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ABSTRACT
While cluster computing frameworks are continuously evolv-
ing to provide real-time data analysis capabilities, Apache
Spark has managed to be at the forefront of big data analyt-
ics. Recent studies propose scale-in clusters with in-storage
processing devices to process big data analytics with Spark
However the proposal is based solely on the memory band-
width characterization of in-memory data analytics and also
does not shed light on the specification of host CPU and
memory. Through empirical evaluation of in-memory data
analytics with Apache Spark on an Ivy Bridge dual socket
server, we have found that (i) simultaneous multi-threading
is effective up to 6 cores (ii) data locality on NUMA nodes
can improve the performance by 10% on average, (iii) dis-
abling next-line L1-D prefetchers can reduce the execution
time by up to 14%, (iv) DDR3 operating at 1333 MT/s is
sufficient and (v) multiple small executors can provide up to
36% speedup over single large executor.

Keywords
NUMA, SMT, Spark

1. INTRODUCTION
With a deluge in the volume and variety of data collect-

ing, web enterprises (such as Yahoo, Facebook, and Google)
run big data analytics applications using clusters of com-
modity servers. However, it has been recently reported that
using clusters is a case of over-provisioning since a majority
of analytics jobs do not process really big data sets and mod-
ern scale-up servers are adequate to run analytics jobs [10].
Additionally, commonly used predictive analytics such as
machine learning algorithms, work on filtered data sets that
easily fit into the memory of modern scale-up servers. More-
over, the today’s scale-up servers can have CPU, memory,
and persistent storage resources in abundance at affordable
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prices. Thus, we envision a small cluster of scale-up servers
to be the preferable choice for processing data analytics.
Choi et al. [16, 17] define such clusters as scale-in clusters.
They propose scale-in clusters with in-storage processing de-
vices to reduce data movements towards CPUs. However,
their proposal is based solely on the memory bandwidth
characterization of in-memory data analytics with Spark and
does not shed light on the specification of host CPU and
memory.

While Phoenix [33], Ostrich [14] and Polymer [35] are
specifically designed to exploit the potential of a single scale-
up server, they do not scale-out to multiple scale-up servers.
Apache Spark [34], is getting popular in the industry because
it enables in-memory processing, scales out to a large num-
ber of commodity machines and provides a unified frame-
work for batch and stream processing of big data workloads.
Like Choi et al. [16], we also favour Apache Spark to be the
big data processing platform for scale-in clusters. By quan-
tifying the architectural impact on the performance of in-
memory data analytics with Spark on an Ivy Bridge server,
we define the specifications of host CPU and memory and
argue that a node with fixed function hardware accelerators
near DRAM and NVRAM suits better for the processing of
in-memory data analytics with Spark on scale-in clusters.
Our contributions are:

• We evaluate the impact of NUMA locality on the per-
formance of in-memory data analytics with Spark.

• We analyze the effectiveness of Hyper-threading and
existing prefetchers in scale-up server to hide data ac-
cess latencies for in-memory data analytics with Spark.

• We quantify the potential of high bandwidth memories
to boost the performance of in-memory data analytics
with Spark.

• We recommend how to configure scale-up server and
Spark to accelerate in-memory data analytics with Spark

2. BACKGROUND

2.1 Spark
Spark is a cluster computing framework that uses Resilient

Distributed Datasets (RDDs) [34] which are immutable col-
lections of objects spread across a cluster. Spark program-
ming model is based on higher-order functions that execute



user-defined functions in parallel. These higher-order func-
tions are of two types: “Transformations” and “Actions”.
Transformations are lazy operators that create new RDDs,
whereas Actions launch a computation on RDDs and gen-
erate an output. When a user runs an action on an RDD,
Spark first builds a DAG of stages from the RDD lineage
graph. Next, it splits the DAG into stages that contain
pipelined transformations with narrow dependencies. Fur-
ther, it divides each stage into tasks, where a task is a com-
bination of data and computation. Spark assigns tasks to
the executor pool of threads and executes all tasks within a
stage before moving on to the next stage. Finally, once all
jobs are completed, it saves the results to file system.

