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Abstract—Nowadays, more and more IT companies are
expanding their businesses and services to a global scale,
serving users in several countries. Globally distributed storage
systems are employed to reduce data access latency for clients
all over the world. We present GlobLease, an elastic, globally-
distributed and consistent key-value store. It is organised as
multiple distributed hash tables (DHTs) storing replicated data
and namespace. Across DHTs, data lookups and accesses are
processed with respect to the locality of DHT deployments.
We explore the use of leases in GlobLease to maintain data
consistency across DHTs. The leases enable GlobLease to
provide fast and consistent read access in a global scale
with reduced global communications. The write accesses are
optimized by migrating the master copy to the locations, where
most of the writes take place. The elasticity of GlobLease is
provided in a fine-grained manner in order to precisely and
efficiently handle spiky and skewed read workloads. In our
evaluation, GlobLease has demonstrated its optimized global
performance, in comparison with Cassandra, with read and
write latency less than 10 ms in most of the cases. Furthermore,
our evaluation shows that GlobLease is able to bring down the
request latency under an instant 4.5 times workload increase
with skewed key distribution (a zipfian distribution with an
exponent factor of 4) in less than 20 seconds.
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I. INTRODUCTION

With the increasing popularity of Cloud computing, as

an essential component of it, distributed storage systems

have been extensively used as backend storages by most of

the cutting-edge IT companies, including Microsoft, Google,

Amazon, Facebook, LinkedIn, etc. The rising popularity

of distributed storage systems is mainly because of their

potentials to achieve a set of desired properties, including

high performance, data availability, system scalability and

elasticity. However, achieving these properties is not trivial.

The performance of a distributed storage system depends on

many factors including load balancing, replica distribution,

replica synchronization and caching. To achieve high data

availability without compromising data consistency and sys-

tem performance, a set of algorithms needs to be carefully

designed, in order to efficiently synchronize data replicas.

The scalability of a distributed storage system is achieved

through the proper design of the system architecture and the

coherent management of all the factors mentioned above.

Some of the state of the art systems achieving most of the

above desire properties are presented in [1], [2], [3], [4].

System performance can be largely leveraged when using

replication. Replication provides a system to handle work-

load simultaneously using multiple replicas, thus achiev-

ing higher system throughput. Furthermore, intuitively, the

availability of data is increased by maintaining multiple

copies in the system. However, replication also brings a

side-effect, which is the maintenance of replica consistency.

Consistency maintenance among replicas imposes an extra

communication overhead in the storage system that can

cause the degradation of the system performance and scala-

bility. This side-effect is even more obvious when the system

is geo-replicated, where the communications among replicas

might experience relatively long latency. Furthermore, since

the storage service is a stateful service, the elasticity of

a distributed storage system is extremely hard to achieve.

Specifically, the elasticity of a storage system cannot be

achieved only by adding or removing storage servers. The

state (data) need to be replicated or reallocated, which

introduces a significant data movement overhead.

We consider the following scenario. Assume a large scale

service with clients distributed in a global scale, where the

majority of them are readers. It is often the case that the pop-

ular contents attract significant percentage of readers. Typi-

cally, the workload increase caused by the popular contents

is usually spiky and not long-lasting. Typical applications

include Wikis, WEB 2.0 and social network applications.

A well-known incident was the death of Michael Jackson,

when his profile page attracted a vast amount of readers

in a short interval, causing a sudden spiky workload. In

order to efficiently and effectively handle such skewed and

spiky workload, we propose GlobLease, a consistent and

elastic storage system that can be deployed in a global

scale. It achieves low latency read accesses in a global

scale and efficient write accesses in one area with sequential

consistency guarantees. Fine-grained elasticity with reduced

data movement overhead is integrated in GlobLease to

handle the popular contents (spiky and skewed workload).

The contributions of this work are as follows.

• We explore the use of multiple DHTs for geo-

replication, which implements geo-aware routing.

• We propose a lease-based consistency protocol, that

shows high performance for global read and regional

write accesses by reducing the global communication.

• We provide the fine-grained elasticity of GlobLease

using affiliated nodes, that enables the efficient handling
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Figure 1. GlobLease system structure having three replicated DHTs

of spiky and skewed workload.

• We evaluate the geo-performance and fine-grained elas-

ticity of GlobLease in comparison with Cassandra in

Amazon EC2.

II. SYSTEM ARCHITECTURE

We assume that readers have some knowledge of DHTs

and are familiar with the concepts of availability, consis-

tency and scalability in a distributed storage system. The

background knowledge can be obtained in [5], [6], [7].

