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Abstract
This paper investigates the problem of integrating two power-

ful abstractions for concurrent programming, namely futures

and transactional memory. Our focus is on specifying the

semantics of execution of "transactional futures", i.e., futures

that execute as atomic transactions and that are spawned/e-

valuated by other (plain) transactions or transactional futures.

We show that, due to the ability of futures to generate parallel

computations with complex dependencies, there exist several

plausible (i.e., intuitive) alternatives for defining the isola-

tion and atomicity semantics of transactional futures. The

alternative semantics we propose explore different trade-offs

between ease of use and efficiency.We have implemented the

proposed semantics by introducing a graph-based software

transactional memory algorithm, which we integrated with

a state of the art JAVA-based Software Transactional Memory

(STM). We quantify the performance trade-offs associated

with the different semantics using an extensive experimental

study encompassing a wide range of diverse workloads.

CCS Concepts: • Computing methodologies → Shared
memory algorithms; • Theory of computation → Par-
allel computingmodels.

Keywords: Software Transactional Memory, Parallel Pro-

gramming, Futures, Synchronization, Concurrency Control
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1 Introduction
Transactional memory (TM) [24, 36] is regarded as an at-

tractive paradigm to simplify the development of concurrent

applications. TM borrows the abstraction of the atomic trans-

action fromthedatabase literature andapplies it as afirst-class

abstraction in the context of generic (i.e., not sandboxed) par-

allel programs: by requiring programmers only to identify

which codeblocks should be executed atomically, andnothow

atomicity should be achieved. TM simplifies the development

of concurrent applications [12, 13, 19, 26, 28, 33, 42, 43, 46], de-

livering performance on parwith (and sometimes even higher

than) complex, hand-crafted locking mechanisms [15, 38].

Over the last years, TM literature has focused on study-

ing transaction execution models that assume transaction

to issue operations sequentially. The problem of how to sup-

port intra-transaction parallelism has, conversely, garnered

limited attention and, in this context, most of the works we

are aware of have focused on investigating the scenario of a

specific paradigm for expressing parallelism among multiple

sub-tasks of a transaction, namely parallel nesting [2, 4, 5, 14].
Thiswork aimsatfilling agap in the literature by investigat-

ing the semantics that should be enforced by aTMsystem that

allows expressing intra-transaction parallelism via another

popular abstraction, which allows for generating a broader

range of concurrent programming patterns than parallel nest-

ing, namely futures. More precisely, we focus on defining

desirable atomicity and isolation semantics for TM systems in

which futures are used to coordinate the execution of parallel

tasks, which we call transactional futures, whose accesses to
shared data are synchronized via transactions.

Analogously to parallel nesting, futures allow program-

mers to express when parallelization is useful: at which point

in an otherwise sequential program a parallel task should be

started (i.e., when the future is created). Differently from the
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parallel nestingmodel, though, the future abstractiondoesnot

block theexecutionof themain thread,alsocalled continuation
in the context of futures, till the parallel sub-task it spawned

completes execution. Conversely, a future is returned, i.e., a
reference to the result that will be eventually produced by the

task encapsulated in the future. This allows futures to achieve

a greater flexibility in definingwhen the results of a parallel
sub-task are actually required by the application: futures can

be evaluated (i.e., theirpromise isqueried to retrieve the result)

in an asynchronous fashion and in anorder that is totally unre-

lated with the orders in which they were spawned —whereas

parallel nesting abides by a fork-join model, according to

which the spawning thread remains blocked until the last sub-

transaction completes, and only then resumes its execution.

Using a set of examples of concurrent computations of

increasing complexity, we introduce the spectrum of issues

that need to be addressed when defining the semantics of

transactional futures. We show that, given the futures’ ability

to generate parallel computations with complex dependen-

cies, there exist several plausible (i.e., intuitive) alternatives

for what concerns the isolation and atomicity semantics of

a transactional future and its continuation.

Based on these considerations, we characterize four differ-

ent semantics over two dimensions: the degree of atomicity

between futures and continuations, and their admitted serial-

ization orders. The alternative semantics we propose explore

different trade-offs between ease of use (simplicity of rea-

soning on the equivalent sequential histories), and efficiency

(ability to avoid aborts or stalls by enforcing a different type of

constraints on the serialization order of transactional futures).

We formalize the semantics utilizing a graph-based charac-

terization of the logical dependencies that (sub-)transactions

develop by accessing shared variables and creating/evalu-

ating futures; the resulting graph is then used to formalize

alternative definitions of continuations and impose different

constraints on the serialization orders of transactional futures.

We show how to implement the proposed semantics by

introducing a software transactional memory (STM) algo-

rithm that orchestrates the execution of transactional futures

via a novel graph-based concurrency control scheme. We

implement this algorithmby extending a state of the artmulti-

versioned STM(JVSTM[7, 16]), and evaluate theperformance

trade-offs of the proposed semantics via an experimental

study encompassing diverse workloads.

2 Related work
Futures were first introduced by Halstead [23], as a synchro-

nization and scheduling language mechanism. The future’s

abstraction is nowadays widely supported in mainstream

programming languages [10, 27, 35]. In Java, for instance,

futures [27] can be used to explore parallelism by forking

at the method calls. These implementations of futures lack

support for regulating concurrent access to shared resources

(e.g., shared variables) among different futures and continu-

ations, delegating this responsibility to the programmer. The

concept of safe futures [41] has been proposed to preserve

the equivalence of serial execution although the future and

its continuation may execute concurrently and access shared

data. However, safe futures fail to unlock the full potential of

the futureabstraction, as theyassume theunderlyingprogram

to be single-threaded: the only two threads that may ever run

in parallel are the ones that run a future and its continuation.

Kogan and Herlihy [25] studied how to leverage futures

to parallelize concurrent data structures, exploiting a priori
knowledge on operations’ semantics and commutativity to

combine and eliminate concurrent operations. Our work con-

siders a more generic model, which supports the execution of

arbitrary code in futures that execute as atomic transactions.

Most of the literature on TM that has looked at how to

exploit intra-transaction parallelism has focused on a specific

executionmodel,which is typically referred to as parallel nest-

ing [2, 4, 17, 40]. In parallel nesting, top-level transactions can

spawn (recursively) one or several nested sub-transactions.

Unlike futures, parallel nesting is as an instance of the classic

fork-join model, which supports a smaller class of parallel

computations than futures (see Section 3.3).

We are aware of only 2 works [39, 44] that attempted to

reconcile the abstractions of futures and transactions. JTF [44]

is a TM that provides support for transactional futures, but as-

sumes simplistic semantics (which we call strongly ordered in

this paper), i.e., it imposes the serialization of futures at their

submission point. Chocola [39], conversely, imposes futures

to be serialized upon evaluation and forces them to be eval-

uated by their spawning transaction. Further, Chocola only

considers write-write conflicts (thus it implicitly assumes no-

blindwrites) and targets serializability, andnot opacity [22] as

consistency criterion (as typical in TM environments). In this

paper, we investigate multiple definitions of the isolation and

atomicity semantics of transactional futures, motivated by

the observation that a future offers two intuitive serialization

points for its execution, namely upon submission and upon
evaluation. This flexibility raises interesting opportunities

as well as subtle issues. On the one hand, allowing transac-

tional futures to be serialized according to orders that do not

match the spawning order enables buildingmore efficient TM

systems that can reduce the abort rate and transactions’ stall

times — benefits that we shall quantify in Section 5. On the

other hand, allowing futures to be serialized upon evaluation

raises non-trivial issues related to the definition of the atomic-

ity and isolation of escaping futures, i.e., futures that are evalu-
ated in adifferent (sub-)transaction than theone inwhich they

were spawned—aswe shall discussmore in detail in Section 3.

Finally, the proposed formalization of transactional future

and its STM implementation make use of a graph-based char-

acterization of conflicts to determine serializability of transac-

tional futures. As such, our work is related to the literature in

the DBMS and TM domains that exploits conflict graphs both
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to implement permissive [21] concurrency control mecha-

nisms [3, 30, 32, 45] and to formalize different transactional

semantics [1, 20, 29]. The fundamental differencewith respect

to thisbodyof literature is thatourworkextendsand leverages

the transaction dependency graph to reason on the relations

between transactional futures and their continuations.

3 Semantics of transactional futures
As a first step to reason on the integration of the future ab-

straction in the TM paradigm, we first define the assumed

model of execution of transaction and futures. We consider

a set TH = {𝑇ℎ1,...,𝑇ℎ𝑛} of threadswhich can communicate

by reading and writing a set of shared variables𝑉 .

