
PonIC: Using Stratosphere

to Speed Up Pig Analytics

Vasiliki Kalavri1, Vladimir Vlassov1, and Per Brand2

1 KTH Royal Institute of Technology
{kalavri,vladv}@kth.se

2 Swedish Institute of Computer Science
Stockholm, Sweden
perbrand@sics.se

Abstract. Pig, a high-level dataflow system built on top of Hadoop
MapReduce, has greatly facilitated the implementation of data-intensive
applications. Pig successfully manages to conceal Hadoop’s one input
and two-stage inflexible pipeline limitations, by translating scripts into
MapReduce jobs. However, these limitations are still present in the back-
end, often resulting in inefficient execution.

Stratosphere, a data-parallel computing framework consisting of
PACT, an extension to the MapReduce programming model and the
Nephele execution engine, overcomes several limitations of Hadoop
MapReduce. In this paper, we argue that Pig can highly benefit from
using Stratosphere as the backend system and gain performance, with-
out any loss of expressiveness.

We have ported Pig on top of Stratosphere and we present a process
for translating Pig Latin scripts into PACT programs. Our evaluation
shows that Pig Latin scripts can execute on our prototype up to 8 times
faster for a certain class of applications.

1 Introduction

Large-scale data management and analysis is currently one of the biggest chal-
lenges in the area of distributed systems. Industry, as well as academia, is in
urgent need of data analytics systems, capable of scaling up to petabytes of data.
Such systems need to efficiently analyze text, web data, log files and scientific
data. Most of the recent approaches use massive parallelism and are deployed
on large clusters of hundreds or even thousands of commodity hardware.

MapReduce [1], proposed by Google, is the most popular framework for large-
data processing; its open-source implementation, Hadoop1, is nowadays widely
used. However, it has several limitations, including the limitation on the number
of input datasets (only one input set) and the limitation on a structure of a
program that must follow a static fixed pipeline pattern of the form split-map-
shuffle-sort-reduce. This pipeline is suitable for simple applications, such as log-
file analysis, but severely complicates the implementation of relational queries or

1 http://hadoop.apache.org/

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 279–290, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://hadoop.apache.org/

280 V. Kalavri, V. Vlassov, and P. Brand

graph algorithms. These limitations have led researchers to develop more general-
purpose systems, inspired by MapReduce [2–6]. One of them is Stratosphere
[6], which consists of a programming model, PACT (Parallelization Contracts),
and the Nephele execution engine. The system is essentially a generalization of
MapReduce and aims to overcome the limitations mentioned above.

Both models, MapReduce and PACT, require significant programming ability
and in-depth understanding of the systems’ architectures. Applications usually
lead to complex branching dataflows which are low-level and inflexible. In or-
der to save development time and make application code easier to maintain,
several high-level languages have been proposed for these systems. Currently,
high-level platforms on top of Hadoop include JAQL [7], Hive [8] and Pig [9].
Pig Latin, which is the language of the Pig platform [10], offers the simplicity
and declarativeness of SQL, while maintaining the functionality of MapReduce.
Pig compiles Pig Latin into MapReduce jobs which are executed in Hadoop. Pig
hides Hadoop’s one-input and two-stage dataflow limitations from the program-
mer and provides built-in functions for common operations, such as filtering,
join and projection. It also directly benefits from Hadoop’s scalability and fault-
tolerance. However, even if not obvious to the users, the limitations and inflexi-
bility of Hadoop are still present in the Pig system. The translation of relational
operators for the static pipeline of Hadoop produces an inefficient execution plan
since data have to be materialized and replicated after every MapReduce step.

The goal of Pig was to make MapReduce accessible to non-experts and re-
lieve the programmer from the burden of repeatedly coding standard operations,
like joins. Another goal was to make Pig independent of any particular backend
execution engine. However, Pig was developed on top of Hadoop, ended up solv-
ing specific Hadoop problems and became highly coupled with its execution
engine. The Stratosphere data-parallel computing framework offers a superset
of MapReduce functionality, while overcoming some of the major weaknesses of
the MapReduce programming model. It allows data pipelining between execution
stages, enabling the construction of flexible execution strategies and removing
the demand for materialization and replication in every stage. Moreover, the
PACT programming model of Stratosphere supports multiple inputs.

