
Static Type Checking for the Kompics Component Model

Kola – The Kompics Language

Lars Kroll
Royal Institute of Technology

(KTH)
lkroll@kth.se

Jim Dowling
Royal Institute of Technology

(KTH)
jdowling@kth.se

Seif Haridi
Royal Institute of Technology

(KTH)
haridi@kth.se

ABSTRACT
Distributed systems are becoming an increasingly important
part of systems and applications software and it is widely ac-
cepted that writing correct distributed systems is challeng-
ing. Message-passing concurrency models are the dominant
programming paradigm and, even in statically typed lan-
guages, programming frameworks typically only have lim-
ited type checking support for messages, channels, and ports
or mailboxes. In this paper, we present Kola, a language-
level implementation of Kompics, a component model with
message-passing concurrency. Kola comes with its own com-
piler and some special language constructs which extend
Java’s type system as necessary to enforce static type check-
ing on messages, channels, and ports. We show that Kola
improves the readability of Kompics code and removes op-
portunities to introduce bugs, at the cost of little compile
time overhead and no runtime overhead.

CCS Concepts
•Software and its engineering → Distributed pro-
gramming languages; Source code generation; Con-
current programming languages; Parsers; •Theory of com-
putation → Distributed computing models;

Keywords
component model, programming language, distributed lan-
guages, compilers, code generation, compile-time checks

1. INTRODUCTION
It is widely accepted that writing correct distributed sys-

tems is challenging, and thus any language or framework
level support that is available to programmers can ease that
burden. There are a number of programming languages
available that are targeted specifically at concurrent and
distributed programming, a prime example of which is Er-
lang[3]. Erlang’s actor model with message-passing concur-
rency enforces programming patterns that make distributed
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PMLDC ’16, July 17 2016, Rome, Italy
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4775-4/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2957319.2957371

execution of the Erlang code trivial. However, there is one
important area where Erlang falls short, and that is at early
bug detection through static type checking. Debugging dis-
tributed systems is generally a very difficult process, and
any bug that can be caught before the code is ever run or
deployed saves developers much time later. This fact has
been recognised by the developers of the Akka[11] frame-
work, which provides Erlang’s actor message-passing con-
currency model on top of Scala or Java, adding static types
and the object-oriented paradigm1. However, traditionally
Akka does not check statically whether the target of a mes-
sage actually handles that type of message. The set of han-
dled messages are rather defined as pattern matching rules,
which are internal to an actor. While Akka avoids Erlang’s
indefinitely growing mailbox bug for unhandled messages,
such a message is still almost always a bug and it would be
beneficial to detect and prevent that bug at compile time
already. There have been attempts (cf. in section 6 Typed
Actors and Akka Typed) from the Akka developers to add
this kind of static checking to Akka actors, but none have
really seen widespread use so far.
There is an alternative to the actor model that has this event
type checking built in, called the component model which
has its roots in flow-based programming[8]. In this model
messages travel along channels connected to ports, which
specify exactly what type of messages are allowed to pass
through them and in which direction. This allows for the
specification of contracts in the form of message types on
ports, which can be enforced at compile time. Kompics is
a message2-passing component model [1, 2] and is imple-
mented in Java as a framework. The Java compiler, how-
ever, does not allow for all the checks we would like to do
at compile-time as some of the information is expressed in
a domain specific language (DSL) that cannot be expressed
completely in Java’s type system.
In this paper we present Kola, a language implementation
of the Kompics component model. It extends the Java lan-
guage with special language constructs for events, ports,
components, and handlers, which are explained in section 3.
The Kola compiler, described in section 4, transforms these
special constructs back into normal Java source code while
simultaneously performing the type checks on events, chan-
nels, and ports, which the Java compiler cannot do. The
Java source code generated by Kola is then compiled by the
Java compiler to run on the Java Virtual Machine (JVM).

1In case of Java it also removes the functional paradigm as
found in Erlang.
2called event in Kompics



1 public class PortP extends PortType {{
2 indication( EventA . class );
3 request( EventB . class );
4 }}
5 public class ComponentC extends ComponentDefinition {
6 Positive <PortP > pp = requires( PortP . class );
7 Handler bHandler = new Handler <EventB >(){
8 public void handle( EventB event) {
9 trigger(new EventA(), pp); // error #3

10 }
11 };
12 {
13 subscribe(bHandler, pp); // error #4
14 }
15 }
16 public class ComponentD extends ComponentDefinition {
17 Handler <Start > startHandler = new Handler <Start >(){
18 public void handle( Start event) {
19 // Do something
20 }
21 }; // warning #1
22 }
23 public class ParentComponent extends ComponentDefinition {{
24 Component cc = create ( ComponentC .class , Init.NONE);
25 Component cd = create ( ComponentD .class , Init.NONE);
26 connect( cc.getPositive(PortP.class), cd.getNegative(PortP.class) ); // errors #1 & #2
27 // warning #2 as a consequence of the errors above
28 }}

Listing 1: Pedagogical example with all Kompics mistakes the Java compiler cannot catch.

The resulting JVM bytecode is fully interoperable with any
other Java code, and in particular with Kompics code from
the Java library implementation. In section 5, we compare
Kola and Kompics’ Java implementation to show that Kola
improves the readability of Kompics code and reduces the
opportunities to introduce bugs, at the cost of some compile
time overhead and almost no run time overhead.
Section 6 introduces related work, and we conclude by iden-
tifying opportunities for future work in section 7.

