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Abstract—Model reuse is a promising and appealing convention 
for effective development of simulation systems as it offers 
reduction in development cost and time. Various methodological 
advances in this area have given rise to the development of 
different component reusability frameworks such as BOM (Base 
Object Model). But lack of component matching and weak 
support for composability verification and validation, in these 
frameworks, makes it difficult to achieve effective and 
meaningful reuse. In this paper we focus on Composability 
verification and propose a process to verify BOM based 
composed model at dynamic semantic level. We suggest an 
extension to the BOM components, to capture behavior at a 
greater detail. Then we transform the extended BOM into our 
proposed Colored Petri Nets (CPN) based component model so 
that the components can be composed and executed at an 
abstract level. Subsequently we advocate to use CPN tools and 
analysis techniques to verify that the model satisfy given 
requirements. We classify the properties of a system among 
different groups and express the model’s requirements by 
selecting some of the properties from these groups to form 
requirement specification. Also we present an example of a Field 
Artillery model, in which we select a set of properties as 
requirement specification, and explain how CPN state-space 
analysis technique is used to verify the required properties. Our 
experience confirms that CPN tools provide strong support for 
verification of composed models.  

Keywords—Model Verification; Model  Transformation; 
Dynamic Semantic Composability; Colored Petri Nets; State-space 
Analysis; Deadlock; Field Artillery scenario. 

I. INTRODUCTION 
With the advent of net-centric era of methods and 

technologies in designing complex simulation systems, the 
focus of Modeling and Simulation (M&S) industry has been 
driven by the most recognized potential benefits: reduced 
development cost and time [1]. The community has also taken 
deep interest in the quality design principles and their 
underlying supportive theories that promise these benefits, 
Most important of these are reusability and composability [1] 
[2]. Reusability is the ability of simulation components to be 
reused for different applications. Composability is the 
capability to select and assemble components in various 
combinations to satisfy specific user requirements [3]. 
Composability is one of the effective means to achieve 
reusability as it offers a reduction in the complexity of system 
construction by enabling the designer to reuse appropriate 
components without having to re-invent them [4]. But it is a 
challenging and daunting problem in practice, and is 
considered to be the elusive holy grail of modeling and 
simulation [5].  

Composability contends with the alignment of issues on the 
modeling level [6], therefore at an abstract model level, it is the 
creation of a complex model from a collection of basic reusable 
model components. The term Composability carries various 

meanings and views in theory which are distinguished, 
primarily by its different “levels” or “layers”, as introduced by 
different researchers.  It is essential to contemplate these 
different composability “levels” to better understand its 
theoretical underpinnings. Tolk [7] propose a six layered model 
of component composability, namely technical, syntactic, 
semantic, pragmatic, dynamic, and conceptual layer. Similarly 
Medjahed et al [8] introduce a composability stack in which the 
composability of semantic web services is checked at four 
levels: Syntactic, Static Semantic, Dynamic Semantic and 
Qualitative level. In M&S three of these levels were brought 
into consideration by Farshad et al [9] in the composition 
process of the model components. Syntactic composability 
means that components can be connected to each other and 
they can operate together. Static-Semantic composability refers 
to the fact that the coupling of components is considered 
meaningful and they have the same understanding of concepts 
to communicate with each other. Dynamic Semantic 
Composability implies that the components are dynamically 
consistent, i.e., they have correct behavior, necessary to reach 
the desired goals and subsequently satisfy user requirements. 

In M&S, verification is typically defined as a process of 
determining whether the model has been implemented 
correctly [10]. In principle, verification is concerned with the 
accuracy of transforming the model’s requirements into a 
conceptual model and the conceptual model into an executable 
model [11]. We concentrate on the former part and assume that 
the behavioral correctness is an integral part of the model’s 
requirements.  

In this paper, our focus is the Dynamic Semantic level of 
composability, where we aim to verify the behavioral 
correctness of composed components. We define dynamic 
semantic composability verification (or simply behavioral 
verification) as a process of determining whether a composed 
model satisfies given requirements, where the requirement 
specification consists of system properties such as deadlock 
freedom, livelock freedom, mutual exclusion, and fairness. 
These properties are classical cases of system behavior and 
their satisfaction may be required for the behavioral correctness 
of the composition e.g., the absence of a deadlock implies that 
the components will never halt infinitely waiting for each 
other. The selection of these properties as a requirement 
depends on the goals of the composition. System properties 
may also include scenario specific properties representing 
certain desirable or undesirable incidences in the system. In 
behavioral verification of a given composition, we analyze that 
the model components are correctly selected and assembled 
such that they satisfy their requirement specification and their 
combined behavior is suitable to reach their composition goals.  

