
2021 IEEE International Conference on Big Data (Big Data)

978-1-6654-3902-2/21/$31.00 ©2021 IEEE 4600

Privacy Preserving Survival Prediction
Stefano Fedeli

KTH Royal Institute of Technology
Stockholm, Sweden

fedeli@kth.se

Frida Schain
Schain Research

Stockholm, Sweden
frida@schainresearch.com

Sana Imtiaz
KTH Royal Institute of Technology

Stockholm, Sweden
sanaim@kth.se

Zainab Abbas
KTH Royal Institute of Technology

Stockholm, Sweden
zainabab@kth.se

Vladimir Vlassov
KTH Royal Institute of Technology

Stockholm, Sweden
vladv@kth.se

Abstract—Predictive modeling has the potential to improve
risk stratification of cancer patients and thereby contribute to
optimized treatment strategies and better outcomes for patients
in clinical practice. To develop robust predictive models for
decision-making in healthcare, sensitive patient-level data is often
required when developing the training models. Consequently,
data privacy is an important aspect to consider when building
these predictive models and in subsequent communication of the
results. In this study we have used Graph Neural Networks for
survival prediction, and compared the accuracy to state-of-the-
art prediction models after applying Differential Privacy and
k-Anonymity, i.e. two privacy-preservation solutions. By using
two different data sources we demonstrated that Graph Neural
Networks and Survival Forests are the two most well-performing
survival prediction methods when used in combination with
privacy preservation solutions. Furthermore, when the predictive
model was built using clinical expertise in the specific area of
interest, the prediction accuracy of the proposed knowledge based
graph model drops by at most 10% when used with privacy
preservation solutions. Our proposed knowledge based graph is
therefore more suitable to be used in combination with privacy
preservation solutions as compared to other graph models.

Index Terms—knowledge graph, survival prediction, privacy
preservation, differential privacy, anonymization, clinical data,
national registry, graph neural network, survival forest

I. INTRODUCTION

In recent years there has been a strong trend to use real-
world clinical and genetic data to guide healthcare decisions
and enable personalized treatment. This concept is usually
referred to as personalized medicine or precision medicine.
Artificial intelligence (AI), genomics, and identified digital
biomarkers, in combination with the digitalization of health-
care, have been important drivers in this development. Pre-
vious studies have described the role of machine learning in
diagnostic prediction [1]. Similarly, machine learning (ML)
has also been used to develop survival prediction models in
the field of cancer research [2]. Random forests in particular
have been used by many groups to study survival prediction.
Moreover, Graph Neural Network (GNN) is another interest-
ing method given the high accuracy demonstrated in cancer
survival prediction [3] [4].

Graphs are useful for representing relational data in vari-
ous application domains, such as social media analysis [5],
web analysis [5], recommendation systems [6], knowledge
graphs [7] and road traffic analysis [8]. Recently, graph
embeddings (node/vertex embeddings) are gaining popularity
due to their capabilities of capturing graph structure and
node information for various homogenous or heterogenous
knowledge graphs [9], [10]. These embeddings are then fed
to a neural network that can perform downstream tasks, e.g.,
node classification, clustering and link predictions. Previous
works have shown promising results in the field of survival
prediction using graphs to model genetic data [3] [4]. In this
work, we propose to use graph embeddings and graph neural
networks to learn the knowledge based graph of patient data
without using genetic data and do survival prediction while
preserving the privacy of sensitive data.

Despite the potential benefits associated with predictive
modeling to guide treatment decisions in clinical practice,
there are some challenges to be taken into consideration.
For example, the predictive methods used are not yet widely
accepted, partly due to data privacy concerns, lack of gen-
eralization and unavailability of structured data [11]. Data
privacy aspects related to sensitive patient data are of par-
ticular importance when working with training and making
inferences from ML models. In this study, we used patient-
level data from the Swedish National Board of Health and
Welfare to evaluate how ML models behave when privacy-
preserving techniques are applied. To generalize our findings,
we performed the experiments with multiple ML models and
a benchmark dataset. We evaluated all the models on the area
under the curve (AUC) scores on a binary classification task.

