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Abstract Online social networks (OSNs) have success-

fully changed the way people interact. Online interactions

among people span geographical boundaries and inter-

weave with different human life activities. However, cur-

rent OSNs identification schemes lack guarantees on

quantifying the trustworthiness of online identities of users

joining them. Therefore, driven from the need to empower

users with an identity validation scheme, we introduce a

novel model, cooperative and adaptive decentralized

identity validation CADIVa, that allows OSN users to

assign trust levels to whomever they interact with. CADIVa

exploits association rule mining approach to extract the

identity correlations among profile attributes in every

individual community in a social network. CADIVa is a

fully decentralized and adaptive model that exploits fully

decentralized learning and cooperative approaches not only

to preserve users privacy, but also to increase the system

reliability and to make it resilient to mono-failure. CADIVa

follows the ensemble learning paradigm to preserve users

privacy and employs gossip protocols to achieve efficient

and low-overhead communication. We provide two dif-

ferent implementation scenarios of CADIVa. Results con-

firm CADIVa’s ability to provide fine-grained community-

aware identity validation with average improvement up to

36 and 50 % compared to the semi-centralized or global

approaches, respectively.

Keywords Identity validation � Online social networks �
Distributed systems � Privacy preservation � Decentralized
online social networks

1 Introduction

Online social networks (OSNs) have changed the way

people communicate and have provided new forms of

communication and social interactions. Online interactions

span geographical boundaries and interweave with the

different daily life activities. The realm of OSNs design

shows variety in purpose for different types of interactions

among people. Some sites keep a very professional
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approach (e.g., LinkedIn1), while most sites mix profes-

sionalism with personalization (e.g., Facebook2 and Goo-

gle?3). However, all of these sites employ a lightweight

process for obtaining membership identities (i.e., con-

firming a valid email address) to facilitate their smooth

joining and fast adoption. Moreover, when users create

their profiles on these OSNs, they are given the complete

freedom to fill up the records of their profiles without

validating them. Consequently, such convenience increases

the vulnerability of such networks to undergo security

threats such as spam, malware and phishing attacks (Huber

et al. 2011; Luo et al. 2009; Jagatic et al. 2007). One of the

recently trending threats to OSNs is the spread of fake

accounts that are seeking to get social (Robinson 2015;

Stringhini 2014).

Fake accounts are nothing new to the online world in

general and to OSNs in particular. Despite all the efforts to

aid the detection of fake accounts, they still make a con-

siderable proportion of the active online population of

today’s major OSNs. For instance, as of December 2015,

Facebook has been reported to have 1.49 billion accounts

out of which at least 83 million are known to be fake.4

What is more dangerous than the existence of these fake

accounts is their exploitation to build social trust, hence

making honest targets more willing to trust dangerous

content or putting the privacy of their information at risk

(Robinson 2015; Stringhini 2014). This social trustwor-

thiness is mainly achieved by means of creating personal

connections with honest users. Indeed, most of the tech-

niques available for fake accounts detection rely on the

premise that fake accounts exhibit tendencies of densely

connected groups that are weakly connected to the rest of

the OSN, or outlying behavior that is skewed compared to

common trends (Yu et al. 2006, 2008). As such, once a

fake account succeeds at befriending honest users, its

chances of getting detected would be considerably dimin-

ished. Moreover, the established connections may allow

the fake account to inherit some of the trust accorded to the

befriended honest account; thus, give to the fake account

more credibility resulting in higher chances of fooling

other honest users (Stringhini 2014). This suggests that

there may be a need for a mechanism that facilitates the

validation of profiles in an OSN to allow honest users to

take better informed decisions before accepting a new

connection in the network.

Several approaches have been proposed to address the

problem of identity validation of users in OSNs. Particu-

larly, online identity validation targets the estimation of

trustworthiness of an OSN profile in terms of linking this

profile to a true social human identity. However, all of the

existing approaches tend to compromise users’ privacy in

their trial to achieve some security goals. For example,

some of them identify users by utilizing their sensitive

information such as geo-locations they usually visit and

time stamps of the information they share (Goga et al.

2013). In Chairunnanda et al. (2011), authors use typing

patterns to identify users, whereas chatting patterns are

exploited in Roffo et al. (2013). Additionally, other vali-

dation approaches have suggested to rely on human feed-

back. For example, in Sirivianos et al. (2012) the authors

suggest to evaluate an identity on a given network based on

feedback of her connections on another one. Generally, all

of these techniques are derived from the incentive to val-

idate online identities, yet they fail to limit the boundary of

information to be used to fulfill their objective without

violating users privacy or revealing their sensitive infor-

mation to other entities who are not privileged to access it.

More importantly, further privacy concerns also emerge

as a result of the centralized architecture of today’s popular

OSNs. In particular, this centralized architecture has criti-

cal consequences such as the necessity for a high degree of

trust in the OSN provider, censorship of users behavior and

the utilization of users’ data for business-related purposes

(Debatin et al. 2009; Dwyer 2011). Therefore, in the last

decade, researchers and the open source community have

proposed various decentralized OSNs (DOSNs) (e.g., Koll

et al. 2014; Nilizadeh et al. 2012; Kapanipathi et al. 2011)

that remove dependency on a centralized provider. The

main objectives behind decentralization are to preserve

users privacy in both shared content and communication,

and also to provide complete freedom from any form of

censorship or profiling. DOSNs operate as distributed

information management platforms on top of networks of

trusted servers or P2P infrastructures (Datta et al. 2010).

Thus, DOSNs provide a privacy preserving alternative to

current OSNs, where users have full control of their data.

Although the DOSNs paradigm presents promising ways

for preserving users privacy, it creates even more chal-

lenges when it comes to validating users identities. Indeed,

in the absence of a central management entity, designing

mechanisms to control online identities in a DOSN brings

up several challenges. First, all the information that could

be exploited to validate a user’s identity is solely owned

and managed by him/her and is not available to any other

entity. Second, with the privacy preservation set as a first

requirement, an appropriate solution should not exploit any

information outside of its owner’s boundaries. In addition

to that, an adequate solution should not subvert the

decentralized architecture of DOSNs. That is, collaboration

between peers should ideally be exploited in a fully

decentralized manner without introducing subcentral

1 www.linkedin.com.
2 www.facebook.com.
3 https://plus.google.com/.
4 https://zephoria.com/top-15-valuable-facebook-statistics/.
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entities or super peers that might constitute single points of

failure or privacy breach entities.

1.1 Motivation

Starting from the requirement of preserving users’ privacy

in suggesting an appropriate solution for identity validation

of peers in a DOSN, it sounds crucial to limit the exploited

information to publicly available one only and to not move

data across its ownership boundaries. A possible approach

is to utilize the provided profile information of a user.

Particularly, the evaluation can be done based on the

integrity of the provided profile information and veracity of

reflecting actual real identity of the profile owner. This idea

has been suggested in Bahri et al. (2014) where the authors

suggest using community feedback to assign trustworthi-

ness levels to users on a social network based on the profile

information they exhibit. The authors show that there exists

a dependency among different profile attributes such that

their corresponding values are expected to exhibit some

correlation within any truthful profile. They do this by

gathering human feedback from a trusted set of users on a

centralized profiles training dataset. Once these correla-

tions are identified, again they engage users’ feedback, to

estimate the identity trustworthiness level of a target pro-

file. In particular, the computed trustworthiness level of

any target profile indicates the homogeneity between val-

ues in the user’s profile and the identified correlated attri-

butes. Although the proposed approach succeeds in

limiting the required information to identify identity

trustworthiness by relying only on profile information,

using users’ feedback might be violating users privacy.

Moreover, this solution relies on the existence of a central

repository of profiles from which the correlations between

attributes could be extracted.

Basing the learning of correlations between profile

attributes on all the users profiles as one unified entity (i.e.,

the global correlations that are generated using all the

profiles) would capture generalizations across all of the

users in the network and might result in discriminatory

validation patterns to minorities. For example, if we con-

sider a network of one million users, extracting statistically

significant correlations from the whole population provides

broad commonalities shared across the whole population

such as interests in specific sports. This might not apply to

all users at a micro scale and would result in incorrectly

validating their profiles. At this point, it comes logical to

exploit network relationships as well as they reflect

groupings of people that might be representative of com-

mon identity trends. In fact, it has been found that social

networks exhibit a clustering phenomena by which users

topologically cluster into communities (Krivitsky et al.

2009; Ferrara 2012). Furthermore, users inside every

community typically have high similarity to each other

sharing common identity and background trends (Ferrara

2012). Thus, it sounds more realistic to validate identities

within single communities instead of considering all the

users base as one flat entity and resulting in identity vali-

dation patterns that could be very vague and too general to

apply to users at micro levels. For example, if the majority

of users work in information technology jobs and share the

same interests in electronics and gadgets, global learning

will enforce a correlation rule between job and interests.

