
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/229034305

Optimization of task assignment to collaborating agents

Article · April 2011

DOI: 10.1109/SCIS.2011.5976547

CITATIONS

8
READS

221

4 authors, including:

Some of the authors of this publication are also working on these related projects:

CASTOR View project

Distributed Simulation of Electricity Grids with an Emphasis on Optimization View project

Irfan Younas

KTH Royal Institute of Technology

7 PUBLICATIONS 13 CITATIONS

SEE PROFILE

Farzad Kamrani

KTH Royal Institute of Technology

17 PUBLICATIONS 119 CITATIONS

SEE PROFILE

Christian Schulte

KTH Royal Institute of Technology

84 PUBLICATIONS 1,270 CITATIONS

SEE PROFILE

All content following this page was uploaded by Farzad Kamrani on 06 June 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/229034305_Optimization_of_task_assignment_to_collaborating_agents?enrichId=rgreq-310d05ea86d4c3855431615fe0e6cf5b-XXX&enrichSource=Y292ZXJQYWdlOzIyOTAzNDMwNTtBUzoxMDQ4ODU4NDQ0NDcyMzVAMTQwMjAxODE0MjIyNQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/229034305_Optimization_of_task_assignment_to_collaborating_agents?enrichId=rgreq-310d05ea86d4c3855431615fe0e6cf5b-XXX&enrichSource=Y292ZXJQYWdlOzIyOTAzNDMwNTtBUzoxMDQ4ODU4NDQ0NDcyMzVAMTQwMjAxODE0MjIyNQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/CASTOR-2?enrichId=rgreq-310d05ea86d4c3855431615fe0e6cf5b-XXX&enrichSource=Y292ZXJQYWdlOzIyOTAzNDMwNTtBUzoxMDQ4ODU4NDQ0NDcyMzVAMTQwMjAxODE0MjIyNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Distributed-Simulation-of-Electricity-Grids-with-an-Emphasis-on-Optimization?enrichId=rgreq-310d05ea86d4c3855431615fe0e6cf5b-XXX&enrichSource=Y292ZXJQYWdlOzIyOTAzNDMwNTtBUzoxMDQ4ODU4NDQ0NDcyMzVAMTQwMjAxODE0MjIyNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-310d05ea86d4c3855431615fe0e6cf5b-XXX&enrichSource=Y292ZXJQYWdlOzIyOTAzNDMwNTtBUzoxMDQ4ODU4NDQ0NDcyMzVAMTQwMjAxODE0MjIyNQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Irfan_Younas?enrichId=rgreq-310d05ea86d4c3855431615fe0e6cf5b-XXX&enrichSource=Y292ZXJQYWdlOzIyOTAzNDMwNTtBUzoxMDQ4ODU4NDQ0NDcyMzVAMTQwMjAxODE0MjIyNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Irfan_Younas?enrichId=rgreq-310d05ea86d4c3855431615fe0e6cf5b-XXX&enrichSource=Y292ZXJQYWdlOzIyOTAzNDMwNTtBUzoxMDQ4ODU4NDQ0NDcyMzVAMTQwMjAxODE0MjIyNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/KTH_Royal_Institute_of_Technology?enrichId=rgreq-310d05ea86d4c3855431615fe0e6cf5b-XXX&enrichSource=Y292ZXJQYWdlOzIyOTAzNDMwNTtBUzoxMDQ4ODU4NDQ0NDcyMzVAMTQwMjAxODE0MjIyNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Irfan_Younas?enrichId=rgreq-310d05ea86d4c3855431615fe0e6cf5b-XXX&enrichSource=Y292ZXJQYWdlOzIyOTAzNDMwNTtBUzoxMDQ4ODU4NDQ0NDcyMzVAMTQwMjAxODE0MjIyNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Farzad_Kamrani?enrichId=rgreq-310d05ea86d4c3855431615fe0e6cf5b-XXX&enrichSource=Y292ZXJQYWdlOzIyOTAzNDMwNTtBUzoxMDQ4ODU4NDQ0NDcyMzVAMTQwMjAxODE0MjIyNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Farzad_Kamrani?enrichId=rgreq-310d05ea86d4c3855431615fe0e6cf5b-XXX&enrichSource=Y292ZXJQYWdlOzIyOTAzNDMwNTtBUzoxMDQ4ODU4NDQ0NDcyMzVAMTQwMjAxODE0MjIyNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/KTH_Royal_Institute_of_Technology?enrichId=rgreq-310d05ea86d4c3855431615fe0e6cf5b-XXX&enrichSource=Y292ZXJQYWdlOzIyOTAzNDMwNTtBUzoxMDQ4ODU4NDQ0NDcyMzVAMTQwMjAxODE0MjIyNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Farzad_Kamrani?enrichId=rgreq-310d05ea86d4c3855431615fe0e6cf5b-XXX&enrichSource=Y292ZXJQYWdlOzIyOTAzNDMwNTtBUzoxMDQ4ODU4NDQ0NDcyMzVAMTQwMjAxODE0MjIyNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christian_Schulte2?enrichId=rgreq-310d05ea86d4c3855431615fe0e6cf5b-XXX&enrichSource=Y292ZXJQYWdlOzIyOTAzNDMwNTtBUzoxMDQ4ODU4NDQ0NDcyMzVAMTQwMjAxODE0MjIyNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christian_Schulte2?enrichId=rgreq-310d05ea86d4c3855431615fe0e6cf5b-XXX&enrichSource=Y292ZXJQYWdlOzIyOTAzNDMwNTtBUzoxMDQ4ODU4NDQ0NDcyMzVAMTQwMjAxODE0MjIyNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/KTH_Royal_Institute_of_Technology?enrichId=rgreq-310d05ea86d4c3855431615fe0e6cf5b-XXX&enrichSource=Y292ZXJQYWdlOzIyOTAzNDMwNTtBUzoxMDQ4ODU4NDQ0NDcyMzVAMTQwMjAxODE0MjIyNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christian_Schulte2?enrichId=rgreq-310d05ea86d4c3855431615fe0e6cf5b-XXX&enrichSource=Y292ZXJQYWdlOzIyOTAzNDMwNTtBUzoxMDQ4ODU4NDQ0NDcyMzVAMTQwMjAxODE0MjIyNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Farzad_Kamrani?enrichId=rgreq-310d05ea86d4c3855431615fe0e6cf5b-XXX&enrichSource=Y292ZXJQYWdlOzIyOTAzNDMwNTtBUzoxMDQ4ODU4NDQ0NDcyMzVAMTQwMjAxODE0MjIyNQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Optimization of Task Assignment to Collaborating
Agents