The contributions of this work are as follows.
• We propose to represent cancer datasets as graphs repre-

senting useful relations between the patients as nodes and
characteristics as edges of the medical knowledge graph.

• We propose to use Graph Neural Networks to perform
survival prediction for real-world cancer patients using
GraphSAGE, a popular graph representation learning
framework. Our model leverages relations between pa-
tients which are useful for survival prediction.
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• We evaluated the impact of using privacy-preserving
solutions, namely k-Anonymity and Differential Privacy,
on the predictive performance of state-of-the-art survival
prediction techniques compared with our graph-based
prediction techniques.

• We evaluated the trade-off between prediction accuracy
and privacy preservation for our graph-based survival
prediction method and state-of-the-art survival prediction
techniques for sensitive datasets.

The rest of this paper is structured as follows. Section II
gives an overview of the related background and state-of-the-
art regarding both survival prediction and privacy preservation.
Section III provides information about our choice of the data
and the chosen use case for our experiments. Section IV
describes the survival prediction models used for our experi-
ments. Section V presents our experimental setup and results.
We also provide reasoning and in-depth discussion on our
obtained results, trying to connect the dots and propose expla-
nations. We present our conclusions, identify the limitations
of our work and present the analyses of the future directions
we foresee in Section VI.

II. BACKGROUND AND RELATED WORK

Survival Prediction. Survival prediction is a development
of traditional survival analysis, a branch of statistics focusing
on modeling the problem of time-to-event [12]. Historically,
regression analysis has been used to estimate relationships
between certain variables and outcomes of interest (e.g., sur-
vival). This approach however has not been pursued in survival
prediction due to poor performances, co-founding factors and
lack of data collected [13].

Non-linear models such as survival forests have been as-
sociated with promising results when using risk ranking for
survival prediction. Data is divided in each layer into two
groups that show the minimal p-values in the log-rank test
between their two Kaplan Maier curves [14]. The survival
forest method was developed from random forests that are
also commonly used models in survival prediction [15], mostly
when the problem is shaped as a binary classification task.
Binary classification using disease-specific thresholds is also
commonly used in machine learning for survival prediction.

These models are all associated with different limitations
which are particularly evident when working with data
including many dimensions [16]. Genetic aberrations are
important predictors for survival in many cancer types such
as lung cancer and breast cancer [17]. Genetic data may
be complex with many dimensions, and previous studies
have shown that graph-based models perform better in
these settings compared to, for instance, regression models
[3] [4]. Other groups have compared different predictive
models in terms of accuracy performances, but to the best
of our knowledge no study assessed different models using
privacy-preserved real-world data [18], [19].

Graph Representation. Graphs can model complex and
multi-dimensional data and is therefore suitable for healthcare

data. Multimodal cellular networks are commonly used in
biology research and drug discovery, but also related to trans-
actions, social networks, and behaviors on the internet [20].
A network can be modeled as a graph G, a tuple containing
two sets: the first one consists of vertices V that represent the
entities of the graph, also called nodes; the second one consists
of edges E, also called links that connect vertices.

G = (V,E) (1)

Compared to other data structures, graphs put the focus on
relationships between nodes instead of their property. The
strength of graphs becomes a weakness when such data
structure is used to feed a machine-learning algorithm. For
this reason, many techniques have been developed to perform
feature engineering against a graph structure and provide a
better Euclidean representation that could be used by the
machine learning method. Starting with graphlets or triangles
counts, many were the common approaches to extract useful
information from graph relationships [21] [22]. While interest-
ing and useful to some extent, those methods can capture only
a small portion of all the information that a graph or a node
is carrying. Those methods are limited by our comprehension
of graphs and that is the main reason a never-ending shift to
automatic representation is flourishing.
Graph Representation Learning can be seen as a simple
function that can bring a graph, a node, or an edge from a
sparse, non-euclidean space to a point in a latent space of
m dimension. The m coordinates of this point in this latent
space is called embedding of x where x is the argument of
the mapping function:

y = f(x), y ∈ Rm (2)

Graph Neural Networks. Graph Neural Networks (GNNs)
are meant to be able to capture the right features of a complex
data structure such as, in this case, a graph.