2.2 Spark on Modern Scale-up Servers
Our recent efforts on identifying the bottlenecks in Spark [11,

21] on scale-up server shows (i) Spark workloads exhibit
poor multi-core scalability due to thread level load imbal-
ance and work-time inflation, which is caused by frequent
data accesses to DRAM and (ii) the performance of Spark
workloads deteriorates severely as we enlarge the input data
size due to significant garbage collection overhead and file
I/O

We reproduce the multi-core scalability experiments from
our previous work [11, 21] to highlight the performance is-
sues incurred by Spark workloads on scale-up servers. Each
benchmark is run with 1, 6, 12, 18 and 24 executor pool
threads. The size of input dataset is 6 GB. For each run, we
set the CPU affinity of the Spark process to emulate hard-
ware with the same number of cores as the worker threads.
The cores are allocated from one socket first before switching
to the second socket. Figure 1a plots speed-up as a function
of the number of cores. It shows benchmarks scale linearly
up to 4 cores within a socket. Beyond 4 cores, the work-
loads exhibit sub-linear speed-up, e.g., at 12 cores within a
socket, average speed-up across workloads is 7.45. This av-
erage speed-up increases up to 8.74 when the Spark process
is configured to use all 24 cores in the system. The perfor-
mance gain of mere 17.3% over the 12 cores case suggest
Spark applications gain less by using more than 12-core ex-
ecutors. Figure 1b shows pipeline-slots breakdown of Spark
workloads.They are configured to run at 24 cores. The data
show that most of the benchmarks are back-end bound be-
cause DRAM bound stalls are the primary bottleneck (see
Figure 1c) and remote DRAM accesses incur additional la-
tency (see Figure 1d).

Simultaneous multi-threading and hardware prefetching
are effective ways to hide data access latencies and addi-
tional latency overhead due to accesses to remote memory
can be removed by co-locating the computations with data
they access on the same socket. One reason for severe impact
of garbage collection is that full generation garbage collec-
tions are triggered frequently at large volumes of input data
and the size of JVM is directly related to Full GC time.
Multiple smaller JVMs could be better than a single large
JVM. In this paper, we test the aforementioned techniques
and study their implications on the architecture of node in
scale-in cluster for in-memory data analytics with Spark.

3. METHODOLOGY
Our study of the architectural impact on in-memory data

analytics is based on an empirical study of the performance
of batch and stream processing with Spark using representa-

tive benchmark workloads. We have performed several series
of experiments, in which we have evaluated impact of each
of the architectural features, such as data locality in non
uniform memory access (NUMA) nodes, hardware prefetch-
ers, and hyper-threading, on in-memory data analytics with
Spark

3.1 Workloads
We select the benchmarks based on following criteria;(a)

workloads should cover a diverse set of Spark lazy trans-
formations and actions, (b) workloads should be common
among different big data benchmark suites available in the
literature and (c) workloads have been used in the exper-
imental evaluation of Map-Reduce frameworks. Table 1
shows the description of benchmarks. Batch processing work-
loads from Spark-core, Spark MLlib, Graph-X and Spark
SQL are subset of BigdataBench [30] and HiBench [19] which
are highly referenced benchmark suites in the big data do-
main. Stream processing workloads used in the paper also
partially cover the solution patterns for real-time streaming
analytics [29].

The source codes for Word Count, Grep, Sort, and Naive-
Bayes are taken from BigDataBench [30], whereas the source
codes for K-Means, Gaussian, and Sparse NaiveBayes are
taken from Spark MLlib (which is Spark’s scalable machine
learning library [27]) examples available along with Spark
distribution. Likewise, the source codes for stream process-
ing workloads and graph analytics are also available from
Spark Streaming and GraphX examples respectively. Spark
SQL queries from BigDataBench have been reprogrammed
to use DataFrame API. Big Data Generator Suite (BDGS),
an open source tool is used to generate synthetic data sets
based on raw data sets [28].

3.2 System Configuration
To perform our measurements, we use a current dual-

socket Intel Ivy Bridge server (IVB) with E5-2697 v2 pro-
cessors, similar to what one would find in a datacenter. Ta-
ble 2 shows details about our test machine. Hyper-threading
is only enabled during the evaluation of simultaneous multi-
threading for Spark workloads. Otherwise, Hyper-Threading
and Turbo-boost are disabled through BIOS as per Intel
Vtune guidelines to tune software on the Intel Xeon proces-
sor E5/E7 v2 family [9]. With Hyper-Threading and Turbo-
boost disabled, there are 24 cores in the system operating
at the frequency of 2.7 GHz.

