
ID-Replication

for Structured Peer-to-Peer Systems�

Tallat M. Shafaat1, Bilal Ahmad1, and Seif Haridi2

1 KTH - Royal Institute of Technology, Sweden
2 Swedish Institute of Computer Science, Sweden

{tallat,bilala,haridi}@kth.se

Abstract. Structured overlay networks, like any distributed system, use
replication to avoid losing data in the presence of failures. In this paper,
we discuss the short-comings of existing replication schemes and pro-
pose a technique for replication, called ID-Replication. ID-Replication al-
lows different replication degrees for keys in the system, thus allowing
popular data to have more copies. We discuss how ID-Replication is
less sensitive to churn compared to existing replication schemes, which
makes ID-Replication better suited for building consistent services on
top of overlays compared to other schemes. Furthermore, we show why
ID-Replication is simpler to load-balance and more secure compared to
successor-list replication. We evaluate our scheme in detail, and compare
it with successor-list replication.

1 Introduction

Structured overlay networks provide the infrastructure used to build scalable
and fault-tolerant key-value stores, e.g. Cassandra [9]. While scalability comes
with using consistent hashing, fault-tolerance is achieved by replication. There
are different strategies for replication in overlays, such as successor-list replica-
tion [17], using multiple hash functions, and symmetric replication [3]. Out of
these, successor-list replication is the most popular and widely used in ring-based
overlays. For instance, overlays including Chord [17], Pastry [14] (with a minor
modification), and Cassandra [9], all use successor-list replication.

It turns out that successor-list (SL) replication has some drawbacks. SL-
replication is highly sensitive to churn; hence a single node join or failure event
results in updating multiple replication groups. Furthermore, the replication de-
gree has to be constant throughout the system, restricting popular/hot data from
having more replicas. Next, SL-replication is inherently difficult to load-balance.
Finally, SL-replication is less secure and presents a bottleneck since there is a
master replica of each replication group and all requests for that group have to
go through the master replica. We discuss these issues in detail in Section 2.1.

In this paper, we propose a replication strategy called ID-Replication. ID-
Replication does not suffer from the afore-mentioned drawbacks of SL-replication.

� We would like to thank Cosmin Arad, Ahmad Al-Shistawy and Niklas Ekström for
their valuable discussions and feedback.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 364–376, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

ID-Replication for Structured Peer-to-Peer Systems 365

It allows varied replication degrees in the system, and requests do not need to
go through the master replica. ID-Replication gives more control to an adminis-
trator, without hampering self-management. Furthermore, ID-Replication is less
sensitive to churn, thus being better suited to be used for building consistent
services and in asynchronous networks where false failure detections are a norm.
Since we use a generic design, ID-Replication can be used in any structured
overlay network.

In this paper, we discuss the short-comings of popular existing replication
schemes. We explain ID-Replication in detail and discuss the ideology be-
hind the design decisions. We perform a thorough evaluation and compare ID-
Replication to SL-replication.

2 Preliminaries

An overlay makes use of an identifier space, which for our purposes is defined
as a set of integers {0, 1, · · · ,N − 1}, where N is some apriori fixed, large, and
globally known integer. This identifier space is perceived as a ring that wraps
around at N − 1. Each node in the system has a unique identifier from the
identifier space. The successor of a node with identifier p is the first node found
going in clockwise direction on the ring starting at p. Similarly, the predecessor of
a node with identifier q is the first node met going in anti-clockwise direction on
the ring starting at q. The successor-list of a node m consists of m’s c immediate
successors, where c is typically set to log2(s), where s is the network size.

Each node q is responsible for storing keys between q’s predecessor and q.
For a replication degree of r in SL-replication, a key k is stored on the node q
that is responsible for storing k, and r− 1 immediate successors of q. In essence,
the key is stored on the responsible node q, and the first r − 1 members of q’s
successor-list (see Figure 1). In Fig 1, node 30 is responsible for storing keys
k ∈ (20, 30], and k are replicated on {30, 35, 40}, which is called the replica
group for k. As nodes join and leave the system, the successor, predecessor and
successor-lists are updated, leading to changes in the replica groups and transfer
of keys between nodes.

