, task-based runtime
systems will have to turn a variety of architecture-specific knobs and schedule tasks on
threads more intelligently by considering chip-level aspects such as task data affinity,
thread binding, cache communication latency and memory controller bandwidth.

In this paper, we report our efforts to improve task-based runtime system perfor-
mance on the Tilera TILEPro64 manycore processor which features a banked chip-
wide distributed software-configurable L2 cache. The cache coherence protocol of the
TILEPro64 orchestrates coherence actions for each cache block from a specific bank
of the L2 cache known as the home cache. Depending upon the location of the home
cache, the access latency experienced by cores for a missing cache block can vary. We
first characterize the home cache dependent non-uniformity in access times to cache
blocks. Next we show how home cache oblivious task scheduling by the runtime sys-
tem incurs significant execution time performance degradation. We then present a home
cache aware task scheduling technique in which the runtime system implicitly controls
the home cache affinity of cache blocks and schedules tasks to minimize home cache
access penalties. Finally we present and explain test results of our home cache aware
scheduling technique which show a significant improvement in execution time perfor-
mance in comparison to blindly load-balancing runtime systems.

2 Manycore Architectures with Home Caches

In this section we introduce manycore architectural features by using the TILEPro64 as
an example. In particular, we highlight the home cache feature and its impact on task
scheduling performance.

2.1 TILEPro64 Processor Architecture

The Tilera TILEPro64 is a 64-core tiled architecture processor whose tiles are con-
nected by a 8X8 multi-link mesh on-chip network. Each tile contains a 32-bit VLIW
integer core, a network switch, a private 16 KB L1I cache, a private 8 KB DL1 cache
and a 64 KB bank of the shared L2 cache whose aggregated capacity from 64 tiles is 4
MB. The topology of the TILEPro64 processor is shown in Figure 1a. In the topology
illustration, L1 caches are considered to be part of the core and not shown. The grayed
sections are explained in a later section of the paper.

The TILEPro64 provides hardware cache coherence whose actions are configurable
by user-level software. The cache coherence protocol allocates every cache block sized
chunk of main memory in a specific bank of the L2 cache known as the home cache. For
simplicity, we refer to the tile that contains the home cache of a memory block as the
home tile, and those that do not as remote tiles. The home cache is used to satisfy load
and store requests from all tiles. Upon a load miss in the L2 cache of a tile, the home
cache is requested to provide the missing block. Depending on the software configura-
tion, the block delivered by the home cache is allocated selectively in both or either of
the L2 and L1 caches of the tile. Stores in a tile are always write-through to the home
cache, with a store update if the block is found in the L1.

Task Scheduling on Manycore Processors with Home Caches 359

(a) Topology
(b) NUCA characterization

Fig. 1. TILEPro64 features

The home cache of any given cache block is selectable by software. The TILEPro64
provides the hash-for-home allocation scheme using which cache blocks in a main
memory page are uniformly distributed on a system-wide set of home caches [3]. As
an alternative, all cache blocks within a main memory page can be allocated in a single
home cache. In addition, it is possible to change the home cache of a given cache block
at a high migration cost.

The load latency of a missing cache block depends on the physical on-die location
of the home cache. This asymmetry in cache load latency represents the Non-Uniform
Cache Access (NUCA) nature of the TILEPro64 and is characterized in Figure 1b for
a cache block whose home cache is in tile id 0. We can see that accesses from tiles
other than tile id 0 (remote tiles) incur a 4 to 6 times increase in load latencies. We note
the NUCA latencies shown in Figure 1b are measured for isolated tasks under minimal
interference conditions. The actual observed NUCA latencies are indeed worse due to
multi-programming, OS and hypervisor interference. We also note the NUCA latencies
shown in Figure 1b are measured for tile ids up to 62 only. This is because one tile on
the TILEPro64 is given up to run dedicated system software.