Table 3 also lists the parameters of JVM and Spark af-
ter tuning. For our experiments, we configure Spark in
local mode in which driver and executor run inside a sin-
gle JVM. We use HotSpot JDK version 7u71 configured in
server mode (64 bit). The Hotspot JDK provides several
parallel/concurrent GCs out of which we use Parallel Scav-
enge (PS) and Parallel Mark Sweep for young and old gener-
ations respectively as recommended in [11]. The heap size is
chosen such that the memory consumed is within the system.
The details on Spark internal parameters are available [7].

3.3 Measurement Tools and Techniques
We configure Spark to collect GC logs which are then

parsed to measure time (called real time in GC logs) spent
in garbage collection. We rely on the log files generated by
Spark to calculate the execution time of the benchmarks.
We use Intel Vtune Amplifier [4] to perform general micro-



(a) Spark workloads don’t benefit by adding more
than 12 cores

(b) Spark workloads are back-end bound

(c) Spark workloads are DRAM bound (d) Spark workloads have significant remote memory
stalls

Figure 1: Top Down Analysis of Spark Workloads

Table 1: Spark Workloads

Spark

Library
Workload Description

Input

data-sets

Spark Core

Word Count

(Wc)
counts the number of occurrence of each word in a text file Wikipedia

Entries

(Structured)Grep (Gp)
searches for the keyword The in a text file and filters out the

lines with matching strings to the output file

Sort (So) ranks records by their key
Numerical

Records

NaiveBayes

(Nb)
runs sentiment classification

Amazon Movie

Reviews

Spark Mllib

K-Means

(Km)

uses K-Means clustering algorithm from Spark Mllib.

The benchmark is run for 4 iterations with 8 desired clusters
Numerical

Records

(Structured)

Gaussian

(Gu)

uses Gaussian clustering algorithm from Spark Mllib.

The benchmark is run for 10 iterations with 2 desired clusters

Sparse

NaiveBayes

(SNb)

uses NaiveBayes classification alogrithm from Spark Mllib

Support Vector

Machines (Svm)
uses SVM classification alogrithm from Spark Mllib

Logistic

Regression(Logr)
uses Logistic Regression alogrithm from Spark Mllib

Graph X

Page Rank (Pr)
measures the importance of each vertex in a graph.

The benchmark is run for 20 iterations
Live

Journal

Graph
Connected

Components (Cc)

labels each connected component of the graph with the

ID of its lowest-numbered vertex

Triangles (Tr)
determines the number of triangles passing through

each vertex

Spark

Streaming

Windowed

Word Count

(WWc)

generates every 10 seconds, word counts over the last 30

sec of,data received on a TCP socket every 2 sec.

Wikipedia

Entries

Streaming

Kmeans (Skm)

uses streaming version of K-Means clustering algorithm

from Spark Mllib. The benchmark is run for 4 iterations

with 8 desired clusters
Numerical

Records
Streaming

Logistic

Regression (Slogr)

uses streaming version of Logistic Regression algorithm from

Spark Mllib. The benchmark is run for 4 iterations with 8

desired clusters

Streaming

Linear

Regression (Slir)

uses streaming version of Logistic Regression algorithm from

Spark Mllib. The benchmark is run for 4 iterations with 8

desired clusters

Spark

SQL

Aggregation

(SqlAg)

implements aggregation query from BigdataBench

using DataFrame API Tables

Join (SqlJo)
implements join query from BigdataBench

using DataFrame API

Table 2: Machine Details

Component Details

Processor Intel Xeon E5-2697 V2, Ivy Bridge micro-architecture

Cores 12 @ 2.7GHz (Turbo up 3.5GHz)

Threads
2 per Core (when Hyper-Threading

is enabled)