Fig. 1. Successor-list replication with replication degree 3. The replication group for
keys ∈ [21, 30] is {30, 35, 40}. Similarly, responsibility of node 35, i.e. (30, 35], is repli-
cated on 3 nodes encountered clockwise from 35, i.e. 35, 40 and 45.

366 T.M. Shafaat, B. Ahmad, and S. Haridi

Fig. 2. A new node 33 joins in a system using successor-list replication and degree 3.
6 nodes are involved in making changes, and 4 replication groups have to be updated.

2.1 Problems with Existing Schemes

Replica Groups Affected by Churn: Churn - node joins and failures - is considered
a norm in P2P systems. A desirable behaviour is that a churn event should
not effect the configuration of an overlay greatly. In SL-replication, the unit of
replication is a node’s assigned key space, also known as the node’s responsibility.
For instance in Fig. 1, the key space assigned to node 30 is (20, 30], which is
replicated on 35 and 40. Consequently, for a replication degree of r, each node
replicates r node responsibilities going anti-clockwise.

When a new node joins the overlay, it divides a node responsibility range into
two ranges. Similarly, a node failure results in merger of two node responsibilities.
Since each node responsibility range is replicated on r nodes, and each node
replicates r ranges, a single churn event results in reconfiguration of r replication
groups. Furthermore, a join event involves action on behalf of 2× r nodes, and
a failure involves action on behalf of (2× r)− 1 nodes. This is shown in Figure 2
where a new node 33 joins the system in a state shown in Figure 1. Replication
groups G1, G2, and G3 need to be updated, and nodes 20, 30, 33, 35, 40, 45 are
involved in such updates.

This approach has multiple drawbacks. First, a single churn event is overly
complicated, involving many nodes. Second, consistent services built on top of
overlays require consistent views of replication groups. For instance, Scatter [4]
and Etna [12], both require consensus whenever a replication group changes. A
high number of reconfigurations for a single churn event is undesirable. Lastly,
the time duration needed to stabilize for a single churn event is very high.

Load-Balancing: We argue that SL-replication is complicated to load-balance.
Consider an unbalanced system, such as the one depicted in Figure 1. It is
unbalanced in-terms of keys since node 30 is storing 10 keys while all other
nodes are storing 5 keys. A simple load-balancing mechanism, such as [8], would
move node 30 counter-clockwise to handover responsibility of some keys to 35,
or move 20 clockwise so that 20 takes over responsibility of some keys from 30.
Since keys ∈ (20, 30] are replicated on 3 nodes, such a movement will reduce
load from one replica node only. Hence, r node movements on the identifier ring
are needed to balance the load of one key range.

ID-Replication for Structured Peer-to-Peer Systems 367

Security: In SL-replication, all requests for a key k end up on the node n respon-
sible for k. This has two drawbacks. First, it is difficult to load-balance requests
since all requests for k pass through n before they can be routed to a replica.
Hence, n becomes a bottleneck. Second, if n is an adversary, it can launch a
malicious attack [16].

Symmetric Replication: In Symmetric Replication [3], keys are stored symmet-
rically on the identifier space using equivalence classes. This leads to requiring
a complicated bulk operation for retrieving all keys in a given range. Node joins
and failures have to use such a bulk operation to find data to be replicated.

3 ID-Replication

In this section, we describe a replication scheme for ring-based overlays, called
ID-Replication. We first provide an overview of ID-Replication, give a detailed
algorithmic specification, and then discuss its desirable properties.

