Mesmerizer: A Effective Tool for a Complete Peer-to-Peer
Software Development Life-cycle

Roberto Roverso
Peerialism Inc.
Stockholm, Sweden
roberto@peerialism.com

Sameh El-Ansary
Peerialism Inc.
Cairo, Egypt
sameh@peerialism.com

Alexandros Gkogkas
Peerialism Inc.
Stockholm, Sweden
alex@peerialism.com

Seif Haridi
Royal Institute of Tech. (KTH)
Stockholm, Sweden

haridi@kth.se

ABSTRACT

In this paper we present what are, in our experience, the best
practices in Peer-To-Peer(P2P) application development and
how we combined them in a middleware platform called Mes-
merizer. We explain how simulation is an integral part of
the development process and not just an assessment tool.
We then present our component-based event-driven frame-
work for P2P application development, which can be used
to execute multiple instances of the same application in a
strictly controlled manner over an emulated network layer
for simulation/testing, or a single application in a concurrent
environment for deployment purpose. We highlight model-
ing aspects that are of critical importance for designing and
testing P2P applications, e.g. the emulation of Network Ad-
dress Translation and bandwidth dynamics. We show how
our simulator scales when emulating low-level bandwidth
characteristics of thousands of concurrent peers while pre-
serving a good degree of accuracy compared to a packet-level
simulator.

Categories and Subject Descriptors

C.2.4 [Computer Communication Networks]: Distributed

Systems—distributed applications; C.4 [Performance of

Systems]: Modeling techniques; D.1.3 [Programming tech-
niques|: Concurrent programming—distributed programming;

D.2.11 [Software Engineering]: Software Architectures—
domain-specific architectures; 1.6.8 [Simulation and Mod-
eling]: Types of Simulation—discrete event

General Terms

Design, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Keywords

peer-to-peer systems design, simulation-based development,
NAT emulation, bandwidth dynamics emulation

1. INTRODUCTION

Peer-to-Peer (P2P) systems have passed through a num-
ber of evolution eras. Starting from being an exotic practice
in hacker communities to a rigorously researched and de-
cently funded academic field. Nowadays, products based on
P2P technologies such as Bittorrent and Skype are main-
stream brands in internet technologies. Despite of that,
while algorithms and research ideas about P2P systems are
abundant, software engineering practices of developing P2P
systems, especially in an industrial setting are less shared.
Compared with the process of developing web-based appli-
cations, the amount of best practices that has been iterated,
re-factored and publicly shared within the communities is
huge. Examples include model-driven frameworks such as
Ruby on Rails [1] or Django [2] or communication patters
like AJAX [16] and COMET [3] and their variants. We argue
that while the art of developing P2P applications in terms of
shear algorithmic complexity is far beyond web-applications,
there are very few best practices shared on how to develop
P2P systems.

The point of this paper is to the share best practices that
worked for Peerialism. We do that by articulating three
main areas where we think we have gained maturity. The
first is simulation tools. Namely, how they are an integral
part of the software development and not just an assess-
ment tool. We highlight how a clear concurrency model can
significantly simplify development and then which modeling
aspects are critical for a successful P2P system design and
implementation process.

Simulation-Based Development cycle. P2P algo-
rithms are in general complex due to the high amount of
exchanged messages, asynchrony and the fact that failures
are the norm rather than the exception. Consequently, sim-
ulation is not a luxury but a necessity when validating P2P
protocol interactions. Even a very few lines of code running
simultaneously on one thousand peers result in interactions
that are rather challenging to debug. We started with the
common practice of authoring the algorithms on our own
discrete-event simulator and, when the algorithms were ma-
ture enough, we transitioned to real implementation. How-

ever, maintenance of a dual code base and irreproducibility
of bugs were main concerns that led us to attempt injecting
a discrete event simulator underneath our production code.
The results of this effort, where mainly a simulated network,
simulated time and simulated threading were provided, were
published in the MyP2PWorld system [33]. The main ad-
vantage of the approach was that developers wrote exactly
in the same style they were familiar with. This approach
made it possible to debug complex interactions of hundreds
of peers on a single development machine and also share re-
producible scenarios with the development team. In a sense,
the simulated mode served as an extremely comprehensive
integration testing tool. That is an achievement which is
hard to obtain in uncontrolled, real-world deployments.

Over time, we found that we are using component-based
frameworks like Guice [18] extensively to organize and de-
couple various parts of our code. We realized quickly that
the task of switching between real and simulated runs could
be achieved in a more elegant fashion using component frame-
works where for example the network is a component with
one interface and two implementations, one real and one
simulated. We noticed that others in the field have later in-
dependently reached the same conclusion and we see systems
like Kompics [6] and Protopeer [14] which adapted the same
practice. We expect more wide dissemination of systems like
these in the future.

Clear Concurrency Model. In general, the classical
way of dealing with concurrency is to use threads. For I/O
intensive applications, the network programming commu-
nity has been advocating the asynchronous/event-based con-
currency model. That is more or less an established consen-
sus. In a programming language like Java, one could observe
the transition of the standard library to provide more off-
the-shelf code for asynchronous I/0O based on Java NIO [19].
With that model, any network related activity is done in an
event-based fashion, while the rest of the concurrent mod-
ules in the application are written using threads. Our first
application was developed in such a way; the co-existence
of blocking (thread-based) and non-blocking (event-based)
concurrency models rendered the applications much harder
to design and maintain. The practice that we finally settled
on was to unify the concurrency model by having a pure
event-based system. We have also seen that frameworks like
Twisted for Python [4] have a similar concept. It is worth
stressing that, when injecting a DES underneath real appli-
cation code, the non-blocking model is much more suited.

