
Data Mining and Knowledge Discovery manuscript No.
(will be inserted by the editor)

An adaptive algorithm for anomaly and novelty detection in
evolving data streams

Mohamed-Rafik Bouguelia · Slawomir Nowaczyk ·
Amir H. Payberah

Received: date / Accepted: date

Abstract In the era of big data, considerable research focus is being put on designing ef-
ficient algorithms capable of learning and extracting high-level knowledge from ubiqui-
tous data streams in an online fashion. While, most existing algorithms assume that data
samples are drown from a stationary distribution, several complex environments deal with
data streams that are subject to change over time. In this paper, we propose an adaptive
method for incremental unsupervised learning from evolving data streams experiencing
various types of change. The proposed method maintains a continuously updated network
(graph) of neurons by extending the Growing Neural Gas algorithm with three complemen-
tary mechanisms, allowing it to closely track both gradual and sudden changes in the data
distribution. First, an adaptation mechanism handles local changes where the distribution
is only non-stationary in some regions of the feature space. Second, an adaptive forgetting
mechanism identifies and removes neurons that become irrelevant due to the evolving na-
ture of the stream. Finally, a probabilistic evolution mechanism creates new neurons when
there is a need to represent data in new regions of the feature space. The proposed method
is demonstrated for anomaly and novelty detection in non-stationary environments. Results
show that the method handles different data distributions and efficiently reacts to various
types of change.

Keywords Data stream · Growing neural gas · Change detection · Non-stationary
environments · Anomaly and novelty detection

1 Introduction

Usual machine learning and data mining methods learn a model by performing several
passes over a static dataset. Such methods are not convenient when the data is massive
and continuously arriving as a stream. With the big data phenomenon, designing efficient
algorithms for incremental learning from data streams is attracting more and more research

Mohamed-Rafik Bouguelia, Slawomir Nowaczyk
Center for Applied Intelligent Systems Research, Halmstad University, Halmstad 30118, Sweden
E-mail: {mohbou, slawomir.nowaczyk}@hh.se

Amir H. Payberah
Swedish Institute of Computer Science, Stockholm, Sweden. E-mail: amir@sics.se

2 Mohamed-Rafik Bouguelia et al.

attention. Several domains require an online processing where each data is visited only once
and processed as soon as it is available, e.g., due to real-time or limited memory constraints.
Applications in dynamic environments experience the so-called concept drift [18] where
the target concepts or the data characteristics change over time. Such change in streaming
data can happen at different speed, being sudden [34, 16] or progressive [8, 22]. Change in
streaming data also includes the so called concept evolution [32] where new concepts (e.g.,
classes or clusters) can emerge and disappear at any point in time. Most existing methods,
such as those reviewed in [18, 48], address the problem of concept drift and evolution with a
focus on supervised learning tasks. In this paper, we focus on online unsupervised learning
from an evolving data stream. Specifically, we address the question of how to incrementally
adapt to any change in a non-stationary distribution while still perfectly representing the
stationary distributions.

The problem is both interesting and important as evolving data streams are present in
a large number of dynamic processes [48]. For example, on-board vehicle signals (e.g.,
air pressure or engine temperature), often used to detect anomalies and deviations [6, 11,
10], are subject to changes due to external factors such as seasons. Other examples include
decision support systems in the healthcare domain [33] where advances in medicine lead
to gradual changes in diagnoses and treatments, modeling of the human behavior which
naturally change over time [45, 37], or the tracking of moving objects on a video [39, 35],
to mention but a few.

A naive approach to address the problem of evolving data streams would be to pe-
riodically retrain the machine learning model of interest. However, such retraining being
triggered without detecting whether it is currently needed or not, often lead to wasted com-
putations. The most widely used approach to deal with changes in data steams consists of
training the model based on a sliding window [47, 20, 1, 4, 21]. However, choosing a cor-
rect window size is not straightforward, since it depends on the speed and type of changes,
which are usually unknown. Moreover, existing approaches are specialized for a particular
type of change (e.g., sudden, progressive, cyclic). There exist few methods which can han-
dle different types of concept drift, such as [29, 9, 44, 5], however, most of those methods
are dedicated for supervised learning problems, where the change is primarily detected by
estimating a degradation in the classification performance. Other approaches such as [24, 3]
are designed to explicitly detect, in an unsupervised way, when a change happens. Unfortu-
nately, such approaches require hyper-parameters which are hard to set manually when no
prior knowledge is available.

Unsupervised neural learning methods such as [14, 38, 41] are good candidates for mod-
eling dynamic environments as they are trained incrementally and take into account relations
of neighborhood between neurons (data representatives). Specifically, the Growing Neural
Gas (GNG) algorithm [14] creates neurons and edges between them during learning by con-
tinuously updating a graph of neurons using a competitive Hebbian learning strategy [31],
allowing it to represent any data topology. This provides an important feature in the con-
text of unsupervised learning from data streams where no prior knowledge about the data is
available. However, GNG does not explicitly handle changes in the data distribution.

Some adaptations of GNG such as [13, 41, 30, 15] try to address some of the problems
related to either concept evolution [41, 30] or drift [13, 15]. However, these methods require
an expert to specify some sensitive parameters that directly affect the evolution or the for-
getting rate of the neural network. Setting such global parameters prior to the learning does
not address the more general case where the speed of changes can vary over time, or when
the distribution becomes non-stationary only in some specific regions of the feature space.

An adaptive algorithm for anomaly and novelty detection in evolving data streams 3

We propose in this paper an extension of the GNG algorithm and we show how it is used
for novelty and anomaly detection in evolving data streams. The contributions of this paper
are summarized as follows. First, an adaptive learning rate which depends on local charac-
teristics of each neuron is proposed. Such learning rate allows for a better adaptation of the
neurons in stationary and non-stationary distributions. Second, a criterion characterizing the
relevance of neurons is proposed and used to remove neurons that become irrelevant due
to a change in the data distribution. An adaptive threshold for removing irrelevant neurons
while ensuring consistency when no change occurs is also proposed. Third, a probabilistic
criterion is defined to create new neurons in the network when there is a need to represent
new regions of the feature space. The probabilistic criterion depends on the competitiveness
between neurons and ensures stabilization of the network’s size if the distribution is sta-
tionary. The proposed method is adaptive, highly dynamic, and does not depend on critical
parameters. It is fully online as it visits each data only once, and can adapt to various types
of change in the data distribution.

This paper is organized as follows. In Section 2 we give a background related to the
growing neural gas based methods. In Section 3 we propose a mechanism that allows to
continuously adapt neurons in order to closely follow any shift in the data distribution. In
Section 4 we present an adaptive forgetting mechanism that allows to detect and remove
neurons that become irrelevant as a consequence of a change in the data distribution. In
Section 5 we present an evolution mechanism that allows to create new neurons when nec-
essary. In Section 6 we summarize the proposed algorithm and we show how it is used for
novelty and anomaly detection. In Section 7 we justify the contribution using experimental
evaluation. Finally, we conclude and present future work in Section 8.

2 Preliminaries and related work

In this section, we describe the self-organizing unsupervised learning methods that are at the
origin of the algorithm proposed in this paper.

The neural gas (NG) [31] is a simple algorithm based on the self-organizing maps [25],
which seeks an optimal representation of an input data by a set of representatives called
neurons, where each neuron is represented as a feature vector. In this algorithm, the number
of neurons is finite and set manually. This constitutes a major drawback, because the number
of representatives needed to approximate any given distribution, is usually unknown.