GraphSAGE is one of the most commonly used GNNs that
learn to create embeddings by aggregating information from a
sampled neighborhood [10]. GraphSAGE is working under the
assumption that nodes that reside in the same neighborhood
should have similar embeddings. For this reason, it exists a
parameter K that encodes the maximum hop-distance node
that can influence a node embedding.

The way GraphSAGE aggregate this information is cus-
tomizable based on the task. The authors proposed three
aggregation functions that can be relevant in many different
tasks but for our work, we will focus on the most naı̈ve and
simple aggregator: the MEAN. In this case, the aggregation
is simply based on computing the element-wise mean of the
incoming feature vectors of the single nodes as shown below:

hlN (v)←MEAN({hl−1
u ,∀u ∈ N(v)}) (3)

Privacy Preservation. We can spot many publications
that take into account all those different predictive models
and compare them in terms of accuracy performances,
but nothing has been said about their applicability in the
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real world [18], [19]. In clinical practice, data is often
processed in an anonymized way and it is very difficult
to deploy an application that uses unprotected data. This
applies also to researchers in countries, such as Sweden,
where the data available is often available but truncated or
aggregated, giving little or no room to achieve good results
with the models we have encountered in the literature. It is,
therefore, crucial to understand how all the models that we
mentioned before behave when the data has been privatized
by the source to guarantee the safety of all the actors involved.

k-Anonymity. To the best of our knowledge, k-anonymity
is the most common technique used broadly to protect
clinical records. It is the standard named by the ‘Family
Educational Rights and Privacy Act (FERPA)’ of the US
and the ‘Guidelines for De-identification of Personal Data’
of South Korea [23]. k-anonymity is often the best choice as
it is easy to implement and is also efficient because it does
not create unnecessary computational overhead. k-anonymity
is based on the concept of aggregation and suppression. A
dataset is defined as k-anonymous if each record contained
in a released dataset cannot be distinguished from at least
k − 1 other individuals. This can be achieved by aggregating
information in classes or removing some critical information,
keeping an eye on avoiding over-generalization. It is possible
to notice that the higher is k the more complex would
be the task for the model but indeed it is still possible
to leak some useful information. k-anonymity is part of
the anonymization technique family that guarantees the
protection of personally identifiable information by the
removal of sensitive attributes such as ID, name, age or
gender, or race. Unfortunately, anonymization techniques are
susceptible to attribute disclosure attacks as well as database
reconstruction attacks [24]. Attribute disclosure attacks are
the most difficult to contrast as they consist in realizing some
information that could be used to infer sensitive information
by itself or when linked to other information coming from
the same or different source dataset. Against such kind of
attack, differential privacy is often used and that’s the reason
why, for our work, we focus on this latter privacy-preserving
method.

Differential Privacy. Differential Privacy (DP) is a rigorous
mathematical framework that defines an algorithm to be dif-
ferentially private if and only if the inclusion of a single new
record in the dataset causes only a limited, non statistically
significant, change in the output of the function f. More
formally Differential Privacy is defined as [25]:

“A randomized mechanism K provides (ε, δ)-differential
privacy, if for any two neighboring database D1 and D2 that
differ in only a single entry, ∀S ∈ Range(K),”

Pr(K(D1) ∈ S) ≤ eεPr(K(D2) ∈ S) + δ (4)

If δ = 0 then K is said to be ε-differentially private. With
a differentially private algorithm, we can add noise to the
function f and guarantee privatized results. This noise is

proportional to the sensitivity of the output which means the
maximum amount of output’s change caused by the insertion
of a single instance. The most popular mechanism, and the one
we will use in our experiments, to achieve differential privacy
on a dataset D, is a Laplacian noise [26].

A. Related Work

As mentioned in Section I, we focus on the binary classi-
fication task which is the most common approach to survival
prediction in the ML literature.

Lynch et al. [27] in their work discussed how machine
learning techniques can be used to predict survival, confirming
results from another similar work by Walczak and Velanovich
[28]. This work is based on using a simple neural network
model that acts as a feed-forward network on two layers. This
architecture was able to perform as well as the COX baseline
[29] in the task of predicting if an individual will survive more
or less than 7 months.

