
US009372756B2

(12) United States Patent (10) Patent No.: US 9,372,756 B2
Vandikas et al. (45) Date of Patent: Jun. 21, 2016

(54) RECOVERY OF OPERATIONAL STATE (56) References Cited
VALUES FOR COMPLEX EVENT
PROCESSING BASED ON A TIME WINDOW
DEFINED BY AN EVENT OUERY

(71) Applicant: Telefonaktiebolaget LM Ericsson
(publ), Stockholm (SE)

(72) Inventors: Konstantinos Vandikas, Solna (SE):
Paris Carbone, Solna (SE); Farjola
Peco, Solna (SE)

(73) Assignee: Telefonaktiebolaget LM Ericsson
(publ), Stockholm (SE)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 215 days.

(21) Appl. No.: 14/273,207

(22) Filed: May 8, 2014

(65) Prior Publication Data

US 2014/0351639 A1 Nov. 27, 2014

Related U.S. Application Data
(60) Provisional application No. 61/826,095, filed on May

22, 2013.

(51) Int. Cl.
G06F II/00 (2006.01)
G06F II/4 (2006.01)

(52) U.S. Cl.
CPC G06F 11/1438 (2013.01)

(58) Field of Classification Search
CPC G06F 1 1/1438: G06F 11/1448
See application file for complete search history.

1OO N

120-N PRODUCER

110
DSRBUEDG

U.S. PATENT DOCUMENTS

2010/0235681 A1* 9/2010 Suetsugu G06F 11.1471
T14? 15

2010/0262862 A1* 10/2010 Watanabe G06F 11.1471
T14? 19

2010/0293532 A1* 11/2010 Andrade G06F 11.1438
T17,140

2012/00843.17 A1* 4/2012 Sakamoto GO6F 17,30516
707/769

2013/0132560 A1* 5, 2013 Hudzia HO4L 47.283
TO9,224

2014/0304545 A1 * 10/2014 Chen G06F 9/3863
714.f4.3

2014/0304549 A1 * 10/2014 HSu GO6F 11/0793
T14? 15

* cited by examiner

Primary Examiner — Philip Guyton
(74) Attorney, Agent, or Firm — Myers Bigel & Sibley, P.A.

(57) ABSTRACT

Methods by a processing system are disclosed that control
recovery of operational state values of a complex event pro
cessing (CEP) engine that processes values of events. A win
dow size is determined based on a property of an event query.
Events’ values are retrieved from a distributed log which are
restricted to occurring within a timeframe defined based on
the window size. The distributed log stores events’ values that
have been processed by the CEP engine. The retrieved events
values are replayed to the CEP engine for processing to
recover the operational state values of the CEP engine.
Related processing systems are disclosed that control recov
ery of operational state values of a CEP engine that processes
values of events.

10 Claims, 5 Drawing Sheets

PROCESSINGODE

CE ENGINE
132

WNOW
ANAGER
134

130

US 9,372,756 B2

0£|-?NISONE, dEO ETñCIOW SONISSE OOxid

U.S. Patent

US 9,372,756 B2 U.S. Patent

U.S. Patent Jun. 21, 2016 Sheet 4 of 5 US 9,372,756 B2

400 Determine a window size based on a property of an event
query

Retrieve events' values from a distributed log that occurred
within a timeframe defined based on the window size, where

the distributed log stores events' values that have been
processed by the CEP engine

402

Replay the retrieved events' values to the CEP engine for
processing to recover the operational state values of the CEP

engine

404

FIGURE 4

Prune any event's values from the distributed log that
OCCurred outside the timeframe defined based on the Window

size

500

FIGURE 5

For each event, store a timestamp in the distribution log and 600
associated with the event's values

Discard values of each event that is associated with a
timestamp that is earlier in time than a recovery time minus

the timeframe

602

FIGURE 6

U.S. Patent Jun. 21, 2016 Sheet 5 of 5 US 9,372,756 B2

Retrieve from the distributed log a group of events' values
that are associated with a window identifier

Discard from the group of events' values, the values of any
event that is outside the timeframe

Store the group of events' values in the distributed log with
an association to the Window identifier

FIGURE 7

702

704

Retrieve values of each of a sequence of events from the
distributed log that occurred within the timeframe defined

based on the Window size

800

Sequentially provide values of each of the sequence of
events to the CEP engine for processing to recover the

operational state values of the CEP engine

FIGURE 8

Processing Module 130

Processor Circuit Memory 920
910

Functional Modules 922
NetWork Interface

930

FIGURE 9

US 9,372,756 B2
1.

RECOVERY OF OPERATIONAL STATE
VALUES FOR COMPLEX EVENT

PROCESSING BASED ON A TIME WINDOW
DEFINED BY AN EVENT OUERY

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. Provisional Appli
cation No. 61/826,095, filed May 22, 2013, the disclosure and
content of which is incorporated herein by reference in its
entirety as if set forth fully herein.

TECHNICAL FIELD

The present disclosure relates to complex event processing
systems and, more particularly, to providing fault tolerance
within complex event processing systems.