Sockets 2

L1 Cache
32 KB for Instruction and

32 KB for Data per Core

L2 Cache 256 KB per core

L3 Cache (LLC) 30MB per Socket

Memory
2 x 32GB, 4 DDR3 channels, Max BW 60GB/s

per Socket

OS Linux Kernel Version 2.6.32

JVM Oracle Hotspot JDK 7u71

Spark Version 1.5.0

Table 3: Spark and JVM Parameters for Different
Workloads

Parameters

Batch

Processing

Workloads

Stream

Processing

WorkloadsSpark-Core,

Spark-SQL

Spark Mllib,

Graph X

spark.storage.memoryFraction 0.1 0.6 0.4

spark.shuffle.memoryFraction 0.7 0.4 0.6

spark.shuffle.consolidateFiles true

spark.shuffle.compress true

spark.shuffle.spill true

spark.shuffle.spill.compress true

spark.rdd.compress true

spark.broadcast.compress true

Heap Size (GB) 50

Old Generation Garbage Collector PS Mark Sweep

Young Generation Garbage Collector PS Scavenge



architecture exploration and to collect hardware performance
counters. We use numactl [6] to control the process and
memory allocation affinity to a particular socket. We use
hwloc [13] to get the CPU ID of hardware threads. We
use msr-tools [5] to read and write model specific registers
(MSRs). All measurement data are the average of three
measure runs; Before each run, the buffer cache is cleared
to avoid variation in the execution time of benchmarks. We
find variance in measurements to be negligible and hence do
not use box plots. Through concurrency analysis in Intel
Vtune, we find executor pool threads in Spark start taking
CPU time after 10 seconds. Hence, hardware performance
counter values are collected after the ramp-up period of 10
seconds. For batch processing workloads, the measurements
are taken for the entire run of the applications and for stream
processing workloads, the measurements are taken for 180
seconds as the sliding interval and duration of windows in
streaming workloads considered are much less than 180 sec-
onds.

3.4 Top-Down Analysis Approach
We use top-down analysis method proposed by Yasin [31]

to study the micro-architectural performance of the work-
loads because earlier studies on profiling on big data work-
loads shows the efficacy of this method in identifying the
micro-architectural bottlenecks [21,25,32]. Super-scalar pro-
cessors can be conceptually divided into the ”front-end”where
instructions are fetched and decoded into constituent oper-
ations, and the ”back-end” where the required computation
is performed. A pipeline slot represents the hardware re-
sources needed to process one micro-operation. The top-
down method assumes for each CPU core, there are four
pipeline slots available per clock cycle. At issue point, each
pipeline slot is classified into one of four base categories:
Front-end Bound, Back-end Bound, Bad Speculation and
Retiring. If a micro-operation is issued in a given cycle, it
would eventually either get retired or cancelled. Thus, it
can be attributed to either Retiring or Bad Speculation re-
spectively. Pipeline slots that could not be filled with micro-
operations due to problems in the front-end are attributed
to Front-end Bound category whereas pipeline slot where
no micro-operations are delivered due to a lack of required
resources for accepting more micro-operations in the back-
end of the pipeline are identified as Back-end Bound. The
top-down method requires following the metrics described in
Table 4, whose definition are taken from Intel Vtune on-line
help [4].

4. EVALUATION

4.1 How much performance gain is achievable
by co-locating the data and computations
on NUMA nodes for in-memory data ana-
lytics with Spark?

Ivy Bridge Server is a NUMA multi-socket system. Each
socket has 2 on-chip memory controllers and a part of the
main memory is directly connected to each socket. This
layout offers high bandwidth and low access latency to the
directly connected part of the main memory. The sockets
are connected by two QPI (Quick Path Interconnect) links,
thus, a socket can access the main memory of another socket.
However, a memory access from one socket to memory from

Table 4: Metrics for Top-Down Analysis of Workloads

Metrics Description

IPC
average number of retired instructions

per clock cycle

DRAM Bound
how often CPU was stalled on the main

memory

L1 Bound
how often machine was stalled without

missing the L1 data cache

L2 Bound
how often machine was stalled on L2

cache

L3 Bound
how often CPU was stalled on L3 cache,

or contended with a sibling Core

Store Bound
how often CPU was stalled on store

operations

Front-End Bandwidth
fraction of slots during which CPU was

stalled due to front-end bandwidth issues

Front-End Latency
fraction of slots during which CPU was

stalled due to front-end latency issues

ICache Miss Impact
fraction of cycles spent on handling

instruction cache misses

DTLB Overhead
fraction of cycles spent on handling

first-level data TLB load misses

Cycles of 0 ports Utilized
the number of cycles during which

no port was utilized.

another socket (remote memory access) incurs additional la-
tency overhead due to transferring the data by cross-chip in-
terconnect. By co-locating the computations with the data
they access, the NUMA overhead can be avoided.

