
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/280720451

Stay-Away, protecting sensitive applications from performance interference

Conference Paper · December 2014

DOI: 10.1145/2663165.2663327

CITATIONS

21
READS

127

4 authors, including:

Some of the authors of this publication are also working on these related projects:

netCommons View project

Encore EU FP7 View project

Navaneeth Rameshan

Universitat Politècnica de Catalunya

16 PUBLICATIONS 86 CITATIONS

SEE PROFILE

Leandro Navarro

Universitat Politècnica de Catalunya

230 PUBLICATIONS 1,138 CITATIONS

SEE PROFILE

Vladimir Vlassov

KTH Royal Institute of Technology

122 PUBLICATIONS 772 CITATIONS

SEE PROFILE

All content following this page was uploaded by Navaneeth Rameshan on 07 April 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/280720451_Stay-Away_protecting_sensitive_applications_from_performance_interference?enrichId=rgreq-e213492dce26622129a2adcffa23408a-XXX&enrichSource=Y292ZXJQYWdlOzI4MDcyMDQ1MTtBUzozNDgxODk2MjMzNzM4MjVAMTQ2MDAyNjI4MzQ4OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/280720451_Stay-Away_protecting_sensitive_applications_from_performance_interference?enrichId=rgreq-e213492dce26622129a2adcffa23408a-XXX&enrichSource=Y292ZXJQYWdlOzI4MDcyMDQ1MTtBUzozNDgxODk2MjMzNzM4MjVAMTQ2MDAyNjI4MzQ4OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/netCommons-2?enrichId=rgreq-e213492dce26622129a2adcffa23408a-XXX&enrichSource=Y292ZXJQYWdlOzI4MDcyMDQ1MTtBUzozNDgxODk2MjMzNzM4MjVAMTQ2MDAyNjI4MzQ4OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Encore-EU-FP7?enrichId=rgreq-e213492dce26622129a2adcffa23408a-XXX&enrichSource=Y292ZXJQYWdlOzI4MDcyMDQ1MTtBUzozNDgxODk2MjMzNzM4MjVAMTQ2MDAyNjI4MzQ4OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e213492dce26622129a2adcffa23408a-XXX&enrichSource=Y292ZXJQYWdlOzI4MDcyMDQ1MTtBUzozNDgxODk2MjMzNzM4MjVAMTQ2MDAyNjI4MzQ4OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Navaneeth_Rameshan?enrichId=rgreq-e213492dce26622129a2adcffa23408a-XXX&enrichSource=Y292ZXJQYWdlOzI4MDcyMDQ1MTtBUzozNDgxODk2MjMzNzM4MjVAMTQ2MDAyNjI4MzQ4OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Navaneeth_Rameshan?enrichId=rgreq-e213492dce26622129a2adcffa23408a-XXX&enrichSource=Y292ZXJQYWdlOzI4MDcyMDQ1MTtBUzozNDgxODk2MjMzNzM4MjVAMTQ2MDAyNjI4MzQ4OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universitat_Politecnica_de_Catalunya?enrichId=rgreq-e213492dce26622129a2adcffa23408a-XXX&enrichSource=Y292ZXJQYWdlOzI4MDcyMDQ1MTtBUzozNDgxODk2MjMzNzM4MjVAMTQ2MDAyNjI4MzQ4OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Navaneeth_Rameshan?enrichId=rgreq-e213492dce26622129a2adcffa23408a-XXX&enrichSource=Y292ZXJQYWdlOzI4MDcyMDQ1MTtBUzozNDgxODk2MjMzNzM4MjVAMTQ2MDAyNjI4MzQ4OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Leandro_Navarro2?enrichId=rgreq-e213492dce26622129a2adcffa23408a-XXX&enrichSource=Y292ZXJQYWdlOzI4MDcyMDQ1MTtBUzozNDgxODk2MjMzNzM4MjVAMTQ2MDAyNjI4MzQ4OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Leandro_Navarro2?enrichId=rgreq-e213492dce26622129a2adcffa23408a-XXX&enrichSource=Y292ZXJQYWdlOzI4MDcyMDQ1MTtBUzozNDgxODk2MjMzNzM4MjVAMTQ2MDAyNjI4MzQ4OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universitat_Politecnica_de_Catalunya?enrichId=rgreq-e213492dce26622129a2adcffa23408a-XXX&enrichSource=Y292ZXJQYWdlOzI4MDcyMDQ1MTtBUzozNDgxODk2MjMzNzM4MjVAMTQ2MDAyNjI4MzQ4OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Leandro_Navarro2?enrichId=rgreq-e213492dce26622129a2adcffa23408a-XXX&enrichSource=Y292ZXJQYWdlOzI4MDcyMDQ1MTtBUzozNDgxODk2MjMzNzM4MjVAMTQ2MDAyNjI4MzQ4OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vladimir_Vlassov?enrichId=rgreq-e213492dce26622129a2adcffa23408a-XXX&enrichSource=Y292ZXJQYWdlOzI4MDcyMDQ1MTtBUzozNDgxODk2MjMzNzM4MjVAMTQ2MDAyNjI4MzQ4OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vladimir_Vlassov?enrichId=rgreq-e213492dce26622129a2adcffa23408a-XXX&enrichSource=Y292ZXJQYWdlOzI4MDcyMDQ1MTtBUzozNDgxODk2MjMzNzM4MjVAMTQ2MDAyNjI4MzQ4OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/KTH_Royal_Institute_of_Technology?enrichId=rgreq-e213492dce26622129a2adcffa23408a-XXX&enrichSource=Y292ZXJQYWdlOzI4MDcyMDQ1MTtBUzozNDgxODk2MjMzNzM4MjVAMTQ2MDAyNjI4MzQ4OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vladimir_Vlassov?enrichId=rgreq-e213492dce26622129a2adcffa23408a-XXX&enrichSource=Y292ZXJQYWdlOzI4MDcyMDQ1MTtBUzozNDgxODk2MjMzNzM4MjVAMTQ2MDAyNjI4MzQ4OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Navaneeth_Rameshan?enrichId=rgreq-e213492dce26622129a2adcffa23408a-XXX&enrichSource=Y292ZXJQYWdlOzI4MDcyMDQ1MTtBUzozNDgxODk2MjMzNzM4MjVAMTQ2MDAyNjI4MzQ4OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Stay-Away, protecting sensitive applications from
performance interference

Navaneeth Rameshan
Universitat Politècnica de

Catalunya
rameshan@ac.upc.edu

Leandro Navarro
Universitat Politècnica de

Catalunya
leandro@ac.upc.edu

Enric Monte
Universitat Politècnica de

Catalunya
enric.monte@upc.edu

Vladimir Vlassov
KTH Royal Institute of

Technology
vladv@kth.se

ABSTRACT
While co-locating virtual machines improves utilization in
resource shared environments, the resulting performance in-
terference between VMs is difficult to model or predict. QoS
sensitive applications can suffer from resource co-location
with other less short-term resource sensitive or batch appli-
cations. The common practice of overprovisioning resources
helps to avoid performance interference and guarantee QoS
but leads to low machine utilization. Recent work that relies
on static approaches suffer from practical limitations due to
assumptions such as a priori knowledge of application be-
haviour and workload.

