
Niche: A Platform for Self-Managing Distributed
Application

Vladimir Vlassov,1 Ahmad Al-Shishtawy,1 Per Brand,2 and Nikos Parlavantzas3

1 KTH Royal Institute of Technology, Stockholm, Sweden
{vladv, ahmadas}@kth.se

2 Swedish Institute of Computer Science (SICS), Stockholm, Sweden
perbrand@sics.se

3Université Européenne de Bretagne, France
nikolaos.parlavantzas@inria.fr

Abstract

We present Niche, a general-purpose, distributed component management
system used to develop, deploy, and execute self-managing distributed appli-
cations. Niche consists of both a component-based programming model as
well as a distributed runtime environment. It is especially designed for com-
plex distributed applications that run and manage themselves in dynamic and
volatile environments.

Self-management in dynamic environments is challenging due to the high
rate of system or environmental changes and the corresponding need to fre-
quently reconfigure, heal, and tune the application. The challenges are met
partly by making use of an underlying overlay in the platform to provide an
efficient, location-independent, and robust sensing and actuation infrastruc-
ture, and partly by allowing for maximum decentralization of management.

We describe the overlay services, the execution environment, showing how
the challenges in dynamic environments are met. We also describe the pro-
gramming model and a high-level design methodology for developing decen-
tralized management, illustrated by two application case studies.

7.1 Introduction

Autonomic computing [5] is an attractive paradigm to tackle the problem of grow-
ing software complexity by making software systems and applications self-managing.
Self-management, namely self-configuration, self-optimization, self-healing, and self-
protection, can be achieved by using autonomic managers [6]. An autonomic man-
ager continuously monitors software and its execution environment and acts to meet
its management objectives. Managing applications in dynamic environments with
dynamic resources and/or load (like community Grids, peer-to-peer systems, and
Clouds) is especially challenging due to large scale, complexity, high resource churn
(e.g., in P2P systems) and lack of clear management responsibility.

71

72 CHAPTER 7. NICHE PLATFORM

This chapter presents the Niche platform [103] for self-managing distributed
applications; we share our practical experience, challenges and issues, and lessons
learned when building the Niche platform and developing self-managing demon-
strator applications using Niche. We also present a high-level design methodology
(including design space and steps) for developing self-managing applications.

Niche is a general-purpose, distributed component management system used to
develop, deploy, and execute self-managing distributed applications or services in
different kinds of environments, including very dynamic ones with volatile resources.
Niche is both a component-based programming model that includes management
aspects as well as a distributed runtime environment.

Niche provides a programming environment that is especially designed to en-
able application developers to design and develop complex distributed applications
that will run and manage themselves in dynamic and volatile environments. The
volatility may be due to the resources (e.g., low-end edge resources), the varying
load, or the action of other applications running on the same infrastructure. The
vision is that once the infrastructure-wide Niche runtime environment has been
installed, applications that have been developed using Niche, can be installed, and
run with virtually no effort. Policies cover such issues as which applications to scale
down or stop upon resource contention. After deployment the application manages
itself, completely without human intervention, excepting, of course, policy changes.
During the application lifetime the application is transparently recovering from fail-
ure, and tuning and reconfiguring itself on environmental changes such as resource
availability or load. This cannot be done today in volatile environments, i.e., it is
beyond the state-of-the-art, except for single machine applications and the most
trivial of distributed applications, e.g., client/server.

The rest of this chapter is organized as follows. The next section lays out the
necessary background for this work. Then, we discuss challenges for enabling and
achieving self-management in a dynamic environment characterized by volatile re-
sources and high resource churn (leaves, failures and joins of computers). Next,
we present Niche. We provide some insight into the Niche design ideas and its
architecture, programming model and execution environment, followed by a pre-
sentation of programming concepts and some insight into the programming of self-
managing distributed applications using Niche illustrated with a simple example of
a self-healing distributed group service. Next, we present our design methodology
(including design space and design steps) for developing a management part of a
self-managing distributed application in a decentralized manner, i.e., with multiple
interactive autonomic managers. We illustrate our methodology with two demon-
strator applications, which are self-managing distributed services developed using
Niche. Next, we discuss combining a policy-based management (using a policy lan-
guage and a policy engine) with hard-coded management logic. Finally, we present
some conclusions and our future work.

7.2. BACKGROUND 73

7.2 Background

The benefits of self-managing applications apply in all kinds of environments, and
not only in dynamic ones. The alternative to self-management is management by
humans, which is costly, error-prone, and slow. In the well-known IBM Autonomic
Computing Initiative [5] the axes of self-management were self-configuration, self-
healing, self-tuning and self-protection. Today, there is a considerable body of work
in the area, most of it geared to clusters.

However, the more dynamic and volatile the environment, the more often appro-
priate management actions to heal/tune/reconfigure the application will be needed.
In very dynamic environments self-management is not a question of cost but feasi-
bility, as management by humans (even if one could assemble enough of them) will
be too slow, and the system will degrade faster than humans can repair it. Any
non-trivial distributed application running in such an environment must be self-
managing. There are a few distributed applications that are self-managing and can
run in dynamic environments, like peer-to-peer file-sharing systems, but they are
handcrafted and special-purpose, offering no guidance to designing self-managing
distributed applications in general.

Application management in a distributed setting consists of two parts. First,
there is the initial deployment and configuration, where individual components are
shipped, deployed, and initialized at suitable nodes (or virtual machine instances),
then the components are bound to each other as dictated by the application archi-
tecture, and the application can start working. Second, there is dynamic reconfig-
uration when a running application needs to be reconfigured. This is usually due
to environmental changes, such as change of load, the state of other applications
sharing the same infrastructure, node failure, node leave (either owner rescinding
the sharing of his resource, or controlled shutdown), but might also be due to
software errors or policy changes. All the tasks in the initial configuration may
also be present in dynamic reconfiguration. For instance, increasing the number of
nodes in a given tier will involve discovering suitable resources, deploying and ini-
tializing components on those resources and binding them appropriately. However,
dynamic reconfiguration generally involves more, because firstly, the application is
running and disruption must be kept to a minimum, and secondly, management
must be able to manipulate running components and existing bindings. In gen-
eral, in dynamic reconfiguration, there are more constraints on the order in which
configuration change actions are taken, compared to initial configuration when the
configuration can be built first and components are only activated after this has
been completed.

A configuration may be seen as a graph, where the nodes are components and
the links are bindings. Components need suitable resources to host them, and
we can complete the picture by adding the mapping of components onto physical
resources. This is illustrated in Figure 7.1. On the left we show the graph only, the
abstract configuration, while on the right the concrete configuration is shown. The
bindings that cross resource boundaries will upon use involve remote invocations,

74 CHAPTER 7. NICHE PLATFORM

while those that do not can be invoked locally. Reconfiguration may involve a
change in the concrete configuration only or in both the abstract and concrete
configurations. Note, that we show the more interesting and challenging aspects of
reconfiguration; there are also reconfigurations that leave the graph unchanged but
only change the way in which components work by changing component attributes.

Figure 7.1: Abstract (left) and concrete (right) view of a configuration. Boxes
represent nodes or virtual machines, circles represent components.

We now proceed with some examples of dynamic reconfiguration. In these dy-
namic environments, a resource may announce that it is leaving and a new resource
will need to be located and the components currently residing on the resource
moved to the new resource. In this case only the concrete configuration is changed.
Alternatively, when there is an increase in the number of service components in a
service tier this will change the abstract (and concrete) configuration by adding a
new node and the appropriate bindings. Another example is when a resource fails.
If we disregard the transient broken configuration, where the failed component is
no longer present in the configuration and the bindings that existed to it are bro-
ken, an identical abstract configuration will eventually be created, differing only
in the resource mapping. In general, an application architecture consists of a set
of suitable abstract configurations with associated information as to the resource
requirements of components. The actual environment will determine which one is
best to deploy or to reconfigure towards.

Note that in Figure 7.1 only the top-level components are shown. At a finer
level of detail there are many more components, but for our management we can
ignore components that are always co-located and bound exclusively to co-located
components. Note, that we ignore only those that are always co-located (in all
configurations). There are components that might be co-located in some concrete
configurations (when a sufficient capable resource is available) but not in others.
In Figure 7.1, on the right, a configuration is shown with one machine hosting 3
components; in another concrete configuration they might be mapped to different
machines.

We use an architectural approach to self-management, with particular focus

7.3. RELATED WORK 75

on achieving self-management for dynamic environments, enabling the usage of
multiple distributed cooperative autonomic managers for scalability and avoiding
a single-point-of failure or contention.

7.3 Related Work

The increasing complexity of software systems and networked environments moti-
vates autonomic system research in both, academia and industry, e.g., [4,5,17,45].
Major computer and software vendors have launched R&D initiatives in the field
of autonomic computing.

The main goal of autonomic system research is to automate most system man-
agement functions, including configuration management, fault management, perfor-
mance management, power management, security management, cost management,
SLA management, and SLO management.

There is vast research on building autonomic computing systems using differ-
ent approaches [45], including control theoretic approach; architectural approach;
multi-agent systems; policy-based management; management using utility-functions.
For example, authors of [21] apply the control theoretic approach to design com-
puting systems with feedback loops. The architectural approach to autonomic
computing [18] suggests specifying interfaces, behavioral requirements, and inter-
action patterns for architectural elements, e.g., components. The approach has been
shown to be useful for autonomous repair management [50]. A reference architec-
ture for autonomic computing is presented in [104]. The authors present patterns
for applying their proposed architecture to solve specific problems common to self-
managing applications. The analyzing and planning stages of a control loop can be
implemented using utility functions to make management decisions, e.g., to achieve
efficient resource allocation [51]. Authors of [49] and [48] use multi-objective utility
functions for power-aware performance management. Authors of [52] use a model-
predictive control technique, namely a limited look-ahead control (LLC), combined
with a rule-based managers, to optimize the system performance based on its fore-
cast behavior over a look-ahead horizon. Policy-based self-management [57–59,61]
allows high-level specification of management objectives in the form of policies that
drive autonomic management and can be changed at run time.

Some research is focused on interaction and coordination between multiple auto-
nomic managers. An attempt to analyze and understand how multiple interacting
loops can manage a single system has been done in [17] by studying and analyzing
existing systems such as biological and software systems. By this study the au-
thors try to understand the rules of a good control loop design. A study of how
to compose multiple loops and ensure that they are consistent and complementary
is presented in [105]. The authors presented an architecture that supports such
compositions.

There are many research projects focused on or using self-management for soft-
ware systems and networked environments, including projects performed at the

76 CHAPTER 7. NICHE PLATFORM

NSF Center for Autonomic Computing [63] and a number of European projects
funded by European Commission such as RESERVOIR, SELFMAN, Grid4All and
others.

There are several industrial solutions (tools, techniques and software suites)
for enabling and achieving self-management of enterprise IT systems, e.g., IBM
Tivoli and HP’s OpenView, which include different autonomic tools and managers
to simplify management, monitoring and automation of complex enterprise-scale
IT systems. These solutions are based on functional decomposition of management
performed by multiple cooperative managers with different management objectives
(e.g., performance manager, power manager, storage manager, etc.). These tools
are specially developed and optimized to be used in IT infrastructure of enterprises
and datacenters.

The area of autonomic computing is still evolving. Still there are many open
research issues such as development environments to facilitate development of self-
managing applications, efficient monitoring, scalable actuation, and robust man-
agement.

In our work we focus on enabling and achieving self-management for large-scale
distributed systems in dynamic environments (dynamic resources and load) using
an architectural approach to self-management with multiple distributed cooperative
autonomic managers.

7.4 Our Approach

We, like many others, use the feedback control loop approach to achieve self-
management. Referring back to Figure 7.1 we can identify the constituent parts of
what is needed at runtime.

• Container: Each available machine has a container (the boxes in the fig-
ure). The container hosts running components and directs actuation (con-
trol) commands addressed to a particular component. The container can be
told by management to install a new component. Ideally the container can
completely isolate and protect components from one another (particularly im-
portant when components belonging to different applications are hosted in the
same container). This can be achieved by using Virtual Machine technology
(currently the containers in Niche do not guarantee this).

• Sensing: Management needs to sense or be informed about changes in the
application state. Some events are independent of the application type. For
example, the failure of a machine (or container) necessarily entails failure of
the hosted components, as does the leave of a machine. Other events are
application-specific, with a component programmed to report certain events
to management (via the management interface of the component). There is a
choice with application-independent events (failure and leaves) if the reporting
to management is on the level of the container/machine (in which case the

7.5. CHALLENGES 77

management must make the appropriate mapping to components), or on the
level of the individual components.

• Resource Discovery: Management needs to sense or be informed about
changes in available resources, or alternatively management needs to be able,
upon need, to discover free (or underutilized) resources. This could be seen
as part of sensing, but note that in general more than a single application
is running on the same infrastructure and resource discovery/allocation is an
infrastructure-wide service, in contrast to sensing as described above which
is directly linked to components in a given application.