To evaluate the impact of NUMA on Spark workloads, we
run the benchmarks in two configurations: a) Local DRAM,
where Spark process is bound to socket 0 and memory node
0, i.e. computations and data accesses are co-located, and
b) Remote DRAM, where spark process is bound to socket
0 and memory node 1, i.e. all data accesses incur the addi-
tional latency. The input data size for the workloads is cho-
sen as 6GB to ensure memory working set sizes fit socket
memory. Spark parameters for the two configurations are
given in Table 5.

Table 5: Machine and Spark Configuration for NUMA
Evaluation

Local DRAM (L) Remote DRAM (R)

Hardware

Socket ID 0 0

Memory Node ID 0 1

No. of cores 12 12

No. of threads 12 12

Spark

spark.driver.cores 12 12

spark.default.parallelism 12 12

spark.driver.memory (GB) 24 24

Figure 2a shows remote memory accesses can degrade the
performance of Spark workloads by 10% on average. This
is because despite the stalled cycles on remote memory ac-
cesses double (see Figure 2c), retiring category degrades by
only 10.79%, Back-end bound stalls increases by 20.26%,
bad speculation decreases by 13.08% and front-end bound
stalls decreases by 12.66% on average as shown in Figure 2b.
Furthermore, the total cross-chip bandwidth of 32 GB/sec
(peak bandwidth of 16 GB/s per QPI link) satisfies the
memory bandwidth requirements of Spark workloads (see
Figure 2d).

Implications: In-memory data analytics with Spark should
use data from local memory on a multi-socket node of the
scale-in cluster.



(a) Performance degradation due to NUMA is 10% on
average across the workloads.

(b) Retiring decreases due to increased back-end
bound in remote only mode.

(c) Stalled Cycles double in remote memory case (d) Memory Bandwidth consumption is well under the
limits of QPI bandwidth

Figure 2: NUMA Characterization of Spark Benchmarks

4.2 Is simultaneous multi-threading effective
for in-memory data analytics with Spark?

Ivy Bridge Machine uses Simultaneous Multi-threading(SMT),
which enables one processor core to run two software threads
simultaneously to hide data access latencies. To evaluate
the effectiveness of Hyper-Threading, we run Spark process
in the three different configurations a) ST:2x1, the baseline
single threaded configuration where Spark process is bound
to two physical cores b) SMT:2x2, a simultaneous multi-
threaded configuration where Spark process is allowed to
use 2 physical cores and their corresponding hyper threads
and c) ST:4x1, the upper-bound single threaded configura-
tion where Spark process is allowed to use 4 physical cores.
Spark parameters for the aforementioned configurations are
given in Table 6. We also experiment with baseline configu-
rations, ST:1x1, ST:3x3, ST:4x4, ST:5x5 and ST:6x6. In all
experiments socket 0 and memory node 0 is used to avoid
NUMA effects and the size of input data for the workloads
is 6GB.

Table 6: Machine and Spark Configurations to evaluate
Hyper Threading

ST:2x1 SMT:2x2 ST:4x1

Hardware

No of sockets 1 1 1

No of memory nodes 1 1 1

No. of cores 2 2 4

No. of threads 1 2 1

Spark

spark.driver.cores 2 4 4

spark.default.parallelism 2 4 4

spark.driver.memory (GB) 24 24 24

Figure 3a shows SMT provides 39.5% speedup on aver-
age across the workloads over baseline configuration, while
the upper-bound configuration provided 77.45% on average
across the workloads. The memory bandwidth in SMT case
also keeps up with the multi-core case it is 20.54% less than
that of the multi-core version on average across the work-
loads as shown in Figure 3c. Figure 3b presents HT Ef-
fectiveness at different baseline configurations. HT Effec-
tiveness of 1 is desirable as it implies 30% performance im-
provement in Hyper-Threading case over the baseline single
threaded configuration [2]. The data reveal HT effective-
ness remains close to 1 on average across the workloads till
4 cores after that it drops. This is because of poor multi-core
scalability of Spark workloads as shown in [21]

For most of the workloads, DRAM bound is reduced to
half whereas L1 Bound doubles when comparing the SMT
case over baseline ST case in Figure 3d implying that Hyper-
threading is effective in hiding the memory access latency for
Spark workloads.

Implications: 6 HT cores per socket are sufficient for a
node in scale-in clusters.

