
A Parallel Chain Mail Approach for Scalable
Spatial Data Interpolation

Albert Asratyan
Department of Computer Science

KTH Royal Institute of Technology
Stockholm, Sweden

asratyan@kth.se

Sina Sheikholeslami
Department of Computer Science
KTH Royal Institute of Technology

Stockholm, Sweden
sinash@kth.se

Vladimir Vlassov
Department of Computer Science
KTH Royal Institute of Technology

Stockholm, Sweden
vladv@kth.se

Abstract—Deteriorating air quality is a growing concern that
has been linked to many health-related issues. Its monitoring is a
good first step to understanding the problem. However, it is not
always possible to collect air quality data from every location.
Various data interpolation techniques are used to assist with
populating sparse maps with more context, but many of these
algorithms are computationally expensive. This work introduces
a three-step Chain Mail algorithm that uses kriging (without
any modifications to the base algorithm) and achieves up to
×100 execution time improvement with minimal accuracy loss
(relative RMSE of 3%) by running concurrent interpolation
executions. This approach can be described as a multiple-step
parallel interpolation algorithm that includes specific regional
border data manipulation for achieving greater accuracy. It
does so by interpolating geographically defined data chunks in
parallel and sharing the results with their neighboring nodes
to provide context and compensate for lack of knowledge of
the surrounding areas. Combined with a serverless cloud ar-
chitecture, this approach opens doors to interpolating large data
sets in a matter of minutes while remaining cost-efficient. The
effectiveness of the three-step Chain Mail approach depends on
the equal point distribution among all nodes and the resolution
of the parallel configuration. In general, it offers a good balance
between execution speed and accuracy.

Index Terms—Distributed Computing, Parallel Execution,
Data Interpolation, Kriging, Geostatistics, Air Quality

I. INTRODUCTION

In recent years, the Internet of Things (IoT) has gained
lots of traction, and there are no signs of its growth slowing
down. One of the main IoT strengths is ubiquitous data
gathering possibilities. Some of the standard civic applications
of IoT data collection could include traffic monitoring or
water management [1]. A particularly interesting health-related
area to look at is air quality, considering the ever-growing
global industrialization and production volumes affecting the
environment around us. Even though recently there has been
made some progress with reducing exposure to unhealthy
air in more developed areas, global pollution is still rising,
sometimes reaching 99% of the population living in areas
with dangerous levels, primarily in the Southern, Eastern, and
South-Eastern regions of Asia [2]. The first step in tackling
this problem is understanding its scale and raising awareness
about the health risks associated with unhealthy air.

One of the most important and used variables that char-
acterizes air quality is particulate matter (PM) that consists
of liquid droplets and solid particles [3]. The smaller the
particle, the higher the health risk it introduces. Some of
them could get into the bloodstream, and, subsequently, into
the lungs, increasing probabilities of nonfatal heart attacks,
aggravated asthma, or decreased lung functionality [4]. From
the environmental perspective, high PM values have been
linked to making streams and lakes more acidic, changing
nutrient balance in coastal waters and large river basins,
depleting soil nutrients, and damaging crops [4].

Collected air quality data can and will be sparse in some
geographic regions. This problem can be addressed by interpo-
lating the existing values to the neighboring unknown areas.
However, being a computationally expensive task, execution
times of spatial interpolation are important to consider. For
systems handling large data sets, parallelization should be
considered as a means of improving performance. Otherwise,
computations may take hours because execution time will
grow exponentially with linear growth in the number of points.

This research aims to improve real-world spatial inter-
polation performance by introducing a parallel approach to
interpolation. The algorithms in use will be the same as in
the conventional single process interpolation cases. However,
parallel execution has its own issues. For example, individual
threads will not know the context of their neighbors, which
will result in regional edges having colliding values. Consider
Figure 1. The four regions have been interpolated in parallel,
but since each thread does not know about the existence of
its neighbors, there can be a great value difference at the
neighboring edge coordinates. It would be desirable to have a
simple solution to this edge value collision problem without
any modifications to the original interpolation algorithms by
focusing on the distributed configuration instead.