BACKGROUND

OpenSAF is an OpenSource Project established to develop
High Availability middleware consistent with Service Avail
ability Forum (SA Forum) specifications. OpenSAF specifi
cations seek to guarantee that if any application crashes in one
node (fails) another node, running the same application will
take over, and the node that crashed will be restarted. These
operations can be performed agnostically to what kind of
application a node was running. As such OpenSAF is ignorant
to the operational state of the applications that are running on
each node. Operational state is maintained among nodes
actively using N-way replication but if a particular node
crashes OpenSAF has no inherent mechanism for recovering
the node that has crashed to its original state. A specific class
of applications that is severely impacted by this limitation are
Complex Event Processing (CEP) applications.

Commercially available CEP systems include Esper HA,
Oracle CEP, Sybase ESP and Websphere Business Events
which can be deployed across a plurality of event processing
modules that can, in turn, be deployed across a plurality of
separate physical processing nodes ("CEP nodes' and
“nodes') that are communicatively networked together or
deployed on a single processing node (e.g., as virtual machine
processes operating under control of a virtual hypervisor).
These CEP systems support deployment of serialization in
each event processing module. Serialization is the process of
translating data structures or object state within an event
processing module (or CEP node) into a format (structure) of
values that can be stored (for example, in a file or memory
buffer, or transmitted across a network connection link) and
“resurrected later in the same or another event processing
module (or CEP node). When the resulting series of bits is
reread according to the serialization format, it can be used to
create a semantically identical clone of the original event
processing module (or CEP node), including its operational
state values.
When serialization is supported or active, checkpoints can

be taken periodically to capture the operational state values of
the CEP system. Through checkpoints and serialization,
when an event processing module (or CEP node) recovers
from a failure, the most recent checkpoint will be used in
order to recover the operational state values of the event
processing module (or CEP node) to its most up-to-date State
prior to the failure.
The approaches described in this section could be pursued,

but are not necessarily approaches that have been previously
conceived or pursued. Therefore, unless otherwise indicated

10

15

25

30

35

40

45

50

55

60

65

2
herein, the approaches described in this section are not prior
art to the claims in this application and are not admitted to be
prior art by inclusion in this section.

SUMMARY

Some embodiments are directed to a method by a process
ing system to control recovery of operational state values of a
complex event processing (CEP) engine that processes values
of events. A window size is determined based on a property of
an event query. Events values are retrieved from a distributed
log which are restricted to occurring within a timeframe
defined based on the window size. The distributed log stores
events’ values that have been processed by the CEP engine.
The retrieved events values are replayed to the CEP engine
for processing to recover the operational state values of the
CEP engine.
A potential advantage of this method is that it may over

come one or more of the problems explained above by pro
viding a window manager that uses properties of the event
query. Such as the window size, to control which of the events
stored (e.g., logged) in the distributed log are used to restore
the operational state values of a CEP engine and to bring the
CEP engine back to, for example, the most up-to-date state
that occurred prior to a defined condition (e.g., failure) that
triggered the restoration. This method may decrease the
amount of memory that is being used by the processing sys
tem for purposes of restoration and may furthermore decrease
processor utilization by the CEP engine during the recovery
process since the most relevant historical events are being
used.
Some other embodiments are directed to a processing sys

tem that controls recovery of operational state values of a CEP
engine which processes values of events. The processing
system includes a processor and a memory. The memory is
coupled to the processor and includes computer readable
program instructions that when executed by the processor
causes the processor to perform operations. The operations
include determining a window size based on a property of an
event query, and retrieving events values, from a distributed
log, that are restricted to occurring withina timeframe defined
based on the window size. The distributed log stores events
values that have been processed by the CEP engine. The
operations further include replaying the retrieved events val
ues to the CEP engine for processing to recover the opera
tional state values of the CEP engine.

It is noted that aspects described herein with respect to one
embodiment may be incorporated in different embodiments
although not specifically described relative thereto. That is,
all embodiments and/or features of any embodiments dis
closed herein can be combined in any way and/or combina
tion. Moreover, methods, processing systems, and/or com
puter program products according to embodiments will be or
become apparent to one with skill in the art upon review of the
following drawings and detailed description. It is intended
that all Such additional methods, processing systems, and/or
computer program products be included within this descrip
tion and protected by the accompanying claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to pro
vide a further understanding of the disclosure and are incor
porated in and constitute a part of this application, illustrate
certain non-limiting embodiment(s) of the invention. In the
drawings:

US 9,372,756 B2
3

FIG. 1 is a block diagram of a complex event processing
system that is configured to operate according to some
embodiments;

FIG. 2 is a data flow diagram illustrating example opera
tions and methods that determine a window size based on a
property of an event query and use the window size to control
which events’ values are replayed to a CEP engine to recover
its operational State in accordance with some embodiments;

FIG. 3 is a data flow diagram illustrating example opera
tions and methods that replay events values to a CEP engine
to recover its operational state in accordance with some
embodiments;

FIGS. 4-8 are flowcharts of methods that can be performed
by a window manager in accordance with Some embodi
ments; and

FIG. 9 is block diagram of an event processing module
configured to operate according to Some embodiments.

DETAILED DESCRIPTION

The invention will now be described more fully hereinafter
with reference to the accompanying drawings, in which
embodiments of the invention are shown. This invention may,
however, be embodied in many differentforms and should not
be construed as limited to the embodiments set forth herein.