3.1 Overview

We set out to design a replication scheme that is less sensitive to churn in terms of
the number of replication groups that need to be reconfigured. In ID-Replication,
we use sets of nodes, called groups, instead of individual nodes as the building
blocks for the overlay. Instead of partitioning the identifier space amongst nodes,
we partition the identifier space among groups. Thus, compared to the simple
structured overlay model where nodes are responsible for key ranges, we assign
responsibility ranges to groups. Consequently, groups are assigned identifiers.
The idea of using groups instead of nodes can be applied to the majority of the
overlays. For the sake of simplicity, we use Chord-like notation in this paper.

All nodes within a group have the same identifier as the group. To distinguish
nodes within a group, each node also has a group-local identifier. The group-
local identifiers of nodes only need to be unique within the group. For efficient
routing, each node maintains long range links, such as fingers in Chord.

The model of ID-Replication is shown in Figure 3. There are five groups on the
identifier space: 20, 30, 35, 40 and 45. The successor of a group is the first group
encountered going clockwise from that group, e.g. group 40 is the successor of
group 35. Similarly, the predecessor of a group is the first group encountered
going anti-clockwise, e.g. 30 is the predecessor of 35. A group is responsible
for the key range from its predecessor to itself, e.g. group 35 is responsible for
keys ∈ (30, 35].

Each group is composed of a number of nodes, e.g. group 30 contains nodes
{1, 2, 3}. The nodes of a group are the replicas for the keys that the group is
responsible for. The size of each group is specified using two parameters: rmin

and rmax. Thus, the replication degree of keys is always between rmin and rmax.
To maintain the ring under dynamism, we employ a modified version of pe-

riodic stabilization [17] that operates on groups instead of nodes. Furthermore,

368 T.M. Shafaat, B. Ahmad, and S. Haridi

we use gossiping between nodes in a group to synchronize the view of the group
among the group members.

We use two operations for reconfiguring groups: Merge and Split. When the
size of a group G1 drops below rmin, we need to merge G1’s members with
another group G2 such that the size of the merged group should be less than
rmax. The merged group G = G1 ∪G2 retains the identifier of G2.

When the size of a group G becomes larger than rmax, we need to split it into
two groups, G1 and G2, such that the size of each split group is larger than or
equal to rmin. The identifiers of G1 and G2 are calculated in a way to increase
the load-balance in the system.

A failure of a node can trigger a merge. Similarly, a new node joins an existing
group, which can result in a split.

Fig. 3. A configuration of ID-Replication. Replica groups are denoted by a single iden-
tifier on the identifier space ring. Nodes in a replica group G1 are responsible for storing
keys between G1’s predecessor replica group’s identifier and G1. Nodes within a replica
group are differentiated by using group-local identifiers (1, 2, and 3 in the figure).

3.2 Algorithm

We give a full specification of ID-Replication as Algorithm 1 and 2 in an rpc-
notation. Each node stores a group-local identifier lid, a group identifier id, and
a set of nodes in its group, group. An rpc-call is denoted by ‘::’. For instance,
m::id denotes the value of id on node m.

A new node n joins the system by attempting to become a member of a group
of size less than rmax to avoid a split operation. Ideally, n should join the lowest-
sized group. Such a group can be found in a best-effort manner by a random
walk, or by maintaining directories that store such information (as in [5]). If a
group with less than rmax members is not found, n will join a group causing it
to split into two.

Nodes maintain successor-lists to preserve the ring-geometry amid churn. The
difference between Chord and ID-Replication successor-lists is that the lists are
composed of successive groups instead of successive nodes. If all nodes in the
successor group of G fail or merge with another group,G points to the next group
in the successor-list (Algo 1, line 13). For ring and successor-lists maintenance, we
use an algorithm similar to Chord’s periodic stabilization, where nodes belonging
to a group periodically stabilize the ring with nodes in their successor group
(Algo 1, lines 15–27).