In this paper, we present PonIC (Pig on Input Contracts), an integration of
the of Pig System with Stratosphere. We have analyzed the internal structure of
Pig and have designed a suitable integration strategy. In order to evaluate the
benefits of the integration, we have developed a prototype implementation. The
current prototype supports a subset of the most common Pig operations and
it can be easily extended to support the complete set of Pig Latin statements.
Thus, we show that it is possible to plug a different execution engine into the
Pig system and we identify the parts of Pig that can be reused. With our Pig to
PACT translation algorithm and our prototype, we show that Stratosphere has
desirable properties that significantly simplify the plan generation. We have de-
veloped a set of basic scripts and their native MapReduce and PACT equivalents
and we provide a comparison of PonIC with Pig, as well as the corresponding
native programs. We observe that Stratosphere’s relational operators are much

PonIC: Using Stratosphere to Speed Up Pig Analytics 281

more efficient than their MapReduce equivalents. As a result, PonIC has a great
advantage over Pig on Hadoop and often executes faster than native Hadoop
MapReduce. The main contributions of this paper are as follows.

– Our integration is entirely transparent to Pig’s end-users and existing Pig
Latin applications can be executed on PonIC without any modification. The
syntax and the semantics are completely unchanged.

– We show that Pig can be harnessed to alternative execution engines and
present a way of integration.

– We identify the features of Pig that negatively impact execution time.
– We show that Pig can be integrated with Stratosphere and gain performance.
– We propose a complete translation process of Pig Logical Plans into Strato-

sphere Physical Plans and we present and evaluate PonIC.

The rest of this paper is structured as follows. In Section 2, we provide the
necessary background on the Pig and Stratosphere systems. Section 3 discusses
the restrictions that MapReduce poses on Pig’s current implementation and
presents our Pig-to-Stratosphere translation process. In Section 4, we discuss
our prototype implementation in detail. Section 5 contains the evaluation of
PonIC against Pig on Hadoop, native Hadoop MapReduce and native PACT
Stratosphere. In Section 6, we comment on related work, while we provide our
conclusions, open issues and vision for the future in Section 7.

2 Background

In this section, we provide the essential background. We briefly discuss the
MapReduce programming model, the Pig system and the Stratosphere system.

2.1 The MapReduce Programming Model

MapReduce is a data-parallel programming model. Its architecture is inspired
by functional programming and consists of two second-order functions, Map and
Reduce, which form a static pipeline. Data are read from an underlying dis-
tributed file system and are transformed into key-value pairs, which are grouped
into subsets and processed by user-defined functions in parallel. Data distribu-
tion, parallelization and communication are handled by the framework, while the
user only has to write the first-order functions wrapped by the Map and Reduce
functions. However, this abstraction comes with loss of flexibility. Each job must
consist of exactly one Map function followed by one Reduce function and no
step can be omitted or executed in a different order. Moreover, if an algorithm
requires multiple Map and Reduce steps, these can only be implemented as sep-
arate jobs, and data can only be passed from one job to the next through the
file system. This limitation can frequently add a significant overhead to the ex-
ecution time. MapReduce was initially proposed by Google and its open-source
implementation, Hadoop and HDFS [11] are nowadays widely used.

282 V. Kalavri, V. Vlassov, and P. Brand

2.2 Pig

Pig consists of a declarative scripting language, Pig Latin, and an execution
engine that allows the parallel execution of data-flows on top of Hadoop. The Pig
System takes a Pig Latin program as input and produces a series of MapReduce
jobs to be executed on the Hadoop engine. Compilation happens in several steps.
First, the parser transforms a Pig Latin script into a Logical Plan. Each Logical
operator is compiled down to one or more Physical Operators. The Physical
Plan is then passed to the compiler that transforms it into a DAG of MapReduce
operators. MapReduce operators are topologically sorted and connected between
them using a store-load combination, producing the MapReduce Plan as output.
The generated jobs are finally submitted to Hadoop and monitored by Pig.