Contributions. We present the design and development
of a Chain Mail parallel interpolation algorithm that greatly
improves execution speeds of standard data interpolation al-
gorithms (specifically, kriging) without any modifications to
the data interpolation itself and allows to use multiple threads
for a more efficient resource utilization. This work provides a
perspective on what direction the development of distributed
data interpolation algorithms could take.978-1-6654-3902-2/21/$31.00 © 2021 IEEE

Fig. 1. Parallel interpolation edge collision example

II. SPATIAL INTERPOLATION AND KRIGING

Spatial interpolation is the process of using known points to
estimate values at unknown locations. Extensive data collec-
tion can be an expensive task, if at all possible. Because of this,
it makes sense to collect data only from the most significant
regions. Then it is up to the interpolation algorithms to fill
the gaps. There are multiple existing algorithms and some of
the most popular are proximity interpolation, Inverse Distance
Weighted (IDW) interpolation, and Kriging interpolation [5].

In geostatistics, Kriging is a well-known algorithm for
spatial interpolation, first published in 1951 and named after
its inventor, Danie G. Krige. The technique is also known
as Gaussian process regression. As the name suggests, the
method is modeled by a Gaussian process, which is governed
by prior covariances. Given a set of known points s and values
at their locations Z(s), the estimation at an unknown location
Z∗(s0) is a weighted mean that would be equal to:

Z∗(s0) =

N∑
i=1

λiZ(si) (1)

where N is the size of s, and λ is the array of weights.
Kriging is different from other interpolation methods be-

cause it uses spatial correlation between known points to
interpolate the values in the spatial field. Kriging is also
capable of generating an estimate of uncertainties around
every interpolated value [6]. It is important to highlight
that Kriging will be less effective if there are no spatial
correlations between points [6]. In this work, we focus on
Universal Kriging. The difference between Universal Kriging
and Ordinary Kriging is that the universal one relaxes the
stationarity requirement by allowing the mean of the values
to differ in a deterministic way for different locations. This
type is more suitable for environmental applications [6]. It is
also worth noting that kriging time complexity is rather high,
being O(N4) for N points of input data [7].

III. RELATED WORK

Not much publicly available relevant work has been done
in the domain of parallelization aspect of data interpolation.
However, there has been put a lot of effort into improving
interpolation techniques by focusing on different approaches,

mainly algorithm optimizations. A study performed by Arm-
strong and Marciano investigated parallel data interpolation on
mainframe-grade computers in late 90s [8]. They have used the
IDW algorithm on multiple processors, and only the execution
time was measured. The study has shown that there was almost
a linear decrease in execution time with a linear increase in the
number of processors. However, the performance gains would
slow down with more added hardware. The study has also not
addressed the accuracy for any of the tests.

A study on the efficiency of kriging for real-time spatio-
temporal interpolation was done by Srinivasan et al. [7],
who have attempted to reduce the kriging time complexity to
O(N3). The study has used atmospheric data, and the authors
state that substantial performance increases were achieved,
with some test execution times improving from 2 days to
under 7 minutes. The kriging algorithm has been changed by
introducing iterative solvers like conjugate gradient, and then
GPUs were used for further performance improvement.

Henneböhl et al. [9] have compared CPU and GPU per-
formance differences for the IDW algorithm. The study has
found that, for small known data to prediction location size
ratios, GPU implementation outperforms the CPU one by a
factor of 2. However, with the data/location size ratios going
up, GPU execution times start growing exponentially, falling
behind CPU times by a lot. The study concludes by suggesting
that the ideal solution should be a hybrid CPU/GPU system
that is able to combine the strengths of both of the approaches.

Some of these works focus on algorithm optimizations,
whereas other resort to hardware solutions (GPU). But as
Henneböhl et al. have mentioned, the answer lies somewhere
in the middle where all of these techniques are combined.
This work will put focus on improving execution times by
the means of parallelization with consideration of interpolated
edges together with global accuracy.

IV. METHOD

We consider two approaches to running the Kriging algo-
rithm in parallel, namely (1) the naive approach of splitting
the data to geographical blocks of equal size and executing
the interpolations in parallel; (2) a Chain Mail approach that
improves the accuracy of the former method.

A. Naive Parallel Approach

Fig. 2. Naive parallel kriging execution system diagram

A system diagram for a naive parallel kriging interpolation
is show in Figure 2. To compare the performance of this
approach with single process Kriging interpolation, consider
the following example. A set of 1000 points is split to a
2×2 grid of 4 equal-sized regions. Assuming equal point
distribution, each region will have 250 points. Thus, each
region will take 2504 ≈ 4×109 units of time to compute.

Compared to the single process kriging interpolation (with
a time complexity of O(N4) for N points of input data), this
approach yields the following factor of theoretical execution
time performance improvement:

10004/(4× 109) = (1012/4× 109) = 250

However, as we will see in the Results section, the naive
parallel approach is 250 times faster for the data set size
of 1000 points only in theory. The real-world execution
performance gap is smaller but still indicative of the advantage
of the parallel approach. However, the biggest shortcoming is
the fact that individual regions do not have any knowledge
about their neighbors. Each parallel worker process would
generate its own interpolated surface for its assigned region.
Each of those workers would rely only on the data assigned
to its grid region, which means that the values around the
regional edges would be drastically different, when compared
to what a single interpolation algorithm would produce.