• Actuation: Management needs to be able to control applications and the
components that they are composed of.

• Management Hosting: Management needs to be hosted as well. In general
the management of a single application is divided into one or more manage-
ment elements. These management elements are programs that are triggered
by some event, perform some planning, and thereafter send the appropriate
actuation commands to perform the required reconfiguration.

In a static and constrained environment, these elements of the runtime support
may be straightforward or even trivial. For instance, if management is centralized,
then the management should know exactly where each application component is
hosted, and it is straightforward to send the appropriate command message to a
component at its known host. If management is decentralized, it is possible that a
component has been moved as a result of the action of another management element
without the first management element having been made aware of this. If manage-
ment never moves, then it is straightforward to find it, and deliver sensing messages
to it. If all resources are known statically, then management will always know what
resources are potentially available. However, as explained in the next section, to
handle dynamic environments we cannot make such simplifying assumptions and
the five described elements of the runtime are non-trivial.

The runtime support for management is, of course, only part of the story. De-
veloping the management for a distributed application is a programming task, and
a programming model is needed. This will be covered later in the section about the
Niche platform.

7.5 Challenges

Achieving self-management in a dynamic environment characterized by volatile
resources and high churn (leaves, failures and joins of machines) is challenging.
State-of-the-art techniques for self-management in clusters are not suitable. The
challenges are:

• Resource discovery: Discovering and utilizing free resources;

78 CHAPTER 7. NICHE PLATFORM

• Robust and efficient sensing and actuation: Churn-tolerant, efficient
and robust sensing and actuation infrastructure;

• Management bottleneck: Avoiding management bottleneck and single-
point-of-failure;

• Scale.

In our driving scenarios resources are extremely volatile. This volatility is partly
related to churn. There are many scenarios where high churn is expected. In
community Grids and other collaborations across the Internet machines may be at
any time removed when the owner needs the machine for other purposes. At the
edge both the machines and the networks are less reliable.

There are other aspects of volatility. Demanding applications may require more
resources than are available in the current infrastructure and additional resources
then need to be obtained quickly from an external provider (e.g., Cloud). These
new resources need to be integrated with existing resources to allow applications
to run over the aggregated resources. Furthermore we do not assume over provi-
sioning within the infrastructure - it may be working close to available capacity so
that even smaller changes of load in one application may trigger a reconfiguration
as other applications need to be ramped up or down depending on the relative pri-
orities of the applications (according to policy). We see the need for a system-wide
infrastructure where volatile resources can efficiently be discovered and utilized.
This infrastructure (i.e., the resource discovery service) itself also needs to be self-
managing.

The sensing and actuation infrastructure needs to be efficient. The demand
for efficiency rules out, at least as the main mechanism, a probing monitoring
approach. Instead, the publish/subscribe paradigm needs to be used. The sensing
and actuation infrastructure must be robust and churn-tolerant. Sensing events
must be delivered (at least once) to subscribing management elements, irrespective
of failure events, and irrespective of whether or not the management element has
moved. In a dynamic environment it is quite normal for a management element to
move from machine to machine during the lifetime of the application as resources
leave and join.

It is important that management does not become the bottleneck. For the mo-
ment, let us disregard the question of failure of management nodes. The overall
management load for a single application depends on both the size of the system
(i.e., number of nodes in the configuration graph) and the volatility of the envi-
ronment. It may well be that a dynamic environment of a few hundred nodes
could generate as many events per time unit as a large data centre. The standard
mechanism of a single management node will introduce a bottleneck (both in terms
of management processing, but also in terms of bandwidth). Decentralization of
management is, we believe, the key to solving this problem. Of course, decentraliza-
tion of management introduces design and synchronization issues. There are issues
on how to design management that requires minimal synchronization between the

7.6. NICHE: A PLATFORM FOR SELF-MANAGING DISTRIBUTED
APPLICATIONS 79

manager nodes and how to achieve that necessary synchronization. These issues
will be discussed later in the section about design methodology.

The issue of failure of management nodes in centralized and decentralized so-
lutions is, on the other hand, not that different. (Of course, with a decentralized
approach, only parts of the management fail). If management elements are state-
less, fault-recovery is relatively easy. If they are stateful, some form of replication
can be used for fault-tolerance, e.g., hot standby in a cluster or state machine
replication [90].

Finally, there are many aspects of scale to consider. We have touched upon
some of them in the preceding paragraphs, pointing out that we have to take into
account the sheer number of environmental sensing events. Clearly the system-
wide resource discovery infrastructure needs to scale. But there are other issues to
consider regarding scale and efficiency. We have used two approaches in dealing with
these issues. The first, keeping in mind our decentralized model of management,
is to couple as loosely as possible. In contrast to cluster management systems,
not only do we avoid maintaining a centralized system map reflecting the “current
state” of the application configuration, we strive for the loosest coupling possible. In
particular, management elements only receive event notifications for exactly those
events that have been subscribed to. Secondly, we have tried to identify common
management patterns, to see if they can be optimized (in terms of number of
messages/events or hops) by supporting them directly in the platform as primitives,
rather than as programmed abstractions when and if this makes for a difference in
messaging or other overhead.

7.6 Niche: A Platform for Self-Managing Distributed
Applications

In this section, we present Niche, which is a platform for development, deployment,
and execution of component-based self-managing applications. Niche includes a dis-
tributed component programming model, APIs, and a runtime system (including a
deployment service) that operates on an internal structured overlay network. Niche
supports sensing changes in the state of components and an execution environment,
and it allows individual components to be found and appropriately manipulated. It
deploys both functional and management components and sets up the appropriate
sensor and actuation support infrastructure.

Niche has been developed assuming that its runtime environment and applica-
tions might execute in a highly dynamic environment with volatile resources, where
resources (computers, virtual machines) can unpredictably fail or leave. In order
to deal with such dynamicity, Niche leverages self-organizing properties of the un-
derlying structured overlay network, including name-based routing and the DHT
functionality. Niche provides transparent replication of management elements for
robustness. For efficiency, Niche directly supports a component group abstraction
with group bindings (one-to-all and one-to-any).

80 CHAPTER 7. NICHE PLATFORM

There are aspects of Niche that are fairly common in autonomic computing.
Firstly, Niche supports the feedback control loop paradigm where management
logic in a continuous feedback loop senses changes in the environment and com-
ponent status, reasons about those changes, and then, when needed, actuates, i.e.,
manipulates components and their bindings. A self-managing application can be
divided into a functional part and a management part tied together by sensing
and actuation. Secondly, the Niche programming model is based on a component
model, called Fractal component model [33], in which components can be moni-
tored and managed. In Fractal, components are bound and interact functionally
with each other using two kinds of interfaces: (1) server interfaces offered by the
components; (2) and client interfaces used by the components. Components are in-
terconnected by bindings: a client interface of one component is bound to a server
interface of another component. Fractal allows nesting of components in composite
components and sharing of components. Components have control (management)
membranes, with introspection and intercession capabilities. It is through this con-
trol membrane that components are started, stopped, configured. It is through this
membrane that the components are passivated (as a prelude to component migra-
tion), and through which the component can report application-specific events to
management (e.g., load). Fractal can be seen as defining a set of capabilities for
functional components. It does not force application components to comply, but
clearly the capabilities of the programmed components must match the needs of
management. For instance, if the component is both stateful and not capable of
passivation (or checkpointing) then management will not be able to transparently
move the component.

The major novel feature of Niche is that, in order to enable and achieve self-
management for large-scale dynamic distributed systems, it combines a suitable
component model (Fractal) with a Chord-like structured overlay network to provide
a number of robust overlay services. Niche leverages the self-organizing properties
of the structured overlay network, e.g., automatic correction of routing tables on
node leaves, joins and failures. The Fractal model supports components that can
be monitored and managed through component introspection and control inter-
faces (called controllers in Fractal), e.g., lifecycle, attribute, binding and content
controllers. The Niche execution environment provides a number of overlay ser-
vices, notably, name-based communication, the key-value store (DHT) for lookup
services, a controlled broadcast for resource discovery, a publish/subscribe mecha-
nism for event dissemination, and node failure detection. These services are used by
Niche to provide higher level abstractions such as name-based bindings to support
component mobility; dynamic component groups; one-to-any and one-to-all group
bindings, and event based interaction. Note that the application programmer does
not need to know about the underlying overlay services, this is under the hood, and
his/her interaction is through the Niche API.

An important feature of Niche is that all architectural elements such as com-
ponent interfaces, singleton components, components groups, and management el-
ements, have system-wide unique identifiers. This enables location transparency,

7.6. NICHE: A PLATFORM FOR SELF-MANAGING DISTRIBUTED
APPLICATIONS 81

transparent migration and reconfiguration (rebinding) of components and manage-
ment elements at run time. In Niche, components can be found, monitored and
controlled – deployed, created, stopped, rebound, started, etc. Niche uses the DHT
functionality of the underlying structured overlay network for its lookup service.
This is especially important in dynamic environments where components need to
be migrated frequently as machines leave and join frequently. Furthermore, each
container maintains a cache of name-to-location mappings. Once a name of an
element is resolve to its location, the element (its hosting container) is accessed di-
rectly rather than by routing messages though the overlay network. If the element
moves to a new location, the element name is transparently resolved to the new
location.

We now proceed to describe both the Niche runtime and, to a lesser extent, the
Niche programming model. The Niche programming model will be presented in
more detail in the following section interleaved with examples.

Building Management with Niche
Niche implements (in the Java programming language) the autonomic comput-
ing reference architecture proposed by IBM in [6], i.e., it allows building MAPE-K
(Monitor, Analyze, Plan and Execute; with Knowledge) control loops. An Auto-
nomic Manager in Niche can be organized as a network of Management Elements
(MEs) that interact through events, monitor via sensors and act via actuators (e.g.,
using the actuation API). The ability to distribute MEs among Niche containers
enables the construction of decentralized feedback control loops for robustness and
performance.

A self-managing application in Niche consists of functional and management
parts. Functional components communicate via component bindings, which bind
client interfaces to server interfaces; whereas management elements communicate
mostly via a publish/subscribe event notification mechanism. The functional part
is developed using Fractal components and component groups, which are control-
lable (e.g., can be looked up, moved, rebound, started, stopped, etc.) and can be
monitored by the management part of the application. The management part of an
application can be constructed as a set of interactive or independent control loops
each of which monitors some part of the application and reacts on predefined events
such as node failures, leaves or joins, component failures, and group membership
events; and application-specific events such as component load change events, and
low storage capacity events.

In Figure 7.2, we show what an abstract configuration might look like when all
management elements are passive in the sense that they are all waiting for some
triggering events to take place. The double-headed arrows in the functional part are
bindings between components (as the concrete configuration is not shown the bind-
ings may or may not be between different machines). The management elements
have references to functional components by name (e.g., component id) or are con-
nected to actuators. The management and functional parts are also “connected”

82 CHAPTER 7. NICHE PLATFORM

Figure 7.2: Abstract configuration of a self-managing application

by sensors (this is also actually by name, because management, as well as func-
tional components can migrate) In the picture there are sensors from the A group
of functional components (A1, A2 and A3) to two management elements (sensors
connected to the other management elements are not shown). The management
architecture in Figure 7.2 is flat, and later we show how management can be struc-
tured hierarchically (see section Development of Self-Managing Applications Using
Niche), which is important for larger more complex applications.

The form of a management element is show below, together with a high level
description of the features available in the Niche actuation API.

loop
wait SensorEvent

change internal state // e.g., for monitoring and aggregation
analyze/plan
actuate

Actuation is a sequence of invocations (actions) that are listed below (in no
specific order). Note that all of the following actions are provided in the Niche
actuation API. The list is extensible with user-defined actions.

reconfigure existing components // functional components
//changing concrete configuration only

passivate/move existing components
discover resources // functional components / changing configuration.
allocate and deploy new components on a given resource
kill/remove existing components
remove/create bindings
add subscriptions/sensors // may cause sensors to be installed
remove subscriptions

7.6. NICHE: A PLATFORM FOR SELF-MANAGING DISTRIBUTED
APPLICATIONS 83

discover resources // management components
allocate resources and deploy new management elements
trigger events // for management coordination

For implementing the touchpoints (sensors and actuators), Niche leverages the
introspection and dynamic reconfiguration features of the Fractal component model
in order to provide sensing and actuation API abstractions. Sensors and actuators
are special components that can be attached to the application’s functional compo-
nents. There are also built-in sensors in Niche that sense changes in the environment
such as resource and component failures, joins, and leaves, as well as modifications
in application architecture such as creation of a group.