In existing CEP systems, checkpoints are generated in a
periodic fashion. Because the frequency of generation of the
checkpoints is fixed and independent from properties of a
query, which the CEP system is currently processing, an
unnecessarily large amount of events can be stored for use in
recovering a state of the CEP system.

For example, CEP systems utilize a query language for the
purposes of formulating what should be extracted (or
inferred) from a continuous stream of data values. Two
examples of Such query languages follow:

1. Complex Event Query Equivalent (CQL):
CQL
Select temp
From SensorTemper Range 10 minutes
Where temp>30
2. Event Processing Language (EPL): Used by Esper
Select avg (duration) from
SIPInvite(from='*(aericsson.com).std. groupwin.com

pany).win:ext timed(ts, 1 minute)
In this example, Esperuses EPL in order to analyze Session

Initiation Protocol (SIP) invites in an IP Multimedia Sub
system (IMS) network.
A target CEP engine with that EPL query deployed would

perform a checkpoint process that maintains a different time
window per company defined by the event query to compute
and output a per minute average duration of SIPINVITES per
company. Consequently, if the CEP engine is currently pro
cessing an event SIPInvite(... ts=14:00), no events before
ts: 13:00 are needed for the CEP engine to replay (process) for
recovery of operational State values.

However, because the checkpoint process is decoupled
from the properties of the time window, defined based on the
EPL query, additional earlier occurring historical events
recorded (logged in a memory device) are used by a process
to recover the CEP engine. This results in unnecessary usage
of memory and more-than-needed serialization processing
tasks during the recovery process. Moreover, during this pro
cess the CEP engine can be unavailable for processing incom
ing events. One alternative approach to attempt to reduce
these problems would be to perform checkpoints more fre
quently. However, this alternative approach has its own inef
ficiencies due to the overhead introduced by the more fre

10

15

25

30

35

40

45

50

55

60

65

4
quent checkpoint process, and may render the CEP system
operationally unsuitable for real time complex event process
1ng.

Various embodiments disclosed herein seek to overcome
one or more of these problems by providing a window man
ager that uses properties of the CEP query. Such as the win
dow size, to control which of the events that were logged in
memory are used to restore the operational state values of a
CEP engine and bring the CEP system back to the most
up-to-date operational state that occurred prior to a defined
condition (e.g., failure) that triggered the restoration. These
embodiments can decrease the amount of memory that is
being used by the CEP system for purposes of restoration and
can furthermore decrease processor utilization by the CEP
engine during the process of recovering the CEP engine and
CEP system since the most relevant historical events are
being used.

Embodiments of a Fault Tolerant CEP System
Example operations and methods of the present disclosure

are now explained in the context of a CEP system 100 illus
trated in FIG. 1, which is a non-limiting embodiment of the
invention. Referring to FIG. 1, the CEP system 100 includes
a distributed log 110, a producer 120, and a processing mod
ule 130. The processing module 130 includes a window man
ager 134 and a CEP engine 132. For one or more of the
embodiments disclosed herein, the CEP engine 132 is a data
stream processing module that processes continuous streams
of events to detect correlations between events and infer
situations based on defined queries overa defined sliding time
window. The CEP engine 132 may process externally or
internally timed events.
The distributed log 110 is configured as a fault tolerant

distributed storage device. The distributed log 110 may be
configured as a key value store or Not Only SQL (NoSQL)
storage database. The distributed log110 can be implemented
using products Such as Apache Cassandra, Dynamo, Hibari,
OpenLink Virtuoso, Project Voldermort, and Riak.
The producer 120 can be a module (e.g., application),

executed by a processor circuit, that produces events that are
processing by the CEP engine 132. Example events include
SIP Invites directed to a network address. For each event
produced by the producer 120, the producer 120 can perform
the following tasks, such as in a First-In-First-Out (FIFO)
order for the produced events: 1) persist values of the event to
the distributed log 110 for storage; and 2) disseminate values
of the event to the processing module 130 for processing by
the CEP engine 132.
The processing module 130 can be configured to function

as a fail-fast module via operation of the window manager
134 and the CEP engine 132. The window manager 134
manages which events values are retrieved from the distrib
uted log 110 and provided as replay input to the CEP engine
132 to perform a recovery process to recover the operational
state values of the CEP engine 132 that existed prior to occur
rence of one or more defined conditions (e.g., a failure con
dition).
The window manager 134 operates to serially replay to the

CEP engine 132 values of the events that occurred (e.g., were
produced by the producer 120 and/or were stored in the dis
tributed log 110) within a timeframe that is determined from
a window size based on a property of an event query being
processed by the CEP engine 132. Following recovery of the
CEP engine 132 to again contain the operational state values
that existed prior to occurrence of the defined condition,
values of new events produced by the producer 120 are then
pushed to the CEP engine 132 for processing according to the
event query.

US 9,372,756 B2
5

For example, for the above EPL query of “select avg (du
ration), the window manager 134 can serially replay values
of events that are within a timeframe determined from a
window size of the EPL query (i.e., 1 minute), to the CEP
engine 132 to recover its operational state values for process
ing those events according to the process functionality
defined by the “select avg (duration) EPL query.