The growing neural gas algorithm (GNG) [14] solves the previous problem by allowing
the number of neurons to increase. It maintains a graph G which takes into account the
neighborhood relations between neurons (vertices of the graph). As shown in Algorithm
1, a minimum number of neurons is initially created (line 3), then, new neurons and new
neighborhood connections (edges) are added between them during learning, according to the
input instances. For each new instance x from the stream (line 4), the two nearest neurons
n∗x and n∗∗x are found (line 6) as follows

n∗x = argmin
n∈G

‖x− n‖ ; n∗∗x = argmin
n∈G,n 6=n∗x

‖x− n‖ .,

where ‖a− b‖ is the Euclidean distance between vectors a and b. A local representation
error errn∗x is increased for the wining neuron n∗x (line 7) and the age of the edges connected
to this neuron is updated (line 8). The wining neuron (i.e., n∗x) is adapted to get closer to x,
according to a learning rate ε1 ∈ [0, 1]. The neighboring neurons (linked to n∗x by an edge)
are also adapted according to a learning rate ε2 < ε1 (line 9). Furthermore, the two neurons

4 Mohamed-Rafik Bouguelia et al.

n∗x and n∗∗x are linked by a new edge (of age 0). The edges that reached a maximum age
amax without being reset, are deleted. If, as a consequence, any neuron becomes isolated,
it is also deleted (lines 10-13). The creation of a new neuron is done periodically (i.e., after
each λ iterations) between the two neighboring neurons that have accumulated the largest
representation error (lines 14-20). Finally, the representation error of all neurons is subject
to an exponential decay (line 21) in order to emphasize the importance of the most recently
measured errors.

Algorithm 1 Growing Neural Gas (GNG)
1: Input: ε1, ε2, amax, λ
2: t← 0
3: Initialize graph G with at least 2 neurons
4: for each new instance x from the stream do
5: t← t+ 1
6: Let n∗x, n∗∗x be the two neurons closest to x
7: errn∗x ← errn∗x + ‖x− n∗x‖2
8: Increment the age of n∗x’s edges
9: Adapt n∗x and its neighbors (linked to n∗x)

n∗x ← n∗x + ε1 × (x− n∗x)

∀nv ∈ Neighbours(n∗x) : nv ← nv + ε2 × (x− nv)

10: if n∗x is linked to n∗∗x , reset the edge’s age to 0
11: else Link n∗x to n∗∗x with an edge of age 0
12: Remove old edges, i.e., with age > amax
13: Remove neurons that become isolated
14: if t is multiple of λ then
15: Let nq = argmaxn∈G errn
16: Let nf = argmaxn∈Neighbours(nq)

errn
17: Create a new neuron nnew between nq and nf
18: nnew = 0.5× (nq + nf)
19: errnnew = 0.5× errnq
20: end if
21: Exponentially decrease the representation error of all neurons:

∀n ∈ G : errn ← 0.9× errn

22: end for

The preservation of neighborhood relations in GNG allows it to represent data typologies
of any shape (as shown on Fig. 1), which makes it particularly interesting for a wide range
of applications. However, in a non-stationary environment, the GNG algorithm suffers from
several drawbacks.

First, it organizes neurons to represent the input distribution by continuously adapting
the feature vectors of neurons based on two learning rates ε1, ε2 (see Algorithm 1, line
9), whose values are set manually. If those values are not chosen appropriately, the neural
network will not be able to closely follow changes in the data distribution.

An adaptive algorithm for anomaly and novelty detection in evolving data streams 5

Fig. 1 GNG is able to perfectly learn the topology of data in a stationary environment.

Second, when the distribution changes fast, many neurons will not be updated anymore,
and will consequently not be able to follow the change. As such neurons do not become
isolated, they will never be removed by GNG. Fig. 2 shows a data distribution which initially
forms one cluster and then splits into two clusters. The first cluster, in the bottom left region
of Fig. 2 (1), is stationary. The other cluster is moving and getting farther from the first
cluster, as shown by the sequence of Fig. 2 (A-D). Neurons that are not able to follow the
moving cluster are kept as part of the graph even if they not relevant anymore.

Third, the GNG algorithm suffers from the need to choose the parameter λ (see Al-
gorithm 1, line 14), used to periodically create a new neuron. The periodic evolution of
the neural network is clearly not convenient for handling sudden changes where new neu-
rons need to be created immediately. Some adaptations of GNG, like those proposed in
[38, 41, 30], try to overcome the problem of periodic evolution by replacing the parameter
λ by a distance threshold which can be defined globally or according to local characteristics
of each neuron. For each new instance x, if ‖x− n∗x‖ is higher than some threshold, then a
new neuron is created at the position of x. However, although this overcomes the problem of
periodic evolution, setting an appropriate value for the threshold is not straightforward as it
highly depends on the unknown distribution of the input data. Moreover, such methods are

Fig. 2 In GNG, with a non-stationary distribution, some irrelevant neurons are not updated anymore and are
never removed.

6 Mohamed-Rafik Bouguelia et al.

more prone to representing noise because they create a new neuron directly at the position of
x instead of regions where the accumulated representation error is highest (as in the original
GNG).

There exist several variants of GNG for non-stationary environments such as [13, 12,
15]. Perhaps the most known variant is GNG-U [15] which is proposed by the original
authors of GNG. It defines a utility measure that removes neurons located in low density
regions and inserts them in regions of high density. The utility measure is defined as fol-
lows. Let nr be the neuron with the lowest estimated density unr . Let nq be the neuron
witch accumulated the highest representation error errnq (as in line 15 of Algorithm 1). If
the ratio

errnq
unr

is higher than some threshold θ, then the neuron nr is removed from its cur-
rent location and inserted close to nq . However, the threshold θ is yet another user defined
parameter which is hard to set because the ratio

errnq
unr

is unbounded and highly depend on
the input data. Moreover, removing nr and immediately inserting it close to nq assumes
that the distribution is shifting (i.e., the removal and insertion operations are synchronized).
Yet, in many cases, we may need to create new neurons without necessarily removing others
(e.g., the appearance of a new cluster). Moreover, the evolution of the neural network is still
periodic, as in GNG. The only way to limit the network’s size is to set a user-specified limit
on the number of neurons, which otherwise leads to a permanent increase in the size of the
network.

A state of the art method called GNG-T [13], which is an improved version of the
method proposed in [12], allows to follow non-stationary distributions by controlling the
representation error of the neural network. During an epoch of N successive iterations
(i.e., successive inputs to the algorithm), let {xij}1≤j≤li denote the set of li input data for
which ni is the winning neuron. Then the representation error of the neuron ni is defined

as Eni = 1
N

li∑
j=1

∥∥xij , ni∥∥. The method determines the σ-shortest confidence interval [19]

(Emin, Emax) based on the errors of all neurons {Eni}ni∈G. Let T be a target representa-
tion error specified by the user. GNG-T seeks to keep the representation error of the neural
network close to T by maintaining T ∈ [Emin, Emax]. More specifically, after each period,
ifEmax becomes less than T , then a neuron is removed. Similarly, ifEmin becomes higher
than T , then a new neuron is inserted. After each epoch, the method simply determines
neurons that are no longer relevant as those that have not won, and removes them. GNG-T
is the closest work to what we propose in this paper. Unfortunately, it depends on critical
parameters (mainly, the epoch N , the target error T and the confidence σ) which directly
guide the insertion and removal of neurons. Moreover, splitting the stream into epochs of N
successive input data means that GNG-T is only partially online.

In order to relax the constraints related to GNG and its derivatives in non-stationary en-
vironments we propose, in the following sections, new mechanisms for: (1) A better adapta-
tion of the neurons in stationary and non-stationary distributions (Section 3); (2) An adaptive
removal of irrelevant neurons, while ensuring consistency when no change occurs (Section
4); (3) Creating new neurons when necessary, while ensuring stabilization of the network’s
size if the distribution is stationary (Section 5).

