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Abstract—With the rapid advancements in machine learning,
the health care paradigm is shifting from treatment towards
prevention. The smart health care industry relies on the avail-
ability of large-scale health datasets in order to benefit from
machine learning-based services. As a consequence, preserving
the individuals’ privacy becomes vital for sharing sensitive
personal information. Synthetic datasets with generative models
are considered to be one of the most promising solutions for
privacy-preserving data sharing. Among the generative models,
generative adversarial networks (GANs) have emerged as the
most impressive models for synthetic data generation in recent
times. However, smart health care data is attributed with unique
challenges such as volume, velocity, and various data types
and distributions. We propose a GAN coupled with differential
privacy mechanisms for generating a realistic and private smart
health care dataset. The proposed approach is not only able to
generate realistic synthetic data samples but also the differentially
private data samples under different settings: learning from a
noisy distribution or noising the learned distribution. We tested
and evaluated our proposed approach using a real-world Fitbit
dataset. Our results indicate that our proposed approach is able
to generate quality synthetic and differentially private dataset
that preserves the statistical properties of the original dataset.

Index Terms—Generative adversarial networks, differential
privacy, synthetic data generation, smart health care, fitness
trackers.

I. INTRODUCTION

The Internet of Things (IoT) paradigm as we know it today
is a fruition of the technological advancements in the area
of computer networks and communication, that ensure the
functionality of these services driven by highly interconnected
components. The mass adoption of IoT devices and services
creates a plethora of valuable data pools that have applications
in areas such as smart health care [1], smart cities [2], smart
farming [3] and personalized medicine [4]. These applications
are often driven by machine learning (ML) algorithms which
ensure the provision of continuously improving personalized
services. However, ML-based algorithms and services require
access to huge amounts of sensitive and private data, which
might not always be reasonable and in some cases, impossible
to obtain and share due to local data protection laws. In
particular, the advancements in the health care sector are
hindered due to the curse of limited data access.

This work is partly funded by the Erasmus Mundus Joint Doctorate program
in Distributed Computing (EACEA of the European Commission under FPA
2012-0030).

Data access is limited mainly because of the presence
of highly sensitive medical information that not only arises
concerns for personal privacy but also the threat of misuse or
re-identification. Data protection laws like the EU’s General
Data Protection Regulation (GDPR) ensure higher public trust
in data sharing, and informed use of collected user data by the
companies. Realistic synthetic datasets offer the benefits of a)
enhanced user privacy with reduced risk of re-identification, b)
reduced risk of exposure due to privacy-breaching attacks on
ML models such as model inversion [5], [6], and c) removal of
data that could potentially expose competitive advantage for
the data providers; all while maintaining fidelity to the real-
world data. Therefore, realistic synthetically generated datasets
are poised to accelerate the technological advancements in
ML, as these datasets do not suffer from the curse of limited
availability and can facilitate wide-scale data sharing and
usage by industry and researchers without privacy concerns
[7]–[12].

Generative modeling is a popular way to model synthetic
datasets. These models learn the probability distributions of
the given data and are capable of generating very realistic
sample distributions from the same data. Hence, generative
models are commonly employed for synthetic data generation
as well as data augmentation. GANs [13] and their variants
have recently become a widely adopted approach for synthetic
dataset generation [10], [14]–[18]. However, generating tabular
data with GANs, particularly smart health care data, poses
unique challenges [14]. The first challenge is the presence
of mixed data types, as the real-world data contains both
discrete and continuous variables. The second challenge is to
accommodate static and behavioral data types. For example
age, height and weight are considered static variables as
compared to the activity data, as the latter has a higher
frequency of recorded changes in observation. Moreover, the
data distributions might not always be Gaussian, which makes
them harder to normalize or model with GANs. Finally,
the major challenge in real-world data comes from highly
imbalanced categorical data, as the individuals may possess
widely diverse categorical attributes. Moreover, the frequency
of logged measurements differs from individual to individual.

