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Abstract—In the last decade, researchers and the open source
community have proposed various Decentralized Online Social
Networks (DOSNs) that remove dependency on centralized online
social network providers to preserve user privacy. However, tran-
sitioning from centralized to decentralized environment creates
various new set of problems, such as adversarial manipulations.
In this paper, we present DLSAS, a novel unsupervised and
decentralized anti-spam framework for DOSNs. DLSAS provides
decentralized spam detection that is resilient to adversarial
attacks. DLSAS typifies massively parallel frameworks and
exploits fully decentralized learning and cooperative approaches.
Furthermore, DLSAS provides a novel defense mechanism for
DOSNs to prevent malicious nodes participating in the system
by creating a validation overlay to assess the credibility of the ex-
changed information among the participating nodes and exclude
the misbehaving nodes from the system. Extensive experiments
using Twitter datasets confirm not only the DLSAS’s capability to
detect spam with higher accuracy compared to state-of-the-art
approaches, but also the DLSAS’s robustness against different
adversarial attacks.

Keywords. Decentralized Online Social Networks, Spam
Detection, Distributed Systems, System Integrity and Robust-
ness.

I. INTRODUCTION

Online Social Networks (OSNs) represent popular collab-
orative communication tools for billions of Internet users.
For example, Facebook alone has over 1,7 billion users1 and
lies in the third place among the most visited sites on the
Internet2. However, with the adopted client-server architecture
in all current popular OSNs, many privacy and ownership
issues appear [1]. In particular, while OSN users generate
the data, the OSN providers take over full control over it,
in effect becoming centralized ”big-brother” authorities. Thus,
such centralized architecture has critical consequences such as
the necessity for a high degree of trust in the OSN providers,
censorship of users behavior and the utilization of user data
for business-related purposes [2, 3].

To address the aforementioned problems, in the last decade,
researchers and the open source community have proposed
various decentralized OSNs (DOSNs) (e.g.,[4, 5]) that remove

1https://www.statista.com/statistics/272014/global-social-networks-ranked-
by-number-of-users/

2https://en.wikipedia.org/wiki/List of most popular websites

dependency on a centralized provider. DOSNs operate as dis-
tributed information management platforms on top of network
of servers or P2P infrastructures [6]. The main objectives
behind decentralization are to preserve users privacy in both
shared content and communication, and also to provide com-
plete freedom from any form of censorship or profiling. Thus,
DOSNs provide a privacy preserving alternative to current
OSNs, where users have full control of their data.

Meanwhile, all types of social networks are increasingly
used as up-to-the minute information source for public issues
such as economy, politics, and crisis. Yet, spam in these
networks is explosively increasing and has become an effective
vehicle for malware and illegal advertisement distributions.
Spam content not only questions the credibility of shared
information, but also misleads or even traps legitimate users,
resulting in bad user experiences. In the past years, re-
searchers developed approaches to detect spam such as URL
blacklisting, spam traps and even crowdsourcing for manual
classification [7, 8, 9, 10]. Although previous work has shown
the effectiveness of using statistical learning to detect spam
[11, 12], there are none for open decentralized environment as
DOSNs. Existing work assumes controlled centralized settings
as well as employs supervised schemes that require labeled
training data that is difficult to obtain in DOSNs.

More recently, in our previous work [13] we proposed
unsupervised spam detection scheme with centralized settings.
Differently from existing work, our approach constructs a
user similarity graph that encodes within its topology a holis-
tic view of all behavioral interactions and patterns among
users. Afterwards, our approach performs graph clustering by
applying community detection on top of the newly created
graph. In particular, the detected communities on top of user
similarity graph identify different behavioral patterns existing
in the social network. This allows our system to categorize
the existing behavioral patterns into more homogeneous and
accurate clusters than the sate-of-the-art approaches.

Although, our graph-based approach achieves better results
compared to the current state-of-the-art in spam detection, in
its current form it is not possible to adopt for DOSNs due to
several key challenges. Specifically, the incentive for defeating
spam detection in decentralized environments increases due to
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Fig. 1: DLSAS overall process using a social network example. Green nodes represent legitimate users, whereas red nodes represent spammers.
(a) The layered architecture of DLSAS, using the social friendship graph to create long-range connections among nodes in order to reach the
targeted similarity graph for clustering. (b) The constructed RVO after exchanging long-range random connection among nodes . (c) Nodes
A, L, and M check for similarity edges created around node G by finding all possible triangles among G’s 2-hop neighbors.

distributed nature of the system and non-avoidable cooperation
among participating nodes. For example, malicious parties can
destroy communication pathways, prevent the system from sta-
bilizing, equivocate by giving different information to different
nodes, and provide false provenance information. Therefore,
our graph-based approach requires a defense mechanism to
detect any data manipulation during the phases of similarity
graph creation and community detection.