3 Adaptation of existing neurons

GNG, and the self-organizing neural gas based methods in general, can intrinsically adapt
to the slowly changing distributions by continuously updating the feature vector of neurons.

An adaptive algorithm for anomaly and novelty detection in evolving data streams 7

As shown in Algorithm 1 (line 9), this adaptation depends on two constant learning rates
ε1 (for adapting the closest neuron n∗x to the input) and ε2 (for adapting the topological
neighbors of n∗x) such that 0 < ε2 < ε1 � 1. If the learning rates ε1 and ε2 are too small,
then neurons learn very little from their assigned data. This causes the neural network to
adapt very slowly to the data distribution. In contrast, too high learning rates can cause the
neural network to oscillate too much.

Many existing methods try to address this problem by decreasing the learning rate over
time (also referred to as ”annealing” the learning rate), so that the network converges, the
same way as it is done for the stochastic gradient descent [46]. However, in a streaming
setting, as time goes, this may cause neurons to adapt very slowly to changes in data dis-
tribution that happen far in the future (as the learning rate will be very small). Moreover,
such a global learning rate is not convenient for handling local changes where the distribu-
tion is only stationary in some regions of feature space. Some methods like [41] define the
learning rate for the winning neuron n∗x as being inversely proportional to the number of
instances associated with that neuron (i.e., the more it learns, the more it becomes stable).
However, such learning rate is constantly decreasing over time, thus still causes neurons to
adapt slowly to changes in data distribution as time goes.

In order to closely follow the changing distribution and properly handle local changes,
we propose to use an adaptive local learning rate εn for each neuron n. Intuitively, a local
change is likely to increase the local error of nearby neurons without affecting the ones far
away. Therefore, we define the learning rate of a neuron n as being proportional to its local
error errn. By doing so, at each point in time, the learning rate of each neuron can increase
or decrease, depending on the locally accumulated error.

Let E be the set of local errors for all neurons in the graph G, sorted in the descending
order (i.e., from high error to low error). The learning rate for each neuron n ∈ G is then
defined as follows

εn =
1

1 + Index(errn, E)
, (1)

where Index(errn, E) is the index (or rank) of errn inE. Therefore, we define the learning
rate used for adapting the winning neuron as ε1 = εn∗x , and the learning rate for adapting
each neighboring neuron nv ∈ Neighbors(n∗x) as ε2 = min(ε1, εnv).

By adapting the wining neurons with a learning rate which is proportional to their local
errors, the algorithm manages to better adapt to local changes while still perfectly represent-
ing stationary distributions.

4 Forgetting by removing irrelevant neurons

The GNG algorithm can follow a slowly changing distribution by gradually adapting neu-
rons during the learning process. Nonetheless, dealing with concept drifting data implies not
only adapting to the new data but also forgetting the information that is no longer relevant.
GNG is able to remove neurons that become isolated after removing old edges (lines 12-13
of Algorithm 1). However, as shown previously on Fig. 2, when the data distribution changes
sufficiently fast, some neurons will not be adapted anymore and they will still be kept, rep-
resenting old data points that are no longer relevant. The forgetting mechanism proposed in
this section allows us to eliminate such irrelevant neurons in an adaptive way.

8 Mohamed-Rafik Bouguelia et al.

4.1 Estimating the relevance of a neuron

In order to estimate the ”relevance” of neurons, we introduce a local variable Cn for each
neuron n. This local variable allows to ensure that removing neurons will not negatively
affect the currently represented data when no change occurs. For this purpose, Cn captures
the cost of removing the neuron n. This cost represents how much the total error of the
neighboring neurons of n would increase, if n is removed. In order to define Cn, let us
consider Xn = {xi | n = n∗xi} as the set of instances (data points) associated with a given
neuron n (instances closest to n, i.e., for which n was winner). If n is removed, instances in
Xn would be associated to their nearest neurons in the neighborhood of n. Associating an
instance xi ∈ Xn to its (newly) nearest neuron n∗∗xi would increase the local error of that
neuron by ‖x− n∗∗xi ‖. Therefore, we define Cn for a neuron n according to the distance
from its associated instances to their second nearest neurons, as follows

Cn =
t∑
i=0

1(n = n∗xi)×
∥∥xi − n∗∗xi ∥∥ ,

where t is the current time step (i.e., t’th instance from the stream), and 1(Cond) is the 0-1
indicator function of condition Cond, defined as

1(Cond) =

{
1 if Cond is true
0 otherwise.

In order to compute an approximation of Cn for each neuron n in an online fashion, each
time a new instance x is received from the stream, the local variable Cn∗x of its closest
neuron n∗x (i.e., the winning neuron) is increased by ‖x− n∗∗x ‖ (i.e., by the distance to the
second closest neuron)

Cn∗x ← Cn∗x +
∥∥x− n∗∗x ∥∥ . (2)

The local variable Cn is then an estimation for the cost of removing the neuron n.
However, Cn as a cost, does not indicate whether the neuron n is irrelevant or not. In order
to capture whether a neuron is no longer relevant, the local variable for all the existing
neurons is exponentially decreased at each iteration (the same way as it is done for the local
representation error in line 21 of Algorithm 1) :

∀n ∈ G, Cn ← 0.9× Cn. (3)

A very small value Cn for a neuron n, may indicate two things. First, when the distribution
is stationary, it indicates that n is competing with other neurons in its neighborhood (i.e.,
the cost of removing n is low), which suggests that the input data associated with n can be
safely represented by its neighboring neurons instead. Second, when the distribution is not
stationary, it indicates that n is no longer often selected as the closest neuron to the input
data, which suggests that it is no longer relevant. In both of those cases, n can be safely
removed for a sufficiently small value of Cn.

Let us denote by n̂ the neuron which is most likely to be removed (i.e. with the smallest
Cn):

n̂ = argmin
n∈G

Cn.

Naturally, the forgetting can be triggered by removing n̂ if the value of its local variable Cn̂
falls below a given threshold. However, such value may quickly become small (approaching

An adaptive algorithm for anomaly and novelty detection in evolving data streams 9

Fig. 3 The value − logCn̂ for the neuron n̂ (which is most likely to be removed at each iteration) in two
cases: a stationary distribution (blue) and a non-stationary distribution (red).

0) as it is constantly subject to an exponential decay, which makes it hard to directly set
a threshold on this value. Instead of removing n̂ when Cn̂ is sufficiently small, a more
convenient strategy is to remove it when − logCn̂ is sufficiently high, that is, when

− logCn̂ > τ,

where τ is an upper survival threshold. The smaller τ , the faster the forgetting. Larger values
of τ would imply a longer term memory (i.e. forgetting less quickly). The exact value of
the threshold τ depends, among other factors, on the data distribution and how fast it is
changing. This is clearly an unknown information. Therefore, a problem that still remains
is: when do we trigger the forgetting mechanism? In other words, how do we decide that Cn
is sufficiently small, without requiring the user to directly specify such a sensitive threshold?

In order to have a convenient value for τ , we propose in the following an adaptive
threshold.

