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Abstract—Pharmaceutical and medical technology companies
accessing real-world medical data are not interested in per-
sonally identifiable data but rather in cohort data such as
statistical aggregates, patterns, and trends. These companies
cooperate with medical institutions that collect medical data
and want to share it but they need to protect the privacy
of individuals on the shared data. We present PyDPLib, a
Python Differential Privacy library for private medical data
analytics. We illustrate an application of differential privacy
using PyDPLib in our platform for visualizing private statistics
on a database of prostate cancer patients. Our experimental
results show that PyDPLib allows creating statistical data
plots without compromising patients’ privacy while preserv-
ing underlying data distributions. Even though PyDPLib has
been developed to be used in our platform for reporting the
radiological examinations and procedures, it is general enough
to be used to provide differential privacy on data in any data
analytics and visualization platform, service or application.

Index Terms—Differential privacy, python library, private vi-
sual statistics, electronic data capture, prostate cancer dataset

1. Introduction

Pharmaceutical and medical technology companies are
interested in accessing real-world medical data for driving
their business models and decisions, which aids in the
provision of continuously improving personalized services.
However, these companies are not interested in personally
identifiable data or protected health information (PHI) of
the individuals but rather the cohort data. These companies
cooperate with medical institutions who collect the medical
data and want to share it, but they need to protect the privacy
of the participating individuals.

Sharing data with PHI raises privacy concerns due to the
threat of misuse or re-identification. Data protection laws
like the EU’s General Data Protection Regulation (GDPR)
ensure higher public trust in data sharing, and enforce
informed use of collected user data by the companies. GDPR

enforces privacy-by-design, which means that the technol-
ogy is designed with data privacy preservation [1]. One
solution is to use information flow control [2] and design
privacy-centric platforms that possess data flow models with
respective permissions for every type of user to ensure user
privacy and transparent accountability. However, a privacy-
centric platform alone cannot solve the problem of sharing
medical data with medical technology companies.

Data anonymization is commonly employed for pri-
vacy preservation in the health care industry, although
anonymization alone does not guarantee sufficient privacy
preservation due to the risk of re-identification and attribute
disclosure [3]. A possible solution could be the use of realis-
tic synthetic datasets for enhanced user privacy with reduced
risk of re-identification. However, generation of mass-scale
synthetic datasets might not always be reasonable due to:
1) the need for continuous integration and generation of
new data, and 2) fixed privacy preservation levels for all
parties. Mechanisms for secure multiparty computation [4]
are also proposed in literature for collectively computing
private statistics without sharing the sensitive data. However,
these solutions might be computationally expensive and may
not always cater to solving the problem of sharing statistical
patterns with third parties.

Differential privacy (DP) [5] allows computing statistical
patterns in a dataset while withholding information about
individuals in the dataset. DP provides provable privacy
guarantees and ensures the minimal impact of participation
of a single individual in a database, by adding calculated
noise depending on the queried statistical patterns. DP can
also cater to flexible noise addition based on the user type
and privilege. Numerous DP libraries exist in literature
such as: Google’s DP library [6] and its python wrapper
PyDP [7], Diffprivlib IBM’s DP library [8] and open-source
implementation [9], dp-stats library for differentially private
statistics and machine learning algorithms [10], mechanisms
for DP histogram publication [11], and OpenDP collection
of tools for statistical analysis of sensitive private data
[12]. However, to the best of our knowledge, most of these
tools are end-to-end solutions for computing DP statistical
measurements, which makes it difficult to integrate them
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in an already-existing system without making significant
changes to the system internals. Using these DP tools also
requires an understanding of privacy preservation techniques
which might be difficult for professionals in the medical
domain. Moreover, these tools cannot often be used in
conjunction with data visualization software, which makes
it hard to integrate them in end-to-end systems that only
require implementation of a privacy preservation layer.

We have developed PyDPLib, a platform-independent
differential privacy library in Python. We have also devel-
oped a privacy-centric platform for structured data collection
that employs PyDPLib, and we show our results on a
database of prostate cancer patients. Our reporting software
SmartReports and a PI-RADS [13] template was used to
collect this dataset. Moreover, by using a software with
interactive visualization such as plotly [14], PyDPLib is used
to create interactive and private statistical plots.

The main contributions of this paper are as follows.

• We have developed a differential privacy library Py-
DPLib for computing private statistics with medical
data as a use case.

• PyDPLib provides different levels of privacy preser-
vation with noise addition guarantees, depending on
the user type and privilege.