More Realistic Network Model. Other than being
injected underneath the real application code, our discrete-
event simulation layer is in principle very similar to every
other peer-to-peer simulator out there. That said, we have
two unique features. The first is the ability to simulate the
behavior of NAT boxes and the second is an efficient and
accurate bandwidth allocation model. For the former, we
have taken all the real-life complexities we found in actual
deployments and implemented that logic in a NAT box em-
ulator integrated in our framework. Up to our knowledge,
this is the first emulator of its kind. For the latter, we have
surveyed how others crafted bandwidth allocation in their
simulators. Packet-level simulators like NS-2 [29] are the
winners in terms of accuracy but fall short on efficiency for
the desired scale of thousands of peers. A more efficient so-
lution is to use flow-based simulation where we have found
that the max-min fairness approach [9] is the most-widely

used model. Nevertheless, implementations of max-min fair-
ness vary a lot, not only in accuracy but in efficiency as well.
We have implemented our own max-min based bandwidth
allocation model where we substantially improved on effi-
ciency without sacrificing too much accuracy. The ability
to provide a more realistic network model is important. In
the absence of NAT box emulation, P2P algorithm design-
ers would have a very naive picture of phenomena like long
connection setup times, the impossibility of connectivity be-
tween different combinations of NAT boxes, and hence peers
behind them. Similarly, sloppy models for bandwidth allo-
cation result in overly optimistic estimation of data transfer
delays, especially in P2P networks where a lot of transfers
are taking place simultaneously.

Our P2P Development Framework. We have com-
bined all of our best-practices in a P2P Java middleware
called Mesmerizer. At the moment, all Peerialism applica-
tions are written on top of that platform. The rest of this
paper is dedicated to explaining how our best practices are
realized in the Mesmerizer framework. We start by describ-
ing the Mesmerizer programming model in Section 2 as well
as its internals in Section 3. Then, we present the execution
modes available to users in Section 4 and give more details
about the network layer, both real and simulated, in Sec-
tion 5. Finally, we present our conclusions and future work
in Section 6.

2. THE MESMERIZER FRAMEWORK

Applications developed in Mesmerizer consist of a set of
components. Every component has an interface and one
or more corresponding implementation(s). An interface is
bound to a component implementation with an explicit bind-
ing. A component instance belongs to a certain group. Groups
contain one or multiple component instances, have explicit
identifiers and define the scope of communication between
components. A component may communicate with other
components in a message-passing fashion using events. When
an event is triggered by a component, Mesmerizer broadcasts
it to the the component group it belongs. Events may be
triggered for immediate execution, e.g. messaging, or fu-
ture execution, e.g. timeouts. Inter-group communication
is allowed by using explicit addressing of groups. Static tun-
nels between groups can be defined to automatically forward
one or many types of events from one group to the other in
order to avoid the need of explicit addressing. Every han-
dler processes a single type of event. Handlers belonging
to a certain component may be executed sequentially, i.e.
a component instance processes a single handler at a time.
This allows for simple concurrency semantics and isolation
of components’ state. However, event handlers can be de-
fined as concurrency-safe. In that case, no synchronization
control is applied, i.e. many “safe” handlers may be exe-
cuted, while only a single “unsafe” handler is running at the
same time. Explicit filters may be defined as a protection in
order to avoid execution of handlers based on the runtime
characteristics of events.

3. IMPLEMENTATION

Mesmerizer is implemented in Java as an extension of
Google Guice. Guice is a lightweight injection framework. It
was principally developed to alleviate the use of the explicit
factory pattern in Java. It also provides a tight degree of

Component Component
Interface Implementation
LV V]

Timelnterface / SwedenTimelmpl \

| TimeHandler h=new Handler(GetTime e) {
E e.replyEvent(Sweden.currentTime());
|

TimeHandler
[GetTime]

DateHandler h=new Handler(GetDate e) {

\
DateHandler H

E e.replyEvent(Sweden.currentDate());

|

[GetDate]

Alternative Component
Implerplentation

v
/ USTimelmpl \

TimeHandler h=new Handler(GetTime e) {
e.replyEvent(US.currentTime());

}

DateHandler h=new Handler(GetDate e) {
e.replyEvent(US.currentDate());
}

. /

Figure 1: Example Component Interface and imple-
mentations

control on how, which and when implementations of a cer-
tain interface should be instantiated. In Guice, the instan-
tiation mechanism can be configured using explicit static
bindings, i.e. interface to implementation mappings, and
scopes. By default, the library makes use of a completely
stateless scope, instances of a specific interface implementa-
tion are allocated every time the application requests a new
instance. The library provides two stateful scopes: single-
ton, which causes Guice to return always the same instance
of a certain interface, and a request scope, used mainly for
Servlet applications, which allocates instances on a request-
by-request basis. In general, Guice is principally used for
unit-testing. It is common practice to swap dependencies of
a Guice component with mock implementations in order to
test its functionalities independently.

Mesmerizer uses Guice bindings to map component inter-
faces to corresponding implementations. Component inter-
faces are simple Java interfaces which define a number of
handlers. Handlers are objects which inherit from a specific
abstract Handler class and are statically typed by the event
class which they take as an argument. Figure 1 illustrates an
example of component interface and two corresponding com-
ponent implementations. In this case, a binding has been
created between Timelnter face and SwedenTimelmpl.

Component instances live in the context of groups. Upon
the creation of a group, a set of the aforementioned Guice
bindings must be provided together with the corresponding
allocation policy. The latter defines if a component instance
should be considered as a singleton or not in the context of
the group or of the application. Component instantiation

// Binding
bind (TimelInterface).to(SwedenTimelmpl) . as(
Scopes. GroupSingleton)

// Interface

trait Timelnterface extends ComponentInt {
@Handler def timeHandler ():Handler [GetTime]
@Handler def dateHandler ():Handler [GetDate]

}

// Implementation

class SwedenTimelmpl extends Timelnterface {
def timeHandler ():Handler [GetTime] = {
return timeHandler;

