
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/235793091

Verifying Dynamic Semantic Composability of BOM-Based Composed Models

Using Colored Petri Nets

Conference Paper · July 2012

DOI: 10.1109/PADS.2012.48

CITATIONS

8
READS

133

4 authors:

Some of the authors of this publication are also working on these related projects:

Vehicular Networks View project

Smart Systems for Smart Cities View project

Imran Mahmood

KTH Royal Institute of Technology

16 PUBLICATIONS 42 CITATIONS

SEE PROFILE

Rassul Ayani

KTH Royal Institute of Technology

83 PUBLICATIONS 1,042 CITATIONS

SEE PROFILE

Vladimir Vlassov

KTH Royal Institute of Technology

122 PUBLICATIONS 772 CITATIONS

SEE PROFILE

Farshad Moradi

Swedish Defence Research Agency

37 PUBLICATIONS 343 CITATIONS

SEE PROFILE

All content following this page was uploaded by Imran Mahmood on 11 February 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/235793091_Verifying_Dynamic_Semantic_Composability_of_BOM-Based_Composed_Models_Using_Colored_Petri_Nets?enrichId=rgreq-1ccc5cb814b49508802f168a0bafc76f-XXX&enrichSource=Y292ZXJQYWdlOzIzNTc5MzA5MTtBUzoxOTU3OTcxNjI0MzQ1NjBAMTQyMzY5MzA4OTk1MQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/235793091_Verifying_Dynamic_Semantic_Composability_of_BOM-Based_Composed_Models_Using_Colored_Petri_Nets?enrichId=rgreq-1ccc5cb814b49508802f168a0bafc76f-XXX&enrichSource=Y292ZXJQYWdlOzIzNTc5MzA5MTtBUzoxOTU3OTcxNjI0MzQ1NjBAMTQyMzY5MzA4OTk1MQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Vehicular-Networks-7?enrichId=rgreq-1ccc5cb814b49508802f168a0bafc76f-XXX&enrichSource=Y292ZXJQYWdlOzIzNTc5MzA5MTtBUzoxOTU3OTcxNjI0MzQ1NjBAMTQyMzY5MzA4OTk1MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Smart-Systems-for-Smart-Cities?enrichId=rgreq-1ccc5cb814b49508802f168a0bafc76f-XXX&enrichSource=Y292ZXJQYWdlOzIzNTc5MzA5MTtBUzoxOTU3OTcxNjI0MzQ1NjBAMTQyMzY5MzA4OTk1MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-1ccc5cb814b49508802f168a0bafc76f-XXX&enrichSource=Y292ZXJQYWdlOzIzNTc5MzA5MTtBUzoxOTU3OTcxNjI0MzQ1NjBAMTQyMzY5MzA4OTk1MQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Imran_Mahmood2?enrichId=rgreq-1ccc5cb814b49508802f168a0bafc76f-XXX&enrichSource=Y292ZXJQYWdlOzIzNTc5MzA5MTtBUzoxOTU3OTcxNjI0MzQ1NjBAMTQyMzY5MzA4OTk1MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Imran_Mahmood2?enrichId=rgreq-1ccc5cb814b49508802f168a0bafc76f-XXX&enrichSource=Y292ZXJQYWdlOzIzNTc5MzA5MTtBUzoxOTU3OTcxNjI0MzQ1NjBAMTQyMzY5MzA4OTk1MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/KTH_Royal_Institute_of_Technology?enrichId=rgreq-1ccc5cb814b49508802f168a0bafc76f-XXX&enrichSource=Y292ZXJQYWdlOzIzNTc5MzA5MTtBUzoxOTU3OTcxNjI0MzQ1NjBAMTQyMzY5MzA4OTk1MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Imran_Mahmood2?enrichId=rgreq-1ccc5cb814b49508802f168a0bafc76f-XXX&enrichSource=Y292ZXJQYWdlOzIzNTc5MzA5MTtBUzoxOTU3OTcxNjI0MzQ1NjBAMTQyMzY5MzA4OTk1MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rassul_Ayani?enrichId=rgreq-1ccc5cb814b49508802f168a0bafc76f-XXX&enrichSource=Y292ZXJQYWdlOzIzNTc5MzA5MTtBUzoxOTU3OTcxNjI0MzQ1NjBAMTQyMzY5MzA4OTk1MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rassul_Ayani?enrichId=rgreq-1ccc5cb814b49508802f168a0bafc76f-XXX&enrichSource=Y292ZXJQYWdlOzIzNTc5MzA5MTtBUzoxOTU3OTcxNjI0MzQ1NjBAMTQyMzY5MzA4OTk1MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/KTH_Royal_Institute_of_Technology?enrichId=rgreq-1ccc5cb814b49508802f168a0bafc76f-XXX&enrichSource=Y292ZXJQYWdlOzIzNTc5MzA5MTtBUzoxOTU3OTcxNjI0MzQ1NjBAMTQyMzY5MzA4OTk1MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rassul_Ayani?enrichId=rgreq-1ccc5cb814b49508802f168a0bafc76f-XXX&enrichSource=Y292ZXJQYWdlOzIzNTc5MzA5MTtBUzoxOTU3OTcxNjI0MzQ1NjBAMTQyMzY5MzA4OTk1MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vladimir_Vlassov?enrichId=rgreq-1ccc5cb814b49508802f168a0bafc76f-XXX&enrichSource=Y292ZXJQYWdlOzIzNTc5MzA5MTtBUzoxOTU3OTcxNjI0MzQ1NjBAMTQyMzY5MzA4OTk1MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vladimir_Vlassov?enrichId=rgreq-1ccc5cb814b49508802f168a0bafc76f-XXX&enrichSource=Y292ZXJQYWdlOzIzNTc5MzA5MTtBUzoxOTU3OTcxNjI0MzQ1NjBAMTQyMzY5MzA4OTk1MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/KTH_Royal_Institute_of_Technology?enrichId=rgreq-1ccc5cb814b49508802f168a0bafc76f-XXX&enrichSource=Y292ZXJQYWdlOzIzNTc5MzA5MTtBUzoxOTU3OTcxNjI0MzQ1NjBAMTQyMzY5MzA4OTk1MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vladimir_Vlassov?enrichId=rgreq-1ccc5cb814b49508802f168a0bafc76f-XXX&enrichSource=Y292ZXJQYWdlOzIzNTc5MzA5MTtBUzoxOTU3OTcxNjI0MzQ1NjBAMTQyMzY5MzA4OTk1MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Farshad_Moradi3?enrichId=rgreq-1ccc5cb814b49508802f168a0bafc76f-XXX&enrichSource=Y292ZXJQYWdlOzIzNTc5MzA5MTtBUzoxOTU3OTcxNjI0MzQ1NjBAMTQyMzY5MzA4OTk1MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Farshad_Moradi3?enrichId=rgreq-1ccc5cb814b49508802f168a0bafc76f-XXX&enrichSource=Y292ZXJQYWdlOzIzNTc5MzA5MTtBUzoxOTU3OTcxNjI0MzQ1NjBAMTQyMzY5MzA4OTk1MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Swedish_Defence_Research_Agency?enrichId=rgreq-1ccc5cb814b49508802f168a0bafc76f-XXX&enrichSource=Y292ZXJQYWdlOzIzNTc5MzA5MTtBUzoxOTU3OTcxNjI0MzQ1NjBAMTQyMzY5MzA4OTk1MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Farshad_Moradi3?enrichId=rgreq-1ccc5cb814b49508802f168a0bafc76f-XXX&enrichSource=Y292ZXJQYWdlOzIzNTc5MzA5MTtBUzoxOTU3OTcxNjI0MzQ1NjBAMTQyMzY5MzA4OTk1MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Imran_Mahmood2?enrichId=rgreq-1ccc5cb814b49508802f168a0bafc76f-XXX&enrichSource=Y292ZXJQYWdlOzIzNTc5MzA5MTtBUzoxOTU3OTcxNjI0MzQ1NjBAMTQyMzY5MzA4OTk1MQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Verifying Dynamic Semantic Composability of
BOM-based Composed Models using