To address these limitations, we present Stay-Away, a
generic and adaptive mechanism to mitigate the detrimental
effects of performance interference on sensitive applications
when co-located with batch applications. Our mechanism
complements the allocation decisions of resource schedulers
by continuously learning the favourable and unfavourable
states of co-execution and mapping them to a state-space
representation. Trajectories in this representation are used
to predict and prevent any transition towards interference of
sensitive applications by proactively throttling the execution
of batch applications. The representation also doubles as a
template to prevent violations in the future execution of the
repeatable sensitive application when co-located with other
batch applications. Experimental results with realistic ap-
plications show that it is possible to guarantee a high level of
QoS for latency sensitive applications while also improving
machine utilization.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Middleware ’14, December 08 - 12 2014, Bordeaux, France
Copyright 2014 ACM 978-1-4503-2785-5/14/12 ...$15.00.
http://dx.doi.org/10.1145/2663165.2663327

General Terms
Management, Measurement, Performance, Experimentation

Keywords
Performance interference, Interference mitigation, Perfor-
mance sensitivity, Quality of Service, Virtualization

1. INTRODUCTION
In recent years, there has been an increasing amount of

large scale distributed computing infrastructures such as
the cloud and large scale experimental testbeds like Planet-
lab[8] to run large-scale network services. Any of these in-
frastructures must satisfy a common goal of application iso-
lation and resource efficiency. This requires servers to be
shared among multiple users and at the same time guarantee
operational isolation of applications. Virtualization has be-
come the defacto standard to achieve these goals. While vir-
tualization guarantees application isolation, better resource
utilization and lower operational costs, it comes at the price
of application slow down and inter VM performance inter-
ference. Inter-VM performance interference happens when
behaviour of one VM adversely affect the performance of an-
other due to contention in the shared use of resources. This
can happen at any level: memory, cache, I/O buffer, CPU,
etc.

Difficulties to model and predict performance interference
has resulted in the heavy handed approach of disallowing
any co-locations with performance sensitive applications, a
major contributor to low machine utilization in data cen-
ters [6]. Recent work has seen proposals to predict inter-
ference and minimise QoS degradations by relying on static
approaches based on prior profiling of applications [36, 19].
Even with an ideal profiling technique, it is impossible to
fully characterize an application before runtime inorder to
prevent interference and improve utilisation. This is because
applications can have varying and sometimes unpredictable
inputs/workloads during runtime and services may run for
extended periods making it infeasible to profile. Address-
ing these challenges to mitigate performance interference re-
quires analysis during the runtime to deal with long running
jobs and varying workloads.

In this paper, we present Stay-Away, a generic and adap-
tive mechanism capable of performing a runtime analysis

Figure 1: Total Workload variation of Wikipedia during the
period 1/1/2011 to 5/1/2011

to execute best-effort batch applications co-located with la-
tency sensitive applications without sacrificing the QoS of
latency sensitive applications. Applications typically don’t
use all the requested resources during the life cycle of their
execution because of changes in workload intensity and in-
herent phase changes. A phase change is defined as a change
in the major share of resource consumed by an application.
For example, an application can be mostly CPU intensive
for a certain period and be I/O intensive at other times. As
a result, not all the resources are used at all times. Apart
from these phase changes, varying workloads often result in
periods of low utilisation. Figure 1 shows the total read
workload for Wikipedia obtained from trace [5]. The work-
load follows a diurnal pattern with clear periods of low work-
load intensity. Stay-Away identifies and leverages on these
periods on low workload intensity and phase changes to im-
prove utilisation by executing best-effort batch applications
without sacrificing the QoS of latency sensitive applications.

Stay-Away periodically monitors the resource usage met-
rics of every Virtual Machine in the host, yielding a time se-
ries of measurement vectors. These vectors are then mapped
onto a two dimensional space such that similar measurement
vectors group together. QoS violations manifest during ex-
ecutions when VMs contend for a resource. This results
in measurement vectors that deviate significantly from the
measurement vectors of normal executions. As a result mea-
surement vectors of QoS violations are mapped farther away
from the group of normal executions. Once this mapping is
done, Stay-Away then predicts any progression towards a
QoS violation by performing a continuous spatial and tem-
poral analysis of the two dimensional space to identify transi-
tions, their rate and direction. Upon detection of any transi-
tion towards a QoS violation, Stay-Away throttles the batch
application to avoid a contention before it occurs.

To summarize, the specific contributions in this work are:

• We present the design of Stay-Away, generic and adap-
tive mechanism to mitigate the detrimental effects of
performance interference on sensitive applications when
co-located with batch applications.

• We design a methodology to model real-time transi-
tions of the VM states to be aware of dynamic changes
across the environment in order to prevent known QoS
violations before they occur.

• Additionally, we discuss how this methodology helps
visualise co-located execution and serve as a template
for repeatable experiments.

We experiment with VLC streaming server and a Web-
service, co-located with different set of batch applications.
Our results indicate that using Stay-Away, we are able to
guarantee a high level of QoS, and are able to increase the
machine untilization by 10%-70%, depending on the type of
co-located batch application.

2. BACKGROUND
In this section, we highlight the differences between schedul-

ing and dynamic reconfiguration, and provide the necessary
background for understanding Multi Dimensional Scaling
(MDS), a key component of our approach.

2.1 VM Placement
The problem of mitigating inter-VM interference can be

seen from two different perspectives: VM placement and
dynamic reconfiguration. The VMs can be scheduled to co-
locate in a manner such that they minimize performance
interference between each other. For instance, co-locating a
memory intensive application with a CPU intensive applica-
tion is much better than co-locating 2 memory intensive ap-
plications together. Papers like Bubble-up [19] and Paragon
[11] solve the problem of interference by deciding which VMs
to co-locate. In other words, these systems leverage the free-
dom to co-locate VMs such that there is minimal interfer-
ence. Their techniques rely on application characterization
and fails to address the challenges of dynamic workload and
long running applications.

Alternatively, interference can be alleviated even after VMs
are co-located. This can be achieved through dynamic recon-
figuration. Dynamic reconfiguration may include resource
scaling (dynamically increasing the amount of resources al-
located to a VM), VM migration or relaxing the guarantees
on some VMs. For example, a VM might be sharing a socket
with other VMs leading to an interference at cache level, but
by dynamically reconfiguring the VM to use the entire socket
in an isolated way, the processing power increases and also
VMs do not interfere at cache level anymore. This is pos-
sible only if additional resources are available for scaling.
Cost of dynamic reconfiguration is an important concern.
An adaptation is feasible only if the benefits accrued by re-
configuration outweighs the cost involved. VM migration is
slow and involves a high cost.Yet another dynamic reconfig-
uration technique is to throttle the VMs that cause inter-
ference and don’t need strict guarantees with performance.
This does not incur a high cost and is instantaneous.

For these reasons, Stay-Away relies on throttling VMs
when resource contentions are about to happen. This affects
the performance of the throttled VMs and require them to
be best-effort. We introduce the constraint that either best-
effort batch applications are scheduled with latency sensi-
tive applications or multiple sensitive applications are sched-
uled with the notion of priorities. With this constraint in
place, we are able to achieve a high level of QoS and im-
proved utilisation. Stay-Away is not a scheduler. It relies
on dynamic reconfiguration and can complement from sched-
ulers like Choosy[13] that allows scheduling with constraints.
While we throttle batch-applications in our prototype imple-
mentation, Stay-Away imposes no limitation on the action

that can be taken and if multiple sensitive applications are
co-scheduled Stay-Away can choose to migrate or scale re-
sources of the lower priority sensitive application.