2. BACKGROUND

2.1 The Kompics Component Model
Since it is necessary to understand the Kompics compo-

nent model to understand the contributions of Kola, we be-
gin with a brief overview of Kompics, and a more detailed
overview can be found in [2].

Semantics.
Kompics is a programming model for distributed systems

that implements protocols as event-driven components con-
nected by channels. Kompics provides a form of type sys-
tem for events, where every component declares its required
and provided ports – they can be thought of as “services”
–, which in turn define which event-types travel along the
channels that connect them and in which direction. On a
port type, the “service specification” for a port, events are
declared as either indications or requests. Within a com-
ponent that provides a port P with indication event I and
request event R, only instances of I can be triggered (“sent”)
and only instances of R (or their subtypes) can be handled
(see below). Conversely, within a component that requires P
only instances of R can be triggered and only instances of I
(or their subtypes) can be handled.
The channels connecting ports provide first-in-first-out (FIFO)

order exactly-once (per receiver) delivery and events are
queued up at the receiving ports until the component is
scheduled to execute them.

Scheduling.
A component is guaranteed to be only scheduled on one

thread at a time and thus has exclusive access to its internal
state without the need for further synchronisation. Different
components, however, are scheduled in parallel in order to
exploit the parallelism expressed in a message-passing pro-
gram. When a component is scheduled, it handles one event
at a time, and keeps handling events until either there are no
more events queued at its ports or a configurable maximum
number of events to be handled is reached. After the com-
ponent has finished handling events, it will be placed at the
end of the FIFO queue of components waiting to be sched-
uled. Tuning the configurable maximum number of events to
be handled enables developers to tradeoff increased through-
put, where higher values maximise cache reuse through fewer
component context switches, against fairness, that is avoid-
ing starvation of components with fewer queued events.

Event-handling.
In contrast to Actor systems like Akka [11] or Erlang [3],

events in Kompics are not addressed to components in any
way, but are instead published on all connected channels. In
this way the same event can be received by many compo-
nents. The components themselves decide which events to
handle and which to ignore by subscribing event handlers on
their declared ports. Note that ignored messages are silently
dropped, which is necessitated by the channel broadcasting
model, that is to say, as opposed to Erlang and Akka, in
Kompics it is often completely correct to simply ignore a
large number of events.
Matching of events to handlers is based on the events’ type-



hierarchy, although there are some Kompics extensions that
provide pattern matching as well.

Note that in addition to the default Java library imple-
mentation of Kompics, there are alternatives written in Scala
and Python as well, which are not considered in this paper.

2.2 Kompics Java Framework Limitations
There are a number of issues that commonly arise in pro-

gramming with Kompics in Java, which could be checked at
compile time by a compiler with domain specific knowledge.
Listing 1 shows a pedagogical example, where we put all
these issues into as little code as possible. We classify the
issues into errors, and warnings.

Errors.
are issues that will result in immediate system termination

upon detection at run time. We consider here the following
errors that can be avoided at compile time, i.e. they should
prevent successful termination of the compilation process.

1. Connecting a component on a port it does not require
or provide.
If a component does not declare a port, it can, of
course, not be connected on that port. But since the
lookup of declared ports happens at run time, this is
only caught at that late stage. An example of this can
be seen in line 26 of listing 1, where cd gets connected
on a required port PortP which its definition ComponentD
never declares (cf. lines 16-22).

2. Connecting the ports of two components the wrong way
around.
Similar to the above case, just that this time the com-
ponent does declare the port to be connected but in
the other direction. For example, in line 26 the call
cc.getPositive(PortP.class) requests a provided port of
type PortP, but ComponentC, which is the definition for cc,
only declares a required PortP (line 6).

3. Triggering events on ports which do not carry them (in
that direction).
Since indication and request declarations in the port
types define which direction events are allowed to go,
it can happen in asymmetrical port types – which are
the vast majority of port types – that it is attempted
to trigger an event on a port, which only goes the other
way. An example of this can be seen in line 9, where an
instance of EventA is triggered on pp which is a required
port of type PortP. On a required port only requests
can be triggered, but EventA is an indication on PortP
(cf. line 2).

4. Subscribing an event handler to a port for an event
that is not carried on that port (in that direction).
The same issue as above can arise with handler sub-
scriptions as well. Handlers need to handle (subtypes
of) events that are triggered on the external side of the
ports they are subscribed to, thus exactly the opposite
set of what can be triggered from inside a component.
In line 13 a handler for EventB (line 7-11) is subscribed
to pp, which is, as before, a required port of type PortP.
Thus only requests can be handled on such a port, but
EventB is an indication in PortP (cf. line 3).

Warnings.
are issues, which should not terminate the run time sys-

tem, because they could be desired behaviour under certain
circumstances, but the following specific ones quite often
lead to difficult to find bugs, making it valuable for a com-
piler to point them out.