GlobLease is constructed with a configurable number of

replicated DHTs shown in Fig. 1. Each DHT maintains a

complete replication of the whole data. This design provides

flexibility in replica distribution and management at a global

scale. Specifically, GlobLease forms up replication groups

across the DHT rings, which scales out the limitation of

successor list replication [8]. Multiple replicated DHTs can

be deployed in different geographical regions in order to

improve data access latency. Building GlobLease with DHT-

based overlay provides it with a set of desirable proper-

ties, including self-organization, linear scalability, and effi-

cient lookups. The self-organizing property of DHTs allows

GlobLease to efficiently and automatically handle node join,

leave and failure events using pre-defined algorithms in each

node to stabilize the overlay [5], [9]. The peer-to-peer (P2P)

paradigm of DHTs enables GlobLease to achieve linear

scalability by adding/removing nodes in the ring. One-hop

routing can be implemented for efficient lookups [2].

A. Nodes

Each DHT Ring is given a unique ring ID shown as

numbers in Fig. 1. Nodes illustrated in the figure are virtual

nodes, which can be placed on physical servers with different

configurations. Each node participating in the DHTs is called

a standard node, which is assigned a node ID shown as

letters in Fig. 1. Each node is responsible for a specific key

range starting from its predecessor’s ID to its own ID. The

ranges can be further divided online by adding new nodes.

Nodes that replicate the same keys in different DHTs form

the replication group. For simple illustration, the nodes form

the replication group shown within the ellipse in Fig. 1 are

responsible for the same key range. However, because of

possible failures, the nodes in each DHT ring may have

different range configurations. Nodes that stretch outside

from the DHT rings in Fig. 1 are called affiliated nodes. They

are used for fine-grained management of replicas, which are

explained in Section IV-A. GlobLease stores key-value pairs.

The mappings and lookups of keys are handled by consistent

hashing of DHTs. The values associated with the keys are

stored in the memory of each node.

B. Links

1) Basic Links: Links connecting a node’s predecessor

and successor within the same DHT are called local neigh-

bour links shown as solid lines in Fig. 1. Links that connect

a node’s predecessors and successors across DHTs are called

cross-ring neighbour links shown as dashed lines. Links

within a replication group are called group links shown as

dashed lines. Normally, routings of requests are conducted

with priority choosing local neighbour links. A desired

deployment of GlobLease assumes that different rings are

placed in different locations. In such case, communications

using local neighbour links are much faster than using cross-

ring neighbour links. Cross-ring neighbour is selected for

routing when there is failure in the next hop local neighbour.
The basic links are established when a standard node or a

group of standard nodes join GlobLease. The bootstrapping

is similar to other DHTs [5], [9] except that GlobLease needs

to update cross-ring neighbour links and group links.
2) Routing Links: With basic links, GlobLease is able

to conduct basic lookups and routings by approaching the

requested key hop by hop. In order to achieve efficient

lookups, we introduce the routing links, which are used to

reduce the message routing hops to reach the responsible

node of the requested data. In contrast to basic links,

routing links are established gradually with the processing

of requests. For example, when node A receives a data

request for the first time, which needs to be forwarded to

node B, the request is routed to node B hop by hop using

basic links. When the request reaches node B, node A will

get an echo message regarding the routing information of

node B including its responsible key range and ip address.

Finally, the routing information is kept in node A’s routing

table maintained in its memory. As a consequence, a direct

routing link is established from node A to node B, which

can be used for the routings of future requests. In this way,

all nodes in the overlay will eventually be connected with

one-hop routing. In failure scenarios, if some links are not

reachable, they will be removed from the routing table.

III. LEASE-BASED CONSISTENCY PROTOCOL

In order to guarantee data consistency in replication

groups across DHTs, a lease-based consistency protocol is

designed. Our lease-based consistency protocol implements

sequential consistency model and is optimized for handling

global read-dominant and regional write-dominant workload.



A. Lease

A lease is an authorization token for serving read accesses

within a time interval. A lease is issued on a key basis. There

are two essential properties in the lease implementation. First

is authorization, which means each replica of the data that

has a valid lease is able to serve the read access for the

clients. Second is the time bound, which allows the lease

itself to expire when the valid time period has passed. The

time bound of lease is essential in handling possible failures

on non-masters. Specifically, if an operation requires the

update or invalidate of leases on non-masters, which cannot

be completed due to failures, the operation waits and can

proceed when the leases are expired naturally.