 Composability essentially relies on a suitable composition 
framework that can provide accurate reasoning of correctness 
at each level. Base Object Model (BOM) is a SISO (Simulation 
Interoperability Standards Organization) certified component 
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architecture that is partially consistent with this stipulation 
[12]. It contributes to conceptual modeling by providing the 
needed formalism and influences the ability to develop and 
compose model components [13]. BOM development effort 
was initiated to serve as a standard description of simulation 
components for HLA (High Level Architecture), which is 
IEEE certified architecture for distributed simulations. In BOM 
different elements such as entities, events, actions and state-
machines of the components are defined. Entities, events and 
actions represent the structural information about the real world 
objects that are being modeled, whereas state-machine 
formalizes component behavior. For details interested readers 
should refer to [14]. BOM framework does fundamentally 
poses a satisfactory potential for effective model composability 
and reuse; even so it falls short of required semantics and 
necessary modeling characteristics of behavioral 
expressiveness, which are essential for modeling complex 
system behavior and reasoning about the validity of the 
composability at dynamic semantic level [9]. This fact leads us 
to the investigation of external methods for the specification of 
additional modalities that are involved in the behavioral 
modeling of components and methods for their composability 
verification.  

Different approaches have been suggested for the external 
composability verification. A rule-based approach proposes to 
match a set of BOMs and verify their syntactic, static-semantic 
and dynamic-semantic composability [9]. A similar work [15] 
proposes an instrumentation technique for specification of 
system properties and verification of behavioral composability 
using a Model Tester. Another method [16] supports the idea of 
using Petri Nets algebraic techniques for the composability 
verification, where fairness is considered as a behavioral 
property. A different approach addressed the semantic 
validation of composed models in [17]. 

In this paper, we present an approach to verify 
composability of BOM components at dynamic semantic level. 
At first, we suggest to apply the concept of “Extended finite 
state-machine” (EFSM) given in [18] as a formal specification 
and propose to extend BOM’s conceptual modeling segment, 
in order to cover its existing deficiencies of the modalities. We 
refer to our extended version of BOM as Extended BOM or 
E-BOM) throughout the paper. It should be noted that E-BOM 
is not a SISO standard. Secondly, we present a method to 
automatically transform each extended BOM (E-BOM) 
component in to our proposed CPN based component model. 
This component model represents all the essential parts of a 
model (like BOM) in form of a CP-Net. It is called component 
model because it is generated as a CPN module and can be 
composed and executed in CPN environment [19]. 
Consequently, we utilize numerous analysis and verification 
techniques (mainly contributed by CPN community) for 
evaluating composability at behavioral level. In essence, given 
a BOM composition and the requirements specification, we 
transform each E-BOM into CPN component model; compose 
them as a hierarchal CP-Net, and apply verification techniques 
such as state-space analysis to evaluate the required system 
property(s) and show that the model fulfills given 
requirements. Our approach varies from previously specified 
related approaches (and with others in general) in a sense that 
we utilize the expressive capability of CPN framework in the 
modeling of complex systems involving concurrency, 
synchronization and communication, using component based 
approach. Our approach is also favored by the formal 
semantics of CPN and the abundance of CPN verification 
techniques, contributed by the CPN community over two of 
decades. In our observation, using CPN for verification proves 
to be more fruitful as compared to other similar formalisms, 

due to the broader range of verification methods and 
techniques and due to their greater suitability in formal 
representation and evaluation of concurrent behaviors.  

The rest of the paper is organized as follows:  Section II 
briefly defines and explains basic concepts and formalisms 
used in this paper. Section III formulates our methods and 
approach for extending BOM to E-BOM, the transformation of 
E-BOM models to CPN component models, their composition, 
and the verification of the composed model using the methods 
available in CPN environment. Section-IV furnishes 
implementation details of our verification process and the 
proposed framework. In Section V we discuss a case study of a 
Field Artillery model to explain our approach whereas section 
VI frames the summary and conclusion. 

II. BASIC CONCEPTS AND FORMALISM 
In this section we briefly discuss basic concepts of 

Extended Finite State-machine, Colored Petri Nets and some 
important concepts used in our work. We also define 
requirement specification and classify families of verification 
properties in this section. 