Colored Petri Nets

 Imran Mahmood, Rassul Ayani, Vladimir Vlassov
KTH Royal Institute of Technology

Stockholm, Sweden
{imahmood, ayani, vladv}@kth.se

Farshad Moradi
Swedish Defense Research Agency (FOI)

Stockholm, Sweden
farshad@foi.se

Abstract—Model reuse is a promising and appealing convention
for effective development of simulation systems as it offers
reduction in development cost and time. Various methodological
advances in this area have given rise to the development of
different component reusability frameworks such as BOM (Base
Object Model). But lack of component matching and weak
support for composability verification and validation, in these
frameworks, makes it difficult to achieve effective and
meaningful reuse. In this paper we focus on Composability
verification and propose a process to verify BOM based
composed model at dynamic semantic level. We suggest an
extension to the BOM components, to capture behavior at a
greater detail. Then we transform the extended BOM into our
proposed Colored Petri Nets (CPN) based component model so
that the components can be composed and executed at an
abstract level. Subsequently we advocate to use CPN tools and
analysis techniques to verify that the model satisfy given
requirements. We classify the properties of a system among
different groups and express the model’s requirements by
selecting some of the properties from these groups to form
requirement specification. Also we present an example of a Field
Artillery model, in which we select a set of properties as
requirement specification, and explain how CPN state-space
analysis technique is used to verify the required properties. Our
experience confirms that CPN tools provide strong support for
verification of composed models.

Keywords—Model Verification; Model Transformation;
Dynamic Semantic Composability; Colored Petri Nets; State-space
Analysis; Deadlock; Field Artillery scenario.

I. INTRODUCTION
With the advent of net-centric era of methods and

technologies in designing complex simulation systems, the
focus of Modeling and Simulation (M&S) industry has been
driven by the most recognized potential benefits: reduced
development cost and time [1]. The community has also taken
deep interest in the quality design principles and their
underlying supportive theories that promise these benefits,
Most important of these are reusability and composability [1]
[2]. Reusability is the ability of simulation components to be
reused for different applications. Composability is the
capability to select and assemble components in various
combinations to satisfy specific user requirements [3].
Composability is one of the effective means to achieve
reusability as it offers a reduction in the complexity of system
construction by enabling the designer to reuse appropriate
components without having to re-invent them [4]. But it is a
challenging and daunting problem in practice, and is
considered to be the elusive holy grail of modeling and
simulation [5].

Composability contends with the alignment of issues on the
modeling level [6], therefore at an abstract model level, it is the
creation of a complex model from a collection of basic reusable
model components. The term Composability carries various

meanings and views in theory which are distinguished,
primarily by its different “levels” or “layers”, as introduced by
different researchers. It is essential to contemplate these
different composability “levels” to better understand its
theoretical underpinnings. Tolk [7] propose a six layered model
of component composability, namely technical, syntactic,
semantic, pragmatic, dynamic, and conceptual layer. Similarly
Medjahed et al [8] introduce a composability stack in which the
composability of semantic web services is checked at four
levels: Syntactic, Static Semantic, Dynamic Semantic and
Qualitative level. In M&S three of these levels were brought
into consideration by Farshad et al [9] in the composition
process of the model components. Syntactic composability
means that components can be connected to each other and
they can operate together. Static-Semantic composability refers
to the fact that the coupling of components is considered
meaningful and they have the same understanding of concepts
to communicate with each other. Dynamic Semantic
Composability implies that the components are dynamically
consistent, i.e., they have correct behavior, necessary to reach
the desired goals and subsequently satisfy user requirements.

