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Abstract—Elasticity in Cloud computing is an ability of a
system to scale up and down (request and release resources)
in response to changes in its environment and workload. Elas-
ticity can be achieved manually or automatically. Efforts are
being made to automate elasticity in order to improve system
performance under dynamic workloads. In this paper, we report
our experience in designing an elasticity controller for a key-
value storage service deployed in a Cloud environment. To
design our controller, we have adopted a control theoretic
approach. Automation of elasticity is achieved by providing a
feedback controller that automatically increases and decreases
the number of nodes in order to meet service level objectives
under high load and to reduce costs under low load. Every
step in the building of a controller for elastic storage, including
system identification and controller design, is discussed. We have
evaluated our approach by using simulation. We have developed
a simulation framework EStoreSim in order to simulate an
elastic key-value store in a Cloud environment and be able to
experiment with different controllers. We have examined the
implemented controller against specific service level objectives
and evaluated the controller behavior in different scenarios.
Our simulation experiments have shown the feasibility of our
approach to automate elasticity of storage services using state-
space feedback control.

Keywords-elasticity; key-value store; Cloud; state-space feedback
control

I. INTRODUCTION

Web-based services frequently experience high workloads

during their lifetime. A service can become popular in just

an hour, and the occurrence of such high workloads has

been observed more and more recently. Cloud computing has

brought a great solution to the problem by requesting and

releasing VM (Virtual Machine) instances that provide the

service on-the-fly. This helps to distribute the loads among

more instances. However, the high level load typically does

not last for long and keeping resources in the Cloud costs

money. This solution has led to Elastic Computing where a

system running in the Cloud can scale up and down based on

a dynamic property that is changing from time to time.

In 2001, P. Horn from IBM [1] marked the new era of

computing as Autonomic Computing. He pointed out that the

software complexity would be the next challenge of Infor-

mation Technology. Growing complexity of IT infrastructures

can undermine the benefits IT aims to provide. One traditional

approach to manage the complexity is to rely on human inter-

vention. However, considering the expansion rate of software,

there would not be enough skilled IT staff to tackle the

complexity of its management. Moreover, most of the real-time

applications require immediate administrative decision-making

and actions. Another drawback of the growing complexity is

that it forces us to focus on management issues rather than

improving the system itself.

Elastic Computing requires automatic management that can

be provided using results achieved in the field of Autonomic

Computing. Systems that exploit Autonomic Computing meth-

ods to enable automated management are called self-managing

systems. In particular, such systems can adjust themselves ac-

cording to the changes of the environment and workload. One

common and proven way to apply automation to computing

systems is to use elements of control theory. In this way a

complex system, such as a Cloud service, can be automated

and can operate without the need of human supervision.

In this paper, we report our experience in designing an

elasticity controller for a key-value storage service deployed

in a Cloud environment. To design our controller, we have

adopted a control theoretic approach. Automation of elas-

ticity is achieved by providing a feedback controller that

continuously monitors the system and automatically changes

(increases or decreases) the number of nodes in order to

meet Service Level Objectives (SLOs) under high load and

to reduce costs under low load. We believe that this approach

to automate elasticity has a considerable potential for practical

use in many Cloud-based services and Web 2.0 applications

including services for social networks, data stores, online

storage, live streaming services.

Our second contribution presented in this paper is an open-

source simulation framework called EStoreSim (Elastic key-

value Store Simulator) that allows developers to simulate an

elastic key-value store in a Cloud environment and be able to

experiment with different controllers.

The rest of the paper is organized as follows. In Section II,

we define the problem of automated elasticity and describe the

architecture of an elastic Cloud-based key-value store with

feedback control. Section III presents different approaches

to system identification. In Section IV, we show how we

construct a state-space model of our elastic key-value store. We

continue in Section V by presenting the controller designing

for our storage. Section VI summarises steps of controller

design including system identification. In Section VII, we

describe the implementation of our simulation framework
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EStoreSim. Experimental results are presented in Section VIII

followed by a discussion of related work in Section IX. Finally,

our conclusion and our future work are given in Section X.

II. PROBLEM DEFINITION AND SYSTEM DESCRIPTION

Our research reported here aims at automation of elasticity

of a key-value store deployed in a Cloud environment. We

want to automate the management of elastic storage instances

depending on workload. a Cloud environment allows the

system that is running in the Cloud to scale up and down in

few minutes in response to load changes. In-time and proper

decisions regarding the size of the system in response to the

changes in the workload is very critical when it comes to

enterprise and scalable applications.