}
def dateHandler (): Handler [GetDate] = {
return dateHandler;

val timeHandler = new Handler [GetTime] () {
def handle(e: GetTime):Unit = {
e.reply (new RespTime(currentTime (SWEDEN)))

i3

val dateHandler = new Handler [GetDate]() {
def handle(e: GetDate):Unit = {

e.reply (new RespDate(currentDate (SWEDEN)))
i3

Listing 1: Example Component Interface and
corresponding Component Implementations in the
Scala language

calls are made on group instances. Internally, Mesmerizer
groups make use of Guice’s scope mechanism to create and
keep track of instances in their context. As a consequence
of this design, two different groups may be able to bind the
same interface to different implementations. When a com-
ponent implementation gets instantiated, Mesmerizer uses
Guice to parse both the component interface and the bound
implementation. After the parsing, the framework regis-
ters each handler as a possible destination for the event it
is typed with. This information is then used upon event
triggering to retrieve the handlers to execute. As a design
choice, we let many different components implement a han-
dler for the same event type, whereas we allow only a single
handler for a specific event type on the same component.
In Figure 2 we show the structure of Mesmerizer. The
most important part of the platform is the Core, which con-
tains the implementation of the model’s semantics and wraps
around the Guice library. It provides mainly the group and
component instantiation mechanisms, in addition to the reg-
istration and resolution mechanisms used for event routing.
The actual handling of events, that is the scheduling and
the execution, is carried out by the Scheduler, while the
Timer is entitled with the task of handling timeouts and re-
curring operations. A glue Interface and Management layer
is added to handle setup of one or multiple application in-
stances and provide logging through the Logger embedded
in the system. As we can see from the figure, one or many
component groups can be created by an application, in this
case (G1 and G2 and filled with component instances C7, Cs
and Cs, which are different instances of the same component

Simulated
Timer

10

Work-Stealing
Scheduler

Jaheq

-

Application Layer\

[1 [] [1
I I I
Gl ’
I I I
O O 0
:
C__J I I
«) o
I I I
0 O 0

1L

DES
Scheduler

1UBUJBSEUE|/\| pue adejiaqu|
[

Singleton
Logger

Multi-
instance
Logger

Deployment configuration

NAT
ubp TCP Priority
Traversal

h4 N\

Network Layer

Simulation configuration

Network Layer

% NAT] % Bandwidth] % Routing]%Pf:g:?;s]
J

Figure 2: The structure of the Mesmerizer Framework

implementations residing in the two different groups.

3.1 Scala Interface

We implemented an interface layer over Mesmerizer to be
able to develop components in Scala [30]. Scala is a program-
ming language designed to express common programming
patterns in an easier and faster way. It is an object-oriented
language which also supports functional programming. Our
experience is that Scala allows for faster prototyping than
Java. Algorithms and other complex routines can be writ-
ten in much shorter time than in Java and expressed in a
clearer and more compact way making it easier for the pro-
grammer /researcher to implement, understand and improve
both its logic and code. An example of the Scala code cor-
responding to Figure 1’s depiction of component interface,
implementation and binding is shown in Listing 1.

We are currently working on a layer to interface the Python
language with Mesmerizer by using the Jython library [22].
In principle, any programming language that compiles to
Java bytecode can be interfaced with Mesmerizer. The Mes-
merizer framework provides two different execution modes:
simulation and deployment. The former allows for a strictly
controlled execution of multiple instances of an application.
It enables both large-scale reproducible experiments and
smaller-scale testing/debugging of applications over an em-
ulated network layer.

Deployment allows for parallel processing of events. In
this mode, one or multiple application instances are executed
using a concurrent environment while network services are
provided by a library which enables TCP and UDP commu-
nication between hosts.

4. EXECUTION MODES

The design of Mesmerizer allows an application to be run
either in simulation or in emulation mode by simply chang-
ing some of the Mesmerizer’s system bindings, namely the
Scheduler, Timer, Logger and Network layer components as

shown in Figure 2.

4.1 Simulation Mode

In simulation mode, multiple instances of the same appli-
cation are spawned automatically by Mesmerizer according
to a specified configuration provided to the Management
Layer. Event execution in this case is controlled by a Sched-
uler based on a single-threaded Discrete Event Simulator
(DES). During execution, triggered events are placed into
a FIFO queue and the corresponding handlers executed in
a sequential manner. Our previous experience in using a
multi-threaded DES based on pessimistic lock-stepping [24],
where events of the current time step are executed in a con-
current fashion, has shown that the amount of overhead
required for this technique to work is larger than the ac-
tual benefits. We found the event pattern to be very sparse
for the applications we developed using Mesmerizer: a live
streaming platform and a Bittorrent client. We noticed that
the synchronization burden required to achieve barrier syn-
chronization between consecutive time intervals is far greater
than the speed-up obtained by the actual processing of the
few events present in the ”concurrency-safe” intervals.

Trying to scale simulation, we mostly concentrated our ef-
forts in improving the performance of what we experienced
to be the biggest bottleneck in our P2P simulations: emu-
lating bandwidth allocation dynamics of the network. We
will show in Section 5.2.2 how the Mesmerizer simulation
environment performs in terms of scalability when emulat-
ing such phenomena and its level of accuracy with respect
to other more costly solutions.

Simulation Setup. We provide a set of APIs which
enable users to fully configure the execution of multiple
application instances and carefully control the behavior of
the simulated network layer. Typically in simulation mode,
Mesmerizer isolates an application instance in its own com-
ponent group containing all of its components. Applica-
tion instances communicate using the same network inter-

Bittorrent Application Group

™

Messages

Torrent Group 1
TransferManager Uploader Downloader
/)
t t
Torrent Group 2 N
- % TransferManager} %Uploader} %Downloader}
I |
Torrent Group 3)
\\% Trar;éfe(Manager] %Uploader] %Downloader]
\n ”)
Y T T
0 v N0 v
“E_%:ClientManager] AE%: RateLimiter]

Figure 3: The structure of our Bittorrent Application

face provided in deployment mode. Messages are however
routed to an emulated network layer which models a number
of characteristics found in real networks.