In M&S, verification is typically defined as a process of
determining whether the model has been implemented
correctly [10]. In principle, verification is concerned with the
accuracy of transforming the model’s requirements into a
conceptual model and the conceptual model into an executable
model [11]. We concentrate on the former part and assume that
the behavioral correctness is an integral part of the model’s
requirements.

In this paper, our focus is the Dynamic Semantic level of
composability, where we aim to verify the behavioral
correctness of composed components. We define dynamic
semantic composability verification (or simply behavioral
verification) as a process of determining whether a composed
model satisfies given requirements, where the requirement
specification consists of system properties such as deadlock
freedom, livelock freedom, mutual exclusion, and fairness.
These properties are classical cases of system behavior and
their satisfaction may be required for the behavioral correctness
of the composition e.g., the absence of a deadlock implies that
the components will never halt infinitely waiting for each
other. The selection of these properties as a requirement
depends on the goals of the composition. System properties
may also include scenario specific properties representing
certain desirable or undesirable incidences in the system. In
behavioral verification of a given composition, we analyze that
the model components are correctly selected and assembled
such that they satisfy their requirement specification and their
combined behavior is suitable to reach their composition goals.

 Composability essentially relies on a suitable composition
framework that can provide accurate reasoning of correctness
at each level. Base Object Model (BOM) is a SISO (Simulation
Interoperability Standards Organization) certified component

2012 ACM/IEEE/SCS 26th Workshop on Principles of Advanced and Distributed Simulation

978-0-7695-4714-5/12 $26.00 © 2012 IEEE

DOI 10.1109/PADS.2012.48

254

2012 ACM/IEEE/SCS 26th Workshop on Principles of Advanced and Distributed Simulation

978-0-7695-4714-5/12 $26.00 © 2012 IEEE

DOI 10.1109/PADS.2012.48

250

architecture that is partially consistent with this stipulation
[12]. It contributes to conceptual modeling by providing the
needed formalism and influences the ability to develop and
compose model components [13]. BOM development effort
was initiated to serve as a standard description of simulation
components for HLA (High Level Architecture), which is
IEEE certified architecture for distributed simulations. In BOM
different elements such as entities, events, actions and state-
machines of the components are defined. Entities, events and
actions represent the structural information about the real world
objects that are being modeled, whereas state-machine
formalizes component behavior. For details interested readers
should refer to [14]. BOM framework does fundamentally
poses a satisfactory potential for effective model composability
and reuse; even so it falls short of required semantics and
necessary modeling characteristics of behavioral
expressiveness, which are essential for modeling complex
system behavior and reasoning about the validity of the
composability at dynamic semantic level [9]. This fact leads us
to the investigation of external methods for the specification of
additional modalities that are involved in the behavioral
modeling of components and methods for their composability
verification.

Different approaches have been suggested for the external
composability verification. A rule-based approach proposes to
match a set of BOMs and verify their syntactic, static-semantic
and dynamic-semantic composability [9]. A similar work [15]
proposes an instrumentation technique for specification of
system properties and verification of behavioral composability
using a Model Tester. Another method [16] supports the idea of
using Petri Nets algebraic techniques for the composability
verification, where fairness is considered as a behavioral
property. A different approach addressed the semantic
validation of composed models in [17].

In this paper, we present an approach to verify
composability of BOM components at dynamic semantic level.
At first, we suggest to apply the concept of “Extended finite
state-machine” (EFSM) given in [18] as a formal specification
and propose to extend BOM’s conceptual modeling segment,
in order to cover its existing deficiencies of the modalities. We
refer to our extended version of BOM as Extended BOM or
E-BOM) throughout the paper. It should be noted that E-BOM
is not a SISO standard. Secondly, we present a method to
automatically transform each extended BOM (E-BOM)
component in to our proposed CPN based component model.
This component model represents all the essential parts of a
model (like BOM) in form of a CP-Net. It is called component
model because it is generated as a CPN module and can be
composed and executed in CPN environment [19].
Consequently, we utilize numerous analysis and verification
techniques (mainly contributed by CPN community) for
evaluating composability at behavioral level. In essence, given
a BOM composition and the requirements specification, we
transform each E-BOM into CPN component model; compose
them as a hierarchal CP-Net, and apply verification techniques
such as state-space analysis to evaluate the required system
property(s) and show that the model fulfills given
requirements. Our approach varies from previously specified
related approaches (and with others in general) in a sense that
we utilize the expressive capability of CPN framework in the
modeling of complex systems involving concurrency,
synchronization and communication, using component based
approach. Our approach is also favored by the formal
semantics of CPN and the abundance of CPN verification
techniques, contributed by the CPN community over two of
decades. In our observation, using CPN for verification proves
to be more fruitful as compared to other similar formalisms,

due to the broader range of verification methods and
techniques and due to their greater suitability in formal
representation and evaluation of concurrent behaviors.

The rest of the paper is organized as follows: Section II
briefly defines and explains basic concepts and formalisms
used in this paper. Section III formulates our methods and
approach for extending BOM to E-BOM, the transformation of
E-BOM models to CPN component models, their composition,
and the verification of the composed model using the methods
available in CPN environment. Section-IV furnishes
implementation details of our verification process and the
proposed framework. In Section V we discuss a case study of a
Field Artillery model to explain our approach whereas section
VI frames the summary and conclusion.

II. BASIC CONCEPTS AND FORMALISM
In this section we briefly discuss basic concepts of

Extended Finite State-machine, Colored Petri Nets and some
important concepts used in our work. We also define
requirement specification and classify families of verification
properties in this section.

A. Extended Finite State-machine
An Extended Finite State Machine (EFSM) is defined by the
tuple

M = (Q, I, Σ1, Σ2, V, Λ)
Where:

 Q (≠) is a finite set of states.
 I Q is the set of initial states
 Σ1 is a finite set of (send or receive) events.
 Σ2 is a finite set of actions

(Where actions are the instructions to be executed and
should not be confused with the BOM actions, which
are used in pattern of interplay).