2.2 Multi-Dimensional Scaling
Multi-Dimensional Scaling (MDS)[10] has the property of

being able to represent a high dimensional space Rm in a
lower dimensional one, for instance R2, preserving the rel-
ative distances, i.e. the absolute value of the distances is
lost, but the points are rearranged in a 2D space so that the
relative distances between points in the plane correspond to
the relative distances in the high dimensional space. Each
object or event is represented by a point in a 2D space. The
points are arranged in this space so that the distances be-
tween pairs of points have the strongest possible relation to
the similarities among the pairs of objects. That is, two
similar objects are represented by two points that are close
together, and two dissimilar objects are represented by two
points that are far apart. Unlike a projection operator such
as PCA [31] or a manifold discovery algorithm [28], which
gives superposition in the direction of projection, MDS cre-
ates a new representation based on the distances between
points.

The algorithm for assigning the points in a lower dimen-
sional space preserving the relative distances between points
is based on the idea of stress majorization, which assigns
the coordinates by minimizing a loss function based on the
weighted sum of the differences between the euclidean dis-
tances on the original space and the distances on the repre-
sentation plane. The loss function is defined as Loss(X) =∑n−1

i=1

∑n
j=i+1 (Dist(xi, xj)− δi,j)2, where xi, xj ∈ Rm, the

matrix X consist of the concatenation of the state vectors
xi and δi,j corresponds to the relative distance of the repre-
sented points i, j on the plane R2. The loss function can be
minimized by using Scaling by majorizing a convex function
(SMACOF) algorithm, which minimizes a quadratic form
iteratively.

3. STAY-AWAY MECHANISM
The key insight of Stay-Away is that, the closer the re-

source usage resembles a contention that was previously re-
sponsible for QoS degradation, the more the sensitive appli-
cation progresses towards a QoS violation. The Stay-Away
runtime is a middleware between the VMs and the underly-
ing resource, and runs on each host periodically following a
three step mechanism: Mapping, Prediction and Action as
shown in figure 2. All the three steps are performed in each
period.

3.1 Mapping
Stay-Away employs a set of continuous VM-state resource

usage snapshots to capture patterns of VM behaviour during
application runs. Specifically, the runtime-learning phase
begins by periodically measuring a set of VM metrics such
as CPU, memory, I/O, network traffic for all VMs in the
physical host as a vector of measurements M(t) = <VMi-
CPU, VMi-Memory, VMi-I/O, VMi-network> for all VMs
at time t. Stay-Away does not impose any limitation on
the choice of metrics to be used. Ideally, the right metrics
to use are those that characterize the load on the resource
subsystem we are interested in. For example, performance
counters for each VM can be used to characterize the load
on the memory bus. These measurement vectors are then

mapped into a lower dimension using MDS. This maintains
the topological properties (relative distances) of the high
dimensional space and similar measurement vectors remain
close to each other, while dissimilar measurement vectors
are placed farther apart. The mapped measurement vector
in the lower dimensional space is called a mapped-state.

The mapping of each measurement vector over time cap-
tures the temporal behaviour of the execution. The path
traced by the mapped-state is the trajectory of execution.
Stay-Away relies on the application to report whenever a
QoS violation happens in order to label the mapped state
corresponding to the QoS violation. Alternatively, using
IPC to detect QoS violation is explored in other works[34].
The mapped-state corresponding to a QoS violation is called
a violation-state.

The measurement vectors can be mapped on to any lower
dimension, we specifically selected a 2D representation for
the following reasons:

• Interpretability : As MDS preserves the relative dis-
tances between measurement vectors, it helps under-
stand the patterns and behaviours during the temporal
evolution of the co-located VM execution. The metric
preservation property of MDS also maintains the an-
gles and the directions of the trajectories, which means
that a prediction in a plane (y, x), gives a reliable rep-
resentation of the behaviour on the high dimensional
space.

• Parameter Estimation: A natural technique for fore-
casting in high dimensions is Vector Autoregressive
Models (VAR)[31]. In high dimensional spaces, the
number of samples needed for a reliable estimation of
parameters by means of histograms (explained in sec-
tion 3.2.3) increases exponentially with the dimension-
ality and also the domain of values for the parameters
increases with increasing dimensions, leading to unre-
liable parameter estimation. A 2D representation of
the trajectories gives prediction models with two pa-
rameters, which can be estimated reliably from a small
sample.

3.2 Prediction
The second step of Stay-Away is to predict the future

state of the execution based on the observations so far. The
mapping phase produces a two-dimensional map which is
then used by the predictor to forecast the transition of the
execution behaviour. Specifically, we are interested only
in knowing if the execution progresses towards a violation-
state. Once it is fairly certain that a QoS violation is likely
in the future, Stay-Away can then steer away from QoS vi-
olation by throttling the batch application. The predictor
has 2 goals:

• To prevent an impending violation

• To allow the system to progressively learn about new
violation states

These are conflicting goals, since, letting the applications to
execute till a QoS violation happens in order to learn implies
that a preventive action should not be taken. This is overly
conservative on the batch applications and degrades the per-
formance of sensitive applications. However,throttling the
batch application based on incomplete information is overly

Figure 2: Stay-Away mechanism. This figure illustrates the 3 steps: Mapping, Predicting Transition and Action. The darker
circle on the top of the map represents a QoS violation.

aggressive on the batch applications and restricts state-space
exploration. The predictor needs to strike a balance between
the two to consistently anneal to the correct QoS value with-
out being overly aggressive nor overly conservative. In the
following subsections, we explain how the predictor strikes
a balance between the two and how a future mapped-state
is estimated.

Figure 3: State-space exploration

3.2.1 Should a prediction rely only on known QoS
violations?

When observing a resource contention causing a QoS vio-
lation, the system state is mapped on to the state-space and
marked as violation-state. During every period, the predic-
tor tries to estimate the position of the future mapped-state.
If the estimated mapped-state overlaps with the violated-
state, then a QoS violation is likely.

Any mapped-state or violation-state represent only the ob-
served system behaviour. The violation-states also corre-
spond to specific measurement vectors, and is marked as a
point in the 2D space. If throttling of batch applications is
done only based on exact overlap of the estimated mapped-
state with violation-state, it limits the prediction to only
seen states of violation. It is highly likely that the nearby
neighbouring states around the violation-state also corre-
spond to a QoS violation as they are separated only by minor
deviations. For example, in a QoS violation corresponding
to a particular VM consuming 70% of memory bandwidth,
minor deviations such as 72% of memory bandwidth would

still cause a QoS violation even though the exact value was
not seen. If the predictor can take advantage by extending
the range to account for unseen violations, it can prevent im-
pending violations without having to capture the violation
explicitly.

Figure 4: Variation of the radius of violation-range as
distance between the violation-state and nearest safe-state
varies

The unexplored neighbourhood area around the violation-
state is called the violation-range, marked as a circle and is
shown in figure 3. The violation-range is an approxima-
tion and corresponds to that area in the state space which
the system hasn’t seen yet but deems as the neighbour-
hood that would contain violation-states if a state were to
be mapped in that range. Consequently, if an estimated
mapped-state falls within a violation range, the batch appli-
cation is throttled. Thus, a violation-range with a big radius
would lead to aggresively throttling batch applications and
a violation-range with a very small radius could lead to mul-
tiple QoS violations. In the next subsection, we explain how
Stay-Away progressively attains accuracy and strikes a bal-
ance.The exploration-range is that neighbourhood which the
system assumes safe. The predictor relies on a heuristic to
predict the violation-range and progressively aims to attain
accuracy. The area of the violation-range depends on the
nearest known safe-state in the state-space. Mapped-states
that do not correspond to a violation are called safe-states.