B. Chain Mail Approach

Consider an example surface that is the result of the 2×2
naive parallel interpolation (Figure 3) from a synthetically
generated surface with 10000 points in which 200 points of
them were given as input for interpolation, and focus on the
top two quadrants with their shared border that lies on the
line between points (0, 0) and (0, 2). In basic terms, the main
issue is the lack of smooth transition from one region to the
other. In data interpolation context, the issue is that the corner
areas do not have any reference data to consider that is located
outside of the initially assigned grid cell coordinates, since the
area is finite and each worker can only cover so much area
before the benefits of parallel execution disappear. As a result,
each of the workers interpolates only with regards to the data
assigned to it. This issue also breaks the isotropy requirement
for Kriging. Imagine the edge values for each of the regions are
known; then the problem would be simplified to running the
interpolation algorithm in parallel on each region. Therefore,
the main task can be changed to acquiring the edge values.

Our solution is a Chain Mail approach to improve the accu-
racy of brute force parallel interpolation while also retaining
the benefits of faster execution times. The name originates
from chain mail – a type of medieval armor made from small
metal rings linked together in a pattern that forms a mesh.

The core idea adopted from chain mail armor is the reliance
of each ring only on its immediate neighbors to support
it. Similarly, each grid cell would be able to know about
four of its neighbors and their data. In turn, each of those
neighbors would be able to pick up context from four of their
neighbors, and so on. As a result, each cell would be able

Fig. 3. A synthetic surface generated by the naive parallel approach

to consider data from its immediate neighbors and provide
a ”smoother” estimation, resembling the results of a single
process interpolation more. Repeating the process multiple
times allows getting the edge data context for each of the
workers that was unknown before.

Quick Overview: consider Figure 4. Let the combined
gray area designate the initial area for the single process
interpolation approach. Same as before, it can be split into
multiple (for this example – four) regions and interpolated
in parallel. However, only a small subset of the results form
this step is important. Specifically, it is the data from the
overlapping edges that is required for further processing.

Fig. 4. Chain mail interpolation regions

Once the edge data is collected, the second step begins
where new regions are formed, represented by the red quad-
rants in Figure 4. Each red region is essentially a spatial
translation of a corresponding gray region by half of its width
and height in the x and y directions, respectively. The edge
data collected from the first step (gray lines in the figure) can
be then used for the second round of interpolation to give more
context about what those borders should look like.

Step-by-Step Description: consider Figure 5a for a 2×2
interpolation, in which each small black dot represents a data
point from the raw data set, and each quadrant represents an
area that is going to be interpolated by each parallel worker.
After the first round of interpolations, each parallel worker
will generate a surface for its respective region. Only edge
data points should be collected to provide about neighboring
regions. Moreover, not all of the edges should be added, but
only a small subset at a specific step value. This ensures that

the subsequent interpolation steps’ performance will not suffer
from greater data set sizes. The newly generated edges are
displayed as red dots in Figure 5a.

Fig. 5. Chain Mail interpolation: (a) from initial state (black) to generating
edges (red); (b) resolving overlaps and forming new regions.

It can be noticed that some regions will have overlapping
interpolated edges with potentially different values. All of
these conflicting points should be resolved in some way. There
are multiple approaches to merging the overlapping edge data.
The simplest solution would be to calculate an average of the
values of the two points with the same set of coordinates.
Other approaches could include using weighted or inversely
weighted averages, where the weight is calculated based on
the number of points in each of the neighboring regions.

Once the conflicting data points have been merged, they can
be added to the initial data set and treated as an equal part of
the data. In the meantime, new geographical regions should be
generated in preparation for the second round of interpolation.
New regional boundaries are formed by translating the old
boundaries by half of the width/height value of the old
boundary in both x/y directions, thus resembling a chain mail.
Figure 5b demonstrates the new boundaries together with the
merged edge data displayed as big black dots. After the second
round of interpolation, there are two alternatives:

1) Retrieve the edge data and continue with the third round
by repeating the merging and appending processes. This
results in a three-step Chain Mail interpolation.

2) Retrieve the generated surfaces as the final result. This
results in a two-step Chain Mail interpolation. Only half
of the required edge data will be known, so this produces
less accurate results, albeit it is faster.