2.3 Stratosphere

Stratosphere is a parallel data-processing framework, which consists of a pro-
gramming model, PACT (Parallelization Contracts), and an execution engine,
Nephele, capable of executing dataflow graphs in parallel. Nephele is an exe-
cution engine designed to execute DAG-based data flow programs. It manages
task scheduling and setting up communication channels between nodes. More-
over, it supports dynamic allocation of resources during execution and fault-
tolerance mechanisms. The PACT programming model is a generalization of the
MapReduce programming model. It extends the idea of the Map and Reduce
second-order functions, introducing the Input Contracts. An Input Contract is
a secondary function that accepts a first-order user-defined function and one or
more data sets as inputs. Input Contracts do not have to form any specific type
of pipeline and can be used in any order that respects their input specifications.
In the context of the PACT programming model, Map and Reduce are Input
Contracts. The following three more Contracts are defined in PACT:

– The Cross Input Contract accepts multiple inputs of key value pairs and pro-
duces subsets of all possible combinations among them, building a Cartesian
product over the input.

– The Match Contract operates on two inputs and matches each pair of the
first input with one pair of the second input that has the same key value.

– The CoGroup Contract creates independent subsets by combining all pairs
that share the same key.

3 Plan Compilation

As explained in the previous section, a Pig Latin script is parsed and transformed
into a graph of logical operators, each corresponding to one command. This
graph, the Logical Plan, is then translated into a Physical Plan, a graph of
physical operators, which defines how the logical operations will be executed.
Multiple strategies can be used to map logical operators to physical ones and
it’s the system’s compiler job to choose a strategy, depending on the underlying
execution engine’s capabilities, dataset characteristics, hints provided by the
developer, etc. The translation process in Pig is briefly explained next.

PonIC: Using Stratosphere to Speed Up Pig Analytics 283

3.1 Plan Compilation in Pig

Pig’s compiler translates logical to physical operators, with the additional restric-
tion that each physical operator needs to be expressed in terms of MapReduce
steps or parts thereof. The compiler keeps track of the current phase during
translation and knows if it is a map or a reduce step. For each operator, it
checks if it can be merged into the current phase. If communication is required,
the current phase is finalized and a new phase is started in order to compile the
operator. If the current phase is a map, a reduce phase will be initiated; other-
wise, a new MapReduce job needs to be created and store-load combination is
required to chain the jobs. We explain the translation process using an example
from a slightly modified query of the PigMix benchmark2 shown below:

Example Query 1

A = load ’page_views’ as (user, timestamp, revenue);

B = foreach A generate user, revenue;

alpha = load ’users’ as (name, phone, address, city);

beta = foreach alpha generate name;

C = join beta by name, B by user;

D = group C by $0;

E = foreach D generate group, SUM(C.revenue);

store E into ’out’;

The simple Example Query 1 loads two datasets, performs a join on a com-
mon attribute to find the set of users who have visited some webpages, groups
the resulting dataset and generates the estimated revenue for each user. Figure
1(a) shows the simplified Logical Plan for the above script, whereas Figure 1(b)
shows the generated Physical Plan. Note that the join operator is replaced by
four new operators and the group operator is translated into three physical op-
erators similarly. The Physical Plan is then translated into a MapReduce Plan,
as shown in Figure 1(c). First, a map phase is created and as the Physical Plan
is traversed, operators are added to it. When the global rearrange operator is
reached, shuffling is required, therefore the map phase is finalized and a reduce
phase is initiated. When a new MapReduce job is created, a store-load pair is
added in between to set the output of the first as the input of the second.

Our example shows that even for a small script, generated plans can be long
and cumbersome. If the generated Logical Plan does not fit well the MapReduce
static pipeline, performance might degrade. Adding store-load combinations and
materialization of results in between jobs is also a source of inefficiency.

In contrast to MapReduce, using Stratosphere as the backend for Pig signifi-
cantly simplifies the translation process. Input Contracts can be greatly exploited
to generate shorter and more efficient plans, without any extra effort from the
programmer. We present our translation algorithm next.