In order to achieve elasticity of a key-value store in the

Cloud, we adopt a control theoretic approach to designing a

feedback controller that automatically increases and decreases

the number of storage instances in response to changes in

workload in order to meet SLOs under high load and to reduce

costs under low load. The overall architecture of the key-value

store with the feedback controller is depicted in Fig. 1.

Fig. 1. Architecture of the Elastic Storage with feedback control of elasticity

End-users request files that are located in the storage Cloud

nodes (instances). All the requests arrive at the Elastic Load

Balancer (ELB) that sits in front of all storage instances. The

Elastic Load Balancer decides to which instance the request

should be dispatched. In order to do this, the Elastic Load

Balancer tracks the CPU load and the number of requests sent

previously to each instance and based on that it determines the

next node that can serve the incoming request. In addition to

the performance metrics that it tracks, ELB has the file tables

with information about file replica locations since more than

one instance can have a replica of the same file in order to

satisfy the replication degree.

The Cloud Provider (Fig. 1) is an entity that is responsi-

ble for launching a new storage instance or terminating the

existing one on requests of the Elasticity Controller.

Our system contains the Elasticity Controller, which is

responsible for controlling the number of storage instances

in the Cloud in order to achieve the desired SLO (e.g.,

download time). The Controller monitors the performance of

the storage instances (and indirectly the quality of service)

and issues requests to scale the number of instances up and

down in response to changes in the measured quality of service

(compared to the desired SLO). These changes are caused

by changes in the workload, which is not controllable and

is considered to be a disturbance in terms of control theory.

In the following two sections, we provide the relevant

background and present steps of the design of the controller

including system identification [2].

III. APPROACHES TO SYSTEM IDENTIFICATION

In this section, we present methods of system identification,

which is the most important step in the design of a controller.

It deals with how to construct a model to identify a system.

System identification allows us to build a mathematical model

of a dynamic system based on measured data. The constructed

model contains a number of transfer functions, which define

how the output depends on past/present inputs and outputs.

Based on the transfer functions and desired properties and

objectives, a control law is chosen. System identification can

be performed using one of the following approaches.

First principle approach is one of the de facto approaches

to identification of computer systems [3]. It can be considered

as a consequence of the queue relationship. The first principle

approach is developed based on knowledge of how a system

operates. For example, this approach has been used in some

studies and systems like [4], [5], [6], [7], [8], [9], [10], [11],

[12], [13], [14]. However, there are some shortcomings with

this approach that have been stated in [2]. It is very difficult

to construct a first principle model for a complex system.

Since this approach considers detailed information about the

target systems, it requires an ongoing maintenance by experts.

Furthermore, this approach does not address model validation.

Empirical approach starts by identifying the input and out-

put parameters like the first principle approach. But rather than

using a transfer function, an autoregressive moving average

(ARMA) model is built and common statistical techniques

are employed to estimate the ARMA parameters [2]. This

approach is also known as Black Box [3]; and it requires

minimal knowledge of the system. Most of the systems in our

studies have employed a black-box approach rather than a first-

principle approach for system identification, e.g., [2], [15],

[16], [17], [18], [19]. This is mainly because the relationship

between inputs and outputs of the system is complex enough

so that the first-principle system identification cannot be done

easily. One of the empirical approaches is to build a State-

Space Model, which requires more knowledge of the internals

of the system. We use the state-space model approach for

system identification as described in the next section.

IV. STATE-SPACE MODEL OF THE ELASTIC KEY-VALUE

STORE

A state-space model provides a scalable approach to model

systems with a large number of inputs and outputs [3]. The

state-space model allows dealing with higher order target

systems without a first-order approximation. Since the studied

system executes in a Cloud environment, which is complex and
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dynamic in a sense of dynamic set of VMs and applications,

we have chosen state-space modeling as the system identifica-

tion approach. Another benefit of using the state-space model

is that it can be extended easily. Suppose that after the model is

built, we find more parameters to control the system. This can

be accommodated by the state-space model without affecting

the characteristic equations as shown later in Section VI where

we summarize a generic approach for system identification and

controller design

The main idea of the state-space approach is to characterize

how the system operates in terms of one or more variables.

These variables may not be directly measurable. However, they

can be sufficient in expressing the dynamics of the system.

These variables are called state variables.

