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Abstract—Distributed OLTP databases are now used to man-
age metadata for distributed file systems, but they cannot also
efficiently support complex queries or aggregations. To solve
this problem, we introduce ePipe, a databus that both creates
a consistent change stream for a distributed, hierarchical file
system (HopsFS) and eventually delivers the correctly ordered
stream with low latency to downstream clients. ePipe can be
used to provide polyglot storage for file system metadata, allowing
metadata queries to be handled by the most efficient engine for
that query.

For file system notifications, we show that ePipe achieves up to
56X throughput improvement over HDFS INotify and Trumpet
with up to 3 orders of magnitude lower latency. For Spotify’s
Hadoop workload, we show that ePipe can replicate all file
system changes from HopsFS to Elasticsearch with an average
replication lag of only 330 ms.

I. INTRODUCTION

There has been significant growth in recent years in the volume
of data stored in distributed file systems. With such a growth,
it becomes increasingly difficult to index, manage, and track
the origin and use of data within large datasets. Distributed file
systems traditionally minimize the amount of metadata used for
files and directories to ensure that the metadata can be managed
in-memory by a single process [1]. However, as distributed
file systems inexorably grow in size, this approach becomes
increasingly untenable. HopsFS is a drop-in replacement for
the Hadoop Distributed file system (HDFS) that solves this
problem by storing its metadata in a distributed in-memory
NewSQL database [2].

However, more metadata brings new challenges. As the
number of files increases, finding files becomes more challeng-
ing and new requirements, such as the right-to-be-forgotten
enshrined in the European GDPR legislation [3], necessitate
distributed file systems to provide richer query support for their
metadata than what is currently available in existing distributed
hierarchical file systems. Such query support should, of course,
return correct and fresh results, that is, from a very recent
consistent view of the metadata. However, there is no single
database that can efficiently process all query patterns on
metadata [4]. Recently, the idea of polyglot persistence has
become popular, where replicas of the data should be stored
in more than one data store, enabling the data to be efficiently
queried from different engines, such as OLAP or full-text search
engines [5], [6]. The main research challenge in implementing
polyglot persistence is ensuring reliable, timely, and consistent
replication of the data between the different engines.

HopsFS stores its file system namespace metadata in a

NewSQL database, MySQL Cluster. To support polyglot per-
sistence of HopsFS’ metadata in external stores, each external
store needs an eventually consistent replication protocol to
synchronize its metadata with the main NewSQL metadata
store. Queries on the external store, such as full-text searches,
should return correct results, but the results may be stale due
to replication lag (the latency of replicating metadata from the
NewSQL store to the secondary store). We consider such a
replication protocol near real-time, if the vast majority of events
replicated with sub-second replication lag, however, there is no
guaranteed bound on the delay introduced by the processing
and delivery of metadata to the external store.

In this paper, we present ePipe, a metadata system for
HopsFS that provides replicated-metadata-as-a-service. The key
component of ePipe is a databus that both creates a consistent,
correctly-ordered change stream from HopsFS and eventually
delivers the stream with low latency (sub-second) to external
stores and downstream clients. Our main contribution in ePipe
is a formal model and an implementation that generates a
consistent file change stream from the unordered changelog
produced by the NewSQL database (MySQL Cluster [7]). The
problem with the unordered changelog is that it can include
out-of-order events from a file system perspective (such as
delete a file before it has been created). To solve this problem,
we developed a highly performant event re-ordering protocol
that ensures the correctness of ePipe’s output replication stream,
while not requiring the serialization of all events in the database
changelog - to yield high performance.

In experiments based on a real-world Hadoop workload from
Spotify, ePipe can achieve up to 56X throughput improvement
for file system notifications over HDFS INotify and Trumpet
with up to 3 orders of magnitude lower latency. We demonstrate
that ePipe can scale to file system throughput levels several
times higher than the largest HDFS deployments found today.
Even at this scale, ePipe can consistently replicate all the file
system changes from HopsFS to Elasticsearch in sub-second
replication lag.

II. BACKGROUND

In this section, we describe HDFS [1] and HopsFS [2] and
present what they offer to support polyglot persistence of
the metadata, that, in turn, would enable services such as an
efficient query service of the namespace.



A. Hadoop Distributed File System (HDFS)
HDFS [1] is a distributed hierarchical file system that stores
its namespace metadata in a single metadata server called the
namenode. In HDFS, all file system operations are logged
into a transaction log called the edit log [1]. The edit log is
written to a quorum of journal nodes in high availability setups.
Each file system operation is assigned with a monotonically
increasing transaction id.

HDFS implements an inotify service in the namenode [8],
where a client periodically polls the namenode for new
transactions that happened after a given transaction id. This
approach has poor scalability, and it doesn’t support fine-
grained watches over a specific directory. Trumpet [9] was
developed to provide an inotify service for HDFS that does
not poll the namenode - the namenode is already a bottleneck
in HDFS [2]. Trumpet periodically polls the edit logs from
the local file system of the namenode or a journalnode, and
publishes the transactions as events into a Kafka topic. Clients
then consume events from the Kafka topic. However, such
an approach introduces a higher replication lag compared
to the native inotify service provided by HDFS due to the
cost of polling the local file system and publishing to Kafka.
Moreover, HDFS implements a find operation [10] to search for
files/directories based on their name. However, the solution is
inefficient as it blindly traverses (scans) the whole namespace.