On the other hand, smaller communities of people who

work on different careers (e.g., school teachers) will be

penalized for mismatching this rule.

Furthermore, it is intuitively observable that people have

multiple community memberships. For example, a person

usually has connections to multiple groups or communities,

such as family members, colleagues, friends and co-

workers. Therefore, it is more reasonable to compute

multiple trustworthiness levels per user according to the

different communities that he or she belongs to. Therefore,

the objective of identity validation systems is to go beyond

the existing solutions of binary classification (i.e., classi-

fying a new profile as legitimate or fake) and provide a

community-aware identity validation. Community-aware

identity validation systems will have the ability to identify

the existing communities in the social network and extract

the correlated attributes inside each community. Conse-

quently, identity validation of new users can be performed

by quantifying the overlapping among the profile attribute

values of the new users with respect to the existing cor-

related attributes of the communities which these users

want to join. Moreover, new users can have multiple

trustworthy levels to the communities they join. For

example, a new user who is a computer science student in

some university has a high trustworthiness level for the

community of computer science students as they study the

same subjects. However, the same student may have a

lower trustworthiness level for the community of music

bands as he/she is not interested in music.

In addition to these limitations, relying on a central

learning repository to unveil identity trends does not align

with our target scenario of DOSNs. Thus, to design a

solution tailored to DOSNs, and to overcome the limitations

related to the centralized and supervised approach exploited

in Bahri et al. (2014) to extract the correlations among

profile attributes from a profile schema, we previously

proposed in Soliman et al. (2015), a decentralized identity

validation (DIVa) model that adopts a quasi-decentralized

approach. Instead of supervised learning that requires

human feedback, DIVa successfully conceptualizes users

online identities by extracting the correlations among pro-

file attributes from the user population. Additionally, DIVa

provides community-based validation by mining the
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correlations form individual communities not from the user

population as a whole. DIVa achieves this in a three phase

process that starts by each node learning the collection of its

local correlated attribute sets (LCAS) by exploiting asso-

ciation rule mining over the profiles of its direct friends

only. In the second phase, a community detection mecha-

nism is deployed to define the communities existing in the

network. Thereafter, every node, knowing the communities

to which it belong, communicates its learned collection of

LCAS to the super nodes of its membership communities.

These super nodes, referred to as diva nodes, are unique in

each community and are responsible of receiving all LCAS

collections from all the nodes in their community and

aggregating them to generate the community-level corre-

lated attribute sets (i.e., CAS). As such, DIVa provides

stronger fine-grained validation rules (i.e., a set of CASes

per community) that reflect the existing patterns inside

every existing community instead of the global trends that

any new profile can maintain. Thereafter, every user can use

these correlations to evaluate the truthfulness of new pro-

files he or she desires to become friend with. In particular,

the evaluation of identity trustworthiness depends on the

coherence of its claimed identity against the discovered

correlations of the targeted community.

1.2 Contribution

The provided model in Soliman et al. (2015) demonstrated

good results in meeting the goal of designing an identity

validation model for DOSNs that uses minimal information

(i.e., profile information only); however, this model does

not provide a fully decentralized solution. In fact, (Soliman

et al. 2015) assume the availability of some super nodes

(i.e., diva nodes) that are exploited as central hubs within

each community and are used to aggregate the final com-

munity-based profile attribute correlations. These super

nodes might constitute single points of failure or perfor-

mance bottlenecks in the system as the process depends on

their availability and on their ability to perform the tasks

entrusted to them. Moreover, the assumption of super

nodes does not fully align with the fully decentralized spirit

of DOSNs. In addition to that, the work in Soliman et al.

(2015) bases on static assumptions across all communities

for the threshold values adopted to learn significant cor-

relations within each community. That is, all communities

adopt the same threshold value for the learning of a valid

correlation between profile attributes of their members,

ignoring the specific characteristics of every community

such as size and homogeneity.

To address these limitations, in this paper we suggest a

cooperative and adaptive decentralized identity validation

model (CADIVa) that is fully decentralized and adaptive.

CADIVa exploits gossip learning to provide fully

decentralized and cooperative learning, not only to pre-

serve users privacy, but also to increase the system relia-

bility and to make it resilient to mono-failure. Furthermore,

CADIVa tunes the statistical significant threshold for

selecting profile attribute correlations according to the

number of nodes belonging to each community. Adaptive

thresholds increase the freedom of each community to have

the value that reflects the level of homogeneity among its

constituent members.

CADIVa operates based on a gossip-based algorithm to

cut off the role of the super nodes in aggregating their

communities CASes, and to engage all of the nodes in a

community instead. As this might result in a communica-

tion overhead, we demonstrate the trade-off between con-

vergence and network overhead and propose two different

implementations of CADIVa. In the first one, the com-

munity detection phase is executed first and performed

separately from the aggregation phase, whereas in the

second implementation we combine both the community

detection and LCASes aggregation to minimize the overall

communication overhead. The results show that both ver-

sions of CADIVa achieve improvement up to 36 and 50 %

than DIVa and global approach, respectively.

Furthermore, the main motivation behind CADIVa is to

quantify the trustworthiness of new users joining the social

network and recommend neglecting the connections from

untrustworthiness users. However, the users have the

complete freedom either to follow CADIVa’s recommen-

dations or to neglect them. Therefore, we developed

CADIVa as adaptive and self-correcting model that con-

tinuously updates communities validation rules while new

nodes being added to the communities. The first part of

CADIVa’s adaptability lies on computing different

threshold values according to the statistical strength of

attribute pairs frequency inside every community inde-

pendently. Secondly, CADIVa monitors the topological

changes in the communities after adding the new nodes/

edges. Afterward, CADIVa re-performs the CAS learning

in the regions where communities topologically change.

We perform a set of experiments following hierarchical

community detection to show how CASes change with the

increase of community size. The results emphasize the

ability of CADIVa to extract the community-level CASes

that reflect the topological structure of the underlying

communities and the properties of the user population

belonging to each community.

The main contributions of this paper can be summarized

as follows:

– A cooperative, massively parallel and reliable identity

validation model that preserves users privacy and

operates without super nodes support, hence it suitably

fits DOSNs.
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– Community-aware identity validation model that

reveals mostly frequent fine-grained identity patterns

inside every community more accurately than existing

semi-centralized or global approaches.

– Adaptive identity validation model that is capable of

tuning the model parameters to reflect the existing

homophily level inside every community.

– Incrementally learning model that monitors the evolv-

ing changes in the underlying social graph and updates

communities validation rules.

The rest of the paper is organized as follows. Section 2

provides background on the proposed identity validation

scheme. In Sect. 3, we describe the CADIVa model and

detail its two suggested implementations. Section 4 pro-

vides security and complexity analysis, whereas Sect. 5

presents and discusses experiments results. In Sect. 6, we

survey the related work and then conclude the paper in

Sect. 7.

2 Background: combining profile and network
data for identity validation

The goal of our proposed model is to provide users in a

DOSN with an identity validation service that would help

them in assessing the trustworthiness of their new online

contacts. Our target requirements are to achieve this goal

without subverting the privacy preservation guaranteed by

the DOSN design and to offer a solution that is fully

decentralized without relying on super nodes that might

constitute single point of failure. To answer our goal, we

suggest a model that exploits detected correlations between

profile attributes in a profile schema to provide communi-

ties in a DOSN with sets of correlated attribute sets (CAS)

that reflect the identity trends of their members. These

CASes can be used by community members to assess the

trustworthiness of new contacts desiring to connect with

them. Basically, our model bases on two assumptions.

First, social networks exhibit a clustering feature by which

users topologically cluster into communities with connec-

tions within a community denser than across communities.

Second, people within communities share common identity

trends and patterns that could be extracted and that could

be used to validate the identity of new members desiring to

connect with them.

To extract those correlations in a profile schema, we

exploit the principles of association rule mining (ARM)

(Agrawal et al. 1993). ARM is a data mining model that

has been extensively used in market basket analysis, to

extract rules on how a subset of items influences the

presence of another subset (Agrawal et al. 1993, 1994;

Kotsiantis and Kanellopoulos 2006; Hipp et al. 2000).

Similarly in our scenario, we are interested in finding the

set of correlated attributes and quantifying the dependency

relations among them. Hence, for identity validation an

association rule can be, ‘‘a user who is employed at com-

pany X also lives in city Y.’’ To infer such rules, the

proposed model extracts the frequent profile attributes

values inside each community and identifies their equiva-

lent profile attributes as correlated attribute set (CAS). As

such, the evaluation of identity trustworthiness of a profile

can be performed based on the coherence of its claimed

attribute values against the discovered CAS and their

values.