For large-scale experiments, we implemented a number of
churn generators based on probabilistic and fixed time be-
haviors which can be configured either programmatically or
through an XML scenario file. The emulated underlying
network can also be configured in the same way. The Mes-
merizer simulator allows for the creation of scenarios con-
taining a predefined number of peers interconnected using
routers and NAT boxes [36] on simple end-to-end topologies
or more complicated consumer LAN infrastructures and/or
complex multi-layered corporate networks. The simulation
APIs make possible to define bandwidth capacities for each
peer/router in the network, dictate the behavior of NAT
boxes and configure in detail network characteristics such
as delay patterns, packet loss and link failures.

4.2 Deployment Mode

Deployment allows for the execution of application in-
stances in a concurrent environment. In this mode, the han-
dlers of the application’s components are processed on multi-
ple threads concurrently. From a component’s instance point
of view, a number of its safe handlers can run together at
once, however, its unsafe handlers will be executed sequen-
tially. On the other hand, many unsafe handlers of different
components may be active at the same point in time. In
this mode, execution is controlled by a concurrent Scheduler
which implements the work-stealing paradigm introduced by
Blumofe et al [10] on a number of Java threads, similarly to
Kompics [6]. Work-stealing is an efficient scheduling scheme
for multi-core machines which is based on an queuing mech-
anism with low cost of synchronization. We make use of
the work-stealing paradigm in the following way: when an
event gets scheduled, Mesmerizer finds the component in-
stances which subscribed to that particular event type and
hands them to the Scheduler. The Scheduler then checks
the availability of a number of free threads corresponding
to that of the passed handlers. If enough free threads are

found, it schedules the handlers for immediate execution. If
no sufficient number of threads is available, the scheduler
distributes randomly the remaining handlers to the waiting
queues of the currently occupied threads. When a thread
completes the execution of a handler, it tries either to take
an event from its queue or, if its queue is empty, it steals
handlers from another thread’s queues. In our experience,
this type of scheduling guarantees a good level of fairness
and avoids starvation of handlers.

In Figure 3 we show the structure of a Bittorrent client
that we developed using Mesmerizer, which is currently de-
ployed in our test network. The application is made by
two basic components which reside into the main Bittorrent
Application component group: the Client Manager and the
Rate Limiter. The former is entitled with the task of set-
ting up and remove Bittorrent transfers, while the latter
controls load balancing and priority levels between trans-
fers. When a new torrent file is provided to the applica-
tion, the Client M anager creates a component group for the
new transfer, for instance TorrentGroupl. The group con-
tains all transfer’s components, which are instances of the
interfaces Downloader, Uploader and TransferManager.
Which implementation should be used for the aforemen-
tioned interfaces is defined in a Guice binding when adding
the torrent. We designed a number of different implemen-
tations of the transfer components which provide various
transfer strategies, such as partial in-order or random. This
kind of design allow for the use of multiple transfer poli-
cies in the same client by simply providing the right bind-
ing when adding new transfers. During transfer setup, the
Client M anager also proceeds to create automatic tunneling
of message events from the network layer to TorrentGroupl
using filters based on message characteristics. We use the
mechanisms of tunneling and filtering for automatic inter-
group routing and multiplexing of incoming messages respec-
tively. Routing of events is also carried out internally to the
application between Uploader/Downloader component in-
stances and both the Client M anager and the RateLimiter.

The latter in particular has the important task of keeping
the view of all transfer rates and dynamically adjust, by is-
suing the correct events, the uploading/downloading rates
of the Uploader and Donwloader components, when they
excess the priority level or max speed.

S. NETWORK LAYER

We provide two different sets of components to be used
as network layer: one for deployment and another for sim-
ulation mode. In deployment mode, components need to
transfer messages, i.e. remote events, to other remote hosts
using the TCP or UDP protocol. In simulation mode in-
stead, the network layer is entitled with the task of mod-
eling those same transfers between a number of application
instances which are running in the same context, i.e. the
same instance of the Mesmerizer framework. We detail the
composition of the network layer in both modes in the fol-
lowing sections.

5.1 Deployment Configuration

Our network layer deployment includes a number of com-
ponents that offer TCP and reliable UDP communication
to the overlying applications through a simple event-based
interface. Our TCP and UDP components deliver out-of-
the-box support for transparent peer authentication and en-
crypted data exchange. We have implemented two compo-
nents to achieve NAT traversal and improve peer-to-peer
connectivity; support for explicit NAT traversal protocols
such as UPnP and NAT-PMP, and state-of-the-art tech-
niques for UDP hole-punching, based on our previous work
[34]. If direct connectivity between two peers cannot be
achieved, the network layer automatically relays the com-
munication over a third host. However, we use this feature
only for signaling purpose since relaying traffic is a very ex-
pensive operation, in particular for data intensive applica-
tions such as video streaming or content delivery platforms
where the amount of data to be transfered is significant.

On top of NAT traversal and reliable communication, the
deployment network layer provides three strategies for traf-
fic prioritization based on different UDP congestion control
methods. For low priority traffic, we implemented the LED-
BAT delay-based congestion control [35], which yields with
respect to other concurrent TCP streams. For what we call
fair level of priority, or medium, we adopted a variation of
the TCPReno [27] protocol which enables equal sharing of
bandwidth among flows generated by our library and other
applications using TCP. Finally, when the delivery of data
is of critical importance, the library provides high priority
through an adaptation of the Mul-TCP [12] protocol. The
level of priority can be dynamically chosen on a flow-to-flow
basis at runtime.

5.2 Simulation Configuration

In Simulation mode, we make use of a number of compo-
nents which emulate different aspects of the network. For
instance, on the IP layer, we provide routing and NAT emu-
lation through the corresponding components. For modeling
lower layer network characteristics, we implemented com-
ponents that model bandwidth allocation dynamics, non-
deterministic delays and packet loss. As mentioned in Sec-
tion 1, some of these emulated characteristics are found in
almost all P2P simulators. We detail the NAT and band-
width emulation components; the first being notable for its

novelty and the second for its high level of efficiency/accu-
racy trade-off.