4.3 Are existing hardware prefetchers in mod-
ern scale-up servers effective for in-memory
data analytics with Spark?

Prefetching is a promising approach to hide memory ac-
cess latency by predicting the future memory accesses and
fetching the corresponding memory blocks into the cache
ahead of explicit accesses by the processor. Intel Ivy Bridge
Server has two L1-D prefetchers and two L2 prefetchers.The



(a) Multi-core vs Hyper-Threading (b) HT Effectiveness is around 1

(c) Memory Bandwidth in multi-threaded case keeps
up with that in multi-core case.

(d) DRAM Bound decreases and L1 Bound increases

Figure 3: Hyper Threading is Effective

description about prefetchers is given in Table 7. This in-
formation is taken from Intel software forum [1].

Table 7: Hardware Prefetchers Description

Prefetcher

Bit No. in

MSR

(0x1A4)

Description

L2 hardware

prefetcher
0

Fetches additional lines of code

or data into the L2 cache

L2 adjacent cache

line prefetcher
1

Fetches the cache line that comprises

a cache line pair(128 bytes)

DCU prefetcher 2
Fetches the next cache line into

L1-D cache

DCU IP prefetcher 3

Uses sequential load history (based

on Instruction Pointer of previous

loads) to determine whether to

prefetch additional lines

To evaluate the effectiveness of L1-D prefetchers, we mea-
sure L1-D miss impact for the benchmarks at four config-
urations: a) all processor prefetchers are enabled, b) DCU
prefetcher is disabled only, c) DCU IP prefetcher is disabled
only and d) both L1-D prefetchers are disabled. To assess
the effectiveness of L2 prefetchers, we measure L2 miss rate
for the benchmarks at four configurations: a) all processor
prefetchers are enabled, b) L2 hardware prefetcher is dis-
abled only, c) L2 adjacent cache line prefetcher is disabled
only and d) both L2 prefetchers are disabled.

Figure 4a shows L1-D miss impact increases by only 3.17%
on average across the workloads when DCU prefetcher dis-
abled, whereas the same metric increases by 34.13% when
DCU IP prefetcher is disabled in comparison with the case
when all processor prefetchers are enabled. It implies DCU

prefetcher is ineffective.
Figure 4b shows L2 miss rate increases by at most 5% in

Grep when L2 adjacent cache line prefetcher disabled. In
some cases for example sort and naivebayes, disabling L2
adjacent line prefetcher reduces the L2 miss rate. This im-
plies L2 adjacent cache line prefetcher is ineffective. It also
shows L2 miss rate increases by 14.31% on average across
the workloads when L2 hardware prefetcher is disabled.

Figure 5: Disabling L1-D next-line and L2 Adjacent Cache
Line Prefetchers can reduce the execution of Spark jobs up

to 15% and 5% respectively

Figure 5 shows percentage change in execution time of
Spark workloads over baseline configuration (all prefetchers
are enabled). The data show L1-D next-line and adjacent
cache line L2 prefetchers have a negative impact on Spark
workloads and disabling them improves the performance of
Spark workloads on average by 7.9% and 2.31% respectively.



(a) L1-D DCU Prefetcher is ineffective (b) Adjacent Cache Line L2 Prefecher is ineffective

Figure 4: Evaluation of Hardware Prefetchers

This implies simple next-line hardware prefetchers in mod-
ern scale-up servers are ineffective for in-memory data ana-
lytics.

Implications: Cores without next-line hardware prefetch-
ers are suitable for a node in scale-in clusters.

4.4 Does in-memory data analytics with Spark
experience loaded latencies (happens if band-
width consumption is more than 80% of
sustained bandwidth)?

According to Jacob et al. [20], the bandwidth vs latency
response curve for a system has three regions. For the first
40% of the sustained bandwidth, the latency response is
nearly constant. The average memory latency equals idle
latency in the system and the system performance is un-
bounded by the memory bandwidth in the constant region.
In between 40% to 80% of the sustained bandwidth, the
average memory latency increases almost linearly due to
contention overhead by numerous memory requests. The
performance degradation of the system starts in this linear
region. Between 80% to 100% of the sustained bandwidth,
the memory latency can increase exponentially over the idle
latency of DRAM system and the applications performance
is limited by available memory bandwidth in this exponen-
tial region. Note that maximum sustained bandwidth is 65%
to 75% of the theoretical maximum for server workloads.

Using the formula taken from Intel’s document [9], we
calculate maximum theoretical bandwidth, per socket, for a
processor with DDR3-1866 and 4 channels is 59.7GB/s and
the total system bandwidth is 119.4 GB/s. To find sustained
maximum bandwidth, we compile the OpenMP version of
STREAM [8] using Intel’s ICC compiler. On running the
benchmark, we find the maximum sustained bandwidth to
be 92 GB/s.