 V is the set of state variables.
 Λ is a set of transitions; each transition λ ∈∈ Λ

 = q q
Where
 q and q ∈ Q
 e ∈ Σ1 is an event
 g is a condition (or guard)
 a ∈ Σ2 is an action.

It means if the system is at a state ‘q’, and an event ‘e’

occurs, and if the guard ‘g’ is satisfied, then ‘a’ action is
executed, and the system will transit to the next state q . The
motivation behind using EFSM has following arguments:

 By introducing state-variables in FSM, we are able to
model the structural attributes of a component, which
may be affected due to the change of states and
occurrence of transitions (behavior), and can help in
making the model more realistic. Also the values of
these attributes can be used in the arithmetic or logical
evaluation to assess trigger conditions of the
transitions. It can also be useful to transfer variable
values from one model to another model, thus in a
sequential composition, a value output by one
component can be consumed by the other in the
composition [18].

 By introducing actions, during an occurrence of a
transition, we can capture complex behavior that
cannot be obtained through simple transition labels
(such as events in standard BOM), because actions (set
of instructions) can cause changes in the state-variables
making the behavior of the model more realistic [18].

e [g] / a

255251

We apply the concept of EFSM to the BOM conceptual
model, so that we can incorporate state-variables and extended
representation for transitions (events, guards, actions), to a
form, which we name: Extended BOM or E-BOM.

B. Colored Petri Nets
Coloured Petri Nets is a graphical language for constructing

models of concurrent systems and analyzing their properties.
CPN is a general purpose discrete event language, combining
the capabilities of Petri nets, as a foundation of the graphical
notation and the basic primitives for modeling concurrency,
communication, and synchronization, and a programming
language (CPN ML), which is based on Standard ML
functional programming language, that provides the primitives
for the definition of data types and for specifying data
manipulation routines [19]. CPN is formally defined by the
tuple:

CPN = (P, T, A, Σ, V, C, G, E, I) where:
 P is a finite set of places
 T is a finite set of transitions such that: P T =
 A ⊆ P×T ∪T ×P is a set of directed arcs.
 Σ is a finite set of non-empty colour sets.
 V is a finite set of typed variables such that:
 Type[v] ∈ Σ for all variables v ∈ V
 C: P→Σ is a colour set function that assigns a colour

set to each place.
 G: T → Expression is a guard function that assigns a

guard to each transition t
 E: A→ Expression is an arc expression function that

assigns an arc expression to each arc a
 I: P → Expression is an initialization function that

assigns an initialization expression to each place p.
Detailed explanation of the concepts required to work with

CPN is beyond the scope of this paper hence interested readers
are recommended to consult: [19] [20] [21]. “CPN Tools” is a
software package for the editing, simulation, state space
analysis, and performance analysis of CPN models [21]. The
tool acts like an integrated development environment (IDE) for
the construction of CPN models. It comes along with a bundled
simulator that efficiently handles the execution of untimed and
timed nets. The most important feature of CPN tool from our
point of view is the generation and analysis of state spaces. The
analysis of state space includes various built-in state-space
querying functions, and support for creating analysis report
which altogether greatly contributes to the verification process.

C. Hierarchical Coloured Petri Nets
CPN model can be organized as a set of modules; where

modules can be seen as black boxes which make it possible to
work at different abstraction levels, concentrating on one at a
time. CPN tools offer facility to construct hierarchal CPN
models, by replacing an entire CPN model with a substitute
transition that can be connected to a main model. This way, the
entire model can be divided into simpler modules (or
components), and can be composed in a separate model to
promote modular development and flexible reuse [19] [21].
Our CPN component model uses CPN hierarchical features.

D. State Space Analysis
State space method is one of the most prominent approach

for conducting formal analysis and verification. The basic idea
is to calculate all reachable states and state changes of the
system and represent these as a directed graph. From a
constructed state space it is possible to answer a large set of
analysis and verification questions concerning the behavior of
the system such as absence of deadlocks, the possibility of

being able to reach a good state, and never reach a bad state
and the guarantee of reaching a goal state(s).

E. Requirement Specification
For the purpose of verification, we assume that the given

composed model under consideration is accompanied with a set
of requirement specifications, consisting of a set of properties.
These properties are typically classified in to following four
families (or kinds) of properties: [22]

 Reachability Properties: express that some particular
situation (desirable or undesirable) can be reached.
(e.g., goal reachability)

 Safety Properties: suggests that under certain
conditions, something bad will never occur (e.g.,
deadlock, nuclear meltdown)

 Liveness Properties: express that under certain
conditions, something good will eventually occur.
(e.g., a component will eventually enter critical
section).

 Fairness Properties: state that under certain
conditions, something good will occur infinitely often
(e.g., fair distribution of shared resource)

We assume that based on the modeling objectives, some of
these properties are formulated in the requirement
specification. We assert that the components are composable at
the dynamic semantic level, if they fulfill their requirements.

Figure 1. Composition & Verification Relationship

III. CPN BASESD COMPOSABILITY VERIFICATION
This sections presents methods and approach as our

contribution, realized at different stages of component based
modeling and simulation development life-cycle.

The key milestones of this lifecycle are described in fig 2.
A simuland is the real world system of interest, which is to be
simulated [11]. Based on the abstractions that the modeler has
about a simuland and the requirements in terms of goals and
objectives, the concerning model components (such as BOM),
are discovered from a component repository and composed, to
form a conceptual model. The conceptual model is
implemented in form of an executable simulation (such as
HLA) which is executed and results are generated that can be
used for refinements.