A. State Variables and the State-Space Model

In order to define the state variables for our system, first

we need to define the inputs and measured outputs since the

state variables are related to them. In particular, state variables

can be used to obtain the measured output. It is possible for

a state variable to be a measured output like it is in our case.

In our case, the system input is the number of nodes

(instances) denoted by NN(k) at time k. The measured system

outputs (and hence state variables) are the following:

• average CPU load CPU(k): the average CPU load of all

instances currently running in the Cloud during the time

interval [k − 1, k];
• interval total cost TC(k): the total cost of all instances

during the time interval [k − 1, k];
• average response time RT(k): the average time required

to start a download during the time interval [k − 1, k].

The value of each state variable at time k is denoted by

x1(k), x2(k) and x3(k). The offset value for input is ū1(k) =
NN(k) − N̂N, where N̂N is the operating point for the input.

The offset values for outputs are

ȳ1(k) = CPU(k)− ĈPU (1)

ȳ2(k) = TC(k)− T̂C (2)

ȳ3(k) = RT(k)− R̂T (3)

where ĈPU, T̂C and R̂T are operating points for corresponding

outputs.

The state-space model uses state variables in two ways [3].

First, it uses state variables to describe the dynamics of the

system and how x(k+1) can be obtained from x(k). Second,
it obtains the measured output y(k) from state x(k).
State-space dynamics for a system with n states is described

as follows

x(k + 1) = Ax(k) + Bu(k) (4)

y(k) = Cx(k) (5)

where x(k) is a n× 1 vector of state variables, A is a n× n

matrix, B is a n × mI matrix, u(k) is a mI × 1 vector of

inputs, y is a mO × 1 vector of outputs and C is a mO × n

matrix.

According to equations 4 and 5, we can describe dynamics

of our system as follows:

• Average CPU Load (CPU) is dependant on the number

of nodes in the system and previous CPU load, thus it

becomes

x1(k + 1) = CPU(k + 1) =

a11CPU(k)+ (6)

b11NN(k)+

0× TC(k) + 0× RT(k)

• Total Cost (TC) is dependant on the number of nodes in

the system (the more nodes we have, the more money we

should pay) and the previous TC, hence it becomes

x2(k + 1) = TC(k + 1) =

a21TC(k)+ (7)

b21NN(k)+

0× RT(k) + 0× CPU(k)

• Average Response Time (RT) is dependant on the number

of nodes in the system and the CPU load, so it is

x3(k + 1) = RT(k + 1) =

a31CPU(k) + a33RT(k)+ (8)

b31NN(k)+

0× TC(k)

In each equation (6, 7, 8) terms with zero factor include

those state variables that do not affect the corresponding state

variable definition. Thus their coefficient is zero. This is to

ensure that there is no relation between those state variables

or the relation is negligible and can be ignored. Their presence

in the equations is for the sake of clarity and completeness. In

order to prove that there is no relation or that it is negligible

one should do a sensitivity analysis to investigate this, but it

is out of the scope of this paper.

The output for the system at each time point k is equivalent

to the corresponding state variable:

y(k) = I3x(k) (9)

The outputs are the same as the internal state of the systems

at each time. That is why the matrix C is an identity matrix,

i.e., a diagonal matrix of 1’s. The matrices of coefficients are:

A =



a11 0 0
0 a22 0
a31 0 a33


 (10)

B =



b11
b21
b31


 (11)

C =



1 0 0
0 1 0
0 0 1


 (12)
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B. Parameter Estimation

In Section IV-A, we have derived the State-Space model

(Equations 6-12) that describes the dynamics of an elastic key-

value store. There are two matrices A and B that contain the

unknown coefficients for the equations 6-8. In order to use

the model to design the controller we need to estimate the

coefficient matrices A and B.

Parameter estimation is done using experimental data. In

this research, we use data obtained from the simulation frame-

work EStoreSim that we have built, rather than from a real

system, because the major focus is on controller design and the

simulation framework allows us to experiment with different

controllers. We have implemented a simulation framework

EStoreSim (described in Section VII) of a Cloud system.

Using the framework we can obtain experimental data for

system identification.