B. Lease-based Consistency

We assign a master on a key basis in each replication

group to coordinate the lease-based consistency protocol

among replicas. The lease-based protocol handles read and

write requests as follows. Read requests can be served by

either the master or any non-masters with a valid lease of

the requested key. Write requests have to be routed to and

only handled by the master of the key. To complete a write

request, a master needs to guarantee that leases associated

with the written key are either invalid or properly updated

together with the data in all the replicas. The validities of

leases are checked based on lease records, which are created

on masters whenever a lease is issued to a non-master. The

above process ensures the serialization of write requests in

masters and no stale data will be provided by non-masters,

which complies the sequential consistency guarantee.

C. Lease Maintenance

The maintenance of the lease protocol consists of two op-

erations. One is lease renewals from non-masters to masters.

The other one is lease updates issued by masters to non-

masters. Both lease renewals and updates need cross-ring

communications, which are associated with high latency in

a global deployment of GlobLease. Thus, we try to minimize

both operations in the protocol design.

A lease renewal is triggered when a non-master receives a

read request while not having a valid lease of the requested

key. The master creates a lease record and sends the renewed

lease with updated data to the non-master upon receiving a

lease renewal request. The new lease enables the non-master

to serve future reads of the key in the leasing period.

Lease update of a key is issued by the master to its

replication group when there is a write to the key. We

currently provide two approaches in GlobLease to proceed

with lease updates. The first approach is active update. In

this approach, a master updates leases along with the data of

a specific key in its replication group whenever it receives

a write on that key. The write is returned when the majority

of the nodes in the replication group are updated. This

majority should include all the non-masters that still hold

valid leases of the key. Write to the majority in a replication

group guarantees the high availability of the data. The other

approach is passive update. It allows a master to reply to

a write request faster when a local write is completed. The

updated data and leases are propagated to the non-masters

asynchronously. The local write is applicable only when

there are no valid leases of the written key in the replication

group. In case of existing valid leases in the replication

group, the master works as the active update. In this way,

passive update also keeps sequential consistency guarantee.

Active update provides the system with higher data

availability, however, it results in worse write performance

because of cross-ring communication. Passive update pro-

vides the system with better write performance when the

workload is write dominant. However, the data availability

is compromised in this case. Both passive and active updates

are implemented in separate APIs in GlobLease and can be

used by different applications with different requirements.

D. Leasing Period

The length of a lease is configurable in our system

design. At the moment, the reconfiguration of the length

of the lease is implemented with node granularity. Further,

we plan to extend it to key granularity. The flexibility of

lease length allows GlobLease to efficiently handle workload

with different access patterns. Specifically, read dominant

workload works better with longer leases (less overhead

of lease renewals) and write dominant workloads cooperate

better with shorter leases (less overhead of lease updates if

the passive update mode is chosen).

Another essential issue of leasing is the synchronization

of the leasing period on a master and its replication group.

Every update from the master should correctly check the

validity of all the leases on the non-masters according to the

lease records and update them if necessary. This indicates

that the record of the leasing period on the master should be

the same with or last longer than the corresponding lease on

the non-masters. Since it is extremely hard to synchronize

the timings in a distributed system [6], we ensure that the

record of the leasing periods on the master starts later than

the leasing periods on the non-masters. The leases on the

non-masters start when the messages of issuing the leases

arrive. On the other hand, the records of the leases on

the master start when the acknowledgement messages of

the successful starting of the leases on the non-masters are

received. With the assumption that the latency of message

delivery in the network is much more significant than the

clock drifts in each participating nodes. The above algorithm

guarantees that the records of the leases on the master last

longer than the leases on the non-masters and assures the

correctness of the consistency guarantee.

E. Master Migration and Failure Recovery

Master migration is implemented based on a two-phase

commit protocol. Master failure is handled by using the

replication group as a Paxos group [10] to elect a new

master. In order to keep the sequential consistency guarantee



in our protocol, we need to ensure that either no master or

only one correct master of a key exists in GlobLease.

The two phase commit master migration algorithm works

as follows. In the prepare phase, the old master acts as the

coordination node, which broadcasts new master proposal

message in the replication group. The process will only

move forward when an agreement is received from all the

nodes from the replication group. In the commit phase, the

old master broadcasts the commit message to all the nodes

and changes its own state to recognize the new master.

Notice that message loss or node failures may happen in

this commit phase. If nodes in the replication group, which

are not the new master, fail to commit to this message, the

recognition of correct mastership is further fixed through

an echo message gradually triggered by write requests.

Specifically, if the mastership is not correctly changed, the

write requests will be forwarded to the old master from

the replication group. Since write messages should only be

forwarded to the master, when the old master receives a write

message from a node in its replication group, it assumes that

this node does not know the correct master in the system.