5.2.1 NAT Emulation

Network Address Translators constitute a barrier for peer-
to-peer applications. NAT boxes prevent direct communica-
tion between peers behind different NAT boxes [36]. Even
though an attempt has been made to standardize Network
Address Translation [7], in particular to improve support for
Peer-To-Peer applications, not all vendors have complied to
the standard. This is either because most of the routers ship
with legacy NAT implementations or because manufacturers
claim the standard to be too permissive. In particular, in
the context of corporate NAT implementations, the transla-
tion behavior may vary drastically between different vendors
or even different models of the same manufacturer.

In our previous work, we have tried to classify most of
the behaviors of current NAT implementations using a real
deployment of our test software. The outcome of this effort
is a model that encompasses 27 types of NATs as a combi-
nation of three behavioral policies: filtering, allocation and
mapping. NAT traversal is a pairwise connection establish-
ment process: in order to establish a communication channel
between machines behind two different NAT boxes, it is nec-
essary to carry out a connection setup process dictated by a
NAT traversal strategy, which should vary according to the
type of the two considered NAT boxes. Given a set of seven
known traversal strategies, the NAT problem translates to
understanding which strategy should be used in each one of
the 378 possible combinations of the 27 NAT types. On top
of that, each traversal strategy has its own configuration pa-
rameters. These parameters could be as detailed as deciding
which source port should be used locally by the two source
hosts to initiate the setup process in order to maximize the
connection establishment success probability.

At first, we tried to understand the mapping between NAT
type combinations and traversal strategies by formal reason-
ing. However, this task turned out to be too complex due to
the size of the possibility space. As a consequence of that,
we developed a configurable NAT box implementation which
could emulate all the aforementioned NAT types. On top of
it, we implemented a small simulator which would perform
the process of traversal, according to the seven strategies, on
all of the emulated 240 NAT type combinations. By using
this small framework, we discovered many counter-intuitive
aspects of NAT traversal and mistakes in the strategy’s de-
cision process which we would not have discovered by simple
reasoning. The outcome of our effort of mapping strategies
to combinations is described in [34].

For the purpose of testing the correct and non-trivial im-
plementation of the Traversal strategies in our application,
we included NAT emulation in the network layer configu-
ration of Mesmerizer. In other words, we built an emu-
lated network where the connection establishment process
by means of NAT traversal is modeled in a very detailed
manner. Thus, we were able to test not only the correct-
ness of our implementation of the traversal strategies, but
also to measure the impact of the connection establishment
delays on the overlying application. Delays are very im-
portant factors to be considered when designing audio and
video streaming systems, due to the time-constrained nature
of the application.

The model which we designed for the emulation of NAT

boxes encompasses most of the behaviors which are found
in current routers and corporate firewalls. However, after
the deployment of our live streaming application on a real
network, we noticed a number of exceptional characteristics,
e.g. non-deterministic NAT mapping timeouts, inconsistent
port allocation behaviors and the presence of multiple filter-
ing policies on the same router. We thus tried to formalize
those exceptions and integrate them into our simulator. We
further improved our simulator by modeling connection es-
tablishment failures based on real-world measurements. We
emulate the observed probability of success between NAT
types combinations according to what we observed during
our real-world tests. Currently, we still experience cases that
are not covered by our emulation model and we keep improv-
ing our model based on those observations. The source code
of our NAT box emulator is publicly available as an open
source project [32].

The detailed emulation of NAT boxes has provided us
with better insight on how peer-to-peer applications should
be designed and implemented in order to avoid connectivity
issues.

5.2.2 Bandwidth Modeling

It is common for P2P networks to create complex inter-
actions between thousands of participant peers, where each
peer typically has very high inbound and outbound connec-
tion degree [5] [39] [38]. Connections are used either for sig-
naling or for content propagation. In the latter case, each
peer implements intricate multiplexing strategies to speed
up transmission of large chunks of data [11], thus creating
complex effects on the underlying physical network which
translate into varying transmission delays and packet loss
at the receiving side.

Most of the existing P2P simulators abstract away net-
work interactions by modeling only the structural dynamics
of the overlay network [8] [21] [31] [26] [37] and thus totally
ignoring the impact of the actual network on application
performance. On the other end, accurate packet-level sim-
ulators like SSFNet [41] and NS-2 [29] can usually scale up
only to a limited number of simulated peers. This limita-
tion makes it infeasible to capture the behavior and issues
of a larger P2P real-word deployment, such as the effect of
network congestion on segments of the overlay network. In
order to study the complex interactions between large scale
overlays and the physical network, a proper network sim-
ulation model is required. The level on which the model
abstracts the network transfers directly affects both its scal-
ability and accuracy.

Flow-level network simulation focuses on a transfer as a
whole rather than individual packets, introducing a viable
trade-off between accuracy and scalability. A flow abstracts
away the small time scale rate variation of a packet sequence
with a constant rate allocated at the sender /receiver’s band-
width. The rate remains allocated for an amount of time
which corresponds to the duration of the flow, i.e. the simu-
lated packet sequence transmission time. This approach re-
duces drastically the number of events to be simulated. The
driving force behind the event creation in flow-level simula-
tion is the interaction between the flows since an upload/-
download link might have many flows happening at the same
time. A new or completed flow might cause a rate change
on other flows competing for that same link’s capacity. A
flow rate change may also propagate further in the simu-

lated network graph. This phenomenon is known as “the
ripple effect” and has been observed in a number of studies
[23] [15]. The impact of the ripple effect on the scalability
of the model is directly dependent on the efficiency of the
bandwidth allocation algorithm which is used to mimic the
bandwidth dynamics.