In 2019, Daoud and Mayo [19] published a work that
showed at least ten neural network architectures have been
used to handle genomic data and predict individual survival
with very interesting results. Regarding graphs, Wang et
al. [4] have proposed a complex architecture that performs
convolutions on a graph where nodes are individuals and
edges are weighted based on individual similarity among m
dimensions. A strong emphasis is put on data preprocessing,
which tries to build first a similarity network for each of the
m dimensions and then merge all in a single adjacency matrix.
Once the adjacency matrix is built, every node, that represents
a patient, is assigned to a feature vector that will be used
to create their embedding through a series of convolutions.
A similar approach to graph modeling is the one proposed by
Gao et al. [3] in their paper published in 2020. The architecture
tries to merge different information coming from different
sources by modeling each of them in the best possible way. In
their architecture graphs are used to model the relationships
between individuals and gene activations creating a bipartite
graph where nodes are either of type patient or type gene.
The graph embedding concatenated to the standardized node
feature vector is given in input to a neural network that
performs the task.

Both DP and k-anonymity have already a big track of
records regarding their applicability and performances in the
different scenarios but there is a gap when we are talking about
GNN and graphs models in general. Wimmer et al. [30] have
tested k-anonymity against a set of well-known machine learn-
ing models using three different benchmark datasets, finding
that in certain cases anonymization could lead to an increase
of performances of the models. This is due to a reduction of
overfitting that k-anonymity brings by construction. Abadi et
al. [31] have instead proposed an efficient way to apply DP
to neural networks to avoid a big loss of performance. Their
findings could be extended to other machine learning models
proving that DP can be applied at a manageable cost. The work
done by Johansson et al. addresses DP on graphs classification
[32] is also very interesting. They show the efficacy in the
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trade-off between accuracy and privacy on graph classification
by developing a particular DP version of random walks and
graphlets.

III. DATA

To properly test the resilience of survival prediction models
including privacy-preserving techniques, it is critical to have
rich data from the real world. In this section we explain
various real world cancer datasets used in our work of survival
prediction.

A. Data Sources

In this study, we used data collected from the following
sources.

• Swedish population-based national register data provided
by the National Board of Health and Welfare after ethical
approval by the Swedish Ethical Board (DNR 2021-
07259). The study population included 3691 unique pa-
tients that underwent hematopoietic stem cell transplan-
tation (HSCT) due to hematological malignancy. Patients
were followed longitudinally, and the median follow-up
time was 7,74 years. The follow-up time feature was
used to label the records for our binary classification task
using the threshold of three years. Ten clinically relevant
variables with acceptable data completeness were selected
for the model as shown in Table I.

• The TCGA-BRCA repository 1 from the NCI’s Genomic
Data Commons (GDC) was analyzed separately and used
as a benchmark. This dataset included data from 1098
patients diagnosed with breast cancer with a median
followup time of 3,20 years. TCGA-BRCA data source is
commonly used by the cancer research community with
a unified data repository that enables data sharing across
cancer genomic studies in support of precision medicine.

B. Datasets

The Swedish data (defined as V1) contained 37% patients
that survived less than 3 years after the HSCT procedure. To
build this dataset, we picked 10 rich features of 3691 patients
that do not include skewed or missing values from the many
available features.

The GDC TCGA-BRCA dataset (defined as V2) is common
for benchmarking new algorithms that focuses on genes, for
instance, it was used by Wang et al. [4] to evaluate their
architecture. To enable an indirect comparison to the results
published by Wang et al. [4], a similar preprocessing pipeline
was used. The dataset includes 1066 individuals with 20
features, shown in Table II.

In both cases, the training was adjusted to deal with unbal-
anced labels.