ID-Replication for Structured Peer-to-Peer Systems 369

Algorithm 1. ID-Replication(part 1): Periodic stabilization for joins and failures

� ‘::’ denotes a remote procedure call
1: n.join(seed) � Periodically retried with new seed if request fails
2: seed::join request(n)
3:
4: n.join request(m)
5: if |group| < rmax then � if n’s replica group has space
6: group := group ∪ {m}
7: m :: 〈id, group〉 := 〈id, group〉 � Set joining node’s id and group

8:
9: n.node failure(f) � Node f failed
10: group := group− {f}
11: pred.group := pred.group− {f}
12: succ.group := succ.group− {f}
13: if succ.group == {} then
14: succ := next in successor groups()

15:
� Periodically check for new successor and predecessor groups

16: n.stabilize ring()
17: random succ := select random(succ.group, 1) � Select a random node
18: 〈x.id, x.group〉 := rand succ :: pred.〈id, group〉
19: if x.id ∈ (id, succ.id) then
20: 〈succ.id, succ.group〉 := 〈x.id, x.group〉
21: succ.group := select random(succ.group, 1):: group � Update my view
22: ∀p ∈ succ.group do p :: notify(n, id, group)
23:
24: n.notify(src, pid, pgroup)
25: if pid ∈ (pred.id, id) or src ∈ pred.group then
26: 〈pred.id, pred.group〉 := 〈pid, pgroup〉
27:

Say the size of a group Gsize is more than rmin. In such a case, even if
Gsize − rmin nodes, called standby nodes, leave the group, it will neither violate
the replication degree nor require a merge operation. These standby nodes can
potentially become part of a group in which a node fails. Hence, standby nodes
advertise themselves (Algo 2, lines 16–17) by either gossiping, or periodically
updating their address information into directories (as in [5]).

Each node n periodically checks if the size of its group, Gsize, is between
rmin and rmax. If Gsize is smaller than rmin, then n searches for a standby node
by gossiping or contacting a directory, and tries to include it in n’s group. If a
standby node cannot be found, n triggers a merge operation (Algo 2, lines 7–14).
A merger is required in this case to maintain a replication degree of at least rmin.
Similarly, if Gsize is larger than rmax, n initiates the split operation by dividing
the group into two groups (Algo 2, lines 1–6). Furthermore, n periodically gossips
with its group members to synchronize their view of the group, and can use anti-
entropy to update data items.

370 T.M. Shafaat, B. Ahmad, and S. Haridi

Algorithm 2. ID-Replication(part 2): Split and Merge operations

� Periodically attempt to keep rmin < |group| < rmax

1: every γ time units and |group| > rmax at n � Split operation
2: peers to split := get top(sort(group), rmin) � Get rmin nodes with lowest lid
3: ∀ p ∈ peers to split do p::〈id, group〉 := 〈new key, peers to split〉
4: peers to retain := group− peers to split
5: ∀ p ∈ peers to retain do p::〈id, group〉 := 〈id, peers to retain〉
6: end event

7: every γ time units and |group| < rmin at n � Due to failures
8: node := search standby node()
9: if node = nil then � Search failed, Merge with successor group
10: 〈new id, new group, new succ〉 := 〈succ.id, succ.group∪group, succ :: succ〉
11: ∀ p ∈ new group do p::〈id, group, succ〉 := 〈new id, new group, new succ〉
12: else � Make the standby node part of n’s group
13: node::〈id, group, succ, pred〉 := 〈id, group ∪ {node}, succ, pred〉
14: end event

15: every δ time units at n � Periodically synch view with group-mates
16: if index of(n, sort(group)) > rmin then
17: publish as standby node(n)

18: gossip view(group) � Synchronize group view (& data) with group members
19: end event

3.3 Discussion

As we discuss in Section 3.1 and evaluate in Section 4, ID-Replication requires
less replication group reconfigurations per churn event. This makes ID-Replication
ideal for building a consistent DHT. Each replication group can be considered as
a replicated state machine and operations are performed on the data in a total
order within the group. To handle dynamism, we need to support the merge and
split operations where the view of a group changes. For this, we can use a re-
configurable replicated state machine, such as SMART [11]. Using SMART with
SL-replication is both complicated and expensive as replicated state machines
are implemented using Consensus. Since ID-Replication requires fewer replica-
tion group reconfigurations per churn event, it will require fewer instances of
consensus. Furthermore, in an asynchronous system, false failure suspicions are
very common, which will trigger much more reconfiguration requests in SL-
replication.