The application programmer also needs to install/deploy management elements
(components). To a large degree this is done in an analogous manner to dealing with
functional components. There are two important differences, however. One con-
cerns allocating resources to host management components, and the other concerns
connections between management elements. In Niche the application programmer
usually lets the Niche runtime find a suitable resource and deploy a management
component in one step. Niche reserves a slice of each machine for management ac-
tivity so that management elements can be placed anywhere (ideally, optimally so
as to minimize latency between the management element and its sensors and refer-
ences). Note that this assumes that the analyze/plan step in management logic are
computationally inexpensive. Secondly there are other ways to explicitly share in-
formation between management elements, and they are rarely bound to one another
(unless they are always co-located). In Figure 7.2, there are no connections between
management elements whatsoever, therefore the only coordination that is possible
between managers is via stigmergy. Knowledge (as in MAPE-K) in Niche can be
shared between MEs using two mechanisms: first, the publish/subscribe mechanism
provided by Niche; second, the Niche DHT to store/retrieve information such as
references to component group members, name-to-location mappings. In section A
Design Methodology for Self-Management in Distributed Environments, we discuss
management coordination in more detail in conjunction with design issues involved
in the decentralization of management.

Although programming in Niche is on the level of Java, it is both possible and
desirable to program management at a higher level (e.g., declaratively). Currently
in Niche such high-level language support includes a declarative ADL (Architecture
Description Language) that is used for describing initial configurations at a high-
level which is interpreted by Niche at runtime for initial deployment. Policies
(supported with a policy language and a corresponding policy engine) can also
be used to raise the level of abstraction on management (see section Policy-Based
Management).

Execution Environment
The Niche execution environment (see Figure 7.3) is a set of distributed containers
(hosting components, groups and management elements) connected via the struc-

84 CHAPTER 7. NICHE PLATFORM

tured overlay network, and a number of overlay services including name-based com-
munication, resource discovery, deployment, a lookup service, component group
support, the publish/subscribe service for event dissemination including predefined
event notification (e.g., component failures). The services allow an application (its
management part) to discover and to allocate resources, to deploy the application
and reconfigure it at runtime, to monitor and react on changes in the applica-
tion and in its execution environment, and to locate elements of the application
(e.g., components, groups, managers). In this section, we will describe the execu-
tion environment. We begin with the aspects of the execution environment that
the application programmer needs to be aware of. Thereafter we will describe the
mechanisms used to realize the execution environment, and particularly the overlay
services. Although the application programmer does not need to understand the
underlying mechanisms they are reflected in the performance/fault model. Finally
in this section, we describe the performance/fault model and discuss how Niche
meets the four challenges discussed in section Challenges.

Figure 7.3: Niche architecture

7.6. NICHE: A PLATFORM FOR SELF-MANAGING DISTRIBUTED
APPLICATIONS 85

Programmer View

Containers. The Niche runtime environment is a set of distributed containers,
called Jade nodes, connected via the Niche structured P2P overlay network. Con-
tainers host functional components and management elements of distributed appli-
cations executed in Niche. There are two container configurations in the current
Niche prototype: (1) the JadeBoot container that bootstraps the system and inter-
prets given ADL (*.fractal) files describing initial configuration of an application
on deployment; (2) the JadeNode container, which does not include the ADL in-
terpreter but supports a deployment API to deploy components programmatically.

We use aWebcache PHP application (deployed on an Apache server) to maintain
a list of nodes used as access points to join the overlay network. The URL of the
Webcache is a part of the configuration information to be provided when installing
and configuring the Niche platform. When started, a new Jade node sends an
HTTP request to the Webcache to get an address of any of the Jade nodes that
can be contacted to join the overlay.

Niche allows a programmer to control the distribution of functional compo-
nents and management elements among Niche containers, i.e., for every component
or/and ME, the programmer can specify the container (by a resource id) where that
element should reside (e.g., to co-locate components for efficiency). If a location is
not specified, the deployment service of the Niche runtime environment will deploy
(or move on failure) an ME on any container selected randomly or in a round-robin
manner. Collocation of an ME with a controlled component in the same container
allows improving performance of management by monitoring and/or controlling the
component locally rather than remotely over the network.

Group Support. Niche provides support for component groups and group
bindings. Components can be bound to groups via one-to-any (where a member
of the group is chosen at random) or one-to-all bindings. The use of component
groups is a fairly common programming pattern. For instance, a tier in a multi-tier
application might be modeled as a component group. The application programmer
needs to be aware of the fact that component groups are supported directly in
the runtime for efficiency reasons (the alternative would be to program a group
abstraction).

Resource Discovery and Deployment Service. Niche is an infrastructure
that loosely connects available physical resources/containers (computers), and pro-
vides for resource discovery. The Niche execution environment is a set of containers
(hosting components and managers), which upon joining and leaving the overlay,
inform the Niche runtime environment and its applications in a manner completely
analogous to peer-to-peer systems (e.g., Chord).

For initial deployment and runtime reconfiguration Niche provides a deploy-
ment service (including resource discovery) that can be performed either by the
ADL interpreter given an ADL (possibly incomplete) description of architecture
of an application to be deployed; or programmatically using a deployment Niche
API. ADL-driven deployment of an application does not necessary deploy the entire

86 CHAPTER 7. NICHE PLATFORM

application but rather some primary components that in their turn can complete
deployment programmatically by executing deployment process logic. A deploy-
ment process includes resource discovery, placement and creation of components
and component groups, binding component and groups, placement and creation
of management elements, subscription to predefined or application-specific events.
The deployment service (API) uses the Niche resource discovery service to find
resources (Niche containers) with specified properties to deploy components.

All planned removal of resources, like controlled shutdown, should be done by
performing a leave action a short time before the resource is removed. It is generally
easier for management to perform the necessary reconfiguration on leaves than on
failures. Hopefully, management has had the necessary time to successfully move
(or kill) the components hosted by the resource by the time the resource is actually
removed from the infrastructure (e.g., shut down).

Management Support. In addition to resource discovery and deployment
services described above, runtime system support for self-management includes a
publish/subscribe service used for monitoring and event-driven management; and
a number of server interfaces to manipulate components, groups, and management
elements, and to access overlay services (discovery, deployment, and pub/sub).

The publish/subscribe service is used by management elements for publishing
and delivering of monitoring and actuation events. The service is accessed though
NicheActuatorInterface and TriggerInterface runtime system interfaces described
below. The service provides built-in sensors to monitor component and node fail-
ures/leaves and group membership changes. The sensors issue corresponding prede-
fined events (e.g., ComponentFailEvent, CreateGroupEvent, MemberAddedEvent,
ResourceJoinEvent, ResourceLeaveEvent, ResourceStateChangeEvent), to which
MEs can subscribe. A corresponding pub/sub API allows the programmer also to
define application-specific sensors and events. The Niche runtime system guaran-
tees event delivery.

The runtime system provides a number of interfaces (available in each container)
used by MEs to control the functional part of an application and to access the
overlay services (discovery, deployment, pub/sub). The interfaces are automatically
bound by the runtime system to corresponding client interfaces of an ME when the
management element is deployed and initialized. The set of runtime interfaces
includes the following interfaces [103]:

• NicheActuatorInterface (named “actuator”) provides methods to access over-
lay services, to (un)bind functional components, to manipulate groups, to get
access to components in order to monitor and control them (i.e., to register
components and MEs with names and to lookup by names). Methods of this
interface include, but are not limited to, discover, allocate, deallocate, deploy,
redeploy, subscribe, unsubscribe, register, lookup, bind, unbind, create group,
remove group, add to group;

• TriggerInterface (named “trigger”) used to trigger events;

7.6. NICHE: A PLATFORM FOR SELF-MANAGING DISTRIBUTED
APPLICATIONS 87

• NicheIdRegistry (named “nicheIdRegistry”) is an auxiliary low-level interface
used to lookup components by system-wide names;

• OverlayAccess (named “overlayAccess”) is an auxiliary low-level interface
used to obtain access to the runtime system and the NicheActuatorInterface
interface.

When developing a management part of an application, the developer should
mostly use the first two interfaces. Note that in addition to the above interfaces,
the programmer also uses a component and group APIs (Fractal API) to manipu-
late component and groups for the sake of self-management. Architectural elements
(components, groups, MEs) can be located in different Niche containers; therefore
invocations of methods of the NicheActuatorInterface interface as well as group and
component interfaces can be remote, i.e., cross container boundaries. All architec-
tural elements (components, groups, management elements) of an application are
uniquely identified by system-wide IDs assigned on deployment. An element can
be registered at the Niche runtime system with a given name to be looked up (and
bound with) by its name.

Execution Environment: Internals

Resource Discovery. Niche applications can discover and allocate resources using
an overlay-based resource discovery mechanism provided by Niche. Currently the
Niche prototype uses a full broadcast (i.e., sends an inquiry to all nodes in the over-
lay) which scales poorly. However, there are approaches to make broadcast-based
discovery more efficient and scalable, such as an incremental controlled broadcast
e.g., [106].

Mobility and Location Transparency. The DHT-based lookup (registry)
service built into Niche is used to keep information (metadata) on all identifiable
architectural elements of an application executed in the Niche environment, such
as components, component groups, bindings, management elements, subscriptions.
Each architectural element is assigned a system-wide unique identifier (ID) that
is used to identify the element in the actuation API. The ID is assigned to the
element when the element is created. The ID is used as a key to lookup information
about the element in the DHT of the Niche overlay. For most of the element
types, the DHT-based lookup service contains location information, e.g., an end-
point of a container hosting a given component, or end-points of containers hosting
members of a given component group. Being resolved, the location information is
cached in the element’s handle. If the cached location information is invalid (the
element has moved to another container), it will be automatically and transparently
updated by the component binding stub via lookup in the DHT. This enables
location transparency, transparent migration of component, members of component
groups, and management elements at runtime. In order to prevent losing of data
on failures of DHT nodes, we use a standard DHT replication mechanism.

88 CHAPTER 7. NICHE PLATFORM

Figure 7.4: Steps of method invocation in Niche

For example, Figure 7.4 depicts steps in executing a (remote) method invoca-
tion on a component located in a remote container. Assume a client interface of
component A in node 0 is bound to a server interface of component B in node 1;
whereas the information about the binding of A to B (i.e., the end-point of B) is
stored at node 2. When A makes its first call to B (Step 1), the method call is
invoked on the binding stub of B at node 0 (Step 2). The stub performs lookup,
using the binding ID as a key, for current location of component B (Step 3). The
lookup result, i.e., the end-point reference of B, is cached at node 0 for further
calls. When the reference to B is resolved, the stub makes a remote call to the
component B using the reference. All further calls to B from node 0 will use the
cached end-point reference. If, for any reason, B migrates to another container
(not shown in Figure 7.4), the location of B will be updated in the DHT, and the
stub of B in node 0 can lookup the new location in the next call to component B.
If a node hosting component B fails, a component failure event will be sent to all
subscribers, including a manager (if any) responsible for restoring component B in
another container. In this case, component A, which is bound to B, does not need
to be informed; rebinding of A to the new instance of B is done transparently to A.

7.6. NICHE: A PLATFORM FOR SELF-MANAGING DISTRIBUTED
APPLICATIONS 89

Location information is stored in the Niche DHT in the form of a data structure
called Set of Network References, SNR, which represents a set of references to iden-
tifiable Niche elements (e.g., components, component groups). A component SNR
contains one reference, whereas an SNR of a component group contains references
to members of the corresponding group. SNRs are stored under their names (used
as keys) in the Niche DHT-based key-value store. SNRs are used to find Niche
elements by names and can contain either direct or indirect references. A direct
reference contains the location of an element; whereas an indirect reference refers to
another SNR identified by its name. The indirect reference must be resolved before
use. An SNR can be cached by a client in order to improve access time to the
referenced element(s). Niche transparently detects out-of-date (invalid) references
and refreshes cache contents when needed. Niche supports transparent sensing of
elements referenced in an SNR. When a management element is created to con-
trol (sense and actuate) functional components referenced by the SNR, the Niche
runtime system transparently deploys sensors and actuators for each component.
Whenever the references in the SNR are changed, the runtime system transpar-
ently (un)deploys sensors and actuators for the corresponding components. For
robustness, SNRs are replicated using a DHT replication mechanism. The SRN
replication provides eventual consistency of SNR replicas, but transient inconsis-
tencies are allowed. Similarly to handling of SNR caching, the framework recognizes
out-of-date SNR references and retries SNR access whenever necessary.

Groups are implemented using SNRs containing multiple references. Since a
group SNR represents a group, a component bound to the group is actually bound
to the group SNR. An invocation through “one-to-any” or “one-to-all” group bind-
ing is performed as follows. First, the target group name (the name of the group
binding) is resolved to its SNR that contains references to all members of the group.
Next, in the case of the one-to-any binding, one of the references is (randomly) se-
lected and the invocation request is sent to the corresponding member of the group.
In the case of the one-to-all binding, the invocation request is sent to all members
of the group, i.e., to all references in the group SNR. Use of SNRs allows changing
the group membership (i.e., growing or shrinking the group) transparently to com-
ponents bound to the group. Niche supports monitoring of group membership and
subscribing to group events issued by group sensors when new members are added
or removed from the monitored groups.