1https://portal.gdc.cancer.gov/projects/TCGA-BRCA

TABLE I
V1 FEATURES

Feature Type

Sex boolean
Age at index (years) numeric
Transplant calendar year numeric
Comorbidity Index numeric
Duration of the transplant (days) numeric
Ratio of time spent in the hospital prior transplant (%) numeric
Hospital categorical
Cancer Diagnosis categorical
Cancer Group categorical
Type of Transplant categorical

TABLE II
V2 FEATURES

Feature Type

Age at index (years) numeric
Ethnicity categorical
Race categorical
Age at diagnosis (years) numeric
M Stage categorical
N Stage categorical
T Stage categorical
Stage At Diagnosis categorical
Staging System categorical
Diagnosis ICD10 categorical
Morphology categorical
Primary Diagnosis categorical
Prior Malignancy boolean
Prior Treatment boolean
Site of Biopsy categorical
Synchronous Malignancy categorical
Tissue of Origin categorical
Therapy boolean
Treatment Type categorical
Diagnosis calendar year numeric

IV. SURVIVAL PREDICTION MODELS

Based on our findings in the literature we decided to use two
ensemble methods, one artificial neural network and one GNN.
One of the two ensemble methods, the survival forest, served
as a baseline for comparative purposes. Given the nature of the
survival forest, this model has been adapted to binary classify
patients instead of ranking them. This was accomplished by
comparing the ranking provided by the forest (Fig.1 left) with
the real known ranking (Fig.1 right) that is computed by
ordering the patient based on their death date. This enabled us
to find all the components of the confusion matrix, as shown
in Figure 1, that will be later used to compute the metrics in
the experiment.

The other ensemble model was a Random Forest model
implemented with scikit 2 as it is the most common traditional
ML model. Random Forest was also used by Gao et al. [3] in
their work against the TCGA-BRCA benchmark.

Lastly, we also use a Deep neural network, denoted as
DL/ANN in our experiments, for comparison with all the
baselines methods and our graph-based prediction models to

2https://scikit-learn.org/stable/index.html
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TABLE III
DISTRIBUTION ACROSS DIAGNOSIS IN V1 DATASET

Diagnosis Group ICD10 Number of Patients

Lymphocytic Leukemia C91.* 608
Myeloid Leukemia C92.* 1260
Multiple Myeloma C90.* 311
Other Leukemia C9* 113
Malignant Neoplasms C8* 405
Other Malignant Cancers C* 510
Blood Diseases D* 312
Other Diseases * 173

Fig. 1. Survival Forest as a classifier

evaluate how is the simple neural network going to perform
compared to complex prediction models.

Recent work demonstrated impressive performances by ap-
plying GNNs to the problem of survival prediction [3] [4].
Although genetic data was modeled as graphs in the afore-
mentioned works. It is interesting to shape our tabular data as
a graph and apply recent GNN algorithms. Next, we explain
how we modelled our tabular data of cancer patients as graphs.

We created three different types of graph models, namely
G1, G2, and G3.

a) HinSage (G1): The graph model G1 is based on the
Swedish dataset V1 using the knowledge graph shown in
Figure 2. The blue nodes in the figure represent patients and
orange nodes represent cancer types. Patient’s information,
shown in the patient table in Figure 2, is used for creating node
embeddings. Similarly, the cancer node also contains cancer
information that is used to create embeddings for cancer nodes.
G1 is a heterogeneous bipartite graph where we have two sets
of nodes, i.e., patient and cancer types.

The complete architecture for survival prediction using G1
is shown in Figure 3. In the first step, the heterogeneous
graph G1 is created and fed to the graph embedding module,
which generates low-dimensional graph embeddings. These
embeddings are then fed to the fully connected neural network
that does survival prediction. The graph embedding module
uses HinSage for G1. HinSage is a variation of GraphSage that

takes into account heterogeneous nodes by assigning different
weights to edges depending upon the relationship.

Fig. 2. Graph Model used by G1 for Swedish dataset V1

Fig. 3. Graph Based Survival Prediction Model Architecture

b) GraphSage/snf (G2): G2 is built using the similarity
network fusion concept from Wang et al. [4]. The similarity
value is useful to connect the nodes of the graph. The idea
is to create many different similarity networks on different
dimensions and then fuse them using the Algorithm 1.