According to some embodiments of the present disclosure,
the CEP engine 132 can run continuous queries, defined by an
event query, over externally timed sliding windows. The
external timing may be provided to a plurality of processing
modules which may reside on the same CEP node (e.g.,
virtual machine processes operating under control of a virtual
hypervisor) or may be distributed across a plurality of CEP
nodes that are interconnected via one or more communication
networks, so that the timing of sliding windows may be syn
chronized. Alternatively, a timing source within each CEP
engine 132 may be used.

Communications and other interactions between these
components of the CEP system 100 are explained below with
reference to FIGS. 2 and 3. FIG. 2 is a data flow diagram
illustrating example operations and methods that determine a
window size based on a property of an event query, and use
the window size to control which events values are serially
replayed to a CEP engine to recover its operational state in
accordance with some embodiments. FIG. 3 is a data flow
diagram illustrating example operations and methods that
replay events values to a CEP engine to recover its opera
tional state in accordance with some embodiments.

FIGS. 2 and 3 refer to the following functions which are
defined as follows:

1. produce EvtX{windowId, TimeStamp} is a function that
produces event values EvtX that belongs to windowId
and has a TimeStamp;

2. h{windowId} is a hash function, h(windowId), that is
used in order to identify the register in the distributed log
110 that corresponds to the windowId;

3. log(h(windowId), EvtX) is a function that generates a
Log by adding values of event EvtX to the distributed log
110 at the register corresponding to windowId;

4. consume {Evt1 is a function that performs consump
tion of values of the event Evt1 by the CEP engine 132,
using operations defined by an event query;

5. fetch(h(windowId)) is a function that returns Q, which is
the values contained in the register corresponding to
windowId;

6. Store(h(windowId), Q) is a function that replaces the
values contained in the register responsible for windo
wId with values of Q; and

7. prune(Q.windowSize) is a function that prunes values of
Q by removing all values of events that are less than
windowSize from the last event (outside a timeframe
defined based on the windowSize).

Example Window Management Processes
Referring to FIG. 2, values of each event produced by the

producer 120 are logged (stored) in the distributed log 110 at
the end of the corresponding window queue. While operating
under a non-recovery state, the window manager 134 sends
values of each event to the CEP engine 132 and prunes the
corresponding queue of the distributed log 110 of values of
events that are outside of the current window.
As an example, for the purposes of this diagram, the fol

lowing EPL query has been used:
select count(*) as total sip invites from SIP EVENTS

(Request Line="SIP INVITE), win:ext timed(Times
tamp, 200 milliseconds).

10

15

25

30

35

40

45

50

55

60

65

6
The time value of the example EPL query indicates a time

duration of 200 milliseconds over which an operation defined
by the EPL query is to be periodically performed on an
incoming stream of events’ values. The window manager 134
determines that the EPL query performed by the CEP engine
132 has the time value of 200 milliseconds, and correspond
ingly determines (block 200) a window size of 200 millisec
onds based on the time value. The window size determined by
the window manager 134 is determined based on the time
value of the EPL query (e.g., based on one or more defined
relationships) and is not necessarily equal to the time value
according to various embodiments.
An event Evt0 has already been logged (block 202) in the

distributed log 110. A series of subsequent events (Evt) are
produced and logged into the system (Evt1, Evt2, etc.). As
shown, the producer 120 produces (block 204) event Evt1
containing values, including a windowId value and a times
tamp value of 100 milliseconds, which are provided (flow
206) to the distributed log 110. The distributed log 110 adds
(e.g., appends) values of the event Evt 1 to the data structure
of the record indexed by windowId (e.g., h(windowId) and
having values of the event Evt.0, as illustrated in block 208.

Event Evt1 is provided (flow 212) to the CEP engine 132
for processing by operations defined by the EPL query, and is
provided (flow 210) to the window manager 134 for use in
managing recovery, when needed, of the operational State
values of the event engine 132. The CEP engine 132 has a set
of operational state values. The operational state values may
be values that the CEP engine 132 carries over as an output of
processing one event for use in its processing of a Subsequent
next event, and may include algorithmic output values used to
perform functionality defined by the EPL query. For example,
for the above EPL query of “select count(*), the CEP engine
132 develops operational state values from processing Evt0
and Evt1 according to the operations defined by the “select
count(*) EPL query.
The producer 120 subsequently produces (block 214) event

Evt2 containing values, including the windowId value and a
timestamp value of 250 milliseconds, which are provided
(flow 216) to the distributed log 110. The distributed log 110
identifies the register in the distributed log 110 that corre
sponds to the windowId, and adds (e.g., appends) values of
the event Evt2 to the register's data structure having values of
the events Evt0 and Evt1, as illustrated in block 218. Event
Evt2 is provided (flow 222) to the CEP engine 132 for pro
cessing by operations defined by the EPL query, and is pro
vided (flow 220) to the window manager 134 for use in
managing recovery, when needed, of the operational State
values of the CEP engine 132.