Meeting the Challenges

In this section, we discuss how Niche meets the four challenges (see Section Chal-
lenges) for self-management in dynamic and volatile environments. The challenges
are chiefly concerned with the non-functional properties of the execution environ-
ment, so we shall also present the performance/fault model associated with the
basic operations of Niche. For most operations the performance model is in terms
of network hops, ignoring local computation which is insignificant. Sometimes
the number of messages is also taken into account. Clearly, the best that can

90 CHAPTER 7. NICHE PLATFORM

be obtained for any remote operation is one or two hops, for asynchronous and
synchronous operations, respectively.

Resource Discovery. Niche is an infrastructure that loosely connects avail-
able physical resources (computers), and provides for resource discovery by using
the structured overlay. Using total broadcast to discover resources means that at
most it take O(log N) hops to find the required resource(s) (where N is the number
of physical nodes). However, the total number of messages sent is large, O(N).
In large systems controlled incremental interval broadcast can be used to decrease
the number of messages sent, at the price of greater delay if and when the discov-
ery search needs to be expanded (i.e., when searching for a rare type of available
resource). Finally, we note that, often there is actually little net increase in the
number of messages, as the resource discovery messages are sent along the same
links that continuously need to be probed anyway for overlay self-management.

The use of a structured overlay allows Niche to deal with the first challenge
(Resource discovery).

Mobility and Location Transparency. In Niche all the architectural ele-
ments are potentially mobile. In much of the Niche actuation API, element identi-
fiers are passed to Niche. An example would be to install a sensor on a given com-
ponent. Associated with the element identifier is a cached location. If the cached
entry is correct, then the action is typically one or two hops, i.e., the minimum.
However, due to the action of other management elements the cached location may
be invalid in which case a lookup needs to be performed. In the worst case a lookup
takes log N hops (where N is the number of physical nodes). What is to be expected
depends on the rate of dynamicity of the system. Additionally if the rate of churn is
low the overlay can be instrumented so as to decrease the average lookup hops (by
increasing the size of routing table at the price of increasing the self-management
overhead of the overlay itself).

In our view, the network or location transparency of element identifiers is an
important requisite for efficient decentralization of management and directly relates
to the second (Robust and efficient sensing and actuation) and third (Management
bottleneck) challenges of the previous section. Management elements do not need
to be informed when the components that they reference are moved, and neither
do sensors need to be informed when the management elements that they reference
are moved. For example, in a dynamic environment both a given component and a
related management element might be moved (from container to container) many
times before the component triggers a high-load event. In this case a DHT-lookup
will occur, and the event will reach the management element later than it would
be if the location of architectural elements was kept up-to-date, but fewer messages
are sent.

Sensing and Actuation. The sensing and actuation services are robust and
churn-tolerant, as Niche itself is self-managing. Niche thus meets the second chal-
lenge (Robust and efficient sensing and actuation). Niche achieves this by leveraging
the self-management properties of an underlying structured overlay. The necessary
information to relay events to subscribers (at least once) is stored with redundancy

7.6. NICHE: A PLATFORM FOR SELF-MANAGING DISTRIBUTED
APPLICATIONS 91

in the overlay. Upon subscription Niche creates the necessary sensors that serve as
the initial detection points. In some cases, sensors can be safely co-located with the
entity whose behavior is being monitored (e.g., a component leave event). In other
cases, the sensors cannot be co-located. For instance, a crash of a machine will
cause all the components (belonging to the same or different applications) being
hosted on it to fail. Here the failure sensors need to be located on other nodes.
Niche does all this transparently for the developer; the only thing the application
developer must do is to use the Niche API to ensure that management elements
subscribe to the events that it is programmed to handle, and that components are
properly programmed to trigger application-specific events (e.g., load change).

Self-management requires monitoring of the execution environment, compo-
nents, and component groups. In Niche monitoring is performed by the push rather
than pull method for the sake of performance and scalability (the fourth challenge:
Scale) using a publish/subscribe event dissemination mechanism. Sensors and man-
agement elements can publish predefined (e.g., node failure) and application-specific
(e.g., load change) events to be delivered to subscribers (event listeners). Niche
provides the publish/subscribe service that allows management elements to pub-
lish events and to subscribe to predefined or application-specific events fired by
sensors and other MEs. A set of predefined events that can be published by the
Niche runtime environment includes resource (node) and component failure/leave
events, group change events, component move events, and other events used to
notify subscribers (if any) about certain changes in the execution environment and
in the architecture of the application. The Niche publish/subscribe API allows the
programmer to define application specific events and sensors to issue the events
whenever needed. A list of subscribers is maintained in an overlay proxy in the
form of an SNR (a Set of Network References described above). The sensor triggers
the proxy which then sends the events to subscribers.

Decentralized and Robust Management. Niche allows for maximum de-
centralization of management. Management can be divided (i.e., parallelized) by as-
pects (e.g., self-healing, self-tuning), spatially, and hierarchically. Later, we present
the design methodology and report on use-case studies of decentralized manage-
ment. In our view, a single application has many loosely synchronized managers.
Niche supports the mobility of management elements. Niche also provides the exe-
cution platform for these managers; they typically get assigned to different machines
in the Niche overlay. There is some support for optimizing this placement of man-
agers, and some support for replication of managers for fault-tolerance. Thus Niche
meets, at least partly, the challenge to avoid the management bottleneck (the third
challenge: Management bottleneck). The main reason for the “at least partly” in
the last sentence, is that more support for optimal placement of managers, taking
into account network locality, will probably be needed (currently Niche recognizes
only some special cases, like co-location). A vanilla management replication mech-
anism is available in the current Niche prototype, and, at the time of writing this
chapter, work is ongoing on a robust replicated manager scheme based on the Paxos
algorithm, adapted to the Niche overlay [90].

92 CHAPTER 7. NICHE PLATFORM

Groups. The fact that Niche provides support for component groups and
group bindings contributes to dealing with the fourth challenge (Scale). Supporting
component groups directly in the runtime system, rather than as a programming
abstraction, allows us to adapt the sensing and actuation infrastructure to minimize
messaging overhead and to increase robustness.

7.7 Development of Self-Managing Applications Using
Niche

The Niche programming environment enables the development of self-managing
applications built of functional components and management elements. Note that
the Niche platform [103] uses Java for programming components and management
elements.

In this section, we describe in more detail the Niche programming model and
exemplify with a Hello World application (singleton and group). The Niche pro-
gramming model is based on Fractal, a modular and extensible component model
intended for designing, implementing, deploying, and reconfiguring complex soft-
ware systems. Niche borrows the core Fractal concepts, which are components,
interfaces, and bindings, and adds new concepts related to group communication,
deployment, and management. The following section discusses the main concepts
of the Niche programming model and how they are used. Then we describe typi-
cal steps of developing a self-managing application illustrated with an example of
programming of a self-healing group service.

Niche Programming Concepts

A self-managing application in Niche is built of functional components and man-
agement elements. The former constitute the functional part of the application;
whereas the latter constitute the management part.

Components are runtime entities that communicate exclusively through named
well-defined access points, called interfaces, including control interfaces used for
management. Component interfaces are divided into two kinds: client interfaces
that emit operation invocations and server interfaces that receive them. Interfaces
are connected through communication paths, called bindings. Components and
interfaces are named in order to lookup component interfaces by names and bind
them.

Components can be primitive or composite, formed by hierarchically assem-
bling other components (called sub-components). This hierarchical composition is
a key Fractal feature that helps managing the complexity of understanding and
developing component systems.

Another important Fractal feature is its support for extensible reflective facili-
ties, allowing inspection and adaptation of the component structure and behavior.
Specifically, each component is made of two parts: the membrane, which embodies

7.7. DEVELOPMENT OF SELF-MANAGING APPLICATIONS 93

reflective behavior, and the content, which consists of a finite set of sub-components.
The membrane exposes an extensible set of control interfaces (called controllers)
for reconfiguring internal features of the component and to control its life cycle.
The control interfaces are server interfaces that must be implemented by compo-
nent classes in order to be manageable. In Niche, the control interfaces are used
by application-specific management elements (namely, sensors and actuators), and
by the Niche runtime environment to monitor and control the components, e.g.,
to (re)bind, change attributes, and start. Fractal defines the following four ba-
sic control interfaces: attribute, biding, content, and life-cycle controllers. The
attribute controller (AttributeController) supports configuring named component
properties. The binding controller (BindingController) is used to bind and unbind
client interfaces to server interfaces, to lookup an interface with a given name,
and to list all client interfaces of the component. The content controller (Con-
tentController) supports listing, adding, and removing sub-components. Finally,
the life-cycle controller (LifeCycleController) supports starting and stopping the
execution of a component and getting the component state.

Figure 7.5: A composite Fractal component HelloWorld with two sub-components
client and server

The core concepts of the Fractal component model are illustrated in Figure 7.5
that depicts a client-server application HelloWorld, which is a composite Fractal

94 CHAPTER 7. NICHE PLATFORM

component containing two sub-components, Client and Server. The client interface
of the Client component is bound to the server interface of the Server component.
Membranes of components contain control interfaces. Note that on deployment,
the composite, the Client, and the Server components can be placed in different
containers.

Building a component-based application involves programming primitive com-
ponents and assembling them into an initial configuration either programmatically,
using methods of the NicheActuatorInterface interface of the Niche runtime envi-
ronment; or declaratively, using an Architecture Description Language (ADL). In
the former case, at least one (startup) component must be described in ADL to
be initially deployed and started by the ADL interpreter. The startup component
can deploy the remaining part of the application by executing a deployment and
configuration workflow programmed using the Niche runtime actuation API, which
allows the developer to program complex and flexible deployment and configuration
workflows. The ADL used by Niche is based on Fractal ADL, an extensible language
made of modules, each module defining an abstract syntax for a given architectural
concern (e.g., hierarchical containment, deployment). Primitive components are
programmed in Java.

Niche extends the Fractal component model with abstractions for group commu-
nication (component group, group bindings) as well as abstractions for deployment
and resource management (package, node). All these abstractions are described
later in this section.

A management part of a Niche application is programmed using the Manage-
ment Element (ME) abstractions that include Sensors, Watchers, Aggregators,
Managers, Executors and Actuators. Note that the distinction between Watch-
ers, Aggregators, Managers and Executors is an architectural one. From the point
of view of the execution environment they are all management elements, and man-
agement can be programmed in a flat manner (managers, sensors and actuators
only). Figure 7.6 depicts a typical hierarchy of management elements in a Niche
application. We distinguish different types of MEs depending on the roles they play
in self-management code. Sensors monitor components through interfaces and trig-
ger events to notify appropriate management elements about different application-
specific changes in monitored components. There are sensors provided by the Niche
runtime environment to monitor component failures/leaves (which in turn may be
triggered by container/machine failures and leaves), component groups (changes in
membership, group creations), and container failures. Watchers receive notification
events from a number of sensors, filter and propagate them to Aggregators, which
aggregate the information, detect and report symptoms to Managers. A symptom
is an indication of the presence of some abnormality in the functioning of monitored
components, groups or environment. Managers analyze the symptoms, make deci-
sions and request Executors to act accordingly. Executors receive commands from
managers and issue commands to Actuators, which act on components through
control interfaces. Sensors and actuators interact with functional components via
control interfaces (e.g., life-cycle and biding controllers), whereas management el-

7.7. DEVELOPMENT OF SELF-MANAGING APPLICATIONS 95

Figure 7.6: Hierarchy of management elements in a Niche application

96 CHAPTER 7. NICHE PLATFORM

ements typically communicate by events using the pub/sub service provided by
the Niche runtime environment. To manage and to access Niche runtime services,
MEs use the NicheActuatorInterface interface bound to the Niche runtime environ-
ment which provides useful service and control methods such as discover, allocate,
de-allocate, deploy, lookup, bind, unbind, subscribe, and unsubscribe. To publish
events, MEs use the TriggerInterface interface of the runtime environment. Both
client interfaces, NicheActuatorInterface and TriggerInterface, used by an ME are
automatically bound to corresponding server interfaces of the Niche runtime envi-
ronment when the ME is deployed (created). In order to receive events, an ME
must implement the EventHandlerInterface server interface and subscribe to the
events of interest.

Development Steps
When developing a self-managing distributed component-based application using
Niche, the developer makes the following steps.

1. Development of architecture of the functional and management parts of the
application. This step includes the following work: definition and design of
functional components (including server and client interfaces) and component
groups, assigning names to components and interfaces, definition of com-
ponent and group bindings, definition and design of management elements
including algorithms of event handlers for application-specific management
objectives, definition of application-specific monitoring and actuation events,
selection of predefined events issued by the Niche runtime environment, defi-
nition of event sources and subscriptions.

2. Description of (initial) architecture of functional and management parts in
ADL, including components, their interfaces and bindings. Note that it is not
necessary to describe the entire configuration in ADL, as components, groups
and management elements can be deployed and configured also programmat-
ically using the Niche actuation API rather than the ADL interpreter.

3. Programming of functional and management components. At this stage, the
developer defines classes and interfaces of functional and management com-
ponents, implements server interfaces (functional), event handlers (manage-
ment), Fractal and Niche control interfaces, e.g., life-cycle and binding con-
trollers.