Figure 2. Development Life-cycle (inspired from [11])

System Requirements

Composed Model Required Property

Verification

Satisfied Violated

256252

In this paper, our focus is centered on “Verification1” where
we examine that the conceptual model correctly represents the
given requirements, (some people call it validation). For this
purpose we transform our conceptual model (BOM
composition) into a CPN model and apply various verification
techniques. We propose this transformation process in three
steps:

A. BOM to E-BOM
In this step, each BOM component of the composition, is

parsed and is presented to the modeler for applying additional
information, such as state variables data-types, guards and
actions (which are not part of the standard BOM). This is
important to note that we don’t intend to modify the structure
of the standard BOM; instead we extend it using EFSM
formalism to serve our purpose. Figure 3 describes the
mapping from BOM to E-BOM, showing all the elements that
can be imported from BOM model and the rest that modeler
needs to specify explicitly.

Figure 3. BOM to E-BOM extension

B. E-BOM to CPN Component Model
At this step, we transform each E-BOM to our proposed

CPN component model. It is basically a three layered
representation of a component in form of CP-Net:

1) Structural Layer
This layer consists of the physical attributes of the CPN

component model, and are represented inform of places. Each
state-variable in the E-BOM, becomes a place, and its data type
becomes a Color Set of that place. If a state-variable has a
primitive data type such as: INT, STRING or BOOL, then we
simply assign it to the place, but if the data type is complex,
such as product, tuple, record or list, then we first declare that
data type as a Color Set and then assign it to the place. The
places are also initialized with their initial value, if they are
marked as initial states in E-BOM.

2) Behavuoural Layer
This layer represents the behavior of CPN component

model. The state-machine in E-BOM becomes a part of this
layer, such that each state in the E-BOM becomes a place of
type INT, and the initial state(s) is initialized with a zero value
token. And each transition in the E-BOM becomes a CPN
transition in this layer, and so are guard and action, which are
translated into guard and code-segment inscription respectively
[21] (Section: Documentation\Concepts\Inscriptions &
expressions\Transition inscriptions). The purpose of this layer
is to be able to represent state-machine behavior of a
component in form of CP-Net, where the flow of token(s)
represents the change of component’s state. The transitions of
this layer are connected to those state variables (places) of the
structural layer, where an update (read or write operation) is
necessary. If a transition reads a variable value, then it is
connected with an incoming arc, whereas if it writes a variable
value, then it is connected with an outgoing arc. For this

matter, we also propose a “Data Marshaling” technique using
CPN ML functions, so that the mismatch of Color Sets
between the layers can be accommodated. This mismatch may
occur, where the input and output places have complex data
types of varied tuple size. In short, this technique can be
perceived as Type casting of the color sets, and is necessary for
the CP-Net to fulfill the CPN syntax.

3) Communication Layer
This layer is responsible for the interaction and

communication among the components involved in the
composition. It provides interface for connecting the inputs and
outputs of the components and also provide information about
the data exchange. In this layer, we create port places [21]
which are connected to each transition of the behavioral layer.
Note that if a transition represents a send event (of BOM), then
it will be connected to an out-port place, with an outgoing arc,
whereas if it represents a receive event, then it will be
connected to an in-port place with an incoming arc. The type of
the port place depends on the parameters (contents of events in
BOM) of the transition, based on which we construct a color
set of type product, and assign this color set to the port place.
All these port places in each CPN component are connected to
their respective “socket places” [21] in the main CPN model,
where all sub components are composed. Figure 4 gives an
overview of this transformation using a simple example. Figure
4a shows BOM FSM of a component, which is extended to E-
BOM shown in Figure 4b.

 (a) (b)

(c)

Figure 4. (a) BOM FSM (b) E-BOM (c) CPN component Model

In the E-BOM, two variables SV1 of type1 and SV2 of
type2 are added. Also two transitions T1 and T2 are defined. T1
has an event Trans1 and an action: SV2=SV1 whereas T2 has
an event Trans2 and an action: Read (SV2). Figure 4c
represents CPN component model of this example. It is
apparent from figure 4c that Trans1, in the behavioral layer can
only be enabled if the place SV1 is initialized with an initial
value token (represented by a shadowed box), place S1 has a token
with zero value, and the place T1 receives “data1” token from
some other component, which carries event parameters. When
Trans1 is fired, it consumes “data1” token from T1 port, reads
value from variable SV1; it may use data marshaling function
(DMF) to type cast color-sets; copies SV1 to SV2, and changes
component’s current state from S1 to S2. Similarly, in the next
step Trans2 reads from SV2, and sends its value as a token at
port T2, before it returns to state S1. Intuitively, the role and
nature of these three layers are different but they work together

257253

to make the CPN module act like a generic executable model
component.

In order to automate the E-BOM to CPN transformation,
we develop a CPN-XML writer application, which takes E-
BOM component information as input and produces CPN-
XML code for all three layers of CPN component model, of the
entire BOM composition. For each component, a separate CPN
sub-page is generated (programmatically) and the necessary
CPN elements (places, transitions, arcs, color sets, variable
declarations, initial markings multi-sets, guards, actions, code
segments, CPN ML functions, ports, ports-tag) are generated in
one CPN output file, which can be loaded in CPN tools. At
this moment, we propose to create a main model and manually
combine the generated modules (using CPN hierarchical
features). The output of this step is a composed CPN model.

C. Verification of Composed CPN Model
In this step, we perform the verification of the composed

CPN model using State space analysis which involves three
steps:

1) State space calculation
In step1, we perform standard procedure to generate state-

space of the entire model using CPN state space calculation
tool.

2) State space Query
When the state-space is generated, different query functions

can be used to probe the state space graph for various
verification questions. CPN tools provide some built-in-
functions for the common query tasks. We propose additional
functions to perform model specific queries. In order to verify a
composed CPN model, we propose a verification template that
consists of the verification questions in form of three groups of
properties:

a) General System Properties:
There are some built-in and useful functions to verify

general system properties such as deadlock freeness, liveness,
fairness. The solution for verifying a generic property involves
specification of the property in CPN terms, and definition of a
query function (or algorithm), to reason its satisfiability or
violation e.g., freedom of deadlock property is specified in
CPN terms as: “An absence any node in the state-space graph,
which has no outgoing arcs”. CPN tool has built-in solutions
for verification of some of the general system properties such
as deadlock, liveness, fairness and boundedness.

b) Goal Reachability
We propose to create a “Goal reachability” function.