Irfan Younas, Farzad Kamrani, Christian Schulte, Rassul Ayani
School of Information and Communication Technology

Royal Institute of Technology (KTH)
Stockholm, Sweden

Email: {irfany, kamrani, cschulte, ayani}@kth.se

Abstract—The classic task assignment problem (AP) assigns m
agents to n tasks, where each task is assigned to exactly one agent.
This problem and many of its variations, including the case where
a task is assigned to a group of agents working independently,
have been discussed extensively in the literature. We consider
a specific class of task assignment problems where each task is
assigned to a group of collaborating agents that work as a team.
Thus, changing one of the group members may have a vital
impact on the output of the group. We assume that each agent
has a set of capabilities and each task has certain requirements.
The objective is to assign agents to teams such that the gain is
maximized.

We suggest a Genetic Algorithm (GA) for finding a near
optimal solution to this class of task assignment problems. To the
best of our knowledge, this class of APs has not been considered
in the literature, probably due to the difficulty of evaluating the
performance of a team of agents. Recently, we have developed
a formal method for measuring performance of a team which is
used in this paper to formulate the objective function of our GA.
We analyze the quality of the obtained solution by comparing
the result of our GA with (a) the exact solution of some smaller
problems, and (b) with the results of the exact solution of specific
cases that can be obtained by the Hungarian algorithm. We
provide experimental results on efficiency, stability, robustness
and scalability of the solution obtained by our GA.

Key words: Task Assignment Problem, Genetic Algorithms,
Evolutionary Algorithms, Optimization

I. INTRODUCTION

The problem of optimally matching (assigning) the elements
of two sets (usually called tasks and agents), where each
matching may have a different weight (cost) is known as the
Assignment Problem and hereafter will be referred to as the
AP. The naive approach to solve the AP by comparing all
possible assignments of tasks to agents is computationally
infeasible due to combinatorial explosion. To illustrate the
size of combinations that arises from a seemingly small
problem, consider the number of combinations for assigning
4 tasks to teams of 3, 4, 6 and 7 agents respectively from
a pool of m agents. (We have used this problem, where
m ∈ {100, 200, . . . , 800} as a scalability test for the proposed
solution, in section V-C). For m = 100, the number of
combinations will be 2.495 × 1030 and for m = 800 this
value will be 1.737×1049. If we assume that calculating each
new combination and comparing it with earlier combinations
requires one FLOP (floating-point operation), it will take more
than 26 million years to solve the problem for m = 100 using

the most powerful (known) supercomputer of the day (2010).
For m = 800, it would take 184 million billion years if we
used a supercomputer that is one billion times more powerful
than the most powerful supercomputer of the day.