ID-Replication allows the system user to have different replication degrees
for different keys. We use two parameters, rmin and rmax, to control the repli-
cation degree. For a given range, the number of replicas is at least rmin and
at most rmax. Thus, popular or critical data can have more copies than other
data by setting higher values of rmin and rmax for the corresponding key range.
Furthermore, requests do not need to go through a master replica. Hence, ID-
Replication does not have any bottlenecks, and requests can be load-balanced

ID-Replication for Structured Peer-to-Peer Systems 371

across all replicas. Finally, such a design avoids the security vulnerabilities of
SL-replication [16].

Owing to the design of ID-Replication, a system administrator has much more
control over the system compared to SL-replication. For instance, the admin-
istrator can control how many and which machines should serve a particular
key-range. This also allows the usage of specialized hardware for handling re-
quests for certain keys. On the contrary, a node in SL-replication is responsible
for replicating multiple key ranges (r key partitions anti-clockwise), making it
harder to control.

Routing tables, e.g. fingers in Chord, can also be build using groups. Each
routing pointer can point to a group, containing addresses of multiple nodes.
Greedy routing can be done on group identifiers, and a lookup can be routed
to a random node in the group. For fault-tolerance and better performance, a
lookup can be routed by forwarding in parallel to all nodes in the groups at each
hop, and considering only the first reply. While such a mechanism consumes
more bandwidth, it (a) is more reliable as it can tolerate failure of nodes in the
path, and (b) has lower latency as the lookup can exploit multiple paths. Such
parallel lookup techniques have also been proposed for Chord like overlays [10].

4 Evaluation

To evaluate our work, we simulated both ID-Replication and SL-replication in
Kompics [2]. The simulations were performed with an initial network size of
2000 nodes, using the King dataset [6] for message latencies between the nodes.
Each experiment had the following structure: we initialized the overlay with
2000 nodes. Once the overlay converged, we subjected it to 2000 churn events
(1000 joins and 1000 failures), and measured the metrics till the topology con-
verged. The lifetimes of nodes had a poisson distribution, and each node failure
was followed by a join event. We evaluated both replication schemes under var-
ious levels of churn by changing the median parameter of poisson distribution
for the lifetimes. A higher median lifetime results in lower churn rate. We per-
formed simulations for periodic stabilization periods of 30 and 60 seconds. The
experiment results for both stabilization rates were the same, so we omit graphs
for stabilization delay of 60 seconds due to space restrictions. We simulated 3
directories for nodes to publish and find standby nodes, and used a value of
rmax = 2× rmin. Such directories can be implemented by using predefined keys,
and storing information under those keys [5]. We repeated each experiment for
10 seeds and report the averages.

4.1 Replication Groups Restructured

We measured the number of replication groups that need to be reconfigured due
to the churn events (see Figure 4). The x-axis shows the median lifetime used
for nodes, while the y-axis depicts the number of replication groups restructured
per churn event. As analyzed earlier, the figure shows that there are r number

372 T.M. Shafaat, B. Ahmad, and S. Haridi

10 20 30 40 50 60
1

2

3

4

5

6

7

Nodes median lifetime [mins]

G
ro

up
s

re
st

ru
ct

ur
ed

/c
hu

rn
 e

ve
nt SL−rep, r=7

SL−rep, r=5
SL−rep, r=3
ID−rep, r

min
=7

ID−rep, r
min

=5

ID−rep, r
min

=3

Fig. 4. Number of replica-
tion groups restructured per
churn event

10 20 30 40 50 60

4

6

8

10

12

Nodes median lifetime [mins]

N
od

es
 in

vo
lv

ed
/c

hu
rn

 e
ve

nt
Fig. 5. Number of nodes in-
volved in updates for each
churn event

10 20 30 40 50 60
10

15

20

25

30

35

Nodes median lifetime [mins]