To get the data, we have designed and run an experiment,

in which we feed the system with an input signal and observe

the output and internal state variable periodically. We change

the input (which is the number of nodes in the system) by

increasing it from a small number of nodes a to a large

number of nodes b and then back from b to a in a fixed period

of time, and measure outputs (CPU load, cost, and response

time). In this way, we ensure the complete coverage of the

output signals in their operating regions by the input signal

(the number of nodes). Load should be generated according to

an arbitrary periodic function to issue a number of downloads

per seconds. The period of the function should be chosen such

that at least one period is observed during the time of changing

the input between [a, b].
For example, using the modeler component of our frame-

work EStoreSim (Section VII), we scale up the number of

nodes from 2 to 10 and then scale down from 10 to 2. Every

225 seconds a new node is either added or removed (depending

on whether we scale up or down); sampling of training data

(measuring outputs) is performed every 10 seconds.

When identifying the system, the workload is modeled as a

stream of requests issued by the request generator component

where the time interval between two consecutive requests

forms a triangle signal in the range [1, 10] seconds as follows:
the first request is issued after 10 seconds, the second after 9

seconds, etc. The requests are received by the load balancer

component in the Cloud provider component. After each

scaling up/down the system will experience 2 triangle loads

of requests between 1 to 10 seconds. The time needed to

experience 2 triangles is 4
∑

10

i=1
i, which is 220 seconds. That

is why we have selected 225 seconds as the action time.

Once training data are collected, they can be used to

compute the matrices A and B using the multiple linear

regression method. We use the regress(y,X) function of

Matlab to calculate matrices:

A =




0.9 0 0
0 0.724 0

5.927 0 0.295




B =



2.3003
0.0147
77.8759




V. CONTROLLER DESIGN

In this section, we describe how the feedback controller

for the elastic storage deployed in a Cloud environment is

designed. The controller design starts by choosing an appro-

priate controller architecture according to system properties.

There are three common architectures for state-space feedback

control, namely, Static State Feedback, Precompensated Static

Control and Dynamic State Feedback. A good comparison

between these architectures can be found in [3]. A close

investigation in this comparison reveals that dynamic state

feedback control is more suitable for a Cloud system since

it has disturbance rejection that the other two architectures

lack. Disturbance (in terms of control theory) is observed in a

Cloud in the form of changes in the set of virtual machines and

workload of Cloud applications. Thus we choose dynamic state

feedback control as our controller architecture for autonomic

management of elasticity.

A. Dynamic State Feedback

Dynamic state feedback can be viewed as a State-Space

analogous to PI (Proportional Integral) control that has good

disturbance rejection properties. It both tracks the reference

input and rejects disturbances. We need to augment the state

vector with the control error e(k) = r − y(k) where r is

the reference input. We use integrated control error, which

describes the accumulated control error. The integrated control

error is denoted by xI(k) and computed as

xI(k + 1) = xI(k) + e(k)

The augmented state vector is

[
x(k)
xI(k)

]
. The control law is

u(k) = −
[
Kp KI

] [ x(k)
xI(k)

]
(13)

where Kp is the feedback gain for x(k) and KI is the gain

associated with xI(k).

B. LQR Controller Design

An approach to controller design is to focus on the trade-

off between control effort and control errors. The control error

is determined by the squared values of state variables, which

are normally the difference from their operating points. The

control effort is quantified by the square of u(k), which is

the offset of the control input from the operating point. By

minimizing control errors we improve accuracy and reduce

both settling times and overshoot and by minimizing control

effort, system sensitivity to noise is reduced.

Least Quadratic Regulation (LQR) design problem is

parametrized in terms of relative cost of control effort (defined

by matrix R) and control errors (defined by matrix Q). The

quadratic cost function to minimize is the following [3]:
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J =
1

2

∞∑

k=0

[
x⊤(k)Qx(k) + u⊤(k)Ru(k)

]
(14)

where Q must be positive semidefinite (eigenvalues of Q must

be nonnegative) and R must be positive definite (eigenvalues

of R must be positive) in order for J to be nonnegative.

After selecting the weighting matrices Q and R, the con-

troller gains K can be computed using the Matlab dlqr

function that takes as parameters the matrices A, B, Q,

and R. The performance of the system with the designed

controller can be evaluated by simulation. If the performance

is not appropriate, the designer can select new Q and R and

recompute the vector gain K.