To address these issues, we propose a decentralized frame-
work DLSAS (Distributed Large-Scale Anti-Spam) which
allows our effective centralized spam-detection method from
[13] to be applicable for decentralized environment. Our ob-
jective is to preserve the core of spam detection (i.e., similarity
graph creation and community detection) from manipulation
under the existence of adversarial nodes that deviate from the
designed workflow protocol. Therefore, secure cooperation can
be achieved when misbehaving or deviating nodes are detected
and disconnected from the system. Thus, the exchanged data
among nodes requires verification mechanism that is able
to find a proof that a node deviated from the prescribed
protocol and participated in adversarial activities. Accordingly,
in DLSAS every node is required to keep a communication
log that records all communication events. We assume the
existence of a public key infrastructure, allowing any node
to digitally sign its communication log such that any other
node can verify it, yet making it computationally infeasible
for others to forge.

Consequently, any misbehaving node can be detected by
comparing its manipulated log with the logs of the other

nodes involved in communication. However, malicious nodes
can collude with each other to evade the validation and
detection mechanism. Therefore, every validation task has to
be assigned randomly in order to prevent adversaries from in-
ferring any details about the participating nodes. Accordingly,
DLSAS creates on-the-fly Random Validation Overlay (RVO)
to validate the data reported by the participating nodes (as
shown in Figure 1). RVO verifies the credibility of exchanged
data among nodes, and it allows the system to detect false
and inaccurate data provenance. Consequently, RVO enforces
every node to report its local results without manipulation,
otherwise it is excluded from the system. As shown in Figure
1, RVO is created using a random peer sampling service that
creates uniformly random overlay on top of social graph by al-
lowing nodes to have long-range connections to random nodes.
Thereafter, RVO is responsible for verifying the correctness of
exchanged data during similarity graph creation and clustering
phases.

Accordingly, our work offers the following contributions to
the problem of decentralized anti-spam frameworks:

• We propose a fully decentralized spam detection frame-
work, where each node independently processes its local
data and is required to know only its direct neighbors,

• We propose a uniformly random validation mechanism
that is capable of detecting and disconnecting misbehav-
ing nodes from the system,

• Our proposed validation mechanism is fully decentralized
and is capable of maintaining DOSNs robustness and
integrity against adversarial attacks.



We have performed experiments, using Twitter datasets, to
show the effectiveness of our proposed framework. The results
show that DLSAS outperforms the state-of-the-art centralized
techniques and provides more accurate spam detection rate
with accuracy up to 92.3% and false positive rate less than
0.3%. Most importantly, DLSAS ensures spam-detection in-
tegrity and reliability by detecting at least 94.7% of adversarial
data manipulation, under the condition that 20% of nodes are
participating in adversarial attacks.

The remainder of this paper is structured as follows. In
Section II we detail the key challenges for graph-based spam
detection in DOSNs, whereas, in Section III we illustrate the
algorithms used to develop DLSAS validation mechanism.
In Section IV we present evaluation of our framework, as
well as, we discuss our framework robustness against possible
adversarial attempts. Finally we show the related work in
Section V and conclude the paper in Section VI.

II. DECENTRALIZED SPAM DETECTION

Classification tasks such as spam detection, intrusion detec-
tion, and anomaly detection, are being gamed by an adversary
who wishes to avoid detection. In this section we identify the
potential vulnerabilities arising due to decentralization.

A. User Similarity Graph

In general, the design of spam detection mechanisms is
guided by the behavior dissimilarity exhibited by legitimate
users than spammers. The central premise as proved in spam
detection approaches is that spammer behavior appears anoma-
lous relative to normal user behavior along some features that
can be extracted from different users activities. For example,
some content-based features can be extracted from user posts
such as number of URLs, hashtags and mentions used per post,
as well as graph-based features that can be calculated from
the friendship graph such as local clustering coefficient and
betweenness centrality. Therefore, we define the following:

Definition 2.1: Friendship Graph. We consider DOSN as
a directed unweighted graph G1 = (V, E1), where V is the
set of nodes and E is the set of edges. eij ∈ E1 denotes a
relationship and communication link between nodes vi and vj
∈ V .

Furthermore, we consider every node is associated with a
feature vector that contains values of content-based and graph-
based features computed for that node. Initially, every node
uses its local data repository that contains the collection of its
direct friends posts and calculates the equivalent feature vector
of each neighbor. Afterwards, every node starts the process of
similarity graph creation as follows

Definition 2.2: Similarity Graph. We consider user simi-
larity graph as weighted directed graph G2 = (V, E2), where
V is the set of nodes and E2 is the set of similarity edges,
where eij ∈ E2 denotes cosine similarity between nodes vi
and vj ∈ V that is computed as defined in Equation 1.

w(eij) =
xi.xj

||xi||.||xj ||
(1)

Where, xi is the feature vector of node i and xj is the
feature vector of node j. If the weight w(eij) is greater than
the threshold ε, w(eij)= cosine similarity; else w(eij)=0. (see
Figure 1(a), the thickness of an edge reflects its weight).