1. Creating an event handler without subscribing it to a
port.
This is by far the most common bug in Kompics code
that regularly happens to both novices and seasoned
programmers. Most people separate handler creation,
which is grouped with class fields, and handler sub-
scription, which goes into a constructor or instance ini-
tialiser, making it very easy to overlook this issue even
on repeated code reviews. At run time, this issue mani-
fests itself simply as lost events, which are frustratingly
difficult to pin-point (Was the event even sent? Are all
channels along the way properly connected? Did it get
filtered out somewhere?). For example, in ComponentD
(lines 16-22) the startHandler is never subscribed, but
it might look at run time as if the component is never
started.
In 95% of all cases not subscribing a handler imme-
diately is a bug. However, in the remaining 5% it is
completely reasonable, sometimes even necessary, be-
haviour. For example, in a Kompics component that
implements a finite state machine (FSM) it would be
very typical to subscribe and unsubscribe handlers dy-
namically, upon state changes. These handlers might
even be contained in some kind of collection, to group
them according to the state(s) they belong to, mak-
ing it very difficult for any compiler to keep track of
whether they are ever subscribed.

2. Creating components without connecting all their re-
quired ports.
This issue comes up significantly less often than for-
getting to subscribe handlers, mostly because compo-
nent creation and port connections are usually done in
the same block of code. But it can happen, especially
in large initialisation components with many children,
that a port is not connected properly, which at run
time manifests itself again as silently lost events. This
happens implicitly in line 26 again, as we are not con-
necting the ports correctly, but in this case it would
not manifest itself, as the run time would already abort
due to the errors in that line (see above).
Yet again, in a few cases this might in fact be de-
sired behaviour, introduced by initialisation order de-
pendencies, or dynamic service provider exchange with
the required components.

All the issues described above were the driving force be-
hind the inception of Kola and are, at least to some degree,
addressed by the language’s design and handled by its com-
piler.

3. KOLA GRAMMAR
This section describes the new keywords and syntactical

structures with which Kola, the Kompics language, extends
Java, and how it is mapped to Java code. Where it does
not conflict with the syntax mentioned here, Kola code is



1 event SingletonEvent

is compiled to

1 public class SingletonEvent implements KompicsEvent {
2 public final static SingletonEvent event = new

SingletonEvent ();
3 private SingletonEvent () {}
4 }

and

1 event TestEvent ( String some)

is compiled to

1 public class TestEvent implements KompicsEvent {
2 public final String some;
3 public TestEvent ( f inal String some) {
4 this .some = some;
5 }
6 }

Figure 1: Examples of event declarations.

simply normal Java code. Syntax definitions are collected
in appendix B3.

3.1 Keywords and Tokens
Kola introduces the following new keywords and tokens:

handler, handle, port, component, componentdef,
!subscribe, !unsubscribe, !connect, !disconnect,
init, !trigger, requires, provides, indication, request,
event, =>

For backwards-compatibility reasons all new keywords that
can be used as part of a statement are prefixed with an ex-
clamation mark (!), in order to avoid confusing the parser
when parsing the equivalent method names from the Kom-
pics framework. The intention behind choosing ! as a prefix
was to allude to Erlang’s and Akka’s message sending “tell”
operator.
Since these keywords hide some identifier tokens from Java
Kompics code, a few special rules have been introduced,
to allow reinterpretation of the keywords as identifiers in
certain contexts, such as method invocation and field refer-
ences.

3.2 Events
Kola provides a new syntax to declare events, shown in

figures 1 and 7, designed to reduce verbosity and repetitive
code required for such pure immutable data classes.
The syntax for event declarations is inspired by Scala’s case
classes[9], in that they allow specification of public fields in
the header of the class description. If the event description
has no header fields, it is assumed that a case object (Scala
terminology) is requested and a singleton event is created,
the only instance of which can be accessed using the .event
accessor, similar to Java’s .class accessor.
Note that the generated Java class (see figure 1) always im-
plements Kompics’ event marker interface KompicsEvent and
3The full grammar in Sablecc format can be found at:
https://github.com/kompics/kola/blob/master/src/main/
sablecc/kola-0.1.7.sablecc

1 port TestPort {
2 indication { TestEvent1 , TestEvent3 }
3 request { TestEvent2 }
4 }

is compiled to

1 public class TestPort extends PortType {
2 {
3 indication( TestEvent1 . class );
4 indication( TestEvent3 . class );
5 request( TestEvent2 . class );
6 }
7 }

Figure 2: Examples of port declarations.

1 componentdef TestC {
2 init ( String some) {
3 // do something with some
4 }
5 }

is compiled to

1 public class TestC extends ComponentDefinition {
2 TestC ( String some) {
3 // do something with some
4 }
5 public TestC ( f inal AutowireInit1 autowireInit ) {
6 this ( autowireInit .some);
7 }
8 public static class AutowireInit1 extends

Init <TestC > {
9 public final String some;

10 public AutowireInit1 ( String some) {
11 this .some = some;
12 }
13 }
14 }

Figure 3: Examples of component definitions.

by default all header fields are mapped to public final fields,
as this is the recommended practice in Kompics.

3.3 Port Types
A port type is effectively a singleton class that maps lists

of event types to the directional groups: indications and re-
quests. The Kola syntax for port types (figures 2 and 8)
is rather similar to the Java syntax (cf. figure 2), merely
avoiding one initialisation block, the .class accessor for each
event type, and allowing events to be grouped in a more ob-
vious manner. Most importantly, the introduction of port
type declarations into the grammar makes it easier for the
compiler to recognise them, and handle them appropriately
during type checks later when these types are used in com-
ponents.

