
ProRenaTa: Proactive and Reactive Tuning to Scale
a Distributed Storage System

Ying Liu∗‡, Navaneeth Rameshan∗†, Enric Monte†, Vladimir Vlassov∗ and Leandro Navarro†
∗KTH Royal Institute of Technology, Sweden

Email: yinliu@kth.se, rameshan@kth.se, vladv@kth.se
†Universitat Politècnica de Catalunya, Barcelona, Spain

Email: rameshan@ac.upc.edu, enric.monte@upc.edu, leandro@ac.upc.edu
‡Université catholique de Louvain, Belgium

Abstract—Provisioning stateful services in the Cloud that
guarantees high quality of service with reduced hosting cost
is challenging to achieve. There are two typical auto-scaling
approaches: predictive and reactive. A prediction based controller
leaves the system enough time to react to workload changes
while a feedback based controller scales the system with better
accuracy. In this paper, we show the limitations of using a
proactive or reactive approach in isolation to scale a stateful
system and the overhead involved. To overcome the limitations, we
implement an elasticity controller, ProRenaTa, which combines
both reactive and proactive approaches to leverage on their re-
spective advantages and also implements a data migration model
to handle the scaling overhead. We show that the combination
of reactive and proactive approaches outperforms the state of
the art approaches. Our experiments with Wikipedia workload
trace indicate that ProRenaTa guarantees a high level of SLA
commitments while improving the overall resource utilization.

Keywords—Elasticity, Auto-scaling, Workload prediction, Re-
source utilization, SLA.

I. INTRODUCTION

Hosting services in the Cloud are becoming more and more
popular because of a set of desired properties provided by
the platform, which include low setup cost, professional main-
tenance and elastic provisioning. Services that are elastically
provisioned in the Cloud are able to use platform resources on
demand, thus saving hosting costs by appropriate provisioning.
Specifically, instances are spawned when they are needed
for handling an increasing workload and removed when the
workload drops. Enabling elastic provisioning saves the cost
of hosting services in the Cloud, since users only pay for the
resources that are used to serve their workload.

A well-designed elasticity controller helps reducing the
cost of hosting services using dynamic resource provisioning
and, in the meantime, does not compromise service quality.
Levels of service quality are usually defined in SLAs (Service
Level Agreements), which are negotiated and agreed between
service consumers and the service providers. A violation of
SLA affects both the provider and consumer. When a service
provider is unable to uphold the agreed level of service, they
typically pay penalties to the consumers. From the consumers
perspective, a SLA violation can result in degraded service to
their clients and consequently lead to loss in profits. Hence,
SLA commitment is essential to the profit of both Cloud
service providers and consumers.

In general, Cloud services can be coarsely characterized
in two categories: state-based and stateless. Scaling stateless
services is easier since no overhead of state migration is

involved. However, scaling state-based services often requires
state-transfer/replication, which introduces additional overhead
during the scaling. In this paper, we investigate the elastic scal-
ing of distributed storage systems, which provide indispensable
services in the Cloud and are typical state-based systems. One
of the most commonly defined SLAs in a distributed storage
system is its service latency. Guaranteeing latency SLAs in
back-end distributed storage systems is desirable in supporting
many latency sensitive services, such as Web 2.0 services.
However, it is a challenging task for an elasticity controller
since it needs to achieve the following properties:

1. Resource allocation that satisfy both constraints: mini-
mize provisioning cost and SLA violations.

2. Swift adaptation to workload changes without causing
resource oscillation.

3. Be aware of scaling overheads, including the consump-
tion of system resources and time, and prevent them from
causing SLA violations.

4. Efficient use of resources under SLA during scaling.
Specifically, when scaling up, it is preferable to add instances
at the very last possible moment. In contrast, during scaling
down, it is better to remove instances as soon as they are not
needed anymore. The timings are challenging to control.

To the best of our knowledge, none of the state of the art
systems achieve all these properties in their controller designs.
Broadly speaking, elasticity in a distributed storage system is
achieved in two ways. One solution relies on reacting to real-
time system metrics, including CPU usage, incoming load, I/O
operations, and etc. It is often referred as reactive control.
Another approach is to explore historic access patterns of a
system in order to conduct workload prediction and controls
for the future. It is called proactive control.

The first approach can scale the system with a good
accuracy since scaling is based on observed workload char-
acteristics. However, a major disadvantage of this approach
is that the system reacts to workload changes only after it
is observed. As a result, SLA violations are observed in the
initial phase of scaling because of data/state migration in order
to add/remove instances in a distributed storage system and
causes a period of disrupted service. The latter approach, on
the other hand, is able to prepare the instances in advance and
avoid any disruption in the service. However, the accuracy
of workload prediction largely depends on application-specific
access patterns. Worse, in some cases workload patterns are not
even predictable. Thus, proper methods need to be designed
and applied to deal with the workload prediction inaccuracies,
which directly influences the accuracy of scaling that in turn
impacts SLA guarantees and the provisioning costs.

2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-1-4799-8006-2/15 $31.00 © 2015 IEEE

DOI 10.1109/CCGrid.2015.26

453

In essence, proactive and reactive approach complement
each other. Proactive approach provides an estimation of future
workloads giving a controller enough time to prepare and react
to the changes but having the problem of prediction inaccuracy.
Reactive approach brings an accurate reaction based on current
state of the system but without leaving enough time for the
controller to execute scaling decisions.

We present ProRenaTa, which is an elasticity controller
for distributed storage systems combining both proactive and
reactive scaling techniques. ProRenaTa achieves the previously
identified properties and makes the following contributions:

• ProRenaTa helps a storage system to adapt to work-
load changes without causing resource oscillation.
A study of prediction methods for a typical web
application (Wikipedia) focusing on pattern character-
izations, recognitions and accurate predictions help us
to achieve this property.

• ProRenaTa explicitly considers scaling overhead, i.e.,
data migration cost, to achieve high resource utiliza-
tion and low latency SLA violation. A cost model and
scheduler for data/state migration generates a premium
scaling plan to execute the predicted scaling decision.

• ProRenaTa uses a reactive module to further guarantee
accurate resource allocation, which minimizes latency
SLA violations.

Our evaluation shows that ProRenaTa outperforms the state of
the art approaches in terms of resource utilization (saving cost)
and SLA commitment (achieving quality of service).

II. OBSERVATIONS AND BACKGROUND

It is challenging to achieve elasticity in stateful systems
especially under the constraint of SLA. There are two major
reasons. One reason is that scaling stateful systems require
state migrations, which often introduces an additional over-
head. The other reason is that the scaling of such systems
are often associated with delays. To be specific, adding or
removing instances cannot be completed immediately because
of the waiting time for state transfer. These are the two
major reasons that cause SLA violations while scaling stateful
systems. In this section, we briefly introduce the concepts
of distributed storage systems. Then, we justify the above
arguments with experimental observations.

A. Distributed storage systems

A distributed storage system provides an unified storage
service to its clients by integrating and managing a large
number of backend storage instances. Compared to tradi-
tional storage systems, distributed storage systems usually
have the advantages of high scalability and high availability.
Distributed storage systems can be organized using many
different approaches. For example, Hadoop Distributed File
System [1] organizes its storage instances using a centralized
naming service provided by a single NameNode; Cassandra [2]
and Dynamo [3] like systems employ distributed hash tables
(DHTs) to decentralize the maintenance of the namespace and
request routing; Spanner [4] and PNUTs [5] adopts multiple
name service components to manage the namespace and re-
quest routing. In our work, we take a kind of distributed storage
system that is organized similar to Cassandra. Background of
such storage systems can be obtained in [2], [3]. Specifically,
we use GlobLease [6] as the underlying storage system serving
the workload. GlobLease is a key-value store that uses DHT
for request routing and namespace maintenance similar to

Fig. 1: Observation of SLA violations during scaling up. (a)
denotes a simple increasing workload pattern; (b) scales up

the system using a proactive approach; (c) scales up the
system using a reactive approach

Cassandra [2]. Virtual tokens are implemented to even the
workload distribution and overhead on addition or removal
of nodes in the overlay. We setup GlobLease very similar to
Cassandra using the read/write consistency level ”ONE”. More
details of GlobLease is presented in [6].