• Our reporting software SmartReports uses informa-
tion flow control, and when used with PyDPLib,
ensures 2-layer privacy preservation.

• PyDPLib supports a variety of statistical operations
on continuous and discrete data, and can be used in
conjunction with any data visualization software.

• We have developed a template for structured clinical
data collection and curated a human expert labeled
dataset based on our template. We demonstrate our
results for PyDPLib on this dataset.

2. Preliminaries

Differential Privacy. Differential Privacy offers a prov-
able and quantifiable amount of privacy protection by means
of a privacy-loss budget ε. The most popular mathematical
tool used to express DP is as follows [15]: A randomized
algorithm A is ε-differentially private (ε-DP), if for the set
of all datasets D and D′ that differ on at most one row (i.e.
the data of one individual), and any subset S ⊆ range(A),

Pr[A(D) ∈ S] ≤ eεPr[A(D′) ∈ S]. (1)

The loss of privacy is quantified using ε, which is used
to determine the noise addition for ensuring DP. Achieving
higher levels of privacy preservation (small ε) involves
adding more noise to the data which leads to a decrease
in the output accuracy of the algorithm and vise versa.
Therefore, a trade-off must be found between keeping the
information private and achieving meaningful results, de-
pending on the data and nature of the randomized algorithm.
The post-processing theorem in DP [5] states:

Theorem 1. If a mechanism M satisfies ε-DP, and g be any
function, then g(M(X)) also satisfies ε-DP.

DP mechanisms leverage this theorem as they mostly
focus on perturbing the distribution by noise addition. This
perturbation is done either on the input data points or on
the output of the querying statistical function. Applying
the post-processing theorem, any data drawn from a noisy
distribution that satisfies DP will also be ε-DP. We leverage
this theorem to provide differentially private visual repre-
sentations of statistics on sensitive PHI.

Laplacian Differential Privacy. The Laplacian mecha-
nism is one of the most popular noise addition mechanisms
in DP [16]. A standard approach is adding random noise
with the Laplacian distribution proportional to the sensitivity
Sf of the queried function to ensure DP-queries. Random
noise is drawn from a Laplacian distribution with mean 0
and variance Sf/ε to achieve ε-differential privacy [5].

Sensitivity. According to [5], sensitivity Sf captures the
magnitude by which a single individual’s data can change
the output of the function f in the worst case. It helps
to quantify the uncertainty in the response that needs to
be introduced in order to hide the participation of a single
individual. Mathematically, for any function f over the set
of all datasets D and D′ that differ on at most one row,

Sf = max||f(D)− f(D′)|| (2)

where ||.|| denotes Manhattan distance or L1 norm [15]. We
use Laplacian differential privacy by adding noise directly
to the data records (with aggregated or non aggregated data
points) in order to ensure easy integration into any data
analytics system using any data visualization software. Each
data point x is individually noised as x′ by picking a random
noise sample from a Laplacian distribution given by:

x′ = x+ Lap(0, Sf/ε) (3)

where Sf represents the sensitivity of the statistical query.
Sensitivity of supported statistical operations is elaborated in
Section 4.5. We now describe the structured data collection
as well as our collection template.

3. Structured Clinical Data Collection

SmartReports Reporting Software. SmartReports en-
ables structured reporting of radiological examinations and
procedures evaluated using flexible decision trees. Further-
more, the underlying data is machine-readable and the gen-
erated reports are exported to our electronic data capture
(EDC) software, and accessible for processing by PyDPLib.

Electronic Data Capture. Our EDC web application is
a privacy-centric platform implementing privacy-by-design
principles of the GDPR. State-of-the-art data protection
measures have been adopted based on the Open Web Ap-
plication Security Project (OWASP) Top Ten list, which
represents a broad consensus about the most critical security
risks. The clinical report data is imported and stored in this
application and the DP analyses are generated server-side
and can be accessed by users based on their data flow policy.

PI-RADS Template. Clinical report data is captured for
prostate cancer patients who underwent MR-imaging using
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the Prostate Imaging Reporting & Data System (PI-RADS)
v1 [13]. The PI-RADS v1 definition of clinically significant
cancer (based on pathology/histology) is: Gleason score
≥ 7 (including 3 + 4 with prominent, but not predominant
Gleason 4 component) and/or volume ≥ 0.5ml and/or extra
prostatic extension (EPE). Table 1 shows the 5-point scale
for the PI-RADS score based on the likelihood of combi-
nation of mpMRI findings correlated with the presence of
a clinically significant cancer. It is applied to each lesion.
In addition to the PI-RADS score, information regarding
age, Gleason score, prostatitis, benign prostatic hyperplasia
(BPH), number of lesions and therapy is also collected.