In the conventional transactional model, transactions start

by issuing a begin operation, which can be followed by a se-
quence of read andwrite operations, and are finally completed

by either a commit or abort operation. We say that two op-

erations conflict if they access the same variable and at least

one of them is a write operation. In case a read operation

observes the value written by a write operation, we say that a

read-after-write dependence has been developed by the two

operations. Each operation has an associated execution inter-
val, which starts when the operation is issued and ends when
the TM returns the operation’s result.

In order to integrate futures and transactions, we extend

this model in a twofold way. First, we allow transactions to re-

turn values: this is done since the future abstraction supports

the execution of tasks that generate results, and we intend to

encapsulate theoperationsexecutedbya futurewithina trans-

action. Second, we allow transactions to issue two additional

operations, i.e., submit and evaluate. The submit operation
takes as input a transaction𝑇 , activates a parallel thread in

which𝑇 will be executed, and returns a future object 𝑓 ∈ F .

The returned future 𝑓 can be passed as an input parameter to

an evaluate operation to obtain the return value of𝑇 .
We assume that a future can only be submitted or evalu-

ated within the context of a transaction. This can be enforced

by wrapping any non-transactional submit and evaluate call

within an otherwise empty transaction. We initially assume

that a future is evaluated atmost once and that evaluate blocks
until the transactionassociatedwith the future 𝑓 completes its

execution, i.e., when it successfully commits. This assumption

will be relaxed in Section 3.2.

As in typical TM environments, we assume that if a trans-

action aborts due to contention, it is re-executed automat-

ically. This implies that if an evaluate primitive associated

with transaction𝑇 returns, then𝑇 has either been committed

(possibly after several aborts due to conflicts and subsequent

re-executions) or𝑇 has aborted due to an explicit decision of

the program to abort𝑇 (via the abort operation).
Transactions activated by threads that do not run in the

context of a future are denoted top-level transactions. This
transaction execution model supports an arbitrary deep nest-

ing of calls to transactional futures in a top-level transaction.

commit

evaluate TF

T

TF w(x,x+1)

w(x,x+1)

submit

w(x,1) w(y,x)

(a)A Simple Example of Transactional Futures (TF).

commit

evaluate TF2

T0

TF1

r(k)

submit

w(k,k0)

evaluate TF1

w(n,n1)w(y,y0)

w(x,x1)

r(x) r(y)TF2

commitr(n)

(b) Escaping TF that is evaluated within the same top-level transaction.

T1

submit

evaluate TF

r(x) w(z,z1)

commit

w(x,f)

w(y,y1)

r(y)

r(z)TF

r(x) w(z,z2)T2

(c) Escaping TF across top-level transactions with GAC semantics.

T1

submit
evaluate TF

r(x) w(z,z1)

commit

w(x,f)

w(y,y1)

r(y)

r(z)TF

r(x) w(z,z2)T2
implicit 

evaluate TF
(d)History of Figure 1c but with LAC semantics.

Figure 1. Example executions with Transactional Futures.

Note also that transactional futures are not required to be

evaluated by the same transaction/thread that submit them.

3.1 A basic example
Figure1a showsasimpleexample thatweuse to set theground

in our search for plausible semantics of transactional futures.

The top-level transaction𝑇 first writes value 1 to variable 𝑥

and then submits a transactional future𝑇𝐹 , which reads and

increments 𝑥 by 1. In parallel with𝑇𝐹 , i.e., before evaluating

it, transaction𝑇 reads and increments 𝑥 by 1. Finally, after

evaluating𝑇𝐹 ,𝑇 reads 𝑥 and writes its value to variable𝑦.

Given the simplicity of this scenario, it is intuitive to define

both which sets of operations should be executed atomically

and which are their admissible serialization orders: the read

and write operations of𝑇𝐹 should all be serialized either be-
fore or after the operations of𝑇 that follow the creation of𝑇𝐹
and precede𝑇𝐹 ’s evaluation. We call this set of operations of

𝑇 the continuation of𝑇𝐹 , and denote it asC(𝑇𝐹 ). Motivated by

this example, we restrict a future𝑇𝐹 to appear as atomically

executedwith respect to its continuation C(𝑇𝐹 ), i.e., to bemu-

tually isolated as if they ran encapsulated in two transactions.

The choice of enforcing the atomicity between a future and

its continuation aims at preserving the ease-of-use of TM,

which represents arguably one of its main attractive features.

Nevertheless, aswewill discuss in Section3.3, theproposed se-

mantics allows for generating complex parallel computations

that cannot be expressed using the conventional fork-join

parallel nesting model.
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TF

T

r(x=0) w(z,1)

r(z=0) w(y,1)

Figure 2.This continuation abortswith SO, but notwithWO.

In this example, the serialization orders𝑇𝐹 →C(𝑇𝐹 ) and
C(𝑇𝐹 )→𝑇𝐹 provide the same outcome, since the operations

of𝑇𝐹 and C(𝑇𝐹 ) commute. Since this is not the case in general,

we argue that it is desirable to allow programmers to specify

restrictions on the serialization order of transactional futures.

These considerations led us to consider two different seman-

tics regarding the serialization order of transactional futures:

•Weakly Ordered Transactional Futures (WO): A future and

its continuation should appear as executed atomically, i.e. the

future should be serialized before or after its continuation.

• Strongly Ordered Transactional Futures (SO): A future and

its continuation should appear as executed atomically with

the future serialized before its continuation.

The SO semantics ensures that a transactional future yields

the same result as if it executed in a sequential version of

the program (not using futures). WO semantics, conversely,

require programmers to determine whether application’s cor-

rectness is preserved independently of the order in which

transactional futures and their continuations are serialized.

On the other hand, the ability ofWO to establish different

serialization points for a future brings two benefits:

• Reduction of abort rate: as exemplified in Figure 2, the con-

tinuation of𝑇𝐹 can be spared from aborting in case it misses

to observe the updates produced by𝑇𝐹 (whereas the continu-

ation would be aborted with SO semantics in such a history).

• Stragglers avoidance: with SO semantics, a transactional

future,𝑇 𝑖
𝐹
, can only be committed if any previously submit-

ted future, say𝑇
𝑗

𝐹
with 𝑗 < 𝑖 (where the superscript denotes

the spawning order of the transactional future), has first com-

pleted its ownexecution.As such, even a single relatively slow

future can become a straggler for the whole set of futures con-

currently submitted by the same top-level transaction. This

phenomenon is exemplified in Figure 3, which illustrates a

scenario in which a top-level transaction, logically composed

by a total of 8 (commutative) sub-tasks, is parallelized using

up to 3 concurrent futures, i.e., a new future is activated only

whenever the continuation detects that a previously submit-

ted future has completed its execution. The diagram clearly

illustrates that, thanks to the use ofWO semantics, the hetero-

geneity of the execution speed of transactional futures does

not expose the system to the risk of stragglers.

Further, the choice of WO vs SO has implications on the

definition of the upper bound of the execution interval of the

commit operation of a future and of its spawning transaction.
With SO semantics the serialization order of a future is

defined prior to the future’s activation. As such, whenever a

TF1(straggler) TF4

TF1(straggler) TF6

Strongly Ordered Futures 

TF2

TF3 <BLOCKED>
<BLOCKED>

TF6
TF5

TF2

TF3
TF4

TF5 TF8
TF7

Weakly Ordered Futures 

Figure 3. SO, unlikeWO, suffers from stragglers.

SO future requests to commit, it is immediately possible to

determine the outcome of the future (i.e., if this can be serial-

ized upon submission) and return from the commit call. Con-

versely, the SO semantics demands that any future spawned

by a transaction 𝑇 is serialized before its continuation, i.e.,

within𝑇 . It follows that𝑇 ’s commit request has to be necessar-

ily blocked until all the futures spawned by𝑇 have committed.

WithWO semantics, the opposite is true: a transaction𝑇

that spawns a future𝑇𝐹 (and does not evaluate it) can commit

withoutwaiting for𝑇𝐹 , as𝑇𝐹 canbe serializeduponevaluation,

i.e., after𝑇 . However, whenever a future is serialized upon

evaluation, the return call of its commit operationmust follow

the call of its evaluate operation (else, its serialization point
would be undefined). Thus, the𝑇𝐹 ’s commit request may be

blocked for an arbitrarily long time, i.e., until𝑇𝐹 is evaluated.