To be aligned with the DOSN design and with our target

privacy preservation requirements, we design our sug-

gested model based on a node-centric approach and

structure its operation in three main phases, as illustrated in

Fig. 2. First, all the nodes in the network collaboratively

execute a decentralized community detection algorithm5 to

detect topological communities existing in the social net-

work. Second, every node independently executes ARM

learning using its local data (i.e., the profile information of

its direct friends only) to extract its local correlated attri-

bute set (LCAS) that exist among its direct friends. Thus,

profile information is processed locally and any possibility

of mismanagement or accidental disclosure of profiles

information is diminished because users’ data are not

moved outside their trusted zone. Finally, nodes participate

in a voting mechanism to formulate the community con-

sensus from LCASes and reach a common community-

level CASes.

Once the nodes agree on their communities CASes,

nodes can evaluate the integrity of profile information of a

new user desiring to connect with them. To illustrate the

validation process, we provide the scenario in

Example 2.1.

Example 2.1 Let us assume we have two communities C1

and C2 in the OSN where we found that {Education, Job}

and {Job, Current City} form the C1’s CAS, while { Cur-

rent City, Interests} forms C2’s CAS. The existence of the

two attribute pairs in CAS of C1 is agreed on by and

communicated to all its nodes, and the same applies for C2.

Consider Bob to be a member of the two communities and

assume Alice is a new user who wants to connect with Bob

(see Fig. 1). Bob knows that in his first community (i.e.,

C1), trustworthy nodes should demonstrate homogeneity

between Education and Job and between Job and Current

City. Therefore, Bob can estimate the trustworthiness of

Alice’s profile by checking the values she provides to these

attribute couples. The estimation of Alice’s profile indi-

cates that Alice has a low trust level to be a member of C1;

5 We exploit the community detection algorithm suggested in

Rahimian et al. (2014) as it provides a fully decentralized solution.
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however, she is more trustworthy to be in C2. So, Bob can

accept Alice’s friendship and consider her to be a member

of C2 but not C1. To assist users to have clearer judgment,

the model also provides the top n values associated with

each CAS in their community.

In what follows, we describe in more details each of the

three phases of the proposed model.

2.1 Community detection phase

In social networks, it is intuitively observable that people

have multiple community memberships. For example, a

person usually has connections that span multiple groups

such as family, friends and classmates and co-workers.

Furthermore, the number of communities a user can belong

to is unlimited as a person can simultaneously associate

with as many groups as he/she wishes. Thus, it is more

reasonable to cluster users into overlapping communities

rather than disjoint ones. Therefore, in our community

detection phase we allow nodes to join multiple commu-

nities. In particular, the community detection algorithm that

we exploit (i.e., the proposal in Rahimian et al. 2014) run in

conductive rounds, such that in every round nodes maintain

an ordered list of the communities according to the number

of the direct friends belonging to these communities.

Basically, as illustrated in Fig. 2, a node starts a community

by itself and initializes its community identifier with the

maximum ID among itself and its direct friends. Afterward,

nodes exchange their sates with their direct friends, such

that every node updates the community membership list

with the number of the community that the majority of its

friends are located in. Then, every node allocates itself to

the community containing the highest number of its

neighbors (i.e., the dominant community as the case of node

8), if such a community exists; otherwise, the node assigns

itself to the community with the maximum ID.

Once every node is aware of the communities it belongs

to, the second phase of the model is run locally by each

node.

2.2 Local learning phase

Our proposed scheme extends the ensemble learning

paradigm in distributed machine learning and works on

fully distributed datasets without collecting the data into

one central location. As shown in Fig. 2d, every node uses

its local data repository that contains the collection of its

direct friends profiles, and generates a set of distributed

models by exploiting principles of association rule mining

(ARM). The formal statement of ARM was firstly stated by

Agrawal et al. (1993) to extract the association rules of the

causal dependencies of buying different items. In our

model, the items are the profile attributes and the associ-

ation rules are the correlated attribute sets. For example, a

node can learn from examining the profiles of its direct

friends that users who study at university x also live in city

Y. If a node sees such an observation is frequent enough in

the profiles of its direct friends, the node deduces that

attributes University and City are correlated. We provide

the details of this step under Sect. 3.2.

Once all the nodes have learned their local correlated

attribute sets, they engage in a collaborative process to form

consensus on the community-level correlated attribute sets.

2.3 Forming community consensus phase

The last phase is to agree on the communities CASes.

Communities CASes are computed in an incremental

Community C2

CAS = { (City, Interest)} 
Values for City = {Milan, 
Stockholm} 
Values for Interest= {Music, 
Movies} 

CAS = { (Education, Job), 
(Job, City)}  
Values for City = {Stockholm} 
Values for Job= {PhD Student, 
Master Student} 

Community C1

Bob

City: Milan
Interests: 
Music, Movies, 
Sports

Fig. 1 Illustrative scenario for

Example 2.1. Alice sends a

friendship request to Bob who

evaluates Alice’s profile w.r.t

the validation rules of the

communities he belongs to
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fashion by aggregating the individual LCASes at the level

of all the nodes in every given community. This achieves

the same predictive and analytic power, as applying the

learning on a centralized repository, in a distributed fashion

without moving individual data outside its ownership

boundaries and thus without violating users privacy. In our

previous work (Soliman et al. 2015), the node with the

maximum ID (also referred to as diva node) inside every

community is responsible for receiving the LCASes form

all other nodes in the community and performing weighted

voting mechanism in order to reach the final CAS for the

community. For example, as illustrated in Fig. 2e, node 7 is

the community’s diva node and in round (0) of the

aggregation process this node receives LCASes generated

from its direct friends. In the following round(s), the node

continues to receive LCASes from other nodes that are not

directly connected to it (i.e., nodes 0, 4 and 11) . Particu-

larly, the arrows in Fig. 2e show the paths that nodes 0, 4

and 11 use to send their LCASes to their diva node.

Afterward, diva node generates the community CAS by

performing the voting mechanism, then propagates the

CAS to all of the nodes belonging to the community.

Obviously, depending on diva nodes for LCASes

aggregation reduces the reliability of the system and makes

it vulnerable to a single point failure. Therefore, in this

paper, we propose two different implementations in

CADIVa to perform LCASes aggregation in a fully

decentralized manner without relying on any super nodes.

More precisely, in the first implementation, we allow all of

the nodes in every individual community to cooperate in an

aggregation process using gossip-based algorithm. In par-

ticular, every node keeps a cache repository to store some

nodes inside its community that are not direct neighbors to

it, and stores hop-to-hop route to reach them. Afterward,

during a gossip exchange process that is executed in suc-

cessive rounds, nodes select a random node from their

caches, and exchange a subset of their random peers stored

in their caches. After a sufficient number of rounds, nodes

inside every community will end up having a uniformly

random sample of its community members. Then, the

Fig. 2 Three phases of our

identity validation scheme.

First, communities boundaries

are identified by detecting

densely connected regions; then,

every node performs local

learning; and the final step is

aggregate rules per community

using gossip learning

Soc. Netw. Anal. Min. (2016) 6:36 Page 7 of 22 36

123



nodes can exchange their LCASes with the random sample

nodes from their communities and locally they can merge

these LCASes to reach the final community CAS. Thus,

every node can select the top k attributes to be the com-

munity CAS. As illustrated in Fig. 2f, in the first round

node 0 performs LCAS exchange with node 5, whereas in

the last round node 11 is not a direct friend of node 7; thus,

the exchange message is sent via the intermediate node 5.

We detail this implementation in Sect. 3.3.1.

Regarding the second implementation, the local learning

is performed first; then, the community detection and

LCASes aggregation are combined together into one phase

to minimize the communication overhead. In particular,

nodes start by extracting their LCASes and while they are

exchanging their community IDs, they add a random

sample of their direct neighbors. Upon receiving such

messages, nodes store into their caches the received ran-

dom nodes information if they belong to the same com-

munities. Afterward, after the community detection

algorithm converges, nodes forward their LCASes to the

random nodes stored in their caches. We present this sec-

ond implementation under Sect. 3.3.2.

3 CADIVa: unleashing the cooperative work

In this section, we present the core of CADIVa. First, we

detail the local learning algorithm, followed by the over-

lapping community detection and gossip-based algorithm

for LCASes aggregation. Afterward, we present a second

implementation of CADIVa that iteratively applies a

combined process of community detection with LCASes

aggregation. Before we present the algorithms, we proceed

with a few definitions.

3.1 Notations and definitions

We consider the social network as an undirected graph G =

(V, E), where V is the set of nodes and E is the set of edges.

eij 2 E denotes a relationship between nodes vi and vj 2 V .

We denote with S = {A1, A2, ..., Am }, the profile schema

adopted in the social network. Given a node vi 2 V , pi
denotes the set of its profile values: pi ¼ fpi � a1; pi � a2; . . .
pi � amg, where pi � ak is the value provided by vi for Ak 2 S.

We denote by local profile collection (LPC), the set of

profiles of a node’s friends. That is, given vi 2 V , andDFi ¼
fvj 2 Vjeij 2 Eg representing the set of vi’s direct friends,

LPCi ¼ fpkjvk 2 DFig denotes the collection of their pro-

files and is referred to as vi’s local profile collection.