GANs can also be combined with different privacy preserva-
tion solutions to ensure strong user privacy in the synthesized
datasets. Differential privacy (DP) is one of the most popular
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solutions used in combination with GAN. This approach relies
on noise addition to either the learning mechanism or directly
to the data. Research shows several variants of differentially
private GANs that employ the noisy learning mechanism
[10], [14], [18]–[23]. These DP-strategies are also applied
in combination with different variants of GANs depending
on the use cases. Moreover, GANs are being extensively
used to generate Electronic Health Records (EHRs) [7], [10],
[22], [24]. Esteban et al. [22] use a Recurrent Conditional
GAN (RCGAN) to generate synthetic time-series EHRs with
the noisy learning process. Similarly, Baowaly et al. [10]
generate EHRs by using Wasserstein GANs with gradient
penalty (WGANs) and boundary-seeking GANs (BGANs).
Their evaluations show BGANs to be more suitable for EHR
generation.

We address the problem of generating smart health care
records using BGANs. Our smart health care dataset is not
only more diverse in nature but also possesses the 3 V’s of
big data (volume, velocity, and variety) as compared to the
EHRs. We also used WGANs in our initial set of experiments
in comparison with BGANs. Our findings suggest that BGANs
are more suitable for synthetic smart health care dataset
generation, due to the faster convergence of the BGANs
and higher quality of the generated dataset. Moreover, our
proposed approach provides additional privacy preservation by
integrating DP in different settings. Our results show that the
proposed approach is able to generate realistic smart health
care data samples with user privacy guarantees.

Our contributions can be summarized as follows:
• We collect and refine a real-world smart health care

dataset from geographically distributed users.
• We augment the collected smart health care dataset to

represent diverse nutritional and activity patterns based
on age, ethnicity, geolocation, dietary preferences, and
other factors.

• We propose a method based on GANs for generating syn-
thetic and tabular time-series data, containing categorical
and numerical values, as well as the methods to generate
the privacy-preserving versions of the synthesized data
samples.

• We have created realistic synthetic and privacy-preserving
smart health care datasets with fine-grained nutritional
and activity user profiles for open use in research.

II. PRELIMINARIES

A. Generative adversarial networks

GAN [13] is a unique kind of generative architecture that
is inspired by the zero-sum game in game theory. It consists
of two deep learning models, a generator and a discriminator,
trained against each other as shown in Fig. 1. The goal of the
generator is to capture or learn the distribution of the actual
data and generate new data samples. The discriminator aims to
detect whether the data is coming from actual data distribution
or is it a fake one generated by the generator, hence acting as
a binary classifier. The two models compete with each other to

improve their performance until they reach a Nash equilibrium
where the discriminator model is fooled about half the time,
meaning the generator model is generating plausible examples.

Fig. 1: GAN model for synthetic data generation.

The GAN works as follows: Let G and D be differentiable
functions that represent the generator and the discriminator
respectively. G takes random variable z as input and generates
a data record G(z) and learns the distribution pg over data x
with a prior on input noise variables pz(z). The generated
record is then fed to D which also receives the real data
record x from real data distribution pdata(x) and tests for
their authenticity. The discriminator, when shown both the x
and G(z) data, assigns probabilities D(x) to the record where
1 represents a prediction of the record coming from the real
data distribution and 0 represents the data as fake. With time,
the discriminator D is trained to maximize the probability
of assigning correct labels to both the training examples and
the samples generated by G. G is trained simultaneously to
minimize the log(1 − D(G(z))). In short, D and G play a
two-player minimax with value function V (G,D) given by
[13]:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+ (1)

Ez ∼ pz(z)[log(1−D(G(z)))].

As shown in [13], the optimal discriminator D∗G(x) is given
by:

D∗G(x) =
pdata(x)

pdata(x) + pg(x)
. (2)

B. Boundary-seeking GAN

Rearranging the equation (2) we get:

pdata(x) = pg(x)
D∗G(x)

1−D∗G(x)
. (3)

From the above equation we can see that even if G is not
optimal, the true data distribution can still be found by scaling
pg(x). Furthermore, the optimal generator pdata(x) = pg(x)
can also be obtained by making the discriminator ratio equal
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to 1, which means that D(x) must be equal to 0.5 and then
D(x) = 0.5 is nothing but the decision boundary. For a perfect
G, D(x) cannot differentiate between real and fake data, or the
real and the fake data are equally likely. Since D(x) has two
outputs, each with probability of 0.5, the objective function of
G can be modified to force the discriminator outputting 0.5 for
every generated data. This can be achieved by minimizing the
distance between D(x) and 1 −D(x) for all x. Since D(x)
is the probability function, the minimum will be achieved at
D(x) = 1 − D(x) = 0.5 and hence the generator G loss is
given as [15]:

min
G

Ez∼pz(z)

[
1

2
(logD(x)− log(1−D(x)))2

]
. (4)

We use the Boundary-seeking GAN in our approach as it
offers stable and efficient training.