2 http://cwiki.apache.org/PIG/pigmix.html

http://cwiki.apache.org/PIG/pigmix.html

284 V. Kalavri, V. Vlassov, and P. Brand

(a) Logical Plan (b) Physical Plan (c) MapReduce Plan

Fig. 1. Pig Plans for Example Query 1

3.2 Pig to PACT Plan Translation

Pig Latin offers a large set of commands that are used for input and output,
relational operations, advanced operations and the declaration of user-defined
functions. We chose the most common and useful ones and we describe here how
they are be translated into PACT operators. A more detailed description of the
translation process we followed can be found in [12].

Input/Output. Pig provides the LOAD and the STORE commands for data
input and output. These two logical operators can be mapped directly to the
GenericDataSource and the GenericDataSink Input Contracts of Stratosphere.
In our implementation, we only support input and output from and to files,
so we have based our implementation on the more appropriate Contracts, File-
DataSource and FileDataSink. The generic Contracts can be easily extended to
support other kinds of input and output sources.

Relational Operators. PACTs support most of the common relational opera-
tions. The FILTER and FOREACH statements correspond to a Map Contract.
The GROUP logical operator naturally maps to the Reduce Input Contract,
while INNER and OUTER JOIN operations can be implemented using the Match
and CoGroup Input Contracts. Pig’s ORDER BY operator can sort the input
records in ascending or descending order, specifying one or more record fields as
the sorting key. Pig realizes the ORDER BY operation by creating two MapRe-
duce jobs. With PACTs, the same functionality can be offered in a much simpler
way using the GenericDataSink Contract.

PonIC: Using Stratosphere to Speed Up Pig Analytics 285

Advanced Operators. From the set of the advanced Pig operators, we choose
CROSS and UNION. The CROSS operator can be directly mapped to the Cross
Input Contract, while the Map Input Contract can be used to realize UNION.
The Map Contract (Stratosphere 0.2) offers a method, which provides the func-
tionality we need to implement UNION.

Our translation consists of two stages. At the first stage the Logical Plan is
translated into a plan of PACT operators. This PACT Plan is the equivalent
of Pig’s Physical Plan. The second stage translates the PACT Plan into actual
Input Contracts and submits the PACT Plan to the Nephele execution engine.

The Plan generation for the Example Query 1 is shown in Figure 2(a). There
is an one-to-one mapping of logical operators to PACT operators and conse-
quently Input Contracts, which makes the graph and the translation process
much simpler. The resulting graph can be further optimized, by merging filter
and foreach operators into the preceding Contracts, as shown in Figure 2(b).

(a) Initial Plan (b) Optimized Plan

Fig. 2. PACT Plans for Example Query 1

3.3 Discussion

Even though we have considered only a subset of Pig operators, it is important to
stress that the completeness of our proposal is guaranteed. The PACT program-
ming model is a generalization of the MapReduce programming model. Since
every Pig Latin program and Logical Plan can be translated into a MapReduce
Plan, it can therefore also be translated into a PACT Plan.

Using Stratosphere and Input Contracts as the backend results into a more
straightforward translation process. The one-to-one Pig-to-PACT mapping re-
quires less communication, due to less shuffling. Data is pipelined between Input
Contracts, eliminating the need for frequent materialization. Also, the execu-
tion plan benefits from optimizations of the Logical Plan by Pig’s Logical Plan
optimizer and of the PACT Plan by Stratosphere’s optimizer3.

3 http://stratosphere.eu/wiki/doku.php/wiki:pactcompiler

http://stratosphere.eu/wiki/doku.php/wiki:pactcompiler

286 V. Kalavri, V. Vlassov, and P. Brand

4 Implementation

PonIC has been implemented as an extension to the Pig system and reuses Pig
functionality where possible. Pig classes or wrappers are used in order to make
them compatible with the new features. The source code is publicly available4.

We have identified the parts of the Pig software stack that are not tightly
coupled to the Hadoop execution engine, namely the parser and the Logical
Plan layer. The underlying layers have been replaced with our compilation layer
that tranforms the Logical Plan into a Stratosphere execution plan.

Pig’s Logical Plan is traversed in a depth-first fashion. The traversal starts
from the plan’s roots and a visit() method is responsible for recognizing the
operator type and creating the appropriate PACT operator, according to the
mappings of Table 1. It is also responsible for setting the correct parameters, such
as data types, operator alias, result types, as well as connecting the newly created
operator to its predecessors. This way, a graph of PACT operators is gradually
constructed. When the PACT Plan has been created, it is submitted to Nephele
for execution. Table 1 summarizes the Pig to PACT translation mappings for
the subset of the Pig operators considered in this study.