B. Observations

We setup experiments to investigate the scaling of
GlobLease with respect to a simple workload pattern described
in Figure 1 (a). The experiment is designed as simple as
possible to demonstrate the idea. Specifically, we assume a per-
fect prediction of the workload patterns in a prediction based
elasticity controller and a perfect monitor of the workload in a
feedback based elasticity controller. The elasticity controllers
try to add storage instances to cope with the workload increase
in Figure 1 (a) to keep the low latency of requests defined
in SLAs. Figure 1 (b) and Figure 1 (c) present the latency
outcome using naive prediction and feedback based elasticity
controller respectively. Several essential observations can be
formalized from the experiments.

It is not always the workload that causes SLA violations.
Typically, a prediction based elasticity control tries to bring up
the capacity of the storage cluster before the actual workload
increase. In Figure 1 (b), a prediction based controller tries
to add instances at control period 8. We observe the SLA
violation during this period because of the extra overhead, i,e,
data redistribution, imposed on the system when adding storage
instances. The violation is caused by the data transfer process,
which competes with client requests in terms of servers’ CPUs,
I/Os, and bandwidths. We solve this problem by presenting a
data migration model that controls the data transfer process
based on the spare capacity of the server with respect to latency
SLA commitment.

Another interesting observation can be seen from Figure 1
(c), which simulate the scaling of the system using a feedback
approach. It shows that scaling up after seeing a workload
peak (at control period 9) is too late. The SLA violation is
observed because the newly added instances cannot serve the
increased workload immediately. Specifically, proper portion
of data needs to be copied to the newly added instances before
they can serve the workload. Worse, adding instances at the
last moment will even aggravate the SLA violation because
of the scaling overhead like in the previous case. Thus, it is
necessary to scale the system before the workload changes like
using a prediction based approach.

454

Fig. 2: ProRenaTa control framework

However, only using prediction based approach is not
enough even though we can handle the data transfer overhead
using a data migration model. It is because that the prediction
is not always accurate. Even using Wikipedia workload [7]
where the pattern is very predictable, a small amount of
prediction errors are expected. We adjust those errors using
a feedback approach. Combing the usage of prediction based
approach and the feedback approach yields much better perfor-
mance in terms of SLA commitments and resource utilization
shown in our later evaluations.

III. SYSTEM DESIGN

In this section, we present the design of ProRenaTa, an
elasticity controller for distributed storage systems that com-
bines both reactive and proactive control in order to achieve
high system utilization and prevent SLA violations. Figure 2
shows the architecture of ProRenaTa. It follows the idea of
MAPE-K (Monitor, Analysis, Plan, Execute - Knowledge)
control loop with some customizations and improvements.

A. Monitor

The arrival rate of reads and writes on each node is
monitored and defined as input workload in ProRenaTa. Then,
the workload is fed to two modules: workload pre-processing
and ProRenaTa scheduler.

Workload pre-process: The workload pre-processing module
aggregates the monitored workload in a predefined window
interval. We define this interval as smoothing window (SW).
The granularity of SW depends on workload patterns. Very
large SW will smooth out transient/sudden workload changes
while very small SW will cause oscillation in scaling. The size
of SW in ProRenaTa can be configured in order to adjust to
different workload patterns.

The monitored workload is also fed to ProRenaTa scheduler
to estimate the utilization of the system and calculate the spare
capacity that can be used to handle scaling overhead. Detailed
design of ProRenaTa is explained in Section III-C.

B. Analysis

Workload prediction: The pre-processed workload is for-
warded to the workload prediction module for workload fore-
casting. The prediction methods will be explained in Sec-
tion IV. Workload prediction is conducted every prediction
window (PW). Specifically, at the beginning of each PW,

the prediction module forecasts the workload intensity at the
end of the current PW. Workload pre-processing provides
an aggregated workload intensity at the beginning of each
SW. In our setup, SW and PW have the same size and
are synchronized. The output of the prediction module is an
aggregated workload intensity marked with a time stamp that
indicates the deadline for the scaling to match such workload.
Workload aggregations and predictions are conducted at a
key granularity. The aggregation of the predicted workload
intensity on all the keys is the total workload, which is
forwarded to the proactive scheduler and the reactive scheduler.

C. Plan

Proactive scheduler: The Proactive scheduler calculates
the number of instances needed in the next PW using the
performance model in Section V-A2. Then, it sends the number
of instances to be added/removed to the ProRenaTa scheduler.

Reactive scheduler: The reactive scheduler in ProRenaTa is
different from those that reacts on monitored system metrics.
Our reactive scheduler is used to correct the inaccurate scaling
of the system caused by the inaccuracy of the workload
prediction. It takes in the pre-processed workload and the
predicted workload. The pre-processed workload represents
the current system status while the predicted workload is a
forecast of workload in a PW. The reactive scheduler stores
the predicted workload at the beginning of each PW and
compares the predicted workload with the observed workload
at the end of each PW. The difference from the predicted
value and the observed value represents the scaling inaccuracy.
Using the differences of the predicted value and the observed
value as an input signal instead of monitored system metrics
guarantees that the reactive scheduler can operate along with
the proactive scheduler and not get biased because of the
scaling activities from the proactive scheduler. The scaling
inaccuracy, i,e, workload difference between prediction and
reality, needs to be amended when it exceeds a threshold
calculated by the throughput performance model. If scaling
adjustments are needed, the number of instances that need to
be added/removed is sent to the ProRenaTa scheduler.

ProRenaTa scheduler: The major task for ProRenaTa sched-
uler is to effectively and efficiently conduct the scaling plan for
the future (provided by the proactive scheduler) and the scaling
adjustment for now (provided by the reactive scheduler). It is
possible that the scaling decision from the proactive sched-
uler and the reactive scheduler are contradictory. ProRenaTa
scheduler solves this problem by consulting the data migration
model, which quantifies the spare system capacity that can be
used to handle the scaling overhead. The data migration model
estimates the time needed to finish a scaling decision taking
into account the current system status and SLA constraints
explained in Section V-B. Assume that the start time of a PW
is ts and the end time of a PW is te. The scaling plan from
the reactive controller needs to be carried out at ts while the
scaling plan from the proactive controller needs to be finished
before te. Assume the workload intensity at ts and te is Ws and
We respectively. We assume a linear evolving model between
current workload intensity and the future workload intensity.
Thus, workload intensity at time t in a PW can be calculated
by W (t) = γ ∗ t + Ws where γ = (We − Ws)/(te − ts).
let Planr and Planp represent the scaling plan from the
reactive controller and the proactive controller respectively.
Specifically, a Plan is a integer number that denotes the
number of instances that needs to be added or removed.
Instances are added when Plan is positive, or removed when
Plan is negative. Note that the plan of the proactive controller
needs to be conducted based on the completion of the reactive

455

Fig. 3: Scheduling of reactive and proactive scaling plans

controller. It means that the actual plan that needs to be carried
out by the proactive plan is Plan

′
p = |Planp−Planr|. Given

workload intensity and a scaling plan to the data migration
model, it needs Tr and Tp to finish the scaling plan from the
reactive controller and the proactive controller respectively.

We assume that Tr < (te − ts)&&Tp < (te − ts), i,e, the
scaling decision by either of the controller alone can be carried
out within a PW. This can be guaranteed by understanding
the applications’ workload patterns and tuning the size of PW
accordingly. However, it is not guaranteed that (Tr + Tp) <
(te−ts), i,e, the scaling plan from both controllers may not get
finished without having an overlapping period within a PW.
This interference needs to be prevented because having two
controllers being active during an overlapping period violates
the assumption, which defines only current system workload
influence data migration time, in the data migration model.