Assuming that the first option is chosen after the second
round, some of the regional borders will have overlapping edge
data points again. However, they will overlap not just with the
other new edge points but also with the data points appended
to the initial data set at the end of the first interpolation step.
These points will have to be merged in the same fashion.

After resolving the conflicting points once again, they can
be appended to the initial data set. The next step is to create
new geographical boundaries. This time, the boundaries are
the same as in the first step, but now each of the regions
has some context about the data on its edges and is able to

interpolate the regions with some consideration of neighboring
values. The surfaces generated from the third round of parallel
interpolations can be considered to be the final result. The
following section will present a system diagram for the three-
step chain mail interpolation algorithm.

Time Complexity Estimation: compared to the two-step
architecture, the three-step just repeats the first step, thus
increasing execution time by one third. Thus, for the example
of 1000 points, the total time spent would be approximately
12× 109 units of time (4× 109 for each of the interpolation
steps). With this number in mind, the theoretical performance
is still expected to improve by a factor of ≈ 80.

Theoretical Correctness: the major advantage of the three-
step interpolation (compared to the two-step one) is that it
calculates all of the border data at the end of the second step.
When it is fed into the third iteration, all of the edge values
are known, so the final interpolation step can be completed
without the edge collision issue present in both the naive
parallel approach and the two-step Chain Mail approach.

V. IMPLEMENTATION

Here we present implementation of the three-step Chain
Mail interpolation that follows the same architecture as the
two-step one plus an extra interpolation step. Three-step chain
mail interpolation system diagram is shown in Figure 6.

A. Splitting Data

The bottom left and top right points are the key to splitting
the data into regions of the same size. Grid dimensions can
be defined by those two points, and the algorithm could split
it into equally sized grid cells. The number of grid cells
is restricted by (and can not exceed) the maximum amount
of parallel processes available for the second step of the
algorithm, as it requires the most computing power.Splitting
the data is handled by the master node. First, the raw data
should be sorted by the x coordinate value and then split into
vertical strips along the x axis. Then, for every vertical strip,
each data point should be sorted by the y coordinate value
and then split into the same amount of horizontal strips along
the y axis. As a result, the processed strips will not have to
be squared in absolute shape with regards to the initial area
boundaries but rather split the initial area into an N×N grid
where N is the provided step value for a grid cell of a constant
size dynamically calculated from the area boundaries (acquired
from the bottom left and top right points).

Time Complexity: it is largely defined by sorting the
strips. Python in-built sort() function uses Timsort, a sorting
algorithm, which was developed specifically for Python with
the time complexity of O(N × logN) [10]. With the total
of two sorts required, the total time spent would still follow
O(N × logN), which is significantly lower than O(N4).

B. Retrieving Edges

Once the intermediate interpolation steps are complete, edge
data points need to be retrieved. However, the amount of
collected edge points is important to consider for performance

Fig. 6. Three-step chain mail interpolation system diagram

reasons. Every collected edge is an extra point added to the
data set. This is not a problem for grids with small resolutions.
However, for loosely populated grids with high resolution, this
will introduce a massive performance slowdown because the
number of collected edges may vastly exceed the number of
initial data points. This will result in a considerable perfor-
mance drop. A simple solution to this problem is to take the
four corner points and a certain percentage of the remaining
edge points. This can be controlled by using a step variable.
The following Python pseudo-code proposes an example of
how this can be done (Listing 1). For example, with a step
value of 2, the function will collect 50% of the edge points,
with a step value of 4 — 25% of the points, etc. Only a small
number of edge points should be collected, because it must
be enough to represent a general behavior of the edge values,
but also keep the extra load on the interpolation process low.

C. Merging Edges

When regions are interpolated and edge data points are
collected, the next step becomes to resolve the points that have
the same coordinates but different values. A prime example
of such a situation would be two neighboring regions inter-
polating a common edge, and ending up with two completely
different values for the same coordinate, purely due to them

1 def get_edges(data, step=2):
2 # data is a 2D arr of interpolated values
3 edge_points = []
4 for row in data:
5 # if row is first or last, take all
6 # data points at certain step value
7 if row.index == 0 or
8 row.index == (data.size - 1):
9 for point in row:

10 if point.index % step == 0:
11 edge_points.append(point)
12 # or if the row index is at
13 # the step value:
14 elif row.index % step == 0:
15 # take the first and last points
16 edge_points.append(row.first_point)
17 edge_points.append(row.last_point)
18 return edge_points

Listing 1: Pseudocode for edge collection behavior

having different inputs. There are two ways of approaching
this problem. The first is to simply average the value of the
two points with the same coordinates. The second approach is
to use a weighted (or inversely weighted) average, depending
on some other metric. This work assumes the first approach.