The latter case is illustrated in Figure 1a, which depicts

the execution interval of the commit and evaluate operations
of𝑇𝐹 (for simplicity all the other operations are assumed in-

stantaneous). In this example,𝑇𝐹 requests to commit in real

time before it is evaluated and assumes that the TM opted for

serializing𝑇𝐹 upon evaluation. As such, the commit request

of𝑇𝐹 has to be blocked until𝑇𝐹 is evaluated by𝑇 .

3.2 Non-blocking and repeated evaluations
So far we have assumed that a transactional future is evalu-

ated at most once. The semantics we propose for the case of

multiple evaluations are based on the common assumption

that a transaction is only committed, and serialized, once.

Analogously, repeated evaluate calls for𝑇𝐹 should be idempo-

tent, i.e., always return the same result that corresponds to the

result produced by the (only) execution of𝑇𝐹 that did commit.

This is done to guarantee that a transactional future, in-

dependently of the number of times it is evaluated, will be

associated with a single serialization point, i.e., either upon

its submission or, ifWO semantics are assumed, upon its first

evaluation.

A possible scenario in which a transactional future, say

𝑇𝐹 , could be evaluated more than once occurs in case 𝑇𝐹 is

evaluated by a transaction𝑇 that later aborts. Upon its restart,

𝑇 is likely to re-evaluate 𝑇𝐹 . In such a case, 𝑇𝐹 returns to a

“non-evaluated” state and if 𝑇𝐹 is later evaluated (e.g., by a

reincarnation of T), its re-evaluation succeeds iff𝑇𝐹 can be

serialized upon submission or in the new evaluation point.
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T0

TF1 r(x)

w(x,x0)

TF2

w(y,y0) w(z,z0)

r(y)

r(z)r(y)

Figure 4. Concurrent computation not supported by parallel

nesting.

Supporting a non-blocking variant of evaluate does not
raise significant issues. In fact, anyattempt toevaluatea future

that is still executinghasno impacton itspossible serialization

orders, as the call does not externalize the future’s result.

3.3 Beyond parallel nesting
The simple example considered above could also have been

implemented using parallel nesting [2] based on the classic

fork-join model. However, futures support a broader class of

concurrent computations than parallel nesting. Unlike paral-

lel nesting, in fact, futures do not force blocking a “spawning”

thread until all its nested sub-transactions complete their

execution, but rather allow for the arbitrary interleaving of

submissions and evaluations of different futures.

Figure 4 presents an example of a parallel computation that

can be generated by futures but that cannot be expressed by

parallel nesting: after submitting future𝑇𝐹1,𝑇0writes variable

𝑥 in𝑇𝐹1’s continuation, and before evaluating𝑇𝐹1, it submits

a second future𝑇𝐹2 and writes to𝑦. Finally,𝑇0 writes variable

𝑧, evaluates𝑇𝐹2 and commits. Regarding atomicity between

futures and continuations, we argue that in such a scenario

the natural semantics is to enforce the atomicity of the writes

to 𝑥 and𝑦 by𝑇0 with respect to the operations issued by𝑇𝐹1,

i.e., either w(𝑥 ,𝑥0)→w(𝑦,𝑦0)→ r(𝑥 )→ r(𝑦), or r(𝑥 )→ r(𝑦)→
w(𝑥 ,𝑥0)→w(𝑦,𝑦0). Equivalently,𝑇𝐹2 should not be serialized

between thewrite to𝑦 and the one to𝑧 by𝑇0, i.e., eitherw(𝑦,𝑦0)

→w(𝑧,𝑧0)→ r(𝑦)→ r(𝑧), or r(𝑦)→ r(𝑧)→w(𝑦,𝑦0)→w(𝑧,𝑧0).

In this case, it is worth highlighting that the continuations of

𝑇𝐹1 and𝑇𝐹2 are partially overlapping (they share the write to

𝑦), yet distinct.

In the following we focus on another type of executions

that are allowed by the transactional futures and that cannot

be supported with parallel nesting, which we call escaping
transactional futures, i.e., transactional futures that are not
evaluated by the same transaction in which they are sub-

mitted. As an example, consider an e-commerce application

where adding an item to the cart triggers a transaction that

updates the cart and, to hide user-perceived latency, it spawns

a future to check for shipping costs using different sellers.

This transaction commits before showing the next page to

the user, but the future it generated is only evaluated at a later

stage, when the purchase is finalized. The use of an escaping

future provides two main advantages in this scenario. First, it

reduces latencybyoverlapping the shippingcost computation

(in the future) with the user’s shopping interactions. Second,

it ensures the atomicity of thewhole purchase process, e.g., by

aborting and restarting the future if the shipping cost of any

item in the cart is modified by some transaction that commits

before the future is evaluated.

We show an example of escaping futures in Figure 1b, in

which𝑇𝐹2 is activated by𝑇𝐹1. The latter writes to 𝑥 , but com-

mits without evaluating 𝑇𝐹2, whose reference is communi-

cated to𝑇0 via𝑇𝐹1’s return value. Next,𝑇0 issues a write on

𝑦 and evaluates𝑇𝐹2. This example highlights that the defini-

tion of continuation for escaping transactional futures is very

subtle. We argue that, in this case, the “natural" continuation

of𝑇𝐹2 (i.e., the sequence of causally-related operations that

leads from the start of 𝑇𝐹2’s continuation to its evaluation)

is composed by the write on 𝑥 by 𝑇𝐹1 and by the write on

𝑦 by𝑇0, i.e.𝑇𝐹2’s continuation spans two (sub-)transactions

(associated with the same top-level transaction). Hence,𝑇𝐹2
should observe either both writes on 𝑥 and𝑦 or none of them.

Figure 1c depicts another interesting programming pat-

tern in which escaping transactional futures are used as a

communication means by two distinct top-level transactions.

In this case, the top-level transaction𝑇1 submits a future𝑇𝐹 . In

𝑇𝐹 ’s continuation,𝑇1 writes a reference of the future returned

by submit(𝑇𝐹 ) to variable 𝑥 , reads𝑦 and commits. WithWO

semantics, it is possible to serialize 𝑇𝐹 after 𝑇1. This allows

𝑇1 to commit without having to block until𝑇𝐹 commits (see

Section 3.1), making the reference to 𝑇𝐹 available to other

top-level transactions, e.g.,𝑇2 in Figure 1c.

Following the same rationale used when analyzing Fig-

ure 1b, one may argue that by communicating the reference

of𝑇𝐹 via𝑥 , a logical causalityhasbeenestablishedbetween the

operations issued by𝑇1 after submitting𝑇𝐹 and the operations

issued by𝑇2 before evaluating𝑇𝐹 . If these operations were, in

the light of this reasoning, considered as continuation of𝑇𝐹 ,

then these operationswouldhave to appear as anatomic block

to𝑇𝐹 , despite they span two top-level transactions. We term

this atomicity model Globally Atomic Continuation (GAC).
The above example could be easily generalized, e.g., to

include in the continuation of𝑇𝐹 , after𝑇1 and before𝑇2, an

arbitrarily long chain of transactions propagating the refer-

ence to𝑇𝐹 to each other. As discussed in Section 3.1, withWO

semantics, this would force a TM that opts for serializing𝑇𝐹
uponevaluation to stretch the execution interval of its commit

operation for an arbitrarily long time, i.e., until𝑇𝐹 is evalu-

ated. This can have implications both on the efficiency of TM

implementations, which will have to maintain resources (e.g.,

locks held by the future) for prolonged periods of time, and

on the likelihood for the𝑇𝐹 to be aborted (since by stretching

its execution interval,𝑇𝐹 becomesmore likely to conflict with

concurrent transactions).

This led us to consider alternative atomicity semantics,

called Locally Atomic Continuation (LAC), which limits the

boundaries of a continuation to its spawning top-level trans-

action. With LAC semantics any top-level transaction 𝑇 is

20



PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea Zeng and Issa, et al.

requested to implicitly evaluate, during its commit phase, any

escaping futures 𝐹 that𝑇 spawned either directly or indirectly,

i.e.,𝑇 triggered the spawning of a chain of futures that led

eventually to the submission of 𝐹 . We call this evaluation “im-

plicit”, since it is not requested by programmers, but is rather

imposed by the LAC semantics. The LAC semantics ensures

that a future is necessarily serialized within its spawning top-

level transaction: any future that escapes from its top-level

transaction𝑇 is serialized either upon submission or (if WO

semantics are assumed) upon its “implicit” evaluation, i.e., as

the last (sub-)transaction of𝑇 right before𝑇 ’s commit. Note

that, if multiple transactional futures escape from the same

top level transaction, no constraint is imposed on the order

in which they are implicitly evaluated by the TM.