A. Extended Finite State-machine 
An Extended Finite State Machine (EFSM) is defined by the 
tuple 

M = (Q, I, Σ1, Σ2, V, Λ) 
Where: 

 Q (≠ ) is a finite set of states.  
 I  Q is the set of initial states 
 Σ1 is a finite set of (send or receive) events. 
 Σ2 is a finite set of actions  

(Where actions are the instructions to be executed and 
should not be confused with the BOM actions, which 
are used in pattern of interplay). 

 V is the set of state variables.  
 Λ is a set of transitions; each transition λ ∈∈ Λ   

 = q   q  
Where 
 q and q  ∈ Q 
 e ∈ Σ1 is an event 
 g is a condition (or guard) 
 a ∈ Σ2 is an action.  

 
It means if the system is at a state ‘q’, and an event ‘e’ 

occurs, and if the guard ‘g’ is satisfied, then ‘a’ action is 
executed, and the system will transit to the next state q . The 
motivation behind using EFSM has following arguments: 

 By introducing state-variables in FSM, we are able to 
model the structural attributes of a component, which 
may be affected due to the change of states and 
occurrence of transitions (behavior), and can help in 
making the model more realistic. Also the values of 
these attributes can be used in the arithmetic or logical 
evaluation to assess trigger conditions of the 
transitions. It can also be useful to transfer variable 
values from one model to another model, thus in a 
sequential composition, a value output by one 
component can be consumed by the other in the 
composition [18]. 

 By introducing actions, during an occurrence of a 
transition, we can capture complex behavior that 
cannot be obtained through simple transition labels 
(such as events in standard BOM), because actions (set 
of instructions) can cause changes in the state-variables 
making the behavior of the model more realistic [18]. 

e [g] / a 
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We apply the concept of EFSM to the BOM conceptual 
model, so that we can incorporate state-variables and extended 
representation for transitions (events, guards, actions), to a 
form, which we name: Extended BOM or E-BOM. 

B. Colored Petri Nets 
Coloured Petri Nets is a graphical language for constructing 

models of concurrent systems and analyzing their properties. 
CPN is a general purpose discrete event language, combining 
the capabilities of Petri nets, as a foundation of the graphical 
notation and the basic primitives for modeling concurrency, 
communication, and synchronization, and a programming 
language (CPN ML), which is based on Standard ML 
functional programming language, that provides the primitives 
for the definition of data types and for specifying data 
manipulation routines [19]. CPN is formally defined by the 
tuple: 

CPN = (P, T, A, Σ, V, C, G, E, I) where: 
 P is a finite set of places  
 T is a finite set of transitions  such that:  P  T =  
 A ⊆ P×T ∪T ×P is a set of directed arcs. 
 Σ is a finite set of non-empty colour sets. 
 V is a finite set of typed variables such that: 
 Type[v] ∈ Σ for all variables v ∈ V 
 C: P→Σ is a colour set function that assigns a colour 

set to each place. 
 G: T → Expression  is a guard function that assigns a 

guard to each transition t 
 E: A→ Expression  is an arc expression function that 

assigns an arc expression to each arc a  
 I: P → Expression is an initialization function that 

assigns an initialization expression to each place p. 
Detailed explanation of the concepts required to work with 

CPN is beyond the scope of this paper hence interested readers 
are recommended to consult: [19] [20] [21]. “CPN Tools” is a 
software package for the editing, simulation, state space 
analysis, and performance analysis of CPN models [21]. The 
tool acts like an integrated development environment (IDE) for 
the construction of CPN models. It comes along with a bundled 
simulator that efficiently handles the execution of untimed and 
timed nets. The most important feature of CPN tool from our 
point of view is the generation and analysis of state spaces. The 
analysis of state space includes various built-in state-space 
querying functions, and support for creating analysis report 
which altogether greatly contributes to the verification process.  

C. Hierarchical Coloured Petri Nets 
CPN model can be organized as a set of modules; where 

modules can be seen as black boxes which make it possible to 
work at different abstraction levels, concentrating on one at a 
time. CPN tools offer facility to construct hierarchal CPN 
models, by replacing an entire CPN model with a substitute 
transition that can be connected to a main model. This way, the 
entire model can be divided into simpler modules (or 
components), and can be composed in a separate model to 
promote modular development and flexible reuse [19] [21]. 
Our CPN component model uses CPN hierarchical features. 