K
ey

s
re

sh
uf

fle
d/

ch
ur

n
ev

en
t

Fig. 6. Number of keys
transferred between nodes
converge for both schemes

of reconfigurations per churn event for SL-replication, while the corresponding
value stays close to one for ID-Replication. In this case, ID-Replication does not
depend on the replication degree whereas SL-replication does. SL-replication
has lower restructuring count at higher churn rates than lower rates. The reason
being that at high churn, simultaneous node failures in a replica group can mask
the cost of multiple node failures with the cost of a single node failure, since, all
the failed nodes will be replaced in a single periodic stabilization round.

ID-Replication has a very low group restructuring cost and is unaffected by
both r and churn rate because majority of churn events restructure only one
group. Splits, merges and standby node movement restructure two groups. Since
these events occur at a low frequency, the restructuring cost stays low.

4.2 Nodes Involved in Updates

Each churn event requires action on behalf of a certain number of nodes. In this
experiment, we counted the number of nodes involved in the reconfiguration
updates. This count is depicted in Figure 5, normalised against the number of
churn events. As analyzed in Section 2.1, the count for SL-replication approaches
2 × r. Since ID-Replication involves only one group for a single churn event
(excluding splits and merges), the number of nodes involved to handle churn
stays close to r. It is noteworthy that the performance of ID-Replication improves
as the mean life time of nodes increases, which is opposite to SL-replication
behaviour. At lower churn rates, the number of splits and merges is reduced
because of the join mechanism of ID-Replication where new nodes try to join
groups with low node count. Since at low churn rates the topology changes
very slowly, nodes take better decisions about which group to join. This reduces
splits and merges, thus resulting in fewer nodes involved at low churn rates. Such
behaviour makes ID-Replication ideal for managed systems in data-centers and
cloud computing where the churn rate is low.

ID-Replication for Structured Peer-to-Peer Systems 373

4.3 Keys Reshuffled

Next, we evaluate the number of keys that have to be transferred between nodes.
Figure 6 shows the comparison between SL-replication and ID-Replication with-
respect-to the number of keys re-shuffled per churn event. At lower churn rates,
both SL-replication and ID-Replication converge to the same value. However,
the two replication schemes behave differently at higher churn rates.

The reason behind SL-replication’s reduced cost at high churn rate is because
nodes become aware of the change in their responsibilities after each periodic
stabilization step. Now, when the mean lifetime of nodes is very short it may
happen that a failed node is replaced by a new node, before other nodes had the
chance to detect its failure. This way the join event masks the cost associated
with the failure of the node. Furthermore, a new node may fail shortly after
joining (within a periodic stabilization window) without anyone noticing its join
and failure, thus avoiding key re-shuffling.

The increased cost of ID-Replication at high churn is due to a high merge
rate. Merge is costly in terms of keys re-shuffled as it results in transferring keys
of two responsibility ranges by all members of the two groups being merged. On
the other hand, the movement of a standby node requires the transfer of one
responsibility range only once. When the churn rate is higher than the rate at
which the standby nodes are being advertized, the number of merge operations
is naturally higher. However, when the churn rate becomes comparable to the
rate of publication of standby nodes, the system involves more standby node
movements and thus reducing the number of merge operations. This phenomena
is depicted in Figure 7, illustrating the number of splits, merges, and standby
node movements per churn event. The figure shows that as the mean lifetime of
nodes is increased (churn rate is reduced), the rate of standby node movements
increases, which results in a decreased merge rate. Furthermore, at low churn
rates, the search for lowest size group gets better results. This experiment sug-
gests that for higher rates of churn, the rate of updating the directories with
group-size and standby node information should be higher as well. It is worth
noting that a lifetime of 10 minutes is considered a very high churn rate for a
DHT.