2.2 Home Cache Performance Impact

We now illustrate the performance degradation of home cache oblivious task schedul-
ing using a synthetic program shown in Listing 1.1. The synthetic program is writ-
ten using the OmpSs programming model which extends OpenMP with support for
implicit synchronization of tasks using array-style data dependence annotations called
in, out and inout. The synthetic program first allocates and initializes N blocks of
data, each of size SZ using plain GLIBC malloc which internally uses the hash-for-
home scheme by default on the TILEPro64. N tasks are then created to independently
apply the transformation function, transform, on the N data blocks. We consider the
performance of two different schedules for tasks of the synthetic program. The first
schedule is a commonly used central queue schedule called the Breadth First Schedule
(BFS). BFS represents a self-scheduled execution where newly created tasks are added
to a central and made available to idle threads for execution. The second schedule is a
manual schedule which is hard-coded by the programmer such that each data block has

360 A. Muddukrishna et al.

an unique home cache and each task executes on the home tile of its data block. For
N=8 and SZ=32 KB, Figures 2a and 2b respectively show the per core execution time
and data cache stall cycle performance of the two schedules. We can clearly see that
execution time of the home cache oblivious BF schedule suffers due to non-uniform
data cache stall cycles resulting from the hash-for-home allocation of data blocks. In
comparison, the manual home cache aware schedule outperforms BFS since all tasks
benefit from local access to the home cache of data blocks.

for (int i=0; i<N; i++) {
list [i] = malloc(sizeof (int) ∗ SZ);
initialize (i , list [i], SZ);

}
for (int i=0; i<N; i++) {
#pragma omp task inout (list [i][0: SZ−1])
transform (list [i], SZ);
}
#pragma omp taskwait

Listing 1.1. Synthetic program to illustrate impact of home caches

(a) Execution time (b) Data cache stall cycles

Fig. 2. Synthetic program schedule performance

The manual schedule has an obvious drawback - it requires the programmer to use
TILEPro64 specific routines to explicitly set the affinity of application memory and
tasks. Such an explicit responsibility is counter-productive to the programmer-friendly
goal of task-based programming models which expect the programmer to only de-
fine tasks. In order to benefit from home cache aware scheduling and yet retain the
programmer-friendliness of task-based programming, we decided that home cache as-
signment and home cache affinity based task scheduling had to become implicit runtime
system responsibilities. Our implemented of the same is described in the next section.

3 Implicit Home Cache Aware Task Scheduling

We implemented implicit home cache aware task scheduling using two abstracted run-
time system functions called the memory allocation policy and the scheduling policy.
The memory allocation policy controls the assignment of home caches to dynamically

Task Scheduling on Manycore Processors with Home Caches 361

allocated application memory using TILEPro64 specific system calls. In our imple-
mentation, the memory allocation policy exposes two programmer interfaces called
rt malloc and rt free as shown in Listing 1.2. These interfaces are designed sim-
ilar to GLIBC malloc and free to allow trivial translation by the programmer and
or source-to-source compiler.

void∗ rt malloc (void∗ ref ptr , size t size in bytes) ;
void∗ rt free (void∗ ptr) ;

Listing 1.2. Memory allocation policy interfaces

We implemented two types of memory allocation policies:

1. Round allocation policy: This policy assigns a single home cache to all memory
pages requested by the call to rt malloc. To assign the home cache, the policy
chooses from pre-configured set of home caches in a round-robin manner. If the call
to rt malloc has a valid ref ptr argument, the round allocation policy assigns
the home cache of data pointed byref ptr to the currently requested allocation.

2. Hashed allocation policy: This policy uses hash-for-home allocation over a pre-
configured set of home caches for all memory pages requested by the call to
rt malloc. The policy overrides the default system-wide set of home caches used
by hash-for-home. The policy ignores the ref ptr argument of rt malloc.

The type of memory allocation policy is selected by a person or software that we call
the tuner. We assume that the tuner is responsible for configuring the startup parame-
ters of the runtime system. The tuner also decides the set of home caches used by the
round and hashed policies. The memory allocation policy maintains a record of all al-
locations made using rt malloc. Information from this record can be queried from
other components of the runtime system components such as the scheduling policy.