Given LPCi, the local frequent attributes LFAi is the set

of attributes for which the values are highly repetitive in

LPCi. Formally we define:

Definition 3.1 (Local frequent attributes). Let vi 2 V and

LPCi be its local profile collection. Let Ak 2 S be an

attribute from the profile schema and let P#
k � LPCi be the

set of profiles in LPCi having the same value for attribute

Ak. That is, P
#
k ¼ fpm 2 P#

k jpm � ak ¼ #, where # is a given

valueg. Let LFAi � S be the set of attributes such that

LFAi ¼ fAk 2 LFAij jP#
k
j

jLPCij � �g, where � is the average

frequency of the repetitive attribute values in LPCi.

For a given pair of attributes from LFAi, its support is

defined as:

Definition 3.2 (Support of an attributes pair). Let vi 2 V

be a node in the OSN. Let LPCi be its local profile col-

lection and let LFAi be its local frequent attributes set. Let

BA = ðAj;AhÞ be a pair of attributes from LFAi. The sup-

port of BA defines the percentage of co-occurrence of the

same paired values for the two attributes Aj and Ah to the

total number of values in LPCi:

Support ðBAÞ ¼ values-co-occurrence ðAj;AhÞ
all-values ðAj;Ah;LPCiÞ

ð1Þ

where,

values-co-occurrence ðAj;AhÞ ¼ jfðpe; pmÞ 2 LPCijpe�
aj ¼ pm � aj ^ pe � ah ¼ pm � ahgj

and,

all-values ðAj;Ah;LPCiÞ ¼ jf#j9p 2 LPCi s:t:; p�
aj ¼ # _ p � ah ¼ #gj

Based on Definition 3.2, we define a local correlated

attribute set a follows:

Definition 3.3 (Local correlated attribute set-LCAS). Let

vi 2 V . Let LFAi � S be its local frequent attributes set.

Let BA ¼ ðAj;AhÞ be a pair of attributes from LFAi. BA is a

local correlated attribute set, denoted as LCAS, if: Sup-

port(BA) � b, where b is the average support value of

attribute pairs over LFAi.

3.2 Local learning

As aforementioned, we implement a node-centric ARM

algorithm to extract the associations which reflect the

causal structures among different profile attributes. How-

ever, investigating the causality among all possible attri-

bute pairs could be computationally expensive. Therefore,

nodes start by finding the candidate attributes for the ARM

according to Definition 3.1. Specifically, nodes consider

the set of profiles of their direct friends (i.e., LPC) and

select those attributes with high frequency of repetitiveness

in their values. For example, a job value teacher that is

repeated in more than 25 % of the profiles in LPC makes

the attribute Job a frequent one, whereas one satisfying less
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than this threshold is not a frequent attribute. Moreover, the

threshold value is determined locally by every node, such

that it is equal to the average frequency of the repetitive

attribute values in LPC. So as, having different threshold

values increases the degree of freedom and flexibility to

reflect the repetitive patterns at every node independently

in the social graph.

Example 3.1 Assume Alice as another OSN user. To

learn his LCAS, Alice collects the available profile attri-

butes from all her direct friends to construct LPCAlice.

Assume he finds that Education and Interests are in

LFAAlice; that is, their values are highly frequent in

LPCAlice. Alice computes the number of profile pairs in

LPCLuka for which these two attributes’ pair have similar

values. Assume in more than 40 % of the profiles in

LPCAlice, this pair is co-occurring. Also, he calculates the

average support value and finds it to be 27 %, thus the

LCAS threshold b ¼ 0:27: Thus, the pair (Education,

Interests) is an LCAS for Alice.

Given the LFAi, a node vi investigates all the possible

attribute pairs and computes the support of each attributes

pair using formula mentioned in Eq. 1. Once the support is

calculated for all pairs from its LFAi, node vi selects the

ones for which the support is high enough according to the

Definition 3.3 to represent its local correlations (i.e.,

LCAS). Similarly, we define the minimum value of the

support of an attribute pair to be selected in LCAS to be

greater than the average support of all extracted attribute

pairs. Algorithm 1 shows the pseudocode of the steps

executed by all nodes to extract their LCASes. Nodes start

by initializing their LCASes with all possible attribute pairs

from LFA with support value equals to 0. Afterward, nodes

iterate over their LPCs to estimate the support of attribute

pairs according to the existing repeated values. Accord-

ingly, nodes get the sets of overlapping words in different

profiles for an attribute pair ðA1;A2Þ values using tokenize()
method that retrieves all the words associated with an

attribute. Then, the support of an attribute pair is increased

by the normalized support value computed by dividing the

size of the smallest overlapping between word lists over the

total number of words in the two attributes. After com-

puting the support for the existing attribute pairs, nodes

calculate the average support value and assign it to the

threshold for selecting their LCASes. Therefore, any

attribute pair with support lower than the threshold is

removed from the LCAS.

3.3 Forming community CAS

Our model extends the ensemble learning paradigm such

that nodes generate their LCASes by accessing only their

local data, so as user’s privacy is maintained. Therefore,

the next step is to build up the final CAS by aggregating the

locally generated LCASes. We perform community-aware

aggregation of the locally generated LCASes to reflect the

underlying topological structure of the social network. In

particular, in our model topological communities are

identified and that all the nodes belonging to a community

exchange their LCASes. Commonly, finding communities

is well known as community detection and is defined as:

Definition 3.4 (Community Detection). A community

detection U, also known as graph clustering, is a mapping
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U : G ! G0
1 � � � � � G0

c ð2Þ

that partitions G into c non-empty, node-disjoint subgraphs

G0
1 � � � � � G0

c representing a set of communities or clus-

ters. A widely used quality measure for community

detection is the modularity Q of the clustering U(G)
(Newman 2006), which is a mapping

Q : UðGÞ ! R ð3Þ

that assigns a quality value q 2 [-0.5,1] to the clustering

U(G), as defined by

q :¼
X

i

ðeii � b2i Þ ð4Þ

where bi ¼
P

j eij, and eij is the fraction of edges in com-

munity i for which the target node of the edge lies in

community j. The higher the quality value q is, the better

the detected community is. One possible definition for U is

to maximize Q over all clustering U(G) (Newman 2006),

which was shown to be an NP-hard problem (Brandes et al.

2008).

Majority of research in community detection focuses on

partitioning social networks into disjoint communities.

However, in social networks, every person typically

belongs to more than one community, such as the com-

munity of family members, that of friends and classmates

and that of co-workers. Therefore, for high-quality results

it is initiative that we perform overlapping community

detection. Thus, in our model nodes are allowed to have

multiple community memberships. As aforementioned, we

provide two different implementations of CADIVa. In the

first one, the community detection phase is executed first

and performed separately from the aggregation phase,

whereas in the second implementation we combine both

the community detection and LCASes aggregation to

minimize the overall communication overhead.

3.3.1 Separate phases: community detection followed

by LCAS aggregation

The first implementation of CADIVa follows the modular

design where each phase is an independent module that

contains everything necessary to execute the desired

functionality. So as, the community detection module is

separate from the community aggregation one.

Overlapping community detection For DOSNs, a com-

pliant solution for community detection should follow the

decentralization requirement by which every node can only

be aware of and contact its direct neighbors. Therefore,

CADIVa employs recently developed decentralized diffu-

sion-based community detection strategy (Rahimian et al.

2014). In particular, every node starts by joining the node

with the maximum identifier among its direct friends to

form a community. Afterward, in successive iterations

every node chooses to quit its current community and join

one of its neighbor’s if this brings some modularity gains.

For example, as illustrated in Fig. 2a, in the first iteration

nodes 1, 2 and 3 join the community of node 7 that has the

largest identifier among them. Then, nodes inform their

direct neighbors with their current status by sending a

message that contains the community they belong to. Later

on, nodes 0, 4 and 5 re-evaluate their states and join the

community of node 7 as it becomes the dominant identifier

among their direct friends (see Fig. 2b).

Moreover, every node calculates the modularity gain

locally by finding the dominant community identifier

among its direct friends. If a node does not find a dominant

identifier among its neighbors, it changes to the highest ID

between its own and the ones of the communities of its

neighbors. This step is iteratively repeated until no node

wants to change its community identifier as it already

represents the dominant one of all its neighbors. To allow

nodes to join multiple communities, every node keeps a

membership lists to order the top dominant communities

identifiers in the surrounding neighbors. When the com-

munity detection algorithm converges, every node in the

network becomes aware of the communities to which it

belongs.