3.4 Component Definitions
Component definitions are the templates for components,

in much the same way that classes are templates for objects.
They define the ports, handlers, child components, and in-
ternal state that a component instance of a specific type will
have.
The component definition syntax (figures 3 and 9) allows



1 componentdef TestC {
2 provides TestPort test;
3 requires TestPort2 test2 ;
4 }

is compiled to

1 public class TestC extends ComponentDefinition {
2 protected final Negative <TestPort > test =

provides( TestPort . class );
3 protected final Positive <TestPort2 > test2 =

requires( TestPort2 . class );
4 }

Figure 4: Examples of port fields.

1 componentdef TestParent {
2 component TestC (" someString ") child ;
3 component TestC dynamicChild ;
4 }

is compiled to

1 public class TestParent extends ComponentDefinition {
2 protected final Component child =

create ( TestC .class , new
AutowireInit1 (" someString "));

3 protected Component dynamicChild ;
4 }

Figure 5: Examples of child component declarations.

everything in a body that a normal class definition would
allow, plus additional Kompics declarations of init-blocks,
ports, children, handlers and handler-related statements.

Init Blocks.
Component instances are created by the Kompics runtime,

not directly by the programmer, and thus configuration pa-
rameters to components must be passed in an Init object.4
However, creation of such init objects adds a certain amount
of boilerplate in Java, in terms of mapping constructor ar-
guments to fields. Kola introduces the init-block (figures 3
and 12) to avoid this boilerplate. Writing an init-block in
Kola compiles to a constructor and an AutowireInit class of
the correct arity in Java (cf. figure 3).

Port Fields.
Every component provides and requires a number of named

ports of a specific type. In Java these are simply variables
that are initialised once the component is loaded, but in Kola
they are treated as a special type of field by the compiler,
identified by the provides and requires keywords (figures 4
and 10)

Children.
Components in Kompics form a supervision hierarchy, sim-

ilar to Erlang actors. Child components can be created dy-
namically at runtime or statically at component creation
time. Kola only deals with static creation at this time (fig-
4In old Kompics version this was done via an Init-event,
but this method was unnecessarily complicated and was op-
timised away.

Both

1 componentdef TestC {
2 provides TestPort test;
3 handle testHandler => test : TestEvent e {
4 // do something with e
5 }
6 }

and

1 componentdef TestC {
2 provides TestPort test;
3 handler testHandler : TestEvent e {
4 // do something with e
5 }
6 !subscribe testHandler => test;
7 }

are compiled to

1 public class TestC extends ComponentDefinition {
2 protected final Negative <TestPort > test =

provides( TestPort . class );
3 protected final Handler <TestEvent > testHandler
4 = new Handler <TestEvent >() {
5 public void handle( TestEvent e) {
6 testHandlerMethod (e);
7 }
8 };
9 {

10 subscribe( testHandler , test);
11 }
12 private final void testHandlerMethod ( TestEvent

e) {
13 // do something with e
14 }
15 }

Figure 6: Examples of handlers declarations.

ures 5 and 11), while dynamic creation works as before in
the Java version, i.e. using the create method of the parent
component definition.
If the component initialisation part is omitted (figure 5

line 3), only a child component field is created, but the com-
ponent is not initialised or started automatically, leaving it
prepared for dynamic instantiation.
If the argument list is empty, the component is initialised
with a no-argument constructor, i.e. equivalent to using
Init.NONE.
If arguments are provided, the Kola compiler will attempt
to find a matching AutowireInit class (see paragraph on Init
Blocks in section 3.4) for this component and use that for
initialisation.

Handlers.
are the parts of a component that deal with incoming

events. Handlers are subscribed to ports. Subscription
can be done statically or dynamically, as was the case with
child component creation. However, in this case Kola sup-
ports both (figures 6 and 13). A handler declaration sim-
ply declares a special type of field that holds a handler ob-
ject (an implementation of the Handler interface from the
Kompics framework). A handler does not do anything un-
less it is subscribed to a port, which can be done with
the !subscribe statement and undone with the !unsubscribe
statement. Kola allows these statements directly in the com-
ponent definition body, and will compile them into the in-



stance initialiser in Java. Since forgetting to subscribe a
handler to a port is one of the most common mistakes in
Kompics in practice (cf. section 2.2 warning 1), Kola also
defines a handle declaration, which does handler creation
and subscription in one step. This should be the default
approach of creating handlers in Kola. The handler can still
be unsubscribed later, if so desired.
Note that the extra method testHandlerMethod in figure 6

lines 12-14 is not technically necessary. The reason that Kola
compiles to that form instead of simply doing the work in
the handler’s handle method, is that it feels very unintuitive
to use TestC.this when trying to access a shadowed parent
component field in this format. This is avoided by invoking
an unshadowed method of the parent object.

Channels.
are created using the !connect statement, and destroyed

using the !disconnect statement. As with subscriptions this
can be done both statically and dynamically (figure 14).
Both statements take the provided port to the left of the
arrow (=>) and the required port to the right.
Generally, this is compiled in the obvious manner by sim-

ply replacing the keyword and => with equivalent binary
method from the Kompics framework. However, if the type
of either of the expressions is not a port type, instead of
using the expression directly a .getPositive(PortType.class) or
.getNegative(PortType.class) is suffixed to the expression.