In order to achieve the efficient usage of resources, ProRe-
naTa conduct the scaling plan from the proactive controller at
the very last possible moment. In contrast, the scaling plan
of the reactive controller needs to be conducted immediately.
The scaling process of the two controllers are illustrated in
Figure 3. Figure 3(a) illustrates the case when the reactive and
proactive scaling do not interfere with each other. Then, both
plans are carried out by the ProRenaTa scheduler. Figure 3(b)
shows the case when the system cannot support the scaling
decisions of both reactive and proactive controller. Then, only
the difference of the two plans (|Planr − |Planp − Planr||)
is carried out. And this plan is regarded as a proactive plan
and scheduled to be finished at the end of this PW.

D. Execute

Scaling actuator: Execution of the scaling plan from ProRe-
naTa scheduler is carried out by the scaling actuator, which
interacts with the underlying storage system. Specifically, it
calls add server or remove server APIs exposed by the storage
system and controls the data migration among storage servers.
The quota used for data migration among servers are calculated
by Prerenata scheduler and indicated to the actuator. The
actuator limits the quota for data migration on each storage
servers using BwMan [8], which is a bandwidth manager that
allocates bandwidth quotas to different services running on
different ports. In essence, BwMan uses Netem tc tools to
control the traffic on each storage server’s network interface.

E. Knowledge

To facilitate the decision making to achieve elasticity in
ProRenaTa, there are three knowledge bases. The first one
is the throughput model presented in Section V-A2, which
correlates the server’s capability of serving read and write
requests under the constraint of SLA latency. The second one is
the migration overhead model presented in Section V-B, which
quantify the spare capacity that can be used to handle data
migration overhead while performing system reconfiguration.
The last one is the monitoring, which provides real-time
workload information, including composition and intensity, in
the system to facilitate the decision making in ProRenaTa.

Algorithm 1 illustrates the control flow of ProRenaTa.
In the procedure of ProactiveControl, PW.Ti+1 (line 2)
is the workload predicted at Ti+1, namely the start of
the next control interval. The prediction of the workload
(workloadPrediction()) is presented in Algorithm 2. A posi-
tive value of ΔVMs.Ti+1 (line 4) indicates the number of in-
stances to launch (scale up). A negative value of ΔVMs.Ti+1
indicates the number of instances to remove (scale down).
In the procedure of ReactiveControl, W.Ti (line 7) is the
workload observed at Ti In the procedure of ProRenaTaSched-
uler, RS.Ti (line 11) is the maximum data rebalance speed
achievable at Ti. T.p and T.r are the time to finish data
rebalance for proactive and reactive scaling respectively.

Algorithm 1 ProRenaTa Control Flow

1: procedure PROACTIVECONTROL()
� Program starts at time Ti

2: PW.Ti+1 ←workloadPrediction(Trace)
3: VMs.Ti+1 ←throughputModel(PW.Ti+1)
4: ΔVMs.Ti+1 ← VMs.Ti+1 − VMs.Ti

5:

6: procedure REACTIVECONTROL()
� Program starts at time Ti

7: ΔW.Ti ←W.Ti − PW.Ti

8: δVMs.Ti ← throughputModel(ΔW.Ti)

9:

10: procedure PRORENATASCHEDULER()
� Program starts at Ti

11: RS.Ti ←dataMigrationModel(Ti)
12: T.p←analyticalModel(ΔVMs.Ti+1,RS.Ti)
13: T.r ←analyticalModel(δVMs.Ti,RS.Ti)
14: if T.p+ T.r > Ti+1 − Ti then
15: VMsToChange← ΔVMs.Ti+1 + δVMs.Ti

16: t←analyticalModel(VMsToChange,RS.Ti)
17: T imeToAct← Ti+1 − t
18: WaitUntil TimeToAct
19: ConductSystemResize(VMsToChange)
20: else
21: ConductSystemResize(δVMs.Ti)
22: T imeToAct← Ti+1 − T.p
23: WaitUntil TimeToAct
24: ConductSystemResize(ΔVMs.Ti+1)

IV. WORKLOAD PREDICTION

The prediction of wikipedia workload is a specific problem
that does not exactly fit the common prediction techniques
found in literature. This is due to the special characteristics of
the workload. On the one hand, the workload associated can be
highly periodic, which means that the use of the context (past
samples), will be effective for making an estimation of the
demand. On the other hand the workload time series may have
components that are difficult to model with demand peaks that
are random. Although the demand peaks might have a periodic
component (for instance a week), the fact that the amplitude
is random, makes the use of linear combination seperated by
week intervals unreliable. The classical methods are based on
linear combinations of inputs and old outputs with a random
residual noise, and are known as ARIMA, (Autoregressive-
Integrated-Moving-Average) or Box-Jenkins models [9].

ARIMA assumes that the future observation depends on
values observed a few lags in the past, and a linear combination
of a set of inputs. These inputs could be of different origin, and

456

the coefficients of the ARIMA model takes care of both, the
importance of the observation to the forecast, and the scaling in
case that the input has different units than the output. However,
an important limitation of the ARIMA framework is that it
assumes that the random component of the forecasting model
is limited to the residual noise. This is a strong limitation
because the randomness in the forecasting of workload, is also
present in the amplitude/height of the peaks. Other prediction
methodologies are based on hybrid methods that combine the
ideas from ARIMA, with non-linear methods such as Neural
Networks, which do not make hypothesis about the input-
output relationships of the functions to be estimated. See for
instance [10]. The hybrid time series prediction methods use
Neural Netwoks or similar techniques for modeling possible
non-linear relationships between the past and input samples
and the sample to be predicted. Both methods, ARIMA and a
hybrid method assume that the time series is stationary, and
that the random component is a residual error, which is not
the case of the workload time series.

A. Representative workload types

We categorize the workload to a few generic representative
types. These categories are important because they justify the
architecture of the prediction algorithm we propose.
Stable load and cyclic behavior: This behaviour corresponds
to an waveform that can be understood as the sum of a
few (i.e. 3 or 4) sinusoids plus a random component which
can be modeled as random noise. The stable load and cyclic
behavior category models keywords that have a clear daily
structure, with a repetitive structure of maxima and minima.
This category will be dealt with a short time forecast model.
Periodic peaks: This behaviour corresponds to peaks that
appear at certain intervals, which need not be harmonics.
The defining characteristic is the sudden appearance of the
peaks, which run on top of the stable load. The periodic peaks
category models keywords that have a structure that depends
on a memory longer than a day, and is somehow independent
of the near past. This is the case of keywords that for instance,
might be associated to a regular event, such as chapters of a
TV series that happen certain days of the week.This category
will be dealt with a long time forecast model.
Random peaks and background noise: This behaviour corre-
sponds to either rarely sought keywords which have a random
behaviour of low amplitude or keywords that get popular
suddenly and for a short time. As this category is inherently
unpredictable, unless there is outside information available, we
deal with his category using the short term forecasting model,
which accounts for a small percentage of the residual error.

B. Prediction methodology

The forecasting method consists of two modules that take
into account the two kind of dependencies in the past: short
term for stable load, cyclic behavior and background noise
and long term for periodic peaks.

The short term module will make an estimate of the actual
value by using a Wiener filter [11] which combines linearly a
set of past samples in order to estimate a given value, in this
case, the forecasted sample. In order to make the forecast the
short term module uses information in a window of several
hours. The coefficients of the linear combination are obtained
by minimizing the Mean Square Error (MSE) between the
forecast and the reference sample. The short term prediction
is denoted as x̃Shrt[n]. The structure of the filter is as follows.

x̃Shrt[n+NFrHr] =

LShrt∑
i=0

wix[n− i]

where; LShrt is the length of the Wiener filter, NFrHr is the
forecasting horizon, x[n] is the n-th sample of the time series,
and wi is the i-th coefficient of the Wiener filter. Also, as the
behaviour of the time series is not stationary, we recompute
the weights of the Wiener filter forecaster when the prediction
error (MSE) increases for certain length of time [11].