Gossip for aggregating LCASes In our algorithm, we

apply gossip-based peer sampling where peers periodically

exchange small random subsets of the identifiers of their

direct friends and paths to reach them. Thus, after sufficient

number rounds, nodes are going to have a local random

sample of the nodes belonging to their communities and the

routing paths toward them. The advantage of gossip-based

sampling in our setting is that samples are available locally

and without delay. Furthermore, the messages related to the

peer sampling algorithm can piggyback the locally gener-

ated LCASes, thereby avoiding any overheads in terms of

communication overhead. More formally, each node

maintains a fixed-sized cache of c entries (with typical

value 20 or 50 entries). A cache entry contains identifier

and routing path of another node in the community. Each

node vi repeatedly initiates a neighbor exchange operation,

by executing Algorithm 2. As shown, the algorithms con-

sists of four procedures. The first procedure GossipSam-

pling is the one responsible for constructing a random

sample of the communities members for each node. Ini-

tially, every node maintains a local repository named CRM

to refer to community random members, and stores the

identifiers of those random nodes and paths to reach them.

Periodically, every node randomly selects a partner from its

CRM for the gossip exchange and selects a random subset

entries from its CRM to be send in the gossip message. On

receiving a reply form the contacted node during the gossip
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exchange, the receiving node updates its CRM by adding

the entries of the new nodes that are not included in CRM

as described in procedure OnReceivedCRM. Thereafter, by

executing the gossip exchange for sufficient number of

rounds, nodes start to execute the procedure Ex-

changeLCASes by sending their LCASes to all the nodes in

their CRM. Then, on receiving LCASes from other nodes,

every node starts to update its repository that represents the

community CAS by averaging the received LCASes from

other nodes as described in procedure OnReceivedLCAS.

3.3.2 One phase: combining community detection

and LCAS aggregation

It is important to be noticed that there is high similarity

between the communication process that is executed

during the community detection phase and random peer

sampling during the aggregation phase. Therefore, in our

second implementation of CADIVa we combined the two

phased into one part to eliminate the communication

overhead of the entire phase of LCASes aggregation. So,

the nodes executes only two phases starting with LCAS

learning and then start the phase of community detection

and LCAS aggregation. Basically, in the second phase the

messages to be exchanged for community detection

additionally contain a random sample of nodes direct

neighbors. Thus, nodes execute the same steps to identify

the communities they belong to, in the mean while they

are going to update their CRMs to add random member

that are belonging to the same communities. Consequen-

tially, there is no need to execute the procedure Gos-

sipSampling in Algorithm 2 and nodes proceed with

executing the other procedures after the community

detection algorithm converges.

4 Security, privacy and complexity analyses

In this section, we study the security and the privacy

properties of CADIVa and we provide its complexity

analysis.

4.1 CADiVa security properties

We consider a malicious adversary model whereby an

attacker would try to subvert the correct functioning of the

system’s processes. Given that the outcome of our system

is collections of CASes that reflect identity trends of

communities and that would be used to validate the iden-

tities of new members to the OSN, the most prominent
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interest of an attacker would be to corrupt the CASes

learning to reflect identity patterns of malicious nodes and

not of honest ones. This can be achieved in one of two

ways. First, a malicious attack could target invalidating a

valid CAS in a community. Second, it can work on intro-

ducing another fake CAS that would match the malicious

behavior. In both cases, the goal of the attacker would be to

change the CASes in a target community to confirm the

identity trustworthiness of the malicious nodes or to

invalidate the honest nodes. As discussed in Soliman et al.

(2015), this could only be achieved by infecting a target

community, introducing into it a number of malicious

nodes that is high enough to reflect corrupted CASes.

In Soliman et al. (2015), we have provided a quantita-

tive analysis of the effort required, in terms of number of

required malicious nodes, to maliciously introduce a fake

CAS to a community or to corrupt a valid one in it. As

detailed in Soliman et al. (2015), a community CASes

could be corrupted if a malicious attack succeeds at

introducing enough fake nodes (i.e., sybil nodes Yu et al.

2006) into it; that is, befriending enough honest nodes in

the community to become member of it. As CADIVa

adopts the same strategy as DIVa in learning the CASes in

a community, the same security properties presented in

Soliman et al. (2015) apply to CADIVa as well. In fact,

CADIVa adopts the same technique of learning a CAS

based on the co-occurrence frequency of similar attribute

values within a community as in Soliman et al. (2015). The

difference in CADIVa is w.r.t the process by which the

aggregation of values is performed. This does not affect the

security properties of the system as an attacker would need,

in both DIVa and CADIVa, to introduce the same number

of malicious nodes to introduce corrupt CASes to a com-

munity. We recall these properties as follows.

4.1.1 Introducing a fake CAS

Introducing a newCAS,CASnew, to a community requires that

the community holds enough nodes within its boundaries that

exhibit profile values confirming CASnew. For a node x to be

considered within the boundaries of a community C, it has to

befriend enough other members of C. The effort required to

befriend the needed number of an honest community’s

members, to become one of them, cannot be defined quanti-

tatively.However, it is expected tobehighgiven thatCADIVa

is deployed and offered as a service for users to evaluate their

new friendship requests before accepting or denying them.

Moreover, the structure of communities is not known to users;

hence, it may not be straightforward to predict which nodes

needs to be befriended to become member of a community

when this information is not available.

Regardless of what it requires for a stranger to befriend

honest nodes in a community, we deterministically define

z, the number of fake nodes required to become member of

a target community C, to be able to introduce a fake

CASnew that reflects the identity trends of these z fake

nodes.

Theorem 4.1 [Soliman et al. (2015)] Let C � G,

C ¼ ðC � V ;C � EÞ, be a community of size n ðjC � V j ¼ nÞ.
Let suplowest be the lowest support by which a CAS is

accepted in C. For a new CAS, CASnew to appear in C, it

must be inserted a group of fake nodes Cf that successfully

join C and that show profile information confirming

CASnew such that:

z ¼ jCf j �
suplowest

ð1� suplowestÞ
� n:

Proof 1: Consider Cf of size z (jCf j ¼ z) is carrying a

correlation CASf ¼ fA;Bg that is unknown to the nodes in

C. Assume all Cf successfully joins C. Therefore, C � V ¼
C � V [ Cf and jC � V j ¼ nþ z. That is, the aggregate

support of CASf in C would be: supportðCASf Þ ¼
values-co-occurrenceðA;BÞ

nþz
. Since all nodes in Cf carry the

correlation in CASf that is unknown to C initial n nodes,

the support for CASf will be: supportðCASf Þ ¼ z
nþz

.

According to the proposed method, for CASf to be rec-

ognized as a CAS in C (supportðCASf Þ� suplowest), this

inequality shall hold: z� suplowest
ð1�suplowestÞ

� n. h

4.1.2 Corrupting a valid CAS

For an adversary to corrupt a valid CAS in a community,

technically by lowering its support to fall below the

required threshold, it needs to introduce to the target

community a number of new profiles that are not com-

pliant with this CAS. This number has to be big enough to

lower the support of the valid CAS below the adopted

threshold.

Theorem 4.2 [Soliman et al. (2015)] Let C � G,

C ¼ ðC � V ;C � EÞ, be a community of size n (jC � Vj ¼ n).

Let suplowest be the lowest support by which a CAS is

accepted in C. For a valid CAS, CASvalid with support Sv,

to disappear from C, it must be inserted in C a group of

fake nodes, Cf , that does not have profile information

confirming CASvalid such that:

z ¼ jCf j[
Sv � n

suplowest
� n:
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Proof 2: Let CASv ¼ fA;Bg be a valid CAS in C with

aggregate support Sv: Sv ¼ m
n
� suplowest, where

m ¼ values�co�occurrenceðA;BÞ. Let Cf of size z

(jCf j ¼ z) be not carrying the correlation between attributesA

and B. Assume all the nodes in Cf successfully join C.

Therefore, C � V ¼ C � V [ Cf and jC � V j ¼ nþ z. That is,

the aggregate support of CASv in C becomes:

Sv1 ¼ values�co�occurrenceðA;BÞ
nþz

. Since all nodes inCf do not carry

the correlation in CASv, values�co�occurrenceðA;BÞ is still
equal to m; therefore, Sv1 ¼ m

nþz
. For CASv to no more be a

valid CAS, its new support shall be: Sv1\suplowest. That is,
m
nþz

\suplowest. From where m\suplowest � ðnþ zÞ. Divid-
ing the inequality by n (n 2 Nþand n[ 0), we get:
m
n
\ n� suplowest þ z� suplowest

n
. Therefore, dividing the inequality by

the positive number suplowest gives,
Sv

suplowest
\ nþz

n
. From that,

z[ Sv � n
suplowest

� n: h

4.1.3 Cloning attacks

In addition to the above-detailed attack approaches that a

malicious node can adopt to compromise the CADIVa sys-

tem, another possible attack is to design fake profiles that

would exhibit the correlations and identity trends expected by

CADIVa in order to infiltrate within honest communities.

