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Abstract. Instruction selection implements a program under compila-
tion by selecting processor instructions and has tremendous impact on
the performance of the code generated by a compiler. This paper in-
troduces a graph-based universal representation that unifies data and
control flow for both programs and processor instructions. The represen-
tation is the essential prerequisite for a constraint model for instruction
selection introduced in this paper. The model is demonstrated to be ex-
pressive in that it supports many processor features that are out of reach
of state-of-the-art approaches, such as advanced branching instructions,
multiple register banks, and SIMD instructions. The resulting model can
be solved for small to medium size input programs and sophisticated pro-
cessor instructions and is competitive with LLVM in code quality. Model
and representation are significant due to their expressiveness and their
potential to be combined with models for other code generation tasks.

1 Introduction

Instruction selection implements an input program under compilation by select-
ing instructions from a given processor. It is a crucial part of code generation in
a compiler and has been actively researched for over four decades (see [23] for a
recent survey). It is typically decomposed into identifying the applicable instruc-
tions and selecting a combination of applicable instructions to meet the semantics
of the input program. Combinations differ in efficiency and hence selecting one
is naturally an optimization problem. Finding an efficient combination is crucial
as efficiency might differ by up to two orders of magnitude [35].

Common approaches use graph-based techniques that operate on the data-
flow graph of a program (nodes represent operations, edges describe data flow).
However, state-of-the-art approaches are restricted to trees or DAGs to avoid
NP-hard methods for general graphs. This restriction is severe: ad-hoc routines
are needed for handling control flow; many instructions of modern processors,
such as DSPs (digital signal processors), cannot be handled; and the scope of
instruction selection is typically local to tiny parts of the input program and
hence by design forsakes crucial optimization opportunities.

This paper introduces a universal representation based on general graphs. It
is universal as it simultaneously captures both data and control flow for both



programs and processor instructions. By that it overcomes the restrictions of
current approaches. In particular, the universal representation enables a simple
treatment of global code motion, which lets the selection of instructions to be
global for an entire function. The representation is compatible with state-of-the-
art compilers; the paper uses LLVM [26] as compiler infrastructure.

However, the very reason of the proposed approach is that instruction selec-
tion can be expressed as a constraint model. Due to the expressiveness of the
universal representation, the introduced model accurately reflects the interac-
tion between control and data flow of both programs and processor instructions.
The paper presents the model in detail and discusses how it supports processor
features that are out of reach of state-of-the-art approaches, such as advanced
branching instructions, multiple register banks, and SIMD instructions.

The paper shows that the described approach is feasible. The resulting model
can be solved for small to medium size input programs and challenging SIMD
processor instructions and is competitive with LLVM in code quality.

Model and representation are significant for two reasons. First, they are con-
siderably more powerful than the state of the art for instruction selection and can
capture common features in modern processors. Crucially, instruction selection
with a universal representation is only feasible with an approach as expressive
as a constraint model. Second, the paper’s approach will be essential to inte-
grate instruction selection with register allocation and instruction scheduling as
the other code generation tasks that we have explored in previous work [11, 10].
It is only the combination of all three interdependent tasks that will enable
generating optimal code for modern processors.

Paper outline. Section 2 introduces graph-based instruction selection and Sect. 3
introduces the representations that enable universal instruction selection. The
corresponding constraint model is introduced in Sect. 4. Section 5 experimentally
evaluates the paper’s approach followed by a discussion of related work in Sect. 6.
Section 7 concludes the paper.

2 Graph-based Instruction Selection

The most common approach for instruction selection is to apply graph-based
methods. As is common, the unit of compilation is a single program function,
which consists of a set of basic blocks. A basic block, or just block, is a sequence
of computations (like an addition or memory load) and typically ends with a
control procedure (like a jump or function return). Each block has a single entry
point and a single exit point for execution. A program function has exactly one
block as entry point, called entry block.

For a program function a data-flow graph called program graph is constructed,
where each node represents a computation and each edge indicates that one
computation uses the value produced by another computation. As a data-flow
graph does not incorporate control-flow information, a single program function
typically results in several program graphs (at least one per block). A local
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instruction selector selects instructions for program graphs of a single block,
whereas a global instruction selector does so for an entire function.