Bertsekas and Gallager [9] introduce the concept of maz-
min fairness for modeling Additive-Increase Multiplicative-
Decrease congestion control protocols like TCP. Max-min
fairness tries to maximize the bandwidth allocated to the
flows within a minimum share thus guaranteeing that no flow
can increase its rate at the cost of a flow with a lower rate.
In every network exists a unique max-min fair bandwidth
allocation and can be calculated using the progressive filling
algorithm [9]. The basic idea behind this algorithm is to
start from a situation where all flow rates are zero and then
progressively increment each rate equally until reaching the
link’s capacity, i.e. the sum of all flow rates of a link equals
its capacity. In this algorithm, the network, including its in-
ternal structure, e.g. routers and backbone links, is modeled
as an undirected graph. A recent accuracy study [13] showed
that this approach offers a good approximation of the actual
network behavior. Nevertheless, having to simulate the flow
interactions that take place on the internal network links
magnifies the impact of the ripple effect on the algorithm’s
scalability by making the simulation significantly slower.

In order to gain more scalability, the GPS P2P simulator
[40] uses a technique called minimum-share allocation, de-
fined in [17], which avoids the propagation of rate changes
through the network. Instead, only the flow rates of the di-
rectly affected nodes are updated, i.e. only the flow rates
of the uploading and downloading nodes of the flow trigger-
ing the reallocation. Not considering the cross-traffic effects
of the flows obviously has a positive impact on the sim-
ulation time but also makes the model highly inaccurate.
Narses [17] uses the same technique as GPS but it further
promotes scalability by ignoring the internal network topol-
ogy and considers only the bandwidth capacity of the access
links of the participating peers. The result is what we call
an end-to-end network overlay where the backbone network
is completely abstracted away from the modeling and rate
changes happen between pairs of peers. This is a reasonable
abstraction if we consider that the bottlenecks on a P2P
network usually appear in the ”last mile” rather than the
internet backbone. In doing so, the number of events simu-
lated is further reduced, however in this case the inaccuracy
remains since only the end-to-end effects are taken into ac-
count while the cascading effect on other nodes, as modeled
by max-min fair allocation, is completely overlooked.

There exists two bandwidth allocation algorithms in the
state of the art which apply the progressive filling idea on
end-to-end network models, thus keeping the advantages of
simulating only access links but still considering the effects
and propagation of rate changes throughout the peer inter-
connections. The first algorithm proposed by F. Lo Piccolo
et Al. [25] models the end-to-end network as an undirected
graph. In each iteration, the algorithm finds the bottleneck
nodes in the network, the nodes with the minimum fair
bandwidth share available to their flows. Then it proceeds
to allocate the calculated minimum fair share to their flows.
The algorithm iterates until all nodes are found saturated or
a rate is assigned to all their flows. The main disadvantage
of this node-based max-min fair bandwidth allocation algo-

10000 . . . :
1000 k- B [

100 (-

secs

1L . . : 4

: : node-based —+—
edge-based

uptir‘wized nud‘erbasedl+

0.1 I i I i I
10 20 30 40 50 60 70 80 90 100

outgoing flows per node

Figure 4: Performance comparison for structured
network overlays with 1000 nodes and different num-
ber of outgoing flows per node.

rithm lies in the modeling of the network as an undirected
graph. In order to simulate a network with separate upload
and download capacities, two node instances are required
per actual network peer. The memory footprint is therefore
larger than the one needed to model a direct network graph.

An alternative edge-based max-min bandwidth allocation
algorithm is given by Anh Tuan Nguyen et al. [28]. It is an
edge-based algorithm which uses a directed network model,
differently from the approaches we introduced until now.
In one iteration, the algorithm calculates the minimum fair
share of the two ends of every unassigned flow. Then, on
the same iteration and based on the previously calculated
shares, the algorithm finds the bottleneck nodes, derives the
flows’ rates and applies them. The algorithm iterates until
all flows have a rate assigned. It is important to underline
that during the second phase of each iteration, the algorithm
might find one or multiple bottleneck nodes, thus assigning
rates to the flows of multiple nodes at the same iteration.
This edge-based max-min fair bandwidth allocation algo-
rithm addresses the shortcoming of the undirected network
modeling, that is the memory footprint. However, the algo-
rithm performance’s dependence on the edge-set size consti-
tutes a major drawback. On top of that, a further iteration
of the node set is required in order to find the saturated
nodes.

It is common in large simulated networks for a new or
finished flow to only affect the rates of a subset of the existing
network flows, as the propagation of a rate change does not
reach all nodes in the network but rather few of them. Based
on this observation, F. Lo Piccolo et Al. [25] partially outline
an affected subgraph discovery algorithm that can be applied
on an undirected network graph.

Using this optimization algorithm before applying an undi-
rected node-based max-min fair bandwidth allocation algo-
rithm leads to a large performance gain. Unfortunately, F.
Lo Piccolo et Al. apply this only on an undirected net-
work model. Moreover, the authors provide only a sketch
of the affected subgraph idea rather than a state-complete
algorithm. In our simulator we leverage the benefits of the
affected subgraph optimization on a directed network model.
The result is an algorithm whose computational complexity
is independent of the edge set size. Our node-based max-min
fair bandwidth allocation algorithm iterates until all flows
have a rate assigned. Each iteration has two phases. In the
first, we find the node(s) which provide the minimum fair

10000

1000 b o e Lo o T e]

100 / ; il

secs

node-based —+—
edge-based
cptimlized nud‘e'based ‘+

1 I I i i i
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

node set size

Figure 5: Performance comparison for structured
network overlays with varying size and 20 outgoing
flows per node.

share by calculating the fair share of the upload and the
download capacity of each node. The lower of these rates is
set as the minimum fair share and the corresponding node
sides (uploading or downloading) are considered saturated
i.e. they constitute the bottleneck of the network in this
iteration. In the second phase, we allocate this minimum
fair share to the flows of each saturated node, downloading
or uploading depending on their saturated side. In order
to improve scalability, we adapt the affected subgraph dis-
covery algorithm for use with directed end-to-end network
models. Given a flow that triggers a bandwidth reallocation,
we initiate two graph traversals that each one has as root
one of the flow’s end nodes. In each hop of a traversal we
find the affected flows of the last reached nodes and continue
the traverse to their other ends. This procedure continues
until no newly affected nodes are discovered by any of the
two traversals.