D. State Space Analysis 
State space method is one of the most prominent approach 

for conducting formal analysis and verification. The basic idea 
is to calculate all reachable states and state changes of the 
system and represent these as a directed graph. From a 
constructed state space it is possible to answer a large set of 
analysis and verification questions concerning the behavior of 
the system such as absence of deadlocks, the possibility of 

being able to reach a good state, and never reach a bad state 
and the guarantee of reaching a goal state(s).  

E. Requirement Specification 
For the purpose of verification, we assume that the given 

composed model under consideration is accompanied with a set 
of requirement specifications, consisting of a set of properties. 
These properties are typically classified in to following four 
families (or kinds) of properties: [22] 

 Reachability Properties: express that some particular 
situation (desirable or undesirable) can be reached. 
(e.g., goal reachability)  

 Safety Properties: suggests that under certain 
conditions, something bad will never occur (e.g., 
deadlock,  nuclear meltdown) 

 Liveness Properties: express that under certain 
conditions, something good will eventually occur. 
(e.g., a component will eventually enter critical 
section). 

 Fairness Properties: state that under certain 
conditions, something good will occur infinitely often 
(e.g., fair distribution of shared resource) 

We assume that based on the modeling objectives, some of 
these properties are formulated in the requirement 
specification. We assert that the components are composable at 
the dynamic semantic level, if they fulfill their requirements. 
 

 
Figure 1.  Composition & Verification Relationship 

III. CPN BASESD COMPOSABILITY VERIFICATION 
This sections presents methods and approach as our 

contribution, realized at different stages of component based 
modeling and simulation development life-cycle.   

The key milestones of this lifecycle are described in fig 2. 
A simuland is the real world system of interest, which is to be 
simulated [11]. Based on the abstractions that the modeler has 
about a simuland and the requirements in terms of goals and 
objectives, the concerning model components (such as BOM), 
are discovered from a component repository and composed, to 
form a conceptual model. The conceptual model is 
implemented in form of an executable simulation (such as 
HLA) which is executed and results are generated that can be 
used for refinements.  

 
Figure 2.  Development Life-cycle (inspired from [11]) 

System Requirements 

Composed Model Required Property 

Verification 

Satisfied Violated 
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In this paper, our focus is centered on “Verification1” where 
we examine that the conceptual model correctly represents the 
given requirements, (some people call it validation). For this 
purpose we transform our conceptual model (BOM 
composition) into a CPN model and apply various verification 
techniques. We propose this transformation process in three 
steps: 

A. BOM to E-BOM 
In this step, each BOM component of the composition, is 

parsed and is presented to the modeler for applying additional 
information, such as state variables data-types, guards and 
actions (which are not part of the standard BOM). This is 
important to note that we don’t intend to modify the structure 
of the standard BOM; instead we extend it using EFSM 
formalism to serve our purpose.  Figure 3 describes the 
mapping from BOM to E-BOM, showing all the elements that 
can be imported from BOM model and the rest that modeler 
needs to specify explicitly.  

 
Figure 3.  BOM to E-BOM extension 

B. E-BOM to CPN Component Model 
At this step, we transform each E-BOM to our proposed 

CPN component model. It is basically a three layered 
representation of a component in form of CP-Net: 

1)  Structural Layer  
This layer consists of the physical attributes of the CPN 

component model, and are represented inform of places. Each 
state-variable in the E-BOM, becomes a place, and its data type 
becomes a Color Set of that place. If a  state-variable has a 
primitive data type such as: INT, STRING or BOOL, then we 
simply assign it to the place, but if the data type is complex, 
such as product, tuple, record or list, then we first declare that 
data type as a Color Set and then assign it to the place. The 
places are also initialized with their initial value, if they are 
marked as initial states in E-BOM.  