Algorithm 1: Similarity Network Fusion (SNF)
Input: m Exponential similarity matrices W (i, j)
Output: Similarity Matrix P (c)

S(i, j)← W (i,j)∑
k∈Ni

W (i,k)

for z = 1...m do
P z(i, j)← W (i,j)

2
∑

k 6=iW (i,k)

P (c) ←
∑

k=1..m P (k)

m

In the case of the dataset V2, we set the parameter m = 1
for the similarity algorithm, which means that no fusion was
done and just the similarity was computed. This is due to
the fact that the data was collected clinically and no external
data source was used. Figure 4 shows the pre-processing of
the data, where the similarity between two sets of clinical
data is being computed to generate a homogeneous graph G2
which is later used for survival prediction using the similar
architecture as shown in Figure 3. For G2, we use GraphSage
in the embedding module because all edges are treated equally
since G2 is a homogeneous graph. We term this graph as
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homogeneous because all nodes are of the same type, i.e.,
patient nodes containing all the patient attributes along with
their cancer type information.

Fig. 4. G2 Similarity Network Fusion

c) GraphSage/cosine (G3): The last graph model G3
used in the experiments is a simplified version of the graph
used in [4]. G3 is built from a similarity matrix N ×N where
N is the number of individuals in the dataset. The similarity
matrix is built using the cosine similarity which is the most
effective metric when using numerical variables. We use a
simple cosine similarity between the row of each dataset to
improve the performance compared to [4], where different
data sources are used in similarity computation. A threshold
of 0.7 has been used to draw the only relevant connections
between nodes to make sure that we do not end up with a
fully connected graph.

Figure 5 shows the process to build the graph, where the
similarity between rows of the data is being computed. If the
similarity is high then an edge is created between the patient
nodes of the corresponding rows. This homogeneous graph G3
is then fed to a GNN which learns the graph embeddings using
GraphSage and feeds them to the NN for survival prediction
as shown in Figure 3.

Fig. 5. G3 Building process

We categorize the aforementioned graph models into two
groups.

• Knowledge-Driven architectures (G1): In this archi-
tecture, the input of domain experts is used to create

the graph. Edges are created under known and relevant
relationships. For the Swedish dataset V1, relationships
are created between patients and diagnosis, carefully
designing the nodes and the connection between them.

• Data-Driven architectures (G2, G3): Are all architec-
tures are fully based on data. The graph here is built
by considering each record of the dataset as a node and
then connecting them using different notions of similarity,
such as Figure 5, and network fusion, such as Figure 4,
[4].

Regarding Graph Neural Networks algorithms, we have
chosen to experiment with GraphSage and its heterogeneous
version HinSage [10]. The three different graph models are
used as input for the GNN in our experiment. This choice
takes into high consideration the real-world application that
this algorithm could have in the future. It is also very important
to validate how those algorithms will be impacted by privacy
techniques due to the fact they will be likely to be used in
dynamic and real scenario settings.

V. EVALUATION

We performed two distinct experiments. One with the
datasets privatized with k-anonymity and the other with the
datasets privatized using Differential Privacy. Both algorithms
had one hyperparameter to increase or decrease the privacy in-
jected into the data. This led us to perform the two experiments
with different values of the hyperparameters and evaluate how
these influenced the results.

A. Experimental Setup

For the parameter k in k-anonymity we verified for k ∈
{3, 9, 30} while for the parameter ε of Differential Privacy we
try for ε ∈ {2, 1, 0.5, 0.1}. This choice was driven by using
the most common values found in the literature.

We aimed to protect selected attributes of each record.
However, we decided to anonymize the dataset over all the
attributes when using k-anonymity while using only a subset
of attributes when applying differential privacy.

We split each dataset in test (20%) and train (80%) using
then cross-validation to grid-searching the models’ hyperpa-
rameters. This allowed us to be sure we were running the
different models at their probably best.

To evaluate and compare the results of the different scenar-
ios and models, the study focused on quantitative metrics to
assess the differences. Following previous work published [3],
[33], [34] in the area, it is clear that the most important metrics
one should consider are AUC, Recall, and Precision. When
facing a binary classification problem the most important
quantitative value to be considered is the combination of True
Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN).