B. HopsFS
HopsFS [2] is a new distribution of HDFS that replaces HDFS’
namenode with a distributed metadata service, where the
metadata is stored fully normalized in a database. In HopsFS,
multiple stateless namenodes are used to control access to the
database. Currently, only MySQL Cluster (NDB) is supported
as the backend database, but a plugin architecture allows,
in principle, any database with support for transactions and
row-level locking to be used [2]. In HopsFS, inodes (files
or directories) are stored as rows in the inodes table with a
primary key.

1) MySQL Cluster (NDB)
NewSQL databases are distributed, in-memory relational
databases that partition tables over many database nodes [11].
MySQL Cluster’s NDB storage engine is a NewSQL database
that achieves high performance by supporting concurrent non-
serialized transactions [7]. HopsFS uses locking primitives to
ensure file system consistency for cross-partition transactions.
There are alternative NewSQL architectures that use a global
transaction manager and multi-version concurrency control
to scale out over many nodes, such as MemSQL [12] and
SAP Hana [13], while others, like VoltDB [14], serialize cross-
partition transactions.

MySQL Cluster supports the NDB (Network Database)
storage engine with different APIs for accessing its data, C++,
Java, and SQL. Given that HopsFS’ metadata resides in NDB,
an administrator could easily use SQL to search for files based
on their attributes (such as name, size, and modification time).
However, as MySQL Cluster is an OLTP database, many types
of queries (such as, SELECT * from inodes) have the potential

to overload the database which would, in turn, affect HopsFS’
stability and performance. Moreover, NDB does not support
full-text search over columns.

III. NOTIFICATIONS FOR HOPSFS
Notification APIs are common for monolithic file systems but
are rarely found in distributed file systems, where there is
no standardized API for file system notifications. Crawling a
large-scale distributed file system without proper indexing is
inefficient by design. Moreover, since HopsFS supports many
stateless, independent namenodes, and the metadata is stored
in NDB, notifications of metadata changes must originate in
the database. The approach we take is based on a feature of
MySQL Cluster where we can subscribe to watch for ongoing
changes to the metadata. The feature is similar to database
triggers but is provided as a distributed service (NDB Event
API) with no historical changelog, just a live change stream.
So, a notification service that listens for events from the NDB
Event API is not sufficient to build a reliable bus to replicate
changes to external systems, as, in case of failure, we would
miss events leading to inconsistent replication.

Our solution for ePipe is to add a logging table “file
system replication log(frol)” to the database, where file system
metadata changes are logged as part of file system transactions
to ensure integrity and consistency of the log. We show later in
Section VI that this solution is more efficient with negligible
overhead on the file system. The storage overhead of an
frol entry is 21 + L bytes, where L is the length of the
file/directory name. For a Spotify workload, the average length
of file/directory name is 34, so 1 million frol entries consume
56 MB, the database can be scaled to store up to 24 TB [2].

A. Selective Logging of Files/Dirs in HopsFS
We have extended the HopsFS APIs with two RPCs to enable
and disable, respectively, selective logging of file system
operations for a given subtree (a directory hierarchy in the file
system namespace, including its child files/directories). The
events that HopsFS logs include file/directory events such as
create, append, delete, rename, set owner, and move. These
logs are written to the database as rows in the frol table. The
rows are spread across different database partitions, with the
datanode used to store the row determined by the MD5 hash
of the row’s primary key.

B. Consuming the frol entries
Since HopsFS logs file system operations as rows in the frol
table, we need a way to consume the entries from the frol in
near real-time to notify interested subscribers. We introduce
ePipe, a databus system to consume the frol entries and then
either provide an enriched version of the events with extended
metadata as described in Section V-C, or take actions based on
some predefined criteria as described in Section V-E. Figure 1
shows a high-level description of ePipe and its interactions
with NDB, HopsFS, and other downstream consumers, such
as Elasticsearch and Hive. ePipe starts with a recovery phase
(sync) to read all unprocessed events from the frol, at the same
time it subscribes for any new changes on the relevant tables,
without publishing those changes until the recovery is done.
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Fig. 1: Architecture diagram of the interactions between ePipe, NDB, and
HopsFS. ePipe starts with a recovery phase (sync) to read all unprocessed
changes from the database. Also, it subscribes for changes on the logging
tables. Whenever a change happens, the database pushes a change event
to ePipe, that processes the event(s), and enriches the associated files with
extended metadata if available. The enriched events are then published to the
subscribers of ePipe.

From then on, any change events in subscribed subtrees in the
file system generate a new event that arrives at ePipe, and a
data enricher component augments the event with file metadata
(owner, group, size, etc.) and any extended metadata for that
file or directory (see Section V-B). Finally, event handlers in
ePipe either publish the event or take some action as defined
for that event type/value.

C. NDB Event API
NDB provides a publish-subscribe API where applications
can subscribe to row changes on a table, and then NDB
streams the row changes to the corresponding subscribers.
Each database node independently generates a change stream
for the row changes it was involved in. That is, each database
node is responsible for a subset of the change stream, and
sends its assigned subset to all subscribers over the Event
API, which in turns, groups and merges the change streams
coming from all database nodes, and when all change streams
for a given epoch have been received from database nodes,
it publishes the events to the application, ePipe in our case.
NDB implements a logical clock known as an epoch that
is periodically incremented across all nodes in the cluster
atomically using a leader driven protocol [15]. Epochs are
used to maintain a total order of events on the cluster, that is
required by various internal functions such as grouping sets
of committed transactions together for later use by the NDB
Event API.