The first solution to the AP, which has polynomial time
complexity in the number of tasks was introduced by Harold
Kuhn in [1]. The publication had a fundamental influence
on combinatorial optimization [2], and the proposed method
known as Kuhn-Munkres algorithm or Hungarian method has
been widely adopted in the field.

In the original AP, each task is assigned to a different agent
and each agent performs exactly one task, which implies the
equality of the number of tasks and agents. However, in a
slightly modified version of the problem, one can assume
that the number of tasks and agents differ. This problem is
readily converted to the basic AP by adding “dummy” tasks (or
agents). The costs of “dummy” task-agent assignments are set
to a value larger than the maximum cost of assignments (cmax)
when the objective is to minimize the cost. A maximization
problem can easily be converted to the basic AP by substituting
each cij by cmax − cij .

Apart from these minor modifications of the AP, there are
many other variations to the problem, which sometimes require
completely different approaches. A golden anniversary survey
on AP [3] provides a complete and comprehensive survey on
the variations of the assignment problem. In this survey three
main categories of AP are recognized and in each category
several variations of AP are discussed.

1) Models with at most one task per agent.
2) Models with multiple tasks per agent.
3) Multi-dimensional assignment problems, which study

the matching of members of three (or more) sets, e.g.,
the problem of matching jobs with workers and ma-
chines, or assigning students and teachers to classes and
time slots.

Despite similarities, these problems have varying degrees
of complexity. While some of them like the classic AP have
a polynomial time solution, some others like Generalized
Assignment Problem (GAP) are NP-hard combinatorial opti-
mization problem [4] and require heuristic approaches. In this
paper, we discuss the problem of assigning tasks to agents,
with the objective of maximizing the total value added by
agents to tasks. Generally, tasks may have different sizes

and require different numbers of agents, while each agent is
assigned to at most one task. Furthermore, it is assumed that
agents performing a task constitute a team and the performance
of the team is a possibly non-linear function of its members.

The problem as defined in this paper is distinguished from
all types of discussed AP, in that there is an interaction
between agents, which work in a team environment. However,
from the classification point of view as described in [3], it
belongs to the first category since each agent is involved in
only one task although each task is assigned to several agents.
Nevertheless, the defined problem is much more complex.

The outline of the rest of this paper is as follows. In
Section II, a mathematical formulation of the problem is
presented. In section III and IV, the GA heuristic and imple-
mentation details are discussed. Section V presents the experi-
mental results and discusses accuracy, stability, robustness and
scalability of our algorithm. Finally we conclude this paper in
section VI.

II. PROBLEM FORMULATION

Let A = {a1, . . . , am} be the set of m agents and let T =
{t1, . . . , tn} be the set of n tasks, where generally m 6= n.
Assume that each task tj ∈ T requires a fixed number dj of
agents to be performed, while each agent ai ∈ A is performing
at most one task, implying

∑n
j=1 dj ≤ m. We denote the

group of dj agents performing task tj by gSj
, where the index

Sj is a set

Sj ⊂ {1, 2, . . . m}, |Sj | = dj , ai ∈ gSj
⇔ i ∈ Sj .

The goal is to optimally (defined later) assign all tasks to
groups of agents, that is to find subsets Sj for all tj . Clearly,
our assumption that each agent performs at most one task
implies that these subsets are disjoint.

Moreover, we assume that agents in a group collaborate
in a team environment and the value produced by a team is
a possibly non-linear real function of its members and the
task. That is, team gSj

, which performs task tj produces the
value f(gSj

, tj). Optimality is defined as maximizing the sum
of values produced by agents, i.e. maximizing the objective
function

u(S1, . . .Sn) =
n∑

j=1

f(gSj
, tj). (1)

We make the assumption that the value produced by a team
gSj

may be expressed as the sum of values produced by agents
while they are influenced by the team

f(gSj
, tj) =

∑

i∈Sj

v(ai, gSj
, tj). (2)

Substituting equation 2 into equation 1, we obtain

u =
n∑

j=1

∑

i∈Sj

v(ai, gSj
, tj). (3)