For each instruction of a given processor data-flow graphs called pattern
graphs are also constructed. The set of all pattern graphs for a processor consti-
tute a pattern set. Thus, the problem of identifying the applicable instructions
is reduced to finding all instances where a pattern graph from the pattern set is
subgraph isomorphic to the program graph. Such an instance is called a match.

A set of matches covers a program graph if each node in the program graph
appears in exactly one match. By assigning a cost to each match that corre-
sponds to the cost of the selected instruction, the problem of finding the best
combination of instructions is thus reduced to finding a cover with least cost. It
is well known that the subgraph isomorphism problem and the graph covering
problem are NP-complete in general [8, 20], but can be solved optimally in linear
time if the program and pattern graphs are trees [2].

Program trees are typically not expressive enough and hence modern compil-
ers commonly use pattern trees and program DAGs, which are then covered using
greedy heuristics. This, however, suffers from several limitations. First, pattern
trees significantly limit the range of instructions that can be handled. For exam-
ple, ad-hoc routines are required to handle even simple branch instructions as
pattern trees cannot include control procedures. Second, program DAGs exclude
handling of sophisticated instructions of modern processors that span multiple
blocks. Third, more efficient code can be generated if certain computations can
be moved across blocks, provided the program semantics is kept.

int i = 0;

while (i < N) {

int c = A[i] + B[i];

if (MAX < c)

c = MAX;

C[i] = c;

i++;

}

(a) C code

T
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i = 0

if i < N

t1 = i ∗ 4
t2 = A + t1; t3 = B + t1

a = load t2; b = load t3

c = a + b
if MAX < c

c = MAX t4 = C + t1

store t4, c
i = i + 1

bb1:

bb2:

bb3:

bb4: bb5:

(b) Corresponding IR and control-flow graph

Fig. 1: An example program that computes the saturated sums of two arrays, where A,
B, and C are integer arrays of equal lengths and stored in memory, and N and MAX are
integer constants representing the array length and the upper limit, respectively. An
int value is assumed to be 4 bytes.
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A Motivating Example. Assume the C program shown in Fig. 1a, which
computes the saturated sums of two arrays. Saturation arithmetic “clamps”
the computed value such that it stays within a specified range and does not
wrap around in case of overflow, a property commonly desired in many digital
signal processing applications. For simplicity the program in Fig. 1a only clamps
on the upper bound, but the following argumentation can easily be extended
to programs that clamp both bounds. Most compilers do not operate directly
on source code but on the internal representation (IR) of a program, shown
in Fig. 1b, which can be viewed as a high-level assembly language. Programs
written in this form are typically portrayed as a control-flow graph where each
node represents a block and each edge represents a potential jump from one
block to another. Most modern compilers, however, employ a slightly different
representation that will be discussed in Sect. 3.

Assume further that this program will be executed on a processor whose in-
struction set includes the following instructions: satadd computes the saturated
sum of two integer values; repeat iteratively executes an instruction sequence
a given number of times; and add4 can compute up to four ordinary integer
sums simultaneously (a so-called vector or SIMD (Single-Input Multiple-Data)
instruction). Clearly, this program would benefit from selecting the satadd in-
struction to compute the value c and from selecting the repeat instruction to
implement the control of the loop consisting of blocks bb2 through bb5. What
might be less obvious, however, is the opportunity to select the add4 instruction
to compute values t2 and t3 together with t4 and i. Since these additions all reside
inside the loop and are independent from one another, they can be computed
in parallel provided they can be performed in the same block. This notion of
moving computations across blocks is referred to as global code motion.

But taking advantage of these instructions is difficult. First, describing the
saturated sum involves computations and control procedures that span several
blocks. However, the state of the art in instruction selection is limited to local
instruction selection or cannot handle control procedures. Second, to maximize
the utility of the add4 instruction the additions for producing values t4 and i
must be moved from bb5 to bb3. But it is not known how to perform global code
motion in conjunction with instruction selection, and hence all existing represen-
tations that describe entire program functions inhibit moves by pre-placing each
computation to a specific block. Third, for many processors the registers used by
vector instructions are different from those of other instructions. Consequently,
selecting the add4 instruction might necessitate further instructions for copying
data between registers. These additional instructions can negate the gain of using
the add4 instruction or, in the worst case, even degrade the quality of the gener-
ated code. Making judicious use of such instructions therefore requires that the
instruction selector is aware of this overhead. Fourth, since the program graph
must be covered exactly, the computation of the value i cannot be implemented
by both the add4 and repeat instructions. Instruction selection must therefore
evaluate which of the two will result in the most efficient code, which depends
on their relative costs and the restrictions imposed by the processor.
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bb1: int i1 = 0;
bb2: int i2 = ϕ(i1:bb1 , i3:bb5);