Figure 1d illustrates the LAC semantics for the same his-

tory considered in Figure 1c: an implicit evaluation of𝑇𝐹 is

added as the last operation of its spawning top-level trans-

action 𝑇1. As a consequence, 𝑇𝐹 can commit earlier than if

GAC semantics were considered. However, this comes at a

cost for𝑇1, which is now forced to wait for𝑇𝐹 ’s completion

before being able to commit. Figure 1d also shows an example

of repeated evaluations of a future, namely𝑇𝐹 , which is first

implicitly evaluated by𝑇1 and then (explicitly) evaluated by𝑇2.

As discussed in Section 3.2, the second evaluation is required

to return the same value as in the first evaluation.

Finally, let us discuss the relations between the proposed se-

mantics,whichwere definedover twodimensions: the atomic-

ity between transactional futures and continuations (GAC vs

LAC), and their admitted serialization orders (WO vs SO). We

note that the choice of SO semantics, which demand futures

to be serialized at submission time, renders the distinction

between globally and locally atomic continuations irrelevant:

establishing which set of operations to include in a future’s

continuation is only relevant if futures can be serialized at

their evaluation, i.e., after their continuation, as allowed by

theWO semantics; with SO semantics, in fact, a future’s se-

rialization point is known a priori and is not affected by the
set of the operations included in its continuation.

3.4 Formalizing the proposed semantics
In this section we introduce a framework to establish the set

of feasible serialization orders among transactional futures

and continuations. We propose a graph-based characteriza-

tion, called Future Serialization Graph (FSG), that captures

the possible serialization orders among transactional futures

and continuations. The FSG formalization is similar in spirit

to the DAG computation model used to capture task paral-

lelism [6, 11]. A key distinction is that, since FSG incorporates

transactions, a node in FSG corresponds to a sub-transaction

as opposed to a strand (a sequence of instructions without

parallel control constructs). Further, the FSG incorporates

conflict relations between transactions.

LetH(T ,S) be a history defined over: i) a set of transac-
tions T =T𝑡𝑜𝑝∪T𝑓 𝑢𝑡 , where T𝑡𝑜𝑝 denotes the set of top-level

VTbegin

VTF
begin

VTF
C-begin VTF

eval

{w(x,1),submit(TF)} {w(x,x+1)} {eval(TF),w(y,x),c(T)}

{w(x,x+1),c(TF)}(VTF
end)

(VTF
spawn)

(a) FSG of the History in Fig. 1a (no ordering semantics).

VT1
begin (VTF

spawn)

 VTF
begin (VTF

end)

VTF
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begin VTF
eval

{r(x),w(z,z1),submit(TF)} {w(x,f),r(y),c(T1)} {r(x)} {eval(TF),w(z,z2),c(T2)}

{r(z),w(y,y1),c(TF)}

(b) FSG of the history in Fig. 1c (no ordering semantics).

(VTF
spawn)VTbegin

VTF
begin

VTF
C-begin VTF

eval

(VTF
end)

(c) Extending the FSG of the History in Fig. 1a with an

edge from𝑉 𝑒𝑛𝑑
𝑇𝐹

to𝑉
𝐶−𝑏𝑒𝑔𝑖𝑛
𝑇𝐹

imposes SO semantics to𝑇𝐹 .

VT1
begin (VTF

spawn)     

 VTF
begin (VTF

end)

VTF
C-begin VT2

begin VTF
eval(VTF

C-end)

(d) Extending the FSG of the History in Fig. 1c with a

bipath to imposeWO semantics to𝑇𝐹 .

Figure 5. Example of FSG-based representations.

transactions and T𝑓 𝑢𝑡 denotes the set of transactional futures;
ii) a partial order S over the operations issued within each

transactions in T , extended to include real-time order rela-

tions between transactions. FSG(H ) is defined as a directed

graph having the following vertexes:

•A vertex𝑉
𝑏𝑒𝑔𝑖𝑛

𝑇
for each transaction𝑇 ∈T , which is asso-

ciated with all the operations executed by𝑇 since its begin

until (and including) the first occurrence of the first of the

following operations {submit,evaluate, abort, commit}.
• For each transactional future𝑇 ∈T𝑓 𝑢𝑡 , two additional ver-

texes are defined: (1)𝑉
𝐶−𝑏𝑒𝑔𝑖𝑛
𝑇

, associated with the read-write

operations issued by the thread that submitted𝑇 after𝑇 ’s sub-

mission (excluded) (i.e., the initial part of𝑇 ’s continuation)

until the first occurrence of a {submit, evaluate, abort, com-
mit}. This last operation is associated with𝑉𝐶−𝑏𝑒𝑔𝑖𝑛

𝑇
, except if

it is an evaluate, for which a dedicated vertex (𝑉 𝑒𝑣𝑎𝑙
𝑇

, defined

next) is added to the graph. (2)𝑉 𝑒𝑣𝑎𝑙
𝑇

, associated with the op-

erations issued by some thread that starts with the (possibly

implicit) evaluation of the future𝑇 (included) and ends with

the first occurrence of a {submit, evaluate, abort, commit}
operation. Also in this case, this last operation is associated

21



Investigating the Semantics of Futures in Transactional Memory Systems PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

with 𝑉 𝑒𝑣𝑎𝑙
𝑇

, except if it is an evaluate(𝑇 ′
), for which a 𝑉 𝑒𝑣𝑎𝑙

𝑇 ′

vertex is added to the FSG.

The𝑉
𝐶−𝑏𝑒𝑔𝑖𝑛
𝑇

and𝑉 𝑒𝑣𝑎𝑙
𝑇

vertexesdemarcate the logicalbound-

aries of a continuation and serve as natural “checkpoints” to

enable partial rollbacks, e.g., in Figure 1a, if the continuation

is aborted due to a conflictwith𝑇𝐹 , only the sub-transaction as-
sociated with the continuation is restarted and not the whole

top-level transaction. To this end, when a submit or evaluate
operation is executed by𝑇 , we implicitly commit the current

sub-transaction of𝑇 and begin a new sub-transaction.

The following edges are defined for FSG(H ):

• An edge 𝑉 1 → 𝑉 2 for each pair 𝑉 1, 𝑉 2 of vertexes in

FSG such that 𝑉 1 and 𝑉 2 are executed by the same thread

𝑇ℎ𝑖 ∈TH and𝑇ℎ𝑖 executes𝑉 1 before𝑉 2 —which captures

the sequential order of execution by a single thread.

• An edge 𝑉
𝑠𝑝𝑎𝑤𝑛

𝑇
→ 𝑉

𝑏𝑒𝑔𝑖𝑛

𝑇
for each transactional future

𝑇 ∈T𝑓 𝑢𝑡 , where we have denoted with𝑉 𝑠𝑝𝑎𝑤𝑛

𝑇
the vertex asso-

ciatedwith the operation submit(𝑇 ), i.e., transactional futures
cannot be serialized before their submission.

• An edge𝑉 𝑒𝑛𝑑
𝑇

→𝑉 𝑒𝑣𝑎𝑙
𝑇

for each transactional future𝑇 ∈
T𝑓 𝑢𝑡 , where we have denoted with 𝑉 𝑒𝑛𝑑

𝑇
the vertex associ-

ated with the operation commit(𝑇 ), i.e., transactional futures
cannot be serialized after their evaluation.

Figure 5a shows the FSG of the example reported in Fig-

ure 1a and the operations associated with each vertex (within

brackets). Note that in this example 𝑉
𝑏𝑒𝑔𝑖𝑛

𝑇
coincides with

𝑉
𝑠𝑝𝑎𝑤𝑛

𝑇𝐹
and𝑉

𝑏𝑒𝑔𝑖𝑛

𝑇𝐹
coincides with𝑉 𝑒𝑛𝑑

𝑇𝐹
. Figure 5b shows the

FSG of the history in Figure 1c and in the supplemental ma-

terial we provide also the FSG of the history in Figure 1d.

Weaklyand stronglyordered futures.Wenowextend the

FSG with additional edges aimed at imposing restrictions on

the serialization order of a future with respect to its continu-

ation, depending on the (strong vs weak) ordering semantics.

Recall that the SO semantics requires a future to be serial-

izedupon submission.This semantics canbe easily encoded in

the FSG by adding an edge𝑉 𝑒𝑛𝑑
𝑇

→𝑉
𝐶−𝑏𝑒𝑔𝑖𝑛
𝑇

for each SO trans-

actional future𝑇 ∈T𝑓 𝑢𝑡 , wherewehave again notedwith𝑉 𝑒𝑛𝑑
𝑇

the vertex associated with the commit operation of𝑇 . Intu-

itively, this edge ensures that SO transactional futures are seri-

alized before their respective continuations. This is illustrated

inFigure5c,where the edge from𝑉
𝑏𝑒𝑔𝑖𝑛

𝑇𝐹
(whichcoincideswith

𝑉 𝑒𝑛𝑑
𝑇𝐹

) to𝑉
𝐶−𝑏𝑒𝑔𝑖𝑛
𝑇𝐹

is used to serialize𝑇𝐹 before its continuation.