Particularly, every node starts the process of G2 construction
from the friendship graph G1. Initially, every node starts by
creating similarity edges among itself and its social neighbors
in G1. Afterwards, every node enlarges the similarity graph
further by exploring the possibility of creating more similarity
edges with the neighbors of its currently direct neighbors.
Once the user similarity graph is created, our objective is to
find the topological communities inside the constructed simi-
larity graph. The detected communities represents the different
behavioral patterns, then the spam patterns can be identified
among the detected ones by applying some lexical analysis. In
particular, every node in the similarity graph starts by joining
the node with the maximum cosine similarity among its direct
friends to form a community. In successive iterations, every
node chooses to quit its current community and join one of
its neighbour’s if this brings some modularity gains. This
step is iteratively repeated until no node wants to change its
community as it already represents the dominant one of all its
neighbors. Thereafter, the topological communities detected in
the similarity graph represent the different behavioral patterns
associated with the direct friends of a user in the social graph.
Additional information and details may be found in [13].

B. Vulnerabilities in Spam Detection for DOSNs

The transition from centralized to distributed environment
creates vulnerability of spam detection approaches to adver-
sarial manipulation. Node cooperation in DOSNs is imperative
for forming services constituents and reaching the global
system goals, yet such system can easily be manipulated.
Particularly, DOSNs operate using distributed infrastructure
similar to P2P systems, such that the data is fully distributed
as nodes are only aware of the exchanged data with their
direct neighbors. Furthermore, the communication in DOSNs
is more restricted communication as it is allowed only among
direct neighbors. To be aligned with the DOSN requirements,
spam detection should be designed as node-centric and dis-
tributed learning approach such that the system allows to
deal with data sets that are naturally distributed. Furthermore,
the learning process must be mapped into a set of parallel
tasks executed by every node till system reaches convergence.
Due to these requirements, decentralized spam detection has
two major limitations. The first limitation is that nodes have
local knowledge represented in information they have for their
direct friends. Secondly, nodes have to collaborate to reach a
unified global knowledge of the whole system using their local
knowledge. Consequently, the decentralized spam detection
has following potential vulnerabilities: (i) equivocation by
exchanging different information with different nodes, (ii)
false provenance by exchanging falsely information to avoid
detection, and (iii) colluding adversary.

Equivocation: In such scenario, spammers want to gain
more exposure to legitimate users by increasing the number



of edges connecting them with legitimate clusters.
Example 1. Node L (see Figure 1(a)) sends out the

information of H as its only neighbor while exchanging neigh-
bors with legitimate nodes (L for instance). Whereas, when L
performs neighbor exchange with H, L sends information of
nodes K and M.

False Provenance: In this case, spammers falsify the weight
of their added similarity edges, such that they increase the
weight of edges connecting them to legitimate nodes as well as
drop the similarity edges connecting them to other spammers.

Example 2. Node L increases the weight of the edges
connecting M, K, and I. On the other hand, L drops out the
similarity edges with H and D by assigning weight equals to
0 to those edges.

Colluding Adversary: In this scenario, spammers collabo-
rate with each other to coordinate the exchanged information
with legitimate nodes. Specifically, during the clustering phase,
spammers assign themselves to the closest legitimate cluster.

Example 3. Nodes L, H, D, and F assign themselves
to cluster Leg1 instead of creating a separate cluster for
themselves.

III. DLSAS VALIDATION MECHANISM

In this section, we present the core of validation mechanism
implemented in DLSAS. First, we present on-the-fly gossip-
based peer sampling service that is used for constructing
Random Validation Overlay (RVO). Thereafter, we detail the
validation mechanism performed by RVO.

A. Constructing RVO

Our objective is to provide validation mechanism that is
hard for adversarial parties to infer any details about it.
Therefore, the validation overlay needs to be constructed by
obtaining a random sample of nodes from the entire social
network. Additionally, validation tasks need to be assigned
randomly to the those nodes. Accordingly, we develop a
gossip-based random peer sampling service that creates purely
random overlay on top of the social graph. This peer sampling
service allows nodes to have long range connections to random
nodes, hence provide every node in the DOSN with a random
sample from the entire social graph.