Modeler can define the desired outcome of the composed
model in form of a “Goal state” and try to evaluate whether the
goal is reachable in the state space. A typical goal state could
be certain desirable values of state-variables in structural layer,
reaching of particular state(s) in behavioral layer or producing
some data at output port(s) of the communication layer (or a
combination of all the three), in one or more components of the
composition. A composed model may have multiple goals as
well. In our verification framework, we include State-Space
search functions to perform all these types of goal reachability.

c) Scenario Specific Properties:
The modeler may define certain safety (or unsafe)

assumptions according to the context of the scenario.
Essentially, these kinds of properties are not the ultimate goal,
but there are certain desirable (or un-desirable) activities which
must (or must not) occur in order to satisfy the requirements.
These properties can be defined and verified in terms of
reachable (or unreachable) markings, of the state space. We
discuss this step with an example in our case study section.

3) Reporting/Visualization
Step 3 is an optional but useful step from the verification

point of view. Here we create a report in text format (CPN
tools built-in feature). We also provide a function to export
state-space graph in dot file format which can be imported in
any graphing tool (such as GraphViz, Gephi), for visualization
purpose. Using the graph many observations, such as shortest
path from initial marking to the goal state (marking), paths
leading to deadlock, or cycles of livelock can be observed, and
used to study the model for refinements.

IV. VERIFICATION FRAMEWORK
We propose a verification framework, which consists of

tools to perform all the steps mentioned above. Figure 5,
describes an overview of our verification framework, where
numbered red arrows indicate the sequence of the process flow.
At first, BOM parser takes a set of BOM components, as input
and passes the information to the E-BOM editor. This utility is
used to map existing BOM elements to E-BOM and also to
take input from the modeler, as described in figure 3. The
output of this utility is a set of E-BOMs, which are subjected to
E-BOM-to-CPN transformer at step 4. This procedure invokes
CPN-XML writer and constructs corresponding CPN modules,
based on our proposed CPN component model. The output of
this procedure is a “.cpn” file, which can be opened and viewed
using CPN tools. In the next step (6) all CPN modules are
combined to construct a CPN based composed model, which is
ready for both simulation and verification. Simulation can be
performed using CPN simulation tool, which supports design
of experiment (using different initialization settings) and
collection of results. For verification we use the CPN-tools to
perform state-space analysis.

Figure 5. Verification Framework

Once the verification step is performed and if the model
satisfies required properties (given in the requirement
specification) we say that the model is composable at dynamic
semantic level, which is a necessary condition for the
correctness of the overall BOM composability.

V. CASE STUDY
In this section we discuss a case study of a Field Artillery

model. This model is composed of the following components
shown in Fig 6:

 Field component: Where enemy and friendly units are
deployed, but also some neutral objects are present.

258254

With a given set of initial states, this component is
used to model battle field.

 Observer: A soldier who observes enemy units at the
forward location; initiates and coordinates fire support.

 Field Artillery: This is a composed model of a Field
Artillery Battalion and has following sub-components:
 BHQ: Battalion head quarter, supervises the entire

operation of fire support at the battalion level.
 FDC: Fire direction Centre, performs tactical and
technical fire direction. Validates target
assignments in tactical terms (i.e.,. target is an
enemy, not a neutral or friendly unit, checks target
priority) and in technical terms (target is in range,
unit have enough resources and appropriate
ammunition to hit the target etc.)

 3x Batteries: Three units of batteries (cannons and
crew) actually responsible to hit the target, based
on the technical information: orientation,
elevation, range (target distance) etc.

For the sake of simplicity and due to lack of space, we have

reduced certain details which are present in actual indirect fire
procedures. Figure 6 represents components of Field Artillery
Model and the interactions between each component.

Figure 6. Field Artillery Component Model

We consider an Indirect Fire Support scenario, where the

enemy units are not in the line of sight of the firing units. A
soldier observes the field and detects enemy units. When a
target (enemy unit) is spotted, he calls BHQ for fire support
and provides the target details. BHQ requests FDC to process
the target (tactically & technically). If the target is valid FDC
approves the request otherwise the request is denied. If the
request is approved BHQ assigns the target to the batteries. We
suppose that the target can be one of three types: light (camps,
troops, trucks), medium (tanks, light guns) or heavy (artillery
units, missile launchers); and is assigned to one, two or three
batteries respectively. This is because medium and heavy
targets require the fire power of more than one battery for
complete destruction. Based on this assumption, BHQ assigns
target to the batteries. Battery components align themselves for
correct orientation and elevation by computing the target’s
range and bearing (angle), load appropriate ammunition and
fire the round. When Field components receives fire, and if the
detonation is within a destruction radius then the target is said
to be destroyed otherwise it is missed. This information is sent
to the observer, who relays it to BHQ (indirect fire procedure).
In a more detailed implementation of this model, we also
model the procedures of target adjustments, where observer
provides target adjustment data (if it is missed) and the firing
procedure is repeated until the batteries are exactly aligned to
hit the target, then fire for effect (FFE) takes place. Figures 7-
11 describe BOM state-machines of each component.