if (i2 < N) goto bb3; else goto end;
bb3: int c1 = A[i2] + B[i2];

if (MAX < c1) goto bb4; else goto bb5;
bb4: int c2 = MAX;
bb5: int c3 = ϕ(c1:bb3 , c2:bb4);

C[i2] = c3; int i3 = i2 + 1;
goto bb2;

Fig. 2: The C program from Fig. 1a in SSA form.

3 Representations for Universal Instruction Selection

This section introduces representations for both programs and instructions and
how they can be used to express covering and global code motion.

Program Representation. The key idea is to combine both data flow and
control flow in the very same representation. We start by modifying control-flow
graphs such that the nodes representing blocks no longer contain any compu-
tations. We refer to these as block nodes. In addition, the control procedures
previously found within the blocks now appear as separate control nodes, where
each control node has exactly one inbound control-flow edge indicating to which
block the procedure belongs. Consequently, the control-flow edges that previ-
ously originated from the block nodes now originate from the control nodes. An
example will be provided shortly.

To capture the data flow of entire program functions as a data-flow graph
we use the SSA (Static Single Assignment) graph constructed from programs in
SSA form. SSA is a state-of-the-art program representation where each program
variable must be defined only once [14]. When the definition depends on the
control flow, SSA uses so-called ϕ-functions to disambiguate such cases by taking
a value and the block from where it originates as arguments. Fig. 2 shows the
C program from Fig. 1a in SSA form, and the corresponding control-flow and
SSA graphs are shown in Fig. 3a and Fig. 3b, respectively. Originally the SSA
graph only consists of nodes representing computations – called computation
nodes – but we extend it such that each value is represented by a value node.
Also note that copying of values is not represented as separate computation
nodes in the SSA graph. Therefore, in Fig. 3b the program variables i1 and c2

have been replaced by 0 and MAX, respectively.
To unify the control-flow graph and the SSA graph, we first add data-flow

edges from value nodes to the control nodes that make use of the corresponding
values. For the control-flow graph shown in Fig. 3a this entails the c.br nodes,
which represent conditional jumps. Note that the SSA graph does not indicate
in which block a given computation should be performed. Although we want
to keep such pre-placements to a minimum, having no pre-placements permits
moves that violate the program semantics. For example, in Fig. 1b the assignment
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Fig. 3: The program graph constructed from the program shown in Fig. 2. Thick-lined
diamonds, boxes, and arrows represent control nodes, block nodes, and control-flow
edges, respectively. Thin-lined circles, boxes, and arrows represent computation nodes,
value nodes, and data-flow edges, respectively. Dotted lines represent definition edges.

c = MAX must be performed in block bb4 as its execution depends on whether
MAX < c holds. Fortunately, these cases can be detected whenever a ϕ-function
appears in the program. The SSA-based program in Fig. 2, for example, has in
block bb2 a statement i2 = ϕ(i1:bb1, i3:bb5). Thus, the program variable i2
is assigned either the value i1 or the value i3 depending on whether the jump
to bb2 was made from block bb1 or block bb5. These conditions can be ensured
to hold in the generated code by requiring that (i) due to the arguments to
the ϕ-function, the values i1 and i3 must be computed in blocks bb1 and bb5,
respectively; and (ii) due to the location of the ϕ-function in the program, the
value i2 must be assigned its value in block bb2. We encode these constraints
into the program graph by introducing definition edges to signify that a certain
value must be produced in a specific block. Hence, in case of the example above
three definition edges are added: one from value node 0 to block node bb1, one
from value node i3 to block node bb5, and another from value node i2 to block
node bb2. Such edges are also added for the statement c3 = ϕ(c1:bb3, c2:bb4),
which results in the program graph shown in Fig. 3.
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Fig. 4: satadd’s pattern graph.