IV. EPIPE

A. System Model
In HopsFS, file system metadata operations, with the exception
of subtree operations, are implemented as a single transaction
T in the database. Subtree operations, on the other hand, are
executed as a one or more transactions [2]. Read-only (file
system) operations do not mutate the metadata, such as reading
a file, while mutate-operations update the metadata, such as
creating a file. For logging-enabled subtrees, mutate operations
also write a log entry to the frol table, see Section III-A. For
mutate-operations, a transaction T , once committed, updates
the state of the database, and then NDB internally outputs
any frol change events {rx} in T to consumers through the
Event API. A frol change event rx is defined as a change

to a given inode x in the file system, i.e., a create, append,
delete, move, set owner or rename event. Every transaction
T belongs to a single epoch e, where e is the NDB epoch
and the set of transactions that commit within e is defined
as: e.trans = {T}. By default, the epoch number (e.num)
is incremented every 100 milliseconds. For any given change
event rx (part of transaction T ), we can determine its epoch
number using epoch(rx) = e.num. We use the happens-before
symbol ‘→’ to denote the happened-before relation between
any two given change events [16]. For example, for any two
change events rx and ry, rx → ry implies that rx happened
before ry . NDB provides the following ordering properties for
the frol entries:
• Property 1: ∀ei, ej where ei and ej are epochs i and j

respectively, ei happens before ej if ei.num < ej .num.
That is, epochs are totally ordered.

• Property 2: ∀rx, ry ∈ T, epoch(rx) = epoch(ry). That
is, all change events in the same transaction have the same
epoch number.

• Property 3: ∀rx, ry where x, y are inodes in the file
system rx → ry if epoch(rx) < epoch(ry)

However, these ordering properties guarantee only ordering
across epochs not within the same epoch, which is not strong
enough, for example, to prevent consumers observing files
being deleted before they are created. To address this, we
introduce:

Consistency Requirement CR1: All change events on the
same inode (file/directory) should be serialized to ensure a
consistent view of the file system metadata.

For two change events (rx, r′x) on the same inode (x) in
different epochs, the happened-before relation holds using
Property 1 and Property 3. However, if rx and r′x happen
within the same epoch, no order is guaranteed.

In order to satisfy CR1, ePipe needs to ensure that consumers
of change events observe the same order for file system
metadata operations as clients in HopsFS. We define another
function trans(rx) = T that returns the enclosing transaction
T for a given change event rx. We use the transaction-ordering
symbol ’�’ to denote an ordering between two transactions.
In HopsFS, ordering between two conflicting transactions is
implemented by both transactions acquiring write locks on
the same row in the first operation they execute. That is, if
T1 � T2 then T1 executes before T2 through the use of write
locks.

To ensure the same order of file system metadata operations
between consumers of change events and HopsFS clients,
we examined different solutions. The naive solution is to
annotate all log entries with a monotonically increasing id,
a logical clock, to ensure a serializable view of the events. But
such a solution would introduce a bottleneck on HopsFS and
would degrade its performance, as shown in our evaluation in
Section VI-G. Instead, we adapted the logical clock approach
to serialize events at the inode level, instead of at the database
level. That is, instead of using a single logical clock across all
events, we use a logical clock per inode in HopsFS, that is, a
version number for the inode. This approach doesn’t introduce



any bottlenecks since we piggyback the version number on the
inode, and the update of the version number is serialized per
inode due to the locking mechanisms used by the file system.
We define the function version(rx) = v that, for a given
change event rx on an inode x, returns the inode’s version
number v at the time of rx. With our newly introduced version
number we can strengthen our ordering properties:
• Property 4 ∀rx, r′x where x is an inode in the file system

version(rx) < version(r′x) if trans(rx) � trans(r′x)
• Property 5 ∀rx, r′x where x is an inode in the

file system if epoch(rx) = epoch(r′x) then rx →
r′x if version(rx) < version(r′x)

• Property 6 ∀rx, ry where x, y are different inodes in the
file system if epoch(rx) = epoch(ry) then ¬(rx → ry)

With Properties 1-5, the consistency requirement CR1 is
satisfied. Property 6 states simply that ordering doesn’t matter
between changes events on different inodes in the same epoch
- enabling such change events to be replicated in parallel to
downstream consumers. Based on our ordering properties 1-6,
we devise the event reordering algorithm, see Algorithm 1, to
order the file system metadata change events from NDB. The
algorithm awaits for new events coming from NDB (line 4).
Once a new event arrives, we extract its epoch number and
compare it with the last reported epoch (lastEpoch) (lines 5-9),
guaranteeing Properties 1-3 . If the event’s epoch number is
higher than the last reported epoch number (line 9), that is, the
last epoch is now completed and all events from the last epoch
have been received from the database nodes (see Section III-C),
then we reorder all the events stored for that epoch and prepare
for the next epoch (lines 9-13). NDB guarantees that all events
from epoch n are delivered before events from epoch n+1, and
there are no late events from a completed epoch in NDB. The
events on the same inode are ordered based on their version
numbers (line 17-18), guaranteeing Properties 4,5, otherwise
no order is guaranteed for different inodes within the same
epoch, Property 6.