3.2.2 How Far to explore?
The radius of the violation-range is modelled as opposing

forces (repulsion) between the violation-state and the near-
est safe-state. The choice is intuitive: the closer there is a

known safe-state, the lesser is the area of the violation-range.
Initially the range is an approximation and as more states
are explored, the representation gets more accurate. The
radius of the violation-range is defined as the distance be-
tween violation-state and the nearest safe-state scaled by a
Rayleigh distribution. It is important not to define the entire
distance between a violation-state and the nearest safe-state
as the radius of violation-range as it would prevent the sys-
tem from exploring new states closer to the violation-range.
A Rayleigh distribution is used to allow for the exploration
range to adapt depending on the distance between the near-
est safe-state and the violation-state. Ideally, the size of the
exploration range should fade as the distance between the
nearest safe-state and the violation-state gets closer. The
radius of the violation range is given by:

R = de
−d2

2c2

where d is the distance between the nearest safe-state and
the violation-state. c is defined as the median of the coordi-
nate range of the mapped space. It follows from the observa-
tions that as the distance between these states increase, it is
safer to increase the size of the exploration-range as we are
more likely to be farther away from any unseen violation-
states. However, as the distance between these states get
closer, the exploration range needs to fade. Figure 4 shows
the variation of the radius of violation range and the size of
exploration range as the distance between these states vary.

3.2.3 When to act?
During the period of co-located execution, the system

transitions through different states determined by the extent
and type of resources being used by the VMs. In order to
minimize the effect of performance interference, Stay-Away
needs to predict any transition towards a violation and take
a preventive action. The state transitions are specific to the
applications running on the VM and can be:

• Gradual transitions, marked by resource consumptions
such as memory usage where the memory allocated
for the application typically varies gradually over time
and as a result presents a consistent transition. Tran-
sitions are not marked by one application alone but
instead by the combination of resource usage from all
applications. As a result, the vector measurements in
combination may or may not strictly follow a linear
movement. However, the rate and pattern in transi-
tion becomes more apparent if the co-located applica-
tion experiences minimal phase transition during its
period of execution.

• Instantaneous transitions, marked by resource types
such as CPU usage that could vary as instantaneous
spikes. These sudden changes contribute to state tran-
sition in quick successions reducing the reaction time
for any preventive action. For example, consider a
violation-state characterised by a measurement vector
with a contention at the level of CPU. If in future
both applications contend for CPU, the transition to
violated state is very quick giving almost no time for
the system to react.

We have seen that the extent of safe-states are defined
by the exploration-range and Stay-Away tries to avoid en-
tering the violation-range to avoid violations. While these

ranges act as a demarcation in space, the rate and direction
of transition measure the temporal evolution or the progres-
sion over time.

State transitions are the result of complicated responses to
an applications internal behaviour, and interactions between
the co-located applications. It is not immediately obvious
how a continuous movement process should be modelled and
parameterized, since movement is multi-dimensional, com-
bining both spatial and a temporal dimension. Because it
is impossible to accurately model all of these interactions,
they need to be modelled stochastically i.e. with intrinsi-
cally random velocities and orientations that can be sum-
marized by well-defined probability densities and associated
parameters. However, we observed that the accuracy of the
prediction model suffers severely when all the state transi-
tions are modelled using a single model. This is because
every application has a characteristic behaviour and some-
times repetitive phases [26]. At any point in time, one of
these 4 execution modes hold true:

• No application is running

• Batch application runs alone

• Latency-sensitive application runs alone

• Co-located execution of both batch application and
latency-sensitive application

Figure 5: All 4 execution modes when VLC streaming is
co-located with Soplex from SPEC CPU 2006

Figure 5 shows the state transition for an execution life-
cycle comprising of VLC streaming server and Soplex from
the SPEC CPU 2006 benchmark suite. The state transi-
tions begins with no application running, followed by execut-
ing VLC streaming. Shortly after, the batch application is
scheduled to execute and the states transition to co-located
execution. Finally, VLC streaming finishes its execution and
the batch application executes in an isolated fashion until it
finishes. We can clearly see that each execution mode forms
clusters and has a different pattern for trajectory. While
VLC streaming is characterised by short bursts of correlated

movement, Soplex follows a linear trajectory with a consis-
tent orientation and slightly varying step length. Co-located
execution on the other hand experiences an oscillating tra-
jectory with bigger step lengths. As a result, modelling all
the different execution modes using a single model fails to
capture the inherent patterns and sequence specific to each
execution mode. The trajectory pattern experienced in each
of these execution modes is different. We experimented with
numerous other co-locations of applications and observe that
the life cycle of an execution steps through different modes
and the trajectory pattern has a high dependence on the
current execution mode. Our prediction model stems from
this observation and as such no single prediction model can
accurately model all the state transitions. The state transi-
tions are broadly categorized into these 4 distinct execution
modes, each with a different prediction model. Since Stay-
Away runtime is a middleware managing the VMs, it can
any time determine the current execution mode the system
is in.

Marsh et al. [20] noted that a good description of the
trajectory is achieved when the measured parameters and
the relationships between them are sufficient to reconstruct
characteristic tracks without loosing any of their significant
properties while relying on a minimum set of relatively easily
measured parameters. Based on a literature review [29], we
have noticed that the trajectory can be fairly accurately
modelled by the following parameters:

• Distance: The distance d between successive positions

• Absolute angle: The absolute angle αi between the x
direction and the step built by transitions from posi-
tions i and i+1

No static trajectory model can be assumed even within an
execution mode for different sets of co-locations as each ap-
plication has a different characteristic behaviour of its own.
For a particular combination of batch application and la-
tency sensitive application, co-located execution mode may
show characteristics of a Biased Random Walk [9] whereas
for a different combination, the execution mode may follow
the trajectory model of levy flight [27]. Levy flight trajecto-
ries were observed for applications that experiences sudden
phase changes. Because of these differences, we cannot rely
on a static model and have to learn the behaviour during
the execution.

To characterize the trajectories, we capture the behaviour
of each execution mode by the probability density function
(pdf) of the parameters: distance d and absolute angle αi.
The underlying measurement is a histogram. In Figure 5,
we plot the smoothed version of the histogram using kernel
density estimation and show the corresponding pdf of both
distance and angles for different execution modes. The skew
in the distribution indicates that the trajectory is biased and
not random (with equal probabilities for all step lengths and
angles). The bias indicates that the likelihood of certain step
lengths and angles are higher than the others and this helps
model the prediction with high accuracy. We experimented
with many different set of applications and co-locations and
always observe a bias in the trajectory. Therefore, after a
few observations have been made, a first approximation of
the pdf s for both parameters can be derived. A random set
of samples are then generated following the histogram using
the inverse transform method, which computes a mapping

from a uniform distribution to an arbitrary distribution (i.e.
the distribution from the histogram) [25]. This allows us
to predict a set of new states around the current state and
models the uncertainty in the likely position of the future
state. Because of the inherent behavioural patterns in ap-
plications that cause a bias, with 5 samples to model un-
certainty, we are able to achieve more than 90% accuracy
on average for all the different co-locations we experimented
with in section 7. Once the uncertainty is modelled, the
generated states are examined to see if they fall within a vi-
olation range. Whenever a majority of the generated sample
set fall within a violation range, Stay-Away takes an action
to prevent degradation.