C. Differential privacy

Differential privacy is a privacy preservation mechanism
that aims to maximize the accuracy of queries from statistical
databases while minimizing the chances of identifying the
underlying records. Privacy is preserved by the addition of
noise to either the output of the statistical queries or the
input data. DP is provable and quantified using a privacy-loss
budget, ε. The most popular mathematical tool used to express
DP is as follows [25]:

A randomized algorithm A is ε-differentially private, if for
all subsets S ⊆ Range(A) and for all the datasets χ and χ′

that differ on at most one row (i.e. the data of one individual),

Pr[A(χ) ∈ S] ≤ eεPr[A(χ′) ∈ S]. (5)

Here, the ε parameter quantifies the loss of privacy. Absolute
privacy is obtained when ε = 0, where the inclusion of
one data record has almost no impact on the output of the
randomized algorithm A. Achieving high levels of privacy
preservation (small ε) requires a higher amount of calculated
noise addition which in turn decreases the accuracy of the
algorithm [26]. Therefore, a trade-off must be made between
keeping the data as private as possible and achieving mean-
ingful and accurate results.

D. The DP post-processing theorem

The post-processing theorem in DP [25] states:
If a mechanism M satisfies ε-DP, and g be any function,

then g(M(x)) also satisfies ε-DP.
In general, differentially private synthetic data generation

algorithms leverage this theorem as they mostly focus on
perturbing the distribution. This perturbation is done either
directly on the data (by noise addition) or through the learning
parameters (noisy learning). As a result, the synthetic data
is sampled from a noisy distribution. Applying the post-
processing theorem, any data drawn from a noisy distribution
(either by parameters or noise addition mechanism) that sat-
isfies DP will also be ε-DP. We employ the noise addition
approach as it has been shown that noisy learning may cause
GANs to take longer to converge, or in worse cases, not
converge at all [27], [28].

E. Laplacian noise addition mechanism

The Laplacian mechanism is one of the most popular noise
addition mechanisms in DP [29]. A standard approach is
adding random noise with the Laplacian distribution propor-
tional to the sensitivity of the query function Sf to ensure DP-
queries. We use the Laplacian differential privacy by adding
noise directly to the aggregated data records. Traditionally,
for the Laplace mechanism, random noise is drawn from a
Laplacian distribution with mean 0 and variance Sf/ε to
achieve ε-differential privacy [25]. All the data points in an
aggregated data record are individually noised as we pick
random noise samples for each point from a Lap(0, 1/ε)
distribution.

III. DATA PROCESSING PIPELINE

This section presents our method for data collection, imputa-
tion, and transformation. Moreover, we present our approaches
for privacy-preserving model training, followed by the data
inverse-transformation mechanism. The proposed pipeline is
shown in Figure 2. Below, we describe each pipeline stage.

Fig. 2: Data processing pipeline.

A. Data collection and imputation

For this work, we used Fitbit Charge 2 HR smartwatches for
automated data collection in combination with the Fitbit App
for manually logging user meals. A total number of 25 subjects
were observed during this study, distributed across Belgium
and Sweden. 12 devices were used for dataset collection, with
2 continual participants (male and female), and 10 users in
circulation. The users were asked to record a minimum of
60 days of observations. The participants’ pool consisted of
6 coarsely defined ethnicities to represent the overall health
and diet patterns of the residing communities. We collected
more than 17M measurements related to the users’ meal logs,
calorie intake, heart rate, calories burned, steps taken, activity
profile during the day, and sleep. Apart from the numeric data
collection, the platform also collects categorical user data, such
as age, gender, height, and weight. Since the users were not
provided with smart scales, the weight measurement is logged
manually. All these logs and measurements were then exported
from the Fitbit platform.