Algorithm 1 Event Reordering algorithm
Require: Conn . Connection to receive events from NDB
Require: OUT . Output queue to write the ordered events
1: lastEpoch← ⊥
2: currEpoch← ⊥
3: evts← [ ]
4: while Conn has new events do
5: rx ← Conn.getEvent()
6: currEpoch← epoch(rx)
7: if lastEpoch = ⊥ then
8: lastEpoch← currEpoch
9: else if currEpoch > lastEpoch then

10: OUT ← SORT(evts,CMP)
11: evts← [ ]
12: lastEpoch← currEpoch
13: end if
14: evts.add(rx)
15: end while

16: function CMP(rx, ry)
17: if x.inodeID = y.inodeID then
18: return version(rx) < version(ry)
19: end if
20: end function

B. Architecture
The different components that make up ePipe are shown in
Figure 2. ePipe has multiple watch units running in parallel.
Each watch unit consists of a DB Watcher component which
subscribes for change events on its associated table and
produces events in-order to the output event queue. The DB
Watcher component creates a barrier using Algorithm 1 to
ensure that all events from a specific epoch are received and
sorted before handling the next epoch. The Batcher component
consumes the events from the DB Watcher queue, and if it
reaches a configurable threshold of events it outputs a batch to
its output queue. To ensure liveness, the Batcher has a timer
which will periodically fire after a configurable amount of
time even if the target batch size has not yet been reached. A
group of Data Enricher components running in parallel will
consume batches from the Batcher queue to read the required
data from the database, then generate appropriate enriched
events while preserving their correct order. The Data Enrichers
enqueue their resultant, enriched events into a watch unit output
queue. Then, using App Handlers, ePipe publishes the events
to downstream applications, each application implements an
App Handler that consumes the events and processes them
according to application-specific requirements. App Handlers
can consume the events directly from the DB Watcher, that is,
bypassing the optional Batcher and Data Enricher components.
For some use cases, if the application requires being notified
or needs to immediately take action if a particular change
happens, then the App Handler will consume directly from the
DB Watcher. On the other hand, if the application requires a
fully enriched event to be published to it, then, the App Handler
will work normally by connecting to the Data Enricher output
queue. For instance, the Elastic Handler consumes the enriched
events from the queue, and merges these events together in
a JSON object until the JSON object reaches a configurable
size, then using the Elasticsearch Bulk API [17] it pushes
these changes to Elasticsearch. Another example, is the Hive
Handler that consumes events directly from the DB Watcher
and takes actions to synchronize Hive with the metastore, as
discussed in Section V-E. App Handlers also have a timer to
ensure liveness of ePipe.

Even though we based our implementation in the paper on
NDB due to the fact that HopsFS uses it as the metadata
database, we believe our approach can be adapted to other
NewSQL databases, especially ones that support a similar
push-based Event API. For databases without an Event API, a
well-known approach is to tail the database transaction logs [5],
[6], that, could be used where the DB Watcher continuously
tails the transaction logs produced by the database.

C. Failure Recovery
With the help of the persistent frol, ePipe supports failure-
recovery. Failures in ePipe do not result in a loss of events
at consumers, although for consumers that do not support
transactional delivery of events (such as Elasticsearch), it
is possible that events will be received more than once
(duplicates), which is ok for Elasticsearch since updates to



ePipe

NewSQL
DB

ElasticSearch

App1

Appn

WatchUnit

Stream 
changes Hive

e1|e2|.....
DB

Watcher Batcher

e1|...|em
em+1|...|e2

m
………

o1|o2|....
NDB
ReaderNDB
ReaderData
Enricher

App
HandlerApp
HandlerApp
HandlerApp
Handler

Fig. 2: System architecture for ePipe. ePipe consists of multiple Watch Units and App Handlers running in parallel, where each Watch Unit has a DB Watcher,
Batcher, and a set of Data Enrichers. DB Watcher watches for new changes happening on the logging table, and then produces an ordered stream of changes.
Batcher batches the individual incoming events into batches to be processed by DataEnrichers. A DataEnricher is an abstract interface to enrich the incoming
events with data, for example, enrich the events with extended metadata for the affected inodes. AppHandlers either push the enriched events or execute an
action according to the corresponding downstream application. The Batcher and DataEnricher components are optional, that is, the AppHandlers can connect
directly to the DB Watcher as defined by the downstream application.

the same document are idempotent because duplicate events
are guaranteed to arrive before later events in the frol. For
Hive connector on HopsFS, however, we support transactional
delivery of the event as the destination is the same NDB cluster
that the frol event came from. In general, for the downstream
clients, ePipe provides at least once delivery semantics by
ensuring that the event logs are deleted from the frol only once
they are successfully delivered to all downstream subscribers.
If a downstream subscriber failed to receive the events or its
handler timed out, then ePipe resends the events to ensure
the delivery of a consistent change stream. It is up to the
downstream subscriber and its App Handler to correctly handle
duplicates to provide exactly-once processing guarantees. ePipe
could fail at any stage of processing. The persistent frol table,
however, enables ePipe to reprocess all the unprocessed events
upon restart during the initialization phase (sync, see Figure 1).
During recovery, ePipe reorders the events in the usual way
- first by epoch, and then by the version number in case of
conflicting operations on the same inode. This guarantees the
same behaviour as normal running ePipe. Moreover, ePipe
offers a bootstrap functionality to bring new applications up
to speed with the frol.

ePipe is implemented as a multi-threaded application running
on a single host/container with support for failure-recovery. As
ePipe is stateless and lightweight, re-starting a failed daemon
is fast and recovery time due to short-lived ePipe failures
should not be significant. However, in certain scenarios high
availability for ePipe is desirable, and this can be easily added
by running active-standby ePipe servers, reusing the leader
election protocol developed in HopsFS [18]. That is, both
active and standby ePipe servers will periodically write and
poll their status into/from a row in the database, and, whenever
a standby server detects a dead active server, it will take over
by starting all the watch units. A dead server is a server that
fails to write its status to the database for two consecutive
rounds.