The long term module x̃Lng[n] takes into account the fact
that there are periodic and sudden rises in the value to be
forecasted. These sudden rises depend on the past values by
a number of samples much higher than the number of past
samples of the short term predictor LShrt. These rises in
demand have an amplitude higher than the rest of the time
series, and take a random value with a variance that empirically
has been found to be variable in time. We denote these
periodicities as a set

{
P0 . . . PNp

}
, where Pi indicates the i-th

periodicity in the sampling frequency and Np the total number
of periodicities. Empirically, in a window of one month, the
periodicities of a given time series were found to be stable in
most cases, i.e. although the variance of the peaks changed,
the values of Pi were stable. In order to make this forecast,
we generated a train of periodic peaks, with an amplitude
determined by the mean value taken by the time series at
different past periods. This assumes a prediction model with a
structure similar to the auto-regressive (AR), which combines
linearly past values at given lags. The structure of this filter is

x̃Lng[n+NFrHr] =

Np∑
i=0

Lj∑
j=0

hi,jx[n− jPi]

where, NFrHr is the forecasting horizon, Np is the total
number of periodicities, Lj is the number of weighted samples
of the i-th periodicity, hi,j is the weight of each sample used
in the estimation, x[n] is the n-th sample of the time series.
We do not use the moving average (MA) component, which
presupposes external inputs. A model that takes into account
external features, should incorporate a MA component.

The final estimation is as follows:

x̃[n+NFrHr] =

{
x̃Lng[n+NFrHr] if n+NFrHr = k0Pi

x̃Shrt[n+NFrHr] if n+NFrHr �= k0Pi

where the decision on the forecast to use is based on testing if
n+NFrHr is a multiple of any of the periodicities Pi . Specific
details on the implementation of each of the predictors and the
pseudo code can be found in the Appendix A.

V. CONTROLLER MODELS

In this section, we present the models that we use in
ProRenaTa controllers. In general, there are two models that
are constantly consulted and updated in every control period.
One is a throughput performance model, which defines the
correlation between the throughput of the system and the
number of participating instances. The other one is a data
migration model, which quantifies the available capacity that
can be used to handle the scaling overhead under the current
system load.

A. Throughput performance model

The throughput performance model determines the min-
imum number of servers that is needed to meet the SLA
requirements with respect to a specific workload. In order to
build a suitable performance model for a distributed storage
system, the first thing that needs to be understood is how
requests are distributed to servers.

457

Fig. 4: Standard deviation of load on 20 servers running a 24
hours Wikipedia workload trace. With larger number of

virtual tokens assigned to each server, the standard deviation
of load among servers decreases

Fig. 5: Throughput performance model

1) Load balance in distributed storage systems: We tar-
get distributed storage systems organized using DHTs as
introduced in Section II. We assume that virtual tokens are
implemented in the target distributed storage system. Enabling
virtual tokens allows a physical server to host multiple discrete
virtual tokens in DHT namespace and storing the correspond-
ing portions of data. The number of virtual tokens on a physical
server is proportional to the server’s capability. The virtual
tokens assigned to a physical server are randomly selected in
our case. Figure 4 shows that with sufficient number of virtual
tokens, requests tend to evenly distributed among physical
servers with different workload intensities replayed using a
24 hour Wikipedia access trace. Thus, we can derive a perfor-
mance model for the distributed storage system by modeling
its individual servers. Specifically, under the assumption of
evenly distributed workload, if any server in the system does
not violate the SLA constraints, the system as a whole does
not violate the SLA constraints proposed and argued in [12].

2) Performance model based on throughput: Figure 5
shows an off-line trained throughput-based performance model
for a physical server. Different models can be build for
different server flavors using the same profiling method. The
workload is represented by the request rate of read and write
operations. Under a specified SLA latency constraint, a server
can be in 2 states: satisfy SLA (under the SLA border) or
violate SLA (beyond the SLA border). We would like to
arrange servers to be utilized just under the SLA border.
This translates to having a high resource utilization while
guaranteeing the SLA requirements. The performance model
takes a specific workload intensity as the input and outputs

Fig. 6: Data migration model under throughput and SLA
constraints

the minimum number of instances that is needed to handle the
workload under SLA. It is calculated by finding the minimum
number of servers that results in the load on each server
(Workload/NumberOfServers) closest to and under the
SLA border in Figure 5. In the real experiment, we have setup
a small margin for over-provisioning. This can not only better
achieve SLA, but also allows more spare capacity for data
transfer during scaling up/down. This margin is set as 2 servers
in our experiment and can be configured differently case to
case to tradeoff the scaling speed and SLA commitment with
resource utilization.

B. Data migration model

The data migration model in ProRenaTa monitors the load
in the system and outputs the maximum data transfer rate that
can be used for scaling activities without compromising the
SLA. By using the data migration model, ProRenaTa is able
to obtain the time that is needed to conduct a scaling plan, i,e,
adding/removing n instances, under current system status and
SLA constraint. A detailed analytical model can be found in
Appendix B.

1) Statistical model: In this section, we describe the profil-
ing of a storage instance under three parameters: read request
rate, write request rate and data migration speed. The data
migration is manually triggered in the system by adding new
storage instances. We observe that during data migration,
network bandwidth is the major resource that compete between
data transfer and client request handling in storage servers.
Thus, the bandwidth used for data migration is controlled
as a parameter. Under the constraint of SLA latency, we
have multiple SLA borders under different data transfer rate
shown in Figure 6. Using this statistical model, given current
workload and servers in the system, we are able to find the
spare capacity that can be used for data migration. Specifically,
a given total workload consisting of read and write request rate
is uniformly mapped to each server and expressed as a data
point in Figure 6. The closest border below this data point
indicates the data migration speed that can be offered.

VI. EVALUATION

In this section, we present the evaluation of ProRe-
naTa elasticity controller using a workload synthesized from
Wikipedia access logs during 2009/03/08 to 2009/03/22. The
access traces are available here [7]. We first present the setup
of the storage system (GlobLease) and the implementation
of the workload generator. Then, we present the evaluation
results of ProRenaTa and compare its SLA commitments
and resource utilization with feedback and prediction based
elasticity controller.

458

TABLE I: GlobLease and workload generator setups

Specifications GlobLease VMs Workload VMs

Instance Type m1.medium m1.xlarge

CPUs Intel Xeon 2.8 GHz*2 Intel Xeon 2.0 GHz*8

Memory 4 GiB 16 GiB

OS Ubuntu 14.04 Ubuntu 14.04

Instance Number 5 to 20 5 to 10

A. Implementation

1) Deployment of the storage system: GlobLease [6] is
deployed on a private OpenStack Cloud platform hosted at
out university (KTH). Homogeneous virtual machine instance
types are used in the experiment for simplicity. It can be easily
extended to heterogeneous scheduling by profiling capabilities
of different instances types using the methodology described
in Section V-A2. Table I presents the virtual machine setups
for GlobLease and the workload generator.

2) Workload generator: We implemented a workload gen-
erator in JAVA that emulates workloads in different granular-
ities of requests per second. To setup the workload, a couple
of configuration parameters are fed to the workload generator
including the workload traces, the number of client threads,
and the setup of GlobLease.