After the CEP engine 132 has processed (consumed) Evt2.
preferably in a separate thread, the window manager 134
initiates a pruning process (block 224) that causes values of
Evt.0 to be evicted (discarded) from the register in the distrib
uted log 110 that corresponds to the windowId since it is
outside the 200 milliseconds window size of the EPL query
and, therefore, is no longer needed for use in recovery of the
CEP engine 132.
The CEP engine 132 performs (flow 228) a fetch, windo

wId, function that returns values of events Evt.0, Evt1, Evt2 (a
data structure Q) contained in the register corresponding to
the windowId. The CEP engine 132 performs a prune (block
226), prune(q, window size), that removes (discards) values
of events that are less than windowSize from the last event
(outside a timeframe defined based on the windowSize).
Accordingly, values of event Evt.0 are removed (discarded)
because they occurred outside the timeframe defined based
on the window size of 200 milliseconds (event Evt0 occurred

US 9,372,756 B2
7

250 milliseconds earlier and therefore is outside the 200
millisecond window size, while Evt0 occurred 150 millisec
onds earlier and therefore is within the 200 millisecond win
dow size). The data structure containing data values of events
Evt1 and Evt2 is referred to as Q'.
The CEP engine 132 stores Q' (function store(h(windowId,

Q')) by providing (flow 230) Q' values to the distributed log
110, which identifies the register corresponding to windowId
for storing (block 232) the Q' values (Evt1, Evt2).

Example Window Recovery Processes
Reference is now made to FIG. 3 which illustrates opera

tions and methods that replay events values to the CEP
engine 132 to recover its operational state. Following a failure
condition or another defined or undefined condition, the pro
cessing module 130 containing the CEP engine 132 is
restarted and results in loss of the operational state values of
the CEP engine 132 that existed prior to occurrence of the
failure or other condition. A recovering process (block 300) is
initiated responsive to loss of the operational state values.

For each produced event that is incoming in an uninitial
ized window (i.e., windowId, etc.), the window manager 134
fetches values for each of the logged events for the corre
sponding window (i.e., windowId, etc.) from the distributed
log 110. The window manager 134 then replays fetched val
ues for each of the logged events to the CEP engine 132 for
processing to recover (recreate) the operational state values of
the CEP engine 132 for that window that existed prior to
occurrence of the failure or other condition. This recovery
process causes the processing module 130 to be fail-fast, Such
that any failure of its sub-components will terminate the
associated process, and the affected Sub-component or all
sub-components will be started back in sync and recovered to
their pre-failure operational states.
By way of further example in the illustrated sequence,

events Evt1 and Evt2 are already stored in the distributed log
110 within a register corresponding to windowId, as shown in
block 302. The producer 120 produces (block 304) Evt3
which is provided (flow 306), by function, log(h(windowId),
Evt3) to the distributed log 110 for storage. The distributed
log 110 identifies the register that corresponds to WindowId,
and adds (e.g., appends) values of event Evti to the register's
data structure having values of the events Evt1 and Evt2, as
illustrated in block 308. Event Evt3 is provided (flow 310) to
the window manager 134.

Because the window manager 134 knows that the opera
tional state values of the CEP engine 132 were lost due to
restarting, the CEP engine 132 performs a process (block
314) to recover the operational state values of the CEP engine
132 that existed prior to occurrence of the failure or other
condition. Through the recovery process (block 314), the
window manager 134 retrieves (flow 312) the events values
(for events Evt1, Evt2 and Evta) from the distributed log 110.
and replays (flow 316) the retrieved values of the events, in
their respective order of production by the producer 304, to
the CEP engine 132 for processing according to the opera
tions defined by the EPL query to recover the operational state
values of the CEP engine 132.

In the example of FIG. 3, the window manager 134 first
plays (provides) values of Evt1 to the CEP engine 132 for
processing (consume(Q.next()) by operations of the “select
count(*)' EPL query to generate updated operational state
values. The window manager 134 then plays values of Evt2 to
the CEP engine 132 for processing by operations of the
“select count(*)' EPL query to generate further updated
operational state values that existed prior to occurrence of the
failure or other condition. The window manager 134 next
plays values of Evt3 to the CEP engine 132 for processing by

10

15

25

30

35

40

45

50

55

60

65

8
operations of the “select count(*)' EPL query to generate
further updated operational state values.

Because the operational state values of the CEP engine 132
are now updated, the process of FIG. 2 can be further repeated
to provide values of further events produced by the producer
204 to the windows manager 134, the CEP engine 132, and
the distributed log 110, to enable later recovery of the opera
tional state values of the CEP engine 132 if a subsequent
failure or other condition occurs.

Potential Advantages Provided by at Least Some Embodi
ments

Various embodiments disclosed herein may thereby over
come one or more of the problems explained above by pro
viding a window manager that uses properties of the CEP
query. Such as the window size, to control which of the events
that were logged in memory are used to restore the opera
tional state values of a CEP engine and bring the CEP system
back to the most up-to-date state that occurred prior to a
defined condition (e.g., failure) that triggered the restoration.
These embodiments may decrease the amount of memory
that is being used by the CEP system for purposes of resto
ration and may furthermore decrease processor utilization by
the CEP engine during the process of recovering the CEP
engine and CEP system since the most relevant historical
events are being used.
The operations and methods disclosed herein may be used

in a Cloud processing environment and may be implemented
at a Platform-as-a-service level for customers. These opera
tions and methods can be agnostic to what kind of CEP
system is used and may be used in an open source environ
ment.
Further Operational Embodiments
Various embodiments have been described above in the

context of the particular operations and methods of FIGS. 1-3.
However other embodiments are not limited thereto. More
general embodiments are now described below with regard to
FIGS 4-8.