VI. EVALUATION AND RESULTS

In this section we report and discuss the results of the
experimental evaluation of our proposed approach. All lo-
cal experiments have been performed using the following
hardware: 8-core (16 threads) Intel Xeon CPU E5-2667 V4
3.20 GHz, 64 GB of DDR4 RAM. The tests were run using
Apache Ray framework on Windows and Windows Subsystem
for Linux (WSL). Two data sets were used: a synthetic
one generated specifically for testing edge data consistency
(interpolation results visualized in Figure 7a) and a proprietary
air quality one (interpolation results visualized in Figure 8a).

A. EXP1: Three-Step Kriging (Synthetic)

Fig. 7. Comparison of single process (a), naive parallel (b), and three-step
Chain Mail (c) approaches

Figure 7 combines the results of all three approaches:
single process interpolation (a), naive parallel interpolation
(b), and three-step Chain Mail interpolation (c). Visually, (b)
has the issue of colliding edge values, which is especially
noticeable around the (0, 0) coordinate where there is a lack of
”smoothness” when moving over from one region to another.
(c) does not suffer from this problem, and the regional border
transitions resemble the single parallel approach more.

For accuracy evaluation, we use Relative Root Mean
Squared Error (RRMSE) results for naive parallel vs Chain
Mail approaches for different metrics. The accuracy baseline
for RRMSE is the surface generated by the single process
interpolation. Thus, the approach with smaller RRMSE will
be the one closer to the single process interpolation in terms
of accuracy. The tested variables are: (i) Grid resolution, which
is the desired resolution of the interpolated surface; (ii) Edge
step size, which represents the number of edges used for
the second and third interpolation steps of the Chain Mail
approach; (iii) Data set size, defined as the total number of
points given as input to the interpolation algorithms; and (iv)
Grid configuration size, as the total number of parallel workers
in a grid (e.g., 2×2 or 3×3).

Grid Resolution. Table I presents RRMSE values for naive
parallel and three-step Chain Mail approaches relative to the
single process interpolation at different grid resolutions (bold
font highlights the best result). The show that the RRMSE
stays relatively constant with the resolution increase for both
of the parallel approaches, but the error of the three-step Chain
Mail approach is smaller by 0.7% (or 20% in relative terms)
than that of the naive parallel approach.

TABLE I
RRMSE FOR PARALLEL APPROACHES RELATIVE TO SINGLE PROCESS

INTERPOLATION (100 POINTS, 20% OF EDGES TAKEN)

Method Grid resolution (at 20% edge values)

30×30 50×50 100×100 150×150

naive parallel 2×2 3.34% 3.25% 3.19% 3.17%
Chain Mail 2×2 2.78% 2.58% 2.46% 2.49%

Edge Step Size. Table II compares RRMSE values between
the two parallel approaches (for 2×2 grids) in regards to the
edge step size. At 100×100 initial grid resolution, each of the
4 parallel workers would interpolate an area with the resolution
of 50×50. The edge steps of 2, 5, 10, 15, 25, and 50 represent
50%, 20%, 10%, 7%, 4% and 2% of edge values, respectively.

TABLE II
RRMSE FOR DIFFERENT EDGE STEP SIZES

Method Edge step (at 100×100 grid res.)

50 25 15 10 5 2

naive parallel 3.19%
Chain Mail 2.62% 2.57% 2.64% 2.46% 2.56% 2.44%

The smaller the step, the more edges will be taken in – and
vice versa. However, it can be noticed that even by introducing
the 2% of the edge data values (which, in this case, is just the
four vertices of each of the quadrants), the error is lowered by

0.58% (or approximately 30% in relative terms). The accuracy
differences between various numbers of added edge points is
rather small, so there is little reason to take more than 20% of
the edge points (or step value of 5 for this specific example).

Data Set Size. Table III presents RRMSE values for differ-
ent data set sizes at 100×100 grid resolution and 20% of edge
data points added. We can see that the greater the sample size,
the smaller the accuracy improvement over the naive parallel
approach. This can be attributed to the fact that the more points
that are present, the higher the chance of those points lying
close to the edges. The accuracy improvement of the Chain
Mail approach over the naive parallel approach slowly drops
from 0.73% to 0.26% (or 23% to 14% in relative terms) after
tripling the number of initial data points.