The other half of our home cache aware scheduling mechanism is the scheduling pol-
icy called NUCA Schedule (NUCAS). During startup, NUCAS binds threads to cores
using a 1:1 map. Therefore while describing NUCAS, we use the terms thread and core
interchangeably. NUCAS schedules each task on the core which has the least latency of
access to the home caches assigned to the dependences of the task. NUCAS determines
the home caches of task dependences by querying the records of the memory allocation
policy. Access latencies to task dependences are computed using a core-to-home-cache
communication cost matrix whose entries are populated by calculating on-chip network
latencies during runtime system initialization. Indeed, the NUCA characterization in
Figure 1b graphically depicts the first row of the core-to-home-cache communication
cost matrix used by NUCAS. Since the write buffer on the TILEPro64 absorbs store
latencies to home caches, we designed NUCAS to consider only input dependences of
tasks.

Given a task with multiple input dependences whose home caches are spread out,
NUCAS checks the access latency of each core to the home caches of all task depen-
dences and chooses the core with the least access latency. To speed up the checking
process, NUCAS uses a simple heuristic for tasks with D equal sized dependences.

362 A. Muddukrishna et al.

The heuristic simply chooses the core associated with the home tile of the last depen-
dence in the list of D dependences. The heuristic is reasonable since scheduling a task
for local access to the home cache of a single dependence on the TILEPro64 is latency-
wise comparable to scheduling the same task for non-local but least latency access to
home caches of all dependences. The choice of D is left to the tuner.

NUCAS associates a task queue with every core part of the runtime execution. To
balance the load on the task queues, cores are grouped into fixed size vicinities and are
allowed to steal tasks from other cores belonging to the same vicinity. The idea behind
vicinity-based task stealing is that access latencies to home caches within a vicinity are
logically considered to be the same. Vicinity sizes of 1, 4, 8, 32 and 63 tiles are made
available to the tuner and their arrangement is shown in grayed sections of Figure 1a. A
vicinity size of 1 implies cores never steal and a size of 63 implies all cores steal from
each other. In our implementation, the default vicinity size is 1.

4 Experimental Setup

Since the TILEPro64 has many configurable knobs, we made the following assumptions
to fix the architecture. We assumed that all loads and store requests issued by cores
are processed by home caches only. To realize the assumption, we disabled local L1
and L2 caching on the TILEPro64. By disabling local L2 caching, we minimized the
adverse effect of evicting local L2 cache entries to memory. By disabling L1 caching,
we brought the NUCA impact of home caches out to the front. This move additionally
allowed us to make a technology projection to home cache based architectures larger
and slower than that of the TILEPro64.

We used four task-based applications as benchmarks to test the performance of NU-
CAS. Two of the benchmarks are synthetic but with real world execution patterns. The
benchmarks are described below:

1. Map: This is a synthetic benchmark whose execution resembles the map phase of
the Map-Reduce programming framework. The benchmark allocates data in chunks
and creates tasks which independently operate on unique data chunks. The bench-
mark is exactly similar to the synthetic program shown in Listing 1.1.

2. Aggregator: This is a synthetic benchmark whose execution resembles the
merge phase of the Mergesort benchmark of the Barcelona OpenMP Task Suite
(BOTS) [4]. The benchmark’s task dependence graph begins with a execution sim-
ilar to the Map benchmark and later unfolds as an inverted tree. Each task in the
inverted tree reads from two to three input dependences, operates on the read data
and writes results to a single output dependence, thereby performing a reduction
operation.

3. Vector Multiplier: This benchmark uses tasks to perform vector transformations
commonly seen in scientific applications. Each task of the benchmark iteratively
applies a set of multiply and add operations on two input vectors and stores back
the result into one of the input vectors. The input vectors are not co-allocated in the
same home cache. Tasks of the benchmark are independent, therefore the depen-
dence graph of the benchmark is flat.

Task Scheduling on Manycore Processors with Home Caches 363

4. SparseLU: This is a benchmark based on the SparseLU benchmark of BOTS. This
benchmark uses tasks to perform the LU factorization of the input sparse matrix.
Each task of the benchmark reads from two to three blocks of the sparse matrix
and stores back the result into one of the blocks. Two classes of tasks access one
of the input blocks more intensely than others. Tasks of the benchmark are not
independent and the task dependence graph is complex.