V. EPIPE USE CASES

In this section, we describe some of the use cases that are
enabled by ePipe.

A. Metadata search
We built a fast metadata search service for HopsFS using ePipe
and Elasticsearch. For this service, each inode is represented
as a document in an Elasticsearch index, and each document is

identified by its corresponding inode id. That is, all the change
events for a specific inode will update the same document
in Elasticsearch. The Elasticsearch Handler is responsible
for transforming the enriched events into insert/update/delete
actions on the documents in the index.

B. Applications for ePipe
All of the components that make up ePipe are pluggable,
enabling ePipe to be configured for a variety of replication
and notification connectors. For instance, the DB Watcher
can be extended to only filter a specific pattern of files or
operations. This functionality could be used to efficiently build
applications such as intrusion detection systems (IDS) that
watch directories and files for mutations and take actions on
observing such mutations. Currently, the DB Watcher uses NDB
Event API to stream the changes from the database, however,
it can be extended to support any other database by tailing
its transaction log. Another scenario is to extend the Data
Enrichers to enrich the events with more information before
sending them to the downstream applications such as extended
metadata associated with files/directories, see Section V-C.
Moreover, ePipe notification capability is not limited to HopsFS
or file system notifications, but to any system that can write a
row in a table and then extend ePipe to stream these changes
by adding a new watch unit with a DB Watcher that fits the
system requirements.

C. Extended Metadata
File systems support basic attributes for files/directories, such
as file size, permissions, and modification timestamp. However,
in many cases, users and administrators will need to have
extended attributes for files and directories beyond the ones
available in the default attributes. Many existing file systems
provide extended attributes to allow arbitrary attributes to be
attached to files and directories. In HopsFS, a file/directory
is represented as a row in the inodes table, where an inode
is identified by a primary key. Therefore, attaching metadata
to a file or directory is as simple as creating another table
in the database and adding a foreign key constraint on the
primary key columns of the inodes table. We extended HopsFS
to support two different possible strategies to attach metadata
to inodes, either a Schemaless approach or a Schema-Based
approach. To support extended metadata in ePipe, we added
another Watch Unit to watch for events happening on extended
metadata. Also, we extended the Data Enrichers to combine



the extended metadata with the events before sending them to
the downstream applications.

Schemaless: In this approach, the metadata should be stored
in a self-contained manner, where there is no predefined schema
needed to interpret the metadata. Metadata is stored in a single
self-contained JSON object that can be attached to a file or a
directory.

Schema-Based: In this approach, users can define schemas
for their extended metadata similar to how they would create
a schema in a relational database. A schema can have multiple
columns with different types. The schema-based approach
enables the validation of extended metadata by the database.

D. Hopsworks
Hopsworks is a project-based multi-tenant platform for secure
collaborative data science built on HopsFS and YARN [19].
It introduces new abstractions of Projects and Datasets that
provide the basis for which users can securely upload and
privately process data and securely collaborate with other users
on the platform. Hopsworks provides a metadata designer
where users can design a metadata schema and attach validated
metadata values to files, directories, or Datasets. Hopsworks
leverages HopsFS and ePipe to provide an intuitive search
capability using Elasticsearch, where users can search for
files, directories, and Datasets based on their attributes or any
extended metadata attached. Both Projects and Datasets are
implemented as directory subtrees with extensive extended
metadata. Hopsworks writes logging events for Projects,
Datasets, and extended metadata similar to the frol entries
implemented in HopsFS, and then implements different watch
units in ePipe to watch for these logging tables in order to
replicate the same Project/Dataset structure into Elasticsearch.

E. Apache Hive
Apache Hive [20] is a petabyte-scale data warehousing system
that allows users to query tables using a SQL-like query
language. Hive stores its data as databases, tables, and partitions
in a distributed file system (HDFS) while the information
schema is stored in a metastore backed by a relational database
(by default a MySQL server). However, as the schemas are
stored in a MySQL server and the data files are stored on
HDFS, inconsistencies can arise between the two systems. In
work on Hive for HopsFS [21], Hive’s metadata is unified with
the inode metadata in HopsFS to ensure strong consistency of
the Hive metadata. However, a few tables in Hive could not be
linked to inodes with foreign keys (to ensure their integrity), so
we extended ePipe to watch for changes happening in HopsFS
and reflect those changes in the Hive metastore to ensure that
there is no orphaned metadata for Hive if tables or databases
are removed directly from HopsFS. In this scenario, the Hive
Handler consumes the events directly from the DB Watcher and
then it will take appropriate actions accordingly to synchronize
the metastore metadata with the data files in HopsFS.