4.2 Adaptive removal of neurons

In order to motivate the adaptive threshold we propose, let us consider Fig. 3, which shows
the value of− logCn̂ for the neuron n̂ (i.e., the most likely to be removed at each iteration),
for a stationary (blue curve) and a non-stationary (red curve) distributions. Remember that
at each time step, the relevance variable is increased for the winning neuron (see Eq. 2),
and then exponentially decreased for all neurons in the graph (see Eq. 3). On the one hand,
if the neuron n̂ has not been selected as winner during some short period of time, then
− logCn̂ may temporarily be high, but would decrease again as soon as n̂ is updated (see
the blue curve on Fig. 3). In this case, if the threshold τ is chosen too low, then it wrongly
causes n̂ to be immediately removed. On the other hand, if n̂ is not anymore selected as
winner (in the case of a non-stationary distribution), then − logCn̂ keeps increasing (see
the red curve on Fig. 3). In this case, if the threshold τ is chosen too high, then it causes
long delay in removing neurons that are not relevant anymore (leading to results similar to

10 Mohamed-Rafik Bouguelia et al.

those previously shown on Fig. 2), which is not in favor of a real-time tracking of the non-
stationary distribution. In order to automatically adapt the threshold τ , we consider the two
following cases:

1. Increasing τ :
If − logCn̂ > τ (i.e., n̂ should be removed) but n̂ would still be winning in the future,
then the threshold τ should be increased (to remove less neurons in the future). The
reason for increasing τ in this case is that a neuron which should be removed is expected
to not be winner anymore (or very rarely) in the future.

2. Decreasing τ :
If− logCn̂ ≤ τ (i.e., n̂ is not removed) but n̂ is not winning anymore, then the threshold
τ should be decreased (to remove more neurons in the future). The reason for decreasing
τ in this case is that a neuron which is not removed is expected to be a winner sufficiently
frequently.

To address the first case, when a neuron n̂ is removed from G because − logCn̂ > τ ,
we do not discard it completely; instead, we keep it temporarily, in order to use it for a
possible adaptation of the threshold τ . Let R be a buffer (a Queue with FIFO order) where
the removed neurons are temporarily kept1. Let x be a new instance from the stream, and n∗x
be the nearest neuron to x in G. Let r∗x ∈ R be the nearest neuron to x in R. If x is closer
to r∗x than to n∗x (i.e., ‖x− r∗x‖ < ‖x− n∗x‖), then r∗x would have been the winner instead
of n∗x. In this case, we increase τ as follows:

τ ← τ + ε× [(− logCr∗x)− τ], (4)

where ε ∈ [0, 1] is a small learning rate (discussed thereafter in this section).
Finally, we need to design a strategy to maintain the R buffer. Let Wn be the number

of times where a neuron n has been winner during the W last time steps (iterations). Let
R′ = {r ∈ R|Wr = 0} be the subset of neurons from R that has never been a winner dur-
ing the W last time steps. If |R′| > k (i.e., a sufficient number of neurons are not updated
anymore), then we definitively remove the oldest neuron from R.

For the second case, let |{n ∈ G|Wn = 0}| be the number of neurons from G that
has never been a winner during the W last time steps. If this number is higher than k and
− logCn̂ ≤ τ , then we decrease τ as follows:

τ ← τ − ε× [τ − (− logCn̂)] (5)

The learning rate ε ∈ [0, 1] used in Eq. 4 and 5 for updating τ can be decreased over
time, as shown in Eq. 6, so that τ converges more quickly.

ε =
1

1 +Nτ
, (6)

where Nτ is the number of times where τ has been updated (increased or decreased). Al-
ternatively, ε can be kept constant if the speed of the changing distribution is expected to
change over time (i.e., acceleration is not constant), depending on the application domain.

Besides, in order to give a chance for each neuron in G to be selected as winner at least
once, W needs to be at least equal to the number of neurons. Therefore, instead of having a
manually fixed value for W , this latter is simply increased if the number of neurons reaches
W (i.e. if |G| ≥ W). Note that in all our experiments W is simply increased by 10 each
time |G| ≥W .

1 Note that the local variables of the neurons that we keep in R (except for their feature vectors) are
updated at each iteration the same way as the neurons in G.

An adaptive algorithm for anomaly and novelty detection in evolving data streams 11

5 Dynamic creation of new neurons

As explained in Section 2, GNG creates a new neuron periodically. If there is a sudden
change in the distribution and data starts to come in new regions of the feature space, the
algorithm cannot immediately adapt to represent those regions. This is mainly due to the
fact that a new neuron is created only every λ iterations. In many real-time applications,
new neurons need to be created immediately without affecting the existing ones (i.e., concept
evolution). In order to handle such changes faster, we propose a dynamic strategy that allows
creation of new neurons when necessary. The proposed strategy ensures that less neurons
are created when the distribution is stationary, while being able to create more neurons if
necessary, i.e. when there is a change in the data distribution.

Remember thatWn is the number of times where a neuron n has been winner during the
W last time steps (iterations). Let us define the ratio Wn

W ∈ [0, 1] as the winning frequency
of a neuron n. When the number of neurons inG is low, their winning frequency is high. This
is essentially due to a low competition between neurons, which gives a higher chance for
each neuron to be selected as winner. An extreme case example is whenG contains only one
neuron which is always winning (i.e. its winning frequency is 1). In contrast, as the number
of neurons inG increases, their winning frequency decreases due to a higher competitiveness
between neurons. We propose a strategy for creating new neurons in a probabilistic way,
based on the current winning frequency of neurons in G.

Let fq ∈ [0, 1] be the overall winning frequency in the graph G defined as

fq =
1

|S| ×
∑
n∈S

Wn

W
, (7)

where S is a set of k neurons from G, with the highest winning frequencies. The higher the
overall winning frequency, the higher the probability of creating a new neuron, and vice-
versa.

If the data distribution is stationary, then creating new neurons is likely to decrease fq,
which implies a smaller probability to create more neurons in the future. However, if there
is a change in the data distribution so that new neurons actually need to be created, then fq
will automatically increase (which leads to a higher probability of creating more neurons).
Indeed, let us assume that data points from a new cluster start to appear. Some existing
neurons that are the closest to those points will be selected as winner, making their winning
frequencies high, which consequently increases fq. As fq increases, there is more chance for
creating new neurons to represent the new cluster. This is illustrated in Fig. 4 which shows
fq for a stationary distribution (blue curve) and for a non-stationary distribution (red curve)
where a new cluster is suddenly introduced after time step 1000 .

The insertion of a new neuron is done with a probability proportional to fq. However,
in order to lower the chance of performing insertions too close in time and give time for the
newly inserted neuron to adapt, we introduce a retarder term rt defined as follows:

rt =
1

t− t′ ,

where t is the current time step and t′ < t is the previous time when the last insertion of
a neuron occurred. Hence, a new neuron is created with a probability min(fq + rt, 1). In
other words, a new neuron is created if rand > fq + rt, where rand ∈ [0, 1] is randomly
generated according to a uniform distribution.

12 Mohamed-Rafik Bouguelia et al.

Fig. 4 The value of fq with synthetic data, in two cases: a stationary distribution (blue) and a non-stationary
distribution (red).

6 Algorithm

The proposed method is summarized in Algorithm 2, which make a call to Algorithm 3 to
check for the removal of neurons (see Section 4) and Algorithm 4 to check for the creation
of neurons (See section 5).

First, Algorithm 2 initializes the graph G with two neurons (line 3). For each new data
point x, the two nearest neurons n∗x and n∗∗x are found (line 7). The local error errn∗x is
updated for the wining neuron n∗x and the age of the edges emanating from this neuron is
incremented (lines 8-9). The local relevance variable Cn∗x is increased in order to keep an
information about the cost of removing this neuron (line 10), as described in section 4.1.
The neuron n∗x and its neighbors (linked to n∗x by an edge) are adapted to get closer to x
(lines 11-12), using to local learning rates that are computed according to Eq. 1 as described
in Section 3. As in GNG, n∗x and n∗∗x are linked by an edge, old edges are deleted, and
neurons that becomes isolated are also deleted. Algorithm 3 is called (line 17) to adapt
the forgetting threshold τ and to check if there is any irrelevant neuron that needs to be
removed, as described in Section 4. Then, Algorithm 4 is called (line 18) in order to insert
a new neuron according to a probabilistic criterion described in Section 5. Finally, the local
errors and relevance variables of all neurons are subject to an exponential decay (line 19).