This approach may be seen intuitive and inescapable. How-

ever, to be able to achieve such an attack, the adversary needs

first to be aware of the target OSN graph, of the community

structures and of the CADIVa defined CASes in detected

communities. Moreover, the adversary needs to have

knowledge on common values for these CASes in the com-

munities target of the potential attack. However, CADIVa is

designed for DOSNs where information about the network

graph, its structure and its properties is inherently protected by

the nature of the system’s design. Therefore, such an attack is

mitigated by the underlying design of the system; i.e., the

decentralize nature of CADIVa.

There could still be one feasible option for such an attack to

succeed. This is related to deploying cloning techniques.

Cloning is a known attack in OSNs where an adversary cre-

ates a fake account by mimicking the values in a real one (Jin

et al. 2011). The clone account, though fake, would appear as

honest as the profile it clones. We admit that CADIVamay be

blind to clone profiles; however, we put the accent on the fact

that CADIVa employs both public and private profile attri-

butes in the CASes it extracts. It is thus crucial for the clone

profile to correctly clone both public and private profile values

of the honest profile it copies. As access to private profile

values is only possible by befriending the honest node, we

consider that clone profiles may not qualify as perfect clones

under the validation rules of CADIVa.

4.2 CADIVa privacy property

CADIVa guarantees the aggregation process of the LCA-

Ses to form consensus on a community’s CAS in a fully

decentralized manner. This happens by nodes exchanging

the LCASes learned at their local level with other nodes in

their community. This exchange does not subvert the pri-

vacy of the nodes involved in the process as the informa-

tion communicated between foreign nodes consists of

groups of attributes only. As such, an adversary node can

only learn that some group of attributes is correlated in a

community without being able to learn any specific infor-

mation about individual nodes. However, we note that one

of the strategies of CADIVa is to also form consensus on

the top n values related to a given CAS in a community.

This might sound to result in revealing private information

about nodes; however, this set of top n values for a CAS in

a community reflects a statistical representation of the data

available in that community as a whole. This is relating to

the concept of differential privacy that, in the field of data

anonymization, suggests the generation of anonymized

datasets based on statistical disturbances to the data (Li

et al. 2011). That is, some statistical perturbation is added

to the result of a given query on the data such that there is a

deterministic probability that one data record in the dataset

is identified regardless of whether or not it participated in

the anonymized dataset (Li et al. 2011). This expresses a

privacy guarantee on every data item as an equal proba-

bility to be identified whether or not it belongs to the

anonymized dataset. In our system, every node collects the

profile information of all its direct friends. The node

aggregates this data to generate its set of LCASes and their

corresponding top n values. These LCASes and the corre-

sponding top n values are the result, obtained from the

original dataset of all profile information of the node’s

friends that is shared by the node with other nodes in the

network. This shared result could be viewed as an anon-

ymized data generated from the original dataset containing

all the information of the node’s direct friends. Following

this approach, we model the privacy preservation guarantee

of our system.

Assuming the malicious adversary model, a malicious

node a would be interested in learning as much information

as possible from the system’s processes. More precisely, a

malicious node a would participate in the system’s process

to reach consensus on community-level CASes for the

communities it belongs to, with the intention of collecting

data and revealing from it private information about other

nodes. We prove that a cannot identify any other node in its

community that is not its direct friend, and that it cannot

reveal any private information related to them with a

deterministic probability of non-disclosure. We formulate

this privacy preservation guarantee as follows:
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Theorem 4.3 Let C � G, C ¼ ðC � V ;C � EÞ, be a com-

munity in the OSN and let m 2 C � V be a member node of

it. Let CASc be a CAS in C and let d be the number of top

values shared for CASc in C. Let d be the support achieved

by CASc. Assume that node m has private values for CASc
(i.e., CASc ValuesðmÞ is private information). Let B be the

event that CASc ValuesðmÞ is revealed based on CASc and

the corresponding d top values. CADIVa guarantees that

the probability that B is true (i.e., PðBÞ) is less than a

privacy guarantee threshold expressed as:

PðBÞ� d
d
:

Proof 3: Let C be a community in the OSN and let CASc
be a CAS in C. Let d be the support achieved by CASc.

This means that a percentage of at least d nodes from C

have the same pattern suggested by CASc. That is, the

probability that a node m 2 C exhibits CASc is:

Pðm shows CAScÞ � d. Let now d be the number of top

values provided for CASc in an ordered uniform manner.

That is, the top d values are not given in order of impor-

tance and the probability to hold any of these d values is

equal. Assume the worst case wherein d reflects the number

of all available values for CASc in the population of C that

exhibit CASc. This means that the probability that the value

of m for CASc [i.e., CASc ValuesðmÞ] is one of the d

provided values is: 1
d
. Assume now that CASc ValuesðmÞ

are private. The probability that CASc ValuesðmÞ is

revealed based on the d provided values and on CASc
requires that m exhibits CASc and that it holds one of the d

values. Therefore, PðCASc ValuesðmÞÞ is revealed based

on CASc and d � Pðm showsCAScÞ � 1
d
� d� 1

d
. h

By Theorem 4.3, the probability to reveal private

information related to a CAS of a node in a community is

relative to the support achieved by the CAS in question. In

fact, the higher the support of a CAS in a community is, the

more nodes in the community exhibit it. Therefore, the

higher the probability to identify a node in the community

as exhibiting the CAS in question. However, this would

only identify the target node as exhibiting the CAS in

question without revealing any information about what the

exact values it holds for it are. This information can be

revealed from the top n values provided only and can be

determined based on the number of these top n values.

Therefore, we suggest sharing small numbers of top n val-

ues only.

4.3 Complexity analysis

The model’s cost is expected to be low given that every

node performs its local computation independently of the

other nodes. Besides, the bottleneck that the DIVa nodes

could have constituted, as suggested in Soliman et al.

(2015), is overcome by the completely decentralized model

exploited by CADIVa. We discuss the complexity of

CADIVa in what follows.

First, every node computes its LCAS. The complexity of

this is a function of the number of node’s friends (i.e., its

degree d) and of the number of profile attributes in the

profile schema. Indeed, the LCAS learning requires com-

puting for every pair of attributes (a profile schema of m

attributes results in p ¼ m
2

� �
¼ m2�m

2
number of pairs), its

value-co-occurrence among all the node’s direct friends.

Therefore, the number of performed checks per attributes

pair is, c ¼ d
2

� �
¼ d2�d

2
. Accordingly, the LCAS learning’s

complexity is Oðc� pÞ. By this, the nodes with higher

degree would be the bottlenecks in the LCAS learning step;

however, this step is node dependent and does not require

the simultaneous online availability of all the nodes.

In addition to that, the community detection and gossip

exchange of LCASes costs in terms of communication

traffic between all the nodes in the OSN. By our adopted

work for decentralized community detection, the algo-

rithm’s complexity is a OðN � D� RÞ, where N is the total

number of nodes in the OSN graph, D is the average node

degree and R is the total number of rounds needed for the

algorithm to converge6 (Rahimian et al. 2014). This step

requires that all the nodes are online at the time of its

execution; however, it is also a process that is performed

once and that is incrementally updated only. Moreover, as

we demonstrate through experiments on real OSN data, the

convergence time of our solution is very realistic and

achievable (see Sect. 5.3).

5 Experiments and results

In this work, our objective is to provide unsupervised and

fully decentralized identity validation model using only

profile information without violating any privacy con-

strains. As aforementioned and to the best of our knowl-

edge, (Bahri et al. 2014) is the solely existing work that

addresses online identity validation by exploiting profile

information to generate a trustworthiness probabilistic

measure for new profiles instead of classifying them as real

or fake. However, (Bahri et al. 2014) neglect the under-

lying social graph connecting users and process all the

profile collection at once. Therefore, in this section we

compare CADIVa, with our previously developed semi-

centralized model DIVa, and the global approach that

processed all profiles at once similar to Bahri et al. (2014).

6 R depends on the topological properties of the underlying graph.
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Particularly, we evaluate the other approaches with the

different implementations of CADIVa in terms of the

ability of providing fine-grained community-aware identity

validation on real-world datasets. The results for the global

approach are obtained by collecting all profiles that are at

one central repository and then executing the same steps of

CAS extraction process by considering the whole profile

collection. As aforementioned, DIVa operates in three

phases such that nodes start by executing a decentralized

community detection algorithm, then generate their LCA-

Ses and finally communicate with the diva nodes to decide

the final communities CASes. In DIVa, the frequency and

support threshold values (Definitions 3.1 and 3.3) are equal

to 0.2.

Besides, we evaluate the communication overhead of

CADIVa. We have implemented two different versions of

CADIVa using GraphLab (Low et al. 2012). The first

implementation, CADIVa_S, has two different distributed

execution modules, such that the first module executes our

adopted community detection algorithm until it converges

so that every node knows the communities it belongs to.