FIG. 4 is a flowchart that illustrates operations and methods
by a processing system to control recovery of operational
state values of a CEP engine that processes values of events.
Referring to FIG. 4, a window size is determined (block 400)
based on a property of an event query. Events values are
retrieved (block 402) from a distributed log, where the event
values are restricted to occurring within a timeframe defined
based on the window size. The distributed log stores events
values that have been processed by the CEP engine. The
retrieved events values are replayed (block 404) to the CEP
engine for processing to recover the operational state values
of the event engine.
As explained above, the window size can be determined

based on the time value contained in the event query. The time
value can indicated time duration over which an operation
defined based on the event query is to be periodically per
formed on an incoming stream of events’ values. The opera
tion defined by the event query may be to compute an average
duration of SIP Invites for an entity defined by the event
query.

FIG. 5 is a flowchart that illustrates a method by the pro
cessing system to restrict the events values that are used to
recover the operational state values of the CEP engine. Refer
ring to FIG. 5, any events values are pruned (block 500) from
the distributed log which occurred outside the timeframe
defined based on the window size. The pruning (block 500)
can be performed responsive to Subsequent receipt of another
event query from the producer 120 containing a different
property than the event query. The pruning may include dis

US 9,372,756 B2
9

carding any events values from the distributed log that
occurred earlier than the timeframe defined based on the
window size.

Referring to FIG. 6, the pruning may be performed based
on timestamps that are stored (block 600), for each event, in 5
the distributed log and associated with the events values.
Values of each event that is associated with a timestamp that
is earlier in time than a recovery time minus the timeframe
(defined based on the window size) are discarded (block 602).

Referring to FIG. 7, the pruning may include retrieving 10
(block 700) from the distributed log a group of events values
that are associated with a window identifier. Values of any
events that are outside the timeframe are discarded (block
702) from the group of events values. The group of events
values are stored (block 704) in the distributed log with an 15
association to the window identifier.

Referring to FIG. 8, replaying (block 404 of FIG. 4) of the
retrieved events to the CEP engine may include retrieving
(block 800) values of each of a sequence of events from the
distributed log 110 that occurred within the timeframe 20
defined based on the window size, and sequentially providing
(block 802) values of each of the sequence of events to the
CEP engine for processing to recover the operational state
values of the CEP engine.

Example Processing Module 25
FIG.9 is a block diagram of an example CEP module, such

as the processing module 130 of FIGS. 1-3. The processing
module 130 includes one or more processor circuitry/devices
(“processor) 910, one or more memory circuitry/devices
(“memory') 920, and one or more network interfaces 930. 30
The one or more network interfaces 930 can include a wired
and/or wireless network interface.
The processor 910 may include one or more instruction

execution circuits. Such as a general purpose processor and/or
special purpose processor (e.g., microprocessor and/or digital 35
signal processor) that may be collocated (e.g., within a same
circuit package, connected to a same backplane, enclosed
within a same computer housing, etc) or distributed across
one or more data networks. The processor 910 is configured to
execute computer program instructions read from functional 40
modules 922 in the memory 920, described below as a com
puter readable medium, to perform some or all of the opera
tions and methods that are described above for one or more of
the embodiments disclosed herein, such as the embodiments
of FIGS. 1-8. The functional modules 922 may include the 45
operations and methods disclosed herein for the CEP engine
132 and/or the window manager 134.

Further Definitions and Embodiments:
In the above-description of various embodiments of the

present invention, it is to be understood that the terminology 50
used herein is for the purpose of describing particular
embodiments only and is not intended to be limiting of the
inventive concepts. Unless otherwise defined, all terms (in
cluding technical and Scientific terms) used herein have the
same meaning as commonly understood by one of ordinary 55
skill in the art to which this invention belongs. It will be
further understood that terms, such as those defined in com
monly used dictionaries, should be interpreted as having a
meaning that is consistent with their meaning in the context of
this specification and the relevant art and will not be inter- 60
preted in an idealized or overly formal sense unless expressly
so defined herein.
When an element is referred to as being “connected,

“coupled”, “responsive', or variants thereof to another ele
ment, it can be directly connected, coupled, or responsive to 65
the other element or intervening elements may be present. In
contrast, when an element is referred to as being “directly

10
connected”, “directly coupled”, “directly responsive', or
variants thereof to another element, there are no intervening
elements present. Like numbers refer to like elements
throughout. Furthermore, “coupled”, “connected”, “respon
sive’, or variants thereofas used herein may include wire
lessly coupled, connected, or responsive. As used herein, the
singular forms “a”, “an and “the are intended to include the
plural forms as well, unless the context clearly indicates oth
erwise. Well-known functions or constructions may not be
described in detail for brevity and/or clarity. The term “and/
or or “f” includes any and all combinations of one or more of
the associated listed items.
As used herein, the terms “comprise', 'comprising.