TABLE 1. 5-POINT SCALE OF PI-RADS ASSESSMENT SCORE

Score Assessment

1 Very low (clinically significant cancer is highly unlikely)
2 Low (clinically significant cancer is unlikely)
3 Intermediate (clinically significant cancer is equivocal)
4 High (clinically significant cancer is likely)
5 Very high (clinically significant cancer is highly likely)

4. Differential Privacy Library

PyDPLib provides ε-DP with Laplacian noise addition.
The most common usages of DP mechanisms add DP-noise
to the output of the computed statistical measures. However,
since our platform provides a visual representation of both
the raw and aggregated statistics, PyDPLib adds noise to
the input data points which may or may not be aggregated.
PyDPLib uses Numpy for dependencies, and supports a wide
range of statistical queries and data types.

Figure 1. PyDPLib methods and interaction with other modules

Figure 1 shows a high-level diagram displaying in-
puts/outputs and the interactions between different methods
in PyDPLib. Input from the database or reporting system
is passed to dp calculate method. The dp calculate first
sets the noise level based on the input noise_factor.
Afterwards, dp calculate calls the Binary Search method
to find a suitable ε for the desired noise settings and Sf ,
by using the Laplace mechanism for noise addition. This
binary search is done in recursion until we find an ε that
gives us the appropriate noise percentage. Finally, ε is used
to noise the input data and PyDPLib returns the differentially
private data dp data, ε, Sf as well as the percentage noise.

4.1. Threat Model and Types of Users

In our approach, users are divided into three types:

Owner: Hospital that own the data, and possess the full
right to information disclosure;

Collaborator: Collaborating hospitals that access the
data for research and other collaborative services;

Third party: includes commercial partners that need
access to the medical data without information disclosure.

For our threat model, the data owners are trusted parties.
They are also data curators and assign the data flow policies.
The collaborators are trusted but can be honest-but-curious
parties in the worst case. Therefore, we recommend using
privacy preservation for collaborators. Third parties should
not have access to the data but could visualize the underlying
information to make general observations on the data pat-
terns. In summary, third parties should not be able to extract
the information of a single user based on the visualizations.

4.2. Setting the Appropriate Noise Factor

Depending on the type of user as mentioned earlier, Py-
DPLib selects respective noise addition settings. The Lapla-
cian noise addition is controlled by the noise_factor,
which offers three settings for noise addition to input data:

• 0: low. 0 − 5% noise addition. Suitable for data
owners (privileged users).

• 1: medium. 5 − 10% noise addition. Suitable for
collaborators requiring a low loss of accuracy.

• 2: high. 10− 20% noise addition. Suitable for third
parties requiring statistics without data disclosure.

PyDPLib sets the appropriate noise level based on
noise_factor. Afterwards, PyDPLib selects the appro-
priate ε for the Laplacian noise mechanism depending on
the range, data type, and sensitivity of the statistical query
Sf . In case of is_range or categorical data, the data is
first fit to the input range and afterwards, noise percentage is
calculated. We use a binary search algorithm for ε selection.

4.3. Binary Search Algorithm for ε Selection

We perform a binary search for ε based on the
noise_factor and the sensitivity Sf of the statistical
query. lowidx and hiidx are used to query low and high
indexes in the epsilons array respectively. The binary search
algorithm also takes additional parameters for determining
data fitting mechanisms and noise calculation: is_bool
and is_range are used for data fitting, and noise level
indicates the noise margins for selected noise factor. Algo-
rithm 1 shows the complete Binary Search algorithm. Once
an appropriate ε is found, the data points are noised accord-
ing to Sf of the selected statistical query, and forwarded to
the output along with selected value of ε.
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Algorithm 1: Binary Search for ε

Data: epsilons, lowidx, hiidx, noise level,
input data, is bool, is range, Sf

Result: ε
Initialize sum to 0. Set noise lvl low and
noise lvl high depending on noise level.

if (hiidx ≥ lowidx) then
mid = (hiidx + lowidx)/2

for 5 times do
for datum in input data do

Calculate noised data using Laplacian
noise with Sf and ε = epsilons[mid]

if is range then fit noised data to range;
Calculate percentage noise and add to sum.