3.3 What Action to take and When to Stop?
To throttle the execution of the batch application, Stay-

Away sends a SIGSTOP signal to pause the batch applica-
tion and SIGCONT to resume its execution. Once paused,
the system does not resume the batch application until the
system believes that resuming the batch application will not
cause a performance degradation for the sensitive applica-
tion.This belief is based on the distance between the consec-
utive states of isolated execution of the sensitive application.
Upon throttling, the system moves to a different execution
mode. Only the sensitive application executes and predic-
tion model is adapted to the new execution mode. Note that,
it is impossible to have a violation in this execution mode
as there is no interference. This also conforms in the state-
space representation. If the performance-sensitive applica-
tion continues to remain in the same phase or continues with
the same workload after the batch application is paused, the
states that follow roughly map to the same vicinity in the 2D
space. An increase in the distance indicates a phase change
or change in workload intensity of the sensitive application
and is likely to have transitioned from contending for the
bottleneck resource. Stay-Away has a learning parameter β,
which is the maximum allowed distance between the states
before resuming the batch application. Initially β is set to
0.01. Once the distance exceeds β, the system resumes the
batch application. However, if resuming the batch applica-
tion immediately leads to a violation, it indicates that the
phase change of the performance-sensitive application was
not enough to avoid degradation and the system increments
β by a small amount. Over time, β attains accuracy. It is
possible that the sensitive application does not experience
any phase transition and in such scenarios, the batch appli-
cation would starve indefinitely. To account for this, Stay-
Away uses a random factor to resume the execution of the
batch application when the distance falls below β for a long
time. This is done in hope that the batch application may
experience a phase transition and as such avoid degrada-
tion. However, if the batch application continues to degrade
performance of the sensitive application, it is paused again.

4. OPTIMISATIONS AND OVERHEAD
In order to achieve efficiency, we need to address a few pre-

processing problems before feeding the measurement vectors
to MDS. Depending on the metrics chosen, the range of val-
ues for each metric may vary significantly. For example,
while CPU usage ranges between 0 and 100, memory usage
does not have a fixed upper limit as each VM could be as-
signed different amounts of memory. This variation causes
higher values to introduce a bias that can affect the accuracy

Figure 6: Snapshot of instantaneous transition of states
when VLC transcoding is co-located with CPUBomb in
the mapped space. Action status:False indicates that
Stay-Away was not throttling the batch application dur-
ing the snapshot

Figure 7: Snapshot of gradual transition of states when
VLC streaming is co-located with Twitter-Analysis in
the mapped space. Action status:True indicates that the
batch application was being throttled during the snap-
shot

of MDS mapping. The problem is overcome by normalizing
all the metric values between [0,1]. Normalisation also helps
to cluster metrics with slight variations in the form of noise
around the same neighbourhood forming visible clusters.

The SMACOF algorithm used to represent the high di-
mensional state to a lower dimension solves a quadratic form
iteratively and can become computationally expensive as
the number of samples increase. The cost of the algorithm
is quadratic and we significantly reduce this overhead by
choosing one representative sample from the set of samples
that are very close to each other (Eucledian distance) and
discarding other similar samples. We noticed that this op-
timization significantly reduces the computation time as it
reduces the size of the observation matrix, while preserving
the relative position of the different states, the temporal tra-
jectories followed by the evolution of the execution, and their
relative position with respect to the violation state. Alterna-
tively, there is existing work in the literature that is capable
of doing incremental MDS with high performance and very
low overhead[32, 35]. The induced overhead by Stay-Away
in terms of resource consumption is very minimal and corre-
sponds to an average 2% CPU usage and negligible memory
consumption.

5. SCALABILITY
When the number of dimensions increase, finding an op-

timal configuration of points in 2-dimensional space can be-
come difficult. The best possible configuration in two di-
mensions may be a poor, highly distorted, representation of
the data. This distortion will be reflected in a high stress
value. When this happens, the only possible way to find an
optimal configuration is to increase the number of dimen-
sions in the mapped space. In our experiments, we found
that the representation in a 2-dimensional space is always
optimal with low stress value when there are 2 co-locations
of VMs. It is not feasible to assume no more than one batch
application for co-location. This can, however, be easily
circumvented by considering all the batch applications as
one logical VM. The monitored metrics of all the batch ap-
plication are aggregated together to model their collective
behaviour as a single logical VM. Since resources are shared

between all the batch applications, contention can be accu-
rately represented by a linear composition of resource usage
values. However, identifying the specific batch application
responsible for contention becomes difficult by considering
their collective behaviour. Apart from the difficulty and the
computation involved in identifying the specific interfering
batch application, it is also possible that a single batch ap-
plication alone does not cause a QoS degradation, but a set
of batch applications cause a contention. While one batch
application may cause a contention for CPU, another appli-
cation may contend at the level of memory subsystem. The
overhead involved in identifying the specific batch applica-
tions responsible for contention exceeds the benefits gained.
For this reason, upon detecting a transition towards QoS
violation, batch applications consuming a majority share of
resources are collectively throttled. Alternatively, groups
of batch applications can be iteratively throttled till QoS
is guaranteed and each violation state labelled to identify
groups of batch application responsible for that specific type
of violation. In our current implementation, we collectively
throttle the batch applications consuming a major share of
resources.

6. TEMPLATE PROPERTIES
In case of repeatable latency sensitive applications, the

violation-states in the generated map from a previous exe-
cution can be used as a starting point and is a valid map
for a new execution with a different batch application. The
state representation for a performance sensitive application
is independent of the specific batch applications running on
the co-located virtual machines. Although the generated
map from the co-located execution depends on the specific
batch application that was co-located, the mapped-states
themselves are representative of load at the resource level.
As a result, the captured states for a performance sensitive
application doubles as a template for the latency sensitive
application that can be used for future executions along-
side a different set of application co-locations. For example,
consider a latency sensitive application(L) co-located with
a batch application(BA). Their co-located execution gener-
ates a map(map-A) with safe states and violated states. The

Workload Name Combination
Batch-1 Twitter-Analysis+Soplex
Batch-2 Twitter-Analysis+MemoryBomb

Table 1: Combination of Batch Applications

violated-states represent QoS violations. If we execute the
same latency sensitive application (L) with another batch
application (BB), the violated-states from map-A would still
correspond to a valid violation-state for the new execution.
The batch application (BB) may never map a state in that
violation-state, but if the co-located execution were to map
a state, it will be a violation-state.

7. EVALUATION
We conducted our experiments with our Stay-Away pro-

totype on a 3.2 GHz dual-socket Intel Core i5 CPU with 4
cores. Each core has a 32KB L1 private data cache, a 32KB
L1 private instruction cache, a 256 KB L2 cache and a shared
4 MB L3 cache. The OS is Ubuntu with GNU/Linux kernel
version 3.5.0-22.

7.1 Experimental Setup
We chose Linux Containers (LXC)[3] because of its abil-

ity to provide near-native performance for applications even
though it is highly susceptible to performance interference
[33]. To evaluate Stay-Away, we use two different types of
latency-sensitive applications and show that LXC combined
with Stay-Away can achieve a high degree of QoS while
improving machine utilisation. We conducted experiments
using the VLC[4] media player for video streaming and a
Webservice with a memory intensive, CPU intensive and a
mix of both CPU and memory intensive workload as the
performance sensitive application. Soplex from SPEC CPU
2006 benchmark [15], Twitter influence ranking from the
Cloud Suite benchmark [1], CPUBomb from the isolation
benchmark suite[21], VLC transcoding and a custom syn-
thetic application that stresses the memory(Memory Bomb)
were used as batch applications. Memory Bomb generates
stress on the memory subsystem by allocating large chunks
of memory and occasionally reading the allocated content.
In order to evaluate the QoS and utilization with more than
one co-location of a batch application, we setup two different
combinations of batch applications shown in table 1. Each
of the batch application were executed in a different LXC
container. We instrumented the source code of VLC 2.0.5
to capture performance metrics when using VLC to stream
a movie in real time to clients. The minimum transcoding
rate required to provide real time viewing without any loss
of frames at the server side is defined as the QoS threshold.