3.5 Trigger
In Kompics events are triggered on ports inside a compo-

nent and then forwarded along all the connected channels.
Kola also adds a !trigger statement (figure 15), mostly for
consistency with the other new statements, but also to point
out to the compiler that it should check for error 3 (cf. sec-
tion 2.2).
The type of the left expression can be any event type, the

type to the right has to be a port instance.

3.6 Other
As a small extension to Java, Kola allows multiple top-

level type declarations in a single file, similar to Scala[9].
This makes it possible to easily keep a component or a port
type with all its associated events together for easy refer-
ence, without having to resort to static inner classes.

Kola also keeps all classes in se.sics.kompics permanently in
scope in addition to Java’s java.lang. The necessary imports
for the Java source files are automatically generated by the
compiler.

Example.
A longer Kola code example can be found in appendix C.

4. COMPILER
The Kola compiler, kolac, consists of four major parts: A

lexer, a parser, an abstract syntax tree (AST) analyser/-
transformer, and a Java source generator and writer. Addi-
tionally, there is an Apache Maven5 plugin that allows for
Kola projects to be compiled in a way that is familiar to
Java programmers.

5http://maven.apache.org/

4.1 Lexer & Parser
Both the Lexer and the Parser are automatically gen-

erated by the SableCC[4] from a grammar file6. The file
is based on an older Java 1.7 grammar provided on the
SableCC website7. It was extended with the Kola specific
rules described in section 3 and transformation rules from
concrete syntax tree (CST) to abstract syntax tree (AST)
were added, as they are supported in newer SableCC ver-
sions.
Lexing and parsing is done on multiple source files in the
sourcePath in parallel, since this stage is trivially parallelis-
able. If no errors occur during lexing and parsing, the AST
analysis stage is invoked for all source files in sequence to
avoid concurrency issues with type resolution.

4.2 AST Analyser/Transformer
A one-pass depth first approach is used to analyse the

AST, and transform it to a Java syntax tree (JST). The for-
mat used for the JST is a modified version of Sun’s JCode-
Model8. Where names cannot be immediately resolved,
markers are inserted into the JST, to be resolved later after
the AST→JST pass has finished, and all source files have
been analysed. Furthermore, in this stage the new Kola
grammar structures are resolved into Java structures, and
either implicitly or explicitly checked for compliance with
Kompics’ semantical restrictions (cf. section 2.2).

4.3 Java Source Generation
This stage simply uses JCodeModel’s source generation

facilities and a file writer, to generate the right directory
structure and Java source files for the JST in the outputDirectory.
During this stage it is also attempted to resolve previously
unresolved names in a lazy manner, and if necessary errors
are thrown where this is still not possible.

4.4 Apache Maven Plugin
The Maven plugin wraps the actual kolac executable, col-

lects the correct CLASSPATH elements, replaces the normal Maven
sourceDirectory(s) with the kolac outputDirectory and compiles
all the Kola and Java files in the kolac inputDirectory. It is
run in the generate-sources phase of the Maven build lifecycle.

5. EVALUATION
In order to be a valuable addition to the Kompics ecosys-

tem, Kola had to fulfil the following three criteria, which we
will evaluate in this section:

1. Reduce opportunities for mistakes that are either un-
necessarily only caught at run time or lead to difficult
to find bugs.

2. Improve the readability of Kompics code.

3. Introduce as little overhead as possible, especially at
run time.

5.1 Mistakes that are Preventable at Compile
Time

6http://github.com/kompics/kola/blob/master/src/main/
sablecc/kola-0.1.7.sablecc
7http://www.sablecc.org/java1.7/
8http://github.com/Bathtor/JCodeModel



1 public class HelloC extends ComponentDefinition {{
2 Handler startHandler = new Handler <Start >() {
3 @Override
4 public void handle( Start event) {
5 System .out. println (" Hello World from

Kola!");
6 Kompics . asyncShutdown ();
7 }
8 };
9 subscribe( startHandler , control );

10 }}

Listing 2: Kompics Hello World (omitting the Main
class used to start the runtime).

Project LoC Java Kola
Hello World 33 2 0
Ping Pong 124 12 0
CaracalDB 37711 894 5

GVoD 94000 1358 0

Table 1: Number of opportunities for mistakes that
are preventable at compile time in Java and Kola.

Opportunities for mistakes that are preventable at compile
time are described in section 2.2 and broadly fall into the
categories of errors and warnings. Since there is no formal
measure of this property, we shall simply resort to counting
such opportunities in a number of example programs. As
described above, these opportunities arise in the following
circumstances:

• connect method calls.

• trigger method calls.

• subscribe method calls.

• create method calls.

• Handler instance creation.

Thus our metric is the total number of occurrences of these
circumstances in the example program.
We will use example programs ranging from a very simple
Hello World (listing 2), over a more involved Ping Pong9,
to multi-thousand line projects, namely CaracalDB10 and
GVoD11.

