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ABSTRACT

Reproducible and repeatable provisioning of large-scale distributed
systems is laborious. The cost of virtual infrastructure and the pro-
visioning complexity are two of the main concerns. The trade-offs
between virtual machines (VMs) and containers, the most popular
virtualization technologies, further complicate the problem. Al-
though containers incur little overhead compared to VMs, VMs are
required for their certain guarantees such as hardware isolation.

In this paper, we present a mutable container provisioning solu-
tion, enabling users to switch infrastructure between VMs and con-
tainers seamlessly. Our solution allows for significant infrastructure-
cost optimizations. We discuss that immutable containers come
short for certain provisioning scenarios. However, mutable contain-
ers can incur a large time overhead. To reduce the time overhead, we
propose multiple provisioning-time optimizations. We implement
our solution in Karamel, an open-sourced reproducible provision-
ing system. Based on our evaluation results, we discuss the cost-
optimization opportunities and the time-optimization challenges
of our new model.
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1 INTRODUCTION

Reproducible and repeatable provisioning of large-scale computing
clusters (cluster) from Cloud resources has received increasing at-
tention for recurring applications such as reproducible experiments
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of distributed systems [14], and repeatable per-job cluster alloca-
tion [12, 26, 29]. Repeatability refers to re-provisioning a cluster for
a variable number of times without changing the cluster’s configu-
ration parameters (e.g., repeating an experiment to reduce errors).
However, reproducibility deals with re-provisioning a cluster as the
configuration parameters are modified [17] (e.g., scalability assess-
ment of a system against different workloads). Due to the frequent
repetitions in such applications, it is highly desirable to optimize
the infrastructure cost along with the provisioning time of a cluster.

Cloud users have to make some trade-offs for choosing between
virtual machines (VM) and containers (the de-facto standards for
conveniently re-producing an infrastructure in Cloud [21]). VMs
guarantee a higher level of isolation compared to containers, re-
ducing the interference among applications by placing them on
different VMs [28]. However, in contrast to VMs, containers do
not run a guest operating system, introducing little to no overhead
on host resources. Neighboring containers within the same host
can be used to mitigate wasteful expenses of VMs that inflates
the infrastructure cost. Specially, for applications with orthogo-
nal resource-type requirements neighboring containers are more
plausible. For example, in the phase of incremental experiment
development and sanity check the neighboring containers are more
suitable while as the experiment becomes more stable, VMs are
preferred due to the hard resource isolation. As there are trade-offs
among VMs and containers, the provisioning system has to offer
an infrastructure-agnostic model such that it can seamlessly switch
between VMs and containers.

Docker [22], a widespread container system, offers a light-weight
and fast (sub-second) launch of container images [16, 28]. However,
the fast deployment of containers requires pre-built docker images
(also called immutable approach), which is not compatible with the
requirements for a reproducible provisioning of distributed systems.
A big shortcoming of the immutable approach is due to the tight
dependency between the life-cycle of containers and their hosted
services. The simultaneous launching of containers and their hosted
services leaves no room for intermediate configurations steps that
are necessary in some scenarios. For instance, in a cluster with a
controller container that has to have SSH access into other con-
tainers, the following steps should be taken in order: (i) launch the
controller container, (ii) generate an SSH key-pair in the controller,
(iii) launch the other containers, (iv) copy the SSH public-key of
the controller into the other containers (the authorized-host file in
linux), (v) launch SSH service on the other containers, and (vi) run
the controller service. As can be observed in this example, there is
a loop in these configuration steps from the controller container
into the other containers. Such orchestration scenarios have no
clear solution in the immutable approach. Moreover, one has to
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construct numerous container images in order to cover all the re-
quired cluster setups according to different values for configuration
parameters (e.g., in experiments). Even though Docker containers
are fast in start/destroy, the image construction and versioning
are not so fast because of the layered file system with copy-on-
write. Thereby, due to the overhead of image construction and the
orchestration problem, there is a need of a mutable approach for
containers provisioning,.