In our example, the matricesQ and R are defined as follows:

Q =



100 0 0
0 1 0
0 0 1




R =
[
1
]

We have given 100 to the element that corresponds to

CPU Load to emphasize that this state variable is more

important compared to the others. One can give a high weight

to total cost TC to trade off cost for performance. Using

the Matlab dlqr function we compute the controller gains

K = dlqr(A, B, Q, R). For example, using the results

of system identification in the example in Section IV-B, the

controller gains (corresponding to the measured outputs of the

elastic storage, CPU, TC, and RT) are:

K =
[
0.134 1.470162e− 06 0.00318

]

C. Fuzzy Controller

The main purpose in using an additional fuzzy controller is

to optimize the control input produced by the Dynamic State

Feedback Controller that we have designed in Section V-B. A

fuzzy controller uses heuristic rules that define when and what

actions the controller should take. The output of the Dynamic

State Feedback Controller (control input) is redirected together

with measured outputs to the fuzzy controller, which decides

if the control input should affect the system or not. The overall

architecture for controllers is demonstrated in Fig. 2.

There is one important case that the dynamic state feedback

controller cannot act accordingly. Let us assume that there are

some instances with high CPU load. Since the average is high,

the controller will issue a control request to add a number of

new instances. The new instances will be launched and will

start to serve requests. But at the beginning of their life cycle

they have low CPU load, thus the average CPU load that is

reported back to the controller can be low. The controller then

assumes that the CPU load has dropped, and it requests to

remove some nodes.

A closer look at the CPU loads reveals that we can not judge

the system state by only the average CPU load. Hence the

fuzzy controller also takes into account the standard deviation

Fig. 2. Controllers Architecture

of CPU load. In this way, if the feedback controller gives

an order to reduce the number of nodes when there is high

standard deviation for CPU loads, the fuzzy controller will not

allow this control input to affect the system, thus reducing the

risk of unexpected results and confusions for the controller

that may cause oscillations. This will lead to a more stable

environment without so many unnecessary fluctuations.

D. Stability Analysis of Controller

A system is called stable if all bounded inputs produce

bounded outputs. The BIBO theorem [3] states that for a

system to be stable, its poles must lie within the unit circle

(have magnitude less than 1). In order to calculate the poles

for the controller we need to get the eigenvalues of matrix

A that are 0.2951, 0.9 and 0.7247. As it is obvious from the

values, all of the poles reside within the unit circle thus the

controller is stable.

VI. SUMMARY OF STEPS OF CONTROLLER DESIGN

This section summarizes the steps needed to design a

controller for an elastic storage in a Cloud environment.

The steps described below are general enough to be used

to design a controller for an elastic service in a Cloud. The

design process consists of two stages: system identification and

controller design. The design steps are as follows: the system

identification stage includes steps 1-9; and the remaining steps

(10-12) belong to the stage of the controller design.

1) Study system behavior in order to identify the inputs

and outputs of the system.

2) Place inputs and outputs in u(k) and y(k) vectors

respectively.

3) Select n system outputs that you want to control and

place them in state variable vector x. The outputs should

be related to SLOs and performance metrics.

4) Select m system inputs that you will use to control.

These system inputs will be the outputs of your con-

troller. The system outputs should depend on the system

inputs These inputs should have the highest impact in

your system. In some systems there might be only one
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input that has high impact whereas in other systems there

might be several inputs that together have high impact.

To assess the impact you might need to do sensitivity

analysis.

5) Define state variables that describe the dynamics of

the system. State variables can be equivalent to system

outputs selected in step 3. Each state variable can depend

on one or more other state variables and system inputs.

Find the relation between the next value for a state

variable to other state variables and system inputs and

construct the characteristic equations as follows (see also

Equation 4).

x1(k + 1) = a11x1(k) + . . .+ a1nxn(k)

+b11u1(k) + . . .+ b1mum(k)

x2(k + 1) = a21x1(k) + . . .+ a2nxn(k)

+b21u1(k) + . . .+ b2mum(k)

...

xn(k + 1) = an1x1(k) + . . .+ annxn(k)

+bn1u1(k) + . . .+ bnmum(k)

6) Place coefficients from the previous equations into two

matrices A and B. Some of the coefficients can be zero:

An×n =



a11 . . . a1n
...

. . .
...

an1 . . . ann




Bn×m =



b11 . . . b1m
...

. . .
...

bn1 . . . bnm




7) In order to simplify the design of controller, one can

assume that outputs of the systems are equal to state

variables, thus matrix C is an identity matrix:

Cn×n =




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . 1




8) Design an experiment, in which the system is fed with

its inputs. Inputs in the experiment should be changed

in such a way that they cover their ranges at least

one time. A range for an input is the interval that the

values of the input will most likely belong to when the

system operates. The selection of ranges can be based on

industry’s best practices. All inputs and outputs should

be measured periodically with a fixed time interval T .