For the Hello World (listing 2) example, it is easy to see,
that there are exactly two such opportunities: The creation
of the startHandler, and the subscribe invocation. The larger
projects were, of course, not counted manually, but rather
using common bash tools.
It can be seen from table 1, that the the number of such

opportunities in large projects grows sublinearly, possibly
loosely logarithmically, with the size of the code base. That
is to say it levels off for larger projects, where pure Java
code starts to become dominant over the distributed aspects.
Thus it is clear that the impact of having these opportunities
9http://github.com/kompics/kola-examples/tree/master/
src/main/java/se/sics/kola/examples/pingpong/java

10https://github.com/CaracalDB/CaracalDB
11https://github.com/Decentrify/GVoD

removed is very high, especially in the early stages of a new
Kompics project.
It should be noted, as can be seen in the CaracalDB entry

in table 1, that the Kola compiler currently does not in fact
remove all such issues that could theoretically be detected
at compile time. If handlers or components are created and
placed in some kind of container data structure, for exam-
ple a collection, before subscriptions or connections respec-
tively have been done for the variable, the Kola compiler
loses track of these objects. However, this is mostly an issue
for the two warnings. Errors could theoretically run into the
same problem, but only in Kola code that a) purposefully ig-
nores the Kola constructs in favour of their Java equivalents,
and b) is additionally very badly structured, for example by
moving required ports into collections, or purposefully cast-
ing their types, such that the port type information is lost.
This possibility cannot be avoided while maintaining back-
wards compatibility with the Kompics Java implementation.

5.2 Readability
Code readability is not trivial to measure either, but what

we are really looking for here are software productivity met-
rics. The most common productivity metric by far is lines
of code (LoC). However, LoC alone is not suitable as a com-
parison between languages, as it does not take the number of
keywords, i.e. the vocabulary, of the language into account,
which is a major factor in software productivity.
This is captured, among other things, by the Halstead met-
rics[5], which we will use here to compare Kola and Kompics
Java. From these we used the length (N), which is the to-
tal number of operands and operators in the program, the
vocabulary (n), the number of distinct operands and oper-
ators, the volume (V), which captures the relationship be-
tween length and vocabulary (N × log2 n), as well as the
difficulty (D) to write or understand the code, and the de-
velopment effort (E), which translates into a coding time
(T) approximation of T = E

18 seconds. It should be noted
that the Halstead metrics are originally designed for pro-
cedural code, and do not map trivially to object oriented
languages like Java or Kola. However, when adding support
for them to the Kola compiler we opted for a rather naïve
implementation, as the goal was not to actually predict de-
velopment time accurately, but only to compare Kola and
Java Kompics, and since both use the same implementation,
the comparison should be rather fair.
Another commonly used software productivity metric is

Cyclomatic Complexity (CC)[7], which measures the com-
plexity of programs based on their control flow structure.
However, CC is more useful to measure good coding prac-
tices within a language, than improvements across languages,
and will thus not be used here.

Since there are no large projects available, yet, for Kola,
we had to limit our evaluation with software productivity
metrics to smaller programs that could quickly be written
in both Kola and Kompics Java to be as similar as possible.
All the examples used for table 2 can be found in the Kola
Examples repository12 of which listing 2 is an excerpt. All
the metrics, both for Kola and Java code, collected for this
section were calculated by the Kola compiler.
Table 2 shows lines of code and the Halstead metrics men-

tioned above for the Hello World (HW) and Ping Pong (PP)
12https://github.com/kompics/kola-examples



LoC N n V D E ×103

Project Java Kola Java Kola Java Kola Java Kola Java Kola Java Kola
Hello World 33 14 151 60 48 38 843 315 22 8 18.6 2.5
Ping Pong 124 62 635 259 105 89 4263 1677 69 38 295 63

Table 2: Software productivity metrics for example programs in Kola and Kompics Java. Lines of Code
(LoC), and Halstead metrics: Length (N), Vocabulary (n), Volume (V), Difficulty (D), Effort (E).

LoC raw adj.
Project Java Kola Java Kola Java Kola

Hello World 33 14 1.579 2.181 0.506 1.108
Ping Pong 124 62 1.681 2.381 0.608 1.308

Table 3: Average compile time in seconds as re-
ported by Maven and adjusted for Maven overhead
of 1.0728s.

examples. It can be seen that in both Java and Kola PP is
about four times longer than HW, which is reflected both
in LoC and in N (the length). The vocabulary, however,
only doubles between the two programs. What is also im-
mediately obvious, is that Java code is about twice as long
as Kola code, while having only about 20% more vocabu-
lary. Both the overhead in length and vocabulary, translate
directly to large differences in difficulty (D) and develop-
ment effort (E), where both metrics show almost an order
of magnitude overhead of Java over Kola.

5.3 Overhead
Two types of overhead are of interest for us: Compile time

overhead, introduced by our additional Kola compiler, and
run time overhead, which could occur if the Kola compiler
produces less efficient code, compared to hand written Kom-
pics code.
The experiments in this section were run on a MacBook Pro
with a 3GHz dual-core Intel Core i7 (L2 Cache 256KB per
core, L3 Cache 4MB) and 16GB of DDR3 memory, as well
as a solid-state drive (SSD). The JVM used was Oracle Java
HotSpot(TM) 64-Bit Server VM version 1.8.0_31 for OS X.

Compile Time Overhead.
It is clear that there has to be some compile time over-

head, as extra – partially redundant – work is being done.
The question we have to answer is how much, and how does
it scale. We have measured the compile time for small, com-
parable Kompics Java and Kola projects, and to make these
results more realistic we used the Maven plugin, instead of
measuring raw compiler time. The values for Kola include
both the kolac and javac execution times, while Kompics Java
only measured javac. We additionally measured Maven over-
head, by compiling a completely empty project with the
same setup.
Table 3 shows the results for projects from the Kola Exam-
ples repository (see above), averaged over five measurements
each. As can be seen easily in the adjusted columns, the
Kola compiler adds about the same compilation effort again
as the Java compiler, which seems rather reasonable as it
does similar work to the latter and is probably somewhat
less optimised.