While selecting benchmark parameters, we had to ensure that the NUCA impact of
home caches was not masked by other architectural features of the TILEPro64. We
considered integer versions of the benchmarks to rule out effects of slow floating-point
operations which on the TILEPro64 are emulated using software. The benchmark data
sizes were carefully selected to minimize off-chip memory accesses which take about
180 cycles on the TILEPro64. In addition, we zeroed the interval of the operating sys-
tem tick scheduler to minimize thread switching effects. Finally, the benchmarks were
run in isolation to avoid cache pollution effects from other applications. The benchmark
input parameters and related information are summarized in Table 1.

Table 1. Study benchmark parameters

Benchmark Input Tuner Input Number of tasks

Map 63 chunks, each 16 KB Cores=63, D=1 63
Aggregator 48 chunks,each 16 KB Cores=48, D=3 94
Vector Multiplier 128 integer vectors, each 4096 integers Cores=63, D=2 4096
SparseLU 32X32 blocks, each 36X36 integers Cores=63, D=3 3281

We implemented NUCAS and memory allocation policies using an in-house exper-
imental task-based runtime system called MIR. MIR supports task scheduling and im-
plicit task synchronization. In addition, MIR records core execution states and hardware
performance counter events and dumps trace files viewable in Paraver [5] which is a
powerful parallel execution visualization tool developed by the Barcelona Supercom-
puting Center (BSC).

To compare NUCAS, we used the BFS schedule. The execution of BFS is based on
a similarly named scheduling policy described in a study of OpenMP task scheduling
strategies by Duran et al [6]. BFS associates a single FIFO task queue with all cores part
of the runtime execution. BFS queues all application tasks into the single queue. When
idle, each core removes and executes the task from the FIFO queue. Due to this random
self-scheduling nature, BFS is fast and provides aggressive load-balancing for medium-
grained tasks. We did not implement a distributed queue scheduler for comparison since
our study benchmarks have medium grained tasks all created by a single thread [2]. We
also stress that we do not intend to make an apples-to-apples comparison of scheduling
policies. The idea behind our choice of comparison was to judge the performance of
NUCAS which optimized for home caches against BFS which did not.

364 A. Muddukrishna et al.

We selected the following combinations of scheduling and memory allocation poli-
cies: BFS-hashed, BFS-round and NUCAS-round. The BFS-hashed policy can be con-
sidered as the only option available to the tuner on the TILEPro64 in the absence of
the home cache aware scheduling mechanisms. We consider the BFS-round case as an
interesting interconnect bandwidth optimizing experiment in which the programmer ex-
plicitly allocates application data on different home caches but the scheduler is oblivious
to the distribution and schedules tasks randomly. Finally in the NUCAS-round case, we
characterize a runtime system execution where application data is implicitly allocated
on different home caches and passed on as useful information to the scheduler which in
turn schedules tasks to minimize NUCA penalties of home caches. We do not consider
the NUCAS-hashed case since it unfeasibly involves minimizing NUCA penalties to
cache blocks spread out on all available home caches. To add, system software of the
TILEPro64 does not provide an user-level interface to obtain the home cache mapping
on a cache block basis for hash-for-home allocated data.

5 Experimental Results

Figure 3 shows the execution time performance of our study benchmarks under differ-
ent scheduling and memory allocation policy combinations which we simply refer to
as schedules. The time measured corresponds to the parallel section of the benchmarks.
For the Vector Multiplier and SparseLU benchmarks, performance of task stealing un-
der different vicinity sizes is also shown. Since the Map and Aggregator benchmarks do
not improve with vicinity-based task stealing, we only show the NUCAS-round result
for a vicinity size of 1 for these benchmarks. Figure 3 clearly shows that NUCAS-round
produced the fastest schedule for all the benchmarks.

Fig. 3. Execution time performance of study benchmarks

In order to ascertain that home cache aware task scheduling, or the lack of it, was
the reason behind the performance results seen in Figure 3, we observed core execution
traces complemented with cycle counter and data cache stall cycle counter values on
Paraver. Columns 4a- 4d in Figure 4 shows the Paraver view of core execution traces
for all study benchmarks. The rows of Figure 4 from top to bottom respectively show
the views of BFS-hashed (B-h), BFS-round (B-r) and NUCAS-round (N-r) schedules.
The NUCAS-round view corresponds to the best performing vicinity size in Figure 3.