Thereafter, the control is moved to the second module that

executes the gossip protocol for LCASes aggregation and

extracts CASes for every detected community. The second

version, CADIVa_C, is implemented as one distributed

execution module where every node starts by extracting its

LCAS; afterward, it starts engaging in the gossip protocol

of detecting the communities and exchanging LCASes.

Then after convergence, every node calculates its final

communities CASes by averaging the collected LCASes in

their caches.

We conducted several experiments to validate the

effectiveness of CADIVa using real profile datasets from

Facebook and Google? (shown in Table 1). We used the

Facebook dataset collected and used in Akcora et al.

(2012) and the Google? dataset publicly available from

Gong et al. (2011). The profile schema in the Facebook

dataset contains: First Name, Gender, Home County,

Education, Job, Current Country and Interests. Meanwhile,

the profile in Google? datasets has fewer attributes,

specifically Occupation, Employment, Education and Pla-

ces Lived. The Google? dataset represents three crawled

parts of the OSN collected on July, August and September

in 2011.

5.1 Extracted CASes

Tables 2 and 3 list the extracted CASes for the Facebook

and Google? datasets, respectively. Tables show the

extracted CASes and their equivalent support values for

different communities using CADIVa, DIVa and the global

approach. It is illustrated that with tuning the support

threshold value, CADIVa allows communities to have

more attribute pairs in their CASes compared to DIVa. For

example, the CAS generated by CADIVa for one of the

communities in the Facebook dataset, as shown in Table 2,

contains seven attribute pairs, whereas CAS extracted by

DIVa contains only three attribute pairs.

Consequently, by having more attribute pairs inside

CAS, CADIVa provides denser identity validation criteria

compared to DIVa and the global approach as well. Par-

ticularly, using our validation scheme, the trustworthy

index of any target profile is calculated by summing up the

support values of the attribute pairs compatible with

community’s CAS in that target profile. Thus, users can

make more confident decision regarding the new friendship

requests they are going to receive by having more valida-

tion rules.

Table 1 Real OSN datasets used in experiments

Dataset Nodes Edges

Facebook 23,332 28,972

GpJUL 2,417,014 25,016,154

GpAUG 4,349,414 35,544,682

GpSEP 4,388,907 43,060,890

Table 2 CADIVa extracted CAS versus DIVa and global CAS for the Facebook dataset

CADIVa CAS for community 1 DIVa CAS for community 1 Global CAS

Attribute pair Support Attribute pair Support Attribute pair Support

1:{education, employer} 0.582 1:{education, employer} 0.582 1:{job, interest} 0.335

2:{education, interest} 0.499 2:{education, interest} 0.499 2:{gender, interest} 0.179

3:{h.country, job} 0.113 3:{h.country, job} 0.113 3:{education, interest} 0.138

4:{f.name, h.country} 0.0798 4:{job, h.country} 0.137

5:{gender, job} 0.0779 5:{gender, h.country} 0.126

6:{f.name, gender} 0.0754 6:{education, job} 0.1

7:{job, employer} 0.0436
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Furthermore, CADIVa validation is not restrictive in

terms of prohibiting new users from joining their targeted

communities. The results show that these new attribute

pairs extracted by CADIVa are not the dominant factors in

communities CAS, such that the most important rules are

the ones with the highest support values that are commonly

extracted by DIVa with the higher threshold value.

Therefore, CADIVa is not restricting any new community

membership users are seeking to achieve.

5.2 Adaptive threshold

CADIVa allows communities to have different threshold

values derived from the need to tune the threshold

according to size of the detected communities and the

homophily level expressed in each community. To illus-

trate further these differences among communities and the

need to have adaptive threshold values, Fig. 3 shows the

support values of different attribute pairs extracted at some

communities in the Facebook and Google? datasets. As a

first observation, communities have different patterns not

only in terms of extracting different attribute pairs in their

CASes; additionally, the associated support values have

different patterns. The support values represent the statis-

tical significance of attributes pairs, also they represent the

homophily existing in each detected community with

regard to these profile attributes. Therefore, having one

global threshold value disregards reflecting the expressed

homophily inside every individual community.

Additionally, a second observation is that the support

value is decreasing in nonlinear manner; more preciously,

it decreases sharply after the average value of all extracted

pairs from node’s LFA. Although DIVa extracts the

stronger pairs with the highest support, there are some

other pairs that are statistically significant as well. For

example, as shown in Fig. 3a, only two attribute pairs have

support[0.2. On the other hand, if the threshold value is

going to be similar to the average support of all extracted

pairs, these two communities are going to have six attribute

pairs in their CASes instead of 2. The same scenario

applies with the Google? datasets as illustrated in Fig. 3b–

d.

Therefore, in CADIVa we specify a size-dependent

lower bound to the threshold value. Thus, the LCAS

learning considers a node’s LFA (Definition 3.1) with

values frequency greater than the average values frequency

in node’s LPC. Similarly, node’s LCAS (Definition 3.3) is

pruned by considering only the attribute pairs with support

greater than the average support value of attribute pairs

over node’s LFA. Figure 4 depicts the average CAS sizes

reported for the detected communities across all the data-

sets. As illustrated, CAS size varies with respect to com-

munity size. For example, in the Google? datasets the

CAS size slightly increases with respect to the increase in

community size. On average, CADIVa extracts four attri-

bute pairs for every community out of 6 (i.e., the maximum

count that equals to
ac

2

� �
, where ac is the number of

attributes in the profile scheme). For the Facebook dataset,

communities have on average nine attribute pairs in their

CASes out of 21 possible attribute pairs.

Additionally, Fig. 5 shows the average support value

that is used for the threshold across all detected commu-

nities in the used datasets. Besides, it also depicts a com-

parison of the average total support of the CASes extracted

by different approaches. As illustrated, the results reflect

the strength of the validation criteria provided by different

approaches. Figure 5 shows that CADIVa provides stron-

ger validation than other validation approaches as the

average total support in CADIVa is the highest across all

Table 3 CAS extraction results for the Google? datasets

Google? July CADIVa generated CAS Google? August Google? September

Attribute pair Support Attribute pair Support Attribute pair Support

1:{employer, places} 0.148 1:{employer, places} 0.083 1:{employer, places} 0.161

2:{major, employer} 0.122 2:{major, employer} 0.103 2:{major, employer} 0.141

3:{school, employer} 0.273 3:{school, employer} 0.134 3:{major, places} 0.03

4:{school, major} 0.108 4:{school, major} 0.135 4:{school, employer} 0.133

5:{school, places} 0.033 5:{school, places} 0.06 5:{school, major} 0.09

Google? July Globally generated CAS Google? August Google? September

1:{major, employer} 0.153 1:{major, employer} 0.135 1:{major, employer} 0.356

2:{major, places} 0.149 2:{major, places} 0.272 2:{major, places} 0.293

3:{school, major} 0.326 3:{school, major} 0.313 3:{school, major} 0.379

4:{school, places} 0.315 4:{school, places} 0.292 4:{school, places} 0.41
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detected communities in the datasets. In general, CADIVa

achieves average improvement up to 36 and 50 % across

all the datasets than DIVa and global approach,

respectively.

5.3 Communication overhead

We conducted several experiments to evaluate the com-

munication overhead of CADIVa, particularity the over-

head of the implemented gossip algorithm for LCAS

aggregation (see Algorithm 2). The algorithm is simple:

each node knows a small and continuously changing set

of other nodes belonging to its communities stored in

node’s CRM (i.e., local repository for storing random

community members information). Then, each node

forwards its LCAS to this set of nodes and receives back

their LCASes and merges them with its LCAS to con-

struct the final CAS. Therefore, the GossipSampling

procedure in Algorithm 2 is executed for sufficient

number of cycles to fill nodes RCMes with a random

sample of their community members. In each cycle, a

node gossips twice with two randomly selected nodes

from its CRM: exactly once as an initiator and once as a

responder. It, therefore, sends two gossip messages and

receives another two for each contacted entry in each

cycle. If l is the number of exchanged entries, the gossip

message then consists of l cache entries. We used two

different values for l such that we executed two set of

experiments, in the first one we set l = 5, whereas in the

second one l = 10.

Fig. 3 Support values of different attribute pairs extracted at some communities in the Facebook and Google? datasets

Fig. 4 Average size of

communities CASes generated

by CADIVa
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Figure 6 depicts the average converge speed of the

gossip exchange algorithm with respect to different

exchange size and communities size as well for all the

datasets. As shown, the number of rounds increase with

both of exchange size and community size. Larger com-

munities require larger number of rounds so that nodes

succeed in sampling random members from their commu-

nities. Similarly, by comparing Fig. 6a, b where the cache

size increases from 20 to 50 entries, we can see that the

number of rounds increases. Consequently, this will

directly affect the communication overhead that will

increase as well.