WO, on the other hand, allows the serialization point of a

transactional future to be either upon its submission or its

evaluation. To enforce this constraint, we introduce a spe-

cial type of edge, called bipath [29]. The notion of bipath

was introduced by Papadimitrou in his seminal paper on the

complexity of (view) serializability. A bipath is defined by a

pair of edges (𝑉𝑖 → 𝑉𝑗 ),(𝑉𝑘 → 𝑉𝑙 ) and the inclusion of a bi-

path in a graph serves to express that either the first or the

second edge of the bipath holds. The inclusion of a bipath

in a directed graph, such as the FSG, turns the graph into a

polygraph. A polygraph encodes a family of directed graphs,

where each directed graph is obtained by including, for each

bipath in the original polygraph, either one of its edges. As

such, polygraphs allow for representing in a compact way a

large number of directed graphs. More precisely, a polygraph

with 𝑛 bipaths encodes 2
𝑛
different directed graphs [29].

We capture the two alternative serialization orders of aWO

transactional future by introducing for each𝑇𝐹 ∈T𝑓 𝑢𝑡 a bipath:

(𝑉𝑇𝐹𝐶−𝑒𝑛𝑑 →𝑉𝑇𝐹 𝑏𝑒𝑔𝑖𝑛 ),(𝑉𝑇𝐹 𝑒𝑛𝑑 →𝑉𝑇𝐹𝐶−𝑏𝑒𝑔𝑖𝑛 )

where𝑉𝑇𝐹𝐶−𝑒𝑛𝑑 represents the final vertex of the continuation

of𝑇𝐹 , or more formally, the vertex associated with the oper-

ation that immediately precedes the evaluation of𝑇𝐹 in the

(totally ordered) history of operations of the thread that evalu-

ates𝑇𝐹 . With the above definition, the first edge of the bipath

orders the continuation before the future (i.e., serialization

upon evaluation) and the second edge orders the future before

the continuation (i.e., serialization upon submission).

Figure 5d illustrateshowtheFSG for thehistory inFigure 1c

is extended with a bipath that connects: (i) the end vertex of

𝑇𝐹 ’s continuation (i.e.,𝑉
𝑏𝑒𝑔𝑖𝑛

𝑇2
) to the beginning vertex of𝑇𝐹

(i.e.,𝑉
𝑏𝑒𝑔𝑖𝑛

𝑇𝐹
) and (ii) the end vertex of𝑇𝐹 (which coincideswith

𝑉
𝑏𝑒𝑔𝑖𝑛

𝑇𝐹
) to the beginning vertex of C(𝑇𝐹 ) (i.e.,𝑉𝐶−𝑏𝑒𝑔𝑖𝑛

𝑇𝐹
).

Inclusionof operations in transactions.Before finalizing
the formalization of the proposed semantics, we need to intro-

duce the notion of inclusion of operations into a transaction.

The intuition is to include in a transaction 𝑇 not only the

operations that𝑇 directly executes, but also the operations

executed by transactional futures that are serialized within𝑇

possibly indirectly, i.e., via a chainof futures that canbe rooted

toa submit/evaluateoperationby𝑇 .Akey subtletyhere is that

our model supports escaping transactional futures, which,

with WO semantics, are not a priori bound to be serialized

within the spawning or the evaluating (top-level) transaction.

An operation𝑜𝑝 is included in a transaction𝑇 if there exists

a path in the FSG from the vertex associated with the begin of

𝑇 to the vertex associatedwith the commit/abort of𝑇 (or with

the last operation issued by𝑇 if𝑇 is still active) that passes

via the vertex associated with 𝑜𝑝 . Based on this definition,

we include in a transaction𝑇 all the operations issued by𝑇

and by any non-escaping future submitted by𝑇 and, recur-

sively, by𝑇 ’s non-escaping futures. WithWO semantics, an

escaping future is given the flexibility to be either included in

its spawning or evaluating transaction (depending on which

edge of its bipath is considered in the FSG).

Extending the FSG with conflict relations. We now

extend the FSG to capture conflict relations. Whenever a

(sub-)transaction𝑇 executes an operation 𝑜𝑝 that conflicts
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with an operation 𝑜𝑝 ′
executed by (sub-)transaction𝑇 ′

, the

following edges are added to the FSG:

• Atomicity within the same top-level transaction. If 𝑇 and

𝑇 ′
are two (sub-)transactions included in the same top-level

transaction, an edge is added from𝑇 to𝑇 ′
, or in the opposite

direction, depending on 𝑜𝑝 is ordered before or after 𝑜𝑝 ′
.

•Atomicity between different top level transactions. If𝑇 and𝑇 ′

are included in different top-level transactions,𝑇𝑡𝑜𝑝 and𝑇
′
𝑡𝑜𝑝 ,

an edge is added from all the vertexes associated with𝑇𝑡𝑜𝑝 to
all the vertexes associated with𝑇 ′

𝑡𝑜𝑝 , or in the opposite direc-

tion, depending on whether 𝑜𝑝 is ordered before or after 𝑜𝑝 ′
.

The rationale is that our FSG associates vertexes to indi-

vidual (sub-)transactions and not to top-level transactions,

as in classic transaction serialization graphs [29]. By adding

edges among all the vertexes of two conflicting top-level

transactions, we guarantee that the ordering relation induced

by their conflicting operations is not only reflected at the

level of the (sub-)transactions that issued those operations,

but also among the corresponding top-level transactions.

Next, analogously to classical serializability theory [29],

we impose the constraint that an operation can be accepted by

aTM iff its execution does not generate cycles in the FSG. Else,

𝑇 has to be aborted. Intuitively, this constraint guarantees the

equivalence of the historyH(T ,S) produced by a TM to a

sequential history that respects not only the partial orderS of

the operations inH but also of every additional constraint im-

posed by the semantics of weakly vs strongly ordered transac-

tional futures and of globally vs locally atomic continuations.

Note that the proposed formalization requires that the

absence of cycles in the FSG is ensured before allowing any

operation issued by a transaction to return, and not only

when a transaction is committed. In this sense, the proposed

semantics for transactional futures are similar in spirit to

existing safety criteria for TM systems that do not support

futures, such as opacity [22], which aim at preventing

active transactions, even those that eventually abort, from

observing arbitrary snapshots not producible by a sequential

execution of some subset of the committed transaction.

It should be noted that, if WO semantics are used, then

the FSG is not a plain directed graph, but a polygraph that

encodes a family of directed graphs. In this case, a history can

be accepted iff there exists at least one directed graph encoded

by the polygraph that contains no cycles. This definition of

acyclicityof polygraphs,which coincideswith theoneusedby

Papadimitrou [29], captures the fact that for at least one of the

set of viable serialization orders of theWO futures in the his-

tory (each encoded by a different directed graph), it is possible

to prove the existence of an equivalent sequential history.

4 Overview ofWTF-TM
In this section we introduce WTF-TM (Weakly ordered

Transactional Futures), a STM that implements the weakly

ordered semantics presented in Section 3. WTF-TM has been

developed by extending JVSTM [7, 16], a multi-versioned

JAVA STMThe techniques used byWTF-TM to orchestrate

the execution of transactional futures are largely orthogonal

to the mechanisms used to regulate concurrency among

top-level transactions. Thus, we abstract the mechanisms

used to regulate concurrency among top-level transactions,

and assume a plain multi-versioned STM that supports no

intra-transaction parallelism.

We present WTF-TM assuming that no escaping futures

exist and discuss how to avoid this assumption in Section 4.2.

4.1 Base algorithm
WTF-TMmaintains, for each top-level transaction𝑇 , a graph,

notedG , that is used to track the logical dependencies among

the transactional futures spawned or evaluated by𝑇 , either

directly or indirectly, i.e., via other transactional futures

spawned by𝑇 . Unlike the FSG (see Section 3.4),G does not use

bi-paths to encode all possible serialization orders of futures.
Conversely, G uses only simple directed edges and, as such,

is a plain directed graph and not a polygraph. This is done for

efficiency reasons, given the inherent cost of managing poly-

graphs at run-time. As a consequence of this design choice,

WTF-TMmay reject schedules that are admissible according

to the formalized semantics. This represents a classic trade-off

in the design of concurrency control schemes [20, 29].