As aforementioned, DOSNs operate using distributed in-
frastructure similar to P2P systems, but with more restricted
communication as communication in DOSNs is often allowed
only among direct neighbors. Therefore, we apply peer sam-
pling where nodes periodically exchange small random subset
of the identifiers of their direct friends and paths to reach them.
Thus, after sufficient number rounds, nodes are going to have
a random sample of nodes in the network and the routing
paths towards them. The advantage of gossip-based sampling
in our setting is that samples are available locally and without
delay. Figure 1 depicts the process of creating RVO from the
original social graph. For example, node M starts by asking
its direct neighbors in the social graphs as shown in Figure 1
(a) (i.e., nodes L, K, O, and N) to exchange a subset of their
neighbors. Then, M receives a reply from L containing the

node H and the routing path towards H via the intermediate
node L. Repeatedly, M updates the set of nodes that it can
reach and constructed routing paths towards them. After some
exchange rounds, M reaches node G following the routing path
[K, I, G]. As illustrated in Figure 1 (b), every node ends by
having long range links to random nodes in the constructed
RVO.

More formally, each node maintains a fixed-sized cache
of c entries (with typical value 20 or 50 entries). A cache
entry contains identifier and routing path of another node
in the community. Each node repeatedly initiates a neighbor
exchange operation, by executing Algorithm 1. As shown, the
algorithms consists of two procedures. The first procedure
GossipSampling is the one responsible for constructing a
random sample of the network. Every node maintains a local
repository named RS to refer to some random nodes, and
stores the paths to reach them. First, every node initializes its
RS by inserting some random nodes of its direct neighbors and
identify itself as the route to reach those nodes. Afterwards,
every node periodically selects a random partner from its RS
for the gossip exchange and selects a random subset entries
from its RS to be send in the gossip message. On receiving a
reply form the contacted node during the gossip exchange, the
receiving node updates its RS by adding the entries of the new
nodes that are not included in RS as described in procedure
OnReceivedRS.

Algorithm 1: Peer Sampling Service at node vi
Result: Ensure random sample of network nodes: RSi

Procedure GossipSampling()
Loop

wait(4)
RS ← select random node()
RCE ← select random cache entries()
send(RS,RCE)

EndLoop
Procedure OnReceivedRS(message m)

forall the e ∈ m.RCE do
if new entry(e) then

add new entries (RSi, e)
end

end

B. Adversarial Detection with RVO

Our objective is to provide secure cooperation in adversarial
settings by maintaining the system integrity and reliability
under the existence of adversarial nodes that deviate from the
designed workflow protocol. Therefore, DLSAS requires every
node to keep a communication log that records all communica-
tion events with others (both sent and received) within a given
time window of fixed size that ends with sending the log for
validation. As aforementioned, we assume the existence of a
public key infrastructure, allowing any node to digitally sign
its communication log such that any other node can verify it.



In the following, we show how the validation process prevents
previously mentioned vulnerabilities (see Section II-B).

Equivocation: To guarantee the correctness of the con-
structed RVO, nodes periodically preform auditing process
on nodes communication logs. For every entry in the node
communication log, there should exist an entry for that in
another node communication log. An auditor could fetch the
communication log from some node A and then connect to
every node mentioned in communication log of A to test
for matching entries. This would detect any inconsistencies
performed by node A, hence, equivocation scenarios similar to
Example 1 can be detected. However, node A could collude
with other nodes to push falsely subsets doing the execution
of GossipSampling procedure. To fully audit A, the auditor
would need to audit the nodes reachable from communication
log of A, and recursively audit the nodes reachable from those
logs. Eventually, the audit would discover misbehaving node
where the logs are not matched. Implementing such a recursive
audit would be prohibitively expensive. Instead, we require all
nodes in the system to perform random auditing. In particular,
each node should choose a node at random from the contacted
ones. The auditor fetches the communication log, and verifies
it against the nodes mentioned in that log. Assuming all nodes
perform these random audits on a regular schedule, every node
is going be audited on a regular basis. Naturally, spammers are
expected not to initiate the auditing process. However, they are
going to be audited once legitimate nodes that spammers are
contacted to initiate the audit process.