Store collected data for each equation in a separate file

called xi.

9) In Matlab, for each file xi, load the file and extract each

column of data in a separate matrix. Use the function

regress to calculate the coefficients. Repeat this for

every file. At the end you will have all the coefficients

that are required for matrices A and B.

10) Choose a controller architecture for feedback control:

such as dynamic state feedback control, which is, in

our opinion, more appropriate for a Cloud based elastic

service (as discussed in Section V).

11) Construct matrices Q and R as described in Section V-B.

Remember to put high weights in matrix Q for those

state variables that are of more importance.

12) Use the Matlab function dlqr with matrices A, B, Q

and R as parameters to calculate the vector K of con-

troller gains. Perform stability analysis of the controller

checking whether its poles reside within the unit circle

(Section V-D).

VII. ESTORESIM: ELASTIC KEY-VALUE STORE

SIMULATOR

We have implemented a simulation framework, which we

call EStoreSim, that allows developers to simulate an elastic

key-value store in a Cloud environment and to experiment

with different controllers. We have selected Kompics as the

implementation tool. Kompics [20] is a message-passing com-

ponent model for building distributed systems using event-

driven programming. Kompics components are reactive state

machines that execute concurrently and communicate by pass-

ing data-carrying typed events through typed bidirectional

ports connected by channels. For further information please

refer to the Kompics programming manual and the tutorial on

its web site [20].

Implementation is done in Java and Scala languages [21]

and the source is publicly available at [22]. The overall

architecture of EStoreSim is shown in Fig. 3. The simulator

includes the following components.

Fig. 3. Overall Architecture of the EStoreSim Simulation Framework

Cloud Instance Component represents an entire storage

instance within a Cloud. The component architecture for

instance is shown in Fig. 4.

Cloud Provider Component represents an important unit

in the implementation. It is the heart of a simulated Cloud

computing infrastructure and provides vital services to manage

and administer the nodes (VM instances) within the Cloud.

The Cloud provider component architecture is shown in Fig. 5.

Elasticity Controller represents the controller that can

connect to the Cloud provider and retrieve information about

the current nodes in the system. The main responsibility of

the controller component is to manage the number of nodes

currently running in the Cloud. In other words, it attempts

to optimize the cost and satisfy some SLO parameters. The

overall component architecture is shown in Fig. 6.

For further information on EStoreSim please refer to [22].
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Fig. 4. Cloud Instance Component Fig. 5. Cloud Provider Component Fig. 6. Elasticity Controller Component

VIII. EXPERIMENTS

We have conducted a number of simulation experiments

using EStoreSim in order to evaluate how the use of an

elasticity controller in a Cloud-based key-value store improves

the operation of the store by reducing the cost of Cloud

resources and the number of SLO violations. The baseline

in our experiments is a non-elastic key-value store, i.e., a key-

value store without the elasticity controller.

For evaluation experiments, we have implemented a dy-

namic state feedback controller with the parameters (controller

gains) calculated according to the controller design steps

(Section V-B). The controller is given reference values of the

system outputs that correspond to SLO requirements. Values

of system outputs (average CPU load CPU, Total Cost TC, and

average Response Time RT) are fed back into the controller

periodically. When the controller gets the values, it calculates

and places the next value of the number of nodes NN on its

output. The controller output is a real number that should be

rounded to a natural integer. We round it down in order to

save the total cost the Cloud generates. One can assume two

boundaries, which are defined as follows:

• L (Lower boundary): the minimum number of instances

that should exist in the Cloud at all times;

• U (Upper boundary): the maximum number of instances

that is allowed to exist in the Cloud at all times.

Hence if the value of controller output is smaller than L

or greater than U , then the value should be discarded. If the

calculated output of the controller is Θ, the number of nodes

is defined as follows:

NN =





L if Θ 6 L

Θ if L < Θ < U

U if U 6 Θ
(15)

If the number of current nodes in the system is NN′ and the

control input (output of the controller) is NN, then the next

control action is determined as follows:

Next action =







scale up with NN− NN
′ nodes if NN

′ < NN

scale down with NN′ − NN nodes if NN < NN
′

no action otherwise

(16)

We have conducted two series of experiments to prove our

approach to elasticity control. By these experiments we check

whether the elasticity feedback controller operates as expected.