2) Behavuoural Layer  
This layer represents the behavior of CPN component 

model. The state-machine in E-BOM becomes a part of this 
layer, such that each state in the E-BOM becomes a place of 
type INT, and the initial state(s) is initialized with a zero value 
token. And each transition in the E-BOM becomes a CPN 
transition in this layer, and so are guard and action, which are 
translated into guard and code-segment inscription respectively 
[21] (Section: Documentation\Concepts\Inscriptions & 
expressions\Transition inscriptions). The purpose of this layer 
is to be able to represent state-machine behavior of a 
component in form of CP-Net, where the flow of token(s) 
represents the change of component’s state. The transitions of 
this layer are connected to those state variables (places) of the 
structural layer, where an update (read or write operation) is 
necessary. If a transition reads a variable value, then it is 
connected with an incoming arc, whereas if it writes a variable 
value, then it is connected with an outgoing arc. For this 

matter, we also propose a “Data Marshaling” technique using 
CPN ML functions, so that the mismatch of Color Sets 
between the layers can be accommodated. This mismatch may 
occur, where the input and output places have complex data 
types of varied tuple size. In short, this technique can be 
perceived as Type casting of the color sets, and is necessary for 
the CP-Net to fulfill the CPN syntax.  

3) Communication Layer 
This layer is responsible for the interaction and 

communication among the components involved in the 
composition. It provides interface for connecting the inputs and 
outputs of the components and also provide information about 
the data exchange. In this layer, we create port places [21] 
which are connected to each transition of the behavioral layer. 
Note that if a transition represents a send event (of BOM), then 
it will be connected to an out-port place, with an outgoing arc, 
whereas if it represents a receive event, then it will be 
connected to an in-port place with an incoming arc. The type of 
the port place depends on the parameters (contents of events in 
BOM) of the transition, based on which we construct a color 
set of type product, and assign this color set to the port place. 
All these port places in each CPN component are connected to 
their respective “socket places” [21] in the main CPN model, 
where all sub components are composed. Figure 4 gives an 
overview of this transformation using a simple example. Figure 
4a shows BOM FSM of a component, which is extended to E-
BOM shown in Figure 4b. 

            
                (a)                                              (b) 

 
(c) 

Figure 4.  (a) BOM FSM  (b) E-BOM  (c) CPN component Model  

In the E-BOM, two variables SV1 of type1 and SV2 of 
type2 are added. Also two transitions T1 and T2 are defined. T1 
has an event Trans1 and an action: SV2=SV1 whereas T2 has 
an event Trans2 and an action: Read (SV2). Figure 4c 
represents CPN component model of this example. It is 
apparent from figure 4c that Trans1, in the behavioral layer can 
only be enabled if the place SV1 is initialized with an initial 
value token (represented by a shadowed box), place S1 has a token 
with zero value, and the place T1 receives “data1” token from 
some other component, which carries event parameters. When 
Trans1 is fired, it consumes “data1” token from T1 port, reads 
value from variable SV1; it may use data marshaling function 
(DMF) to type cast color-sets; copies SV1 to SV2, and changes 
component’s current state from S1 to S2. Similarly, in the next 
step Trans2 reads from SV2, and sends its value as a token at 
port T2, before it returns to state S1. Intuitively, the role and 
nature of these three layers are different but they work together 
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to make the CPN module act like a generic executable model 
component. 

In order to automate the E-BOM to CPN transformation, 
we develop a CPN-XML writer application, which takes E-
BOM component information as input and produces CPN-
XML code for all three layers of CPN component model, of the 
entire BOM composition. For each component, a separate CPN 
sub-page is generated (programmatically) and the necessary 
CPN elements (places, transitions, arcs, color sets, variable 
declarations, initial markings multi-sets, guards, actions, code 
segments, CPN ML functions, ports, ports-tag) are generated in 
one CPN output file, which can be loaded in CPN tools.  At 
this moment, we propose to create a main model and manually 
combine the generated modules (using CPN hierarchical 
features). The output of this step is a composed CPN model. 

C. Verification of Composed CPN Model 
In this step, we perform the verification of the composed 

CPN model using State space analysis which involves three 
steps: 

1) State space calculation 
In step1, we perform standard procedure to generate state-

space of the entire model using CPN state space calculation 
tool. 

2)  State space Query 
When the state-space is generated, different query functions 

can be used to probe the state space graph for various 
verification questions. CPN tools provide some built-in-
functions for the common query tasks. We propose additional 
functions to perform model specific queries. In order to verify a 
composed CPN model, we propose a verification template that 
consists of the verification questions in form of three groups of 
properties: 

a) General System Properties: 
There are some built-in and useful functions to verify 

general system properties such as deadlock freeness, liveness, 
fairness. The solution for verifying a generic property involves 
specification of the property in CPN terms, and definition of a 
query function (or algorithm), to reason its satisfiability or 
violation e.g., freedom of deadlock property is specified in 
CPN terms as: “An absence any node in the state-space graph, 
which has no outgoing arcs”. CPN tool has built-in solutions 
for verification of some of the general system properties such 
as deadlock, liveness, fairness and boundedness.  

b) Goal Reachability 
We propose to create a “Goal reachability” function. 