Let f be the size of x (i.e. the number of features), g be the number of neurons (i.e. the
size of the graph |G|), and r be the number of neurons in R, with r � g. The most time
consuming operation in Algorithm 2 is finding the neurons in G that are closest from the
input x (line 7 of Algorithm 2). For each input x, this operation takesO(f×g). Additionally,
the adaptation of the local variables of neurons (e.g. lines 19-22 of Algorithm 2) has O(g)
time complexity. Algorithm 3 has a time complexity of O(f × r) as it needs to find r∗x,
and Algorithm 4 has a time complexity of O(g). Therefore, the overall complexity of the
proposed method for learning from each instance x isO(f × (g+ r)), which is very similar
to the original GNG algorithm.

An adaptive algorithm for anomaly and novelty detection in evolving data streams 13

Algorithm 2 Proposed method
1: Input: k (used in sections 4 and 5)
2: t← 0 // current time step
3: Initialize graph G with at least 2 neurons
4: Initialize τ > 0 randomly
5: for each new instance x from the stream do
6: t← t+ 1
7: Let n∗x, n∗∗x be the two neurons closest to x
8: errn∗x ← errn∗x + ‖x− n∗x‖2
9: Increment the age of n∗x’s edges

10: Cn∗x ← Cn∗x + ‖x− n∗∗x ‖2
11: Update the local learning rates according to Eq. 1
12: Adapt n∗x and its neighbors (linked to n∗x)

n∗x ← n∗x + εn∗x × (x− n∗x)

∀nv ∈ Neighbours(n∗x) : nv ← nv + εnv × (x− nv)

13: if n∗x is linked to n∗∗x , reset the edge’s age to 0
14: else Link n∗x to n∗∗x with an edge of age 0
15: Remove the old edges (as in GNG)
16: Remove the neurons that become isolated
17: CheckRemoval(k) // Algorithm 3
18: CheckCreation(k, t) // Algorithm 4
19: for each n ∈ G do
20: errn ← 0.9× errn
21: Cn ← 0.9× Cn
22: end for
23: end for

Algorithm 3 CheckRemoval(k)

1: Let n̂ = argmin
n∈G

Cn; r∗x = argmin
r∈R

‖x− r‖; ε = 1
1+Nτ

(Eq. 6)

2:
3: // check if τ need to be increased
4: if ‖x− r∗x‖ < ‖x− n∗x‖ and − logCr∗x > τ then
5: τ ← τ + ε× [(− logCr∗x)− τ]
6: end if
7: if |{r ∈ R|Wr = 0}| > k then
8: Remove (dequeue) the oldest neuron in R
9: end if

10:
11: // check if τ need to be decreased
12: if |{n ∈ G|Wn = 0}| > k and − logCn̂ ≤ τ then
13: τ ← τ − ε× [τ − (− logCn̂)]
14: end if
15:
16: // check if any neuron need to be removed from G
17: if − logCn̂ > τ then
18: Add (enqueue) n̂ to the buffer R
19: Remove n̂ and its edges from G
20: Remove previous neighbors of n̂ that become isolated
21: end if

14 Mohamed-Rafik Bouguelia et al.

Algorithm 4 CheckCreation(k, t)
1: Let S be a set of k neurons in G, with the highest winning frequencies.
2: fq = 1

|S| ×
∑
n∈S

Wn

W (see definition of Eq. 7)

3: if random
uniform

([0, 1]) < fq + 1
t−t′ then

4: t′ ← t
5: Let nq = argmaxn∈G errn
6: Let nf = argmaxn∈Neighbours(nq)

errn
7: Create a new neuron nnew between nq et nf
8: nnew = 0.5× (nq + nf)
9: errnnew = 0.5× errnq

10: end if

Anomaly and novelty detection methods [28, 26, 27, 40] learn a model from a reference
set of regular (or normal) data, and classify a new test data as irregular (or abnormal) if
it deviates from that model. If the reference data comes as a stream and its distribution is
subject to change over time, such methods are typically trained over a sliding window as
described in [7, 26].

The method we proposed is able to adapt to various types of change without keeping
data in a sliding window, and therefore it is straightforward to use it for the task of anomaly
and novelty detection where the distribution of the reference data is non-stationary. More
specifically, each neuron in G can be considered as the center of a hyper-sphere of a given
radius d (a distance threshold). Therefore, at any time t, the graphG (i.e., all hyper-spheres)
covers the area of space that represents regular data. It follows that a test data x whose
distance to the nearest neuron is less than d, is not part of the area covered by G. More
formally, x is considered as abnormal (or novel) if

minn∈G ‖x, n‖ < d

Manually choosing a convenient value for d is hard because it not only depends on the
dataset but also on the number of neurons in G, which varies over time. Indeed, a higher
number of neurons requires a smaller d. However, it is also natural to expect that a higher
number of neurons inGwould cause the distance between neighboring neurons to be smaller
(and vise versa). Therefore, we heuristically set d equal to the expected distance between
neighboring neurons in G. In order words, d at any time t is defined as the average length
of edges at that time.

7 Experiments

In this section, we evaluate the proposed method. First, we present the datasets used for eval-
uation in subsection 7.1. Then, we evaluate the general properties of the proposed method
in terms of the ability to follow a non-stationary distribution, in subsection 7.2. Finally, we
present and discuss the results of the anomaly and novelty detection using the proposed
method, in comparison to other benchmarking methods in subsection 7.3.

An adaptive algorithm for anomaly and novelty detection in evolving data streams 15

Table 1 Summary of the datasets characteristics

Dataset Classes Features Size Change
Keystroke 4 10 1600 200

Sea Concepts 2 3 60000 variable
Usenet 2 658 5931 variable

Optdigits 10 64 3823 NA

1CDT 2 2 16000 400
2CDT 2 2 16000 400
1CHT 2 2 16000 400
2CHT 2 2 16000 400
4CR 4 2 144400 400

4CRE-V1 4 2 125000 1000
4CRE-V2 4 2 183000 1000

5CVT 5 2 40000 1000
1CSurr 2 2 55283 600

4CE1CF 5 2 173250 750
UG-2C-2D 2 2 100000 1000
MG-2C-2D 2 2 200000 2000
FG-2C-2D 2 2 200000 2000
UG-2C-3D 2 3 200000 2000
UG-2C-5D 2 5 200000 2000

GEARS-2C-2D 2 2 200000 2000

2D-1 2 2 5000 NA
2D-2 2 2 5000 NA
2D-3 3 2 5000 NA
2D-4 3 2 5000 NA

7.1 Datasets

We consider in our experimental evaluation several real-world and artificial datasets cov-
ering a wide range of non-stationary distributions. Table 1 gives a brief summary of all
the considered datasets. The column Classes indicates the number of classes or clusters in
each dataset. The column Change indicates the interval, in number of examples, between
consecutive changes (note that NA refers to ”no change”).