Set noise mid to the average of sum.

if noise lvl low ≤ noise mid ≤
noise lvl high then

return ε = epsilons[mid]; /* found */
else if noise mid < noise lvl low then

Repeat Binary Search in [lowidx,mid]
else

Repeat Binary Search in [mid, hiidx]
else

return 0 ; /* not found */

4.4. Supported Data Types

PyDPlib supports a vast variety of data formats as well
as continuous and discrete (or categorical) data. The cat-
egorical variables must be mapped to a numeric format.
data_type could be char, string, int, numpy.int, float,
numpy.float, bool, and numpy.bool. is_range (True/False)
specifies if data values lie within a specific range. The output
data is fitted to the range of input data after noise addition.

Fitting Data to Range. PyDPLib features the
fit_data_to_range and data_range methods to
handle categorical variables or range-bound data. The nois-
ing mechanism must return valid values regardless of the
chosen noising levels. When is_range is True, the range
of valid data points is inferred from the input data (non-
noised) using the method data_range. This method re-
turns all the unique data points as range_values. After-
wards, fit_data_to_range takes the following input
parameters.

• data: noised data to fit to range;
• range_values: unique and valid data point val-

ues inferred from input data;
• data_type: could be int, numpy.int, float,

numpy.float, bool, and numpy.bool.

The fitted result is interpreted as:

x′
fitted =

(maxr −minr)(x
′ −mindata)

maxdata −mindata
+minr (4)

where maxr and minr are the maximum and minimum
input values inferred from range_values, and x′ is a

noised data point in data with maximum and minimum
noised values given by maxdata and mindata respectively.

Continuous data is represented by float or numpy.float,
and the fitting mechanism is as in Equation 4.
fitted_data is used to compute the noise percentage
as compared to the input data. For boolean data, the noised
data is fitted as: True if noised data > 0.5, else False.
This is in agreement with the randomized response for DP
in boolean attributes as observed in [17]. An alternative
approach for noising the boolean values independently of
the statistical query is to use the coin flip algorithm, where
the reported boolean value is dependent on the outcome of
the successive coin flips. However, repeated queries may
expose the original probabilities of the underlying data.

4.5. Supported Statistical Queries and Sensitivity

PyDPLib offers four statistical query_type: 1) count
or histogram, 2) average or mean, 3) median, and 4) vari-
ance. The noise addition mechanism (Equation 3) uses sen-
sitivity Sf of the statistical operation to compute the margin
of added noise, and each data point is individually noised. If
the input data is categorical or range-bound, the noised data
point is then fitted to the input range accordingly. Sensitivity
of statistical queries for calibrating the noise addition is a
well studied problem in literature [5], [15], [18], [19]. We
now describe the Sf of each statistical query in detail.

Count or Histogram. Count or histogram queries are
the simplest of statistical operations as the addition or dele-
tion of a single individual or record can change the count by
at most 1 [5]. According to Equation 2, the sensitivity for
count or histogram query is given as Sf(hist) = 1. Therefore,
noise is sampled from Lap(0, Sf(hist)/ε) distribution.

Average or Mean. For computing the sensitivity of
average or mean, we need to compute the upper and lower
bounds of the input data. For n input data points with lower
bound a and upper bound b, the sensitivity is given by [20]:

Sf(avg) = |b− a|/n (5)

Each data point is individually noised with a randomly
picked sample from Lap(0, Sf(avg)/ε) distribution, and a
noisy average is computed by the data analytics software.

Median. Although the median and mean queries are
statistically different, they exhibit the same sensitivity. The
sensitivity of median query on an input data with n entries
with lower bound a and upper bound b is given by [18]:

Sf(med) = |b− a|/n (6)

x′ is computed by adding a randomly picked sample
from Lap(0, Sf(med)/ε) distribution to x data point.

Variance. Sensitivity of variance for input data with n
entries with lower bound a and upper bound b is given by:

Sf(var) = (b− a)2/n (7)

Here x′ is computed by adding a randomly picked sam-
ple from Lap(0, Sf(var)/ε) distribution to x data point. The
noised data is then fitted to the input range, if applicable.
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a) Low b) Medium c) High

Figure 2. Histograms for patient age vs. PI-RADS scores with different noise_factor settings (low – high). Example for x-versus-y plot with noised
y-axis, query_type = 1, is_range = True, and data_type = int.

a) Low b) Medium c) High

Figure 3. PI-RADS scores vs. average patient age with different noise_factor settings (low – high). Example for x-versus-y plot with noised x-axis,
query_type = 2, is_range = True, and data_type = float.

a) Low b) Medium c) High

Figure 4. Prostatitis vs. median age with different noise_factor settings (low – high). Example for x-versus-y plot with noised x-axis, query_type
= 3, is_range = True, and data_type = int.