False Provenance: To guarantee the correctness of the
constructed user similarity graph, nodes periodically conduct
RVO to validate the new edges added by their current and
new neighbors. In particular, every node initiates validation
process conducting a random validators from RVO (i.e., from
its neighbors in RVO). For example, as shown in Figure 1(c),
node G selects random validators from its RVO neighbors
nodes A, L and M, to validate the added similarity edges
connecting node G with other nodes. Those selected subset of
validators are responsible for collecting shared posts from list
of 2-hop neighbors of G and generating the feature vectors
of all nodes in this list. Noting that, G randomly partition
the calculations of feature vectors values among the selected
validator, making it hard for spammers to infer any details
of the validation process. Validators compute all possible
triangles among G’s 2-hop neighbors, in order to make sure
that all possible similarity edges have been added to the
similarity graph with the correct weights. Accordingly, any
provenance violations similar to Example 2 can be detected,
and adversarial nodes are excluded from RVO. As shown
in Algorithm 2, the first procedure validateEdges is the one
responsible for validating the newly added similarity edges.
This procedure takes the list of its 2-hop neighbors and the
edges reported by them as an input. Then, the procedure
generates the feature vector values for all the nodes in the
2-hop neighbors list, and uses these vectors to verify if the
reported edge weights are correct. Accordingly, if the reported
weight returned by procedure getWeight is not the same as the

computed cosine similarity using feature vectors, the reporting
node is declared as a malicious node.

Algorithm 2: RVO Validation for node v
Result: Ensure creating similarity edges among 2-hop

neighbors in NList
Procedure ValidateEdges(neighbors NList,
addedEgde EList)

forall the u ∈ NList do
FVu ← CalcFeatureV ector(u)
forall the w ∈ NList do

if w 6= u then
FVw ← CalcFeatureV ector(w)
CSuw ← cosineSimilarity(FVu, FVw)
if getWeight(EList, u, w) 6= CSuw then

declareMalicious(u)
end
if getWeight(EList, w, u) 6= CSuw then

declareMalicious(w)
end

end
end

end
Procedure validateMembership(node v,
community c)

SoE ← collectEdges(Neighbor(v))
Cv ← selectCommunity(v, SoE)
if Cv 6= c then

declareMalicious(v)
end

Colluding Adversary Attacks: Algorithm 3 illustrates the
procedure used for clustering the generated similarity graph.
As shown, every node iteratively chooses to quit its current
community and join one of its neighbours if this bring some
modularity gains. In method selectCommunity, nodes select
the dominant community in their neighborhood to join (i.e.,
the community with the maximum sum of weights). This
step is iteratively repeated until no node wants to change its
community as it already represents the dominant one of all its
neighbors. Spammers are expected to misbehave and pretend
to be legitimate nodes by joining legitimate communities.
Likewise, RVO validates the added similarity edges, RVO ver-
ifies community membership assigned by participating nodes.
In particular, RVO validates the community membership using
the knowledge of all possible triangles that can be created
among node’s 2-hop neighbors. Therefore, a node can not join
a community while it is connected to that community members
with weak edges (i.e., edges with low weights). Accordingly,
spammers can not assign themselves to legitimate commu-
nities and they are forced to create their own community.
Thus, colluding adversarial attacks during the clustering phase
similar to Example 3 can be detected, and adversarial nodes
will be labeled as spam and excluded from RVO. As described
in method validateMembership in Algorithm 2, RVO verifies
node’s decision regarding its community membership. The



methods starts by collecting the set of edges (SoE) of the
node, and use this set to compute the community membership
of that node. Once the computed community membership is
different from the computed one, the node is declared as a
malicious node.

Algorithm 3: Community Detection Methods
Result: Community Structure C at time t
Procedure changeCommunity(node u)

Cunew
← selectCommunity(u)

if Cu 6= Cunew then
Cu ← Cunew

forall the x ∈ Neighbor(u) do
changeCommunity(x)

end
end
Procedure selectCommunity(node u)

forall the C ∈ NeighborCommunity(u) do
q(C) ← sum(weuj

)|Cj = C
end
Cu ← Cj |q(Cj) = max(q(C))

IV. EVALUATION

DLSAS applies vertex-centric approach which is proved to
be scalable, efficient and most importantly can be applied for
DOSNs. Our algorithms are implemented in GraphLab3, with
two different distributed execution modules, such that RVO
validation algorithms are integrated in both of them. In the
first module, nodes participate in creating the similarity graph
using their feature vectors. Thereafter, the control is moved to
the second module that performs the community detection al-
gorithm. In the following subsections, we thoroughly evaluate
the performance of our framework in terms of the accuracy of
spam detection and robustness to adversarial manipulation. We
compare our spam detection method with different centralized
and supervised binary classification approaches, utilizing the
Weka tool4, namely: K-means (KM) with number of clusters
=2, Decision Tree (DT) and Random Forest (RF).

A. Dataset

We have collected our dataset from Twitter using Twitter
streaming API5 during fourteen month period from May 2015
to July 2016. We have access Twitter API using privileged ac-
counts, collecting user tweets as well as user friendship graph.
Particularly, we have started by selecting random user iden-
tifiers for each dataset, then collect social graph surrounding
these initial nodes. We have collected data with different levels
of activities. For example, the first two datasets (US Active
and UK Active) are collected from users with high level of
posting tweets located in United States and United Kingdom,
respectively. Yet, the third dataset (US Passive) is collected

3https://turi.com/products/create/
4http://www.cs.waikato.ac.nz/ml/weka/
5https://dev.twitter.com/rest/public

TABLE I: Twitter datasets used in our experiments.