An echo message with the correct master information is

sent to this node. And the write request is forwarded to

the new master. If the new master fails to acknowledge in

the commit phase, a roll-back operation will be issued from

the old master to its replication group.

Master failure recovery is implemented based on the as-

sumption of fail stop model [11]. There are periodical heart-

beat messages from the non-master nodes in the replication

group to check the liveness of the current master. If a master

node cannot receive the majority of the heartbeat message

within a timeout interval, it will give up its mastership to

guarantee our previous assumption that there is no more

than one master in the system. In the meantime, any non-

master node can propose a master election process in the

replication group if it cannot receive the response of the

heartbeat messages from the master within sufficient contin-

uous period. The master election process follows the two-

phase Paxos algorithm. A non-master node in the replication

group proposes its own ring ID as well as node ID as

values. Only non-master nodes that have passed the heartbeat

timeout interval may propose values and vote for the others.

The node with the smallest ring ID gets more than the

majority of the promises wins the election. Any non-master

node that fails to recognize the new master will be guided

through the write echo message described above.

F. Handling Read and Write Requests

With the lease consistency protocol, GlobLease is able

to handle read and write requests with respect to the re-

quirement of sequential consistency model. Read requests

can be handled by the master of the key as well as the

non-masters with valid leases. In contrast, write requests

will eventually be routed to the responsible masters. The

first time write and future updates of a key are handled

differently by master nodes. Specifically, the first time, a

write always uses the active update approach, because it

creates a record of the written key on non-master nodes,

which ensures the correct lookup of the data when clients

contact the non-master nodes for read accesses. In contrast,

future updates of a key can be handled either using the active

or passive approach. After updating the data and lease on

non-master nodes, lease records, which store the information

of the leasing periods, the associated keys, and the associated

non-master nodes, are maintained in master nodes. The lease

records are referred when a write request is handled on the

master node to decide whether the updates of the leases are

required to the non-master nodes if the passive write mode

is chosen. Algorithm 1 and Algorithm 2 present the pseudo

codes for processing read and write requests.

Algorithm 1: Pseudo Code for Read Request

n.receiveReadRequest(msg)
if n.isResponsibleFor(msg.to) then

if n.isMaster(msg.key) then
value = n.getValue(msg.key);
n.returnValue(msg.src, value);

end
if n.isExpired(lease) then

n.forwardRequestToMaster(msg);
n.renewLeaseRequest(msg.key);

else
value = n.getValue(msg.key);
n.returnValue(msg.src, value);

end
else

nextHop = n.getNextHopOfReadRequest(msg.to);
n.forwardRequestToNextNode(nextHop);

end

IV. SCALABILITY AND ELASTICITY

The architecture of GlobLease enables its scalability in

two forms. First, the scalable structure of DHTs allows

GlobLease to achieve elasticity by adding or removing nodes

to the ring overlay. With this property, GlobLease can easily

expand to a larger scale in order to handle generally larger

workload or scale down to save cost. However, this form

of scalability is associated with large overhead, including

reconfiguration of multiple ring overlays, key range divisions

and the data rebalancing associated, and the churn of the

routing table stored in each node’s memory. Furthermore,

this approach is feasible only when the workload is growing

in a uniform manner. Thus, when confronting intensively

changing workloads or with skewed distribution, this form

of elasticity might not be enough. We have extended the

system with fine-grained elasticity by using affiliated nodes.

A. Affiliated Nodes

Affiliated nodes are used to leverage the elasticity of

the system. Specifically, the application of affiliated nodes

allows configurable replication degrees for each key. This

is achieved by attaching affiliated nodes to any standard



Algorithm 2: Pseudo Code for Write Request

n.receiveWriteRequest(msg, MODE)
%Check whether it is a key update with passive update mode;
if n.contains(msg.key) & MODE == PASSIVE then

leaseRec = n.getLeaseRecord(msg.key);
if leaseRec == ALLEXPIRE then

n.writeValue(msg.key, msg.value);
lazyUpdate(replicationGroup, msg);
return SUCCESS ;

end
else

lease = n.generatorLease();
for server ∈ replicationGroup do

checkResult = n.issueLease(server, msg.key,
msg.value, lease) ;

end
while retries do

ACKServer = getACKs(checkResult) ;
noACKServer = replicationGroup-ACKServer ;
leaseExpired = getLeaseExp(leaseRec) ;
if noACKServer ∈ leaseExpired &
sizeOf(noACKServer) <
sizeOf(replicationGroup)/2 then

lazyUpdate(noACKServer, msg);
n.writeValue(msg.key, msg.value);
for server ∈ ACKServer do

n.putLeaseRecord(server, msg.key, lease) ;
end
return SUCCESS;

else
for server ∈ noACKServer do

checkResult += n.issueLease(server,
msg.key, msg.value, lease);

end
retries -= retries;

end
end
return FAIL;

end

nodes, which are called host standard nodes in this case.