TABLE III
RRMSE FOR DIFFERENT DATA SET SIZES

Method # of raw points

100 200 300

naive parallel 2×2 3.19% 2.11% 2.02%
Chain Mail 2×2 2.46% 1.89% 1.74%

Parallel Grid Configuration. Table IV presents RRMSE
values for different worker configurations. We can see that the
higher the amount of grid cells, the greater the error grows.
With a constant number of raw data points, each grid cell will
have fewer and fewer points to interpolate from, reducing the
amount of context that each cell can gather from the area. The
Chain Mail approach starts off with small error improvements
(for example, 0.6% difference for 2×2 grid), but the difference
becomes much greater (almost by a factor of 2) with the
increase in the grid configuration size.

TABLE IV
RRMSE FOR DIFFERENT PARALLEL GRID CONFIGURATIONS

Method Parallel configuration (at 100x100 grid res.)

2×2 3×3 4×4 5×5

naive parallel 3.19% 3.46% 5.99% 8.08%*
Chain Mail 2.46% 3.27% 3.42% 4.76%

The number for the naive parallel approach at 5×5 grid
configuration includes only the RRMSE values of the grid
cells that have managed to interpolate data successfully. Some
of the grid cells did not have enough raw data for a successful
interpolation, highlighting another disadvantage of the naive
parallel approach. Therefore, technically, the RRMSE of 5×5
for the naive parallel approach can not be calculated since
some of the data is missing completely. The Chain Mail
approach is able to fix these empty regions, as long as the
neighboring regions have sufficient data.

B. EXP2: Air Quality Data Interpolation

The proprietary industrial air quality data set consists of
PM2.5, PM10, and CO. The figures presented in this sec-
tion are based only on the PM2.5 values. The interpolated
area is the area of Greater London, defined by the area

between the two coordinate points (−0.77083, 51.22977) and
(0.66632, 51.77933), where the first value shows longitude,
and the second – latitude. Figure 8 shows the results of
different interpolations of the data set. The range of values
is between 2.4µg/m3 and 10.1µg/m3. Higher (or brighter)
values represent worse air quality and vice versa.

Fig. 8. Comparison of single process kriging (a), naive parallel approach (b),
and three-step Chain Mail approach (c) for air quality data in Greater London

Note how for the naive parallel approach (b) the bottom
right quadrant did not have enough data to generate a meaning-
ful interpolated surface. As a result, the surface looks uniform
with rare points sticking out. On the other side, the Chain Mail
approach (c) had enough context to work with because of the
additional data from neighbors that was generated after the
first and second interpolation steps. Combined with the initial
data points, that intermediary data allowed to reconstruct a
rough representation of the quadrant, where the result would
resemble the surface from the single process interpolation (a).

C. EXP3: Execution Time Evaluation

Here, we evaluate the execution times of the three-step
Chain Mail approach compared to the naive parallel and the
single process ones. Two variables are tested: edge step and
data set size. The results of the first test determine the optimal
edge step value that should be used for the second test.

Edge Step Size. The test is performed on the synthetic data
set at 100×100 interpolation resolution in a 2×2 three-step
Chain Mail configuration. This means that each worker will
interpolate a grid cell with a resolution of 50×50, and the edge
value percentages are the same as in the RRMSE evaluation in
for different step sizes of EXP1. The results (Table V) show
that using 50% of edge data points reduces the performance
of the algorithm drastically, no matter the data set size, and
using 20% of edge data has a small performance decrease.
As for the remaining values, there is little to no performance
difference for using between 2% and 10% of edge data points.

Combined with the accuracy evaluation for different edge
steps from the Table II (that concluded that the optimal
RRMSE is between 10% and 20%), it can be concluded that
10% is the most optimal amount of edge data points to include
in the intermediate data sets. With this knowledge in mind, we
evaluate Chain Mail performance versus other approaches.

TABLE V
EXECUTION TIME (SECONDS) FOR DIFFERENT DATA SET SIZES AT

DIFFERENT EDGE STEP VALUES

Data set size % of edge data points added

2% 4% 5% 7% 10% 20% 50%

100 1.401 1.415 1.450 1.474 1.502 2.577 17.911
200 1.515 1.582 1.610 1.633 1.651 2.860 20.211
300 1.469 1.601 1.644 1.670 1.797 3.415 22.167
400 1.686 1.724 1.771 1.966 2.105 4.042 23.029
500 1.835 2.030 2.075 2.162 2.351 4.432 27.695

Data Set Size. Here, we compare execution times for
different data set sizes for the single process interpolation,
naive parallel, and both Chain Mail two-step and three-
step approaches in the 2×2 and 3×3 configurations. Single
process interpolation has been tested on both native Windows
and WSL configurations since all of the parallel approaches
use WSL. However, WSL had shown to have virtualization
overhead (5× slower than native Windows), so only the single
process Windows results will be shown in the figures. The
single process WSL results are still present in the tables.