One convenient way to express the problem is introducing
the assignment matrix X = [xij]m×n, where xij = 1 if task tj
is assigned to agent ai and 0 otherwise. Using this notation,

the objective function expressed by (3) can equivalently be
reformulated as the following equation, which should be
maximized

u(X) =
n∑

j=1

m∑

i=1

v(ai, gSj
, tj)xij (4)

subject to constraints
m∑

i=1

xij = dj , ∀tj ∈ T (5)

n∑

j=1

xij = 1, ∀ai ∈ A (6)

n∑

j=1

dj ≤ m (7)

dj ≥ 1, ∀tj ∈ T (8)

xij ∈ {0, 1}, ∀ai ∈ A, ∀tj ∈ T (9)

where Sj = {i : i ∈ {1, . . . m}, xij = 1}. Constraint (5) en-
sures that each task is performed by a group of agents where
each group gSj

has dj agents for task tj . Constraint (6) means
that no agent is assigned to more than one task. Constraint (7)
ensures that the number of agents, which are part of n teams
should be equal or less than the total number of agents and
constraint (8) ensures that each group (team) should have one
or more agents.

III. THE PROPOSED GA HEURISTIC

Genetic algorithms [5], [6] which are famous meta heuristics
based on evolutionary ideas of natural selection and genetics
were invented by John Holland [7] in 1960s. They simulate
”survival of the fittest” principle which was laid down by
Charles Darwin. The GAs have frequently been used for
solving many optimization problems [8]–[11].

Similar to nature, genetic algorithms work with a popu-
lation of individuals. Each potential solution is represented
by a set of parameters known as genes. The parameters
are combined to form a chromosome and each chromosome
represents one candidate solution. The basic outline of a
genetic algorithm can be stated as follows. First a random
population of candidate solutions is generated. The next step
is to evaluate the fitness of the individuals using some defined
fitness function. Then a selection criteria is applied to choose
some of the individuals. Various operations are then applied
to the selected candidate solutions in order to produce new
candidate solutions. Most common and widely used operations
are crossover and mutation. Due to crossover operator, a
new candidate solution inherits partial characteristics from
its parent solutions. As Holland points out in [7] mutation
prevents the loss of diversity. Mutation is helpful to traverse
different regions of search space and thus escaping local
minima/maxima.

The first step in designing a genetic algorithm for a par-
ticular problem is to devise a suitable representation. Our

Fig. 1. Chromosome representation of a candidate solution

algorithm uses an appropriate representation scheme in which
we have a n-dimensional vector of disjoint subsets to represent
a task set (called chromosome in GAs literature), as shown
in Fig. 1. In our case each task is performed by a team of
agents and here the n-dimensional vector means that there are
{1, 2, . . . n} tasks which need to be performed by n teams of
agents, where team j requires dj agents. Thus the total number
of agents required to perform the tasks will be

∑n
j=1 dj . For

instance, consider a case where we have four tasks requiring 3,
2, 3 and 2 agents respectively. Assume that there are 20 agents
available. This means, n = 4, d1 = 3, d2 = 2, d3 = 3, d4 = 2
and m = 20. Figure 1 represents a possible assignment of
agents to teams. The designed representation scheme ensures
that all the constraints in (5), (6), (7) and (8) are automatically
satisfied. The steps involved in our algorithm, almost similar
to GA steps described by Chu et al. [8], are as follows:

1) Construct N candidate solutions to form an initial
population. The initial population constitutes base so-
lutions for successive generations. Each candidate solu-
tion (chromosome) is generated by randomly assigning
agents to the tasks. Each agent is assigned to only one
task and our initial population does not have duplicate
candidate solutions.

2) Calculate the fitness value according to a given fitness
function. In our problem the objective is to maximize the
gain which is the fitness value for a candidate solution. It
means the fitness value is the objective function value as
given by equation (4). For each candidate solution in the
population the fitness value is calculated and the list of
chromosomes is sorted based on the fitness value. The
candidate solutions (chromosomes) with higher fitness
value are said to be fitter.

3) For reproduction, two candidate solutions are selected
and these solutions are called parents. There are different
schemes for selection but here we have used only binary
tournament selection which was also used in [8]. The
idea of binary tournament selection is to randomly
choose two candidate solutions from the population. The
fitness value for both selected solutions is compared and
the individual with higher fitness value is selected for
reproduction. For reproduction we need two parents and
these parents are selected in the same manner using two
binary tournaments.