To our knowledge, this is the first work that considers muta-
ble containers for an infrastructure-agnostic provisioning model.
The mutable approach enables us to switch the infrastructure type
between VMs and containers without re-configuring any applica-
tion setting and with minimal cluster configurations. To have a
compatible VM-container model, we enable containers with multi-
host networking, which is not trivial. In our mutable approach, the
layered file system with copy-on-write in Docker puts overhead
on the installation. We explain the bottlenecks that cause exces-
sive provisioning time and our optimizations for mitigating them.
We integrate! our solution in Karamel [20], a recent provisioning
system. Finally, based on our evaluation results, we discuss cost-
optimization opportunities and time-optimization challenges of our
new model for efficient reproducible and repeatable provisioning
of containerized clusters.

2 BACKGROUND

In this section, we give some insights about Docker, the container
platform, and Karamel, the provisioning engine, that we used in
our implementation.

2.1 Docker

Docker [22] is a container platform that is known for its image ver-
sioning system and fast deployments. Docker-engine is the manage-
ment component of Docker that should be installed on the hosting
machines containers. Docker uses a copy-on-write file system to
store the files inside containers. Copy-on-write semantic enables
docker with a rich versioning of immutable images.

As Docker was, primarily, aimed for single host deployment of
containers, its default networking option was virtual bridged net-
working [7]. Overlay networking is the suggested way of network-
ing for connecting multiple hosts [8]. Overlay networking requires
an underlying distributed key-value store service (e.g., consul, etcd,
and Zookeeper). A user should configure a key-value store service
and pass its configuration information to Docker daemon. Further-
more, to create a successful overlay network, the hosting machines
should be able to communicate with each other.

Docker uses union file system [11], which operates by creating
layers. It is possible to bypass this intermediate storage layer and
write directly to the host’s file system, for example for permanent
data after terminating a container. Further, if data needs to be shared
among containers, a shared host directory can be used. Docker data
volumes assist in managing shared and persistent data independent
of the container’s life cycle.

The source code is available at https://github.com/karamelchef/karamel/tree/docker
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Figure 1: Overlay networking

2.2 Karamel

Karamel [19, 20], is a recent provisioning system for end-to-end
provisioning of large-scale clusters in public clouds (e.g., Amzon,
Google, OpenStack) as well as private clouds (e.g. bare-metal, Open-
Stack). Over the past two years, several systems use Karamel for
provisioning [13, 15, 18, 23]. In those systems, Karamel has been
repeatedly used to provision clusters from a single baremetal ma-
chine up to more than 100 servers on Amazon EC2, many of which
were experimental clusters [15, 25].

The provisioning model in Karamel is based on distributed idem-
potent functions (DIF). As the DIFs are distributed in a cluster,
Karamel supplies arguments of DIFs with a set of dataflow op-
erations (e.g, pipe, set, split). With the functional model, Karamel
supports heterogeneous provisioning tasks from infrastructure (e.g.,
hosts, network, and disk) to software (e.g. download, installation,
configuration, and launch services). The dataflow mechanism im-
proves the automation by embedding the dependencies of DIFs
inside them, as the dependencies are extracted at run-time for a fast
construction of execution plans. The scheduler in Karamel, which
is a combination of a token based traversal of the execution plan
and a FIFO based ordering at hosts offers a maximum parallelism
by running independent DIFs in parallel.

Karamel has a collection of pre-defined infrastructure DIFs im-
plemented in Java, and it uses Chef [4], a well-known configuration
management framework, for the low-level coding of the software
DIFs. Karamel introduces a minimum effort extension on Chef so
as to leverage a great body of already developed Chef code easily.

The modularity and re-usability of the DIFs enables clusters to
be defined in a brief Cluster Definition Language. In cluster defi-
nitions, users specify host-groups, number of machines, DIF-host
assignments, and configuration parameters.

Last but not least, for Karamel, hosts in a cluster are network
addressable entities with a SSH connection as all the configurations
and installations happen through SSH commands. These abstract
models (DIFs and hosts) are very convenient grounds to base our
heterogeneous (container, VM, and bare-metal) cluster solution on.