Then, a configurable subset of the keys served in the host

standard node can be replicated at attached affiliated nodes.

The affiliated nodes attached to the same host standard node

can have different configurations on the set of the replicated

keys. The host standard node is responsible to issue and

maintain leases of the keys replicated at each affiliated node.

The routing links to the affiliated nodes are established in

other standard nodes’ routing tables respect to a specific key

after the first access forwarded by the host standard node. If

multiple affiliated nodes hold the same key, the host standard

node forwards requests in a round-robin fashion.

Affiliated nodes are designed as lightweight processes that

can join/leave system overlay by only interacting with a

standard node. Thus, addition and removal of affiliate nodes

introduce very little overhead. Rapid deployment of affiliated

nodes allows GlobLease to swiftly handle workload spikes.

Furthermore, the dynamic configuration of the replication

degrees on a key basis allows skewed (popular) keys to

be highly replicated on the affiliated nodes on demand.

This key-based extra replication not only allows GlobLease

to handle skewed workloads, but also further leverage the

fast deployment of affiliated nodes, which requires less

data movement overhead by precisely replicating the highly

demanded keys. In this way, GlobLease is also able to handle

spiky and skewed workload in a swift fashion. There is no

theoretical limit on the number of the affiliated nodes in the

system, the only concern is the overhead to maintain data

consistency on them, which is explained in the next section.

Consistency Issues: In order to guarantee data consistency

in affiliated nodes, a secondary lease is established between

an affiliated node and a host standard node. The secondary

lease works in a similar way as the lease protocol introduced

in Section III. An affiliated node holding a valid lease of a

specific key is able to serve the read requests of that key. The

host standard node is regarded as the master to the affiliated

node and maintains the secondary lease. The principle of

issuing a secondary leases on an affiliated node is that it

should be a sub-period of a valid lease of a specific key

holding on the host standard node. The invalidation of a

key’s lease on a host standard node involves the invalidation

of all the valid secondary leases of this key issued by this

host standard node to its affiliated nodes.

V. EVALUATION

We evaluate the performance of GlobLease under different

intensities of read/write workloads in comparison with Cas-

sandra [1]. Furtermore, the evaluation of GlobLease goes

through its performance with different read/write ratios in

workloads and different configurations of lease lengths. The

fine-grained elasticity of GlobLease is also evaluated through

handling spiky and skewed workloads.

A. Experiment Setup

We use Amazon Elastic Compute Cloud (EC2) to evaluate

the performance of GlobLease. The choice of Amazon EC2

allows us to deploy GlobLease in a global scale. We evaluate

GlobLease with four DHT rings deployed in the U.S. west

(California), U.S. East, Ireland, and Japan. Each DHT ring

consists of 15 standard nodes and a configurable number

of affiliated nodes according to different experiments. We

use the same Amazon EC2 instance to deploy standard

nodes and affiliated nodes. One standard or affiliated node is

deployed on one Amazon EC2 instance. The configuration

of the nodes are described in Table I.

As a baseline experiment, Cassandra is deployed using

the same EC2 instance type and amount in each region

as GlobLease. We configure read and write quorums in

Cassandra in favor of its performance. Specifically, for

read dominant workload, Cassandra reads from one replica

and writes to all replicas. For write dominant workload,

Cassandra writes to one replica and reads from all replicas.

Note that with this configuration, Cassandra gains more

performance since only one replica from one region is

needed to process a request. However, Cassandra only



Table I
NODE SETUPS

Specifications Nodes in GlobLease YCSB client

Instance Type m1.medium m1.xlarge

CPUs Intel Xeon 2.0 GHz Intel Xeon 2.0 GHz*4

Memory 3.75 GiB 15 GiB

OS Ubuntu Server 12.04.2 Ubuntu Server 12.04.2

Location U.S. West, U.S. East,
Ireland, Japan

U.S. West, U.S. East,
Ireland, Japan

Table II
WORKLOAD PARAMETERS

Total clients 50

Request per client Maximum 500 (best effort)

Request rate 100 to 2500 requests per second (2 to
50 requests/sec/client)

Read dominant workload 95% reads and 5% writes

Write dominant workload 5% reads and 95% writes

Read skewed workload Zipfian distribution with exponent fac-
tor set to 4

Length of the lease 60 seconds

Size of the namespace 10000 keys

Size of the value 10 KB

achieves casual consistency in read-dominant experiment

and sequential consistency in write dominant experiment,

which is less stringent than GlobLease. More replicas (over-

head) are needed to achieve sequential consistency with read

dominant workload in Cassandra. Even though, GlobLease

outperforms Cassandra as shown in our evaluations.