Table 1. Pig to PACT operators mapping (for the chosen subset of Pig operators)

Pig Operator Input Contract

LOAD FileDataSource

STORE FileDataSink

GROUP Reduce

INNER JOIN Match

OUTER JOIN / COGROUP CoGroup

UNION Map

FILTER / FOREACH Map

ORDER FileDataSink

The most significant extensions made to the Pig codebase are:

– An additional execution mode to allow starting Pig in Stratosphere execution
mode with the command pig -x strato.

– An extension of Pig’s HExecutionEngine class as an engine for Stratosphere.
– A re-implementation os the relational and expression operators to support

the new APIs.
– A LogToPactTranslationVisitor class, based on Pig’s

LogToPhyTranslationVisitor class, as the first-level compiler.
– A package of PACT operators, based on Pig’s physical operators.
– A PactCompiler class, as the second-level compiler.
– Stratosphere-specific load and store functions.
– A contractsLayerand a stubsLayer packages, which contain wrapper classes

of Stratosphere’s Input Contracts and Stub classes.

4 http://github.com/PonIC/PonIC

http://github.com/PonIC/PonIC

PonIC: Using Stratosphere to Speed Up Pig Analytics 287

5 Evaluation

We conducted our experiments on an OpenStack cluster, using 10 ubuntu Virtual
Machines (VMs), each having 4 VCPUs, 90GB of disk space and 8GB of RAM.
We deployed Hadoop version 1.0.0, Pig version 0.10.0 and Stratosphere version
0.2. Hadoop’s NameNode and JobTracker, as well as Stratosphere’s JobManager
run on a dedicated VM, while the remaining 9 VMs serve as slave nodes. Default
parameters were used for HDFS block size and replication factor.

We used the PigMix data generator to create a page views dataset of 10
million rows (approximately 15GB) and the corresponding users table. We de-
veloped five scripts for evaluation, namely a Load/Store operation, a Filter script
which filters out 50% of the input, a Group operation, a Join of the page views

and the users dataset and a Mixed query, corresponding to the Example Query
1, containing a combination of Load, Group, Join and Store operators. Each test
was executed 5 times and the results presented here have a standard deviation
of less than 1% in all cases. The test applications were developed in Pig Latin
(executed both on Pig and PonIC), native MapReduce and PACT.

5.1 Implementation Overhead

Whenever using high-level languages, there is an overhead users have to pay in
exchange for the abstraction offered. This overhead is one of the factors defining
the value of the abstraction. Figure 3(a) shows the performance overhead for the
Pig system over the corresponding native Hadoop MapReduce implementations
and for PonIC over PACT. For Pig, this overhead includes setup, compiling,
data conversion and plan optimization time. The results for Pig confirm already
published results [9]; Pig is around 1.2 to 2 times slower than a native MapReduce
application. Figure 3(a) also shows that PonIC’s overhead is significantly lower
and smaller than 1.6 in all cases. We believe that the smaller overhead is mainly
due to the more efficient translation process. Since PonIC only supports a subset
of Pig’s features, the overhead could increase in a complete implementation.
However, as we described in Section 3.3, in the worst case, an operator could be
translated into PACT, using only the Map and Reduce Contracts. Such a naive
translation would result into an overhead comparable to Pig’s overhead.

In order to have a better idea on how the overhead changes depending on the
dataset size, we ran the Group query for three different sizes of the page views

dataset. The results in Figure 3(b) show that the overhead caused by setup and
compilation time has a heavier influence on smaller datasets.