After running each experiment 5 times we computed the
average as it is shown by the results reported in Tables IV,
V, VI, and VII.
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TABLE IV
AVERAGE AUC AFTER 5 EXPERIMENTS WITH DIFFERENT K ON V1

Models V1

k=1 k=3 k=9 k=30

Survival Forest (SF) 0.659 0.647 0.641 0.630
Random Forest (RF) 0.605 0.594 0.580 0.573
DL/ANN 0.660 0.622 0.600 0.613
HinSage (G1) 0.662 0.628 0.626 0.611
GraphSage/snf (G2) 0.644 0.643 0.620 0.612
GraphSage/cosine (G3) 0.660 0.685 0.630 0.638

TABLE V
AVERAGE AUC AFTER 5 EXPERIMENTS WITH DIFFERENT K ON V2

Models V2

k=1 k=3 k=9 k=30

Survival Forest (SF) 0.703 0.688 0.662 0.599
Random Forest (RF) 0.818 0.813 0.793 0.795
DL/ANN 0.824 0.793 0.773 0.768
HinSage (G1) 0.845 0.840 0.816 0.793
GraphSage/snf (G2) 0.857 0.775 0.731 0.716
GraphSage/cosine (G3) 0.803 0.800 0.731 0.717

Regardless of which technique or model that was used, a
higher degree of privacy-preservation was always associated
with lower performance. The performance decline was similar
for all models, except for survival forest and G1, as shown by
both Figure 6, 7. Another general consideration is that even
though the privatization increased ten times, the performances
did not decline with the same proportion. What seems to be
happening is that at some point performances reach a plateau,
and after that, we observed a convergence to the performance
of a random classifier. This was obvious with k-anonymity,
Figure 6, where after k = 9 the performances did not follow
anymore the trend but slowly drop to 0.5.

Furthermore the data showed that survival forests are very
resistant to differential privacy and much less reliable when
k-anonymity was applied. Figure 8 shows the variation of the
AUC across the hyperparameter variations therefore models
that are consistent across the different runs will show a short
box. In chart (a) survival forest shows a very narrow box
underlying its resilience to noise addiction. By contrast, in
the chart (b), the survival forest shows high susceptibility to
anonymization.

From Figures 6 and 7 we can observe a similar pattern
where most of the model decrease their performances as
privacy increased. However, those performances’ reduction
are related to the dataset as graphs’ models did not show
similar behavior in the two datasets even though the privacy
technique is the same. In particular, looking at the results
from V2, in Figure 7, most of the models lost around 10%-
20% AUC compared to the 5% loss in AUC that we have, on
average, on the V1 dataset. This particular behavior can be the
product of the difference in feature size of the dataset. More
features could indeed amplify the effect of privacy-preserving
techniques.

TABLE VI
AVERAGE AUC AFTER 5 EXPERIMENTS WITH DIFFERENT ε ON V1

Models V1

ε = ∞ ε = 2 ε = 1 ε = 0.5 ε = 0.1

Survival Forest (SF) 0.659 0.631 0.616 0.609 0.607
Random Forest (RF) 0.605 0.608 0.603 0.579 0.570
DL/ANN 0.660 0.601 0.572 0.573 0.527
HinSage (G1) 0.662 0.635 0.633 0.629 0.609
GraphSage/snf (G2) 0.644 0.639 0.631 0.617 0.596
GraphSage/cosine (G3) 0.660 0.642 0.618 0.616 0.603

TABLE VII
AVERAGE AUC AFTER 5 EXPERIMENTS WITH DIFFERENT ε ON V2

Models V2

ε = ∞ ε = 2 ε = 1 ε = 0.5 ε = 0.1

Survival Forest (SF) 0.703 0.697 0.692 0.665 0.662
Random Forest (RF) 0.818 0.795 0.789 0.768 0.691
DL/ANN 0.824 0.742 0.738 0.723 0.693
HinSage (G1) 0.845 0.858 0.846 0.808 0.754
GraphSage/snf (G2) 0.857 0.801 0.769 0.767 0.641
GraphSage/cosine (G3) 0.803 0.800 0.772 0.771 0.673

The behavior of random forest is almost opposite to the
other models. On average, it is the most resilient model to
privacy preserving techniques we have tested. Their perfor-
mances are reduced by -0.127 at maximum in term of AUC.
Low, compared to the biggest loss of -0.216 by G2. Another
behavior is the sudden drop of the random forest performance
as the amount of privacy reaches critical values that correspond
to a very high amount of noise.