3 PROVISIONING MODEL

In this section, we explain our key design decisions to enable an
infrastructure-agnostic provisioning model including mutable con-
tainers, multi-host networking, and some container-dependent op-
timizations to reduce the provisioning time.
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Algorithm 1 Recurring container-based provisioning

1: procedure provisiON(cluster-definition cd)
2 hosts «— prepareHostingMachines(cd)
3 nodes < hosts
4: if container-based then > only container clusters
5: engines = installDockerEngines(hosts)
6: configureOverlayNetworking(engines)
7 enableCaching(hosts) > download cache
8: downloadBasicContainerImage(cd, hosts)
9: end if
10: while tries < cd.tries do > repititions
11: if container-based then
12: reservePortMapping(cd, hosts, containers)
13: containers < launchContainers(cd)
14: nodes «— containers
15: end if
16: softwareProvisioing(cd, nodes) > use cache
17: > run experiment/job
18: terminate(cd, nodes)

19: end while
20: end procedure

3.1 Mutable Containers

Our solution is based on mutable containers in which after launch-
ing a base Docker image, during runtime, we do software instal-
lations, necessary configurations such as network configuration
(Section 3.2), and services orchestration. Treating containers as mu-
table infrastructure enables us to separate cluster definitions, and
software orchestration logic from the Docker technology and conse-
quently, provides a portable provisioning model between VMs and
containers. In addition, this provides opportunities for provisioning-
time optimizations (Section 3.4). Optimizations such as automatic
image management to provide semi-mutable images can be done
by the provisioning system instead of users, therefore, relieving
users from analysing dependencies among software components.
We consider such automated optimizations as future work.

3.2 Multi-host Networking

Provisioning of distributed systems across multiple hosting ma-
chines creates two primary network requirements for containers
including the connectivity: (i) among containers within a cluster
(e.g., for master/slave or p2p services), and (ii) from outside of the
cluster (e.g., to access web consoles from the Internet).

To satisfy the first network requirement, we employ a network-
ing overlay in Docker backed by a distributed key-value store,
Consul [5], for network resolutions and service discoveries. We run
Consul as a container.

To enable connectivity from outside the cluster, we use port-
mapping from container ports to the ports of the hosting machines.
Our port-mapping has two phases (i) port-reservation for the ports
that are used in the provisioning, and (ii) random port assignment
for the rest of the public ports. For example, in Figure 1, we reserve
the ports 11000 and 11001 for the mappings of SSH ports (22 by
default) in the containers (node0 and node1). These reserved ports
are known and used by Karamel’s provisioning engine (Section 3.3).

3.3 Integration with Karamel

The provisioning engine in Karamel has a portable model for infras-
tructure. Having network communications enabled for containers,
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Table 1: Standard Machine Types in GCE

Machine Type | No of Virtual CPUs | Memory (GB) | Price ($)
nl-standard-1 1 3.75 0.0475
nl-standard-2 2 7.5 0.0950
nl-standard-4 4 15 0.1900
nl-standard-8 8 30 0.3800

Karamel dataflow engine can treat containers like VMs and bare-
metals for software installation, configurations, and service start-
ups. Algorithm 1 briefly shows all the steps for the provisioning
of a cluster. The infrastructure-agnostic (VM, container, and bare-
metal) provisioning is supported by the flipping ’container-based’
flag (lines 4 and 11). These two if-statement blocks show the extra
steps that we add to plug Docker containers into Karamel.

3.4 Optimizations

Despite the fact that Karamel performs all operations with maximal
parallelism (by converting them into a DAG, e.g, Docker engine
installation at line 5), the extra steps for the container-based in-
frastructure increase the provisioning time compared to the mere
VM-based infrastructure. Our goal is to minimize the extra provi-
sioning time.

We skip the redundant downloads of binaries, by caching bina-
ries inside hosts (line 7) and sharing them between the neighboring
containers inside each host. This reduces network traffic and down-
load times. The cache folder is mounted as a Docker volume in
containers.

Downloading container images is network intensive and the
download time depends on the size of the image. In the provision-
ing of Docker containers, even though each cluster requires its
own software components to be installed, there are certain compo-
nents that are common among all experiments running in Karamel.
Therefore, we can pre-build a basic Docker image to speed-up pro-
visioning time (semi-immutable approach, line 8). For example, all
containers need to be SSH-enabled with a passwordless sudo user.
Some installations are Karamel-specific (e.g., chef and berkshelf)
and some are cluster-specific (e.g., JDK). We add the common instal-
lations into our basic pre-constructed container image. We leave
further optimizations based on common installations for future
work.