Figure 7. State machine of the Observer

[↑=SendEvent] [↓=Receive Event]

Figure 8. State machine of the Field

Figure 9. State machine of the BHQ

Figure 10. State machine of the FDC

Figure 11. State machine of the Battery

Each component is parsed and extended to E-BOM. (E-
BOM of FDC component is defined in Fig. 12 as an example).
States Q and Events Σ1 are inherited from BOM (see Fig 10).
We set Ready as an initial state. Also we define three variables.
Field_Data stores information about the objects in the field.
Current_Target stores the ID of current target under
processing. Result stores a Boolean result of the processing.
We also define transitions λ1, λ2 and λ3. λ1 takes
ProcessRequest as an input (receive event) and executes

Field

Ready BeingObserved

TakingFireWaitingForUpdate

Fire

Detonation

UpdateField

ObserveField

TargetSpotted

Fire

Ready Call FDC

Waiting For
Approval

AssigningTarget

SupportDenied

AssignTarget

CalForFireSupport

ProcessRequest

SupportApproved

Waiting For
Fire

Waiting For
DamageReport

FiringCompleted

TargetDestroyed

TargetMissed

Ready

Processing

ProcessRequest

SupportDenied SupportApproved

Ready

Preparing
Cannon

AssignTarget

Fire

FiringCompleted

Firing

Observer

FDC

Battery1

Battery3

Battery2 BHQ

259255

action a1 unconditionally (no guard). a1 is defined in CPN-ML
notation which cross checks field data for the type of current
target. If it is a valid enemy target then the Result is true else
false. When this action is executed, Result variable is
overwritten. Transitions λ2 and λ3 are concurrent transitions and
are guarded by a shared condition; only one of them will be
fired based on the value of Result variable.

Figure 12. FDC E-BOM

Similarly we extend each component to E-BOM, which is
further transformed to CPN module in the next step in such a
way that all variables are added in the Structural Layer and the
State-machine is transformed into the Behavioral Layer. In
communication layer, receive-events are transformed into input
ports and send-events are converted into output ports. Figure
13 represents the CPN component model of the FDC.

Similarly all E-BOMs are transformed into CPN modules
in the same fashion. (Note: details and complete
implementation of this case study can be viewed at:
(http://web.it.kth.se/~imahmood/FieldArtillery). In the next
step all CPN modules are combined together through socket
places in a CPN Composed Model as shown in figure 14. We
have also introduced general purpose modules such as Join and
Fork to facilitate the composition.

In the next step we generate state space of the entire Field
Artillery Model using CPN state-space calculation tool, and
perform verification. The generated state-space graph consists
of 1970 nodes and 6486 arcs. (Figure of the state-space graph
can be located in the link specified above).

In this particular scenario, we assume the following
properties as our requirement specification:
 Deadlock freedom
 Goal-state reachability (i.e., all enemy targets are destroyed.
 Avoidance of friendly fire (scenario specific property).

Based on these assumptions, we verify the composed model
as follows:

A. General System Property: (Deadlock freedom)
After the state-space is created, we execute a built-in

library function: ListDeadMarkings(), that searches the entire
state-space graph for dead-markings (i.e., the nodes which
don’t have outgoing arcs). If the result is an empty set, then
the model is said to be deadlock free, otherwise this function
will return all the dead-markings present in the composed
model. At present, no such marking was detected.

B. Goal Reachability Property: (All enemies are destroyed)

The field component consists of a Field_Data place (as
state-variable) which consists of tokens representing enemy
units present in the field. When an enemy target is destroyed,
the action of UpdateField transition (fig. 8) is responsible to
update this variable, by eliminating the entry of the enemy
object. When all enemy objects are eliminated, our goal is said
to be reached. This can be verified if there exists a marking in
the state space, in which Field_Data carries an empty list. For
searching such a marking, we create a predicate that acts as a
search criteria in the SearchAllNodes() function. When this

function is executed, it finds all nodes in the state-space, where
the predicate function evaluates the condition:

Mark.Field'Field_Data = []
If such node(s) is found then we can assert that the goal state is
reachable. In this scenario, we observe that more than one such
marking were found, because the model executes in a circular
loop.

Figure 13. FDC component model

Figure 14. Field Artillery Composed Model

C. Safety Property: (Avoidance of friendly fire)

Similarly, to verify that the friendly fire never occurs in our
model we search for the arcs: TargetDestroyed in the state
space, where Target_id of the object is not an enemy (i.e.,
either it is friendly or neutral). The absence of such arc(s) will
indicate that a friendly fire never occurs. We use
SearchAllArcs() function to perform this property verification.

In the counter example of this scenario, we select a
different BHQ component that asks for security credentials of
the observer when he requests for fire support. Since this
behavior is not modeled in our existing observer, there will be
a deadlock (as Observer will expect BHQ to process the call
for fire support, whereas BHQ will expect observer to reply to
the security credential question).

Also we introduce the factors of target distance and firing
range in our model that causes violation of goal state

Q = {Ready, Processing}
I = {Ready}
Σ1 = {ProcessRequest, SupportApproved, SupportDenied}
Σ2 = {a1}
V = {Field_Data:record, CurrentTarget:int, Result:Boolean}
λ1 = Ready ProcessRequest [] / a1 Processing
λ 2 = Processing SupportApproved [Result=True] Ready
λ 3 = Processing SupportDenied [Result=False] Ready

260256

reachability, if the assigned targets are beyond the firing range
of the batteries. Because batteries will try to hit the assigned
target, but due to firing range limitation, the round will never
enter the destruction radius, and hence the goal state will never
be reached (and the same target will keep getting assigned by
BHQ). Similarly, we introduce an erroneous FDC component
in the composition approves fire support without the
discrimination of enemy or friendly units and causes a
violation of “Friendly fire avoidance” property because such
TargetDestroyed arcs are detected where the Target_id is a
friendly or a neutral unit. Hence, using state space analysis, we
can verify given requirements and if all requirements are
satisfied we say that the composition is valid at the dynamic
semantic level.