4.4 Overhead of Maintaining Groups

ID-Replication maintains groups using a gossiping protocol such as Cyclon [18],
which adds to the maintenance cost. Cyclon is inexpensive, especially given that
the group sizes are small and the churn rates are moderate in cloud environments.
We used a gossip rate equal to the periodic stabilization rate (30 seconds), and
measured maintenance cost for various network sizes. Our results show that the
gossiping overhead is approximately the same as periodic stabilization. Hence,
using ID-Replication doubles the maintenance bandwidth requirement and the
number of messages exchanged is almost 1.7 times higher. The maintenance cost
is still moderate and negligible given today’s interconnects.

374 T.M. Shafaat, B. Ahmad, and S. Haridi

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 10 20 30 40 50 60

M
er

ge
s,

Sp
lit

s,
St

an
db

y
no

de
s

/c
hu

rn
 e

ve
nt

Node median lifetime (minutes)

Merges
Splits

Standby node movement

Fig. 7. The number of standby
node movements increases with de-
creasing churn rate, thus reducing
group merges

0 10 20 30 40
0

100

200

300

400

500

600

700

Time [mins]

N
um

be
r

of
 g

ro
up

s

Group size 3
Group size 4
Group size 5

Fig. 8. Number of groups for
sizes between 3 (rmin) and 6
(rmax)

4.5 Evolution of Groups

Finally, we evaluated the size of groups over time, where it is desirable that the
group sizes are close to rmin. Figure 8 shows the number of groups for each size
between rmin and rmax over time for a poisson churn with mean 60 minutes.
The figure confirms that most of the groups have a size of 3, which is rmin. We
observed similar trends for other churn rates as well, which we omit here due to
space constraints.

5 Related Work

Symmetric replication [3] proposes an alternative replication scheme for struc-
tured overlays. However, it requires a bulk search operation to find all data items
in a key range for every join and fail event. Such a bulk operation is complex,
requires extra messages, and induces a delay before the churn event is completely
catered. In contrast, we do not require any such bulk operation.

Scatter [4] uses a similar scheme for achieving consistency in DHTs. Com-
pared to our scheme, they further sub-divide the groups to differentiate between
key responsibilities of each node. Furthermore, they do not evaluate or argue for
the usefulness of their scheme. We provide algorithmic specification of our work,
backed by design decisions and evaluation with comparison to SL-replication.

P-Grid [1] uses a notion called structural replication, where nodes form groups
and data is replicated among nodes in these groups. Like ID-Replication, different
groups can have different replication degrees. The geometry of P-Grid is a tree,
while we give a solution for overlays with a ring geometry, which is the geometry
of a majority of structured overlays. Compared to P-Grid, our solution uses
consistent hashing [7], thus leveraging properties of consistent hashing such as
self-management, load balancing, and minimized repartitioning of data under
churn.

Agyaat [15] proposes to use groups of nodes, called clouds, to provide mutual
anonymity in structured overlays. Compared to ID-replication, Agyaat main-
tains an R-Ring and an overlay with the clouds, which is more complicated and

ID-Replication for Structured Peer-to-Peer Systems 375

requires some nodes to be part of two overlays. A similar approach is taken by
Narendula et al. [13], where nodes form sub-overlays with trusted nodes for
better access control in P2P data management.

6 Conclusion

This paper discusses popular approaches employed for replication in structured
overlay networks, including successor-list replication and symmetric replication,
and outlines their drawbacks. We present the design, algorithmic specification,
and evaluation of ID-Replication, a replication scheme for structured overlays
that does not suffer from the afore-mentioned problems. It does not require
requests to go through a particular replica. Furthermore, ID-Replication allows
different replication degrees for different key ranges. This allows for using higher
number of replicas for hotspots and critical data. We provide detailed evaluation
of ID-Replication, and compare it with SL-replication. Our results show that ID-
Replication is less sensitive to churn than SL-replication, which makes it better
suited for building consistent services and for working in asynchronous networks
where inaccurate failure detections are a norm.