The first group consists in four real world datasets: Keystroke, Sea Concepts and Usenet
(which are publicly available for download2), and Opendigits (which is publicly available
at [2]). The Keystroke dataset (described in [42]) is from a real-world application related
to keystroke dynamics for recognizing users by their typing rhythm, where user profiles
evolve incrementally over time. The Sea concepts dataset is adapted for novelty detection
and originally proposed by [43]. The Usenet dataset is a text dataset inspired by [23] and
processed for novelty detection. It consists of a simulation of news filtering with concept
drift related to the change of interest of a user over time. A user can decide to unsubscribe
from news groups that he is not interested in and subscribe for new ones that he becomes

2 Publicly available for download at http://www.liaad.up.pt/kdus/products/
datasets-for-concept-drift

16 Mohamed-Rafik Bouguelia et al.

Fig. 5 Some example snapshots from three artificial non-stationary datasets.

interested in, and the previously interesting topics become out of his main interest. The
Optdigits dataset is a real-word stationary dataset, described in the UCI machine learning
repository [2]. It is introduced to test the performance of the proposed method in a stationary
environment, where the data is split across multiple clusters.

The other datasets are provided in [42] and publicity available for download3. These
datasets experience various levels of change over time, thus, are ideal to showcase the per-
formance of algorithms in non-stationary environments. Three examples of these datasets
are illustrated in Fig. 5. The last four artificial datasets in Table 1 are stationary datasets
with distributions corresponding to various shapes, similar to those previously shown in
Fig. 1.

7.2 General properties of the proposed method

The first set of experiments shows the general properties of the proposed method in terms of
the adaptability, the ability to represent stationary distributions, and to follow non-stationary
distributions.

As an initial step, Fig. 6 illustrates a simple proof of concept of the proposed method
for a simulated one-dimensional non-stationary data distribution, which is initially shown
by the grey box on the left. The location, over time, of the created neurons is shown with
red points. The size of the graph is limited to 10 for better visualization purposes. At time
1000, the distribution is moderately shifted, which makes half of the neurons to be reused,
and others to be created. At time 3000 the distribution suddenly changes, which makes only
few neurons change their location, and leads to the creation of many new neurons and the

3 The non-stationary artificial datasets are publicly available for download at https://sites.
google.com/site/nonstationaryarchive/, where animated visualization of the data over time
are also available.

An adaptive algorithm for anomaly and novelty detection in evolving data streams 17

Fig. 6 The location of neurons for a one-dimensional non-stationary distribution over time. |G| ≤ 10, k =
10.

Fig. 7 (A) and (B) show the value of the adaptive threshold τ according to different initial values. (C) shows
the effect of ε on the adaptation of the threshold τ . Parameter k = 10.

removal of existing ones. After time 5000, the distribution splits into two parts (clusters),
and the proposed method follows the change.

Fig. 7 shows an experiment performed on the 1CDT dataset (non-stationary) with the
goal to showcase the adaptive removal of neurons described in section 4.2. Remember that,
for a given dataset, the forgetting rate depends on the value to which the threshold τ is set.
As τ is adaptive, we show in this experiment that it does not depend on the initial value
to which it is set. Fig. 7 (A) shows the final values of τ (i.e., after adaptation) according
to the initial values of τ . We can see that for any initial value of τ , it always converges
to values that are close to each other. Fig. 7 (B) shows the current value of τ over time,
based on different initial values. We can see that for any initial value, it converges quickly,
i.e., without requiring a significantly large number of adaptation steps. This proves that the
method is insensitive to initial values of τ . Moreover, a learning rate ε is used during the

18 Mohamed-Rafik Bouguelia et al.

Fig. 8 The period λ = 100 in GNG, GNG-U and GNG-T. The removal threshold θ = 109, 105 and 107

for the three respective datasets in GNG-U. The epoch N = 500, the confidence σ = 0.8, and target error
T = 0.3, 0.01 and 0.4, for the three respective datasets in GNG-T. k = 10 for the proposed method.

adaptation of τ (see Eq. 5 and 4). In the experiment of Figs. 7 (A) and (B), this learning rate
was set according to Eq. 6 as described in section 4.2. In order to illustrate the effect of ε on
τ , Fig. 7 (C) shows the value of τ over time, based on different values of ε. It is natural that
when ε is low (e.g. 0.005), τ changes slowly at each adaptation step. For τ to eventually
stabilize, ε needs only to be sufficiently small. Nonetheless, for the reminder of this paper, ε
is adapted according to Eq. 6.

Fig. 8 illustrates the behavior of proposed method in comparison to GNG [14] and two
other variants for non-stationary distributions described in section 2, namely GNG-U [15]
and GNG-T [13]. For each method, we show the evolution of the number of neurons over
time in first column of figures, the overall representation error (i.e., average over all neu-
rons) in the second column of figures, and the percentage of irrelevant neurons (i.e., that
have never been updated during the last 100 steps) in the third column of figures. We show
the results in three situations: a stationary distribution using dataset 2D-1 (the three top fig-
ures), a non-stationary distribution with a progressive change using dataset 1CDT (the three
middle figures), and a stationary distribution with a sudden change happening after time
2500, suing dataset 2D-4 (the three bottom figures). We can observe from Fig. 8 that the
proposed method manages to create more neurons at early stages, which leads to a lower
representation error. The number of neurons automatically stabilizes over time for the pro-
posed method (unlike GNG and GNG-U). It also stabilizes for GNG-T depending on the user
specified target parameter T . Moreover, all three methods (unlike GNG) efficiently remove
irrelevant neurons. Nonetheless, it should be noted that the proposed method is adaptive,

An adaptive algorithm for anomaly and novelty detection in evolving data streams 19

Table 2 Parameters used for Isolation Forest and OCSVM.

Datasets Parameters
Isolation Forest OCSVM

Keystroke ø = 0.2 γ = 0.2, ν = 0.3
Sea Concepts ø = 0.1 γ = 0.1, ν = 0.1

Usenet ø = 0.2 γ = 0.1, ν = 0.1
Optdigits ø = 0.2 γ = 0.1, ν = 0.2

1CDT ø = 0.05 γ = 0.5, ν = 0.05
2CDT ø = 0.1 γ = 0.5, ν = 0.2
1CHT ø = 0.05 γ = 0.5, ν = 0.01
2CHT ø = 0.3 γ = 0.5, ν = 0.4
4CR ø = 0.05 γ = 0.5, ν = 0.01

4CRE-V1 ø = 0.05 γ = 0.5, ν = 0.01
4CRE-V2 ø = 0.05 γ = 0.5, ν = 0.01

5CVT ø = 0.05 γ = 0.5, ν = 0.01
1CSurr ø = 0.05 γ = 0.5, ν = 0.01

4CE1CF ø = 0.05 γ = 0.5, ν = 0.01
UG-2C-2D ø = 0.05 γ = 0.5, ν = 0.01
MG-2C-2D ø = 0.05 γ = 0.5, ν = 0.01
FG-2C-2D ø = 0.05 γ = 0.5, ν = 0.01
UG-2C-3D ø = 0.05 γ = 0.3, ν = 0.01
UG-2C-5D ø = 0.05 γ = 0.2, ν = 0.01

GEARS-2C-2D ø = 0.1 γ = 0.5, ν = 0.2
2D-1 ø = 0.1 γ = 0.5, ν = 0.01
2D-2 ø = 0.1 γ = 0.5, ν = 0.01
2D-3 ø = 0.05 γ = 0.4, ν = 0.01
2D-4 ø = 0.05 γ = 0.4, ν = 0.05

and unlike GNG-U and GNG-T, there is no need to adapt any parameter across the three
datasets4.