In the first series (which we call SLO Experiment), the load

is increased to a higher level. This increase is expected to

cause SLO violation that is detected by the feedback controller,

which adds nodes in order to meet SLO under high load.

In the second series (which we call Cost Experiment), the

load decreases to a lower level. This causes the controller

to release nodes in order to save cost under low load. The

instance configuration for these experiments are as follows:

• CPU frequency: 2 GHz;

• Memory: 8 GB;

• Bandwidth: 2 MB/s;

• Number of simultaneous downloads: 70.

There are 10 data blocks in the experiments with sizes between

1 to 5 MB. Note that the same configuration is used in the

system identification experiments.

A. SLO Experiment: Increasing Load

In this series we conducted two experiments: one with

controller and another without controller. In the results and

figures presented below, they are denoted by w/controller

and w/o controller, respectively. Each experiment starts

with three warmed up instances. By a warmed up instance we

mean that in this instance each data block is requested at least

once thus it resides in the memory of this instance.

Workload that is used for this experiment is of two levels:

normal and high. Under the normal load the time interval be-

tween consecutive requests is selected from a uniform random

distribution in the range [10, 15] seconds that corresponds to

an average request rate of 4.8 requests per minute. Under the

high load the time interval between consecutive requests is

selected from a uniform random distribution in the range [1,

5] seconds that corresponds to an average request rate of 20

requests per minute. The experiment starts with normal load

and after 500 seconds the workload increases to the high level.

This is shown in Fig. 7.

Sensing of instance output is done every 25 seconds. In the

case of controller, actuation is performed every 100 seconds.

Thus there are 4 sets of measured data at each actuation time

that the controller should consider. In order to calculate values

of the system output, the controller computes averages of data
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Fig. 7. SLO Experiment Workload

TABLE I
SLO VIOLATIONS

SLO Parameter Violation (%) w/ Controller w/o Controller

CPU Load 17.94 72.28
Response Time 2.12 7.073
Bandwidth 35.89 74.69

sets. The duration of each experiment is 2000 seconds with

warm up of 100 seconds. SLO requirements are as follows:

• Average CPU Load: 6 55%
• Response Time: 6 1, 5 seconds

• Average Bandwidth per download: > 200000 B/s

For each experiment the percentages of SLO violations are

calculated for each aforementioned SLO requirement based on

Equation 17. The result is shown in Table I.

SLO Violations = 100%×
Number of SLO Violations

Total Number of SLO Checks
(17)

Checking of SLO is done at each estimate (sensing) of the

Average CPU Load and Average Bandwidth per download and

each estimate of Response Time.

This experiment gives us interesting results that are dis-

cussed in this section. NL and HL in figures 8-12 indicate

periods of Normal Load and High Load respectively.

Fig. 8 depicts the Average CPU Load for the aforementioned

experiments. The Average CPU Load is the average of all

nodes’ CPU Loads at each time the sensing is performed. As

one can see in Fig. 8, CPU loads for the experiment with the

controller is generally lower than the same experiment without

the controller. This is due to the controller that launches new

instances under high workloads causing a huge drop in average

CPU Load.

Fig. 9 depicts the Average Response Time for the experi-

ments. By response time we mean the time that it takes for

an instance to respond to a request that download is started

and not the actual download time. As it is seen from the

diagram, the average response time for the experiment with

the controller is generally lower than the experiment without

controller. This is because in case of having a fixed number of

instances (3 in this experiment), there would be congestion by
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Total Cost ($) 14.4528 8.6779

TABLE II
TOTAL COST FOR EACH SLO EXPERIMENT

the number of requests an instance can process. This increases

the responsivity of an instance. However, in the case that the

controller launches new instances, no instance will actually go

under high number of requests.
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Fig. 9. SLO Experiment - Average Response Time

Fig 10 shows the total cost for the experiments. Interval

total cost means that total cost is calculated for each interval

in which the senses are done. As can be observed from the

diagram, the interval total cost for the experiment with the

controller is much higher than the experiment without the

controller. This is because launching new instances will cost

more money than having a fixed number of instances available

in the Cloud. This experiment has high load of requests for the

system in which the controller is more likely to scale up and

resides in that mood than to scale down. It should be noted

that costs are computed according to Amazon EC2 price list.

Calculated total cost for each experiment is given in Table II.