We have modified Yahoo! Cloud Serving Benchmark

(YCSB) [12] to generate either uniform random or skewed

workloads to GlobLease and Cassandra. YCSB clients are

deployed in an environment described in Table I and param-

eters for generating workloads are presented in Table II.

B. Varying Load

Fig. 2 presents read performance of GlobLease with

comparison to Cassandra using the read dominant workload.

The workloads are evenly distributed to all the locations

according to GlobLease and Cassandra deployments. The

two line plots describe the average latency of GlobLease

and Cassandra under different intensities of workloads. In

GlobLease, the average latency slightly decreases with the

increase of workload intensity because of the efficient usage

of lease. Specifically, each renewal of the lease involves

the interaction between master and non-master nodes, which

introduces high cross region communication latency. When

the intensity of the read dominant workload increases, within

a leasing period, data with valid leases are more frequently

accessed, which results in a large portion of requests are

served with low latency. This leads to the decrease of the

average latency in GlobLease. In Contrast, as the workload

increases, the contention for routing and the access to data

on each node are increased, which causes the slight increase

of average latency in Cassandra.

The boxplot in Fig. 2 shows the read latency distribution

of GlobLease (left box) and Cassandra (right box). The

outliers, which are high latency requests, are excluded from

the boxplot. The high latency requests are discussed in Fig. 4

and Fig. 5. The boxes in the boxplots are increasing slowly

since the load on each node is increasing. The performance

of GlobLease is slightly better than Cassandra in terms of

the latency of local operations (operations that do not require

cross region communication) shown in the boxplots and the

average latency shown in line plots. There are several tech-

niques that contribute to the high performance of GlobLease,

including one-hop routing (lookup), effective load balancing

(key range/mastership assignment) and efficient key-value

data structure stored in memory.

For the evaluation of write dominant workload, we enable

master migration in GlobLease. We assume that a unique

key is only written in one region and the master of the key

is assigned to the corresponding region. This assumption

obeys the fact that users do not frequently change their

locations. With master migration, more requests can be

processed locally if the leases on the requested keys are

expired and passive write mode is chosen. For the moment,

the master migration is not automated, it is achieved by

calling the master migration API from a script by analyzing

the incoming workload (offline).

An evaluation using write-dominant workload on

GlobLease and Cassandra is presented in Fig. 3. GlobLease

achieves better performance in local write latency and

overall average latency than Cassandra. The results can be

explained in the same way as the previous read experiment.

Fig. 4 shows the performance of GlobLease and Cassan-

dra using two read dominant workload (85% and 95%) in

CDF plot. The CDF gives a more complete view of two

systems’ performance including the cross region commu-

nications. Under 85% and 95% read dominant workload,

Cassandra experience 15% and 5% cross region communi-

cations, which are more than 500 ms latency. These cross

region communications are triggered by write operations

because Cassandra is configured to read from one replica and

write to all replicas, which in favor of its performance under

the read dominant workload. In contrast, GlobLease pays

around 5% to 15% overhead in maintaining leases (cross

region communication) in 85% and 95% read dominant

workloads as shown in the figure. From the CDF, around

1/3 of the cross region communication in GlobLease are

around 100 ms, another 1/3 are around 200 ms and the

rest are, like Cassandra, around 500 ms. This is because

renewing/invalidating leases do not require all the repli-

cas to participate. Respect to the consistency algorithm in

GlobLease, only master and non-masters with valid lease of

the requested key are involved. So master of a requested

key in GlobLease might need to interact with 0 to 3 non-

masters to process a write request. Latency connecting data

centers varies from 50 ms to 250 ms, which result in 100

ms to 500 ms round trip. In GlobLease, write request are

processed with global communication latency ranging from

0 ms to 500 ms depending on the number of non-master

replicas with valid lease. On the other hand, Cassandra

always needs to wait for the longest latency among servers
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Figure 4. Latency distribution of GlobLease and
Cassandra under two read dominant workloads

in different data centers to process a write operation which

requires the whole quorum to agree. As a result, GlobLease

outperforms Cassandra after 200 ms as shown in Fig. 4.

Fig. 5 zooms in on the high latency requests (above 300

ms) in Fig. 4 under three read dominant workloads (75%,

85% and 95%). GlobLease significantly reduces (around

50%) high latency requests comparing to Cassandra. This

improvement is crucial to the applications that are latency

sensitive or having stringent SLO requirements.