4. Programming a (startup) component that completes initial deployment and
configuration done by the ADL interpreter. An initial part of the applica-
tion (including the startup component) described in ADL in Step 2 is to be
deployed by the ADL interpreter; whereas the remaining part is to be de-
ployed and configured by the programmer-defined startup component using
the actuation interface NicheActuatorInterface of the Niche runtime system.

7.7. DEVELOPMENT OF SELF-MANAGING APPLICATIONS 97

Completion of the deployment might be either trivial if ADL is maximally
used in Step 2, or complicated if a rather small part of the application is de-
scribed in ADL in Step 2. Typically, the startup component is programmed
to perform the following actions: bind components deployed by ADL, discover
and allocate resources (containers) to deploy components; create, configure
and bind components and groups; create and configure management elements
and subscribe them to events; and start components.

Programming of Functional Components and Component Groups
This section demonstrates how the above concepts are practically applied in pro-
gramming the simple client-server HelloWorld application (Figure 7.4) which is a
composite component containing two sub-components, Client and Server. The ap-
plication provides a singleton service that prints a message (the greeting “Hello
World!”) specified in the client call. In this example, the server component pro-
vides a server interface of type Service containing the print method. The client
component has a client interface of type Service and a server interface of type Main
containing the main method. The client interface of the client component is bound
to the server interface of the service component. The composite HelloWorld com-
ponent provides a server interface that exports the corresponding interface of the
client component; its main method is invoked when the application is launched.

Primitive Components

Primitive components are realized as Java classes that implement server interfaces
(e.g., Service and Main in the HelloWorld example) as well as any necessary control
interfaces (e.g., BindingController). The client component class called ClientImpl,
implements the Main interface. Since the client component has a client interface to
be bound to the server, the class implements also the BindingController interface,
which is the basic control interface for managing bindings. The following code
fragment presents the ClientImpl class that implements the Main and the binding
controller interfaces. Note that the client interface Service is assigned the name “s”.

public class ClientImpl implements Main, BindingController {
// Client interface to be bound to server interface of Server component
private Service service;
private String citfName = "s"; // Name of the client interface
// Implementation of the Main interface
public void main (final String[] args) {

// call the service to print the greeting
service.print ("Hello world!");

}
// All methods below belong to the Binding Controller
// interface with the default implementation
// Returns names of all client interfaces of the component
public String[] listFc () {

return new String[] { citfName };

98 CHAPTER 7. NICHE PLATFORM

}
// Returns the interface to which the given client interface is bound
public Object lookupFc(final String citfName)

throws NoSuchInterfaceException {
if (!this.citfName.equals(citfName))

throw new NoSuchInterfaceException(itfName);
return service;

}
// Binds the client interface with the given name
// to the given server interface
public void bindFc(final String citfName, final Object sItf)

throws NoSuchInterfaceException {
if (!this.citfName.equals(citfName))

throw new NoSuchInterfaceException(itfName);
service = (Service)sItf;

}
// Unbinds the client interface with the given name
public void unbindFc (final String citfName)

throws NoSuchInterfaceException {
if (!this.citfName.equals(citfName))

throw new NoSuchInterfaceException(itfName);
service = null;

}
}

The server component class, called ServerImpl, implements only the Service
interface as shown below.

public class ServerImpl implements Service {
public void print (final String msg) {

for (int i = 0; i < count; ++i)
System.err.println("Server prints:" + msg);

}
}

Assembling Components

The simplest method to assemble components is through the ADL, which specifies a
set of components, their bindings, and their containment relationships, and can be
used to automatically deploy a Fractal system. The main concepts of the ADL are
component definitions, components, interfaces, and bindings. The ADL description
of the HelloWorld application with the singleton service is the following:

<definition name="HelloWorld">
<interface name="m" role="server" signature="Main"/>
<component name="client">

<interface name="m" role="server" signature="Main"/>
<interface name="s" role="client" signature="Service"/>
<content class="ClientImpl"/>

</component>
<component name="server">

<interface name="s" role="server" signature="Service"/>
<content class="ServerImpl"/>

7.7. DEVELOPMENT OF SELF-MANAGING APPLICATIONS 99

</component>
<binding client="this.m" server="client.m" />
<binding client="client.s" server="server.s" />

</definition>

Component Groups and Group Bindings

Niche bindings support communication among components hosted in different ma-
chines. Apart from the previously seen, one-to-one bindings, Niche also supports
groups and group bindings, which are particularly useful for building decentralized,
fault-tolerant applications. Group bindings allow treating a collection of compo-
nents, the group, as a single entity, and can deliver invocations either to all group
members (one-to-all semantics) or to any, randomly-chosen group member (one-
to-any semantics). Groups are dynamic in that their membership can change over
time (e.g., increase the group size to handle increased load in a tier).

Groups are manipulated through the Niche API, which supports creating groups,
binding groups and components, and adding/removing group members. Moreover,
the Fractal ADL has been extended to enable describing groups as part of the
system architecture.

Figure 7.7 depicts the HelloGroup application, in which the client component
is connected to a group of two stateless service components (server1 and server2)
using one-to-any invocation semantics. The group of service components provides
a service that prints the “Hello World!" greeting by any of the group members on
a client request.

The initial configuration of this example application (without management ele-
ments) can be described in ADL as follows:

<definition name="HelloGroup">
<interface name="m" role="server" signature="Main"/>
<component name="client">

<interface name="m" role="server" signature="Main"/>
<interface name="s" role="client" signature="Service"/>
<content class="ClientImpl"/>

</component>
<component name="ServiceGroup">

<interface name="s" role="server" signature="Service"/>
<interface name="clients" role="client" signature="Service"

cardinality="collection"/>
<content class="GROUP"/>

</component>
<component name="server1">
<interface name="s" role="server" signature="Service"/>
<content class="ServerImpl"/>

</component>
<component name="server2">

<interface name="s" role="server" signature="Service"/>
<content class="ServerImpl"/>

</component>
<binding client="this.r" server="client.r" />
<binding client="client.s" server="group.s" bindingType="groupAny"/>

100 CHAPTER 7. NICHE PLATFORM

Figure 7.7: HelloGroup application

<binding client="group1.clients1" server="server1.s"/>
<binding client="group1.clients2" server="server2.s"/>

</definition>

As seen in this description, the service group is represented by a special com-
ponent with content “GROUP”. Group membership is then represented as binding
the server interfaces of members to the client interfaces of the group. The bind-
ingType attribute represents the invocation semantics (one-to-any in this case).
Groups can also be created and bound programmatically using the Niche actuation
API (namely the NicheActuatorInterface client interface bound to the Niche run-
time system). As an example, the following Java code fragment illustrates group
creation performed by a management element.

// Code fragment from the StartManager class
// References to the Niche runtime interfaces
// bound on init or via binding controller
private NicheIdRegistry nicheIdRegistry;
private NicheActuatorInterface myActuatorInterface;
...

7.7. DEVELOPMENT OF SELF-MANAGING APPLICATIONS 101

// Lookup the client component and all server components by names
ComponentId client =

(ComponentId) nicheIdRegistry.lookup("HelloGroup _0/client");
ArrayList<ComponentId> servers = new ArrayList();
servers.add((ComponentId) nicheIdRegistry.lookup("HelloGroup _0/server1");
servers.add((ComponentId) nicheIdRegistry.lookup("HelloGroup_0/server2");
// Create a group containing all server components.
GroupId groupTemplate = myActuatorInterface.getGroupTemplate();
groupTemplate.addServerBinding("s", JadeBindInterface.ONE_TO_ANY);
GroupId serviceGroup = myActuatorInterface.createGroup(groupTemplate, servers);
// Bind the client to the group with one-to-any binding
myActuatorInterface.bind(client, "s", serviceGroup,

"s", JadeBindInterface.ONE_TO_ANY);

Programming of Management Elements

The management part of a Niche application is programmed using the Management
Element (ME) abstractions that include Sensors, Watchers, Aggregators, Managers,
Executors and Actuators. MEs are typically reactive event-driven components;
therefore developing of MEs is mostly programming event handlers, i.e., methods
of the EventHandlerInterface server interface that each ME must implement in or-
der to receive sensor events (including user-defined events and predefined events
issued by the runtime system) and events from other MEs. The event handler is
eventually invoked when a corresponding event is published (generated). The event
handlers can be programmed to receive and handle events of different types. A typ-
ical management algorithm of an event handler includes, but not necessarily and
not limited to, a sequence of conditional if-then(-else or -else-if) control statements
(management logic rules) that examine rule conditions (IF clause) based on infor-
mation retrieved from the received events or/and its internal state (which in turn
reflects previous received events as part of monitoring activity); make a manage-
ment decision and perform management actions and issue events (THEN clause)
(see section Policy-Based Management).

When programming an ME class, the programmer must implement the follow-
ing three server interfaces: the InitInterface interface to initialize an ME instance,
the EventHandlerInterface interface to receive and handle events; and the Mov-
ableInterface interface to get a checkpoint, when the ME is moved and redeployed
for replication or migration (the checkpoint is passed to a new instance through its
InitInterface). To perform control actions, to subscribe and publish events, an ME
class must include the following two client interfaces: the NicheActuatorInterface
interface, named “actuator”; and the TriggerInterface interface, named “trigger”.
Both client interfaces are bound to the Niche runtime system when the ME is
deployed either through its InitInterface or via the BidingController interface.

When developing the management code of an ME (event handlers) to control
the functional part of an application and to subscribe to events, the programmer
uses methods of the NicheActuatorInterface client interface that includes a num-
ber of actuation methods such as discover, allocate, de-allocate, deploy, create a

102 CHAPTER 7. NICHE PLATFORM

component group, add a member to a group, bind, unbind, subscribe, unsubscribe.
Note that the programmer can subscribe/unsubscribe to predefined built-in events
(e.g., component failure, group membership change) issued by built-in sensors of the
Niche runtime system. To publish events, the programmer uses the TriggerInterface
client interface of the ME.

For example, Figure 7.7 depicts the HelloGroup application that provides a
group service with self-healing capabilities. Feedback control in the application
maintains the group size (a specified minimum number of service components) de-
spite node failures, i.e., if any of the components in the group fails, a new service
component is created and added to the group so that the group always contain the
given number of servers. The self-healing control loop includes the Service Super-
visor aggregator that monitors the number of components in the group, and the
Configuration manager that is responsible to create and add a new service com-
ponent on a request from the Service Supervisor. Figure 7.8 depicts a sequence of
events and control actions of the management components. Specifically, if one of
the service components of the service group fails, the group sensor issues a com-
ponent failure event received by the Service Supervisor (1), which checks whether
the number of components has dropped below a specified threshold (2). If so, the
Server Supervisor fires the Service-Availability-Change event received by the Con-
figuration Manager (3), which heals the component, i.e., creates a new instance
of the server component and adds it to the group (4). When a new member is
added to the group, the Service Supervisor, which keeps track of the number of
server components, is notified by the predefined Member-Added-Event issued by
the group sensor (5, 6).

The shortened Java code fragment below shows the management logic of the
Configuration Manager responsible for healing of a failed server component upon
receiving a Service-Availability-Change event issued by the Service Supervisor (steps
3 and 4 in Figure 7.8)

// Code fragment from the ConfigurationManager class
public class ConfigurationManager

implements EventHandlerInterface, MovableInterface,
InitInterface, BindingController, LifeCycleController {

private static final String DISCOVER_PREFIX = "dynamic:";
// Reference to the Actuation interface of the Niche runtime
// (automatically bound on deployment).
private NicheActuatorInterface myManagementInterface;
...
// invoked by the runtime system
public void init(NicheActuatorInterface managementInterface) {

myManagementInterface = managementInterface;
}

// invoked by the runtime system on deployment
public void init(Serializable[] parameters) {

initAttributes = parameters;
componentGroup = (GroupId) initAttributes[0];
serviceCompProps = initAttributes[1];

7.7. DEVELOPMENT OF SELF-MANAGING APPLICATIONS 103

Figure 7.8: Events and actions in the self-healing loop of the HelloGroup application

nodeRequirements = DISCOVER_PREFIX + initAttributes[2];
}
...
// event handler, invoked on an event

public void eventHandler(Serializable e, int flag) {
// For any case, check event type,
// ignore if it is not the event of interest (should not happen)
if (! (e instanceof ServiceAvailabilityChangeEvent)) return;
// Find a node that meets the requirements for a server component.
try {

newNode =
myManagementInterface.oneShotDiscoverResource(nodeRequirements);

} catch (OperationTimedOutException err) {
... // Retry later (the code is removed)

}
// Allocate resources for a server component at the found node.
try {

List allocatedResources =
myManagementInterface.allocate(newNode, null);

} catch (OperationTimedOutException err) {
... // Retry later (the code is removed)

}
...

String deploymentParams = Serialization.serialize(serviceCompProps);
// Deploy a new server component instance at the allocated node.