Instruction Representation. The procedure
for constructing pattern graphs is almost iden-
tical to constructing program graphs. The only
exception is that the control-flow graph of a pat-
tern graph could be empty, which is the case for
instructions whose result does not depend on
any control flow. For example, Fig. 4 shows the
pattern graph of satadd (introduced in Sect. 2),
which has a substantial control-flow graph. In
comparison, the pattern graph of a regular add
instruction would only comprise an SSA graph,
consisting of one computation node and three value nodes. Like with the pro-
gram graph, it is assumed that all pattern graphs with a non-empty control-flow
part have exactly one block node representing the instruction’s entry point.

Since the program graph now consists of several kinds of nodes, we need to
refine the notion of coverage. A program graph is covered by a set of matches if
each operation in the program graph appears in exactly one match from the set,
where an operation is either a computation or a control node. Likewise, a match
covers the operations in the program graph corresponding to the operations in
the pattern graph. Consequently, matches are allowed to partially overlap on the
block and value nodes in the program graph. This property is deliberate as it
enables several useful features, which will be seen shortly.

But not all covers of a given program graph yield valid solutions to the
global code motion problem. For example, assume a cover of Fig. 3 where a match
corresponding to the add4 instruction has been selected to cover the computation
nodes that produce values t2, t3, and i3. Because t2 and t3 are data-dependent
on value i2, which must be produced in block bb2 due to a definition edge,
these values cannot be produced earlier than in bb2. Likewise, because value c1

must be produced in block bb3 and is data-dependent on t2 and t3, these values
cannot be produced later than in bb3. At the same time, i3 must be produced in
block bb5. Hence no single instruction that computes t2, t3, and i3 can be placed
in a block such that all conditions imposed by the program graph are fulfilled.

We use the above observation to formalize the global code motion problem
as follows. If a datum refers to a particular value node in the program graph, a
match m defines respectively uses a datum d if there exists an inbound respec-
tively outbound data-flow edge to d in the pattern graph of m. Hence a datum
can be both defined and used by the same match. We also refer to the data used
but not defined by a match as its input data and to the data defined but not
used as its output data. Next, a block b in the program graph dominates another
block b′ if every control-flow path from the program function’s entry block to
b′ goes through b. By definition, a block always dominates itself. Using these
notions, we define a placement of selected matches to blocks to be a solution to
the global code motion problem if each datum d in the program graph is defined
in some block b such that b dominates every block wherein d is used. Note that
this definition excludes control procedures because moving such operations to
another block rarely preserves the semantics of the program.
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Fig. 5: Overview of our approach.

Some instructions impact both the covering and global code motion prob-
lems simultaneously. Assume for example a match in Fig. 3 of the pattern graph
from Fig. 4, which corresponds to the satadd instruction. A match spans across
the blocks in the program graph corresponding to the blocks appearing in the
pattern graph. Hence, the match above spans across blocks bb3, bb4, and bb5. Of
these, we note that the control procedures involving bb4 are all covered by this
match. Consequently, the computations performed within this block must all
be implemented by the satadd instruction. The match therefore consumes bb4,
meaning no other matches can be placed in this block. Consequently, a universal
instruction selector must take both the covering problem and the global code
motion problem into account when selecting the matches.

4 A Constraint Model for Universal Instruction Selection

This section introduces a constraint model for universal instruction selection.
An overview of the approach is shown in Fig. 5.

Match Identification. For a given program graph G and pattern set P , the
matches are identified by finding all instances M where a pattern graph in P
is subgraph isomorphic to G. Hence, separating identification from selection of
matches is an optimality-preserving decomposition. We use an implementation
of VF2 [13] to solve the subgraph isomorphism problem.

Depending on the pattern graph, certain matches may lead to cyclic data
dependencies and must therefore be excluded from the set of identified matches.
An example is a match of add4 in Fig. 3 defining t2 or t3 together with c1. Such
matches can be detected by finding all connected components in the match and
checking whether a path exists between two components in the program graph.