G is consulted in two main occasions. First, when one of

the sub-transactions of𝑇 , say𝑇𝑠𝑢𝑏 , reads a shared variable𝑉 ,

in order to establish which version of𝑉 should be observed.

To determine the visibility of versions, the G of𝑇 is used to

retrieve the “ancestors” of𝑇𝑠𝑢𝑏 , i.e., the sub-transactions of𝑇

that are serialized before𝑇𝑠𝑢𝑏 . The version observed by𝑇𝑠𝑢𝑏
is the one included in the write-set of the closest ancestor of

𝑇𝑠𝑢𝑏 , if any, or the version visible by the top-level𝑇 according

to the underlying STM, if no ancestor wrote to𝑉 .

Second, when one of the sub-transactions of 𝑇 , say 𝑇𝑠𝑢𝑏 ,

requests to commit. In this case 𝑇𝑠𝑢𝑏 executes a validation

scheme aimed at enforcing that𝑇𝑠𝑢𝑏 can be serialized, either

at submission or at evaluation. We will discuss the validation

mechanismmore in detail shortly.

Each vertex of G is associated with a sub-transaction and

has a corresponding status, which is initialized to active, when
the vertex is created, and is updated to iCommit (internally
committed), when the sub-transaction issues commit().

During the execution of a sub-transaction, i.e., in its active
state, all the updates it produced are buffered privately, i.e.,

they are not visible to any other sub-transaction.When a sub-

transaction𝑇 ′
enters the iCommit state, its updates are made

visible to the other sub-transactions of the same top-level

transaction, say𝑇 . The updates of all the sub-transactions of𝑇

will become atomically visible to other top-level transactions

(and to their sub-transactions) only when𝑇 is committed.

G is initialized when a top-level transaction𝑇 starts with

a single “root” vertex. Every time a submit(𝑇 ′
) operation is
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issued to spawna transactional future𝑇 ′
twonewvertexes are

created, one corresponding to the future and the other to its

continuation. These two vertexes are connected through two

edges that depart from the vertex of the (sub-)transaction that

spawned𝑇 ′
. To ensure that the write-set of a sub-transaction,

𝑇𝑠 , that spawns a transactional future,𝑇𝑓 , is visible to𝑇𝑓 (as𝑇𝑓
is serialized after𝑇𝑠 in G), sub-transactions are automatically

iCommitted whenever they issue submit().
When an evaluate(𝑇 ′

) operation is issued, a vertex𝑉 is cre-

ated and linked via two edges originated, respectively, on the

vertexes associated with the future𝑇 ′
and its continuation.

Commit logic. When a sub-transaction 𝑇 requests to

commit, WTF-TM attempts first to serialize𝑇 at submission

time, which implies accessing G in order to: i) merge the

write-set of𝑇 with the write-set of the sub-transaction that

spawned𝑇 ; ii) remove𝑇 ’s vertex from G.
If𝑇 cannot be serialized at submission,𝑇 is not aborted. Its

vertex in G is marked as completed (but not iCommitted, so
its updates are invisible) until some sub-transaction𝑇 ′

issues

eval(𝑇 ). At that point, 𝑇 ′
will attempt to serialize 𝑇 at its

evaluation point, which implies an analogous manipulation

of G: i) adding the write-set of 𝑇 to the write-set of the

sub-transaction that evaluated𝑇 ; ii) remove𝑇 ’ vertex.

WTF-TM employs two validation mechanisms to deter-

mine if a sub-transaction can be serialized upon submission or

evaluation, which we call forward and backward validation.

Forward validation. This mechanism is used to determine

if a future can be serialized at submission time. Recall that

whenever a sub-transaction 𝑇𝑠 spawns a future 𝑇𝑓 , 𝑇𝑠 is

automatically iCommitted. This guarantees that 𝑇𝑓 always
observe a snapshot that reflects the updates of its ancestors

in G. Serializing𝑇𝑓 at submission time, though, corresponds

to moving the position of 𝑇𝑓 ’s vertex in G and ordering it

before the vertex of 𝑇𝑓 ’s continuation, say 𝑇𝑐 . A sufficient

condition to ensure that this reordering neither affects𝑇𝑐 , nor

the sub-transactions serialized after𝑇𝑐 , is that none of these

sub-transactions has read any of the variables updated by𝑇𝑓 .

To test this condition,WTF-TMnavigatesGmoving“forward”

from𝑇𝑐 and checking, for any reachable sub-transaction𝑇𝑠𝑢𝑏 ,

if the write-set of𝑇𝑓 intersects with the read-set of𝑇𝑠𝑢𝑏 .

Backward validation. This mechanism is used to determine

if a future can be serialized at evaluation time. In this case, G
is navigated backwards, starting from the vertex associated

with the evaluating sub-transaction until reaching the sub-

transaction that spawned𝑇𝑓 . All the sub-transactions along

this path
1
haveexecuted concurrentlywith𝑇𝑓 and theirwrites

were not visible to𝑇𝑓 (since they were not among the ances-

tors of𝑇𝑓 ). As such,𝑇𝑓 can only be reordered after these sub-

transactions if they did not update any variable that𝑇𝑓 read.

1
A single backward path exists since whenever a future 𝑇𝐹 is serialized

(upon evaluation or submission),𝑇𝐹 is removed from G. This guarantees
that G has no backward bifurcations.

Synchronizing the access to G. The graph G is manip-

ulated concurrently by the sub-transactions of the same

top-level transaction. WTF-TM regulates these concurrent

accesses via a mix of lock-based and lock-free techniques:

• Updates of G that occur when sub-transactions start/com-

mit (and are relatively infrequent) are regulated a read-write

lock, acquired in write mode. G is also associated with a

timestamp that is increasedwheneverG is updated and serves

as a version counter to ensure the atomicity of traversals ofG.

• Validation operations synchronize with concurrent com-

mitting transactions by acquiring the G lock in read-mode.

• Read operations require establishing the set of ancestors
of a sub-transaction in G and need to synchronize with

concurrent updates of G. Since reads are typically more

frequent that commit operations, we avoid acquiring the

read-write lock and use a lock-free synchronization approach:

G’s timestamp is read before and after traversing the G
to extract the ancestors’ list, repeating the traversal if the

timestamp changes due to a concurrent update.

4.2 Escaping Transactional Futures
Let us discuss how to extend the base algorithm to manage

escaping futures with both LAC and GAC semantics.

Locally Atomic Continuations. Ensuring these semantics

implies guaranteeing that an escaping future can be serialized

either at submission time or after any operation issued by

its spawning top-level transaction. In order to ensure this

property, whenever a top-level transaction 𝑇 requests to

commit, it needs to verify whether it spawned any future

that is still active and has not been evaluated. In the latter

case,𝑇 has to block until all such futures are committed.

GloballyAtomicContinuations.With these semantics, an

escaping future is not bound to be serialized within its spawn-

ing top-level transaction. This spares top-level transactions

from blocking if, at commit time, there is any uncommitted

escaping future. On the downside, if an escaping future𝑇𝑓
requests to commit after its spawning top-level transaction

𝑇𝑠 commits, 𝑇𝑓 looses the opportunity to serialize upon

submission (as𝑇𝑠 ’s updates may have been in the meanwhile

observed by other committed top-level transactions) and

is bound to be serialized upon evaluation, within the G of

a different top-level transaction𝑇𝑒 . In order to determine if

the execution of𝑇𝑓 is compatible with this new serialization

order, it is necessary to guarantee that the state observed by

𝑇𝑓 during its execution is consistent at evaluation time. This

can be ensured by validating the read-set of𝑇𝑓 and checking

if it is still up to date at evaluation time, i.e., considering the

updates produced by all the top-level transactions serialized

before 𝑇𝑒 and by all the sub-transactions of 𝑇𝑒 serialized

before the vertex associated to the evaluation of𝑇𝑓 in𝑇𝑒 ’s G.
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Figure 6. Left: speedup of WTF-TM (16 futures/2 top-

level) vs 2 non-transactional (NT) futures in a read-only

workload. Right: speedup of WTF-TM/JTF with different

top-level*futures w.r.t. 48 top-level in a contended workload.

5 Evaluation
This section seeks answers to three key questions: i) what

is the minimum transaction granularity for which it is using

(WO) futures can lead to speedups? (Section 5.1); ii) how large

is theoverheadofWOw.r.t. SOandnon-transactional futures?