The test is performed on the synthetic data set at 100×100
interpolation. For the Chain Mail approaches, 10% of the edge
data points have been taken in each step (step value of 10
for the 2×2 configuration and 7 for the 3×3 configuration).
Results are demonstrated in Table VI.

TABLE VI
EXECUTION TIME (SEC) OF INTERPOLATION APPROACHES

Method Data set size (# of points)

200 400 600 800 1000

single (WSL) 26.36 154.569 419.103 776.013 1189.365
single (Windows) 3.554 26.304 82.378 151.795 239.492

naive 2×2 1.334 1.205 1.365 1.625 2.213
chain 2×2 (2 step) 1.223 1.409 1.898 2.396 3.420
chain 2×2 (3 step) 1.771 2.053 2.824 3.84 5.837

naive 3×3 1.259 1.019 1.041 1.076 1.160
chain 3×3 (2 step) 1.557 1.533 1.733 1.727 1.849
chain 3×3 (3 step) 1.588 1.651 1.748 2.000 2.244

Figure 9 shows the data from this table (with WSL single
process interpolation excluded). As can be seen from the fig-
ure, all parallel algorithms vastly outperform the single process
interpolation. Supported by the theoretical time complexity
example, real-world performance indicates that the Chain Mail
approach is slower than the naive parallel one of the same
grid size. It can be noted that performance for Chain Mail of
a higher degree (e.g., 3×3) is on par with the naive parallel
approach of a lower degree (2×2).

D. EXP4: Cloud (AWS) Performance

Now we discuss the performance of the system in the cloud.
The evaluation is conducted on the synthetic data set at 50×50
interpolation resolution with 10% of edge values. Six different
grid configurations have been tested: 2×2 (4 workers), 5×5
(25 workers), 10×10 (100 workers), 15×15 (225 workers),
20×20 (400 workers), and 25×25 (625 workers). 300 points

Fig. 9. Comparison of execution times (in seconds) for different methods

per worker were chosen as a benchmark baseline. Table VII
shows the execution times for different data set sizes.

TABLE VII
CLOUD SCALABILITY TEST

Serverless
Function

(MB RAM)

Execution time for a given data set size (seconds)

1200 7500 30000 67500 120000 187500

512 (cold) 59.631 59.351 57.328 59.707 63.295 70.199
512 40.217 46.172 46.313 49.483 54.009 63.509

1792 (cold) 16.385 17.773 21.615 22.982 28.018 37.899
1792 11.603 14.011 17.507 18.696 20.007 26.471

There are two key findings based on this experiment. First,
there is a performance gap between local execution versus
cloud. There are a couple of factors potentially affecting cloud
performance. The problem of cold start may be present where
a serverless function is not active until its first execution [11].

Second, with the initial cloud overhead out of the way,
the data shows little change with the increase of amount of
parallel worker functions. For example, 25×25 grid spawns
625 workers compared to 4 of the 2×2 grid, but it took only
22% longer to execute for a much greater data set size (187500
vs 1200 points). The increased execution time can be attributed
to the data processing steps of the master node, as well as
sending HTTP requests to control cloud infrastructure.

To sum up, if the system is able to balance the data set size
with the right amount of workers, then the execution times
can stay similar to that of the smaller data set sizes.

E. Performance Summary

Table VIII summarizes the comparison of the three ap-
proaches. Compared to the single process and naive parallel
approaches, Chain Mail presents performance/accuracy trade-
off. Single process interpolation, which is the baseline for
all of the comparisons, offers the best accuracy of the bunch
because it has the most context due to having all of the data
set available to it. However, it runs extremely slowly when
compared to the parallel approaches. The naive parallel ap-
proach is the fastest of the three because it has no extra steps,
like the Chain Mail one, and focuses purely on parallelization.
As a result, the accuracy suffers a bit and the edge collision
issue is introduced. The Chain Mail approach is much faster

than the single process interpolation and it is in line with the
performance of the naive parallel approach, albeit slower by a
factor of approximately 2.5. Regarding accuracy, its RRMSE
is approximately 25% lower than that of the naive parallel
approach, and it also eliminates the issue of colliding edges
around regional borders when looking at the visualized results.