Global Instruction Selection. The set of variables sel(m) ∈ {0, 1} models
whether a match m ∈M is selected, where M denotes the set of identified
matches. As explained in Sect. 3, each operation o ∈ O, where O denotes the
set of operations in the program graph, must be covered by exactly one of the
selected matches. Hence, if covers(m) ⊆ O denotes the set of operations covered
by match m, then the condition can be expressed as:∑

m∈M s.t.
o∈covers(m)

sel(m) = 1 ∀o ∈ O (1)
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Global Code Motion. The set of variables place(m) ∈ B ∪ {bnull} models in
which block a match m is placed. B denotes the set of blocks in the program
graph, and bnull denotes an additional block (not part of the program graph) in
which non-selected matches are placed. In other words:

sel(m)⇔ place(m) 6= bnull ∀m ∈M (2)

where sel(m) abbreviates sel(m) = 1.
Control procedures cannot be placed in another block than originally indi-

cated in the program graph. Let entry(m) ∈ B denote the entry block of match m
if the pattern graph of m has such a node, otherwise entry(m) 6∈ B. This condi-
tion can then be expressed as:

sel(m)⇒ place(m) = entry(m) ∀m ∈M, entry(m) ∈ B (3)

The set of variables def(d) ∈ B models in which block a datum d ∈ D is
defined, where D denotes the set of data in the program graph. As explained in
Sect. 3, each datum d must be defined in some block b such that b dominates
every block wherein d is used. In addition, the conditions imposed by the defi-
nition edges must be maintained. Let dom(b) ⊆ B denote the set of blocks that
dominate block b, where it is assumed that dom(bnull) = B. Also let uses(m) ⊆ D
denote the set of data used by match m, and let DE denotes the set of definition
edges in the program graph. The conditions above can then be expressed as:

def(d) ∈ dom(place(m)) ∀m ∈M, ∀d ∈ uses(m) (4)

def(d) = b ∀ {d, b} ∈ DE (5)

The def(·) variables must be connected to the place(·) variables. Intuitively,
if a selected match m is placed in block b and defines a datum d, then d should
also be defined in b. However, a direct encoding of this condition leads to an
over-constrained model. Assume again a match in Fig. 3 of the pattern graph
from Fig. 4, which thus defines the values c1 and c3. Due to the definition edges
incurred by the ϕ-node, c1 and c3 must be defined in blocks bb3 and bb5, re-
spectively. But if def(d) = place(m) is enforced for every datum d defined by a
match m, then the match above will never become eligible for selection because
c1 and c3 must be defined in different blocks whereas a match can only be placed
in a single block. In such cases it is sufficient to require that a datum is defined
in any of the blocks spanned by the match. Let spans(m) ⊆ B denote the set of
blocks spanned by match m and defines(m) ⊆ D denote the set of data defined
by m. Then the condition can be relaxed by assigning def(d) to place(m) when
spans(m) = ∅, otherwise to any of the blocks in spans(m). Both these conditions
can be combined into a single constraint:

sel(m)⇒ def(d) ∈ {place(m)} ∪ spans(m) ∀m ∈M,∀d ∈ defines(m) (6)

Finally, matches cannot be placed in blocks that are consumed by some
selected match. If consumes(m) ⊆ B denotes this set for a match m, then this
condition can be expressed as:

sel(m)⇒ place(m′) 6= b ∀m,m′ ∈M,∀b ∈ consumes(m) (7)
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Data Copying. Instructions typically impose requirements on the values that
they operate on, for example that its input and output data must be located
in particular registers. Combinations of such instructions may therefore require
additional copy instructions to be selected in order to fulfill these requirements.

The set of variables loc(d) ∈ L ∪ {lnull} models in which location a datum d
is available. L denotes the set of possible locations, and lnull denotes the location
of a value computed by an instruction that can only be accessed by this very
instruction. For example, the address computed by a memory load instruction
with a sophisticated addressing mode cannot be reused by other instructions.
Thus, if stores(m, d) ⊂ L denotes the locations for a datum d permitted by a
match m – where an empty set means no restrictions are imposed – then such
conditions can be imposed as:

sel(m)⇒ d ∈ stores(m, d) ∀m ∈M, ∀d ∈ D s.t. stores(m, d) 6= ∅ (8)

This alone, however, may cause no solutions to be found for processors where
there is little overlap between the locations – like in the case of multiple register
banks – that can be used by the instructions. This problem is addressed using
a method called copy extension. Prior to identifying the matches, the program
graph is expanded such that every data usage is preceded by a special operation

v

cpv ⇒

called a copy, represented by copy nodes. This expansion is done
by inserting a copy node and value node along each data-flow edge
that represents a use of data, as shown in the figure to the right.
The definition edges are also moved such that they remain on the
data adjacent to the ϕ-nodes. The same expansion is also applied
to the pattern graphs except for the data-flow edges that represent
use of input data.