C. Lease Maintenance Overhead

In Fig. 6, we evaluate lease maintenance overhead in

GlobLease. The increasing portion of write request imposes

more lease maintenance overhead on GlobLease since writes

trigger lease invalidation and cause future lease renewals.

The y-axis in Fig. 6 shows the extra lease maintenance

messages comparing to Cassandra under throughput of 1000

request per second and 60 second lease. The overhead of

lease maintenance is bounded by the following formula:

WriteThroughput

ReadThroughput
+

NumberOfKeys

LeaseLength ∗ReadThroughput

The first part of the formula represents the overheads

introduced by writes that invalidate leases. The second part

of the formula stands for the overheads for reads to renew

leases. Even though lease maintenance introduces some

overhead, GlobLease can outperform quorum-based storage

systems, such as Cassandra, when latency between data

centers vary. GlobLease benefits from smaller latency among

close data centers as shown in Fig. 4 and Fig. 5.

D. Varying Read/Write Ratio

In Fig. 7, we vary the read/write ratio of the workload.

The workload intensity is fixed to 1000 request per second

for both GlobLease and Cassandra. As shown in Fig. 7,

GlobLease has larger average latency comparing to Cas-

sandra when the write ratio is low. This is because that

GlobLease pays overhead to maintain leases as evaluated in

Fig. 6. However, GlobLease outperforms Cassandra when

the write ratio grows. This is explained in Fig. 5 where

GlobLease reduces the percentage of high latency requests

significantly comparing to Cassandra. The improvement on

the high latency requests compensate the overhead of lease

maintenance leading better average latency in GlobLease.

E. Varying Lease Length

We vary the length of leases to examine its impact

on access latency for read-dominant and write-dominant

workloads. The workload intensity is set to 1000 requests

per sec. Fig. 8 shows that, with the increasing length of the

lease, average read latency improves significantly since, in

a valid leasing time, more read accesses can be completed

locally. In contrast, average write latency increases since

more cross-region updates are needed if there are valid leases

in non-master nodes. Since the percentage of the mixture of

reads and writes in read and write dominant workload are

the same (95%), with the increasing length of the lease, they

approximate the same steady value. Specifically, this steady

value, which is around 60s in our case, is also influenced by

the throughput of the system and the number of key entries.

F. Skewed Read Workload

In this experiment, we measure the performance of

GlobLease under highly skewed read-dominant workload,

which is common in the application domain of social net-

works, wikis, and news where most of the clients are readers

and the popular contents attract most of the clients. We have

extended YCSB to generate highly skewed read workload

following the Zipfian distribution with the exponent factor of

4. Fig. 9 shows that, when GlobLease has sufficient number

of affiliated nodes (6 in this case), it can handle skewed

workload by coping the highly skewed keys in the affiliated

nodes. The point in the top-left corner of the plot shows the

performance of the system without affiliated nodes, which is

the case of a system without fine-grain replica management.

This scenario cannot expand to higher load because of the

limit of high latency and the number of clients.

G. Elasticity with Spiky and Skewed Workload

Fig. 10 shows GlobLease’s fine-grained elasticity un-

der highly spiky and skewed workload, which follows a

Zipfian distribution with the exponent factor of 4. The

workload is spread evenly in three geographical locations,

where GlobLease is deployed. The intensity of the workload

changes from 400 req/s to 1800 req/s immediately at 50s

point in the x-axis. Based on the key ranks of the Zipfian

distribution, the most popular 10% of keys are arranged to

be replicated in the affiliated nodes in three geographical

locations. Based on our observation, it takes only tens
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of milliseconds for an affiliated node to join the overlay

and several seconds to transfer the data to it. The system

stabilizes with affiliated nodes serving the read workloads

in less than 10 sec. Fig. 10 shows that GlobLease is able

to handle highly spiky and skewed workload with stable

request latency, using fine-grained replica management in

the affiliated nodes. For now, the process of workload

monitoring, key pattern recognition, and keys distribution in

affiliated nodes are conducted with pre-programmed scripts.

However, this can be automated using control theory and

machine learning as discussed in [13], [14], [15].

VI. RELATED WORK

A. Distributed Hash Tables

DHTs have been widely used in many storage systems be-

cause of their P2P paradigm, which enables reliable routing

and replication in the presence of node failures. Selected

studies of DHTs are presented in Chord [5], Pastry [16],

Symphony [9]. The most common replication schema im-

plemented on top of DHTs are successor-lists, multiple

hash functions or leaf-sets. Besides, ID-replication [8], [17]

and symmetric replication [18] are also discussed in lit-

erature. Our approach takes advantage of DHT’s reliable

routing and self-organizing structure and is different from

the existing approaches in two aspects. First, we have

implemented our own replication schema across multiple

DHT overlays, which aims at fine-grained replica placement

in the scenario of geographical replication. Our replication

schema is similar to [8] but differs from it in the granularity

of replica management and the routing across replication

groups. Second, when GlobLease is deployed in a global

scale, request routing is handled by selecting link with low

latency according to the deployment.