Twitter Dataset US Active UK Active US Passive
Tweets 453,519 489,484 360,927
Legitimate Accounts 17,322 19,312 12,128
Suspended Accounts 2,072 1,617 3,109
Social-graph Edges 1,357,806 1,187,036 2,349,314
Similarity-graph Edges 2,149,414 2,297,150 3,339,617

from users located in United States with low level of posting
activity. In order to identify the spammers within our datasets,
we query the status of all accounts regularly to check if any got
suspended for abusive behavior. Upon suspension, we identify
suspended accounts as spammers. Table I lists the details of
the collected datasets.

Figure 2 depicts the degree distribution for the collected
datasets in log scale. As shown, the degree distribution follows
the power law probability distribution, such that there is
uneven distribution of node connections. Some nodes have
very high degrees of connectivity (i.e., hubs), while most have
small degrees.

B. Degree Distribution in RVO and User Similarity Graph

The degree of a node in RVO is the number of links it
has to other nodes. The interest in the degree distribution
stems from the assurance of fair link distribution among the
participating nodes in joining the created RVO. We distinguish
between the out-degree and the in-degree of a node, which
are the number of edges leaving from and ending at the node,
respectively. In our case, the out-degree of every node is fixed,
and equal to the cache size. Therefore, we concentrate on
observing the in-degree distribution of the constructed RVO.
In our experiments we set the cache size to 20 entries and
repeat each experiment for three times. Figure 3 shows the in-
degree distribution for the constructed ROVs for each dataset.
As shown, the peak of the in-degree equal to the cache size,
while the number of nodes having larger or smaller in-degrees
drops symmetrically from the cache size. Thus, in-degree
distribution follows uniform distribution, hence, our gossip-
based peer sampling service succeeded in created RVO with
fair link distribution among the participating nodes.

Additionally, Figure 4 depicts the similarity weight distri-
bution obtained for each dataset in log scale. As shown, the
similarity weight distribution follows power law probability
distribution similarly to the degree distribution. Furthermore,
the similarity weight distribution spans over wider range in
US Active and UK Active compared to US Passive. Particu-
larly, in US Passive, 91.5% of the similarity weight is less than
0.25, and this resulted from the low post frequency that users
in this dataset. Yet, the frequency of users with few posts is low
in US Active and UK Active datasets. Therefore, we can infer
that the more active posting behavior of users, the more strong
edges are going be added to the similarity graph. Additionally,
our approach successfully adapts to different levels of user
social activities, and creates the user similarity graph which
reflects the underlying user behavior.
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Fig. 2: The degree distribution for the friendship graphs in Twitter datasets in log scale.
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Fig. 3: The in-degree distribution for the created RVOs in Twitter datasets.
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Fig. 4: The Similarity weight distributions for Twitter datasets in log scale.

C. Extracted Communities

In this section, we explore DLSAS’s capability of detecting
spammers under the normal settings of no adversary manip-
ulations. As aforementioned, DLSAS performs community
detection to extract all the underlying behavioral patterns
of users, then identify the spam behaviors among detected
ones. Particularly, every node repeatedly runs the community
detection, until communities structure does not change any
more ( i.e., the convergence is reached). Figure 5 depicts
the number of rounds required till convergence, and number
of extracted communities per round. As shown, in the very
beginning the number of communities is very large, every node
starts to form a community with one of its direct neighbors.
However, over time nodes join the dominant communities in
their neighborhood, as a result the communities start to merge
and the number of communities continues to decrease.

In order to identify the communities that contain spammers,
we have construct a list of 500 words that are commonly used
by spammers associated with their semantically similar terms
and n-grams (more details about the used lexicon can be found
in [13]). Further, for every node we select the most frequent
words used in its tweets. Accordingly, the collected word list
per community is checked against a list common spam words.
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Fig. 5: The number of rounds required for convergence.

A community is identified as spam if majority (i.e., more than
50%) of its members use common spam words in their tweets.
The results show that the percentage of spam communities
is 17.3%, 21.6% and 23.5% in US Active, UK Active and
US Passive, respectively.

D. Performance Comparison

We calculate the accuracy of our approach using True
Positive Rate and False Positive Rate, that are defined as the
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Fig. 6: True positive rate achieved by our approach compared with
centralized and supervised methods.
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Fig. 7: True positive rate achieved by our approach compared with
centralized and supervised methods.

following:

• True Positive Rate (TPR): we calculate TPR as the
fraction of spammers that are successfully detected.