Figure 6 shows the average bandwidth consumption as
a fraction of sustained maximum bandwidth for different
BIOS configurable data transfer rates of DDR3 memory.
The data reveal Spark workloads consume less than 40% of
sustained maximum bandwidth at 1866 data transfer rate
and thus operate in the constant region. By lowering the
data transfer rates to 1066, the majority of workloads from
Spark core, all workloads from Spark SQL, Spark Stream-
ing, and Graph-X still operate on the boundary of linear
region whereas workloads from Spark MLlib shift to the lin-
ear region and mostly operate at the boundary of linear and

Figure 6: Spark workloads do not experience loaded
latencies

Figure 7: Bandwidth Consumption over time

exponential region. However at 1333, Spark MLlib work-
loads operate roughly in the middle of the linear region.
From the bandwidth consumption over time curves of the
Km, Snb and Nb in Figure 7, it can be seen even when the
peak bandwidth utilization goes into the exponential region,
it lasts only for a short period of time and thus, have a neg-
ligible impact on the performance. As we enlarge the input
data set, Figure 8a shows average memory bandwidth con-
sumption decreases from 20.7 GB/s in the 6 GB case to 13.7
GB/s in the 24 GB case on average across the workloads.
Moreover, wait time on file I/O becomes dominant at large
input data sets as shown in Figure 8b.

Implications: High Bandwidth Memories like Hybrid
Memory cubes [3] are inessential for in-memory data ana-
lytics with Spark and DDR3-1333 is sufficient for a node in
scale-in clusters and the future single node should include
faster persistent storage devices like SSD or NVRAM to re-



(a) Memory traffic decreases with data size. (b) Wait time becomes dominant at larger datasets
due to significant increase in file I/O operations.

Figure 8: Effect of Data Volume on Spark workloads

duce the wait time on file I/O.

4.5 Are multiple small executors (which are
java processes in Spark that run compu-
tations and store data for the application)
better than single large executor?

With the increase in the number of executors, the heap
size of each executor’s JVM is decreased. Heap size smaller
than 32 GB enables“CompressedOops”, that results in fewer
garbage collection pauses. On the other hand, multiple ex-
ecutors may need to communicate with each other and also
with the driver. This leads to increase in the communica-
tion overhead. We study the trade-off between GC time and
communication overhead for Spark applications.

We deploy Spark in standalone mode on a single machine,
i.e. master and worker daemons run on the same machine.
We run applications with 1, 2, 4 and 6 executors. Beyond 6,
we hit the operating system limit of a maximum number of
threads in the system. Table 8 lists down the configuration
details. In all configurations, the total number of cores and
the total memory used by the applications are constant at
24 cores and 50GB respectively.

Table 8: Multiple Executors Configuration

Configuration 1E 2E 4E 6E

spark.executor.instances 1 2 4 6

spark.executor.memory (GB) 50 25 12.5 8.33

spark.executor.cores 24 12 6 4

spark.driver.cores 1 1 1 1

spark.driver.memory (GB) 5 5 5 5

Figure 9 data shows 2 executors configuration are bet-
ter than 1 executor configuration, e.g. for K-Means and
Gaussian, 2E configuration provides 29.31% and 30.43% per-
formance improvement over the baseline 1E configuration,
however, 6E configuration only increases the performance
gain to 36.48% and 35.47% respectively. For the same work-
loads, GC time in 6E case is 4.08x and 4.60x less than the
1E case. A small performance gain from 2E to 6E despite
the reduction in GC time can be attributed to increased
communication overhead among the executors and master.

Implications: In-memory data analytics with Spark should
use multiple executors with heap size smaller than 32GB in-

Figure 9: Multiple small executors are better than single
large executor due to reduction in GC time

stead of single large executor on the node of the scale-in
cluster.

5. THE CASE OF NEAR DATA COMPUT-
ING BOTH IN DRAM AND IN STORAGE

Since DRAM scaling is lagging behind the Moore’s law,
increasing DRAM capacity will be a challenge. NVRAM, on
the other hand, shows a promising trend in terms of capac-
ity scaling. Since Spark based workloads are I/O intensive
when the input datasets don’t fit in memory and are bound
on latency when they do fit in-memory, In-Memory process-
ing, and In-storage processing can be combined together into
a hybrid architecture where the host is connected to DRAM
with custom accelerators and flash based NVRAM with in-
tegrated hardware units to reduce the data movement. We
envision a single node with fixed function hardware acceler-
ators both in DRAM and also in-Storage. Figure 10 shows
the architecture.