Figure 7 shows the total communication overhead. The

figure starts by showing the communication overhead of

DIVa that is reported during the community detection and

LCAS aggregation. Then, the second column shows the

overhead of CADIVa_S, the first implementation of

CADIVa where the phases of community detection and

LCAS aggregation are separate, with CRM size equals to

20 entries. Similarly, the third column is the communica-

tion overhead of CADIVa_S but with CRM size equals to

50. Finally, the last column represents the communication

overhead of CADIVa_C, the second version of CADIVa

where community detection and LCAS aggregation is

combined into one single phase. The results show that

CADIVa_C has the lowest communication overhead

compared to other implementations.

5.4 Incremental updates on dynamic graphs

Each of Google? datasets contains timeID with values 0, 1

or 2, indicating which snapshot a directed link between two

users appeared in. Thus, we execute our experiments

incrementally to update the social graph by adding edges

among nodes using timeIDs. When a node is added to the

graph, this node determines its community memberships

based on the dominant communities among existing nodes

with which it is going to connect. Furthermore, the new

node receives the communities CASes form its direct

friends and store the CASes on its cache. Subsequently,

this new node starts the GossipSampling procedure in order

to have random samples from the nodes belonging to the

Fig. 5 Average support values computed as a lower bound for the threshold, and comparison of average total support of extracted CASes by

CADIVa, DIVa and the global approach
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same communities informing them of its existence and

exchanging LCASes with them.

5.4.1 Incrementally updating communities

In this set of experiments, we study the effect of the newly

added nodes and edges in the social structure of previously

detected communities, which requires the re-computation

of community memberships and CAS aggregation.

Specifically, previously existing nodes monitor topological

changes that affect their community membership, and re-

execute the community detection module followed by CAS

aggregation module when required. Figure 8 shows the

percentage of nodes re-performing CASes extraction due to

topological changes in their communities. In particular, the

lower bound of change should be the percentage of new

nodes, where only those nodes execute the community

detection module and gossip sampling procedure. Mean-

while, the upper bound would mean that the process will

start all over from the beginning such that all nodes execute

the community detection and LCASes aggregation. The

vertical error bars in Fig. 8 represent the range of expected

change in the graphs after adding the new nodes.

Intuitively, in the first snapshot all nodes execute both

modules. As shown in Fig. 8, 60, 50 and 80 % of Google?

July, Google? August and Google? September, respec-

tively, were loaded at the beginning. In the second snapshot

30, 45 and 15 % new nodes were added to Google? July,

Google? August and Google? September graphs,

respectively. The results of the three datasets show that, on

average, 17 % of old nodes got affected by topological

changes caused by the new joining nodes and performed

community detection followed by LCASes extraction. The

average change reported for adding the last snapshot across

all three datasets is only 6 %. Consequently, in our

framework nodes are able to detect the topological changes

surrounding them. Moreover, the results show that these

changes are localized and require re-computations only for

changed regions not the whole graph.

5.4.2 Incrementally updating CASes

In this set of experiments, we analyzed the change occurred

in CASes while the communities evolve. We performed

hierarchical community detection to show how CASes

change with the increase of community size. Figure 9

Fig. 6 Convergence speed with respect to community size and number of entries exchanged in a single gossip message

Fig. 7 Communication

overhead reported by DIVa and

different CADIVa

implementations
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depicts the average change occurred in CAS size by

incrementally loading the nodes belonging to different

communities in the Google? datasets. We started by

loading only 20 % of nodes and calculating the average

CAS size in the detected communities. Then, we incre-

mentally added more nodes to reach 50 % of communities

members till all the nodes were added to the graph. The

results emphasize the ability of our model to extract the

community-level CASes that reflect the topological struc-

ture of the underlying communities and the properties of

the user population belonging to each community.

6 Related work

Personal identity, its formation process and its compo-

nents have been the subject of scientific discussion and

research work across multiple scientific disciplines such

as sociology (Stets and Burke 2003), psychology (Spears

et al. 1997) and criminology (Lynch et al. 2000). With

the growth of the Internet as a world wide virtual plat-

form that connects data, devices, people, etc, new

dimensions for humans’ interactions have seen the light of

day. Online human to human interactions developed from

basic open chat rooms connecting virtual personas to

nowadays popular and widespread OSNs with more

sophisticated communication and data exchange forms.

Within these emerging online socializing realms, identity

has had its place as a pole of attraction for researchers

from different disciplines. From a computer science per-

spective, resolving identities in the sense of differentiating

between real and fake ones has been the main research

concern related to identity. As a result, we find many

pieces of work studying and formalizing online identities

patterns with the objective of classifying them as good or

bad. This gave birth to classifications for bad identities

such as sybil (a fake identity operated, along with many

other sybils, by one same physical entity) (Yu et al.

2006, 2008), clone (an identity created by a malicious

entity based on information collected about another hon-

est entity) (Jin et al. 2011), compromised (an honest

identity but taken control of by a malicious entity) (He

et al. 2014). Therefore, we find works such as Sybi-

lyGuard (Yu et al. 2006) and SybilLimit (Yu et al. 2008)

that study OSN topological properties to detect sybil

identities. We find (Jin et al. 2011), a framework for the

detection of clone identities based on attribute and

friends’ network similarities, or He et al. (2014) where

the authors address identity theft across multiple social

networks. These works, with others on the same line,

share the common goal of detecting malicious nodes

classified under formalized identity attack trends. How-

ever, identity concerns on OSNs go beyond binary clas-

sification. For example, some ‘‘good’’ identities are

created with the aim of fooling a category of users, such

as child abuse over social networks (Hope 2013; Chorley

2012).

Studying identity related attacks is unquestionably an

important thread of work, but there is also a parallel need

for empowering users themselves to evaluate the trust-

worthiness and the validity of the online identities they

interact with. The literature provides us with works such as

(Sirivianos et al. 2012) where it is suggested to evaluate an

identity on a given network based on feedback of her

connections on another one. Cai et al. (2011) suggests

people to people recommendations for friendships’ accep-

tance by relying on collaborative filtering techniques. In

Chairunnanda et al. (2011), users are suggested to be

identified from their typing patterns, whereas chatting

patterns are exploited for users’ identification in Roffo

et al. (2013). More recently, (Goga et al. 2013) suggests

identifying users across networks based on geo-location

Fig. 8 Percentage of nodes

changing their communities at

each snapshot
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and time stamp information attached to their posts and on

their writing styles. All these pieces of work still do not

provide users with a framework to evaluate, by themselves,

their perceived trustworthiness of their new online con-

tacts. At this level comes (Bahri et al. 2014) to suggest

using community feedback to assign trustworthiness levels

to identities on a social network. More precisely, identities

in Bahri et al. (2014) are validated based on community

validations of homogeneity between values of some

defined correlated profile attributes. However, (Bahri et al.

2014) relies on a central repository of all the profiles of the

OSN, on the existence of a group of trusted users for the

learning of the correlated profile attributes and on the

responsiveness of the OSN community to evaluate avail-

able target identities.

In contrast to the centralized and supervised approach

exploited in Bahri et al. (2014) to extract the correlations

among profile attributes from a profile schema, we previ-

ously proposed DIVa (Soliman et al. 2015) that adopts

decentralized and privacy preserving approach. Instead of

supervised learning that requires human feedback, DIVa

successfully conceptualizes users online identities by

extracting the correlations among profile attributes from

the user population. Additionally, DIVa provides commu-

nity-based validation by mining the correlations form the

individual communities not from the user population as a

whole. DIVa regulates the validation based on communi-

ties; however, it relies on a central role within each com-

munity of a diva node that is responsible of aggregating the

observed identity patterns. For this, in this paper, we pre-

sent CADIVa that operates without the reliance on any

central roles and that is based on more reliable, scalable

and commonly observed assumptions. CADIVa is fully

automated, fully decentralized and proves efficiency and

effectiveness with real OSN data. To the best of our

knowledge, this work is a first in addressing identity vali-

dation based on fully unsupervised and fully decentralized

learning from profile information only.

7 Conclusion

In this paper, we have introduced CADIVa that is unsu-

pervised, reliable and fully decentralized identity valida-

tion model for DOSNs in contrast to existing centralized

approaches. CADIVa conceptualizes user online identities

by mining the correlations among user profile attributes not

from user population as a whole, but from individual

communities, where the correlations are more pronounced.

Furthermore, CADIVa empowers users with identity vali-

dation scheme that they themselves can use to evaluate the

trustworthiness and the validity of the online identities they

interact with. In our experiments, we show that reliance on

revealing the highly expressed patterns inside communities

resulted in extracting community-aware validation rules

with average improvements up to 36 and 50 % than semi-

centralized and global approaches, respectively. Further-

more, our model maintains users’ privacy during the

learning phase as users profiles information are processed

only by their direct friends. The experiments show the

effectiveness and scalability and reliability of our proposed

model.

As a natural continuation of the work, we plan to enrich

the process of extracting profile attribute correlations with

text-based analysis to map words to broader topics.

Therefore, CAS learning is enhanced such that exact word

matching will be replaced by ontology and topic models.
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