VI. EVALUATION
In this section, we examine the throughput and latency of
ePipe in replicating the HopsFS frol to Elasticsearch to
implement the metadata search service. We also compare the

latency and throughput of ePipe’s metadata search service
with the equivalent inotify and find services for HDFS. All
the experiments were run on the SICS ICE cluster using Dell
PowerEdge R730xd servers(Intel(R) Xeon(R) CPU E5-2620 v3
(2.40GHz, 256 GB RAM, 4 TB 7200 RPM HDD) connected
using a single 10 GbE network adapter. In the experiments,
we used a 6 node database cluster, NDB version 7.5.6, and
the database replication degree was set to 2. We used NDB’s
default configuration for epoch handling where epochs are
incremented atomically every 100 milliseconds. Elasticsearch
version 2.4.1 was used on a single node setup. We used Trumpet
2.3.1 with Kafka 1.1.0 on a single node setup. In order to stress
test ePipe with a high load of events, we ran a HopsFS cluster
with 10 namenodes. We also ran, an equivalent highly available
(HA) setup of HDFS with 5 servers (1 namenode, 1 Secondary
namenode, and 3 Journal Nodes co-located with 3 Zookeeper
nodes). For 10-namenode setups, HopsFS has three times the
throughput of HDFS, thus, generating three times more events
for ePipe to process than HDFS can produce at max load. We
used the same benchmarking utility for HopsFS and HDFS as
described in [2]. Also, we ran experiments based on a real-
world Hadoop workload from Spotify, published in [2]. Finally,
we present a real-world statistics for ePipe, and Elasticsearch
from a production cluster, at SICS North AB (http://hops.site).

A. Overhead of frol extension to HopsFS
In this experiment, we ran the Spotify Hadoop workload for 60
seconds and recorded the throughput while varying the number
of namenodes. The goal of the experiment is to measure the
overhead of incorporating the frol extension on existing HopsFS
operations. W ran the experiment for two setups: frol enabled
and frol disabled. As shown in Figure 3, the frol extension
has no overhead on the throughput of HopsFS. However, the
Spotify workload is a read intensive workload where only
4.77% of the operations are mutating the namespace by running
create, delete, rename, and move operations [2]. So to test the
overhead of the frol extension even further, we ran another
set of experiments with 100% create, 100% delete, and 100%
rename. Figure 4 shows that the overhead is negligible at the
start with fewer namenodes, but it increases gradually when
more namenodes are added since the database nodes became
more overloaded.

In real-world scenarios, industrial workloads are mostly read
heavy where rename operations are rare and the combined
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percentage of delete and create operations is 3.45% of all
operations [2].

B. ePipe vs. HDFS INotify vs. Trumpet
HDFS INotify is a pull-based notification service, where
clients keep polling the namenode for events. The client can
control how many events to retrieve on each poll request. The
default and recommended number of events is 1000. Increasing
this number will overload the namenode and incur higher
network traffic. Also, having many concurrent clients polling
the namenode will overload it. Trumpet also provides a pull-
based notification service for HDFS. Trumpet publishes the file
system events into a Kafka topic, where clients can subscribe
to that topic to consume its events. On the other hand, the frol
extension is push-based where the NDB Events API pushes
the events to the subscribers, ePipe in this case.

In this experiment, we used a 10-namenode HopsFS cluster
and a highly-available HDFS cluster. We ran a 100% create
microbenchmark on both clusters for 30 seconds, then we
measured the average latency, and the throughput by which
the events arrive at HDFS INotify client, Trumpet client, and
ePipe while varying the load on HDFS and HopsFS by using
100, 1000, and 4000 concurrent clients. The major observable
difference between both clusters is that HopsFS delivers 10X−
12X the throughput of HDFS. That is, ePipe is consuming
10X − 12X the events consumed by the HDFS INotify client
and the Trumpet client. Figure 5 shows the throughput of ePipe,
Trumpet, and HDFS INotify. In case of HDFS INotify we
test three different configuration for the maximum number of
requested events (1K, 10K, 100K). ePipe provides 10X−56X
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the throughput in case of HDFS INotify, and 14X − 32X in
case of Trumpet.

1) The notification lag (latency)
The notification lag is the time taken from inode cre-
ation/deletion until a notification event reaches HDFS INotify
clients, Trumpet client, or ePipe. Figure 6 shows the comparison
between the average lag time for the HDFS INotify client,
Trumpet client, and ePipe. ePipe’s lag time is almost constant
(66−70 msec) independent of the number of concurrent clients,
whereas HDFS INotify and Trumpet vary according to the
number of concurrent clients and the batch size (in case of
HDFS INotify). ePipe has 8X − 1113X lower lag time than
HDFS INotify. The main difference in performance is due to the
polling mechanism and the fact that In HDFS, the file system
transactions are written first to a quorum of journal nodes, 3
in our setup, and then they are available for consumption by
the inotify clients. However, for HopsFS the logging events
are available to ePipe almost instantly through the push based
distributed Event API. On the other hand, Trumpet has a
higher lag time by design compared to HDFS INotify since it
continuously polls the events from the edit log directory on
the local file system. ePipe has 120X − 519X lower lag time
than Trumpet.

In the case of ePipe, the lag time is mainly affected by how
fast the epoch numbers are incremented in NDB. To understand
that relationship, we ran an experiment with 100% create, and
then we calculated the average lag time as reported by ePipe
while varying the NDB epoch incremental interval. Figure 7
shows that the average lag time increases while increasing
the interval by which NDB increment the epochs. Also, we
noticed that the lag time is bounded by the interval between
epochs. Based on Figure 7, we can decrease our lag time to
10 milliseconds, however, that means that all database nodes
in the cluster will execute epoch increment protocols every 10
milliseconds, which would negatively affect the performance
of the database and clients using it.