Task Scheduling on Manycore Processors with Home Caches 365

Within each view, the Y-axis marks cores and while the X-axis shows cycles. Each view
shows a per core timeline, i.e., when and for how long each core executed tasks, using
colored bars. The color of each bar is encoded using a gray gradient. Light and dark
gray bars respectively indicate low and high data cache stall cycle values. The three
schedule views of a benchmark are relative to each other - they are cycle aligned to the
largest execution time and are semantic aligned to fit the entire range of data cache stall
cycles values seen among all schedules.

B-h

B-r

N-r

(a) Map (b) Aggregator (c) Vector Multiplier (d) SparseLU

Fig. 4. Paraver views of study benchmark execution under different schedules

For the Map benchmark case, the views agreed with our motivation for home cache
aware scheduling presented in Section 2.2. Views for both BFS-hashed and BFS-round
schedules, which are home cache oblivious, showed long dark gray bars, indicating
long task execution times due to large number of data cache stall cycles. On the other
hand, the view for the home cache aware NUCAS-round schedule showed short light
gray bars, indicating relatively smaller task execution times due to small number of
data cache stall cycles. We reasoned about the performance of different schedules for
the Aggregator benchmark similarly.

The BFS-round schedule performed poorly for the Vector Multiplier benchmark
showing a large number of dark gray bars in its view. In comparison, views of both the
BFS-hashed and NUCAS-round showed only light gray bars. However, the NUCAS-
round schedule surpassed the performance of BFS-hashed schedule showing relatively
lighter gray bars indicating that tasks suffered lower data cache stall cycles in compari-
son. In addition, vicinity-based task stealing improved execution time performance due
to load-balancing over larger vicinity sizes.

366 A. Muddukrishna et al.

The views of the SparseLU benchmark presented an interesting case. Both the BFS-
round and BFS-hashed schedules showed that almost all tasks save a few experienced
uniform data cache stall cycles and short execution times. However, those few tasks
which incurred large data cache stall cycles (dark gray bars) increased the critical path
of execution. In comparison, the NUCAS-round view showed that all tasks experienced
uniform data cache style cycles the reason for which is the NUCAS heuristic which was
able to optimize task execution for local access to the home cache of the most intensely
accessed dependence. Vicinity-based stealing, which is oblivious to dependence access
intensity, effectively removed the benefit of heuristic.

6 Related Work

Task and data affinity mechanisms discussed in our work are greatly inspired by the
large body of research on NUMA optimizations for OpenMP runtime systems. The
implicit memory allocation and architectural locality based scheduling mechanisms we
implemented in the runtime system are inspired by a similar work on NUMA systems by
Broquedis et al [7]. The memory allocation policies in our work are similar in principle
to the bind and cyclic policies of the Minas memory allocator framework [8] for large
scale NUMA machines. We cannot compare the techniques of our study with NUMA-
based research because of the large difference in permissible scheduling overheads -
NUCA penalties cost tens of cycles whereas NUMA penalties cost thousands of cycles.
Our work improves on random task scheduling by reducing the impact of cache access
penalties. We found a similar motivation in the SLAW [9] and the MTS [10] work-
stealing schedulers for machines with hierarchical memory hierarchies. Both SLAW
and MTS are designed to restrict off-chip work-stealing and execute parent and sibling
tasks on the same multicore processor to utilize the state maintained in the central last-
level cache. Our work relies on simple memory allocation policies to distribute task
data on home caches during run-time. We found a more complicated counterpart in the
work of Lu et al [11] where loops of affine programs are transformed at compile-time to
minimize the NUCA impact of hash-for-home style of allocation manycore processors.

7 Conclusions

Manycore processors have hit the market and will grow larger in size and complexity in
the coming years. In our work, we have shown that manycore processors demand care-
ful architecture configuration and scheduling to achieve scalable parallel performance.
Using the performance impact of home caches on the Tilera TILEPro64 processor as an
example, we have shown how the runtime system of task based programming models
can implicitly configure the manycore architecture for improved task scheduling per-
formance. We believe that techniques similar to our memory allocation policy design,
which essentially pushes application memory management as a runtime system respon-
sibility, will rise in prominence as manycore processors become commonplace. Our
home cache aware scheduling technique has shown significant execution time improve-
ment in comparison to plain aggressive load-balancing schedules for selected study
benchmarks. Reliance on the tuner, chunked application memory allocation, fixed steal

Task Scheduling on Manycore Processors with Home Caches 367

vicinity size, static memory allocation policy, unknown trigger points to recalculate the
core-to-home-cache communication cost matrix and a limited set of study benchmarks
constitute the currently being addressed limitations of our work. Scheduling is a game
of overheads and with the arrival of manycore processors, we have shown that task-
based runtime systems can and should begin thinking about what really goes on inside
the processor.