104 CHAPTER 7. NICHE PLATFORM

try {
deployedComponents = myManagementInterface.deploy(allocatedResource,

deploymentParams);
} catch (OperationTimedOutException err) {
... // Retry later (the code is removed)
}
ComponentId cid = (ComponentId)((Object[])deployedComponents.get(0))[1];
// Add the new server component to the service group and start the server
myManagementInterface.update(componentGroup, cid,

NicheComponentSupportInterface.ADD_TO_GROUP_AND_START);
}

While MEs interact with each other mostly by events, sensors and actuators
are programmed to interact with functional components via interface bindings.
Interfaces between sensors and components are defined by the programmer, who
may choose to use either the push or pull methods of interaction between a sensor
and a component. In the case of the push method, the component pushes the
sensor to issue an event. In this case, the component’s client interface is bound to
the corresponding sensor’s server interface. In the case of the pull method, a sensor
pulls the state from a component. In this case, the sensor’s client interface is bound
to a corresponding component’s server interface. A sensor and a component are
auto-bound when the sensor is deployed by a watcher. Actuation (control actions)
can be done by MEs either through actuators bound to functional components
or directly on components via their control interfaces using the Niche actuation
API. Actuators are programmed in a similar way as sensors and are deployed by
executors. By analogy to sensors, an actuator can be programmed to interact with
a controlled component in the push and/or pull manner. In the former case (push),
the actuator pushes a component through component’s control interfaces, which can
be either application-specific interfaces defined by the programmer or the Fractal
control interfaces, e.g., LifeCycleController and AttributeController. In the case of
the pull-based actuation, the controlled component checks its actuator for actions
to be executed.

Deployment and Resource Management
Niche supports component deployment and resource management through the con-
cepts of component package and node. A component package is a bundle that
contains the executables necessary for creating components, the data needed for
their correct functioning as well as metadata describing their properties. A node is
the physical or virtual machine on which components are deployed and executed. A
node provides processing, storage, and communication resources, which are shared
among the deployed components.

Niche exposes basic primitives for discovering nodes, allocating resources on
those nodes, and deploying components; these primitives are designed to form the
basis for external services for deploying components and managing their underlying
resources. In the current prototype, component packages are OSGi bundles [107]

7.7. DEVELOPMENT OF SELF-MANAGING APPLICATIONS 105

and managed resources include CPU time, physical memory, storage space, and
network bandwidth. The Fractal ADL has been extended to allow specifying pack-
ages and resource constraints on nodes. These extensions are illustrated in the
following ADL extract, which refines the client and composite descriptions in the
HelloGroup example (added elements are show in Bold).

<definition name="HelloGroup">
<interface name="m" role="server" signature="Main"/>
<component name="client">
<interface name="m" role="server" signature="Main"/>
<interface name="s" role="client" signature="Service"/>
<content class="ClientImpl"/>
<packages>

<package name="ClientPackage v1.3" >
<property name="local.dir" value="/tmp/j2ee"/>

</package>
</packages>
<virtual-node name="node1" resourceReqs="(&(memory>=1)(CPUSpeed>=1))"/>
</component>

<!-- description of other components and bindings (is not shown) -->
...

<virtual-node name="node1">
</definition>

The packages element provides information about the OSGi bundles necessary
for creating a component; packages are identified with their unique name in the
OSGi bundle repository (e.g., “ClientPackage v1.3”). The virtual-node element
describes resource and location requirements of components. At deployment time,
each virtual node is mapped to a node (container) that conforms to the given re-
source requirements specified in the resourceReqs attribute. The necessary bundles
are then installed on this node and the associated component is created. In the
example, the client and the composite components are co-located at a node with
memory larger than 1GB and CPU speed larger than 1Ghz.

Initialization of Management Code
The ADL includes support for initializing the management part of an application in
the form of start manager components. Start managers have a predefined definition
“StartManagementType” that contains a set of client interfaces corresponding to
the Niche API. These interfaces are implicitly bound by the system after start
managers are instantiated. The declaration of a start manager is demonstrated in
the following ADL extract, which refines the HelloGroup example.

<component name="StartManager" definition="org.ow2.jade.StartManagementType">
<content class=" helloworld.managers.StartManager"/>

</component>

Typically, the start manager contains the code for creating, configuring, and ac-
tivating the set of management elements that constitute the management part of an

106 CHAPTER 7. NICHE PLATFORM

application. In the HelloGroup example, the management part realizes self-healing
behavior and relies on an aggregator and a manager, which monitors the server
group and maintains its size despite node failures. The start manager implementa-
tion (the StartManager class) then contains the code for deploying and configuring
the elements of the self-healing loop shown in Figure 7.7 (i.e., ServiceSupervisor
and ConfigurationManager). The code is actually located in the implementation
of the LifeCycleController interface (startFc operation) of the startup manager, as
seen next.

// Code fragment from the StartManager class of the HelloGroup application
public class StartManager implements BindingController, LifeCycleController {
// References to the Niche runtime interfaces
// bound on init or via binding controller
private NicheIdRegistry nicheIdRegistry;
private NicheActuatorInterface myActuatorInterface;
...
// Invoked by the Niche runtime system
public void startFc() throws IllegalLifeCycleException {

...
// Lookup client and servers, create service group
// and bind client to the group (code is not shown)
GroupId serviceGroup = myActuatorInterface.createGroup(...);

...
// Configure and deploy the Service Supervisor aggregator

GroupId gid = serviceGroup;
ManagementDeployParameters params = new ManagementDeployParameters();

params.describeAggregator(ServiceSupervisor.class.getName(), "SA", null,
new Serializable[] { gid.getId() });

NicheId serviceSupervisor =
myActuatorInterface.deployManagementElement(params, gid);

// Subscribe the aggregator to events from group
myActuatorInterface.subscribe(gid, serviceSupervisor,

ComponentFailEvent.class.getName());
myActuatorInterface.subscribe(gid, serviceSupervisor,

MemberAddedEvent.class.getName());
// Configure and deploy the Configuration manager

String minimumNodeCapacity = "200";
params = new ManagementDeployParameters();

params.describeManager(ConfigurationManager.class.getName(), "CM", null,
new Serializable[] { gid, fp, minimumNodeCapacity });

NicheId configurationManager =
myActuatorInterface.deployManagementElement(params, gid);

// Subscribe the manager to events from the aggregator
myActuatorInterface.subscribe(serviceSupervisor, configurationManager,

ServiceAvailabilityChangeEvent.class.getName());
...

}

Support for Legacy Systems
The Niche self-management framework can be applied to legacy systems by means
of a wrapping approach. In this approach, legacy software elements are wrapped as

7.8. DESIGN METHODOLOGY 107

Fractal components that hide proprietary configuration capabilities behind Fractal
control interfaces. The approach has been successfully demonstrated with the Jade
management system, which relied also on Fractal and served as a basis for develop-
ing Niche [108]. Another example of the use of a “legacy” application (namely the
VLC program) in a self-managing application developed using Niche, is the gMovie
demo application that performs transcoding of a given movie from one format to
another. The description and the code of the gMovie application can be found
in [109] and [103].

To briefly illustrate the wrapping approach, consider an enterprise system com-
posed of an application server and a database server. The two servers are wrapped
as Fractal components, whose controllers are implemented using legacy configura-
tion mechanisms. For example, the life-cycle controllers are implemented by exe-
cuting shell scripts for starting or stopping the servers. The attribute controllers
are implemented by modifying text entries of configuration files. The connection
between the two servers is represented as a binding between the corresponding
components. The binding controller of the application server wrapper is then im-
plemented by setting the database host address and port in the application server
configuration file.

The wrapping approach produces a layer of Fractal components that enable
observing and controlling the legacy software through standard interfaces. This
layer can be then complemented with a Niche-based management system (e.g., sen-
sors, actuators, managers), developed according to the described methodology. Of
course, the degree of control exposed by the Fractal layer to the management system
depends heavily on the legacy system (e.g., it may be impossible to dynamically
move software elements). Moreover, the wrapping approach cannot take full advan-
tage of Niche features such as name-based communication and group bindings. The
reason is that bindings are only used to represent and manage connections between
legacy software elements, not to implement them.

7.8 A Design Methodology for Self-Management in
Distributed Environments

A self-managing application can be decomposed into three parts: the functional
part, the touchpoints, and the management part. The design process starts by spec-
ifying the functional and management requirements for the functional and manage-
ment parts, respectively. In the case of Niche, the functional part of the application
is designed by defining interfaces, components, component groups, and bindings.
The management part is designed based on management requirements, by defining
autonomic managers (management elements) and the required touchpoints (sensors
and actuators). Touchpoints enable management of the functional part, i.e., make
it manageable.

An Autonomic Manager is a control loop that continuously monitors and affects
the functional part of the application when needed. For many applications and en-

108 CHAPTER 7. NICHE PLATFORM

vironments it is desirable to decompose the autonomic manager into a number of
cooperating autonomic managers each performing a specific management function
or/and controlling a specific part of the application. Decomposition of management
can be motivated by different reasons such as follows. It avoids a single point of
failure. It may be required to distribute the management overhead among par-
ticipating resources. Self-managing a complex system may require more than one
autonomic manager to simplify design by separation of concerns. Decomposition
can also be used to enhance the management performance by running different
management tasks concurrently and by placing the autonomic managers closer to
the resources they manage.

We define the following iterative steps to be performed when designing and
developing the management part of a self-managing distributed application in a
decentralized manner given the management requirements and touchpoints.

• Decomposition: The first step is to divide the management logic into a
number of management tasks. Decomposition can be either functional (e.g.,
tasks are defined based which self-* properties they implement) or spatial
(e.g., tasks are defined based on the structure of the managed application).
The major design issue to be considered at this step is granularity of tasks
assuming that a task or a group of related tasks can be performed by a single
manager.

• Assignment: The tasks are then assigned to autonomic managers each of
which becomes responsible for one or more management tasks. Assignment
can be done based on self-* properties that a task belongs to (according to
the functional decomposition) or based on which part of the application that
task is related to (according to the spatial decomposition).

• Orchestration: Although autonomic managers can be designed indepen-
dently, multiple autonomic managers, in the general case, are not indepen-
dent since they manage the same system and there exist dependencies between
management tasks. Therefore they need to interact and coordinate their ac-
tions in order to avoid conflicts and interference and to manage the system
properly. Orchestration of autonomic managers is discussed in the following
section.

• Mapping: The set of autonomic managers are then mapped to the resources,
i.e., to nodes of the distributed environment. A major issue to be considered
at this step is optimized placement of managers and possibly functional com-
ponents on nodes in order to improve management performance.

In this section, our major focus is on the orchestration of autonomic managers
as the most challenging and less studied problem. The actions and objectives of
the other stages are more related to classical issues in distributed systems such as
partitioning and separation of concerns, and optimal placement of modules in a
distributed environment.

7.8. DESIGN METHODOLOGY 109

Orchestrating Autonomic Managers

Autonomic managers can interact and coordinate their operation in the following
four ways as discussed below and illustrated in Figure 7.9: indirect interactions via
the managed system (stigmergy); hierarchical interaction (through touch points);
direct interaction (via direct bindings); sharing of management elements.

Figure 7.9: Interaction patterns

110 CHAPTER 7. NICHE PLATFORM

Stigmergy

Stigmergy is a way of indirect communication and coordination between agents [110].
Agents make changes in their environment, and these changes are sensed by other
agents and cause them to do more actions. Stigmergy was first observed in social
insects like ants. In our case, agents are autonomic managers and the environment
is the managed application.

The stigmergy effect is, in general, unavoidable when you have more than one
autonomic manager and can cause undesired behavior at runtime. Hidden stig-
mergy makes it challenging to design a self-managing system with multiple auto-
nomic managers. However, stigmergy can be part of the design and used as a way
of orchestrating autonomic managers.

Hierarchical Management

By hierarchical management we mean that some autonomic managers can monitor
and control other autonomic managers. The lower level autonomic managers are
considered to be a managed resource for the higher level autonomic manager. Com-
munications between levels take place using touchpoints. Higher level managers can
sense and affect lower level managers.

Autonomic managers at different levels often operate at different time scales.
Lower level autonomic managers are used to manage changes in the system that
need immediate actions. Higher level autonomic managers are often slower and
used to regulate and orchestrate the system by monitoring global properties and
tuning lower level autonomic managers accordingly.

Direct Interaction

Autonomic managers may interact directly with one another. Technically this is
achieved by direct communication (via bindings or events) between appropriate
management elements in the autonomic managers. Cross autonomic manager bind-
ings can be used to coordinate autonomic managers and avoid undesired behaviors
such as race conditions or oscillations.

Shared Management Elements

Another way for autonomic managers to communicate and coordinate their actions
is by sharing management elements. This can be used to share state (knowledge)
and to synchronize their actions.