• False Positive Rate (FPR): we calculate FPR as the frac-
tion of legitimate users that are identified as spammers.

Figure 6 depicts the detection performance comparison of
our approach with the different centralized and supervised
classification methods. As shown, our approach outperforms
all binary classification methods. Furthermore, though our
approach is a decentralized one, yet our performance is slightly
better than other centralized methods. Specifically, we can find
that the TPR of our approach is the highest (92.3%). Therefore,
the reported result of TPR confirms the ability of graph-based
clustering to achieve more accurate detection rate compared
to the binary classification.

Additionally, our approach has the lowest FPR, which
means that graph-based clustering successfully detect spam-
mers with minimum affect on the legitimate users. Specifi-
cally, we can see that FPR in our approach can be steadily
maintained under 0.3%, as shown in Figure 7, while this
rate is 0.39% for the best binary classification method (RF).
Consequently, the community detection approach adopted in
our approach perfectly categorizes the existing behavioral
patterns into more homogeneous and accurate clusters than
binary classification.

E. Robustness to Adversarial Manipulations

In this section, we explore DLSASs limits in terms of
robustness to adversary manipulations. We conducted two
different sets of experiments. The first set of experiments
we randomly selected the adversary nodes from the set of
suspended accounts (i.e., the accounts that are labeled as spam
in the ground-truth). We simulated the increase in number
of adversaries among spammers by increasing the percentage
via a series of 10% growth. Each experiment was repeated
for three times and we reported the average of undetected
percentage of adversaries after executing the RVO validation
process.

Figure 8 depicts the undetected percentage of adversary
nodes among spammers for each kind of adversary manipula-
tion act. Figure 8(a) shows reported results for Equivocation
manipulation. In this experiment, malicious nodes need to
gain more exposure to legitimate nodes while creating RVO.
Therefore, malicious nodes exchange their own identifiers
instead of a random subset of all their neighbors during the
gossip-based peer sampling service. So as, DLSAS audits
the communication log exchanged among nodes randomly
while RVO construction. A node is reported malicious in
case of finding unmatched logs. Additionally, to make sure
that every node exchanges a random subset of its direct
neighbors, the auditing procedure computes the percentage of
overlap in exchanged identifiers in node communication logs.
In our experiments we define the percentage of overlap in
communicated friends to be less than 20%, and percentage
of unselected friends to be less than 20%. As shown in
Figure 8(a), DLSAS is capable of detecting at least 95%
equivocations, as reported on average for all the datasets,
under the condition that all spammers misbehave in terms of
exchanged neighbors.

Additionally, Figure 8(b) shows the reported detection ac-
curacy in case of false provenance manipulation, while Figure
8(c) reports the results of colluding adversary. In these exper-
iments, we simulated the malicious acts by exchanging falsely
weights for the created edges in the user similarity graph,
and falsely community membership during the community
detection phase. The manipulation detection mechanism is
performed by RVO as illustrated in Algorithm 2. As shown,
RVO validation can detect on average at least 95.2% of misbe-
having nodes. Furthermore, we performed further analysis of
the undetected nodes and we found that these undetected nodes
lie in loosely connected communities which mostly contain
spammers. Thus, these undetected nodes are unreachable from
other legitimate nodes to be validated correctly.

These graphs show considerable robustness to different
adversary manipulation. This comes as a consequence of the
the fact that RVO validation has proven to be highly resilient
to different decentralized vulnerabilities of DOSNs.

Additionally, we performed a second set of experiments,
in which we explore DLSASs limits in terms of robustness
to massive adversary attacks. In this experiments, we allow
all nodes to participate in adversary manipulations not only



0.0	
  

1.0	
  

2.0	
  

3.0	
  

4.0	
  

5.0	
  

6.0	
  

10	
   20	
   30	
   40	
   50	
   60	
   70	
   80	
   90	
   100	
  

U
nd

et
ec
te
d	
  
pe

rc
en

ta
ge
	
  

Percentage	
  of	
  adverdaries	
  among	
  spammers	
  

US_Ac2ve	
   UK_Ac2ve	
   US_Passive	
  

(a) Equivocation

0.0	
  

0.5	
  

1.0	
  

1.5	
  

2.0	
  

2.5	
  

3.0	
  

3.5	
  

4.0	
  

4.5	
  

5.0	
  

5.5	
  

6.0	
  

10	
   20	
   30	
   40	
   50	
   60	
   70	
   80	
   90	
   100	
  

U
nd

et
ec
te
d	
  
pe

rc
en

ta
ge
	
  

percentage	
  of	
  adversaries	
  among	
  spammers	
  

US_Ac2ve	
   UK_Ac2ve	
   US_Passive	
  

(b) False Provenance
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(c) Colluding Attack
Fig. 8: RVO validation accuracy reported for different DOSNs vulnerabilities using Twitter datasets.
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Fig. 9: RVO robustness against organized attacks.