Consequently, between the output datum of one match that is the input
datum to another match, there will be a copy node that is not covered by either
match. It is therefore assumed that a special null-copy pattern, consisting of a
single copy node and two value nodes, is always included in the pattern set. A
match derived from the null-copy pattern has zero cost but requires, if selected,
that both data are available in the same location. This means that if the null-copy
pattern can be used to cover some copy node, then the two matches connected
by that copy node both use the same locations for its data. Hence there is no
need for an additional instruction to implement this copy. If the locations are
not compatible, however, then a match deriving the null-copy pattern cannot be
selected as that would violate the requirement that the locations must be the
same. An actual instruction is therefore necessary, and the restrictions on the
loc(·) variables ensure that the correct copy instruction is selected.

Fall-Through Branching. Branch instructions often impose constraints on
the distance that can be jumped from the instruction to a particular block. For
example, conditional branch instructions typically require that the false block
be located directly after the branch instruction, which is known as a fall-through.
This condition may also be imposed by instructions that span multiple blocks.
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Consequently, the order in which the blocks appear in the generated code is
interconnected with the selection of certain matches.

The set of variables succ(b) ∈ B ∪ {bnull} models the successor of block b. A
valid block order then corresponds to a cycle formed by the succ(·) variables.
Using the global circuit constraint [27], this condition can be expressed as:

circuit
(
∪b∈B∪{bnull}{succ(b)}

)
(9)

succ(bnull) = bentry (10)

Hence, if the instruction corresponding to a match m performs a fall-through to a
block b, then this condition can be expressed as sel(m)⇒ succ(place(m)) = b.
This approach can readily be extended to incorporate generic jump distances as
required by some processors.

Objective Function. The objective function depends on the desired charac-
teristics of the generated code. For example, if the compiler should maximize the
performance of the program under compilation, then the execution time of each
block should be minimized. In addition, the execution time should be weighted
with the relative execution frequency of each block. Thus, if freq(b) ∈ N1 de-
notes the relative execution frequency of block b, then the objective function to
be minimized is: ∑

b∈B

freq(b)×
∑

m∈M s.t.
place(m)=b

cost(m) (11)

where cost(m) ∈ N0 is the relative time it takes to execute the instruction
corresponding to a match m. Note that non-selected matches are always placed
in the bnull block, which is not part of the B set. If the compiler should optimize
for code size, then the weight freq(b) is dropped from Eq. 11 and cost(m) is
redefined as the size of the instruction corresponding to match m.

Implied Constraints. Similarly to Eq. 1, the set of data must be defined by
the set of selected matches:∑

m∈M s.t.
d∈defines(m)

sel(m) = 1 ∀d ∈ D (12)

For every block b in which a datum is defined, there must exist a selected
match that either is placed in b or spans b:

def(d) = b⇒ sel(m) ∧ b ∈ {place(m)} ∪ spans(m)
∀b ∈ B, ∀d ∈ D,∃m ∈M

(13)

If two matches impose conflicting requirements on input or output data loca-
tions, or impose conflicting fall-through requirements, then at most one of these
matches may be selected.
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Dominance Constraints. By analyzing the constraints on the loc(·) variables,
one can identify subsets S of values such that any solution with loc(d) = v and
v ∈ S can be replaced by an equivalent solution with loc(d) = max(S), for any
d ∈ D. Consequently, all values in S \ {max(S)} can be a priori removed from
the domains of all loc(·) variables.

Suppose that there are two mutually exclusive matches m and m′ with
cost(m) ≤ cost(m′) and the constraints imposed by m are compatible with and
no stricter than the constraints imposed by m′. Then any solution that selects m′

can be replaced by a solution of less or equal cost that selects m. Consequently,
sel(m′) = 0 can be set a priori for all such m′. In case m and m′ have identical
cost and impose identical constraints, a lexicographic ordering rule is used.