Evaluation.

For our scalability evaluation, we consider structured over-
lay scenarios with two main parameters: the size of the
node set and the number of outgoing flows per node. The
nodes enter the system in groups at defined time inter-
vals and the starting times their flows are distributed uni-
formly in that same time interval. The destination of the
flows is chosen following a specific structure, i.e. a DHT-
based one. The bandwidth capacities of the nodes are cho-
sen randomly from the set: {100Mbps/100Mbps,24Mbps
/10Mbps,10Mbps/10Mbps,4Mbps/2Mbps,2Mbps/500Kbps}
with corresponding probabilities of {20%,40%,10%,10%}.
Our experiments show, Figures 4-5, that our node-based
max-min fair allocation algorithm constantly outperforms
the edge-based algorithm proposed by Anh Tuan Nguyen
et al. for large-scale and structured network overlays. An
important conclusion drawn from these results is that the
number of connections per node has a bigger impact in the
performance of the simulation models rather than the node
set size. For example, the simulation of a random overlay
of 1000 nodes with 70 outgoing flows requires a similar sim-
ulation time to a 10000 nodes random overlay having 20
outgoing flows per node. We also would like to point out
that the performance gain when using flow-level simulation
instead of packet-level is paramount. In order to simulate
a random scenario of 1000 nodes with 10 flows each, a time
of three orders of magnitude longer is required. Running

ct/c? flows || std. deviation | avg. deviation
10 3.8+0.4% 3+0.4%
20 3.9£0.2% 3.1£0.1%
20/10 30 4.1+0.3% 3.31£0.2%
40 3.44+0.2% 2.840.2%
50 3+0.1% 2.54+0.2%
10 6.44+0.4% 540.4%
20 6+0.4% 4.9£0.3%
20/10,10/10 30 4.8+0.4% 3.9+0.3%
40 3.4£0.9% 3.240.3%
50 3.5+0.2% 2.8+0.2%

Table 1: Deviation of simulated transfer times.

the same scenarios using the optimization algorithm signifi-
cantly reduces the simulation time. In Figure 4 we can see
that the required time is one order of magnitude lower when
simulating network overlays with the same size but different
number of outgoing flows per node. The performance im-
provement is much higher, three orders of magnitude, when
we increase the network size and keep the number of flows
per node fixed, as shown in Figure 5.

Finally, in our accuracy study we compare the simulated
transfer times of our proposed solution with the ones ob-
tained with NS-2 for the same scenarios. In NS-2, we use
a simple star topology, similar to the one used in [13] [20].
Each node has a single access link which we configure with
corresponding upload and download capacities. All flows
pass from the source access link to the destination access
link through a central node with infinite bandwidth capacity.
Unfortunately, the size of our experiments is limited by the
low scalability of NS-2. We run scenarios of 100 nodes with
a number of flows per node that varies between 10 and 50.
The size of each flow is 4MB and the bandwidth capacities of
a node are either asymmetric, 20Mbps/10Mbps, or mixed,
20Mbps/10Mbps and 10Mbps/10Mbps. The results of our
experiments are shown in Table 1. We can see that our flow-
level max-min fair bandwidth allocation follows the trends
of the actual packet-level simulated bandwidth dynamics by
a nearly constant factor throughout the experiments. We
can see that the presence of the symmetric capacities affects
the transfer time deviation negatively. The negative impact
is more visible when fewer outgoing flows per node are used.
When the links are less congested, the slower convergence of
the flow rates of the nodes with smaller symmetric capacities
is more apparent.

6. CONCLUSION & FUTURE WORK

In this paper we presented what we found to be the three
most important practices in P2P software development: a

simulation-based development cycle, a clear concurrency model,

and a realistic network model when running in simulation
mode. We then presented the Mesmerizer framework which
we built to encompass all the aforementioned. We detailed
its design and implementation and how it can be used both
for controlled evaluation/testing/debugging and deployment
of production code. Regarding simulation-based develop-
ment, we stress how NAT box and bandwidth dynamics em-
ulation are of vital importance when testing a large number
of a P2P application instances. From the point of view of the
scalability, we demonstrate that our simulation framework is
able to emulate the bandwidth characteristics of thousands

of peers while preserving a good level of accuracy compared
to the NS2 packet-level simulator.

Our ongoing work includes the improvement of the NAT
and bandwidth emulation model’s accuracy and the release
of all our utilities as open source software.

7.

7]

8]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

REFERENCES

Ruby on rails. http://rubyonrails.org/.

django. http://www.djangoproject.com/.

Comet. http://cometdaily.com/.

Twisted Metal for Python.
http://http://twistedmatrix.com/trac/.

A. Al Hamra, A. Legout, and C. Barakat.
Understanding the properties of the bittorrent overlay.
Technical report, INRIA, 2007.

C. Arad, J. Dowling, and S. Haridi. Building and
evaluating p2p systems using the kompics component
framework. In Peer-to-Peer Computing, 2009. P2P
’09. IEEE Ninth International Conference on, pages
93 —94, sept. 2009.

F. Audet and C. Jennings. Network Address
Translation (NAT) Behavioral Requirements for
Unicast UDP. RFC 4787 (Best Current Practice), Jan.
2007.

I. Baumgart, B. Heep, and S. Krause. Oversim: A
flexible overlay network simulation framework. In GI
’07: Proceedings of 10th IEEE Global Internet
Symposium, pages 79-84, Anchorage, AL, USA, May
2007.

D. Bertsekas and R. Gallager. Data Networks.
Prentice Hall, second edition, 1992.

R. Blumofe and C. Leiserson. Scheduling
multithreaded computations by work stealing. In
Foundations of Computer Science, 1994 Proceedings.,
35th Annual Symposium on, pages 356 —368, Nov.
1994.

B. Cohen. Incentives Build Robustness in BitTorrent.
In Econ ’04: Proceedings of the Workshop on
Economics of Peer-to-Peer Systems, Berkley, CA,
USA, June 2003.