VI. SUMMARY AND CONCLUSION
In this paper we discuss verification of BOM based

composed models at the dynamic semantic level. We propose
an extension to the standard BOM, to capture the necessary
behavioral details, required to transform it to an executable
model such as Colored Petri Nets. We further propose an
automatic transformation method to convert E-BOM into our
proposed CPN component model, which is useful to represent a
model component in executable form (such as CPN) while
preserving its structure and behavior. When all components are
transformed, we assemble them as a single CPN based
composed model using CPN hierarchy tools and analyze it
using state space analysis. For the purpose of verification, we
propose the modelers to define and verify properties of three
types namely: System properties such as deadlock freedom,
Goal Reachability and scenario specific (safety or liveness)
properties. We also discuss a case study of Field Artillery
scenario, and provide its counter example to show how our
framework helps to verify a given composition at a dynamic
semantic level.

Verification of BOM based composed model facilitates
rapid construction and modification of its corresponding
federates in HLA based simulations and hence brings forth an
improvement in the distributed simulation communities.
Colored Petri Nets and its analysis techniques are very useful
for accurate and efficient verification as it is one of the
competitive formalisms in the specification of the concurrent
systems. Their application in the Composability verification
proves to be very constructive, especially with a focus on the
dynamic semantic composability level. Furthermore, the
analysis techniques contributed by the CPN community over a
couple of decades provide a significant improvement on
efficient and accurate reasoning regarding the model
correctness. We are further interested to generalize our
approach and specially our CPN component model, to
accommodate other component frameworks. We also intend to
introduce notions of time in our component model to verify
properties that require temporal modalities.

REFERENCES

[1] O Balci, J D Arthur, and W F Ormsby, "Achieving reusability
and composability with a simulation conceptual model," Journal
of Simulation, vol. 5, no. 3, pp. 157-165, August 2011.

[2] Ernest H. Page, "Theory and Practice for Simulation
Interconnection: Interoperability and Composability in Defense
Simulation," in Handbook of Dynamic System Modeling.:
Chapman & Hall, 2007, ch. 16.

[3] Mikel D. Petty and Eric W. Weisel, "A theory of simulation
composability," Virginia Modeling Analysis & Simulation
Center, Old Dominion University, Norfolk, Virginia, 2004.

[4] Ernest H. Page and Jeffrey M. Opper, "Observations on the

complexity of composable simulation," in Proceedings of the
Winter Simulation Conference., NJ, 1999, pp. 553–560.

[5] Paul K. Davis and Robert H. Anderson, Improving the
composability of department of defense models and simulations.:
RAND National Defense Research Institute, 2003.

[6] Andreas Tolk, "Interoperability and Composability," in
MODELING AND SIMULATION FUNDAMENTALS
Theoretical Underpinnings and Practical Domains.: John
Wiley, 2010, ch. 12.

[7] Andreas Tolk, Saikou Y Diallo , and Charles D Turnits,
"Applying the Levels of Conceptual Interoperability Model in
Support of Integratability, Interoperability, and Composability
for System-of-Systems Engineering," Journal on Systemics,
Cybernetics and Informatics, vol. 5, no. 5, pp. 65-74, 2007.

[8] Brahim Medjahed and Athman Bouguettaya, "A Multilevel
Composability Model for Semantic Web Services," Journal of
IEEE Transactions on Knowledge and Data Engineering, vol.
17, no. 7, July 2006.

[9] Farshad Moradi, Rassul Ayani, Shahab Mokarizadeh, Gholam
Hossein Akbari Shahmirzadi, and Gary Tan, "A Rule-based
Approach to Syntactic and Semantic Composition of BOMs," in
11th IEEE Symposium on Distributed Simulation and Real-Time
Applications, Chania, 2007.

[10] Osman Balci, "VERIFICATION, VALIDATION AND
ACCREDITATION OF SIMULATION MODELS," in
Proceedings of the Winter Simulation Conference, Atlanta, GA,
1997.

[11] Mikel D. Petty, "Verification and Validation," in Principles of
Modeling and Simulation.: John Wiley & Sons, 2009, ch. 6.

[12] SISO, "Base Object Model (BOM) Template Specification,"
Simulation Interoperability Standards Organization, Orlando,
Florida, SISO-STD-003-2006, 2006.

[13] Paul Gustavson and Tram Chase, "Using XML and BOMS to
rapidly compose simulations and simulation environments," in
Winter Simulation Conference, Washington, DC, 2004.

[14] Paul Gustavson, "Guide for Base Object Model. Use amd
Implemenration," Simulation Interoperability Standard
Organization (SISO), 2006.

[15] Imran Mahmood, Rassul Ayani, Vladimir Vlassov, and Farshad
Moradi, "Behavioral Verification of BOM based composed
models," in 22nd European Modeling & Simulation Symposium,
Fes, Morocco, Oct, 2010.

[16] Imran Mahmood, Rassul Ayani, Vladimir Vlassov, and Farshad
Moradi, "Fairness Verification of BOM-Based Composed
Models Using Petri Nets," in IEEE Workshop on Principles of
Advanced and Distributed Simulation (PADS), Nice, France,
June 2011.

[17] Claudia Szabo and Yong Meng Teo, "An Approach for
Validation of Semantic Composability in Simulation Models,"
in Principles of Advanced and Distributed Simulation, 2009.
PADS '09, New York, 2009.

[18] V S Alagar and K Periyasamy, "Extended Finite State
Machine," in Specification of Software Systems, 2nd edition.:
Springer, 2011, ch. 7.

[19] Kurt Jensen and Lars M Kristensen, Coloured Petri Nets
Modelling and Validation of Concurrent Systems.: Springer,
2009.

[20] Lars Michael Kristensen, "State Space Methods for Coloured
Petri Nets," Department of Computer Science, University of
Aarhus, Aarhus, Denmark, Ph.D. Dissertation 2000.

[21] CPN Tools. [Online]. http://cpntools.org/
[22] Béatrice Bérard et el, Systems And Software Verification Model-

Checking Techniques and Tools.: Springer, 2001.

261257

View publication statsView publication stats

https://www.researchgate.net/publication/235793091