“comprises”, “include”, “including”, “includes”, “have’.
“has”, “having, or variants thereof are open-ended, and
include one or more stated features, integers, elements, steps,
components or functions but does not preclude the presence
or addition of one or more other features, integers, elements,
steps, components, functions or groups thereof. Furthermore,
as used herein, the common abbreviation “e.g., which
derives from the Latin phrase “exempligratia, may be used
to introduce or specify a general example or examples of a
previously mentioned item, and is not intended to be limiting
of such item. The common abbreviation “i.e., which derives
from the Latin phrase “id est.” may be used to specify a
particular item from a more general recitation.
Example embodiments are described herein with reference

to block diagrams and/or flowchart illustrations of computer
implemented methods, apparatus (systems and/or devices)
and/or computer program products. It is understood that a
block of the block diagrams and/or flowchart illustrations,
and combinations of blocks in the block diagrams and/or
flowchart illustrations, can be implemented by computer pro
gram instructions that are performed by one or more com
puter circuits. These computer program instructions may be
provided to a processor circuit of a general purpose computer
circuit, special purpose computer circuit, and/or other pro
grammable data processing circuit to produce a machine,
Such that the instructions, which execute via the processor of
the computer and/or other programmable data processing
apparatus, transform and control transistors, values stored in
memory locations, and other hardware components within
Such circuitry to implement the functions/acts specified in the
block diagrams and/or flowchart block or blocks, and thereby
create means (functionality) and/or structure for implement
ing the functions/acts specified in the block diagrams and/or
flowchart block(s).

These computer program instructions may also be stored in
a tangible computer-readable medium that can direct a com
puter or other programmable data processing apparatus to
function in a particular manner, such that the instructions
stored in the computer-readable medium produce an article of
manufacture including instructions which implement the
functions/acts specified in the block diagrams and/or flow
chart block or blocks.
A tangible, non-transitory computer-readable medium

may include an electronic, magnetic, optical, electromag
netic, or semiconductor data storage system, apparatus, or
device. More specific examples of the non-transitory com
puter-readable medium would include the following: a por
table computer diskette, a random access memory (RAM)
circuit, a read-only memory (ROM) circuit, an erasable pro
grammable read-only memory (EPROM or Flash memory)
circuit, a portable compact disc read-only memory (CD
ROM), and a portable digital video disc read-only memory
(DVD/BlueRay).

US 9,372,756 B2
11

The computer program instructions may also be loaded
onto a computer and/or other programmable data processing
apparatus to cause a series of operational steps to be per
formed on the computer and/or other programmable appara
tus to produce a computer-implemented process Such that the
instructions which execute on the computer or other program
mable apparatus provide steps for implementing the func
tions/acts specified in the block diagrams and/or flowchart
block or blocks. Accordingly, embodiments of the present
invention may be embodied in hardware and/or in software
(including firmware, resident Software, micro-code, etc.) that
runs on a processor Such as a digital signal processor, which
may collectively be referred to as “circuitry.” “a module' or
variants thereof.

It should also be noted that in some alternate implementa
tions, the functions/acts noted in the blocks may occur out of
the order noted in the flowcharts. For example, two blocks
shown in Succession may in fact be executed Substantially
concurrently or the blocks may sometimes be executed in the
reverse order, depending upon the functionality/acts
involved. Moreover, the functionality of a given block of the
flowcharts and/or block diagrams may be separated into mul
tiple blocks and/or the functionality of two or more blocks of
the flowcharts and/or block diagrams may be at least partially
integrated. Finally, other blocks may be added/inserted
between the blocks that are illustrated. Moreover, although
Some of the diagrams include arrows on communication paths
to show a primary direction of communication, it is to be
understood that communication may occur in the opposite
direction to the depicted arrows.
Many different embodiments have been disclosed herein,

in connection with the above description and the drawings. It
will be understood that it would be unduly repetitious and
obfuscating to literally describe and illustrate every combi
nation and Subcombination of these embodiments. Accord
ingly, the present specification, including the drawings, shall
be construed to constitute a complete written description of
various example combinations and Subcombinations of
embodiments and of the manner and process of making and
using them, and shall Support claims to any Such combination
or Subcombination.
Many variations and modifications can be made to the

embodiments without Substantially departing from the prin
ciples of the present invention. All Such variations and modi
fications are intended to be included herein within the scope
of the present invention.

The invention claimed is:
1. A method by a processing system to control recovery of

operational state values of a complex event processing (CEP)
engine that processes values of events, the method compris
ing:

determining a window size based on a property of an event
query;

retrieving events’ values, from a distributed log, that are
restricted to occurring within a timeframe defined based
on the window size, wherein the distributed log stores
events values that have been processed by the CEP
engine; and

replaying the retrieved events’ values to the CEP engine for
processing to recover the operational state values of the
CEP engine,

wherein the window size is determined based on a time
value contained in the event query, the time value indi
cates a time duration over which an operation defined by
the event query is to be periodically performed on an
incoming stream of events values to the CEP engine, and

10

15

25

30

35

40

45

50

55

60

65

12
the operation defined by the event query computes an
average duration of SIP INVITES for an entity defined
by the event query.