Construction of the workload from raw Wikipedia access
logs. The access logs from Wikepedia provides the number of
accesses to each page every 1 hour. The first step to prepare a
workload trace is to remove the noise in accesses. We removed
non-meaningful pages such as ”Main Page”, ”Special:Search”,
”Special:Random”, etc from the logs, which contributes to
a large portion of accesses and skews the workload pattern.
Then, we chose the 5% most accessed pages in the trace and
abandoned the rest. There are two reasons for this choice: First,
these 5% popular keys constructs nearly 80% of the total work-
load. Second, access patterns of these top 5% keys are more
interesting to investigate while the remaining 95% of the keys
are mostly with 1 or 2 accesses per hour and very likely remain
inactive in the following hours. After fixing the composition of
the workload, since Wikipedia logs only provide page views,
i,e, read accesses, we randomly chose 5% of these accesses
and transformed them as write operations. Then, the workload
file is shuffled and provided to the workload generator. We
assume that the arrivals of clients during every hour follow
a Poisson distribution. This assumption is implemented in
preparing the workload file by randomly placing accesses with
a Poisson arrival intensity smoothed with a 1 minute window.
Specifically, 1 hour workload has 60 such windows and the
workload intensities of these 60 windows form a Poisson
distribution. When the workload generator reads the workload
file, it reads the whole accesses in 1 window and averages the
request rate in this window, then plays them against the storage
system. We do not have the information regarding the size of
each page from the logs, thus, we assume that the size of each
page is 10 KB. We observe that the prepared workload is not
able to saturate GlobLease if the trace is played in 1 hour. So,
we intensify the workload by playing the trace in 10 minutes
instead.

The number of client threads defines the number of concur-
rent requests to GlobLease in a short interval. We configured
the concurrent client threads as 50 in our experiment. The size
of the interval is calculated as the ratio of the number of client
threads over the workload intensity.

The setup of GlobLease provides the addresses of the
storage nodes to the workload generator. Note that the setup
of GlobLease is dynamically adjusted by the elasticity con-

TABLE II: Wikipedia Workload Parameters

Concurrent clients 50

Request per second roughly 3000 to 7000

Size of the namespace around 100,000 keys

Size of the value 10 KB

trollers during the experiment. Our workload generator also
implements a load balancer that is aware of the setup changes
from a programmed notification message sent by the elasticity
controllers (actuators). Table II summaries the parameters
configured in the workload generator.

3) Handling data transfer: Like most distributed storage
systems, GlobLease implements data transfer from nodes to
nodes in a greedy fashion, which puts a lot of stress on the
available network bandwidth. In order to guarantee the SLA
of the system, we control the network resources used for
data transfer using BwMan [8]. BwMan is a previous work
in our group that arbitrate network resources between user-
oriented workload and system maintenance workload, data
transfer in this case, under the constraint of SLAs. The amount
of available network resources allocated for data transfer is
calculated using the data migration model in Section V-B.

B. Evaluation results

We compare ProRenaTa with two baseline approaches:
feedback control and prediction-based control.

Most recent feedback-based auto-scaling literature on dis-
tributed storage systems are [13], [12], [14], [15]. These
systems correlate monitored metrics (CPU, workload, response
time) to a target parameter (service latency or throughput).
They then periodically evaluate the monitored metrics to verify
the commitment to the required level of service. Whenever the
monitored metrics indicates a violation of the service quality
or a waste of provisioned resources, the system decides to
scale up/down correspondingly. Our implementation of the
feedback control for comparison relies on similar approach
and represents the current state of the art in feedback control.
Our feedback controller is built using the throughput model
described in section V-A2. Dynamic reconfiguration of the
system is performed at the beginning of each control window
to match the averaged workload collected during the previous
control window.

Most recent prediction-based auto-scaling work are [16],
[17], [18]. These systems predict interested metrics. With
the predicted value of the metrics, they scale their target
systems accordingly to match the desired performance. We
implemented our prediction-based controller in a similar way
by predicting the interested metric (workload) described in
section IV. Then, the predicted value is mapped to system
performance using an empirical performance model described
in section V-A2. Our implementation closely represents the
existing state of the art for prediction based controller. System
reconfiguration is carried out at the beginning of the control
window based on the predicted workload intensity for the
next control period. Specifically, if the workload increase
warrants addition of servers, it is performed at the beginning
of the current window. However, if the workload decreases, the
removal of servers are performed at the beginning of the next
window to ensure SLA. Conflicts may happen at the beginning
of some windows because of a workload decrease followed by
a workload increase. This is solved by simply adding/merging
the scaling decisions.

ProRenaTa combines both feedback control and prediction-
based control but with more sophisticated modeling and

459

Fig. 7: Aggregated CDF of latency for different approaches

scheduling. Prediction-based control gives ProRenaTa enough
time to schedule system reconfiguration under the constraint of
SLAs. The scaling is carried out at the last possible moment in
a control window under the constraint of SLA provided by the
scaling overhead model described in Section V-B. This model
guarantees ProRenaTa with less SLA violations and better
resource utilization. In the meantime, feedback control is used
to adjust the prediction error at the beginning of each control
window. The scheduling of predicted actions and feedback
actions is handled by ProRenaTa scheduler.

In addition, we also compare ProRenaTa with an ideal case.
The ideal case is implemented using a theoretically perfect
elasticity controller, which knows the future workload, i,e,
predicts the workload perfectly. The ideal also uses ProRenaTa
scheduler to scale the cluster. So, comparing to the prediction
based approach, the ideal case not only uses more accurate
prediction results but also uses better scheduling, i,e, the
ProRenaTa scheduler.

1) Performance overview: Here, we present the evalua-
tion results using the aforementioned 4 approaches with the
Wikipedia workload trace from 2009/03/08 to 2009/03/22. We
focus on the 95th percentile latency of requests calculated from
each hour and the CPU utilization monitored every second.

SLA commitment. Figure 7 presents the cumulative dis-
tribution of 95 percentile latency by running the simulated
Wikipedia workload from 2009/03/08 to 2009/03/22. The
vertical red line demonstrates the SLA latency configured in
each elasticity controller.

We observe that the feedback approach has the most SLA
violations. This is because the algorithm reacts only when
it observes the actual workload changes, which is usually
too late for a stateful system to scale. This effect is more
obvious when the workload is increasing. The scaling overhead
along with the workload increases lead to a large percent
of high latency requests. ProRenaTa and the prediction-based
approach achieve nearly the same SLA commitments as shown
in Figure 7. This is because we have an accurate workload
prediction algorithm presented in IV. Also, the prediction-
based algorithm tries to reconfigure the system before the
actual workload comes, leaving the system enough time and
resources to scale. However, we shown in the next section
that the prediction-based approach does not efficiently use the
resources, i,e, CPU, which results in more provision cost.

CPU utilization. Figure 8 shows the cumulative distribution
of the aggregated CPU utilization on all the storage servers
by running the two weeks simulated Wikipedia workload. It
shows that some servers in the feedback approach are under
utilized (20% to 50%), which leads to high provision cost,
and some are saturated (above 80%), which violates SLA

Fig. 8: Aggregated CDF of CPU utilization for different
approaches

latency. This CPU utilization pattern is caused by the nature of
reactive approach, i,e, the system only reacts to the changing
workload when it is observed. In the case of workload increase,
the increased workloads usually saturate the system before it
reacts. Worse, by adding storage servers at this point, the data
migration overhead among servers aggravate the saturation.
This scenario contributes to the saturated CPU utilization in
the figure. On the other hand, in the case of workload decrease,
the excess servers are removed only in the beginning of the
next control period. This leads to the CPU under utilization in
some scenarios.

It is shown in figure 8 that a large portion of servers remain
under utilized when using the prediction based elasticity con-
trol. This is because of the prediction-based control algorithm.
Specifically, in order to guarantee SLA, in the case of workload
increase, servers are added in the previous control period while
in the case of workload decrease, servers are removed in the
next control period. Note that the CPU statistics are collected
every second on all the storage servers. Thus, the provisioning
margin between control periods contributes to the large portion
of under utilized CPUs.

In comparison with the feedback or prediction based
approach, ProRenaTa is smarter in controlling the system.
Figure 8 shows that most servers in ProRenaTa have a CPU
utilization from 50% to 80%, which results in a reasonable
latency that satisfies the SLA. Under/over utilized CPUs are
prevented by a feedback mechanism that corrects the prediction
errors. Furthermore, there is much less over provision margins
observed in the prediction based approach because of the
data migration model. ProRenaTa assesses and predicts system
spare capacity in the coming control period and schedules
system reconfigurations (scale up/down) to an optimized time
(not in the beginning or the end of the control period). This
optimized scheduling is calculated based on the data migration
overhead of the scaling plan as explained in Section V-B. All
these mechanisms in ProRenaTa leads to an optimized resource
utilization with respect to SLA commitment.