1) Time-series data aggregation and imputation: Since this
data collection is time-series in nature, with the users logging
some manual information, there are natural gaps in the time-
series caused by these factors: 1) users forgetting to wear the
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device or wearing incorrectly, 2) users forgetting to log the
meals, and 3) meals not present in food database or customized
meals with unavailable nutritional breakdown.

For the gaps in time-series, the days without any meal log
entries were omitted. The remaining entries were analyzed
for correctness in the recorded measurements. In case of a
missing activity profile or a mismatch between the burned
calories versus activity profile during that particular day, the
user behavior pattern was analyzed to find the closest matching
activity profile or the burned calories recorded in the past. A
similar approach was used to remove the mismatch between
the recorded resting heart rate (RHR) and the steps taken
versus the activity profile.

2) Meal logs imputation: Imputation for missing nutri-
tional breakdown for meals is more complex as compared
to other missing attributes. When it comes to the available
food databases from Fitbit, the United States (US) database
is the most largely populated but specialized to the foods
available in the US region. On the other hand, the Belgian
(French) food database is partially populated. However, since
there is no specialized database available for the users in
Sweden, the users either recorded the closest matching entry
in the US food database or in some cases, the users manually
logged the nutritional breakdown for customized meals. A
translation API was used to convert logs from other languages
to English, replacing the log with either the closest match
in the US food database or by using an external nutrition
API. Nutritionix API [30] was used to impute the missing
nutritional breakdown for meals. Initially, the measurements
were aggregated into 3 records. Each contained the nutritional
breakdown for a meal (breakfast/lunch/dinner), calories burned
during the mealtime, RHR from the previous day, and steps
taken as well as the activity records for that day. These records
were later aggregated to form one record per day for the
nutritional breakdown of all meals, activity profile, steps taken,
calories burned, and RHR. The users exhibited all kinds of
natural behavior, ranging from very sedentary to highly active
users. The complete spectrum of data features (and ranges) is
shown in Table I.

Features Type Unit Range

Age static yrs median: 28
Gender static - 0: male, 1: female
Height static cms private
Weight static kgs private
Fat behavioural gm 0.08 – 90
Fiber behavioural gm 0.06 – 34
Carbs behavioural gm 0.06 – 150
Sodium behavioural mg 1.92 – 2745
Protein behavioural gm 0.14 –75
Calories burned behavioural kcal 1025 – 4331
Resting heart rate behavioural bpm 49 – 83
Lightly active minutes behavioural mins 2 – 481
Moderately active minutes behavioural mins 0 – 211
Very active minutes behavioural mins 0 – 253
Sedentary minutes behavioural mins 254 – 999
Steps behavioural - 162 – 32871

TABLE I: Dataset features with ranges (aggregated per day).

B. Data Transformation

For preparing the data for training, we first remove the
Date and Gender information. Next, the remaining features
are normalized and fed to the model for training. Depending
on the selected privacy setting (noisy input), we can provide
DP-input data to the GAN, which will enable the generation
of DP-synthetic samples, as stipulated by the post-processing
theorem. Since the data contains categorical or static attributes,
which require higher privacy settings, we add Laplacian noise
with ε = 0.2 to ensure high noise addition and consequently,
stronger privacy settings. On the other hand, behavioral at-
tributes possess a lower risk of re-identification. So we add
Laplacian noise with ε = 0.5 to ensure sufficiently high noise
addition without losing data utility.

C. Model Training

As mentioned earlier in the Section II-B, we use BGAN
for synthetic data sample generation. We trained the BGAN
by sampling the population based on gender and geographical
location. Moreover, we trained the model in three different
privacy settings (non-DP, noisy input, and noisy output) as
will be briefly explained in Sec. V-A.

D. Data Inverse-transformation

Once the training is complete and the data is generated
by the generator, we first de-normalize the features to better
reflect the original data ranges. Afterwards, the columns Date
and Gender are appended to the generated data to make a
complete record. Moreover, depending on the chosen privacy
setting (noisy output), we add Laplacian noise with ε = 0.2
to the static and with ε = 0.5 to the behavioral variables.

IV. PROPOSED GAN NETWORK FOR SYNTHETIC SMART
DATA GENERATION

A. Generator Network

The generator network is shown in Fig. 3. The network takes
an input of 15× 1 signal followed by 2 dense layers with 64
and 32 neurons, appended with a Leaky ReLU activation with
a rate of 0.2. The last dense layer acts as the output layer
which takes tanh as an activation function.