2. The method of claim 1, wherein the replaying comprises:
retrieving values of each of a sequence of events from the

distributed log that occurred within the timeframe
defined based on the window size; and

sequentially providing values of each of the sequence of
events to the CEP engine for processing to recover the
operational state values of the CEP engine.

3. A method by a processing system to control recovery of
operational state values of a complex event processing (CEP)
engine that processes values of events, the method compris
ing:

determining a window size based on a property of an event
query;

retrieving events’ values, from a distributed log, that are
restricted to occurring within a timeframe defined based
on the window size, wherein the distributed log stores
events values that have been processed by the CEP
engine;

replaying the retrieved events’ values to the CEP engine for
processing to recover the operational state values of the
CEP engine; and

pruning any events values from the distributed log that
occurred outside the timeframe defined based on the
window size,

wherein:
the event query is received from a producer, and
the pruning is performed responsive to Subsequent

receipt of another event query from the producer con
taining a different property than the event query.

4. The method of claim 3, wherein:
for each event, a timestamp is stored in the distributed log

and associated with the events values; and
the pruning comprises discarding values of each event that

is associated with a timestamp that is earlier in time than
a recovery time minus a timeframe defined based on the
window size.

5. A method by a processing system to control recovery of
operational state values of a complex event processing (CEP)
engine that processes values of events, the method compris
ing:

determining a window size based on a property of an event
query;

retrieving events’ values, from a distributed log, that are
restricted to occurring within a timeframe defined based
on the window size, wherein the distributed log stores
events values that have been processed by the CEP
engine;

replaying the retrieved events’ values to the CEP engine for
processing to recover the operational state values of the
CEP engine; and

pruning any events values from the distributed log that
occurred outside the timeframe defined based on the
window size,

wherein the pruning comprises:
retrieving from the distributed log a group of events

values that are associated with a window identifier;
discarding from the group of events’ values, the values

of any event that is outside the timeframe; and
storing the group of events values in the distributed log

with an association to the window identifier.
6. A processing system to control recovery of operational

state values of a complex event processing (CEP) engine that
processes values of events, the processing system compris
1ng:

US 9,372,756 B2
13

a processor; and
a memory coupled to the processor and comprising com

puter readable program instructions that when executed
by the processor causes the processor to perform opera
tions comprising:
determining a window size based on a property of an

event query;
retrieving events' values, from a distributed log, that are

restricted to occurring within a timeframe defined
based on the window size, wherein the distributed log
stores events' values that have been processed by the
CEP engine; and

replaying the retrieved events’ values to the CEP engine
for processing to recover the operational state values
of the CEP engine,

wherein the window size is determined based on a time
value contained in the event query, the time value
indicates a time duration over which an operation
defined by the event query is to be periodically per
formed on an incoming stream of events values to the
CEP engine, and the operation defined by the event
query computes an average duration of SIPINVITES
for an entity defined by the event query.

7. The processing system of claim 6, wherein the replaying
comprises:

retrieving values of each of a sequence of events from the
distributed log that occurred within the timeframe
defined based on the window size; and

sequentially providing values of each of the sequence of
events to the CEP engine for processing to recover the
operational state values of the CEP engine.

8. A processing system to control recovery of operational
State values of a complex event processing (CEP) engine that
processes values of events, the processing system compris
ing:

a processor; and
a memory coupled to the processor and comprising com

puter readable program instructions that when executed
by the processor causes the processor to perform opera
tions comprising:
determining a window size based on a property of an

event query;
retrieving events’ values, from a distributed log, that are

restricted to occurring within a timeframe defined
based on the window size, wherein the distributed log
stores events' values that have been processed by the
CEP engine;

10

15

25

30

35

40

45

14
replaying the retrieved events’ values to the CEP engine

for processing to recover the operational state values
of the CEP engine; and

pruning any event's values from the distributed log that
occurred outside the timeframe defined based on the
window size,

wherein:
the event query is received from a producer; and
the pruning is performed responsive to subsequent

receipt of another event query from the producer con
taining a different property than the event query.

9. The processing system of claim 8, wherein:
for each event, a timestamp is stored in the distributed log

and associated with the event's values; and
the pruning comprises discarding values of each event that

is associated with a timestamp that is earlier in time than
a recovery time minus a timeframe defined based on the
window size.

10. A processing system to control recovery of operational
State values of a complex event processing (CEP) engine that
processes values of events, the processing system compris
ing:

a processor; and
a memory coupled to the processor and comprising com

puter readable program instructions that when executed
by the processor causes the processor to perform opera
tions comprising:
determining a window size based on a property of an

event query;
retrieving events values, from a distributed log, that are

restricted to occurring within a timeframe defined
based on the window size, wherein the distributed log
stores events' values that have been processed by the
CEP engine;

replaying the retrieved events’ values to the CEP engine
for processing to recover the operational state values
of the CEP engine; and

pruning any event's values from the distributed log that
occurred outside the timeframe defined based on the
window size,

wherein the pruning comprises:
retrieving from the distributed log a group of events

values that are associated with a window identifier;
discarding from the group of events’ values, the values

of any event that is outside the timeframe; and
storing the group of events values in the distributed log

with an association to the window identifier.
ck ck ck ck *k