As the provisioning is repeated, some of the steps can be reused
in the subsequent runs after the first one (we skip lines 4-9 after
the first run). For instance, as we run an experiment multiple times
(line 17), the provisioning time after the first run includes only
the time to terminate and re-launch the containers. This consumes
considerably less time than the first run of the experiment.

4 EVALUATION

In this section, we present some preliminary results based on our
experiments that open up new avenues for a cost-optimized repro-
ducible and repeatable provisioning system. Further, we analyze the
challenges posed by the integration of containers in order to reach a
time-optimized provisioning of clusters. In sections 4.2 and 4.3, we
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Figure 2: 10GB Teragen and Terasort with 8 nodes

Table 2: Approximate Resource Wastage

Machine Type CPU idle% | Memory used%
nl-standard-8 (1 instance) 2.30 3.3
nl-standard-1 (8 instances) 18.40 26.4

evaluate our container-based provisioning solution implemented
in Karamel against the Karamel’s original VM-based solution.

4.1 Cost-Optimization Opportunities

Containers enable us to pack multiple software components in
a VM, employing fewer numbers of more powerful VMs rather
than employing plenty of weak VMs. Beside reducing the network
overhead for network intensive applications, the packing enables
several cost-optimization opportunities.

In Table 1, the specifications of some of the machine types in
Google Compute Engine (GCE) [9] are given. There is no difference
among the machine types based on their pricing per Virtual CPU
(vCPU) and memory unit (GB). For example, for the same price, we
can build an infrastructure including 8 vCPUs and 30 GB RAM by
either using 8 instances of the n1-standard-1 machine or using a
single instance of the n1-standard-8 machine. However, due to the
resource wastage, 8 instances of n1-standard-1 gives us less effective
resources than a single instance of the VM type nl-standard-8.
This is mainly because of the overhead incurred by the operating
system and the dependent software in each VM. We approximate
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the resource wastage in VM instances by obtaining the CPU idle
percentage and the memory usage from GCE machines. In Table 2
can be seen that by using 8 instances of n1-standard-1 we waste
around 7 GB of memory and 1.3 vCPUs, which costs more than
having an extra nl-standard-1 instance.

In addition, the flexibility in packing multiple containers in a
VM enables us to use more customized machine types, considerably
reducing the expenses, e.g., up to 40% in GCE [6].

Another opportunity for the cost reduction is by using tran-
sient servers (spot instances in EC2 [1] or preemptibel instances
in GCE [10]). Transient servers can be bidden and can be used
unless the bid amount is surpassed by the market pricing. Tran-
sient instances can be cheaper than the on-demand instances up to
10 times. Usually there are lower demands for powerful transient
instances compared to more-popular weak machines with lower to
medium specifications. Therefore, there is a great opportunity for
a significant cost saving by using fewer powerful transient servers
in applications such as experiments and tests.

4.2 Containers vs VMs

We compare time and cost efficiency of containers versus VMs
through a series of experiments with a cluster setup of 8 nodes (see
Figure 2). We run Terasort benchmark [24] on a Hadoop cluster [3]
to sort 10 GB of data generated by Teragen.

First, we compare a VM-based cluster (8 n1-standard-1 VMs)
with two container-based clusters (8 neighboring containers): (i)
one m3.8xlarge on EC2, and (ii) one n1-standard-8 on GCE (see
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Figure 3: Optimizations on Container Provisioning

Figure 2a). Despite having an equal amount of total resources (8
vCPUs and 30 GB RAM) in all these clusters and an equal cost for
GCE clusters, the neighboring-container clusters outperform the
VM based cluster. Two potential reasons, the networking overhead
and the resource wastage, can explain this difference. The difference
between GCE and EC2 cluster is not clear for us but we have decided
to do rest of the experiments on GCE.

Second, we further study the causes of networking and resource
wastage by distributing containers across variable number of VMs
(see Figure 2b). As can be seen, the total time decreases almost
linearly as we pack more containers into less number of host VMs.
Likewise, the total amount of resources and the cost of cluster are
equal in all runs.