Fig. 3: Generator network.
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B. Discriminator Network

The discriminator network is shown in Fig. 4. The network
takes an input of 15 × 1 signal followed by 2 dense layers
with 512 and 256 neurons. Both the layers take Leaky ReLU
as an activation function with a rate of 0.2. The last layer of
the Discriminator network is a dense layer with 1 output and
applies sigmoid as an activation function.

Fig. 4: Discriminator network.

C. Learning rule

We use adaptive moment estimation (Adam) optimizer for
both the Discriminator Network and the final GAN network,
which computes the adaptive learning rate for each network
weight over the learning process from estimates of first and
second moments of the gradients. For the configuration param-
eters, the learning rate α is set to 0.0002 and the exponential
decay rate for the first β1 and second β2 moment estimates
are set to 0.5 and 0.999 respectively. The epsilon that counters
the divide by zero problem is set to 1e− 8.

V. EXPERIMENTS, RESULTS AND DISCUSSION

We now present our experiments with different additional
privacy settings, the respectively generated samples and their
histogram distributions.

A. Experiments

As shown in Fig. 2, our pipeline offers multiple points for
Laplacian noise addition for differential privacy, enabling 3
experimental settings. The GAN network is able to learn the
distribution and to produce plausible examples in each case.

1) Synthetic Data Generation with no Noise Addition: In
this setup, the original data is taken as input by the GAN
network and the aim is to generate plausible results close to
the original data (non-DP).

2) Synthetic Differentially Private Data Generation: In this
setup, the network is trained on differentially private data i.e.,
DP is applied prior to sending it to the discriminator (noisy
input). This allows the GAN model to generate differentially
private synthetic samples. This approach may be beneficial for
settings where synthetic data generation is offloaded to a third
party, or when the threat model includes the server node.

3) Applying Differential Privacy to the Synthetic Data:
In this setup, we apply DP to the generated synthetic data to
observe the effect of noise addition on the quality of generated
data (noisy output). This approach offers the advantage in
terms of control on the noise addition in generated data,
depending on the sensitivity of the data features. However,
it requires the additional computation of noise that is added
to each generated data point individually.

Fig. 5: Line Plots of Loss and Accuracy for a Stable GAN.

B. Results and Discussion

Our proposed approach generates synthetic and private
smart health care data using BGAN in combination with DP.
The GAN network is stable, and able to generate plausible
results. Figure 5 shows the stability of the proposed GAN
where the top subplot shows line plots for the discrimina-
tor loss for real samples (blue), the discriminator loss for
generated fake samples (orange), and the generator loss for
generated fake samples (green). It can be seen that the three
losses are somewhat unstable early in the run before stabilizing
around epoch 420 to epoch 600. Losses remain stable after
that, showing the stable behavior of the GAN, although the
variance increases. The discriminator loss for real samples
and fake samples is around 0.5, and loss for the generator is
slightly higher between 0.5 and 1.0. It is expected the model
will generate plausible samples between epochs 420 to 600.
The bottom subplot shows a line plot of the discriminator
accuracy on real (blue) and fake (orange) samples during
training. Similar behavior can be seen as seen in the subplot
of loss i.e., the accuracy starts off quite different between the
two sample types, then stabilizes between epochs 420 to 600 at
around 60% to 70%, and remains stable beyond that, although
with increased variance.

Table II shows an example of few rows from the real
dataset, and the synthetic rows were generated by the trained
GANs. Here, Original and GAN represent datasets samples
with no noise addition (non-DP). GAN with DP output shows
generated data samples with DP-noise addition (noisy output).
Similarly, Original DP and GAN with DP input represent
the original DP-input and the generated synthetic samples
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Dataset Height Weight Fat Fiber Carbs Sodium Protein Calories Resting Active Minutes StepsBurned HR Lightly Moderately Very Sedentary

Original
169 66.18 39.0 11.0 33.0 1189.0 4.0 2308.08 59.526 121 6 28 731 9706
169 66.18 39.0 7.0 125.0 1125.0 34.0 2707.35 61.99 166 13 56 732 14070
169 66.18 33.0 8.0 96.0 1361.0 66.0 2485.35 58.45 99 22 60 774 12008