5. Experiments and Results

920 prostate cancer patient reports based on the PI-
RADS template have been collected within the years 2017-
18 by board-certified radiologists, and manually labelled by
domain experts. Some of the collected and manually ex-
tracted attributes are shown in Table 2. We illustrate a variety
of private statistical plots on the PI-RADS dataset using
PyDPLib and visualized with Plotly [14]. Since PyDPLib
perturbs the data distribution according to the data type,
range and desired statistical query; and is independent of the
used plotting mechanism, any data analytics or visualization
software can be used to compute and display these plots.

query_type 1: Histograms. Figure 5 shows the his-
togram of the patient ages. Due to privacy concerns, we only
illustrate the histogram in high noise settings. is_range
is True as age can only be positive. Ages are directly noised
using PyDPLib and displayed as a histogram. An alternative
approach would be to compute the counts first and pass them
to PyDPLib, as we discuss for the following histograms.

Figure 5. Age histogram with noise_factor = 2 (high). Example for
query_type = 1, is_range = True, and data_type = float.

Figure 2 shows the histogram plots for age versus PI-
RADS score in low, medium and high privacy settings.
Absolute ages are used, and is_range = True as count
can only be positive. Moreover, PI-RADS score can only
have valid values in the range 1−5 as described in Section 3.
The counts for PI-RADS score for each age are computed on
raw data, and passed to the PyDPLib. This is an example of
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TABLE 2. PI-RADS DATASET

Attribute Type Data type

Anonym ID numerical int
RequestRadiologyDepartmentCode categorical string
ProcedureValidatingPhysicianName free text string
LastModified categorical date
Age numerical float
Year numerical int
Gleason score categorical int
PCA no PIRADS defined categorical bool
Follow up categorical string
PIRADS score categorical int
Number of Lesions numerical int/string
Prostatitis categorical string
BPH categorical bool
Primary TU LocalRecurrence or Progress categorical string
Therapy categorical string
TURP surgery categorical string

x-versus-y plot, where only y-axis is noised. As can be seen,
the overall distribution of samples is maintained in all noise
settings. However, the individual frequencies recorded in the
histograms are noised differently depending on the selected
noise factor for increased user privacy. This makes it hard to
single out an individual from the visual plot. Prostate cancer
occurrence becomes high in ages 50− 80, with the highest
levels of PI-RADS scores in 60 − 70’s. This behaviour is
generally observed regardless of the noise factor.

query_type 2: Average or mean. Figure 3 shows
the PI-RADS score versus the average patient age in low,
medium and high privacy settings. Ages are interpreted as
continuous data with float data type, and is_range is set
to True since the ages can only be positive. Patient ages
are individually noised by PyDPLib and noisy average is
computed. This is an example of x-versus-y plot where only
x-axis is noised. As can be seen, the average age for all PI-
RADS scores lies in the 60−70’s range. Addition of a new
record with an extreme value will alter the query sensitivity,
and PyDPLib will select an ε that offers the desired noise
addition with low impact on overall distribution.

query_type 3: Median. Figure 4 shows the median
patient age versus Prostatitis. As shown in Table 2, Pro-
statitis is a categorical attribute (is_range = True) with
values: chr (chronic), y (yes), n (no), acute and acute
on chronic. These categorical variables are mapped to
numerical values and passed to PyDPLib. After noising,
these numerical values are mapped to original categories
and visualized as a box plot with median bars. The resultant
plot is an example of x-versus-y plot with noised x-axis.
Alternatively, we can noise the ages and visualize them
with respect to Prostatitis. Similarly, we can create many
interesting statistical plots for various data types by using
PyDPLib with any visualization software.

6. Conclusion

Medical institutions that want to share cohort statistics
with external parties, e.g. pharmaceutical companies, have to
protect the privacy of the individual patients that contributed

to the underlying data. We have presented PyDPLib, a
differential privacy library for private medical data analytics
that greatly simplifies this task. PyDPLib offers different
common statistical operations, such as histograms and mean,
and noises the input data according to the type of operation,
the data type, and the privilege level of the intended end user.

Based on a use case with real data, we have shown that
PyDPLib allows creating statistical data visualizations that
preserve the underlying data distributions without compro-
mising the privacy of the individuals. Although developed
for concrete use in our reporting platform, PyDPLib is gen-
eral enough to be used in any data analytics or visualization
application that requires differential privacy.
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