Let’s consider an example. Many transformations in Spark
such as groupByKey, reduceByKey, sortByKey, join etc in-
volve shuffling of data between the tasks. To organize the
data for shuffle, spark generates set of tasks; map tasks to
organize the data and a set of reduce tasks to aggregate it.
Map output records from each task are kept in memory until
they can’t fit. At that point records are sorted by reduce
tasks for which they are destined and then spilled to a single
file. Since the records are dispersed throughout the mem-
ory, they results in poor cache locality and sorting them on



CPU will experience a significant amount of cache misses
and using near DRAM hardware accelerators for sort func-
tion, this phase can be accelerated. If this process occurs
multiple times, the spilled segments are merged later. On
the reduce side, tasks read the relevant sorted blocks. A
single reduce task can receive blocks from thousands of map
tasks. To make this many-way merge efficient, especially in
the case where the data exceeds the memory size, It is bet-
ter to use hardware accelerators for merge function near the
faster persistent storage device like NVRAM.

Figure 10: NDC Supported Single Node in Scale-in
Clusters for in-Memory Data Analytics with Spark

6. RELATED WORK
Several studies characterize the behaviour of big data work-

loads and identify the mismatch between the processor and
the big data applications [12, 18, 22–26, 30, 32]. None of the
above-mentioned works analyze the impact of NUMA, SMT
and hardware prefetchers on the performance of in-memory
data analytics with Apache Spark.

Chiba et al. [15] also study the impact of NUMA, SMT
and multiple executors on the performance of TPC-H queries
with Apache Spark on IBM Power 8 server. However, their
work is limited to Spark SQL library only. They only ex-
plore thread affinity, i.e. bind JVMs to sockets but allow the
cross socket accesses. Our study covers the workloads not
only from Spark SQL but also from Spark-core, Spark ML-
lib, Graph X and Spark Streaming. We use Intel Ivy bridge
server. By using a diverse category of Spark workloads and a
different hardware platform, our findings build upon Chiba’s
work. We give in-depth insights into the limited potential of
NUMA affinity for Spark SQL workloads, e.g. Spark SQL
queries exhibit 2 - 3% performance improvement by con-
sidering NUMA locality whereas Graph-X workloads show
more than 20% speed-up because CPU stalled cycles on re-
mote accesses are much less in Spark SQL queries compared
to Graph-X workloads. We show the effectiveness of hyper-
threading is due to the reduction in DRAM bound stalls and
also show that HT is effective for Spark workloads only up to
6 cores. Besides that, we also quantify the impact of existing
hardware prefetchers in scale-up servers on Spark workloads
and quantify the DRAM speed sufficient for Spark work-
loads. Moreover, we derive insights about the architecture
of a node in scale-in cluster for in-memory data analytics
based on their performance characterization.

7. CONCLUSION
We have reported a deep dive analysis of in-memory data

analytics with Spark on a large scale-up server. The key
insights we have found are as follows:

• Exploiting data locality on NUMA nodes can only re-
duce the job completion time by 10% on average as
it reduces the back-end bound stalls by 19%, which
improves the instruction retirement only by 9%.

• Hyper-Threading is effective to reduce DRAM bound
stalls by 50%, HT effectiveness is 1.

• Disabling next-line L1-D and Adjacent Cache line L2
prefetchers can improve the performance by up to 14%
and 4% respectively.

• Spark workloads do not experience loaded latencies
and it is better to lower down the DDR3 speed from
1866 to 1333.

• Multiple small executors can provide up to 36% speedup
over single large executor.

We advise using executors with memory size less than or
equal to 32GB and restrict each executor to use NUMA-local
memory. We recommend enabling hyper-threading, disable
next-line L1-D and adjacent cache line L2 prefetchers and
lower the DDR3 speed to 1333.

We also envision processors with 6 hyper-threaded cores
without L1-D next line and adjacent cache line L2 prefetch-
ers. The die area saved can be used to increase the LLC
capacity and the use of high bandwidth memories like Hy-
brid memory cubes [3] is not justified for in-memory data
analytics with Spark.
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