7.3 Anomaly and novelty detection

In the following, the proposed method is compared against two anomaly and novelty de-
tection methods, namely One Class SVM (OCSVM) [40] and Isolation Forest [28] which
are trained over a sliding window, allowing them to handle non-stationary distributions. The
Python implementations available on the scikit-learn machine learning library [36] have
been used . A sliding window of 500 instances is chosen for OCSVM and Isolation For-
est, as it provides the best overall results across all datasets. For each dataset, instances
from a subset of classes (half of the number of classes) are considered as normal (or regu-
lar) instances, and the instances from the other half are considered as abnormal (or novel).
The considered methods are trained based on the stream of regular instances. As advocated
by [17], a prequential accuracy is used for evaluating the performance of the methods in
correctly distinguishing the regular vs. novel instances. This measure corresponds to the av-
erage accuracy computed online, by predicting for every instance whether it is regular or

4 The parameter k of the proposed method is always fixed to k = 10 for all the experiments and datasets.

20 Mohamed-Rafik Bouguelia et al.

Table 3 Average accuracy for distinguishing normal and abnormal (or novel) data

Datasets Average accuracy (%) P value
(t-test)

Proposed Isolation Forest OCSVM
Keystroke 71.19± 2.75 70.92± 3.53 59.17± 1.55 0.89

Sea Concepts 78.62± 0.21 75.12± 0.26 75.0± 0.32 9.4e−80
Usenet 84.37± 0.44 75.13± 0.36 84.53± 0.40 0.59

Optdigits 91.48± 1.44 78.74± 0.80 89.33± 0.31 0.0043

1CDT 97.47± 0.41 97.24± 0.28 97.10± 0.40 0.368
1CHT 96.68± 0.66 95.64± 1.12 87.62± 4.07 0.115
1CSurr 92.73± 0.57 92.44± 0.55 92.79± 0.66 0.899
2CDT 86.98± 1.02 89.74± 0.54 88.15± 0.33 5.2e−6
2CHT 74.90± 1.57 78.83± 0.49 68.86± 0.53 4.9e−6
5CVT 86.60± 0.60 87.35± 0.51 74.12± 0.53 0.065
4CR 97.08± 0.04 97.28± 0.11 99.36± 0.01 ' 0.0

4CE1CF 96.99± 0.05 96.48± 0.07 91.46± 0.24 4.4e−25
4CRE-V1 94.01± 0.63 91.99± 0.78 52.15± 0.15 8.5e−5
4CRE-V2 85.48± 0.83 79.16± 0.82 50.61± 0.04 1.5e−25
FG-2C-2D 88.02± 0.67 83.63± 0.90 82.57± 1.17 3.2e−14
MG-2C-2D 87.33± 0.53 87.56± 0.52 79.29± 0.62 0.540
UG-2C-2D 92.26± 0.48 92.28± 0.50 89.10± 0.71 0.968
UG-2C-3D 88.28± 0.58 85.70± 0.78 84.51± 0.95 2.3e−7
UG-2C-5D 84.27± 0.39 78.85± 0.65 73.42± 0.71 5.2e−42

GEARS-2C-2D 97.46± 0.04 93.78± 0.09 85.91± 0.11 ' 0.0

2D-1 98.02± 4.08 90.57± 2.44 49.47± 0.08 0.002
2D-2 99.46± 0.17 94.69± 0.25 86.34± 0.58 4.3e−34
2D-3 95.95± 1.13 94.82± 3.61 99.48± 0.10 2.2e−7
2D-4 95.45± 0.82 96.62± 1.59 90.62± 5.70 0.175

novel, prior to its learning. The average accuracy is estimated using a sliding window of 500
instances.

Table 2 lists, for each dataset, the parameters selected for Isolation Forest and OCSVM,
which leaded to the best results. The parameter ø of Isolation Forest refers to the amount of
contamination of the data set (i.e., the proportion of outliers in the data set). This parameter
is used when training to define the threshold on the decision function. The respective param-
eters γ and ν of OCSVM refer to the kernel coefficient for the radial basis function (RBF)
and to the upper bound on the fraction of training errors.

To present more complete results, the accuracy of the novelty detection over time is
detailed in Figs. 9, 10, and 11, for all methods on each datasets. However, for more clarity,
the results are summarized in Table 3.

Table 3 show the overall results by presenting the average accuracy over time, as well
as the the p-value obtained based on the Student’s t-test. This p-value indicates how much
significantly the results of the proposed method differ from the results of the best performing
method (among OCSVM and Isolation Forest). For each dataset, the result of the best per-
forming method is highlighted with bold text in Table 3. If the result of the best performing

An adaptive algorithm for anomaly and novelty detection in evolving data streams 21

Fig. 9 Results of the novelty detection on real-world datasets

method is not significantly different from the other methods (i.e. p-value > 0.05) then the
result those methods is also highlighted with an underlined text.

It can be seen from Table 3 that the proposed method achieves a better overall perfor-
mance than the other methods. Moreover, as indicated by the p-values, in the vast majority
of cases, the results achieved by the proposed method are significantly different from the
results achieved by the other methods. These results confirm that the adaptive proposed
method is generally more convenient for various types of non-stationary environments, due
to its dynamic adaptation over time and its ability to represent data topologies of any shape.

8 Conclusion and future work

In this paper we have introduced a new method for online learning from evolving data
streams for the task of anomaly and novelty detection. The method extends GNG for a
better adaptation, removal and creation of neurons. The usefulness of the proposed method
was demonstrated on various real-world and artificial datasets covering a wide range of non-
stationary distributions. The empirical and statistical evaluation that we performed show that
the proposed method achieved the best overall performance compared to two state of the art
methods, while being much less sensitive to initialization parameters. Results show that the
proposed adaptive forgetting and evolution mechanisms allow the method to deal with any
change in the non-stationary distribution while still perfectly representing the distribution
when it is stationary. Hence, the proposed method is convenient for a wide range of applica-
tion domains varying from static environments to highly dynamic ones.

For future work, we plan to design a parallel version of the proposed method and take
advantage of data intensive computing platforms, such as Apache Spark, for the implemen-
tation. In order to do this, one way is to parallelize independent parts of the data and process
them in parallel while sharing the same graph of neurons. Another alternative is to design
algorithms to adequately split and distribute the graph of neurons on multiple machines
running in parallel.

22 Mohamed-Rafik Bouguelia et al.

Fig. 10 Results of the novelty detection on artificial datasets

References

1. Ahmed, E., Clark, A., Mohay, G.: A novel sliding window based change detection al-
gorithm for asymmetric traffic. IFIP International Conference on Network and Parallel
Computing (2008)

2. Bache, K., Lichman, M.: Uci machine learning repository. http://archive.ics.uci.edu/ml.
Irvine, CA : University of California, School of Information and Computer Science
(2013)

3. Bifet, A.: Adaptive stream mining: Pattern learning and mining from evolving data
streams. Proceedings of the 2010 conference on adaptive stream mining: Pattern learn-
ing and mining from evolving data streams pp. 1–212 (2010)

4. Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing.
International Conference on Data Mining pp. 443–448 (2007)

An adaptive algorithm for anomaly and novelty detection in evolving data streams 23

Fig. 11 Results of the novelty detection on artificial datasets

5. Brzezinski, D., Stefanowski, J.: Reacting to different types of concept drift: The accu-
racy updated ensemble algorithm. IEEE Transactions on Neural Networks and Learning
Systems 25(1), 81–94 (2014)

6. Byttner, S., Rognvaldsson, T., Svensson, M.: Consensus self-organized models for fault
detection (cosmo). Engineering Applications of Artificial Intelligence 24(5), 833–839
(2011)

7. Ding, Z., Fei, M.: An anomaly detection approach based on isolation forest algorithm
for streaming data using sliding window. IFAC Proceedings 46(20), 12–17 (2013)