2) Detailed performance analysis: In the previous section,
we presented the aggregated statistics about SLA commitment
and CPU utilization by playing a 2 weeks Wikipedia access
trace using four different approaches. In this section, we zoom
in the experiment by looking at the collected data during 48
hours. This 48 hours time series provides more insights into
understanding the circumstances that different approaches tend
to violate the SLA latency.

Workload pattern. Figure 9 (a) shows the workload pattern
and intensity during 48 hours. The solid line presents the
actual workload from the trace and the dashed line depicts

460

Fig. 9: Actual workload and predicted workload and
aggregated VM hours used corresponding to the workload

Fig. 10: SLA commitment comparing ideal, feedback and
predict approaches with ProRenaTa

the predicted workload intensity by our prediction algorithm
presented in Section IV.

Total VM hours used. Figure 9 (b) demonstrates the aggre-
gated VM hours used for each approach under the workload
presented in Figure 9 (a) during 48 hours. The ideal provi-
sioning is simulated by knowing the actual workload trace
beforehand and feeding it to the ProRenaTa scheduler, which
generates an optimized scaling plan in terms of the timing
of scaling that takes into account the scaling overhead. It is
shown that ProRenaTa is very close to the VM hours used
by the ideal case. On the other hand, the predict approach
has consumed more VMs during this 48 hours, which leads to
high provisioning cost. The feedback approach has allocated
too few VMs, which has caused a lot of latency SLA violations
shown in Figure 7.

SLA commitment. Figure 10 presents the comparison of
SLA achievement using the ideal approach (a), the feedback
approach (b) and the prediction based approach (c) compared
to ProRenaTa under the workload described in Figure 9 (a).
Compared to the ideal case, ProRenaTa violates SLA when

the workload increases sharply. The SLA commitments are
met in the next control period. The feedback approach on the
other hand causes severe SLA violation when the workload in-
creases. ProRenaTa takes into account the scaling overhead and
takes actions in advance with the help of workload prediction,
which gives it advantages in reducing the violation in terms
of extend and period. In comparison with the prediction based
approach, both approaches achieve more or less the same SLA
commitment because of the pre-allocation of servers before
the workload occurs. However, it is shown in Figure 8 that the
prediction based approach cannot use CPU resource efficiently.

3) Utility Measure: An efficient elasticity controller must
be able to achieve high CPU utilization and at the same time
guarantee latency SLA commitments. Since achieving low
latency and high CPU utilization are contradictory goals, the
utility measure needs to capture the goodness in achieving both
these properties. While a system can outperform another in any
one of these properties, a fair comparison between different
systems can be drawn only when both the aspects are taken
into account in composition. To this order, we define the utility
measure as the cost incurred:

U = VM hours+ Penalty

Penalty = DurationOfSLAV iolations ∗ penalty factor

DurationOfSLAV iolations is the duration through the pe-
riod of the experiment the SLA is violated. We vary the
penalty factor which captures the different cost incurred for
SLA violations. We analyze the results obtained by running a
48 hours Wikipedia workload trace using different auto-scaling
controllers. Figure 11 shows the utility measure for 4 different
scaling approaches. Without any penalty for SLA violations,
feedback approach performs the best. But as the penalty for
SLA violations increase, ProRenaTa and the ideal approach
achieve the lowest utility (cost), which is much better than
both feedback and prediction-based auto-scaling approaches.

VII. RELATED WORK

There are numerous works done in the field of auto-scaling
recently under the context of Cloud computing. Broadly speak-
ing, they can be characterized as scaling stateless services [16],
[19], [18] and stateful service [12], [13], [14], [20]. We
characterize the approaches into two categories: reactive and
proactive. Typical methods used for auto-scaling are threshold-
based rules, reinforcement learning or Q-learning (RL), queu-
ing theory, control theory and time series analysis.

The representative systems that use threshold-based rules
to scale a service are Amazon Cloud Watch [21] and
RightScale [22]. This approach defines a set of thresholds or
rules in advance. Violating the thresholds or rules to some
extent will trigger the action of scaling. Threshold-based rule
is a typical implementation of reactive scaling.

Reinforcement learning are usually used to understand
the application behaviors by building empirical models. Si-
mon [23] presents an elasticity controller that integrates several
empirical models and switches among them to obtain better
performance predictions. The elasticity controller built in [20]
uses analytical modeling and machine-learning. They argued
that by combining both approaches, it results in better con-
troller accuracy.

Ali-Eldin [24] uses the queueing theory to model a Cloud
service and estimates the incoming load. It builds proactive
controllers based on the assumption of a queueing model. It
presents an elasticity controller that incorporates a reactive
controller for scale up and proactive controllers for scale down.

461

Fig. 11: Utility for different approaches

Recent influential works that use control theory to achieve
elasticity are [12], [13], [14]. The reactive module in ProRe-
naTa uses similar technique to achieve auto-scaling as the ones
applied in Scads director [12] and ElastMan [13]. Specifi-
cally, both approaches build performance models on system
throughput using model predictive control. Scads director tries
to minimize the data migration overhead associated with the
scaling by arranging data into small data bins. However,
this only alleviate the SLA violations. Lim [14] uses CPU
utilization as the monitored metrics in a classic feedback loop
to achieve auto-scaling. A data migration controller is also
modeled in this work. However, it is only used to tradeoff the
SLA violation with the scaling speed.

Recent approaches using time-series analysis to achieve
auto-scaling are [17], [18]. [17] adapts second order ARMA
for workload forecasting under the World Cup 98 workload.
[18] proves that it is accurate to use wavelets to provide a
medium-term resource demand prediction. With the help of
the prediction results, VMs can be spawned/migrated before it
is needed in order to avoid SLA violations. [16] uses on-line
resource demand prediction with prediction errors corrected.

ProRenaTa differs from the previous approaches in two
aspects. First, most of the previous approaches either use
reactive or proactive scaling techniques, ProRenaTa combines
both approaches. Reactive controller gives ProRenaTa better
scale accucacy while proactive controller provides ProRenaTa
enough time to handle the scaling overhead (data migra-
tion). The complimentary nature of both approaches provide
ProRenaTa with better SLA guarantees and higher resource
utilizations. Second, to our best knowledge, when scaling a
stateful system, e,g, a storage system, none of the previous
systems explicitly model the cost of data migration when
scaling. Specifically, ProRenaTa assesses the scaling cost under
the scaling goal with continuous monitoring of the spare
capacity in the system. In essense, ProRenaTa employs time-
series analysis to realize a proactive scaling controller. This is
because of the workload characteristics discussed in Section IV
and analyzed in [25]. A reactive module is applied to correct
prediction errors, which further guarantees the SLA and boosts
the utilization of resources.

VIII. CONCLUSION

In this paper, we investigate the efficiency of an elas-
ticity controller that combines both proactive and reactive
approaches for auto-scaling a distributed storage system. We
show the limitations of using proactive or reactive approach in
isolation to scale a stateful system. We design ProRenaTa that
combines both proactive and reactive approaches. ProRenaTa
improves the classic prediction based scaling approach by
taking into account the scaling overhead, i.e., data/state mi-
gration. Moreover, the reactive controller helps ProRenaTa to

achieve better scaling accuracy, i.e., better resource utilization
and less SLA violations, without causing interference with the
scaling activities scheduled by the proactive controller. Our
results indicate that ProRenaTa outperforms the state of the art
approaches by guaranteeing a high level of SLA commitments
while also improving the overall resource utilization.

As for future work, we consider to make the training
process of the models used in ProRenaTa online. The online
training will ease the deployment of ProRenaTa and make
the scaling decision more accurate by having finer-grained
of parameters trained. We also consider to extend the data
migration model to be able to estimate the cost of handling
skewed workloads.