Modeler can define the desired outcome of the composed 
model in form of a “Goal state” and try to evaluate whether the 
goal is reachable in the state space. A typical goal state could 
be certain desirable values of state-variables in structural layer, 
reaching of particular state(s) in behavioral layer or producing 
some data at output port(s) of the communication layer (or a 
combination of all the three), in one or more components of the 
composition. A composed model may have multiple goals as 
well. In our verification framework, we include State-Space 
search functions to perform all these types of goal reachability. 

c) Scenario Specific Properties: 
The modeler may define certain safety (or unsafe) 

assumptions according to the context of the scenario. 
Essentially, these kinds of properties are not the ultimate goal, 
but there are certain desirable (or un-desirable) activities which 
must (or must not) occur in order to satisfy the requirements. 
These properties can be defined and verified in terms of 
reachable (or unreachable) markings, of the state space. We 
discuss this step with an example in our case study section.  

3) Reporting/Visualization 
Step 3 is an optional but useful step from the verification 

point of view. Here we create a report in text format (CPN 
tools built-in feature). We also provide a function to export 
state-space graph in dot file format which can be imported in 
any graphing tool (such as GraphViz, Gephi), for visualization 
purpose. Using the graph many observations, such as shortest 
path from initial marking to the goal state (marking), paths 
leading to deadlock, or cycles of livelock can be observed, and 
used to study the model for refinements.  

IV. VERIFICATION FRAMEWORK 
We propose a verification framework, which consists of 

tools to perform all the steps mentioned above. Figure 5, 
describes an overview of our verification framework, where 
numbered red arrows indicate the sequence of the process flow. 
At first, BOM parser takes a set of BOM components, as input 
and passes the information to the E-BOM editor. This utility is 
used to map existing BOM elements to E-BOM and also to 
take input from the modeler, as described in figure 3. The 
output of this utility is a set of E-BOMs, which are subjected to 
E-BOM-to-CPN transformer at step 4. This procedure invokes 
CPN-XML writer and constructs corresponding CPN modules, 
based on our proposed CPN component model. The output of 
this procedure is a “.cpn” file, which can be opened and viewed 
using CPN tools. In the next step (6) all CPN modules are 
combined to construct a CPN based composed model, which is 
ready for both simulation and verification. Simulation can be 
performed using CPN simulation tool, which supports design 
of experiment (using different initialization settings) and 
collection of results. For verification we use the CPN-tools to 
perform state-space analysis.  

 
Figure 5.  Verification Framework 

Once the verification step is performed and if the model 
satisfies required properties (given in the requirement 
specification) we say that the model is composable at dynamic 
semantic level, which is a necessary condition for the 
correctness of the overall BOM composability. 

V. CASE STUDY 
In this section we discuss a case study of a Field Artillery 

model. This model is composed of the following components 
shown in Fig 6: 

 Field component: Where enemy and friendly units are 
deployed, but also some neutral objects are present. 
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With a given set of initial states, this component is 
used to model battle field. 

 Observer: A soldier who observes enemy units at the 
forward location; initiates and coordinates fire support.  

 Field Artillery: This is a composed model of a Field 
Artillery Battalion and has following sub-components:  
 BHQ: Battalion head quarter, supervises the entire 

operation of fire support at the battalion level. 
 FDC: Fire direction Centre, performs tactical and 
technical fire direction. Validates target 
assignments in tactical terms (i.e.,. target is an 
enemy, not a neutral or friendly unit, checks target 
priority) and in technical terms (target is in range, 
unit have enough resources and appropriate 
ammunition to hit the target etc.) 

 3x Batteries: Three units of batteries (cannons and 
crew) actually responsible to hit the target, based 
on the technical information: orientation, 
elevation, range (target distance) etc.  

 
For the sake of simplicity and due to lack of space, we have 

reduced certain details which are present in actual indirect fire 
procedures. Figure 6 represents components of Field Artillery 
Model and the interactions between each component.  
  