Acknowledgment. The research leading to these results has received funding
from the European Commission’s Seventh Framework Programme [FP7/2007-2013]
under the ENCORE Project (www.encore-project.eu), grant agreement nr.
248647. The authors are members of the HiPEAC European network of Excellence
(http://www.hipeac.net). The authors acknowledge great support in under-
standing Paraver from Xavi Aguilar at PDC Center For High Performance Computing
at KTH, Xavier Teruel and Alejandro Rico Carro, both at BSC.

References

1. Duran, A., Ayguad, E., Badia, R., Labarta, J., Martinell, L., Martorell, X., Planas, J.: Ompss:
a proposal for programming heterogeneous multi-core architectures. Parallel Processing Let-
ters 21(2), 173 (2011)

2. Podobas, A., Brorsson, M.: A comparison of some recent task-based parallel programming
models. In: Proceedings of the 3rd Workshop on Programmability Issues for Multi-Core
Computers, MULTIPROG 2010, Pisa (January 2010)

3. Tilera: Tile processor user architecture manual, http://www.tilera.com/scm/
docs/UG101-User-Architecture-Reference.pdf (accessed June 14, 2012)

4. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona openmp tasks suite: A
set of benchmarks targeting the exploitation of task parallelism in openmp. In: International
Conference on Parallel Processing, ICPP 2009, pp. 124–131. IEEE (2009)

5. Pillet, V., Labarta, J., Cortes, T., Girona, S.: Paraver: A tool to visualize and analyze parallel
code. In: WoTUG-18, pp. 17–31 (1995)

6. Duran, A., Corbalán, J., Ayguadé, E.: Evaluation of OpenMP Task Scheduling Strategies.
In: Eigenmann, R., de Supinski, B.R. (eds.) IWOMP 2008. LNCS, vol. 5004, pp. 100–110.
Springer, Heidelberg (2008)

7. Broquedis, F., Furmento, N., Goglin, B., Namyst, R., Wacrenier, P.A.: Dynamic Task and
Data Placement over NUMA Architectures: An OpenMP Runtime Perspective. In: Müller,
M.S., de Supinski, B.R., Chapman, B.M. (eds.) IWOMP 2009. LNCS, vol. 5568, pp. 79–92.
Springer, Heidelberg (2009)

8. Pousa Ribeiro, C., Méhaut, J.F.: Minas: Memory Affinity Management Framework. Research
Report RR-7051, INRIA (2009)

9. Guo, Y., Zhao, J., Cave, V., Sarkar, V.: Slaw: a scalable locality-aware adaptive work-stealing
scheduler. In: 2010 IEEE International Symposium on Parallel & Distributed Processing,
IPDPS, pp. 1–12. IEEE (2010)

10. Olivier, S., Porterfield, A., Wheeler, K., Prins, J.: Scheduling task parallelism on multi-socket
multicore systems. In: Proceedings of the 1st International Workshop on Runtime and Oper-
ating Systems for Supercomputers, pp. 49–56. ACM (2011)

11. Lu, Q., Alias, C., Bondhugula, U., Henretty, T., Krishnamoorthy, S., Ramanujam, J., Roun-
tev, A., Sadayappan, P., Chen, Y., Lin, H., et al.: Data layout transformation for enhancing
data locality on nuca chip multiprocessors. In: 18th International Conference on Parallel Ar-
chitectures and Compilation Techniques, PACT 2009, pp. 348–357. IEEE (2009)

www.encore-project.eu
http://www.hipeac.net
http://www.tilera.com/scm/docs/UG101-User-Architecture-Reference.pdf
http://www.tilera.com/scm/docs/UG101-User-Architecture-Reference.pdf