5.2 Comparison with Pig and Hadoop MapReduce

Figure 4(a) shows the execution time ratio of Pig and native Hadoop MapReduce
over PonIC. Y axis is in logarithmic scale. PonIC matches Pig’s execution time
for the Load/Store and the Filter queries, while it is significantly faster in the rest
of the cases. When compared to native MapReduce, PonIC is also faster, except
from the Load/Store and Filter operations, for which setup and data conversion

288 V. Kalavri, V. Vlassov, and P. Brand

��������	
 ���
	 �	��� ���� ���
�
�

�

�

�������	�

�������

���������	�
����

�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

(a) PonIC vs. Pig/MapReduce

�������	
 �������	
 �������	

�

�

�

��������
����

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

(b) Varying Data Sizes

Fig. 3. Evaluation Results: Overhead

times are dominant. In the case of Mixed query, PonIC is 8 times faster than
Pig. The MapReduce Plan that Pig creates for this query contains two MapRe-
duce jobs in order to implement the join and the group operations, involving a
materialization step in between them. On the other hand, PonIC can execute
faster, exploiting Stratosphere’s data pipelining between Input Contracts. The
main reason why PonIC is generally faster than Pig is demonstrated in Figure
4(b), which is a comparison between the execution time of native MapReduce
and PACT implementations. It shows that, in all the cases except Load/Store,
Stratosphere is faster than native MapReduce.

��������	
 ���
	 �	��� ���� ���
�
���

�

��

������
	�
�����

����
���
�
��
	������

�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

(a) PonIC vs. Pig/MapReduce

��������	
 ���
	 �	��� ���� ���
�
���

�

��

�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

(b) Native MapReduce vs. PACT

Fig. 4. Evaluation Results: Execution Time Comparison

6 Related Work

Among the supported high-level languages for MapReduce, Hive is probably the
most popular and has been used in work similar to ours. Hive has been integrated
with the ASTERIX system [5]. ASTERIX provides a data-agnostic algebra layer,
which allows Hive to run on top of the Hyracks runtime. Hive execution plans
are translated to ASTERIX algebra plans and better performance is achieved
without any changes in the HiveQL queries. To our knowledge, no published
evaluation measurements exist to support this claim.

The Shark system [13] allows HiveQL queries to execute on top of Spark
[4], in an analogous way to ours with Pig and Stratosphere. However, Shark’s
goal is to provide a unified system where both SQL queries and iterative ana-
lytics applications can co-exist and execute efficiently. Our work and the Shark
project share some discoveries regarding the limitations of the MapReduce-based

PonIC: Using Stratosphere to Speed Up Pig Analytics 289

execution engines, which result in inefficient execution, namely the expensive
data materialization and inflexibility of static pipelines over general DAGs.

There has been recent work in integrating JAQL with the Stratosphere system
[14], which led to the creation of Meteor [15]. Meteor is a high-level language
inspired by JAQL and lies on top of a relational algebra layer, Sopremo. Meteor
programs are translated into Sopremo operators, which are then compiled into
Input Contracts, in a way similar to our work. However, Meteor, like JAQL,
only supports the JSON data model and no performance measurements are yet
available, as far as we know. With our work, we benefit both Pig and Strato-
sphere users. Pig developers can gain improved performance without changing
their applications, while Stratosphere users can now exploit the expressiveness
of the Pig Latin language to develop applications faster and execute them on
the Nephele execution engine, with only minimal compilation overhead.

7 Conclusions and Future Work

Existing programming models for Big Data analytics, such as MapReduce and
PACT, have been a great contribution and are widely used. However, in order
to fully exploit the possibilities provided by the increasing amounts of data
in business and scientific applications, data analysis should become accessible
to non-experts, who are used to work with higher-level languages. Therefore,
improving the performance of systems like Pig is of great importance.

In this paper, we examined the feasibility of integrating Pig with Strato-
sphere. We show that Pig can highly benefit from using Stratosphere as the
backend system and gain performance, without any loss of expressiveness. We
concluded that, even though Pig is tightly coupled to the Hadoop execution en-
gine, integration is possible by replacing the stack below the Logical Plan layer.
The translation algorithm and prototype integration of Pig with Stratosphere al-
lows execution of Pig Latin scripts in the Stratosphere execution engine, without
modifying the scripts, while offering improved performance.

Several issues remain unexplored and are interesting for further investigation.
We certainly believe that creating a system that fully supports Pig Latin and
generates Stratosphere jobs is not the limit of this research. Several optimizations
can now be added to Pig because of the underlying Nephele execution engine.
For example, Pig Latin could be extended to include keywords corresponding to
Output Contracts or PACT’s compiler hints. Since Stratosphere now offers its
own high-level language, Meteor, it would also be very interesting to compare
its expressiveness, usability and performance against Pig.