Run Time Overhead.
As opposed to compile time overhead, it is not clear whether

the Kola compiler introduces any noticeable inefficiencies
into the generated code. However, the only performance
critical aspects that are different in Kola are handler defini-
tions, and thus any introduced overhead should be reflected
in a loss of raw event handling throughput. We used the
Ping Pong example to collect event throughput statistics
and compared the performance of the Kompics Java and
the Kola implementations. The experiments were run using
the Kompics scheduler with 2 threads and an event batch
size of 50 events. The JVM used default settings, as mem-
ory management was not an issue, since no new objects were
being created during the measurement phase. For five con-
secutive one minute runs each the Java version reached an
average of 1, 117, 663 events per second (σ = 46244), and
the Kola version showed an average of 1, 084, 100 events per
second (σ = 95250). This leaves both results within one
standard deviation (σ) of each other and thus does not con-
clusively show overhead of one over the other, but possibly
indicates a slight slowdown of the Kola version. This might
be caused by the introduction of the additional method call
in handlers compiled from Kola to Java (cf. section 3.4 the
paragraph on Handlers).

6. RELATED WORK
Distributed Oz[10] and Erlang[3] are the most well-known

examples of programming languages with a clear distributed
systems focus, yet both languages are dynamically typed.
Akka[11] on Scala and Java endeavours to bring static typ-
ing to the actor model used in Erlang, but usually does not
check the types of messages that are sent to specific actors.
There have been mutliple attempts to introduce type-safety
in Akka at that level: 1) Typed Actors are an implemen-
tation of the Active Objects pattern on top of Akka, effec-
tively hiding the message-passing model below intercepted
method invocations. This approach, however, tends to be
very unintuitive and has never reached widespread appli-
cation among Akka users. 2) TAkka[6] supports statically
typed messages, and actor behaviours. 3) Akka Typed13, is
an experimental addition to Akka that decouples behaviour
specifications and the actors that exhibit such behaviour.
This is very similar to the Kompics model, replacing chan-
nels and events with addressed messages.
The Go14 language was created by R.Griesemer, R.Pike, and
K.Thompson at Google and is a statically typed language
that uses statically typed channels for concurrency.
The Scala DSL for Kompics15 addresses some of the ver-

13Akka Typed was presented by R.Kuhn at CurryOn in July
2015

14http://golang.org
15http://kompics.sics.se/current/scala/



bosity and readability issues of Kompics Scala that are mea-
sured in section 5.2, but does not add any new type checks.
Quite the opposite, in fact, it removes some of the handler
types in favour of Akka-like pattern matching.

7. SUMMARY AND FUTURE WORK
In this paper we have introduced Kola, the Kompics lan-

guage, a Java 1.7 extension that brings static type checking
to the domain of events in component based systems. We
have shown which kind of issues typically occur in Kom-
pics Java that can be prevented at compile time already by
Kola, and how frequently the opportunity for these kinds
of bugs arises. We have also shown a large improvement in
code readability for Kola, as measured by common software
productivity metrics. And finally we have shown that the
compile time overhead introduced by Kola is manageable,
while the run time overhead is negligible to non-existent.
We are planning to extend the Kola grammar to support
Java 1.8, as that version, among other things, allows shorter
handler code in Kompics Java using anonymous functions,
making the comparison between Kola and Java a fairer one.
We are also planning to incorporate feedback and experi-
ences from students being taught distributed systems (ID2203)
at KTH in Kola instead of Kompics Java into the future de-
velopment of the language.
Formal definition of the type checking rules the Kola com-
piler uses, where they differ from the Kompics rules de-
scribed in [2], is also left for future work.

APPENDIX
A. REFERENCES
[1] C. Arad, J. Dowling, and S. Haridi. Message-passing

Concurrency for Scalable, Stateful, Reconfigurable
Middleware. In Proceedings of the 13th International
Middleware Conference, Middleware ’12, pages
208–228, New York, NY, USA, 2012. Springer-Verlag
New York, Inc.

[2] C. C. I. Arad. Programming Model and Protocols for
Reconfigurable Distributed Systems. PhD thesis, KTH
- Royal Institute of Technology, Stockholm, 2013.

[3] J. Armstrong. Making reliable distributed systems in
the presence of software errors. (December):295, 2003.

[4] E. Gagnon and L. Hendren. SableCC – an
object-oriented compiler framework. Proceedings of
TOOLS 1998, 1998.

[5] M. H. Halstead. Elements of software science,
volume 7. Elsevier New York, 1977.

[6] J. He, P. Wadler, and P. Trinder. Typecasting Actors:
From Akka to TAkka. Proceedings of the Fifth Annual
Scala Workshop, pages 23–33, 2014.

[7] T. J. McCabe. A complexity measure. Software
Engineering, IEEE Transactions on, (4):308–320,
1976.

[8] J. P. Morrison. Data responsive modular, interleaved
task programming system. IBM Technical Disclosure
Bulletin, 13(8):2425–2426, 1971.

[9] M. Odersky. The Scala experiment: Can we provide
better language support for component systems?
Proceedings of the 2006 POPL Conference,
41(1):166–167, 2006.