7.9 Demonstrator Applications

In order to demonstrate Niche and our design methodology, we present two self-
managing services developed using Niche: (1) a robust storage service called YASS
– Yet Another Storage Service; and (2) a robust computing service called YACS

7.9. DEMONSTRATOR APPLICATIONS 111

– Yet Another Computing Service. Each of the services has self-healing and self-
configuration capabilities and can execute in a dynamic distributed environment,
i.e., the services can operate even if computers join, leave or fail at any time. Each of
the services implements relatively simple self-management algorithms, which can be
extended to be more sophisticated, while reusing existing monitoring and actuation
code of the services. The code and documentation of YASS and YACS services can
be found at [103].

YASS (Yet Another Storage Service) is a robust storage service that allows a
client to store, read and delete files on a set of computers. The service transparently
replicates files in order to achieve high availability of files and to improve access
time. The current version of YASS maintains the specified number of file replicas
despite nodes leaving or failing, and it can scale (i.e., increase available storage
space) when the total free storage is below a specified threshold. Management
tasks include maintenance of file replication degree; maintenance of total storage
space and total free space; increasing availability of popular files; releasing extra
allocate storage; and balancing the stored files among available resources.

YACS (Yet Another Computing Service) is a robust distributed computing ser-
vice that allows a client to submit and execute jobs, which are bags of independent
tasks, on a network of nodes (computers). YACS guarantees execution of jobs de-
spite nodes leaving or failing. YACS scales, i.e., changes the number of execution
components, when the number of jobs/tasks changes. YACS supports checkpointing
that allows restarting execution from the last checkpoint when a worker component
fails or leaves.

Demonstrator I: Yet Another Storage Service (YASS)

In order to illustrate our design methodology, we have developed a storage service
called YASS (Yet Another Storage Service), using Niche. The case study illustrates
how to design a self-managing distributed system monitored and controlled by
multiple distributed autonomic managers.

YASS Specification

YASS is a storage service that allows users to store, read and delete files on a set
of distributed resources. The service transparently replicates the stored files for
robustness and scalability.

Assuming that YASS is to be deployed and provided in a dynamic distributed
environment, the following management functions are required in order to make
the storage service self-managing in the presence of dynamicity in resources and
load: the service should tolerate the resource churn (joins/leaves/failures), optimize
usage of resources, and resolve hot-spots. We define the following tasks based on
the functional decomposition of management according to self-* properties (namely
self-healing, self-configuration, and self-optimization) to be achieved:

112 CHAPTER 7. NICHE PLATFORM

• Maintain the file replication degree by restoring the files which were stored
on a failed/leaving resource. This function provides the self-healing property
of the service so that the service is available despite of the resource churn;

• Maintain the total storage space and total free space to meet QoS require-
ments by allocating additional resources when needed. This function provides
self-configuration of the service;

• Increasing the availability of popular files. This and the next two functions
are related to the self-optimization of the service.

• Release excess allocated storage when it is no longer needed.

• Balance the stored files among the allocated resources.

YASS Functional Design

A YASS instance consists of front-end components and storage components as
shown in Figure 7.10. The front-end component provides a user interface that
is used to interact with the storage service. Storage components represent the
storage capacity available at the resource on which they are deployed.

Figure 7.10: YASS functional design

The storage components are grouped together in a storage group. A user issues
commands (store, read, and delete) using the front-end. A store request is sent to
an arbitrary storage component (using one-to-any binding between the front-end
and the storage group) which in turn will find some r different storage components,
where r is the file’s replication degree, with enough free space to store a file replica.

7.9. DEMONSTRATOR APPLICATIONS 113

These replicas together will form a file group containing the r storage components
that will host the file. The front-end will then use a one-to-all binding to the file
group to transfer the file in parallel to the r replicas in the group. A read request is
sent to any of the r storage components in the group using the one-to-any binding
between the front-end and the file group. A delete request is sent to the file group
in parallel using a one-to-all binding between the front-end and the file group.

Enabling Management of YASS

Given that the functional part of YASS has been developed, to manage it we need
to provide touchpoints. Niche provides basic touchpoints for manipulating the sys-
tem’s architecture and resources, such as sensors for resource failures and compo-
nent group creation; and actuators for deploying and binding components. Beside
the basic touchpoints the following additional, YASS specific, sensors and actuators
are required:

• A load sensor to measure the current free space on a storage component;

• An access frequency sensor to detect popular files;

• A replicate-file actuator to add one extra replica of a specified file;

• A move-file actuator to move files for load balancing.

Self-Managing YASS

The following autonomic managers are needed to manage YASS in a dynamic en-
vironment. All four orchestration techniques described in the previous section on
design methodology, are demonstrated below.

Replica Autonomic Manager: The replica autonomic manager is responsible
for maintaining the desired replication degree for each stored file in spite of resources
failing and leaving. This autonomic manager adds the self-healing property to
YASS. The replica autonomic manager consists of two management elements, the
File-Replica-Aggregator and the File-Replica-Manager as shown in Figure 7.11.
The File-Replica-Aggregator monitors a file group, containing the subset of storage
components that host the file replicas, by subscribing to resource fail or leave events
caused by any of the group members. These events are received when a resource,
on which a component member in the group is deployed, is about to leave or has
failed. The File-Replica-Aggregator responds to these events by triggering a replica
change event to the File-Replica-Manager that will issue a find and restore replica
command.

Storage Autonomic Manager: The storage autonomic manager is responsi-
ble for maintaining the total storage capacity and the total free space in the storage
group, in the presence of dynamism, to meet QoS requirements. The dynamism
is due either to resources failing/leaving (affecting both the total and free stor-
age space) or file creation/addition/deletion (affecting the free storage space only).

114 CHAPTER 7. NICHE PLATFORM

Figure 7.11: Self-healing control loop for restoring file replicas.

The storage autonomic manager reconfigures YASS to restore the total free space
and/or the total storage capacity to meet the requirements. The reconfiguration
is done by allocating free resources and deploying additional storage components
on them. This autonomic manager adds the self-configuration property to YASS.
The storage autonomic manager consists of Component-Load-Watcher, Storage-
Aggregator, and Storage-Manager as shown in Figure 7.12. The Component-Load-
Watcher monitors the storage group, containing all storage components, for changes
in the total free space available by subscribing to the load sensors events. The
Component-Load-Watcher will trigger a load change event when the load is changed
by a predefined delta. The Storage-Aggregator is subscribed to the Component-
Load-Watcher load change event and the resource fail, leave, and join events (note
that the File-Replica-Aggregator also subscribes to the resource failure and leave
events). The Storage-Aggregator, by analyzing these events, will be able to esti-
mate the total storage capacity and the total free space. The Storage-Aggregator
will trigger a storage availability change event when the total and/or free storage
space drops below a predefined threshold. The Storage-Manager responds to this
event by trying to allocate more resources and deploying storage components on
them.

Direct Interactions to Coordinate Autonomic Managers: The two au-
tonomic managers, replica autonomic manager and storage autonomic manager,
described above seem to be independent. The first manager restores files and the
other manager restores storage. But it is possible to have a race condition between
the two autonomic managers that will cause the replica autonomic manager to fail.

7.9. DEMONSTRATOR APPLICATIONS 115

Figure 7.12: Self-configuration control loop for adding storage

For example, when a resource fails the storage autonomic manager may detect that
more storage is needed and start allocating resources and deploying storage com-
ponents. Meanwhile the replica autonomic manager will be restoring the files that
were on the failed resource. The replica autonomic manager might fail to restore
the files due to space shortage if the storage autonomic manager is slower and does
not have time to finish. This may also prevent the users, temporarily, from storing
files.

If the replica autonomic manager would have waited for the storage autonomic
manager to finish, it would not fail to recreate replicas. We used direct interaction
to coordinate the two autonomic managers by binding the File-Replica-Manager to
the Storage-Manager.

Before restoring files the File-Replica-Manager informs the Storage-Manager
about the amount of storage it needs to restore files. The Storage-Manager checks
available storage and informs the File-Replica-Manager that it can proceed if enough
space is available or ask it to wait.

The direct coordination used here does not mean that one manager controls
the other. For example, if there is only one replica left of a file, the File-Replica-
Manager may ignore the request to wait from the Storage-Manager and proceed
with restoring the file anyway.

Optimizing Allocated Storage: Systems should maintain high resource uti-
lization. The storage autonomic manager allocates additional resources if needed to
guarantee the ability to store files. However, users might delete files later causing
the utilization of the storage space to drop. It is desirable that YASS be able to
self-optimize itself by releasing excess resources to improve utilization.

116 CHAPTER 7. NICHE PLATFORM

It is possible to design an autonomic manager that will: detect low resource
utilization, move file replicas stored on a chosen lowly utilized resource, and finally
release it. Since the functionality required by this autonomic manager is partially
provided by the storage and replica autonomic managers we will try to augment
them instead of adding a new autonomic manager, and use stigmergy to coordinate
them.

It is easy to modify the storage autonomic manager to detect low storage uti-
lization. The replica manager knows how to restore files. When the utilization of
the storage components drops, the storage autonomic manager will detect it and
will deallocate some resource. The deallocation of resources will trigger, through
stigmergy, another action at the replica autonomic manager. The replica autonomic
manager will receive the corresponding resource leave events and will move the files
from the leaving resource to other resources.

We believe that this is better than adding another autonomic manager for the
following two reasons: first, it allows avoiding duplication of functionality; and
second, it allows avoiding oscillation between allocating and releasing resources by
keeping the decision about the proper amount of storage at one place.

Improving File Availability. Popular files should have more replicas in order
to increase their availability. A higher level availability autonomic manager can be
used to achieve this through regulating the replica autonomic manager. The au-
tonomic manager consists of two management elements. The File-Access-Watcher
and File-Availability-Manager are shown in Figure 7.13. The File-Access-Watcher
monitors the file access frequency. If the popularity of a file changes dramatically
it issues a frequency change event. The File-Availability-Manager may decide to
change the replication degree of that file. This is achieved by changing the value of
the replication degree parameter in the File-Replica-Manager.

Figure 7.13: Hierarchical management used to implement the self-optimization con-
trol loop for file availability

Balancing File Storage. A load balancing autonomic manager can be used
for self-optimization by trying to lazily balance the stored files among storage com-
ponents. Since knowledge of current load is available at the Storage-Aggregator, we
design the load balancing autonomic manager by sharing the Storage-Aggregator
as shown in Figure 7.14. All autonomic managers we discussed so far are reactive.
They receive events and act upon them. Sometimes proactive managers might be
also required, such as in this case. Proactive managers are implemented in Niche
using a timer abstraction. The load balancing autonomic manager is triggered, by
a timer, every x time units. The timer event will be received by the shared Storage-
Aggregator that will trigger an event containing the most and least loaded storage
components. This event will be received by the Load-Balancing-Manager that will
move some files from the most to the least loaded storage component.

7.9. DEMONSTRATOR APPLICATIONS 117

Figure 7.14: Sharing of management elements used to implement the self-
optimization control loop for load balancing

Demonstrator II: Yet Another Computing Service (YACS)

This section presents a rough overview of YACS (Yet Another Computing Ser-
vice) developed using Niche (see [103, 109] for more detail). The major goal in
development of YACS was to evaluate the Niche platform and to study design and
implementation issues in providing self-management (in particular, self-healing and
self-tuning) for a distributed computing service. YACS is a robust distributed com-
puting service that allows a client to submit and execute jobs, which are bags of
independent tasks, on a network of nodes (computers). YACS guarantees execution
of jobs despite nodes leaving or failing. YACS supports checkpointing that allows
restarting execution from the last checkpoint when a worker component fails or
leaves. The YACS includes a checkpoint service that allows the task programmer
to perform task checkpointing whenever needed. Furthermore, YACS scales, i.e.,
changes the number of execution components, whenever the number of jobs/tasks
changes. In order to achieve high availability, YACS always maintains a number of
free masters and workers so that new jobs can be accepted without delay.

YACS executes jobs, which are collections of tasks, where a task represents
instance of work of a particular type that needs to be done. For example, in order
to transcode a movie, the movie file can be split into several parts (tasks) to be
transcoded independently and in parallel. Tasks are programmed by the user and
can be programmed to do just about anything. Tasks can be programmed in any
programming language using any programming environment, and placed in a YACS
job (bag of independent tasks) using the YACS API.

Figure 7.15 depicts YACS architecture. The functional part of YACS includes

118 CHAPTER 7. NICHE PLATFORM

distributed Masters (only one Master is shown in Figure 7.15) and Workers used to
execute jobs. A user submits jobs via the YACS Frontend component, which assigns
jobs to Masters (one job per Master). A Master finds Workers to execute tasks in
the job. When all tasks complete, the user is notified, and results of execution are
returned to the user through the YACS frontend. YACS is implemented in Java,
and therefore tasks to be executed by YACS can be either programmed in Java
by extending the abstract Task class, or wrapped in a Task subclass. The execute
method of the Task class has to be implemented to include the task code or the
code that invoke the wrapped task. The execute method is invoked by a Worker
that performs the task. When the method returns, the Worker sends to its Master
an object that holds results and final status of execution. When developing a Task
subclass, the programmer can override checkpointing methods to be invoked by the
checkpoint service to make a checkpoint or by the Worker to restart the task from
its last checkpoint. Checkpoints are stored in files identified by URLs.