 
Figure 6.  Field Artillery Component Model 

 
We consider an Indirect Fire Support scenario, where the 

enemy units are not in the line of sight of the firing units. A 
soldier observes the field and detects enemy units. When a 
target (enemy unit) is spotted, he calls BHQ for fire support 
and provides the target details. BHQ requests FDC to process 
the target (tactically & technically). If the target is valid FDC 
approves the request otherwise the request is denied. If the 
request is approved BHQ assigns the target to the batteries. We 
suppose that the target can be one of three types: light (camps, 
troops, trucks), medium (tanks, light guns) or heavy (artillery 
units, missile launchers); and is assigned to one, two or three 
batteries respectively. This is because medium and heavy 
targets require the fire power of more than one battery for 
complete destruction. Based on this assumption, BHQ assigns 
target to the batteries. Battery components align themselves for 
correct orientation and elevation by computing the target’s 
range and bearing (angle), load appropriate ammunition and 
fire the round. When Field components receives fire, and if the 
detonation is within a destruction radius then the target is said 
to be destroyed otherwise it is missed. This information is sent 
to the observer, who relays it to BHQ (indirect fire procedure). 
In a more detailed implementation of this model, we also 
model the procedures of target adjustments, where observer 
provides target adjustment data (if it is missed) and the firing 
procedure is repeated until the batteries are exactly aligned to 
hit the target, then fire for effect (FFE) takes place. Figures 7-
11 describe BOM state-machines of each component.  

 
Figure 7.  State machine of the Observer  

[↑=SendEvent]  [↓=Receive Event] 

 
Figure 8.  State machine of the Field 

 
Figure 9.  State machine of the BHQ  

 
Figure 10.  State machine of the FDC  

                                     
Figure 11.  State machine of the Battery 

Each component is parsed and extended to E-BOM. (E-
BOM of FDC component is defined in Fig. 12 as an example). 
States Q and Events Σ1 are inherited from BOM (see Fig 10). 
We set Ready as an initial state. Also we define three variables. 
Field_Data stores information about the objects in the field. 
Current_Target stores the ID of current target under 
processing. Result stores a Boolean result of the processing. 
We also define transitions λ1, λ2 and λ3. λ1 takes 
ProcessRequest as an input (receive event) and executes 
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action a1 unconditionally (no guard). a1 is defined in CPN-ML 
notation which cross checks field data for the type of current 
target. If it is a valid enemy target then the Result is true else 
false. When this action is executed, Result variable is 
overwritten. Transitions λ2 and λ3 are concurrent transitions and 
are guarded by a shared condition; only one of them will be 
fired based on the value of Result variable.  

 
Figure 12.  FDC E-BOM 

Similarly we extend each component to E-BOM, which is 
further transformed to CPN module in the next step in such a 
way that all variables are added in the Structural Layer and the 
State-machine is transformed into the Behavioral Layer. In 
communication layer, receive-events are transformed into input 
ports and send-events are converted into output ports. Figure 
13 represents the CPN component model of the FDC.  

Similarly all E-BOMs are transformed into CPN modules 
in the same fashion. (Note: details and complete 
implementation of this case study can be viewed at: 
(http://web.it.kth.se/~imahmood/FieldArtillery). In the next 
step all CPN modules are combined together through socket 
places in a CPN Composed Model as shown in figure 14. We 
have also introduced general purpose modules such as Join and 
Fork to facilitate the composition.  

In the next step we generate state space of the entire Field 
Artillery Model using CPN state-space calculation tool, and 
perform verification. The generated state-space graph consists 
of 1970 nodes and 6486 arcs. (Figure of the state-space graph 
can be located in the link specified above). 

In this particular scenario, we assume the following 
properties as our requirement specification: 
 Deadlock freedom  
 Goal-state reachability (i.e., all enemy targets are destroyed.  
 Avoidance of friendly fire (scenario specific property). 

Based on these assumptions, we verify the composed model 
as follows: 

A. General System Property: (Deadlock freedom) 
After the state-space is created, we execute a built-in 

library function: ListDeadMarkings(), that searches the entire 
state-space graph for dead-markings (i.e., the nodes which 
don’t have outgoing arcs). If the result is an empty set, then 
the model is said to be deadlock free, otherwise this function 
will return all the dead-markings present in the composed 
model. At present, no such marking was detected. 