C. ePipe vs. HDFS find
In this experiment, we searched for file names that have 4000
duplicates. HDFS find performs badly since it traverses the
whole namespace to search for a file. Elasticsearch is two
orders of magnitude faster than HDFS find, see Table I. This
experiment demonstrates the potential of polyglot storage of
metadata, as full-text search operations would not be possible
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on HopsFS’ metadata database either. Full-text search is only
enabled by correct replication of metadata to an external
database that supports full-text search, such as Elasticsearch.
As ePipe also indexes extended metadata for files/directories in
Elasticsearch, the full-text search can also use user-defined
‘tags’ to find files, opening up new possibilities for data
governance, archival, and data provenance.

Number of files/directories HDFS-find (msec) Elasticsearch (msec)
500K 26931 77
1M 55803 74
1.5M 64915 79

TABLE I: The time taken by HDFS-find and ePipe/Elasticsearch to execute a
full-text query to search for a file.

D. ePipe performance
In this experiment, we used a 10 namenode HopsFS cluster, and
we ran the Spotify workload for 60 seconds while varying the
configuration of ePipe. First, we tested the effect of changing
the Elastic Handler queue batch size, as shown in Figure 8a.
We also tested two different batch sizes for the Batcher queue.
For the experiment setup, an Elastic Handler batch size of
200K and Batcher batch size of 100 seems to be the best
configuration where the average time taken to replicate events
to Elastic search is 330 milliseconds. Figure 8b dissects the
times to better understand how the Elastic Handler batch size
affects the average time per event. There are 4 main components
that make up the end-to-end time: 1) the Epoch Barrier which
is the barrier that ePipe uses to collect the events for an epoch
and reorder them before receiving new events from the new
epoch, 2) the Batcher queue time, which is the time the event
spends in the Batcher queue until either the batch size reached
or the timer fired, 3) the Data Enrichment time, which is the
time taken by ePipe to read any extended metadata or data in
general as specified by the Data Enricher, and 4) the Elastic
Handler time, which is the time taken to bulk insert the events
into Elasticsearch including the queueing and indexing time.
As shown in Figure 8b, most of the time is taken by events
queuing in the Elastic Handler and then by Elasticsearch bulk
insertion and indexing. There is a huge spike in time at batch
size 100K, because ePipe was consuming more events than
the available capacity in the Elastic Handler. Also, for batches
bigger than 200K, the queuing time increases, due to the fact
that the Elastic Handler queue is now bigger than the ePipe
consumption rate, and events have to wait longer in the queue
before indexing. Figure 8c shows the relative contributions for

each of the aforementioned stages to the average time taken
by an event in ePipe for a specific Elastic Handler batch size
which is 200K. The Epoch Barrier time is almost constant
and depends on how fast NDB increments the epoch numbers,
similar to the lag time as discussed in Section VI-B1. Figure 8d
shows the total time and throughput of ePipe to consume all
events produced by the Spotify workload for 60 seconds. At a
batch size of 100K, it took 79 seconds to consume all events,
and that is due to the fact that the Elastic Handler was not
able to keep up with the consumption rate. For the other batch
sizes, they almost finished just a few seconds after the end of
the experiment, and that is due to the fact that the last batch
probably won’t be complete and we rely on the Elastic Handler
timer to push the last batch to Elasticsearch, configured at 10
seconds. For most configurations, ePipe manages to process
the events at almost 11K events/second.

E. ePipe Recovery
ePipe does not delete the frol entries until after it has been
successfully delivered them to all downstream clients, ensuring
failures will not result in data loss. Upon recovery, ePipe reads
all the logs from the frol table in the database and reorders
the events using the same logic as is used when events are
received from the NDB Event API, thus ensuring consistent
event re-ordering semantics. Table II shows the time taken by
ePipe to recover from a failure while varying the number of
failed events from 200K to 30M events. ePipe can recover
200K events in 6.86 seconds, and 30M in 768.7 seconds with
a throughput ranging from 29K to 50K events/second.

Number of frol entries Recovery Time (sec) Throughput (events/sec)
200 K 6.86 29.72 K
500 K 11.28 45.19 K
1 M 29.12 34.36 K
1.5 M 34.94 42.1 K
2.5 M 51.46 50.4 K
10 M 263 38.2 K
30 M 768.7 39 K

TABLE II: The time taken by ePipe to recover from failures and the throughput
while varying the number of events in the frol table.

F. Statistics from a Production Cluster
We have collected some statistics for ePipe and Elasticsearch
from a Hops cluster at RISE SICS North AB that is adminis-
tered by Logical Clocks AB. The cluster runs Hopsworks [19],
where ePipe services including Hive metadata management
and metadata search. As of April 2018, there are around 400
registered users, 523 projects, 2603 datasets out of which 144
datasets are shared between multiple projects, and 631 are
searchable. Under the hood, HopsFS stores almost 47 million
files and directories. Elasticsearch stores almost 10 million
documents, where a document is a file/directory associated with
its extended metadata. These documents consume almost 1GB
of storage. The average indexing and querying times reported
by Elasticsearch are 0.11 milliseconds and 18.29 milliseconds
respectively. We have collected statistics from ePipe for several
days of representative use, and the average reported replication
latency taken per event is 139.82 milliseconds with a standard
deviation of 80.3 milliseconds. The average time for each stage
is as follows; 1) the Epoch Barrier takes 105.13 milliseconds,
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Fig. 8: a) shows the average time for two different configurations of the Batcher’s batch size (100/1000), b) shows the relative contributions for each of the 4
stages (Epoch Barrier, Batcher Queue, Data Enrichment, and Elastic Handler), c) shows the relative contributions but only for a specific Elastic Handler batch
size (200K), and d) shows the total experiment time and throughput for ePipe.