Future Work: Due to its low sensitivity to churn, a possible step forward would
be to build a consistent key-value store using ID-Replication. Each replication
group can act as a replicated state machine, where operations are performed in
a total order on the replicas. Since replica groups change with dynamism, we
propose using a reconfigurable replicated state machine such as SMART [11].

References

1. Aberer, K., Cudré-Mauroux, P., Datta, A., Despotovic, Z., Hauswirth, M.,
Punceva, M., Schmidt, R.: P-Grid: a self-organizing structured P2P system. SIG-
MOD Record 32(3), 29–33 (2003)

2. Arad, C., Dowling, J., Haridi, S.: Developing, simulating, and deploying peer-to-
peer systems using the Kompics component model. In: COMSWARE 2009 (2009)

3. Ghodsi, A., Alima, L.O., Haridi, S.: Symmetric Replication for Structured Peer-to-
Peer Systems. In: Moro, G., Bergamaschi, S., Joseph, S., Morin, J.-H., Ouksel, A.M.
(eds.) DBISP2P 2005 and DBISP2P 2006. LNCS, vol. 4125, pp. 74–85. Springer,
Heidelberg (2007)

4. Glendenning, L., Beschastnikh, I., Krishnamurthy, A.: Scalable Consistency in
Scatter. In: ACM SOSP, pp. 15–28 (2011)

5. Godfrey, B., Lakshminarayanan, K., Surana, S., Karp, R., Stoica, I.: Load balancing
in dynamic structured P2P systems. In: Proceedings of the 23rd Conference of the
IEEE Computer and Communications Societies (2004)

6. Gummadi, K.P., Saroiu, S., Gribble, S.D.: King: estimating latency between arbi-
trary internet end hosts. In: IMW 2002: Proceedings of the 2nd ACM SIGCOMM
Workshop on Internet Measurment, pp. 5–18. ACM, New York (2002)

7. Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.: Con-
sistent hashing and random trees: distributed caching protocols for relieving hot
spots on the world wide web. In: STOC, pp. 654–663. ACM (1997)

376 T.M. Shafaat, B. Ahmad, and S. Haridi

8. Karger, D.R., Ruhl, M.: Simple Efficient Load Balancing Algorithms for Peer-to-
Peer Systems. In: Voelker, G.M., Shenker, S. (eds.) IPTPS 2004. LNCS, vol. 3279,
pp. 131–140. Springer, Heidelberg (2005)

9. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
SIGOPS Oper. Syst. Rev. 44, 35–40 (2010)

10. Leong, B., Liskov, B., Demaine, E.D.: Epichord: Parallelizing the chord lookup
algorithm with reactive routing state management. Computer Communica-
tions 29(9), 1243–1259 (2006)

11. Lorch, J.R., Adya, A., Bolosky, W.J., Chaiken, R., Douceur, J.R., Howell, J.: The
smart way to migrate replicated stateful services. In: EuroSys (2006)

12. Muthitacharoen, A., Gilbert, S., Morris, R.: Etna: a Fault-tolerant Algorithm for
Atomic Mutable DHT Data. Mit technical report, MIT (June 2005)

13. Narendula, R., Miklós, Z., Aberer, K.: Towards access control aware p2p data
management systems. In: EDBT/ICDT Workshops, pp. 10–17 (2009)

14. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

15. Singh, A., Gedik, B., Liu, L.: Agyaat: mutual anonymity over structured p2p net-
works. Internet Research 16(2), 189–212 (2006)

16. Sit, E., Morris, R.: Security Considerations for Peer-to-Peer Distributed Hash Ta-
bles. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS,
vol. 2429, pp. 261–269. Springer, Heidelberg (2002)

17. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek,
F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Transactions on Networking (TON) 11(1), 17–32 (2003)

18. Voulgaris, S., Gavidia, D., van Steen, M.: Cyclon: Inexpensive membership man-
agement for unstructured p2p overlays. J. Network Syst. Manage. 13(2), 197–217
(2005)