Then, we extend the single VM setup (8 neighboring containers)
by varying the amount of resources allocated into the VM (custom
VMs in GCE). As can be seen in Figures 2c and 2d, Terasort is still
more timely and economical with the minimum allocated resources,
107s with 4 vCPUs and 81s with 10 GB RAM, compared to VM-
based which takes 135s. We believe this improvement is because of
two reasons: (i) the lack of networking overhead in the neighboring
containers, and (ii) the soft resource isolation between neighboring
containers that allows idle resources to be used by other containers.

4.3 Provisioning-Time Optimization

In our observations, the setup phase of the containers and in-
stallations are the two major time-consuming components in our
container-based provisioning model (see Figure 3). In this section,
we measure the the effect of different factors on the provisioning
time. These factors are the scale (the number of containers), the
download time, and the service-host placement. In the end, we
show the effect of our optimizations on reducing the time wastage
compared to an equivalent VM-based setup.

Figure 3a shows that the setup phase adds an overhead of 60-90
seconds (for 2-20 containers inside one hosting machine). As we
can observe, the time of launching containers increases linearly
as we increase the number of containers. As we do not perform
downloading container’s image and setting up networking repeat-
edly (see lines 6 and 8 in Algorithm 1), these steps are not very
significant.

In the next experiment (see Figure 3b), we compare Hadoop’s
installation phase in a cluster of 4 Hadoop components - NameNode
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(NN), Resource Manager (RM), DataNode (DN) and NodeManager
(NM). We use 4 VMs (2 vCPUs and 2GB RAM each) for the VM-
based setup such that each VM hosts a separate component. To
test the effect of component placement, first we place each Hadoop
component in a separate container (4 containers on 2 VMs, we call
it 4C) then we co-locate all components inside a similar container
(1C). On top of the co-located components, first, we enable cache
repository for downloads (cache), then we use the docker image
with a pre-installed JDK (semi).

Figure 3b demonstrates how much a naive installation (without
any optimizations) can suffer from time inefficiencies (762s in 4C
compared to 71s in VM). Note that this is a recurring overhead that
happens in all iterations of a repeating job, e.g., an experiment. The
co-location of components helps to mitigate the installation time
from 762s to 614s. This is because all Hadoop components need to
install Hadoop, in 1C it happens only once while in 4C it happens 4
times but in parallel. This is an important aspect in provisioning of
distributed systems. It is more time efficient in provisioning to place
several components from a similar system in a container with more
resources than individual containers. But then we have to trade-off
the co-location of the components with the lost of isolation between
the components.

Enabling the download caching (Figure 3b) in the 1C setup fur-
ther reduces the installation time (from 614s to 484s) but by using
the pre-constructed docker image (semi) we observe an abrupt drop
in the installation time (from 484s to 97s) which is very close to the
provisioning time of the VM-based setup (71s).

These results suggest that the time overhead of the container-
based provisioning is mitigatable with the illustrated optimization
techniques. This is an enabler for a flexible cluster provisioning
between container and VM with time and cost benefits.

5 RELATED WORK

Docker [22] enables portability of containers across different plat-
forms with minimal overhead [16]. Docker provides a limited or-
chestration service, Docker-Compose, to control the order of ser-
vices startup. However, Docker-Compose does not provide the
semantics of wait until a service is ’ready’, but rather it can only
wait until a container is running. Orchestration in Kubernetes [27]
happens through complex orchestration rule definitions, and data-
dependencies through environment variables or the service etcd (a
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distributed key-value store to discover services). Neither Docker
nor Kubernetes provides a switchable model between VMs and
containers. Ansible [2] is an open-sourced automation engine that
supports both VM- and container-based provisioning. Our model,
optimizations, and results are complimentary to Ansible and can
be integrated in such an automation engine. Karamel [20] is an-
other automation engine that does not support Docker containers
in which we integrate our solution.

6 CONCLUSIONS

In this paper, we explained that containers can effectively reduce the
cost in reproducible and repeatable provisioning of distributed sys-
tems. However, containers do not replace VMs. Therefore, we pro-
pose amodel based on mutable containers that enables reproducible
provisioning of distributed systems and provides an infrastructure-
agnostic model that can inter-operate between VMs and containers.
Our model provides a ground for several automated optimizations
to move toward semi-mutable containers that can benefit from fast
image launch.
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