B. Goal Reachability Property: (All enemies are destroyed) 

The field component consists of a Field_Data place (as 
state-variable) which consists of tokens representing enemy 
units present in the field. When an enemy target is destroyed, 
the action of UpdateField transition (fig. 8) is responsible to 
update this variable, by eliminating the entry of the enemy 
object.  When all enemy objects are eliminated, our goal is said 
to be reached. This can be verified if there exists a marking in 
the state space, in which Field_Data carries an empty list. For 
searching such a marking, we create a predicate that acts as a 
search criteria in the SearchAllNodes() function. When this 

function is executed, it finds all nodes in the state-space, where 
the predicate function evaluates the condition: 

Mark.Field'Field_Data = [] 
If such node(s) is found then we can assert that the goal state is 
reachable. In this scenario, we observe that more than one such 
marking were found, because the model executes in a circular 
loop. 

 
Figure 13.  FDC component model 

 
Figure 14.  Field Artillery Composed Model 

C. Safety Property: (Avoidance of friendly fire) 

Similarly, to verify that the friendly fire never occurs in our 
model we search for the arcs: TargetDestroyed in the state 
space, where Target_id of the object is not an enemy (i.e., 
either it is friendly or neutral). The absence of such arc(s) will 
indicate that a friendly fire never occurs. We use 
SearchAllArcs() function to perform this property verification. 

In the counter example of this scenario, we select a 
different BHQ component that asks for security credentials of 
the observer when he requests for fire support. Since this 
behavior is not modeled in our existing observer, there will be 
a deadlock (as Observer will expect BHQ to process the call 
for fire support, whereas BHQ will expect observer to reply to 
the security credential question). 

Also we introduce the factors of target distance and firing 
range in our model that causes violation of goal state 

Q = {Ready, Processing} 
I = {Ready} 
Σ1 = {ProcessRequest, SupportApproved, SupportDenied} 
Σ2 = {a1} 
V = {Field_Data:record, CurrentTarget:int, Result:Boolean} 
λ1 = Ready  ProcessRequest [ ] / a1 Processing 
λ 2 = Processing  SupportApproved [Result=True] Ready 
λ 3 = Processing SupportDenied [Result=False]  Ready 
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reachability, if the assigned targets are beyond the firing range 
of the batteries. Because batteries will try to hit the assigned 
target, but due to firing range limitation, the round will never 
enter the destruction radius, and hence the goal state will never 
be reached (and the same target will keep getting assigned by 
BHQ). Similarly, we introduce an erroneous FDC component 
in the composition approves fire support without the 
discrimination of enemy or friendly units and causes a 
violation of “Friendly fire avoidance” property because such 
TargetDestroyed arcs are detected where the Target_id is a 
friendly or a neutral unit. Hence, using state space analysis, we 
can verify given requirements and if all requirements are 
satisfied we say that the composition is valid at the dynamic 
semantic level. 

VI. SUMMARY AND CONCLUSION 
In this paper we discuss verification of BOM based 

composed models at the dynamic semantic level. We propose 
an extension to the standard BOM, to capture the necessary 
behavioral details, required to transform it to an executable 
model such as Colored Petri Nets. We further propose an 
automatic transformation method to convert E-BOM into our 
proposed CPN component model, which is useful to represent a 
model component in executable form (such as CPN) while 
preserving its structure and behavior. When all components are 
transformed, we assemble them as a single CPN based 
composed model using CPN hierarchy tools and analyze it 
using state space analysis. For the purpose of verification, we 
propose the modelers to define and verify properties of three 
types namely: System properties such as deadlock freedom, 
Goal Reachability and scenario specific (safety or liveness) 
properties. We also discuss a case study of Field Artillery 
scenario, and provide its counter example to show how our 
framework helps to verify a given composition at a dynamic 
semantic level.  

Verification of BOM based composed model facilitates 
rapid construction and modification of its corresponding 
federates in HLA based simulations and hence brings forth an 
improvement in the distributed simulation communities. 
Colored Petri Nets and its analysis techniques are very useful 
for accurate and efficient verification as it is one of the 
competitive formalisms in the specification of the concurrent 
systems. Their application in the Composability verification 
proves to be very constructive, especially with a focus on the 
dynamic semantic composability level. Furthermore, the 
analysis techniques contributed by the CPN community over a 
couple of decades provide a significant improvement on 
efficient and accurate reasoning regarding the model 
correctness. We are further interested to generalize our 
approach and specially our CPN component model, to 
accommodate other component frameworks. We also intend to 
introduce notions of time in our component model to verify 
properties that require temporal modalities. 
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