There are two management objectives of the YACS management part: (1) self-
healing, i.e., to guarantee execution of jobs despite of failures of Masters and Work-
ers, and failures and leaves of Niche containers; (2) self-tuning, i.e., to scale ex-
ecution (e.g., deploy new Masters and Workers if needed whenever a new Niche
container joins the system).

The management elements responsible for self-healing include Master Watchers
and Worker Watchers that monitor and control Masters and Workers correspond-
ingly (see Figure 7.15). A Master Watcher deploys a sensor for the Master group it
is watching, and subscribes to the component failure events and the state change
events that might come from that group. A State Change Event contains a check-
point (a URL of the checkpoint file) for the job executed by the Master. Master
failures are reported by the Component Fail Event that causes the Watcher to find
a free Master in the Master group and reassign the failed group to it, or to deploy
a new Master instance if there are no free Masters in the group. The job check-
point is used to restart the job on another Master. A Worker Watcher monitors
and controls a group of Workers and responsible for healing Workers and restarting
tasks in the case of failures. A Worker Watcher performs in a in a similar way as
a Master Watcher described above.

The management elements responsible for self-tuning include Master-, Worker-
and Service-Aggregators and the Configuration Manager, which is on top of the
management hierarchy. The self-tuning control loop monitors availability of re-
sources (number of Masters and Workers) and adds more resources, i.e., deploys
Masters and Workers on available Niche containers upon requests from the Ag-
gregators. The Aggregators collect information about the status of job execution,
Master and Workers groups and resources (Niche containers) from Master, Worker
and Service Resource Watchers. The Aggregators request the Configuration Man-
ager to deploy and add to the service more Masters and/or Workers when the
number of Masters and/or Workers drops (because of failures) below predefined
thresholds or when there are not enough Masters and Workers to execute jobs and
tasks in parallel.

7.9. DEMONSTRATOR APPLICATIONS 119

Figure 7.15: Architecture of YACS (yet another computing service)

120 CHAPTER 7. NICHE PLATFORM

Evaluation
In order to validate and evaluate the effectiveness of Niche, in terms of efficacy and
overheads, the Niche execution environment and both demo applications, YASS
(Yet Another Storage Service) and YACS (Yeat Another Computing Services),
were tested and evaluated on the Grid5000 testbed (https://www.grid5000.fr/).
The performance and overhead of the Niche execution environment was evaluated
mostly using specially developed test programs: These confirm the expected per-
formance/fault model presented in section Niche: a Platform for Self-Managing
Distributed Applications.

The effectiveness of Niche for developing and executing self-managing applica-
tions was validated by YASS, YACS, and, in particular, with the gMovie demo
application built on top of YACS. The gMovie application has been developed to
validate the functionality and self-* (self-healing and self-configuration) properties
of YACS, as well as to validate and evaluate effectiveness and stability of the Niche
execution environment. The gMovie application performs transcoding of a given
movie from one format to another in parallel on a number of YACS workers. Re-
sults of our validation and evaluation indicate that the desired self-* properties,
e.g., self-healing in the presence of failures and resource churn can be obtained, and
that the programming is not particularly burdensome. Programmers with varying
experience were able to learn and understand Niche to the point that they could
be productive in a matter of days or weeks. For results of performance evaluation
of YACS, the reader is referred ton [109].

7.10 Policy Based Management

So far in our discussion we have shown how to program management logic directly
in the management elements using Java (in addition to ADL for initial deployment).
However, a part of the analysis and planning phases of the management logic can
also be programmed separately using policy languages. Note that currently the
developer has to implement the rest of management logic (e.g., actuation workflow)
in a programming language (e.g., Java) used to program the management part of
a self-managing application.

Policy-based management has been proposed as a practical means to improve
and facilitate self-management. Policies are sets of rules which govern the system
behaviors and reflect the business goals and objectives. Rules dictate management
actions to be performed under certain conditions and constraints. The key idea
of policy-based management is to allow IT administrators to define a set of policy
rules to govern behaviors of their IT systems, rather than relying on manually
managing or ad-hoc mechanics (e.g., writing customized scripts) [111]. In this way,
the complexity of system management can be reduced, and also, the reliability of
the system’s behavior is improved.

The implementation and maintenance (e.g., replacement) of policies in a policy-
based management are rather difficult, if policies are embedded in the management

7.10. POLICY BASED MANAGEMENT 121

logic and programmed in its native language. In this case, policy rules and scat-
tered in the management logic and that makes it difficult to modify the policies,
especially at runtime. The major advantages of using a special policy language
(and a corresponding policy engine) to program policies are the following:

• All related policy rules can be grouped and defined in policy files. This makes
it easier to program and to reason about policy-based management.

• Policy languages are at a higher level than the programming languages used
to program management logic. This makes it easier for system administrators
to understand and modify policies without the need to interact with system
developers.

• When updating policies, the new policies can be applied to the system at run
time without the need to stop, rebuild or redeploy the application (or parts
of it).

In order to facilitate implementation and maintenance of policies, language sup-
port, including a policy language and a policy evaluation engine, is needed. Niche
provides ability to program policy-based management using a policy language, a
corresponding API and a policy engine [62]. The current implementation of Niche
includes a generic policy-based framework for policy-based management using SPL
(Simplified Policy Language) [112] or XACML [113]. Both languages allow defining
policy rules (rules with obligations in XACML, or decision statements in SPL) that
dictate the management actions that are to be enforced on managed resources and
applications in certain situations (e.g., on failures). SPL is intended for management
of distributed systems; whereas XACML was specially designed for access control
rather than for management. Nevertheless, XACML allows for obligations (actions
to be performed) conveyed with access decisions (permit/denied/not-applicable);
and we have adopted obligations for management.

The policy framework includes abstractions (and corresponding API) of policies,
policy-managers and policy-manager groups. A policy is a set of if-then rules that
dictate what should be done (e.g., publishing an actuation request) when some-
thing has happened (e.g., a symptom that require management actions has been
detected). A Policy Manager is a management element that is responsible for load-
ing policies, making decisions based on policies and delegating obligations (actua-
tion requests) to Executors. Niche introduces a policy-manager group abstraction
that represents a group of policy-based managers sharing the same set of policies.
A policy-manager group can be created for performance or robustness. A Policy
Watcher monitors the policy repositories for policy changes and request reloading
policies. The Policy Engine evaluates policies and returns decisions (obligations).

Policy-based management enables self-management under guidelines defined by
humans in the form of management policies that can be easily changed at run-time.
With policy-based management it is easier to administrate and maintain manage-
ment policies. It facilitates development by separating of policy definition and

122 CHAPTER 7. NICHE PLATFORM

maintenance from application logic. However, our performance evaluation shows
that hard-coded management performs better than the policy-based management
due to relatively long policy evaluation latencies of the latter. Based on our evalu-
ation results, we recommend using policy-based management for high-level policies
that require the flexibility to be able to be rapidly changed and manipulated by
administrators at deployment and runtime. Policies can be easily understood by
humans, can be changed on the fly, and separated from development code for easier
management.

Figure 7.16: YASS self-configuration using policies

Policy based management can be introduced to the management part of an
application by adding a policy manager in the control loop. Figure 7.16 depicts an
example on how to introduce a policy manager in the Storage Autonomic Manager
used in the YASS demonstrator (see Figure 7.12). The policy manager receives
monitoring events such as total load in the system. The policy manager then
evaluates the policies using the policy engine. An example of a policy used by
the Storage Autonomic Manager for releasing extra storage is shown below. The
example shows one policy from the policy file written in SPL. When a policy fires
(the condition is true) the state of the manager may change and actuation events

7.11. CONCLUSION 123

may be triggered.

...
Policy {
Declaration {
lowloadthreshold = 500;
}
Condition {
storageInfo.totalLoad <= lowloadthreshold
}
Decision {
manager.setTriggeredHighLoad(false) &&
manager.delegateObligation("release storage")
}
}:1;
...

7.11 Conclusion

The presented management framework enables the development of distributed com-
ponent based applications with self-* behaviors which are independent from appli-
cation’s functional code, yet can interact with it when necessary. The framework
provides a small set of abstractions that facilitate robust and efficient application
management even in dynamic environments. The framework leverages the self-*
properties of the structured overlay network which it is built upon. Our prototype
implementation and demonstrators show the feasibility of the framework.

In dynamic environments, such as community Grids or Clouds, self-management
presents four challenges. Niche mostly meets these challenges, and presents a pro-
gramming model and runtime execution service to enable application developers to
develop self-managing applications.

The first challenge is that of the efficient and robust resource discovery. This
was the most straightforward of the challenges to meet. All resources (containers)
are members of the Niche overlay, and resources can be discovered using the overlay.

The second challenge is that of developing a robust and efficient sensing and ac-
tuation infrastructure. For efficiency we use a push (i.e., publish/subscribe) rather
than a pull mechanism. In Niche all architectural elements (i.e., both functional
components and management elements) are potentially mobile. This is necessary
in dynamic environments but it means that delivering sensing events and actuation
commands is non-trivial. The underlying overlay provides efficient sensing and ac-
tuation storing locations in a DHT-like structure, and through replication (as in
a peer-to-peer system) sensing and actuation is robust. In terms of messaging all
sensing and actuation events are delivered at least once.

The third challenge is to avoid a management bottleneck or single-point-of-
failure. We advocate a decentralized approach to management. Management func-
tions (of a single application) should be distributed among several cooperative au-
tonomic managers that coordinate (as loosely-coupled as possible) their activities

124 CHAPTER 7. NICHE PLATFORM

to achieve the overall management objectives. While multiple managers are needed
for scalability, robustness, and performance, we found that they are also useful for
reflecting separation of concerns. We have worked toward a design methodology,
and stipulate the design steps to take in developing the management part of a
self-managing application including spatial and functional partitioning of manage-
ment, assignment of management tasks to autonomic managers, and co-ordination
of multiple autonomic managers.

The fourth challenge is that of scale, by which we meant that in dynamic systems
the rate of change (join, leaves, failure of resources, change of component load etc.)
is high and that it was important to reduce the need for action/communication in
the system. This may be open-ended task, but Niche contained many features that
directly impact communication. The sensing/actuation infrastructure only delivers
events to management elements that directly have subscribed to the event (i.e.,
avoiding the overhead of keeping management elements up-to-date as to component
location). Decentralizing management makes for better scalability. We support
component groups and bindings to such groups, to be able to map this useful
abstraction to the best (known) efficient communication infrastructure.

7.12 Future Work

Our future work includes issues in the areas of platform improvement, management
design, management replication, high-level programming support, coupled control
loops, and the relevance of the approach in other domains.

Currently, there are many aspects of the Niche platform that could be improved.
This includes better placement of managers, more efficient resource discovery, and
improved containers, the limitations of which were mentioned in section on the
Niche platform (e.g., enforcing isolation of components).

We believe that in dynamic or large-scale systems that decentralized manage-
ment is a must. We have taken a few steps in this direction but additional case
studies with the focus on the orchestration of multiple autonomic managers for a
single application need to be made.

Robustifying management is another concern. Work is ongoing on a Paxos-based
replication scheme for management elements. Other complementary approaches
will be investigated, as consistent replication schemes are heavyweight.

Currently, the high-level (declarative) language support in Niche is limited.
ADLs may be used for initial configuration only. For dynamic reconfiguration the
developer needs to use the Niche API directly, which has the disadvantage of being
somewhat verbose and error-prone. Workflows could be used to lift the level of
abstraction.

There is also the issue of coupled control loops, which we did not study. In our
scenario multiple managers are directly or indirectly (via stigmergy) interacting
with each other and it is not always clear how to avoid undesirable behavior such
as rapid or large oscillations which not only can cause the system to behave non-

7.13. ACKNOWLEDGMENTS 125

optimally but also increase management overhead. We found that it is desirable
to decentralize management as much as possible, but this probably aggravates the
problems with coupled control loops. Although we did not observe this in our two
demonstrators, one might expect problems with coupled control loops in larger and
more complex applications. Application programmers should not need to handle
coordination of multiple managers (where each manager may be responsible for
a specific aspect). Future work might need to address the design of coordination
protocols that could be directly used or specialized.

There is another domain, one that we did not target, where scale is also a
challenge and decentralization probably necessary. This is the domain of very large
(Cloud-scale) applications, involving tens of thousands of machines. Even if the
environment is fairly stable the sheer number of involved machines will generate
many events, and management might become a bottleneck. It would be of interest
to investigate if our approach can, in part of wholly, be useful in that domain.

7.13 Acknowledgments

We thank Konstantin Popov and Joel Höglund (SICS), Noel De Palma (INRIA),
Atli Thor Hannesson, Leif Lindbäck, and Lin Bao, for their contribution to de-
velopment of Niche and self-management demo applications using Niche. This
research has been supported in part by the FP6 projects Grid4All (contract IST-
2006-034567) and SELFMAN (contract IST-2006-034084) funded by the European
Commission. We also thank the anonymous reviewers for their constructive com-
ments.