Branching Strategy. Our branching strategy only concerns those sel(·) vari-
ables of matches not corresponding to copy instructions. Let M ′ denote this
set of matches. We branch on {sel(m) | m ∈M ′} ordered by non-increasing
| covers(m)|, trying sel(m) = 1 before sel(m) = 0. The intuition behind this is to
eagerly cover the operations. The branching on the remaining decision variables
is left to the discretion of the solver (see Sect. 5 for details).

Model Limitations. A constant value that has been loaded into a register for
one use cannot be reused for other uses. Consequently, the number of selected
matches may be higher than necessary. This problem is similar to spilling reused
temporaries in [11] and can be addressed by adapting the idea of alternative
temporaries introduced in [10].

For some processors, conditional jumps can be removed by predicating in-
structions with a Boolean variable that determines whether the instruction shall
be executed [3]. For example, assume that the statement c = MAX in Fig. 1b is
implemented using a copy instruction. If this instruction can be predicated with
the Boolean value MAX < c, then the conditional jump to block bb4 becomes
superfluous. This is known as if-conversion. Such instructions can be described
using two pattern graphs: one representing the predicated version, and another
representing the non-predicated version. But because every operation must be
covered by exactly one match, the predicated version can only be selected if the
match implements all computations in the conditionally executed block.

5 Experimental Evaluation

The model is implemented in MiniZinc [31] and solved with CPX [1] 1.0.2, which
supports FlatZinc 1.6. The experiments are run on a Linux machine with an Intel
Core i7-2620M 2.70 GHz processor and 4 GB main memory using a single thread.

We use all functions (16 in total) from MediaBench [28] that have more than
5 LLVM IR instructions and do not contain function calls or memory computa-
tions (due to limitations in the toolchain but not in the constraint model). The
size of their corresponding program graphs ranges between 34 and 203 nodes. The
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Fig. 6: Estimated execution speedup over LLVM for simple instructions.

functions are compiled and optimized into LLVM IR files using LLVM 3.4 [26]
with the -O3 flag (optimizes execution time). These files serve as input to our
toolchain. However, as LLVM currently lacks a method re-entering its backend
after instruction selection we cannot yet execute the code generated by our ap-
proach. Instead the execution time is estimated using LLVM’s cost model.

In the following, the full runtimes comprising matching, flattening the MiniZ-
inc model to FlatZinc, and solving are summarized. Thus the time for producing
the LLVM IR files and transforming them into program graphs is not included.
The time spent on matching is negligible (less than 1% of the full runtime), while
the time spent on flattening is considerable (more than 84% of the full runtime).
The solving time is measured until proof of optimality. All runtimes are averaged
over 10 runs, for which the coefficient of variation is less than 6%.

Simple instructions. For proof of concept, the processor used is MIPS32 [33]
since it is easy to implement and extend with additional instructions. The pat-
tern graphs are manually derived from the LLVM instruction set description (to
enable comparison), however the process could be easily automated as patterns
are already described as trees in LLVM. As greedy heuristics already generate
code of sufficient quality – in many cases even optimal – for MIPS32, we should
not, in general, expect to see any dramatic execution speedup.

The shortest full runtime for the benchmarks is 0.3 seconds, the longest is
83.2 seconds, the average is 27.4 seconds, and the median is 10.5 seconds.

Fig. 6 shows the estimated execution speedup of our approach compared to
LLVM. The geometric mean speedup is 1.4%; in average our approach is slightly
better than LLVM. As the figure reveals, our approach has the potential to gener-
ate better code than the state of the art even for simple and regular architectures
such as MIPS32, mainly due to its ability of moving computations to blocks with
lesser execution frequency. The cases where our approach generates code that is
worse than LLVM are due to the model limitations described in Sect. 4. Some of
these cases are aggravated by the fact that LLVM’s instruction selector is capa-
ble of, where appropriate, combining chains of binary ϕ-functions into a single
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Fig. 7: Estimated execution speedup by adding SIMD instructions to MIPS32.

ϕ-function in order to reduce the number of branch operations. This feature has
yet to be implemented in our toolchain.