B. Data Consistency

Consistency protocols in geo-replicated scenarios have

gained great interests recently. Recent proposed solu-

tions [7], [19], [20] use the classical Paxos algorithm [10],

which requires a quorum to agree on operations and trans-

actions. In contrast, we implement a strong consistency

protocol inspired by the cache coherency protocol [21].

Our consistency schema distinguishes the read and write

performance. We expect to have better performance in reads

comparing to the previous approaches, since, most of the

times, no global synchronization is needed. We have masters

on key basis to handle the write accesses. With the flexibility

to migrate the masters to the most intensive written location,

the write accesses are also improved in GlobLease.

C. Lease-based Consistency

There are many usage scenarios of leases in distributed

systems. Leases are first proposed to deal with distributed

cache consistency issues in [22]. Later, the idea of using

leases to maintain cache consistency is extended in [23].

Leases are also used to improve the performance of classic

Paxos algorithm [24]. Furthermore, leases were explored

to preserve consistency in transactions [25], [26], [27].

In sum, leases are used to guarantee the correctness of

a resources in a time interval. Because leases are time-

bounded assertions of resources, leases are fault tolerant in a

distributed environment. In our paper, we explore the usage

of leases in maintaining data consistency in a geo-replicated

key-value store. Leases are used to reduce the overhead of

consistency maintenance across geographical areas where

communications among nodes observe significant latency.

Evaluation shows that lease is effective in reducing high

latency requests by only paying a reasonable overhead.



D. Elasticity Issues

Elasticity is a property of a system, which allows it to

scale up and down, i.e., to grow and shrink, in order to

offer satisfactory service with reduced cost in the presence

of changing workloads. In particular, elasticity of a stor-

age service, which requires data to be properly allocated

before serving the clients, is well studied in [15], [14],

[13], etc. However, to our best knowledge, most of these

works tackle with elasticity in a coarse-grained fashion

under the assumption that the changing of workloads are

uniformly distributed on each participating node. In this way,

the elasticity is achieved by adding/removing nodes based

on workload intensity without transparently managing data

skewness. In contrast, GlobLease focuses on fine-grained

elasticity. Skewed or spiky keys are efficiently and precisely

replicated with higher replication degree and start serving

the workload with reduced overhead in affiliated nodes.

E. Storage Systems

Many successful distributed storage systems have been

built by cutting-edge IT companies recently, including

Google’s Spanner [4], Facebook’s Cassandra [1], Microsoft’s

Azure storage [28], Linkedin’a Voldemort [29], Yahoo!’s

PNUTS [3], and Amazon’s Dynamo [2]. GlobLease, as well

as Voldemort, Cassandra and Dynamo, employs DHTs for

namespace division, request routing, and fault tolerance.

GlobLease differs from them mainly in two aspects. First,

they will not scale to a global scale because of the successor-

list replication, which, to some extent, tightly bounds system

deployment. GlobLease solves this issue by replicating mul-

tiple DHTs with integration of geo-aware routing. Second, to

our best knowledge, none of these systems is able to change

the replication degree of a specific key swiftly on the fly to

handle highly skewed and spiky workload.

VII. CONCLUSION

GlobLease aims at achieving low latency data accesses

and fine-grain replica management in a global scale. It em-

ploys multiple DHT overlays, each of which is a replicated

data store in order to reduce access latency in a global scale.

Geo-aware routing among DHTs is implemented to reduce

data lookup cost. A lease-based consistency protocol is

designed and implemented, which is optimized for keeping

sequential data consistency with reduced global communi-

cation. Comparing to Cassandra, GlobLease achieves faster

read and write accesses in a global scale with less than 10 ms

latency in most of the cases. The overhead of maintaining

leases and the influence of lease length are also studied

in our work. Furthermore, the secondary leasing protocol

allows us to efficiently control data consistency in affiliated

nodes, which are used to serve spiky and skewed read

workloads. Our evaluation shows that GlobLease is able to

react to an instant 4.5 times workload increase with skewed

key distribution swiftly and brings down the request latency

in less than 20 seconds. In sum, GlobLease has demonstrated

its optimized performance and fine-grained elasticity under

sequential consistency guarantee in a global scale.
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