(Section 5.2); iii) what speedups doesWO enable with respect

to SO and to applications that do not use futures? (Section 5.3).

We focus the experimental study on the case of no

escaping futures. Thus, we do not quantitatively evaluate the

performance of the GAC vs LAC semantics, whose trade-offs

were qualitatively discussed and illustrated in Section 3.3.

We compared the performance of WTF-TM with: i) The

original implementation of JVSTM,which serves as a baseline

not supporting futures; ii) JTF [44], which (see Section 3)

supports TFs with SO semantics. The results are the average

of five runs, executed on an Intel Xeon CPU E5-2660 v4 @

2.00GHz, with 56 cores, 64GB of RAM, Ubuntu 16.04.6 LTS

and OpenJDK 64-bit Server 1.7.0(build 19.0-b03).

5.1 When to use (WO) transactional futures?
To control theworkload’s characteristics in a predictable way,

we use a synthetic benchmark that generates a configurable

number of reads and writes to an array of 1M elements from

within each transaction. Additionally, in between twomem-

ory accesses, CPU-bound computations are emulated by spin-

ning for a configurable amount of iterations, indicated as iter.
Westart byconsideringa read-onlyworkload. InFig. 6 (left),

we plot the throughput using 2 top-level transactions, each

parallelized with 16 futures, normalized with regard to the

throughput running 2 top-level transactions without paral-

lelization. We vary the number of read accesses from 10 to

100K on the x-axis. At the same time, we vary iter from 0 to

100K.The read location is selecteduniformlyat randomacross

the whole array. It is worth noting that it is of no-use to em-

ploy any concurrency control, since theworkload is read-only.

Thus, by comparing the performance of WTF-TM and non-

transactional futures, one canquantify theoverheaddue to en-

forcingWO semantics and the inherent costs of using futures

(e.g., inter-thread communication for future’s activation).

WTF-TM achieves close to ideal speedups when

transactions are sufficiently long and contain enough

CPU-bound computations (𝑖𝑡𝑒𝑟>1000). When we use a fully

memory-bound workload (𝑖𝑡𝑒𝑟=0), increasing the degree

of intra-transaction parallelism leads to negligible speedup

even for transactions that execute 100Kmemory accesses.

Figure 6 (right) also shows that the performances ofWTF-

TM and of a non-transactional future implementation (Java’s

standard one) are quite close. This indicates that most of the

overhead incurred byWTF-TM are inherent to the usage of

futures and that scalability is not being limited byWTF-TM.

5.2 Overhead ofWTF-TMwith respect to JTF
To quantify the overhead of WTF-TMw.r.t. to JTF, we used

a conflict-prone workload whereWTF-TM can neither avoid

aborts by serializing futures at evaluation nor benefit from

avoiding stragglers. Specifically, futures execute a sequenceof

uniformly distributed read accesses over an array of 1 million

elements, followedbytenupdateoperationschosenuniformly

at randomfroma (different) setof 20 “hot spot” items.Basedon

the findings of the last section, we set iter to 1k, to generate a
workloadwhere future-based parallelization can be beneficial.

The right plot in Fig. 6 shows the normalized throughput

of WTF-TM and JTF w.r.t. to JVSTM.We fix the total number

of threads to 48, which are allocated either to execute futures

or top-level transactions. The notation 𝑖∗ 𝑗 means that we ex-

ecute 𝑖 top-level transactions, each parallelized via 𝑗 threads.

In this conflict-prone workload, the use of transactional

futures, eitherwithWOorSOsemantics, reduces significantly

the likelihood of conflicts between transactions as well as

the cost of restarts — hence their speedups w.r.t. JVSTM.

Further, the performances of WTF-TM and JTF are almost

indistinguishable, confirming that WTF-TM introduces very

limited overhead with respect to JTF. The only exception

is represented by the scenario of 2 top-level threads and 24

futures, where WTF-TM exhibits 10%-20% overhead when

the length of read is below 500. We argue that this is due to

the cost of synchronizing the manipulations of the graph

structure used byWTF-TM to support WO semantics.

5.3 Gains ofWTF-TMwith respect to JTF
After showing that WTF-TM does not incur significant

overhead w.r.t. to JTF even in unfavourable workloads, we

consider two workloads whereWTF-TM can outperform JTF

by either avoiding aborts and/or avoiding stragglers.

Synthetic benchmark. Let us consider a workload where
futures can conflict with their continuation. This causes the

continuation to be aborted with SO semantics, whereas with

WO the continuation’s abort can be avoided by serializing its
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Figure 7. Speedup (a) and abort rate (b) with different intra-
and inter-transaction parallelism levels.

future upon evaluation. Each future performs 10K reads from

an array of 1M elements. Then, it writes once to a number of

randomly selected hot spots. Each continuation reads a ran-

domelement fromthehot spots andspawnsanewfuture,until

a given number of concurrent futures is reached. Finally, the

top-level transaction evaluates all the futures it spawned (in

spawning order) and commits. We set iter to 1k and vary con-
tention by varying the hot spots’ size: 100, 1K and 50K items.

In Fig. 7a we report, on the y-axis, throughput normalized

w.r.t. executing top-level transactions (no futures) sequen-

tially. We use the number of threads indicated on the x-axis

as the number of concurrently spawned futures for JTF

and WTF-TM, and as the number of concurrent top-level

transactions for JVSTM. The worst performing baseline is

the one that does not use futures, which incurs in the largest

abort rates, see Figure 7b (left). In fact, when futures are

not exploited to parallelize top-level transactions, these last

longer and are, as such, more prone to conflict.

The throughput of JTF is strongly affected by the degree of

contention. In the high contention scenario, JTF performance

drops beyond 14 threads. This is explicable by analyzing

the abort rate of futures and continuations, shown in

Fig. 7b (right). Conversely, the performance of WTF-TM is

unaffected by the contention level since the WO semantics

allows for serializing futures upon evaluation, sparing them

from any abort. As a result, WTF-TM achieves peak gains

of up to 20× (high contention, 56 threads) w.r.t. JTF.

Bank benchmark. We evaluated the performance of

WTF-TM using a benchmark, which we call Bank, that
emulates replaying a log of operations from the daily records

of a bank agency for backup or verification purposes. A

similar benchmark has been frequently used to evaluate TM

systems, e.g., [8, 18, 31, 37].

This workload consists of two operations transfer and

getTotalAmount. As the name suggests, transfer movesmoney

from a list of sending accounts to a list of receiving accounts,

while getTotalAmount returns the total balance of all accounts
within the bank. As all transfers are between accounts

belonging to the same bank, getTotalAmount is expected to
always return the same quantity and serves as a sanity check

to detect errors during the backup/verification process.

We set the total number of accounts of the emulated bank

to 100K and fix the number of (pairs of) accounts involved

by transfer operations to 100, selected uniformly at random.

Also in this case, we set iter to 1000. Note that, in these

settings, transfer operations are significantly shorter than

getTotalAmount operations — thus the latter operations are

prone to straggle the former ones.

To parallelize this workload using transactions (without

futures), we divide the log of operations to be replayed into

fixed chunks. Each chunk is executed sequentially using a

top-level transaction, and we vary the number of top-level

transactions that execute concurrently.

When using futures, instead of executing a chunk

sequentially, each operation in the log is delegated to a future

spawned fromwithin the same top-level transaction.We com-

pare two variants ofWTF-TM: (i) one that evaluates futures in
the order they are spawned (WTF-TM-InOrder); and (ii) one
that evaluates futures as soon as they complete execution

(WTF-TM-OutOfOrder). The latter variant allows us to quan-

tify the benefits ofWTF-TM from avoiding straggling futures.

Figure 8 shows the speedup with respect to a sequential

version and the internal abort rates for three workloads

encompassing 10%, 50%, and 90% transfer operations (the re-
maining ones being getTotalAmount). From the plots, we can

see that bothWTF-TM variants outperform JTF in all work-

loads, achieving up to∼9×higher throughput. The abort plots

show thatWTF-TM variants incur significantly lower abort

rates. In this workload, both transfer and getTotalAmount
commute, thereforeWTF-TMbenefits from its ability to order

futures at different serialization points, reducing abort rates.

However, as the percentage of update operations increase, the

aborts incurred byWTF-TM increase, lowering its speedup.