TABLE VIII
HIGH-LEVEL INTERPOLATION APPROACH COMPARISON

Method Speed Accuracy

single process interpolation Slowest (base) Most accurate (base)

naive parallel approach
Fastest

(×108 for 2×2,
×206 for 3×3)

Less accurate, has
edge collisions

(3.3% off)

Chain Mail approach
Faster

(×41 for 2×2,
×106 for 3×3)

More accurate, no
edge collisions

(2.4% off)

Parallel Approach Advantages. The most apparent advan-
tage of the Chain Mail approach is that it offers a good middle
ground between speed and accuracy, including a more pleasant
visualization result compared to the naive parallel approach.

Also, as can be seen in Figure 8, if there is not enough
data in a grid cell, the naive parallel approach may fail to
generate a surface. The Chain Mail algorithm is able to provide
some more data to sparsely populated grid cells during the
intermediate interpolation steps, generating a surface.

Parallel Approach Downsides. There are two main points
to be considered when using the Chain Mail algorithm. First,
if the edges of the neighboring regions have enough data when
partitioning the data set into a grid, the naive parallel approach
may be accurate enough and the edge collision issue may not
be present. Second, the Chain Mail algorithm can only get
enough neighboring data from one grid cell in each direction.
This means that if the initial surface is split into too many cells,
at some point the accuracy drops considerably. On the other
side, not splitting the initial area into enough cells may leave
free execution time improvements on the table. This entails
careful consideration of the granularity of the grid.

VII. CONCLUSION AND FUTURE WORK

We present and analyze a system capable of distributed data
interpolation that improves execution time and also solves (or
reduces to an acceptable level) the issue of colliding edges.
The implemented three-step Chain Mail system has visually
demonstrated to remove the edge value collisions present in
images for the naive parallel approach, as well as to lower
RRMSE values at the same time. Compared to the naive
parallel implementation, the Chain Mail approach is slower
but within an order of magnitude. However, if compared to the
standard single process interpolation, the chain mail approach
vastly outperforms it, allowing to interpolate data sets of sizes
that would not be feasible with the single process interpolation.
All in all, the presented three-step Chain Mail algorithm tries
to offer a good middle ground between speed and accuracy,
heavily focusing on speed improvement. As the next step, we
would like to investigate the performance of the Chain Mail
approach on other interpolation algorithms, such as IDW.

REFERENCES

[1] A. Asratyan and M. Joshi, “Iot framework for water monitoring using
the m-bus interface,” p. 97. [Online]. Available: https://www.diva-
portal.org/smash/get/diva2:1334333/FULLTEXT01.pdf

[2] G. Shaddick, M. L. Thomas, P. Mudu, G. Ruggeri, and S. Gumy, “Half
the world’s population are exposed to increasing air pollution,” vol. 3,
no. 1, pp. 1–5, number: 1 Publisher: Nature Publishing Group. [Online].
Available: https://www.nature.com/articles/s41612-020-0124-2

[3] US EPA, “Particulate matter (pm) basics,” 2018.
[4] US EPA, “Health and environmental effects of particulate matter (pm),”

2018.
[5] D. W. Wong, L. Yuan, and S. A. Perlin, “Comparison of spatial

interpolation methods for the estimation of air quality data,” vol. 14,
no. 5, pp. 404–415, number: 5 Publisher: Nature Publishing Group.
[Online]. Available: https://www.nature.com/articles/7500338

[6] Kriging interpolation explanation | columbia public health. [Online].
Available: https://www.publichealth.columbia.edu/research/population-
health-methods/kriging-interpolation

[7] B. V. Srinivasan, R. Duraiswami, and R. Murtugudde, “Efficient kriging
for real-time spatio-temporal interpolation,” in Proceedings of the 20th
Conference on Probability and Statistics in the Atmospheric Sciences.
American Meteorological Society Atlanta GA, 2010, pp. 228–235.

[8] M. P. Armstrong and R. Marciano, “Parallel spatial interpolation,” in
AutoCarto Conference, 1993, pp. 414–414.

[9] K. Henneböhl, M. Appel, and E. Pebesma, “Spatial interpolation in
massively parallel computing environments,” in Proc. of the 14th AGILE
International Conference on Geographic Information Science (AGILE
2011). Citeseer, 2011.

[10] R. Bauermeister. Understanding timsort. [Online]. Avail-
able: https://medium.com/@rylanbauermeister/understanding-timsort-
191c758a42f3

[11] M. Shilkov. Cold starts in AWS lambda. [Online]. Available:
https://mikhail.io/serverless/coldstarts/aws/