ACKNOWLEDGMENT

This work was supported by the Erasmus Mundus Joint
Doctorate in Distributed Computing funded by the EACEA
of the European Commission under FPA 2012-0030, the
FP7 project CLOMMUNITY funded by the European Com-
mission under EU FP7 GA number 317879, the End-to-
End Clouds project funded by the Swedish Foundation for
Strategic Research under the contract RIT10-0043, the project
SpeechTech4All (TEC2012-38939-C03-02), and by the Span-
ish government under contract TIN2013-47245-C2-1-R. The
authors would like to give sincere thanks to Bogdan Nicolae
for his useful comments and suggestions to improve the quality
of the paper. We would also like to thank the anonymous
reviewers for their valuable comments.

REFERENCES

[1] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The
hadoop distributed file system. In Proceedings of the 2010 IEEE 26th Symposium
on Mass Storage Systems and Technologies (MSST), MSST ’10, pages 1–10,
Washington, DC, USA, 2010. IEEE Computer Society.

[2] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized structured
storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40, April 2010.

[3] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s highly available key-value store. SIGOPS
Oper. Syst. Rev., 41(6):205–220, October 2007.

[4] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. Spanner: Google’s globally-distributed database.
In Proceedings of the 10th USENIX Conference on Operating Systems Design and
Implementation, OSDI’12, pages 251–264, Berkeley, CA, USA, 2012. USENIX
Association.

[5] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip
Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni.
Pnuts: Yahoo!’s hosted data serving platform. Proc. VLDB Endow., 1(2):1277–1288,
August 2008.

[6] Ying Liu, Xiaxi Li, and Vladimir Vlassov. Globlease: A globally consistent and
elastic storage system using leases. http://dx.doi.org/10.13140/2.1.2183.7763. (To

462

appear in) Proceedings of the 2014 IEEE International Conference on Parallel and
Distributed Systems (ICPADS ’14).

[7] Wikipedia traffic statistics v2. http://aws.amazon.com/datasets/4182.
[8] Ying Liu, Vamis Xhagjika, Vladimir Vlassov, and Ahmad Al Shishtawy. Bwman:

Bandwidth manager for elastic services in the cloud. In Parallel and Distributed
Processing with Applications (ISPA), 2014 IEEE International Symposium on, pages
217–224, Aug 2014.

[9] George EP Box, Gwilym M Jenkins, and Gregory C Reinsel. Time series analysis:
forecasting and control. John Wiley & Sons, 2013.

[10] Timothy Masters. Neural, novel and hybrid algorithms for time series prediction.
John Wiley & Sons, Inc., 1995.

[11] Thomas Kailath, Ali H Sayed, and Babak Hassibi. Linear estimation. 2000.
[12] Beth Trushkowsky, Peter Bodı́k, Armando Fox, Michael J. Franklin, Michael I.

Jordan, and David A. Patterson. The scads director: Scaling a distributed storage
system under stringent performance requirements. In Proceedings of the 9th
USENIX Conference on File and Stroage Technologies, FAST’11, pages 12–12,
Berkeley, CA, USA, 2011. USENIX Association.

[13] Ahmad Al-Shishtawy and Vladimir Vlassov. Elastman: Elasticity manager for
elastic key-value stores in the cloud. In Proceedings of the 2013 ACM Cloud
and Autonomic Computing Conference, CAC ’13, pages 7:1–7:10, New York, NY,
USA, 2013. ACM.

[14] Harold C. Lim, Shivnath Babu, and Jeffrey S. Chase. Automated control for
elastic storage. In Proceedings of the 7th International Conference on Autonomic
Computing, ICAC ’10, pages 1–10, New York, NY, USA, 2010. ACM.

[15] Simon J. Malkowski, Markus Hedwig, Jack Li, Calton Pu, and Dirk Neumann.
Automated control for elastic n-tier workloads based on empirical modeling. In
Proceedings of the 8th ACM International Conference on Autonomic Computing,
ICAC ’11, pages 131–140, New York, NY, USA, 2011. ACM.

[16] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. Cloudscale:
Elastic resource scaling for multi-tenant cloud systems. In Proceedings of the 2Nd
ACM Symposium on Cloud Computing, SOCC ’11, pages 5:1–5:14, New York, NY,
USA, 2011. ACM.

[17] N. Roy, A. Dubey, and A. Gokhale. Efficient autoscaling in the cloud using
predictive models for workload forecasting. In Cloud Computing (CLOUD), 2011
IEEE International Conference on, pages 500–507, July 2011.

[18] Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Sethuraman Subbiah, and John Wilkes.
Agile: Elastic distributed resource scaling for infrastructure-as-a-service. In Proc.
of the USENIX International Conference on Automated Computing (ICAC13). San
Jose, CA, 2013.

[19] Jing Jiang, Jie Lu, Guangquan Zhang, and Guodong Long. Optimal cloud resource
auto-scaling for web applications. In Cluster, Cloud and Grid Computing (CCGrid),
2013 13th IEEE/ACM International Symposium on, pages 58–65, May 2013.

[20] Diego Didona, Paolo Romano, Sebastiano Peluso, and Francesco Quaglia. Trans-
actional auto scaler: Elastic scaling of in-memory transactional data grids. In
Proceedings of the 9th International Conference on Autonomic Computing, ICAC
’12, pages 125–134, New York, NY, USA, 2012. ACM.

[21] Amazon cloudwatch. http://aws.amazon.com/cloudwatch/.
[22] Right scale. http://www.rightscale.com/.
[23] Simon J. Malkowski, Markus Hedwig, Jack Li, Calton Pu, and Dirk Neumann.

Automated control for elastic n-tier workloads based on empirical modeling. In
Proceedings of the 8th ACM International Conference on Autonomic Computing,
ICAC ’11, pages 131–140, New York, NY, USA, 2011. ACM.

[24] A. Ali-Eldin, J. Tordsson, and E. Elmroth. An adaptive hybrid elasticity controller
for cloud infrastructures. In Network Operations and Management Symposium
(NOMS), 2012 IEEE, pages 204–212, April 2012.

[25] Ahmed Ali Eldin, Ali Rezaie, Amardeep Mehta, Stanislav Razroev, Sara Sjostedt de
Luna, Oleg Seleznjev, Johan Tordsson, and Erik Elmroth. How will your workload
look like in 6 years? analyzing wikimedia’s workload. In Proceedings of the 2014
IEEE International Conference on Cloud Engineering, IC2E ’14, pages 349–354,
Washington, DC, USA, 2014. IEEE Computer Society.

APPENDIX A
PREDICTOR IMPLEMENTATION

Short term forecast the short term component is initially
computed using as data the estimation segment, that is the
same initial segment used in order to determine the set of
periods Pi of the long term forecaster. On the forecasting
component of the data, the values of the weights wi of the
Wiener filter are updated when the forecasting error increases
for a certain length of time. This assumes a time series with
a statistical properties that vary with time. The procedure
for determining the update policy of the Wiener filter is the
following: first the forecasting error at a given moment

Error[n] = |x̃[n]− x[n]|2

note that this is computed taking into account
a delay equal to the forecasting horizon NFrHr,
that is x̃[n] is compute form the set of samples:

{x[n−NFrHr] . . . x[n−NFrHr − LShrt]}. In order to
decide when to update the coefficients of the Wiener filter, we
compute a long term MSE and a short term MSE by means
of an exponential window. Computing the mean value by
means of an exponential window is justified because it gives
more weight to the near past. The actual computation of the
MSE at moment n, weights the instantaneous error Error[n],
with the preceding MSE at n − 1. The decision variable
Des[n] is the ratio between the long term MSE at moment
n MSElng[n] and the the short term MSE at moment n
MSEsrt[n] :

MSElng[n] = (1− αlng)Error[n] + αlngMSElng[n− 1]

MSEsrt[n] = (1− αshrt)Error[n] + αsrtMSEshrt[n− 1]

where α is the memory parameter of the exponential window,
with 0 < α < 1 and for our experiment αlng was set to 0.98,
which means that the sample n − 100 is given 10 times less
weight that the actual sample and αshrt was set to 0.9, which
means that the sample n − 20 is given 10 times less weight
that the actual sample. The decision value is defined as:

Des[n] = MSElng[n]/max(1,MSEsrt[n])

if Des[n] > Thrhld it is assumed that the statistics of the time
series has changed and a new set of coefficients wi are com-
puted for the Wiener filter. The training data sample consists of
the near past and are taken as {x[n] . . . x[n−MemLShrt]}.
For our experiments we took as threshold Thrhld = 10 and
Mem = 10. Empirically we have found that the performance
does not change much when these values are slightly perturbed.
Note that the max() operator in the denominator of the expres-
sion that computes Des[n] prevents a division by zero in the
case of keywords with low activity.
Long term forecast In order to compute the parameters Pi of
the term x̃Lng[n] we reserved a first segment (estimation seg-
ment) of the time series and we computed the auto-correlation
function on this segment. The autocorrelation function mea-
sures the similarity of the time series to itself as a function of
temporal shifts and the maxima of the autocorrelation function
indicates it’s periodic components denoted by Pi. These long
term periodicities are computed from the lags of the positive
side of the auto-correlation function with a value above a
threshold. Also, we selected periodicities corresponding to
periods greater than 24 hours. The amplitude threshold was
defined as a percentage of the auto correlation at lag zero (i.e.
the energy of the time series). Empirically we found that the
0.9 percent of the energy allowed to model the periods of
interest. The weighting value hi,j was taken as 1/Lj which
gives the same weight to each of the periods used for the
estimation. The number of weighted periods Lj was selected
to be two, which empirically gave good results.
Algorithm 2 illustrates the prediction module of ProReNata.

APPENDIX B
ANALYTICAL MODEL FOR DATA MIGRATION

We consider a distributed storage system that runs in a
Cloud environment and uses ProRenaTa to achieve elasticity
while respecting the latency SLA. The storage system is
organized using DHT and virtual tokens are implemented.
Using virtual tokens in a distributed storage system provides
it with the following properties: 1. The amount of data stored
in each physical server is proportional to its capability. 2.
The amount of workload distributed to each physical server is
proportional to its capability. 3. If enough bandwidth is given,
the data migration speed from/to a instance is proportional to
its capability.

463

Algorithm 2 ProReNata prediction module

1: procedure INITIALIZELONGTERMMODULE(Lini)
� Uses {x[0] . . . x[Lini]}

2: Pi ← ComputeSetOfPeriodicities()
� Pi is the set of Np long term periodicities computed in
an initial segment from the auto-correlation function.

3: Li ← ValuesOfLengthForPi(Pi)
� For this experiment Li = 2 ∀ period Pi

4: hi,j ←ValuesOfFilter(Pi,Li)
� For this experiment hi,j =

1
Li

for 1 · · ·Li

5:

6: procedure INITIALIZESHORTTERMMODULE(Lini)
� Uses {x[0] . . . x[Lini]} for computing wi.

7: {wi} ← InitalValuesOfPredictor()
� Weights wi are initialized by solving the Wiener

equations.
8: {NFrHr, LShrt,MemLShrt} ← TopologyOfShort-

TermPredictor()
9: {Thrhld, αsrt, αlng} ← UpDatingParamOfWienerFil-

ter()
� Parameters {αsrt, αlng} define the memory of the filter
that smooths the MSE, and Thrhld, is the threshold that
determines the updating policy.

10:

11: procedure SHORTTIMEPREDICTION(wi, NFrHr, x)

12: x̃Shrt[n+NFrHr] =
∑LShrt

i=0 wix[n− i]
� Compute x̃Shrt[n+NFrHr] from a linear combination
of the data in a window of length LShrt.

13:

14: procedure UPDATESHORTTERMPREDICTOR()
15: Error[n] = |x̃[n]− x[n]|2
16:

MSElng[n] = (1− αlng)Error[n]+

αlngMSElng[n− 1] (1)

MSEsrt[n] = (1− αshrt)Error[n]+

αsrtMSEshrt[n− 1] (2)

Des[n] = MSElng[n]/max(1,MSEsrt[n])
� Estimation of the short term and long term value of the
MSE, and the decision variable Des[n].

17: if Des[n] > Thrhld then
18: Compute values of the Wiener filter using data
19: {x[n] . . . x[n−MemLShrt]}
20:

21: procedure LONGTIMEPREDICTION(hi,j , Pi, Li, x)

22: x̃Lng[n+NFrHr] =
∑Np

i=0

∑Lj

j=0 hi,jx[n− jPi]
� Compute

x̃Lng[n + NFrHr] from a linear combination of the data
in a window of length corresponding to the periods Pi.

23:

24: procedure FINALESTIMATION()
25:

x̃[n+NFrHr] =

{
˜xLng[n+NFrHr] if n+NFrHr = k0Pi

x̃Shrt[n+NFrHr] if n+NFrHr �= k0Pi

At time t, Let D be the amount of data stored in the storage
system. We consider that the amount of data is very large so
that reads and writes in the storage system during a small
period do not significantly influence the data amount stored
in the system. We assume that, at time t, there are N storage
instances. For simplicity, here we consider that the storage
instances are homogeneous. Let C represents the capability of
each storage instance. Specifically, the maximum read capacity
in requests per second and write capacity in requests per
second is represented by α∗C and β∗C respectively under the
SLA latency constraint. The value of α and β can be obtained
from our performance model.

Let L denotes the current workload in the system. There-
fore, α

′ ∗ L are read requests and β
′ ∗ L are write requests.

Under the assumption of uniform workload distribution, the
read and write workload served by each physical server is
α

′ ∗ L/N and β
′ ∗ L/N respectively. We define function

f to be our data migration model. It outputs the maximum
data migration rate that can be obtained under the current
system load without compromising SLAs. Thus, function f
depends on system load (α

′ ∗L/N, β
′ ∗L/N), server capability

(α ∗ C, β ∗ C) and the SLA (SLAlatency).

We assume the predicted workload is Lpredicted. According
to the performance model introduced in the previous section,
we know that a scaling plan in terms of adding or removing
instances can be given. Let us consider a scaling plan that
needs to add or remove n instances. When adding instances,
n is a positive value and when removing instances, n is a
negative value.

First, we calculate the amount of data that needs to be
reallocated. It can be expressed by the difference of the amount
of data hosted on each storage instance before scaling and after
scaling. Since all the storage instances are homogeneous, the
amount of data stored in each storage instance before scaling is
D/N . And the amount of data stored in each storage instance
after scaling is D/(N+n). Thus, the amount of data that needs
to be migrated can be calculated as |D/N −D/(N +n)| ∗N ,
where |D/N −D/(N +n)| is for a single instance. Given the
maximum speed that can be used for data migration (f()) on
each instance, the time needed to carry out the scaling plan
can be calculated.

T imescale =
|D/N−D/(N+n)|

f(α∗C,β∗C,α′∗L/N,β′∗L/N,SLAlatency)

The workload intensity during the scaling in the above
formula is assumed to be constant L. However, it is not the
case in the real system. The evolving pattern of the workload
during scaling is application specific and sometimes hard to
predict. For simplicity, we assume a linear evolving pattern
of the workload between before scaling and after scaling.
However, any workload evolving pattern during scaling can be
given to the data migration controller with little adjustment.
Remind that the foreseeing workload is Lpredicted and the
current workload is L. If a linear changing of workload is
assumed from L to Lpredicted, using basic calculus, it is easy
to know that the effective workload during the scaling time is
the average workload Leffective = (L + Lpredicted)/2. The
time needed to conduct a scaling plan can be calculated using
the above formula with the effective workload Leffective.

We can obtain α and β from the performance model for
any instance flavor. α

′
and β

′
are obtained from workload

monitors. Then, the problem left is to fine a proper function
f that defines the data migration speed under certain system
setup and workload condition with respect to SLA constraint.
The function f is obtained using the statistical model explained
in section V-B1.

464