Finally, when comparing both variants of WTF-TM, we

notice that evaluating futures out of order (to reduce the

effect of stragglers) is always beneficial. As expected, the

largest gains stemming from straggling avoidance (larger

than 2×) are achieved in the 50% and 90% update scenarios, as

in the 10% update scenario the slowest operations (i.e., getTo-
talAmount) are by far the most common operation executed

by futures — thus limiting the actual straggling effect.
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Figure 8. Throughput (top) and internal abort rate (bottom)

for the Bank benchmark with 10%, 50% ,and 90% updates.
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Figure 9. Vacation Benchmark: Speedup w.r.t. 1 top-level

(left) and top-level abort rate (right) using different levels of

intra- and inter-transaction parallelism.

Vacation benchmark.We adapted the Vacation benchmark

(of the STAMP suite [9]), which emulates a travel agency

to make use of transactional futures. We parallelized its

MakeReservation transaction using futures, similarly to what

was done in previous work [14, 17, 44]: each reservation

consists of a fixed number of search operations within a

database of flights, cars, and hotels; we divide these search

operations among a fixed number of futures and emulate

the scenario in which some search operations may have to

access a remote database by injecting with 10% probability

a delay of 100ms right after beginning a future.

Figure 9 (left plot) shows speedupsw.r.t. executing top-level

transactions (no futures) sequentially. The x-axis reports the

total degree of parallelism, i.e., the number of active futures (1

for JVSTM)× thenumber of concurrent top-level transactions.

For JTF, where futures are serialized in their spawning order,

a new future is activated when the oldest spawned future

completes; sinceWTF-TM supports out-of-order evaluation,

a new future can be spawned as soon as any future completes.

WTF-TM outperforms all baselines achieving up to

∼12× and ∼4.5× speedups compared to JVSTM and JTF,

respectively. The key reason for the gains ofWTF-TM (and

JTF) with respect to JVSTM (see Fig. 9, right plot) is the high

probability of contention between top-level transactions

and the high toll (wasted work) imposed by the abort of

top-level transactions (recall that JVSTM does not exploit

intra-transaction parallelism). Since this workload does not

generate conflicts between futures,WTF-TM and JTF achieve

a similar abort rate, which is significantly lower than with

JVSTM (as futures reduce the duration of each top-level

transaction, reducing both the cost and chance of aborting).

However, WTF-TM scales much better than JTF, thanks to

its ability to evaluate futures out of order and mitigate the

bottlenecks due to straggling futures.

6 Conclusions and future work
This paper addressed the problem of combining futures and

transactional memory by proposing a set of semantics that

explore different trade-offs between simplicity and efficiency.

We also introduced WTF-TM, a STM that combines

multi-versioning and graph-based concurrency control

techniques. We evaluated WTF-TM across a number of

diverse workloads. Our experimental results allowed us to

shed lights on the scenarios in which transactional futures

bring benefits and to quantify the performance trade-offs of

the different semantics we proposed for transactional futures.

Futures represent a natural abstraction for asynchronous

event-drivenprogramming,whichnowadays are increasingly

popular in a range of domains, e.g., fromweb applications to

streamprocessing.Wehope that thisworkwillpave thewayto

the development of a novel class of event-drivent applications,

which will transparently support concurrent manipulations

of shared state via the abstraction of transactional futures.

The development of complex, real-life applications based on

transactional futures would be greatly beneficial to research

community for twomain reasons.On theonehand, itwouldal-

low toquantify the reduction in complexity (e.g., development

costs) stemming from the use of transctional futures with re-

spect to conventional (e.g., lock-based) synchronization prim-

itive — analogously to the studies that have demonstrated

increased programmer’s productivity thanks the use of classic

TM [34]. On the other hand, it would provide a broader set of

benchmarks directly inspired from real use case to evaluate

the performance of future TMswith support for transactional

futures — whereas in this work we had to resort to parallelize

existing benchmarks that were not originally designed to use

futures (e.g., STAMP’s Vacation), or to develop rather sim-

plistic synthetic benchmarks that did not fully exploit the

richness of the proposed semantics (e.g., escaping futures).
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A Artifact Appendix
A.1 Abstract
Ourartifact includes the source code forWeaklyorderedTransac-
tional Futures (WTF), together with source code of two baselines,
namely Strongly ordered Transactional Futures (JTF) [44] and
the underlying transactional memory, JVSTM [7]. We have in-
cluded in the artifact a Java Virtual Machine (JVM) with First
Class Continuation support provided, which is needed to run
JTF and JDK 1.7. JDK 1.7 is required for compilation. To ensure
a fair comparison, we use the same JDK and JVM for compiling
and running our source code also. The only software required to
run this artifact is Apache Ant on top of Linux x86-64 OS.

A.2 Artifact check-list (meta-information)
The artifact consists of the following directories:

• Compilation:ApacheAnt build tool, JDK1.7 (available
in the artifact)

• Run-time environment: Linux x86-64
• Metrics: Throughput, Abort Rate
• How much disk space required (approximately)?: 100
MBytes

• How much time is needed to prepare workflow (ap-
proximately)?: 60minutes

• How much time is needed to complete experiments
(approximately)?: depends on contention level, sub-
secondwhenthere isnocontention,30minutes forone
experiment under high contention

• Archived: The artifact is available at the following
URL: https://doi.org/10.5281/zenodo.4323407

A.3 Description
• src
– WTF: source code for Weakly ordered futures (the main
contribution of this paper).

– JTF: source code for Strongly ordered futures (JTF[44]).
• jdk1.7.0_80: java 1.7 (needed for the compilation of JTF [44])
• openjdk-continuation-vm2013-linux-amd64: JVM with
continuation support (First Class Continuation support
provided by the OpenJDK Hotspot VM).

• raw-results: raw results for the vacation experiment (fig. 9 in
the paper).

• scripts:
– run-vacation.sh: script that launches the experiment for
Vacation benchmark (Fig. 9 in the paper).

– plot-normalized-throughput.py: script that plots the
normalized throughput for the data inside raw-results (Fig. 9
in the paper, right).

– plot-abort-rate.py: script that plots the abort rate for the
Vacation benchmark (Fig. 9 in the paper, right).

A.3.1 How to access. Refer to subsection A.5

A.3.2 Hardwaredependencies. Anymulti-coremachine

which runs JDK 1.7.

A.3.3 Software dependencies. Linux x86-64, JDK 1.7,

Apache Ant
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A.4 Installation

Compile the source code:

cd ROOT_FOLDER
cd src/JTF
ant compile
cd ROOT_FOLDER
cd src/WTF
ant compile

A.5 Experiment workflow
To run a simple example:

cd ROOT_FOLDER
./openjdk-continuation-vm2013-linux-amd64/bin/java \
-cp src/WTF/build/classes/ benchmark.vacation.Vacation \
-c 1 -n 2016 -q 1 -u 98 -r 105 -t 4 -nest true -sib 4 -updatePar false\
-readOnly false -unsafe false -max\_num\_core 560 \
-streamingEnabled 3 -stragglerProbability 100 \
-delayDuration 100

An output similar to the following one should be observed:

Nov 29, 2020 12:29:37 AM jvstm.ActiveTransactionsRecord <clinit>
INFO: ***** AOM reversion = false (disable/enable it in property jvstm.aom.reversion)
Execution\_Time\_Millis: 6916
throughput: 0.578368999421631
abort\_rate: 0.0
internal\_abort\_rate: 0.0
6916 4 0 0 0;

A.6 Evaluation and expected results
To reproduce the vacation experiment (Fig. 9 in the paper):

cd ROOT_FOLDER
./scripts/run-vacation.sh

Parameters that we varied in this experiemtn:

• -c $C: number of [c]lients, i.e., possible concurrent top-

level transactions (1, 2, 7 forWTF/JTF(corresponding

to different lines/legend in the plot), 1,2,7,14,28,56 for

JVSTM )

• -sib $SIB:Number of thread divided by $C.Note number

of thread corresponding to the numbers in the x-axis

in Figure 7.

• -nest $NEST: true (WTF and JTF) to use futures or false

(JVSTM) for top-level transactions only.

Other parameters:

• -n: 20160 [n]umber of user queries per transaction, it

can be evenly divided among 560 futures.

• -q: 1% Percentage of relations [q]ueried, and 1% indi-

cates high conflict rate between top-level transactions.

• -u: 98% for Percentage of [u]ser transactions to be

MakeReservation Transaction.

• -r: Number of possible [r]elations

• -t: 10485 for Number of [t]ransactions.

• -max_num_core: 560

• - streamingEnabled: 3 coding for Out-of-order stream-

ing strategy which let futures be evaluated as soon as

it finished executing.

• - stragglerProbability: 100 (which corresponds to

100/1000, i.e., 10%)

• - delayDuration: 100ms (each spawned future is

injected with 10% probability a delay of 100ms right

after beginning a future )

A.7 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-
review-badging

• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html
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