The Webservice is setup for analysing and serving data.
It consists of a Memcached layer for in-memory data storage
and performs analytics, if necessary, before serving the data.
The data used for storage and analysis is the open dataset
available from [2] and contains periodic network topology
information and monitored host metrics of more than 80
nodes which are a part of the community-lab testbed [7].
The Webservice is capable of performing statistical analysis
and aggregation of data for each monitored metric and to
serve requested data for any specific period. The workload
comprises of CPU intensive, Memory intensive and mix of
CPU and memory intensive operations.

We begin by illustrating the state-space representation
during different execution modes. To illustrate both instan-
taneous and gradual transitions, we first run two batch ap-
plications: transcoding a video with VLC in one LXC con-
tainer and CPUBomb in another. We chose this co-location
to simplify the illustration as both batch applications ex-
perience minimal phase transitions during isolated execu-
tion. In this contrived, yet representative example for illus-
trating state space transitions, a violation is said to have
occurred when the rate of transcoding frames fall below a
certain threshold. Figure6 shows a snapshot of the different
states the system experiences during the execution life cycle.
Darker points represents states with minor transitions that
maps closer to each other. In figure 6, A corresponds to the
state when only CPUBomb was executing. B corresponds
to the state when VLC-transcoding runs alongside CPUB-
omb and C represents the violation state. When Stay-Away
takes an action to prevent violation, the corresponding state
experienced is represented by D. States E,F,G represent the
states during the period of transition. Figure 7 shows the
gradual transition observed when VLC was used as a stream-
ing server (performance sensitive) and co-located with the
Twitter-Analysis (batch).

7.2 QoS and Utilization

Twitter Analysis CPUBomb Soplex MemoryBomb Batch-1 Batch-2
0

20

40

60

80

100

G
a
in
e
d
 U
ti
liz
a
ti
o
n
(%

)
Webservice(Mix)

Webservice(Memory Intensive)

Webservice(CPU Intensive)

Figure 12: Gained Utilization when Webservice is co-located
with different Batch Applications

We first evaluate the effectiveness of Stay-Away for en-
forcing targeted QoS without any prior profiling of the ap-
plication. Figures 8 and 9 show the normalised QoS of
VLC streaming server when co-located with CPUBomb and
Twitter-Analysis respectively. The minimum transcoding
rate for the VLC server to ensure uninterrupted delivery of
frames is shown as QoS threshold. Whenever the rate of
transcoding falls below this threshold the clients experience
degradation in the quality of service. We can see from figure
8 and 9 that without any prevention the system experiences
numerous violations as both these batch applications con-
tend for resources with VLC streaming. The qualitative ef-
fect of Stay-Away on QoS becomes clear when reproducing
the streamed video. Qualitatively, a choppy reproduction
without Stay-Away transforms into a smooth playback when
including Stay-Away. The QoS degradations are consider-
ably reduced and most violations seen are in the early phase
of execution. This is because the system is unaware of the
states that correspond to a violation in the early phase and
once seen, the system proactively prevents future violations.
Other violations arise from factors such as: instantaneous
jumps to violation states characterised by sudden increase
in the use of CPU.

Figures 10 and 11 show the gain in machine utilisation
from co-location. Gained utilisation is the gain in utilisation

Figure 8: VLC with CPUBomb Figure 9: VLC with Twitter-Analysis

Figure 10: Gained Utilisation with CPUBomb Figure 11: Gained Utilisation with Twitter-Analysis

(a) Webservice(CPU Intensive) co-located with Twitter-Analysis (b) Webservice(mix) co-located with Twitter-Analysis

Figure 13: The colour gradient for Webservice is a measure of the stress on its performance. Darker colour indicates higher
stress. Dark colour bands for Twitter-Analysis represents period of its execution and lighter colour bands represents the
period it is throttled.

Twitter Analysis CPUBomb Soplex MemoryBomb Batch-1 Batch-2
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 Q

o
S

Without Stay-Away With Stay-Away

Figure 14: QoS of Webservice with a mix of CPU and Mem-
ory intensive workload when co-located with different Batch
Applications

in comparison to executing VLC streaming service without
any co-location. The upper band in the figure shows the
maximum utilisation that can be gained by co-locating the
batch application with VLC streaming service without any
prevention from performance interference. With Stay-Away
deployed, we are able to achieve a good balance in improving
machine utilisation, shown in the lower band from figures 10
and 11, while still guaranteeing a high level of QoS. The gain
in machine utilisation depends on the characteristics of the
co-located batch application. In our setup, VLC stream-

ing with Twitter-Analysis gains an average of 50% machine
utilisation when compared to an isolated run of the VLC
streaming server. The system gains substantial improve-
ment in both utilisation and QoS. This is because Stay-Away
throttles only when the system progresses toward resource
contention. Co-location with CPUBomb as the batch appli-
cation is the worst case scenario since the batch application
constantly contends for CPU and does not experience any
phase transition. As a result the gained machine utilisation,
as shown in figure 10, is in spikes as Stay-Away throttles in
an attempt to mitigate performance degradation. The gain
in utilisation for CPUBomb is about 5% because CPUB-
omb constantly consumes CPU and it is impossible to exe-
cute both VLC streaming and CPUBomb without violating
the QoS. However, with Stay-Away deployed, it learns this
contention and guarantees a high level of QoS.

Figures 14, 15 and 16 show the QoS achieved when dif-
ferent batch applications are co-located with Webservice for
different types of workload. We can see that with Stay-
Away, a high level of QoS is guaranteed. Figure 12 shows
the gained utilisation when Webservice is co-located with
different batch applications. The gained utilisation is dif-
ferent for different types of workload and the gain is maxi-
mum when Twitter-Analysis is co-located with Webservice

Twitter Analysis CPUBomb Soplex MemoryBomb Batch-1 Batch-2
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 Q

o
S

Without Stay-Away With Stay-Away

Figure 15: QoS of Webservice with CPU intensive work-
load when co-located with different Batch Applications

Twitter Analysis CPUBomb Soplex MemoryBomb Batch-1 Batch-2
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 Q

o
S

Without Stay-Away With Stay-Away

Figure 16: QoS of Webservice with Memory intensive
workload when co-located with different Batch Applica-
tions

for a memory intensive workload. This is because Twitter-
Analysis experiences a mix of both CPU and memory inten-
sive phases, and is throttled only during its memory inten-
sive phase. The effect of performance interference caused by
Twitter-Analysis is seen only when its memory operation is
intensive enough to force the OS to swap pages of Webser-
vice to disk, causing a degradation in response time. As a
result, Twitter-Analysis is throttled only when it performs
extensive memory operations. The gained utilisation is rel-
atively low when batch application is co-located with CPU
intensive workload of Webservice because all batch applica-
tions except MemoryBomb are mostly CPU intensive and
interfere negatively with the performance of Webservice.