Acknowledgements. This work was supported in part by the ErasmusMundus
Joint Doctorate in Distributed Computing (EMJD-DC) funded by the Educa-
tion, Audiovisual and Culture Executive Agency (EACEA) of the European
Commission under the FPA 2012-0030, and in part by the End-to-End Clouds
project funded by the Swedish Foundation for Strategic Research (SSF) under
the contract RIT10-0043. The authors would also like to thank the Stratosphere
team for their help throughout this work.

290 V. Kalavri, V. Vlassov, and P. Brand

References

1. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
In: OSDI 2004: Proceedings of the 6th Conference on Symposium on Operating
Systems Design and Implementation. USENIX Association (2004)

2. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-
parallel programs from sequential building blocks. SIGOPS Oper. Syst. Rev (2007)

3. Warneke, D., Kao, O.: Nephele: efficient parallel data processing in the cloud.
In: Proceedings of the 2nd Workshop on Many-Task Computing on Grids and
Supercomputers. ACM, New York (2009)

4. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. In: Proceedings of the 2nd USENIX conference on
Hot topics in cloud computing, HotCloud 2010 (2010)

5. Alsubaiee, S., Behm, A., Grover, R., Vernica, R., Borkar, V., Carey, M.J., Li,
C.: Asterix: scalable warehouse-style web data integration. In: Proceedings of the
Ninth International Workshop on Information Integration on the Web, IIWeb 2012.
ACM (2012)

6. Battré, D., Ewen, S., Hueske, F., Kao, O., Markl, V., Warneke, D.: Nephele/pacts:
a programming model and execution framework for web-scale analytical processing.
In: Proceedings of the 1st ACM symposium on Cloud computing, SOCC 2010, pp.
119–130. ACM, New York (2010)

7. Beyer, K.S., Ercegovac, V., Gemulla, R., Balmin, A., Eltabakh, M.Y., Kanne, C.C.,
Özcan, F., Shekita, E.J.: Jaql: A Scripting Language for Large Scale Semistructured
Data Analysis. PVLDB 4, 1272–1283 (2011)

8. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H.,
Wyckoff, P., Murthy, R.: Hive: a warehousing solution over a map-reduce frame-
work. Proc. VLDB Endow. 2(2), 1626–1629 (2009)

9. Gates, A.F., Natkovich, O., Chopra, S., Kamath, P., Narayanamurthy, S.M., Ol-
ston, C., Reed, B., Srinivasan, S., Srivastava, U.: Building a high-level dataflow
system on top of map-reduce: the pig experience. Proc. VLDB Endow. 2(2), 1414–
1425 (2009)

10. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-
foreign language for data processing. In: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, SIGMOD 2008, pp. 1099–1110.
ACM, New York (2008)

11. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file sys-
tem. In: Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems
and Technologies (MSST). IEEE Computer Society, Washington, DC (2010)

12. Kalavri, V.: Integrating pig and stratosphere. Master’s thesis, KTH, School of
Information and Communication Technology, ICT (2012)

13. Engle, C., Lupher, A., Xin, R., Zaharia, M., Franklin, M.J., Shenker, S., Stoica, I.:
Shark: fast data analysis using coarse-grained distributed memory. In: Proceedings
of the 2012 ACM SIGMOD International Conference on Management of Data.
ACM, New York (2012)

14. Lawerentz, C., Nagel, C., Berezowski, J., Guether, M., Ringwald, M., Kaufmann,
M., Vu, N.T., Lobach, S., Pieper, S., Bodner, T., Wurtz, C.: Project jaql on the
cloud. Final report, TU Berlin (2011)

15. Heise, A., Rheinlaender, A., Leich, M., Leser, U., Naumann, F.: Meteor/sopremo:
An extensible query language and operator model. In: Proceedings of the Interna-
tional Workshop on End-to-end Management of Big Data (BigData) in conjunction
with VLDB 2012, Istanbul, Turkey (2012)