spammers. Similarly to previous experiments, we randomly
selected the adversary nodes among all participating nodes. We
simulated the increase in number of adversaries in the network
by increasing the percentage via a series of 10% growth.
Furthermore, we performed two different types of attacks.
The first one we selected adversary nodes randomly, whereas
in the second one we select randomly within communities
boundaries to represent regional attack behavior. Figure 9
shows the reported results for these experiments. As shown,
RVO validation is highly resilient such that it can detect 34.2%
of random adversaries and 23.8% of regional ones under the
condition that half of the nodes in the system are malicious.
However, it is expected that RVO validation degrades when the
majority of nodes deviate from workflow protocol. Yet, such
severe cases are not realistic as it is intractable for adversaries
to become majority of a system.

V. RELATED WORK

A. Spam Detection

A rich corpus of spam detection work lies in adopting
supervised machine learning based methods using hybrid
features extracted from textual content and OSN friendship
graph. For example, Hongyu et al. [14] propose to train a
binary classifier with user-based features that distinguish spam
from legitimate content. The user social degree is used among,
yet spammers can increase their social degree by purchasing
more followers. Yang et al. [11] propose using graph-based
features that are hard to fake such as local clustering coefficient

and betweenness centrality. The main objective of spam is
reaching a wide audience, so as spammers start to hijack
trending topics and include many accessible accounts by
intentionally mentioning them in their spam posts. Therefore,
Amleshwaram et al. [12] define new content features that
measure how spammers entrap victims by counting the number
of unique mentions and hijacked trending topics embedded in
the posts.

More recently, [15] suggests an unsupervised solution to
spam detection based on sybil defense mechanism. The pro-
posed scheme starts by identifying non-spammers (i.e., non-
sybils) by applying a clustering algorithm on social graph.
Additionally, the authors focus their analysis on intensive URL
sharing, yet instead of using URL blacklisting, they add new
user-link edges to the social graph by connecting users sharing
the same URL. Afterwards, they filter the graph by removing
non-sybil nodes and nodes with low degree, then the remaining
nodes are identified as spammers. However, the assumption
that sybil nodes form tight-knit communities does not presist
as shown in recent studies [16].

B. Secure P2P Sampling

A Peer Sampling Service, identified as an important building
block of large scale distributed systems, continuously provides
each node in the system with a uniform random sample of all
nodes in the system. Several implementations of peer sampling
services exist [17, 18, 19]. However, they are extremely
vulnerable to attacks by malicious nodes. The root cause of
this vulnerability is that malicious nodes control the data they
send to others, and it is very hard for the receiving nodes to
detect their malicious intent in time.

Jelasity et al [20] provided some sketches of how to detect
and neutralize malicious nodes in gossip-based protocols.
However, these indicated solutions require direct interactions
among all participating nodes as well as that malicious intent
can be derived from the messages the nodes send. This is not
possible in peer sampling where the messages are just lists of
node addresses.

The Brahms [18] protocol provided each correct node with
a uniform random sample of the system, which requires a
global view of the system that can not be reachable in DOSNs
settings. Furthermore, the samples of the provided population
are rather static. It is therefore not directly suitable in dynamic



social networks nature due to rapidly evolving social activities
and interactions among users.

VI. CONCLUSION

In this paper, we have introduced DLSAS, a novel un-
supervised and fully decentralized anti-spam framework for
DOSNs. In contrast to existing supervised and centralized
approaches, DLSAS is unsupervised and fully decentralized
spam detection framework, where each node independently
processes its local data. DLSAS employs graph-based spam
detection mechanism which constructs user similarity graph
by encoding user behavioral patterns within graph topology.
Afterwards, DLSAS detects spam by performing community
detection on top of the newly created graph. This allows our
system to categorize the existing behavioral patterns into more
homogeneous and accurate clusters.

More importantly, DLSAS provides a novel defense mech-
anism for DOSNs to prevent malicious nodes participating in
the system. DLSAS creates a validation overlay to assess the
credibility of the exchanged information among the participat-
ing nodes and exclude the misbehaving nodes from the system.
Consequently, DLSAS preserve the core of spam detection
(i.e., similarity graph creation and community detection) from
manipulation under the existence of adversarial nodes that
deviate from the designed workflow protocol. The proposed
approach achieves spam detection accuracy upto 92.3% and
false positive rate of less than 0.3%. Additionally, DLSAS
ensures spam-detection integrity and reliability by detecting
at least 94.7% of adversaries, under the condition that 20%
of nodes are spammers participating in different adversarial
activities.
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