Figure 13a shows the execution timeline when Web service
with a CPU Intensive workload is co-located with Twitter-
Analysis. We vary the intensity of workload to show that
Stay-Away is capable of detecting and using such periods of
low utilisation without violating QoS. The stress on Web-
service is measured by monitoring the number of transac-
tions completed per second and is done only to illustrate
the functioning of our middleware. Stay-Away does not have
any access to this information. Twitter-Analysis begins ex-
ecution at timestamp 10. This causes a stress on Webser-
vice and leads to a QoS violation shown by a dark band.
Stay-Away learns this and immediately throttles Twitter-
Analysis. Soon after this, there is a period of low work-
load, which Stay-Away detects and the execution of Twitter-
Analysis is resumed. Subsection 3.3 explains how Stay-Away
detects this. At timestamp 18, the workload of Webser-
vice increases and the execution of Twitter-Analysis begins
to cause a stress on its performance, but hasn’t violated
QoS yet. Stay-Away predicts this and throttles Twitter-
Analysis before a QoS violation happens. Figure 13b shows
the execution timeline when Web service with a mix of CPU
and memory intensive workload is co-located with Twitter-
Analysis. We introduce a period of change in the workload
phase from timestamp 30 to 36. We can see from the figure
that Twitter-Analysis executes in an uninterrupted manner
during this period as Stay-Away identifies the period as a
phase change and believes that executing Twitter-Analysis
would cause no stress. Stay-Away detects this from the state
space mapping as the change in phase maps the correspond-
ing states to a different space in the map and farther away
from the violation state.

7.3 Template Validation
This section validates how a map generated for a latency

sensitive application can be reused for future executions with
a different set of batch applications. We conduct an exper-

Figure 17: Template with CPUBomb

Figure 18: VLC with soplex

iment by streaming a video file using VLC running along-
side CPUBomb as the batch application. The Stay-Away
component is active during the run, capturing the states
and preventing violation. Figure 17 shows a snapshot of
the states that characterises the VLC streaming service for
a given video and is used as the template for future exe-
cutions of VLC alongside a different batch application. In
order to validate that the captured states correspond to the
properties of VLC independent of the co-location with any
specific batch application, we use the template as the initial
state of VLC for streaming the same file alongside Soplex.
We disable the Stay-Away component from taking any ac-
tion to show that the states corresponding to violation in
figure 17 continue to correspond to violation alongside So-
plex. Figure 18 shows a snapshot of the state of VLC run
alongside Twitter-Analysis. While new states are seen dur-
ing the execution, we can see that there are more violations
and they correspond to the area characterised by violations
from figure17.

8. RELATED WORK
While there has been a lot of work on mitigating the per-

formance interference due to resource contention, not much
work consider run-time models that can adapt to dynamic
changes. DejaVu [30] relies on a online-clustering algorithm
to adapt to load variations by comparing the performance
of a production VM and a replica of it that runs in a sand-
box to detect interference. It mitigates interference by over-
provisioning resources. Unfortunately, DejaVu has a high
cost as it requires an additional sand-box for executing the
replica. Stay-Away has no such overhead. A similar system,
DeepDive [24], first relies on a warning system running in
the VMM to conduct early interference analysis. When the
system suspects that one or more VMs are subjected to in-
terference, it clones the VM on-demand and executes it in a
sandboxed environment to detect interference by comparing
the differences in relevant measured metrics.If interference
does exist, the most aggressive VM is migrated on to another
physical machine. It incurs overhead in the form of cloning
and migrating VMs. Migrating VMs is an expensive and
time consuming operation. One advantage of Stay-Away is
that it co-locates best effort batch applications with latency
sensitive application. By introducing this constraint, the
need for migrations are avoided since they can be throttled.
Throttling involves very low overhead and has an immediate
effect as opposed to migration.

Another class of work has also investigated providing QoS
management for different applications on multicore [14, 22,
16]. While demonstrating promising results, resource par-
titioning typically requires changes to the hardware design,
which is not feasible for existing systems.

Recent efforts [12, 37, 18] demonstrate that it is possible
to accurately predict the degradation caused by interference
by prior analysis of workload. However, in practice, ap-
plications are not available prior to their deployment and
often run for a long time, so it is not feasible to perform
this analysis. In [19] the application is profiled statically to
predict interference and identify safe co-locations for VMs.
It mainly focuses on predicting which applications can be
co-run with a given application without degrading its QoS
beyond a certain threshold. The limitation of static profiling
introduces a lack of ability to adapt to changes in applica-
tion dynamic behaviour. Paragon [16] tries to overcome the
problem of complete static profiling by profiling only a part
of the application and relies on a recommendation system,
based on the knowledge of previous execution, to identify the
best placement for applications with respect to interference.
Since only a part of the application is profiled, dynamic be-
haviours such as phase changes and workload changes are
not captured and can lead to a suboptimal schedule resulting
in severe performance degradation. Our work is complemen-
tary to Paragon. If Paragon can be used with constraints for
placing latency critical applications with batch applications,
Stay-Away can be used to guarantee high level of QoS and
utilization even if the schedule turns out to be suboptimal.

Bubble-Flex [34] is a runtime method for mitigating per-
formance interference by phasing in and phasing out batch
applications upon detecting QoS violations. Bubble-Flex is
the closest work to our approach in the sense that it is a
runtime method and categorizes application to latency sen-
sitive and batch applications. It predicts QoS violations by
generating load in the memory subsystem in bursts during
runtime to generate a sensitivity curve. Their approach in-

troduces additional stress on the memory subsystem, which
can itself cause interference and batch applications are un-
able to fully exploit periods of low utilization. Stay-away
guarantees QoS without itself causing any interference and
also letting batch applications fully exploit periods of low
utilisation.

Q-Clouds[23] is another system that aims to guarantee
QoS in the face of interference. It achieves this by giving
unallocated resources to an application to prevent falling
below the QoS requirement.Q-Clouds improves performance
as long as there is headroom available. If no headroom is
available, it cannot guarantee QoS and the excess headroom
when not used (Workload and phase changes) leads to lower
machine utilisation. Stay-Away does not need any excess
headroom and a high level of QoS is always guaranteed.

Koh et al [17]. propose a technique for predicting perfor-
mance degradation of co-located applications based on their
resource usage statistics. When a new application is hosted,
its resource vector is compared with that of known applica-
tions and is mapped to the weighted average of one or more
known applications whose resource vectors it closely resem-
bles. Then the performance degradation of the new appli-
cation is predicted based on already recorded performance
degradation of the mapped/representative known applica-
tions. It requires the need to have an already profiled ap-
plication that closely resembles an incoming application and
does not capture the temporal properties of the application.
Stay-Away takes into account both the spatial and temporal
properties of the application.

9. CONCLUSION
This paper introduces Stay-Away, a generic and adap-

tive mechanism to mitigate the detrimental effects of perfor-
mance interference on sensitive applications when co-located
with other batch-like applications and improve resource uti-
lization. Unlike earlier previous work that requires apriori
knowledge and static models, Stay-Away continuously learns
and maps to a state-space representation the favourable and
unfavourable states of execution among multiple VMs. The
representation allows to visualise and interpret co-located
VM execution. This is used to predict real-time transitions
of the co-located VM states continuously and prevent per-
formance degradation in selected VMs. Additionally, we dis-
cuss how this mechanism doubles as a template engine for
repeatable experiments or services.

The evaluation of a proof-of-concept prototype of Stay-
Away with Linux Containers and several batch and inter-
active applications confirm the expected effect, validity and
stability of the mechanism in general.

10. ACKNOWLEDGEMENTS
This work was partially supported by the European Com-

munity through the projects Community Networks Testbed
for the Future Internet (CONFINE): FP7-288535, A Com-
munity Networking Cloud in a Box (CLOMMUNITY): FP7-
317879, partially financed by SpeechTech4All (TEC2012-
38939-C03-02), by Spanish government under contract TIN2013-
47245-C2-1-R and in part by the Erasmus Mundus Joint
Doctorate in Distributed Computing (EMJD-DC) funded by
the Education, Audiovisual and Culture Executive Agency
(EACEA) of the European Commission under the FPA 2012-
0030..