Among the graph models, G1 is the one that is more resilient
and never drops its AUC more than 10%. G2 instead is near
26%.

Fig. 6. Trendline chart as k varies across 6 models on V1 and V2

B. Discussion

The results from the present study indicated that G1 is
the most resilient model to privacy-preserving techniques.
Although the performance was impacted by the privacy-
preserving techniques, it remains always the top performer
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Fig. 7. Trendline chart as ε varies across 6 models on V1 and V2

Fig. 8. Performance of graph models and baseline in relation to their average
degree when (a) Differential Privacy (b) k-anonymity is applied.

in most of the experiments. As described in section IV, the
dataset, in this case, is modeled as a heterogenous graph that
has patients nodes and clinical insights nodes. The relation-
ships we draw in the case of G1, opposite to G2 and G3, are
few as shown by Figure 8 and very carefully selected. The
reason for this high resiliency may be due to the few amount

of features used to draw the relationship, e.g. 1, that gave the
GNNs used, HinSage, the insight of which feature was the
most important to focus on among the many available. With
less relationship between nodes, differential privacy had less
impact on the graph.

When applying k-anonymity we noticed that the graph
models instead remained quite resilient while survival forest
seems to be very dependent on the data, shown by Figure
6. The reason behind such behavior can be related to the
relationship of the different nodes. k-anonymity is bringing
many records to look the same and therefore traditional models
struggle. Many records in the dataset look identical but might
be labeled differently. Graph modeling, and therefore GNNs,
which focus on the relationships, are still able to classify the
records because they can leverage the node’s relationships with
the other nodes even though the node’s feature vector looks the
same as many others. In this way, graph neural networks do
not perish a great impact from k-anonymity. On the opposite,
ensemble methods are completely misguided by the privacy-
preserving method as they assume each record is independent
of the others.

The same reasoning cannot be applied for differential pri-
vacy as shown in Table VII. Laplacian noise-damaged all
the models, despite survival forests and HinSage. As the
noise reached high levels, such as 0.1 epsilon, we observed
a reduced AUC. The GNNs poor performances can be related
to intensively random changes in the graph structure, which
would inhibit GNNs from learning. This was confirmed by
comparing graph models based on similarity matrices with
G2 that is instead created by leveraging clinical knowledge.
G2 is more resilient to noise as relationships are based on a
single feature instead of the whole dataset. On the contrary,
survival forest appears more resilient due to its inner structure
and the ability to rely on a ranking instead of a binary label
when building the trees.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have investigated how ML methods such as
GNNs can be applied in prediction when privacy-preserving
techniques are applied. Results showed that the difference in
accuracy was highly dependent on the modeling of the data,
e.g. how the graph was created, and less dependent on the ML
architecture used. In particular, graph modeling which focus
on drawing only crucial, clinically relevant, relationships is
the most resilient model among the ones we have tested. In
our experiments, we show that when data is modeled in this
way, the most significant drop in performance was experienced
when data is noised via differential privacy. In this case, the
model performances dropped by 10% while in all the other
cases we observed a lighter reduction. Clinical models, such
as survival forests, have shown good behavior against noise or
anonymization with respect to traditional ML models, such as
a random forest.

In summary, this work demonstrated that graphs can be
useful tools when representing complex real-world data in sur-
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vival prediction models and that privacy-preserving techniques
can be applied with acceptable performance.

A. Future Work

The work has some limitations concerning the privacy-
preserving techniques since we focused on only two privacy-
preserving methods among many different available in the
literature. Results and conclusions can change if different
privacy-preserving techniques are applied to GNNs. For this
reason, future work should also explore how graphs are
impacted by different types of privacy-preserving techniques.
Working with survival prediction models, it is important to add
the right clinical expertise when interpreting results derived
from ML techniques. Ying et al. [35] recently presented a
framework based on mutual independence of subgraphs to
show which node features that have the highest impact on the
prediction given by the network. Future studies are needed to
further explore how these techniques can be useful in clinical
practice.
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