[10] P. V. A. N. Roy, G. Smolka, M. Mehl, R. Scheidhauer,
P. Van Roy, S. Haridi, and P. Brand. Mobile Objects
in Distributed Oz. ACM Transactions on
Programming Languages and Systems, 19(5):804–851,
1997.

[11] D. Wyatt. Akka Concurrency. Artima Incorporation,
USA, 2013.

B. SYNTAX DEFINITIONS

〈EventDeclaration〉 ::= [〈Modifiers〉] ‘event’ 〈Identifier〉
[〈TypeParameters〉] [〈HeaderFields〉] [‘extends’
〈ClassType〉] [〈Interfaces〉] [〈ClassBody〉]

〈HeaderFields〉 ::= ‘(’ [〈FormalParameterList〉] ‘)’

Figure 7: Syntax of event declarations.

〈PortDeclaration〉 ::= [〈Modifiers〉] ‘port’ 〈Identifier〉
〈PortBody〉

〈PortBody〉 ::= ‘{’ 〈PortBodyDeclaration〉* ‘}’

〈PortBodyDeclaration〉 ::= ‘indication’ ‘{’ 〈EventType〉*
‘}’

| ‘request’ ‘{’ 〈EventType〉* ‘}’

Figure 8: Syntax of port declarations.

〈ComponentDeclaration〉 ::= [〈Modifiers〉] ‘componentdef’
〈Identifier〉 [〈TypeParameters〉] 〈ComponentBody〉

〈ComponentBody〉 ::= ‘{’ 〈ComponentBodyDeclaration〉*
‘}’

〈ComponentBodyDeclaration〉 ::=
〈ClassMemberDeclaration〉

| 〈InstanceInitializer〉
| 〈StaticInitializer〉
| 〈ConstructorDeclaration〉
| 〈InitDeclaration〉
| 〈PortFieldDeclaration〉
| 〈ChildDeclaration〉
| 〈HandlingDeclaration〉

Figure 9: Syntax of component definitions.

〈PortFieldDeclaration〉 ::= ‘requires’ 〈PortType〉
〈Identifier〉 ‘;’

| ‘provides’ 〈PortType〉 〈Identifier〉 ‘;’

Figure 10: Syntax of port field declarations.



〈ChildDeclaration〉 ::= ‘component’ 〈ComponentType〉
[〈ComponentInitialization〉] 〈Identifier〉 ‘;’

〈ComponentInitialization〉 ::= ‘(’ [〈ArgumentList〉] ‘)’

Figure 11: Syntax of child component field declara-
tions.

〈InitDeclaration〉 ::= [〈Modifiers〉] ‘init’ [〈HeaderFields〉]
〈ConstructorBody〉

Figure 12: Syntax of init block declarations.

〈HandlingDeclaration〉 ::= 〈HandleDeclaration〉
| 〈HandlerDeclaration〉
| 〈ConnectStatement〉
| 〈SubscribeStatement〉
| 〈DisconnectStatement〉
| 〈UnsubscribeStatement〉

〈HandleDeclaration〉 ::= ‘handle’ 〈Identifier〉 ‘=>’
〈PortIdentifier〉 ‘:’ 〈EventType〉 〈EventIdentifier〉
〈Block〉

〈HandlerDeclaration〉 ::= ‘handler’ 〈Identifier〉 ‘:’
〈EventType〉 〈EventIdentifier〉 〈Block〉

〈SubscribeStatement〉 ::= ‘!subscribe’ 〈HandlerRef 〉 ‘=>’
〈PortRef 〉 ‘;’

〈UnsubscribeStatement〉 ::= ‘!unsubscribe’ 〈HandlerRef 〉
‘=>’ 〈PortRef 〉 ‘;’

Figure 13: Syntax of handler related declarations.

〈ConnectStatement〉 ::= ‘!connect’ 〈Expression〉 ‘=>’
〈Expression〉 ‘:’ 〈PortType〉 ‘;’

〈DisconnectStatement〉 ::= ‘!disconnect’ 〈Expression〉 ‘=>’
〈Expression〉 ‘:’ 〈PortType〉 ‘;’

Figure 14: Syntax of connect statements.

〈TriggerStatement〉 ::= ‘!trigger’ 〈Expression〉 ‘=>’
〈Expression〉 ‘;’

Figure 15: Syntax of trigger statements.

C. KOLA EXAMPLE
The following example is very similar to the Ping Pong

code used for section 5, with the performance measuring
code removed.

1 event Ping
2 event Pong
3
4 port PingPongPort {
5 indication { Pong }
6 request { Ping }
7 }
8
9 componentdef ParentC {

10 component PingerC () pinger ;
11 component PongerC () ponger ;
12
13 !connect ponger => pinger : PingPongPort ;
14 }
15
16 componentdef PingerC {
17 requires PingPongPort ppp;
18
19 handle startHandler => control : Start e {
20 !trigger Ping.event => ppp;
21 }
22
23 handle pongHandler => ppp : Pong pong {
24 System .out. println ("Got Pong");
25 }
26 }
27
28 componentdef PongerC {
29 provides PingPongPort ppp;
30
31 handle pingHandler => ppp : Ping ping {
32 System .out. println ("Got Ping");
33 !trigger ping => ppp;
34 }
35 }
36
37 public class Main {
38 public static void main( String [] args) {
39 Kompics . createAndStart ( ParentC .class , Init.NONE);
40 }
41 }