J. Crowcroft and P. Oechslin. Differentiated
end-to-end Internet services using a weighted
proportional fair sharing TCP. ACM SIGCOMM
Computer, 1998.

A. Dandoush and A. Jean-Marie. Flow-level modeling
of parallel download in distributed systems. In CTRQ
’10: Third International Conference on
Communication Theory, Reliability, and Quality of
Service, pages 92 —97, june 2010.

G. W. et al. Protopeer: A p2p toolkit bridging the gap
between simulation and live deployement. 2nd
International ICST Conference on Simulation Tools
and Techniques, May 2009.

D. R. Figueiredo, B. Liu, Y. Guo, J. F. Kurose, and
D. F. Towsley. On the efficiency of fluid simulation of
networks. Computer Networks, 50(12):1974-1994,
2006.

J. J. Garrett. Ajax: A new approach to web
applications.
http://adaptivepath.com/ideas/essays/archives/000385.php,
February 2005. [Online; Stand 18.03.2008].

[17]

[24]

[25]

T. J. Giuli and M. Baker. Narses: A scalable
flow-based network simulator. Computing Research
Repository, cs.PF/0211024, 2002.

Google guice. http://code.google.com/p/google-guice.
R. Hitchens. Java Nio. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, 2002.

T. Hossfeld, A. Binzenhofer, D. Schlosser, K. Eger,
J. Oberender, 1. Dedinski, and G. Kunzmann.
Towards efficient simulation of large scale p2p
networks. Technical Report 371, University of
Wurzburg, Institute of Computer Science, Am
Hubland, 97074 Wurzburg, Germany, October 2005.
S. Joseph. An extendible open source p2p simulator.
P2P Journal, 0:1-15, 2003.

The jython project. http://www.jython.org/.

G. Kesidis, A. Singh, D. Cheung, and W. Kwok.
Feasibility of fluid event-driven simulation for atm
networks. In GLOBECOM °96: Proceedings of the
Global Communications Conference, volume 3, pages
2013 —2017, November 1996.

S. Lin, A. Pan, R. Guo, and Z. Zhang. Simulating
large-scale p2p systems with the wids toolkit. In
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, 2005. 13th IEEE
International Symposium on, pages 415 — 424, sept.
2005.

F. Lo Piccolo, G. Bianchi, and S. Cassella. Efficient
simulation of bandwidth allocation dynamics in p2p
networks. In GLOBECOM ’06: Proceedings of the
49th Global Telecommunications Conference, pages
1-6, San Franscisco, California, November 2006.

A. M. Mark Jelasity and O. Babaoglu. A modular
paradigm for building self-organizing peer-to-peer
applications. In Engineering Self-Organising Systems,
pages 265282, 2003.

J. Mo, R. La, V. Anantharam, and J. Walrand.
Analysis and comparison of TCP Reno and Vegas.
IEEE INFOCOM ’99, 1999.

A. T. Nguyen and F. Eliassen. An efficient solution for
max-min fair rate allocation in p2p simulation. In
ICUMT ’09: Proceedings of the International
Conference on Ultra Modern Telecommunications
Workshops, pages 1 =5, St. Petersburg, Russia,
October 2009.

The ns-2 network simulator.
http://www.isi.edu/nsnam/ns/, October 2010.

M. Odersky, L. Spoon, and B. Venners. Programming
in Scala: A Comprehensive Step-by-step Guide.
Artima Incorporation, USA, 1st edition, 2008.

J. Pujol-Ahullo, P. Garcia-Lopez, M. Sanchez-Artigas,
and M. Arrufat-Arias. An extensible simulation tool
for overlay networks and services. In SAC' ’09:
Proceedings of the 24th ACM Symposium on Applied
Computing, pages 2072-2076, New York, NY, USA,
March 2009. ACM.

R. Roverso. NAT Cracker Box Emulator Software.
http://code.google.com/p/natcracker/.

R. Roverso, M. Al-Aggan, A. Naiem, A. Dahlstrom,
S. El-Ansary, M. El-Beltagy, and S. Haridi.
Myp2pworld: Highly reproducible application-level
emulation of p2p systems. In Decentralized Self

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

Management for Grid, P2P, User Communities
workshop, SASO 2008, 2008.

R. Roverso, S. El-Ansary, and S. Haridi. Natcracker:
Nat combinations matter. In Proceedings of the 2009
Proceedings of 18th International Conference on
Computer Communications and Networks, ICCCN
’09, pages 1-7, Washington, DC, USA, 2009. IEEE
Computer Society.

S. Shalunov. Low extra delay background transport
(ledbat) [online]. http://tools.ietf.org/html/draft-ietf-
ledbat-congestion-02.

P. Srisuresh, B. Ford, and D. Kegel. State of
Peer-to-Peer (P2P) Communication across Network
Address Translators (NATs). RFC 5128
(Informational), Mar. 2008.

N. S. Ting and R. Deters. 3ls - a peer-to-peer network
simulator. In P2P ’03: Proceedings of the 3rd
International Conference on Peer-to-Peer Computing,
page 212. IEEE Computer Society, August 2003.

G. Urvoy-Keller and P. Michiardi. Impact of inner
parameters and overlay structure on the performance
of bittorrent. In INFOCOM ’06: Proceedings of the
25th Conference on Computer Communications, 2006.
C. Wu, B. Li, and S. Zhao. Magellan: Charting
large-scale peer-to-peer live streaming topologies. In
ICDCS °07: Proceedings of the 27th International
Conference on Distributed Computing Systems,

page 62, Washington, DC, USA, 2007. IEEE
Computer Society.

W. Yang and N. Abu-Ghazaleh. Gps: a general
peer-to-peer simulator and its use for modeling
bittorrent. In MASCOTS ’05: Proceedings of 13th
IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and
Telecommunication Systems, pages 425-432, Atlanta,
Georgia, USA, September 2005.

S. Yoon and Y. B. Kim. A design of network
simulation environment using ssfnet. pages 73-78,
20009.