BGAN
175 87.09 29.20 7.80 73.46 1192.83 41.48 2556.28 63.44 157 63 78 768 12222
175 87.09 41.32 10.71 49.00 1072.10 33.07 2873.35 64.92 195 49 84 772 14374
175 87.09 60.82 11.69 98.62 1447.21 31.67 3286.82 64.77 253 56 73 889 14877

BGAN w/ DP output
177 93.62 30.51 13.55 70.19 1191.99 42.48 2555.69 66.29 154 60 71 772 12222
177 93.62 37.94 9.63 50.15 1071.65 34.7 2875.86 70.71 195 48 81 772 14374
177 93.62 62.06 9.84 94.18 1447.51 32.17 3286.16 70.32 252 49 73 892 14875

Original DP
161 66.78 39.04 10.02 33.97 1195.83 5.42 2308.34 57.32 121 8 26 732 9704
161 66.78 38.06 7.31 125.42 1122.46 32.66 2706.42 67.77 164 9 56 731.91 14074
161 66.78 29.79 2.82 99.02 1360.55 65.02 2485.37 57.75 97 23 62 777 12005

BGAN w/ DP input
181 80.74 33.14 4.12 99.12 1020.8 39.5 3099.14 58.69 213 51 23 757 9769
181 80.74 22.25 11.02 38.29 1416.57 4.838 2611.83 58.09 137 2 3 754 9944
181 80.74 58.99 11.19 104.60 483.94 41.96 2593.24 59.56 190 48 106 732 12004

TABLE II: Example data samples from Belgium population. Age and Gender are hidden.

Fig. 6: Histogram distributions for calories burned per day (kcal). Samples: Belgium males with RHR=70-75bpm.

respectively (noisy input). As can be seen, all the generated
examples look realistic in all the selected privacy settings.

In order to see if the generated data and the real data both
come from the same distribution, we show a visualization of
the respective histograms. As an example, we only consider
the distribution of the burned calories from the logs of male
participants belonging to Belgium. It can be seen from Fig.
6 that the original (Fig. 6 (a)) and the synthesized (Fig. 6
(b)) burned calories follow more or less the same kind of
distribution indicating the good performance of the proposed
BGAN network. We also perform the Kolmogorov–Smirnov
(KS) goodness of fit test [31] on the samples taken from
original and synthetic calories distributions, which gives a p-
value of 0.98, indicating a high probability that these samples

are from the same distribution and showing that the proposed
BGAN is indeed able to learn the diverse categorical and
numerical features and generates realistic synthetic samples.

The distribution of original DP data samples (noisy input) is
depicted in Fig. 6(d), which exhibits a similar distribution as
the DP data generated by BGAN shown in Fig. 6(e). Moreover,
the KS test on original noisy calories distribution (DP input)
and the synthetically generated noisy calories distribution
gives a p-value of 0.97, indicating a high probability that the
samples come from the same distribution and the proposed
BGAN is able to generate differentially private sample distri-
butions.

Using DP input allows us to generate differentially private
data instead of explicitly applying DP to all the synthesized
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data samples. On the other hand, applying DP-mechanism after
synthetic data generation allows for more control in terms of
noise addition, and consequently, data utility. As can be seen
in Fig. 6(c), the distribution of the samples is retained although
the records are noised and differentially private.

All our experiments and results demonstrate that although
the proposed GAN architecture is quite simple, yet it achieves
very high performance in terms of generating both synthetic
and differentially private synthetic data. The Fitbit-based smart
health care dataset possesses highly diverse features and the
proposed DP-mechanism with BGAN is stable and generates
high utility synthetic data.

VI. CONCLUSIONS

We have proposed a system for creating synthetic and pri-
vate smart health care datasets using BGANs and differential
privacy. Using a real-world collection of Fitbit-based smart
health care datasets, we tested our proposed approach in three
privacy preservation settings. Our proposed approach is able to
learn categorical and numerical values for highly diverse tab-
ular data distributions, and we obtain stable GANs trained for
dataset generation. As a result, we generate realistic synthetic
smart health care datasets that possess similar distributions
as the real data while preserving user privacy. Our proposed
method for smart health care data generation also allows
control for different privacy settings and paves way for the
publication of open smart health care datasets for sharing and
use in research and industry.
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