Fig. 11 depicts the Average bandwidth per download. If

an instance has a bandwidth of 4 Mb/s and has two current

downloads running, the bandwidth per download is 2 Mb/s. As
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can be seen from the diagram, the experiment with controller

shows significantly higher bandwidth per download. This is

mainly because the instances receive less number of requests

and bandwidth is divided among less requests also. This will

end up having higher bandwidth available on each instance.
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Fig 12 shows the number of nodes for each experiment.

As we discussed earlier the number of nodes is constant for

experiment without controller. However, for the experiment

with the controller the number of nodes is changed over time

hence the SLO requirements can be met.

B. Cost Experiment: Decreasing Load

The purpose of this series of experiments is to show that the

controller can save the total cost by releasing instances when

the load is low. Each experiment in this series starts with 7

instances. The duration of the experiment is 2000 seconds.

In this series we use different workloads of two levels: high

and low. In the high load the time interval between consecutive

requests is selected from a uniform random distribution in the

range [1, 3] seconds that corresponds to a request rate of 30

requests per minute. In the low load the time interval between

consecutive requests is selected from a uniform random dis-

tribution in the range [15, 20] seconds that corresponds to a
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Total Cost ($) 10.509 16.5001

TABLE III
TOTAL COST FOR COST EXPERIMENT

request rate of about 3.4 requests per minute. Unlike the SLO

experiment, the cost experiment starts with a high load, which

changes to a low load after 500 seconds as shown in Fig. 13.

Fig. 13. Cost Experiment workload

The result of the cost experiment shown in Table III is

interesting. It is observed that the total cost in the experiment

with the controller is actually lower than the total cost in

the experiment without the controller unlike in the SLO

experiment. This is because the controller removes instances

under low load and that results in cost savings. The reason

that this experiment has lower cost than the previous one is

that L (lower bound on number of nodes) is not equal to the

initial number of nodes and it is smaller. Hence controller can

scale down the number of nodes to L.

IX. RELATED WORK

There are many projects that use elements of control theory

for providing automated control of computing systems includ-

ing Cloud-based services [2], [7], [8], [9], [12], [15], [16],

[17], [18], [19], [23]. Here we consider two related pieces of

work [17], [23], which are the closest to our research aiming

at automation of elasticity of storage services.

The SCADS Director proposed in [23] is a control frame-

work that reconfigures a storage system at run time in

response to workload fluctuations. Reconfiguration includes
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adding/removing servers, redistributing and replicating data

between servers. The SCADS Director employs the Model-

Predictive Control technique to predict system performance for

the given workload using a performance model of the system

and make control decisions based on prediction. Performance

modeling is performed by statistical machine learning.

Lim et al. [17] have proposed a feedback controller for elas-

tic storage in Cloud environment. The controller consists of

three components: Horizontal Scale Controller responsible for

scaling the storage; Data Rebalancer Controller that controls

data transfer for rebalancing after scaling up/down; and the

State Machine that coordinates the actions of the controllers in

order to avoid wrong control decisions caused by interference

of rebalancing with applications and sensor measurements.

To our knowledge both aforementioned projects do not

explicitly use cost as a controller input (state variable, system

output) in the controller design. In contrast, we use state-space

feedback control and explicitly include the total cost of Cloud

instances as a state (system output) variable in the state-space

model (when identifying the system) and as a controller input

in the controller design (when determining controller gains).

This allows us to use a desired value of cost in addition to

the SLO requirements to automatically control the scale of the

storage by trading off performance for cost.

X. CONCLUSION AND FUTURE WORK

Elasticity in Cloud computing is an ability of a system to

scale up and down (request and release resources) in response

to changes in its environment and workload. Elasticity pro-

vides an opportunity to scale up under high workload and

to scale down under low workload to reduce the total cost

for the system while meeting SLOs. We have presented our

experience in designing an elasticity controller for a key-

value store in a Cloud environment and described the steps

in designing it including system identification and controller

design. The controller allows the system to automatically scale

the amount of resources while meeting performance SLO,

in order to reduce SLO violations and the total cost for

the provided service. We also introduced our open source

simulation framework (EStoreSim) for Cloud systems that

allows to experiment with different controllers and work-

loads. We have conducted two series of experiments using

EStoreSim. Experiments have shown the feasibility of our

approach to automate elasticity control of a key-value store in a

Cloud using state-space feedback control. We believe that this

approach can be used to automate elasticity of other Cloud-

based services.

In our future work, we will study other controller ar-

chitectures such as model predictive control, and conduct

experiments using real-world traces. We will also research on

using feedback control for other elastic Cloud based services.
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