References
[1] Cloud Suite Benchmark. http://parsa.epfl.ch/

cloudsuite/.
[2] Confine Open Dataset. https://wiki.

confine-project.eu/experiments:datasets.
[3] Linux Containers. http://lxc.sourceforge.net.
[4] VLC. http://www.videolan.org/vlc/index.html.
[5] Wikipedia Trace Data. https://aws.amazon.com/

datasets/6025882142118545.
[6] L. A. Barroso and U. Hölzle. The case for energy-

proportional computing. IEEE computer, 40(12):33–37,
2007.

[7] B. Braem, C. Blondia, C. Barz, H. Rogge, F. Freitag,
L. Navarro, J. Bonicioli, S. Papathanasiou, P. Escrich,
R. Baig Viñas, et al. A case for research with and
on community networks. ACM SIGCOMM Computer
Communication Review, 43(3):68–73, 2013.

[8] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peter-
son, M. Wawrzoniak, and M. Bowman. Planetlab: an
overlay testbed for broad-coverage services. ACM SIG-
COMM Computer Communication Review, 33(3):3–12,
2003.

[9] E. A. Codling. Biased random walks in biology. PhD
thesis, The University of Leeds, 2003.

[10] T. F. Cox and M. A. Cox. Multidimensional scaling.
CRC Press, 2010.

[11] C. Delimitrou and C. Kozyrakis. Paragon: Qos-aware
scheduling for heterogeneous datacenters. In Proceed-
ings of the eighteenth international conference on Ar-
chitectural support for programming languages and op-
erating systems, pages 77–88. ACM, 2013.

[12] M. Dobrescu, K. Argyraki, and S. Ratnasamy. Toward
predictable performance in software packet-processing
platforms. In Proceedings of the 9th USENIX confer-
ence on Networked Systems Design and Implementa-
tion, pages 11–11. USENIX Association, 2012.

[13] A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica.
Choosy: max-min fair sharing for datacenter jobs with
constraints. In Proceedings of the 8th ACM Euro-
pean Conference on Computer Systems, pages 365–378.
ACM, 2013.

[14] F. Guo, Y. Solihin, L. Zhao, and R. Iyer. A framework
for providing quality of service in chip multi-processors.
In Proceedings of the 40th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 343–355.
IEEE Computer Society, 2007.

[15] J. L. Henning. Spec cpu2006 benchmark descriptions.
ACM SIGARCH Computer Architecture News, 34(4):1–
17, 2006.

[16] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni,
D. Newell, Y. Solihin, L. Hsu, and S. Reinhardt. Qos
policies and architecture for cache/memory in cmp plat-
forms. In ACM SIGMETRICS Performance Evaluation
Review, volume 35, pages 25–36. ACM, 2007.

[17] Y. Koh, R. C. Knauerhase, P. Brett, M. Bowman,
Z. Wen, and C. Pu. An analysis of performance in-
terference effects in virtual environments. In ISPASS,
pages 200–209, 2007.

[18] J. Machina and A. Sodan. Predicting cache needs and
cache sensitivity for applications in cloud computing
on cmp servers with configurable caches. In Parallel &
Distributed Processing, 2009. IPDPS 2009. IEEE In-
ternational Symposium on, pages 1–8. IEEE, 2009.

[19] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L.
Soffa. Bubble-up: Increasing utilization in modern
warehouse scale computers via sensible co-locations. In
Proceedings of the 44th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 248–259.
ACM, 2011.

[20] L. Marsh and R. Jones. The form and consequences of
random walk movement models. Journal of Theoretical
Biology, 133(1):113–131, 1988.

[21] J. N. Matthews, W. Hu, M. Hapuarachchi, T. Deshane,

D. Dimatos, G. Hamilton, M. McCabe, and J. Owens.
Quantifying the performance isolation properties of vir-
tualization systems. In Proceedings of the 2007 work-
shop on Experimental computer science, page 6. ACM,
2007.

[22] M. Moreto, F. J. Cazorla, A. Ramirez, R. Sakellariou,
and M. Valero. Flexdcp: a qos framework for cmp ar-
chitectures. ACM SIGOPS Operating Systems Review,
43(2):86–96, 2009.

[23] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-
clouds: managing performance interference effects for
qos-aware clouds. In Proceedings of the 5th European
conference on Computer systems, pages 237–250. ACM,
2010.

[24] S. Novakovic, D. Novakovic, R. Bianchini, D. Kostic,
and N. Vasic. Deepdive: Transparently identifying and
managing performance interference in virtualized envi-
ronments. Technical report, 2013.

[25] A. P. Probability. Random variables and stochastic pro-
cesses. McGrow, Hill Series Elastical Eng, NY, 1984.

[26] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and
B. Calder. Discovering and exploiting program phases.
Micro, IEEE, 23(6):84–93, 2003.

[27] M. F. Shlesinger and J. Klafter. Lévy walks versus
lévy flights. In On growth and form, pages 279–283.
Springer, 1986.

[28] J. B. Tenenbaum, V. De Silva, and J. C. Langford. A
global geometric framework for nonlinear dimensional-
ity reduction. Science, 290(5500):2319–2323, 2000.

[29] F. Urbano, F. Cagnacci, C. Calenge, H. Dettki,
A. Cameron, and M. Neteler. Wildlife tracking data
management: a new vision. Philosophical Trans-
actions of the Royal Society B: Biological Sciences,
365(1550):2177–2185, 2010.

[30] N. Vasić, D. Novaković, S. Miučin, D. Kostić, and
R. Bianchini. Dejavu: accelerating resource allocation
in virtualized environments. In ACM SIGARCH Com-
puter Architecture News, volume 40, pages 423–436.
ACM, 2012.

[31] D. Williams and D. Williams. Weighing the odds:
a course in probability and statistics, volume 548.
Springer, 2001.

[32] M. Williams and T. Munzner. Steerable, progressive
multidimensional scaling. In Information Visualization,
2004. INFOVIS 2004. IEEE Symposium on, pages 57–
64. IEEE, 2004.

[33] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto,
T. Lange, and C. A. De Rose. Performance evaluation
of container-based virtualization for high performance
computing environments. In Parallel, Distributed and
Network-Based Processing (PDP), 2013 21st Euromi-
cro International Conference on, pages 233–240. IEEE,
2013.

[34] H. Yang, A. Breslow, J. Mars, and L. Tang. Bubble-
flux: Precise online qos management for increased uti-
lization in warehouse scale computers. In Proceedings of
the 40th Annual International Symposium on Computer
Architecture, ISCA ’13, pages 607–618, New York, NY,
USA, 2013. ACM.

[35] T. Yang, J. Liu, L. McMillan, and W. Wang. A fast
approximation to multidimensional scaling. In Proceed-
ings of the ECCV Workshop on Computation Intensive
Methods for Computer Vision (CIMCV), pages 354–
359, 2006.

[36] J. Zhang and R. J. Figueiredo. Application classifica-
tion through monitoring and learning of resource con-
sumption patterns. In Parallel and Distributed Process-
ing Symposium, 2006. IPDPS 2006. 20th International,
pages 10–pp. IEEE, 2006.

[37] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Address-
ing shared resource contention in multicore processors
via scheduling. In ACM SIGARCH Computer Archi-
tecture News, volume 38, pages 129–142. ACM, 2010.

View publication statsView publication stats

https://www.researchgate.net/publication/280720451