8. Ditzler, G., Polikar, R.: Incremental learning of concept drift from streaming imbal-
anced data. IEEE Transactions on Knowledge and Data Engineering 25(10), 2283–2301
(2013)

9. Dongre, P., Malik, L.: A review on real time data stream classification and adapting to
various concept drift scenarios. IEEE International Advance Computing Conference
pp. 533–537 (2014)

24 Mohamed-Rafik Bouguelia et al.

10. Fan, Y., Nowaczyk, S., Rognvaldsson, T.: Evaluation of self-organized approach for
predicting compressor faults in a city bus fleet. Procedia Computer Science 53, 447–
456 (2015)

11. Fan, Y., Nowaczyk, S., Rognvaldsson, T.: Incorporating expert knowledge into a self-
organized approach for predicting compressor faults in a city bus fleet. Scandinavian
Conference on Artificial Intelligence pp. 58–67 (2015)

12. Frezza-Buet, H.: Following non-stationary distributions by controlling the vector quan-
tization accuracy of a growing neural gas network. Neurocomputing 71(7), 1191–1202
(2008)

13. Frezza-Buet, H.: Online computing of non-stationary distributions velocity fields by an
accuracy controlled growing neural gas. Neural Networks 60, 203–221 (2014)

14. Fritzke, B.: A growing neural gas network learns topologies. Advances in neural infor-
mation processing systems 7, 625–632 (1995)

15. Fritzke, B.: A self-organizing network that can follow non-stationary distributions. In-
ternational Conference on Artificial Neural Networks. Springer Berlin Heidelberg pp.
613–618 (1997)

16. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. Brazilian
Symposium on Artificial Intelligence. Springer Berlin Heidelberg pp. 286–295 (2004)

17. Gama, J., Sebastiao, R., Rodrigues, P.: Issues in evaluation of stream learning algo-
rithms. ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining pp. 329–338 (2009)

18. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept
drift adaptation. ACM Computing Surveys (CSUR) 46(4), 44 (2014)

19. Guenther, W.: Shortest confidence intervals. The American Statistician 23(1), 22–25
(1969)

20. Hong, S., Vatsavai, R.: Sliding window-based probabilistic change detection for remote-
sensed images. Procedia Computer Science 80, 2348–2352 (2016)

21. Jiang, D., Liu, J., Xu, Z., Qin, W.: Network traffic anomaly detection based on sliding
window. IEEE International Conference on Electrical and Control Engineering pp.
4830–4833 (2011)

22. Jr, P.G., Barros, R.D.: Rcd: A recurring concept drift framework. Pattern Recognition
Letters 34(9), 1018–1025 (2013)

23. Katakis, I., Tsoumakas, G., Vlahavas, I.: Tracking recurring contexts using ensemble
classifiers: an application to email filtering. Knowledge and Information Systems 22(3),
371–391 (2010)

24. Kifer, D., Ben-David, S., Gehrke, J.: Detecting change in data streams. International
Conference on Very Large Data Nases 30, 180–191 (2004)

25. Kohonen, T.: The self-organizing map. Neurocomputing 21(1), 1–6 (1998)
26. Krawczyk, B., Wozniak, M.: One-class classifiers with incremental learning and forget-

ting for data streams with concept drift. Soft Computing 19(12), 3387–3400 (2015)
27. Li, K., Huang, H., Tian, S., Xu, W.: Improving one-class svm for anomaly detec-

tion. IEEE International Conference Machine Learning and Cybernetics 5, 3077–3081
(2003)

28. Liu, F., Ting, K., Zhou, Z.: Isolation forest. IEEE International Conference on Data
Mining pp. 413–422 (2008)

29. Losing, V., Hammer, B., Wersing, H.: Knn classifier with self adjusting memory for
heterogeneous concept drift. International Conference On Data Mining (2016)

30. Marsland, S., Shapiro, J., Nehmzow, U.: A self-organising network that grows when
required. Neural Networks 15(8), 1041–1058 (2002)

An adaptive algorithm for anomaly and novelty detection in evolving data streams 25

31. Martinetz, T.M., Berkovich, S.G., Schulten, K.J.: Neural-gas network for vector quan-
tization and its application to time-series prediction. IEEE Transactions on Neural Net-
works 4(4), 558–569 (1993)

32. Masud, M., Chen, Q., Khan, L., Aggarwal, C., Gao, J., Han, J., Thuraisingham, B.: Ad-
dressing concept-evolution in concept-drifting data streams. IEEE International Con-
ference on Data Mining pp. 929–934 (2010)

33. Middleton, B., Sittig, D., Wright, A.: Clinical decision support: a 25 year retrospective
and a 25 year vision. Yearbook of Medical Informatics (2016)

34. Nishida, K., Shimada, S., Ishikawa, S., Yamauchi, K.: Detecting sudden concept drift
with knowledge of human behavior. IEEE International Conference on Systems, Man
and Cybernetics pp. 3261–3267 (2008)

35. Patel, H., Thakore, D.: Moving object tracking using kalman filter. International Journal
of Computer Science and Mobile Computing 2(4), 326–332 (2013)

36. Pedregosa, F., G.Varoquaux, A.Gramfort, V.Michel, B.Thirion, O.Grisel, M.Blondel,
P.Prettenhofer, R.Weiss, V.Dubourg, J.Vanderplas, A.Passos, D.Cournapeau,
M.Brucher, M.Perrot, E.Duchesnay: Scikit-learn: machine learning in python.
Journal of Machine Learning Research 12, 2825–2830 (2011)

37. Pentland, A., Liu, A.: Modeling and prediction of human behavior. Neural Computation
11(1), 229–242 (1999)

38. Prudent, Y., Ennaji, A.: An incremental growing neural gas learns topologies. IEEE
International Joint Conference on Neural Networks 2, 1211–1216 (2005)

39. Santosh, D., Venkatesh, P., Poornesh, P., Rao, L., Kumar, N.: Tracking multiple moving
objects using gaussian mixture model. International Journal of Soft Computing and
Engineering 3(2), 114–9 (2013)

40. Schlkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., Platt, J.: Support vector
method for novelty detection. Advances in Neural Information Processing Systems pp.
582–588 (2000)

41. Shen, F., Q. Ouyang, W.K., Hasegawa, O.: A general associative memory based on
self-organizing incremental neural network. Neurocomputing 104, 57–71 (2013)

42. Souza, V., Silva, D., J. Gama, G.B.: Data stream classification guided by clustering
on nonstationary environments and extreme verification latency. SIAM International
Conference on Data Mining pp. 873–881 (2015)

43. Street, W., Kim, Y.: A streaming ensemble algorithm sea for large-scale classification.
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
pp. 377–382 (2001)

44. Webb, G., Hyde, R., Cao, H., Nguyen, H., Petitjean, F.: Characterizing concept drift.
Data Mining and Knowledge Discovery 30(4), 964–994 (2016)

45. Webb, G., Pazzani, M., Billsus, D.: Machine learning for user modeling. User Modeling
and User-Adapted Interaction 11(1), 19–29 (2001)

46. Zeiler, M.: Adadelta: An adaptive learning rate method. arXiv preprint arXiv:1212.5701
(2012)

47. Zhang, L., Lin, J., Karim, R.: Sliding window-based fault detection from high-
dimensional data streams. IEEE Transactions on Systems, Man, and Cybernetics: Sys-
tems 47(2), 289–303 (2017)

48. Zliobaite, I., Pechenizkiy, M., Gama, J.: An overview of concept drift applications. In
Big Data Analysis: New Algorithms for a New Society. Springer International Publish-
ing pp. 91–114 (2016)