An interesting aspect is that due to the branching described in Sect. 4 solv-
ing yields a very good first solution, which provides a tight upper bound. We
conjecture that this together with the lazy clause learning in the CPX solver is
the reason why we can prove optimality for all benchmarks.

SIMD instructions. In the following experiments we extend the MIPS32 ar-
chitecture with SIMD instructions for addition, shifting, and Boolean logic oper-
ations as motivated by potential matches in the considered benchmark functions.
The SIMD instructions use the same registers as the simple instructions.

The shortest full runtime for the benchmarks is 0.3 seconds, the longest is
146.8 seconds, the average is 44.2 seconds, and the median is 10.5 seconds.

Fig. 7 shows the estimated execution speedup for MIPS32 together with
SIMD instructions. The geometric mean speedup compared to our approach for
basic MIPS32 is 3%. The best cases correspond to functions that are computation-
intensive (e.g. ulaw2linear) as more data parallelism can be exploited by the
SIMD instructions. The worst cases (no improvement) correspond to control-
intensive functions (e.g. gsm L asr), where there are either no matches for SIMD
instructions or matches that are not profitable. In the latter case, the solver of-
ten discards SIMD matches that would require moving operations to hot blocks
which are estimated to be executed often. A SIMD instruction in a hot block
would be more costly than multiple primitive operations in the colder blocks
where they originally reside. Our approach is unique in that it reflects this trade-
off accurately. A traditional approach – vectorization first, then instruction se-
lection – would greedily select the SIMD instruction and generate worse code.
If a certain primitive operation must already be executed in a hot block then
the solver will bring in operations of the same type from colder blocks to form
a speculative SIMD instruction (this is the case e.g. for alaw2linear).

Hence our approach can exploit sophisticated instructions (such as SIMD)
and has the potential to improve over traditional approaches since it accurately
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reflects the trade-offs in instruction selection. We also expect to see further
benefits when integrated with register allocation and instruction scheduling.

6 Related Work

Several linear time, optimal algorithms exist for local instruction selection on
tree-based program and pattern graphs [2, 22, 32]. These have subsequently been
extended to DAG-based program graphs [17, 18, 25], but at the loss of optimal-
ity. Together with instruction scheduling or register allocation, the problem has
also been approached using integer programming (IP) [7, 21, 36] and constraint
programming (CP) [6, 19, 30]. Far fewer methods exist for global instruction se-
lection, which so far only has been approached as a partitioned Boolean quadratic
problem [9, 15, 16]. Common among these techniques is that they are restricted
to pattern trees or pattern DAGs.

Many methods exist for selecting vector instructions separately from instruc-
tion selection, but attempts have been made at combining these two tasks using
IP [29, 34] and CP [4]. Of these, however, only [34] takes the cost of data copying
into account, and none is global.

Global code motion has been solved both in isolation [12] as well as in inte-
gration with register allocation [5, 24]. Both [5] and [12] use a program represen-
tation that is similar to ours, but where the data are not explicitly represented
as nodes. To the best of our knowledge, no previous attempt has been made in
combining global code motion with instruction selection.

7 Conclusions and Future Work

This paper introduces a universal graph-based representation for programs and
instructions that unifies control and data flow. From the representations a new
constraint model for instruction selection is derived. The paper shows that the
approach is more expressive and generates code of similar quality compared to
LLVM as a state-of-the-art compiler. The constraint model is robust for small
to medium-sized functions as well as expressive processor instructions and is
competitive with LLVM in code quality.

One line of future work is to extend the model to address the limitations
discussed in Sect. 4. Additional improvements include exploring more implied
and dominance constraints and pre-solving techniques to increase the model’s
robustness. We intend to explore both larger input programs as well as more
processor architectures with a more robust model.

Instruction selection is but one task in code generation. We will explore in
detail how this paper’s model can be integrated with a constraint model for
register allocation and instruction scheduling introduced in [10, 11].
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11. Castañeda Lozano, R., Carlsson, M., Drejhammar, F., Schulte, C.: Constraint-
based register allocation and instruction scheduling. In: Milano, M. (ed.) Eigh-
teenth International Conference on Principles and Practice of Constraint Program-
ming. Lecture Notes in Computer Science, vol. 7514, pp. 750–766. Springer-Verlag,
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