2) the Batcher queue takes no time since ePipe is running with
Batcher queue of size 1, 3) the Data Enrichment takes 0.3
milliseconds, 4) the Elastic Handler takes 34.39 milliseconds
which is very low since we are running on a batch size of 100
bytes. Figure 9 shows the percentiles for each of the stages and
for the total time (replication lag). The time taken by Elastic
Handler increases rapidly after the 90th percentile due to the
Elastic Handler timeout set at 500 milliseconds.
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G. AutoIncrement Columns Overhead
In this microbenchmark, we evaluate the usage of AutoIncre-
ment columns in NDB as a version number (logical clock) for
rows in the frol table. However, since we are dealing with a
distributed database where there is no global auto increment
counter, each client generates a batch of auto increment IDs
from a shared global counter, which will guarantee unique keys
among the clients. A downside of this solution is that gaps
may appear in the IDs, when clients do not use up all the IDs
in their batch. In this experiment, we test the effect of using
different batch sizes while varying the number of concurrent
clients, see Figure 10. Setting the batch size to 1 will ensure a
total order among the clients, with no gaps, but as can be seen,
it severely impacts the performance of the whole application.
The throughput at batch size 1 is 5K regardless of the number
of concurrent clients. The throughput at batch size 10 reaches
a plateau after 40 clients, while batch sizes 100 and 1000 seem
to continuously increase throughput by increasing clients. The
performance bottlenecks introduced by using an auto increment
column with a batch size of 1 is the motivation we use for
introducing a version number for each inode.

VII. RELATED WORK

As file systems grow in size, the need for efficient real-time
full-text search for files and directories becomes a much sought-
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after feature. There have been many studies to provide a file
system with search capabilities [22], [23], [24], [25], [2],
[26], [27]. The Semantic File System [23] is one of the early
solutions for supporting file search within the file system by
embedding search query results as a dynamically generated
virtual directory in the hierarchical namespace. The Inversion
File System [27] and WinFS [26] are examples of the first
attempts to use a general purpose DBMS as the core file
system metadata store, rather than the traditional inodes layout.
Spyglass [24] took a structured approach to managing metadata,
by exploiting the tree structure of the hierarchical namespace
to partition the search space into fixed-size subtrees. Spyglass
crawls a periodic snapshot of the metadata changes in order
to update the search index. However, Spyglass doesn’t support
arbitrary user-defined attributes and a distributed index setup.
Propeller [25] provides real-time file search in a distributed
system by partitioning the namespace according to file access
pattern “access causality”. In order to infer the access causality,
an Access Causality Graph (ACG) is constructed that adds extra
overhead. Propeller supports user-defined attributes. Although
it is distributed, it only considered multiple monolithic file
systems rather than a distributed file system.

GOODS [28] is a system that transparently crawls different
storage systems at Google to discover datasets and infer their
metadata. GOODS supports user-defined tags, facet search
based on collected attributes and user-defined tags, provenance
of the datasets, and hooks when a specific attributes change
in a dataset. GOODS focuses on structured datasets. Unlike
GOODS, ePipe focuses on hierarchical distributed file systems
instead of supporting ubiquitous data sources, and ePipe is a



databus, not a crawl-based indexer.
Wormhole [5] and Databus [6] are systems to tail the

database transaction logs and provide a stream of events to
their subscribers/fetchers. Wormhole provides a push-based
event notification while Databus favours a pull-based solution.
Both systems are used to replicate changes asynchronously
to a set of downstream applications. ePipe follows a similar
approach but instead of relying on polling the transaction logs,
we use the NDB Event API which pushes the events from
many database nodes directly to ePipe. Synapse [29] addresses
the polyglot persistence problem by replicating attributes stored
in the database for MVC based web applications across
heterogeneous databases. On the other hand, ePipe offers
enrichment capabilities for its events before replicating to the
downstream applications.

VIII. CONCLUSIONS

In this paper, we introduced ePipe, a databus that generates a
consistent change stream for HopsFS and eventually delivers
the correctly ordered stream with low latency to downstream
clients. We have shown that ePipe can be integrated into
existing HopsFS clusters with minimal overhead on file
system operations, and that ePipe can scale to replicate a
Hadoop workload from Spotify to Elasticsearch with sub-
second replication lag. We also showed that metadata search
using Elasticsearch and ePipe is more than two orders of
magnitude faster than HDFS-find, and delivers up to 56X the
throughput of HDFS-INotify and Trumpet for thousands of
concurrent clients. Finally, we showed the flexibility of ePipe
as a general purpose databus for the HopsFS changelog, by
showing how a variety of downstream applications can easily
be integrated from metadata search to strongly consistent SQL-
on-Hadoop (Hive-on-HopsFS).
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