4) A crossover operator is applied to the selected parents in
order to generate a child solution. The proposed algo-
rithm uses one-point crossover in which the crossover
point, which is an integer p ∈ {1, 2, ...,

∑n
j=1 dj}, is

selected randomly. The generated child solution will

take p genes from one parent and the remaining genes
from the other parent. But this operation may make our
candidate solution infeasible by violating constraint (6)
which states that no agent can be assigned to more than
one task. In order to make the solution feasible, the
duplicate assignments are replaced by some other agent
numbers which are not part of the chromosome. This
operation changes the invalid child chromosome to a
valid chromosome.

5) Due to the crossover operator the population tends
to have similar characteristics after some generations
because the child solutions tend to inherit almost all
of their attributes from their parents. This means that
individuals in the population can belong to some spe-
cial part of the search space and we may miss some
better solutions. In order to overcome this situation, the
crossover and repair procedure is followed by a mutation
procedure with a smaller probability value (20% for our
experiments). For our problem we have used a simple
procedure in which we randomly choose two genes and
exchange their values. In this way we can traverse almost
the entire search space and escape local maxima.

6) After crossover and mutation, the child solution need to
be part of the population if it is not already found in
the population. First of all the fitness value is calculated
for the child chromosome and then the chromosome with
the smallest fitness value in the population is replaced by
the child. The population is then sorted based on fitness
value. The replacement scheme helps to introduce new
solutions in the population and eliminate those solutions
which are weaker (have less fitness value).

7) The operations like selection, crossover, mutation and an
individual replacement are performed repeatedly until
Cnon−duplicate children have been generated without
improving the best solution found so far.

IV. IMPLEMENTATION OVERVIEW

This section presents the key design decisions of our Java-
based implementation of the GA. In particular, this section
presents the representations of the data structures and outlines
the algorithms and their asymptotic complexity.

a) Data structures: Each chromosome is implemented
by a class storing the identity of its agents as a list and the
fitness value (that is, the fitness value is computed only once
for efficiency). The entire population is maintained as an array
of chromosomes. In the following we refer by M to the size
of a chromosome and by N to the size of the population.

Each field of the array of chromosomes is initialized by
random shuffling of a list of the {1, . . . ,m} agent numbers
(using the Java collections shuffle method) where duplicate
chromosomes are avoided. The check for duplicate chromo-
somes checks all already generated chromosomes. We have
decided to use a naive O(MN2) algorithm as it is only run
during initialization.

b) Maintaining the population: The selection of parents
for the crossover operation is by randomly choosing two

chromosomes from the array (using a Java Random object) and
choosing the fitter one (taking O(1) time). The implementation
of the crossover and repair operations is exactly as discussed
in the previous section III and takes O(M) time.

Finally, the best and worst chromosome (with respect to
fitness) are maintained by a priority queue each (using simple
binary heaps). Instead of entering chromosomes into the
priority queues directly, we enter the chromosomes’ positions
(that is, integer values) into the priority queues. By that we can
use the array of chromosomes for random parent selection as
well as use the two priority queues for selecting and updating
the best and worst chromosome.

Each iteration of the GA takes O(log N) for maintaining
the best and worst chromosome in the population and O(M)
for checking that no duplicate chromosome is entered into
the population. Hence, the time spent for each iteration is
O(log N + M).

V. EXPERIMENTAL RESULTS

In this section, we present different sets of experiments and
their results. The first step towards any experiment is to employ
a model to calculate the value produced by agents in a team
in performing a task. We use the model introduced in [12]
and [13], but modify it and take into the account the effect of
team working. In this model each agent ai has a set of p real-
valued attributes, called capabilities, ci = {ci1, ci2, . . . , cip}
that affect the value produced by the agent. Each task tj
has a set of p real-valued attributes that we from now on
refer to as weights, wj = {w1j , w2j , . . . , wpj}, which give the
importance of the capabilities of agents in performing the task.
If a task is performed by a single agent then the performance
or the value produced by the agent is defined by the weighted
sum of the agents capabilities, that is

v(ai, tj) =
p∑

k=1

cikwkj . (10)

However, if a task is assigned to more than one agent, the
produced value is more than the sum of values produced by
individual agents. We assume that for each capability type,
the capabilities of agents are influenced by the maximum
capability of that type (cmax

k) in the team (gSj
) and the new

capabilities (c′ik) are calculated by

c′ik = cik + cik(cmax
k − cik)/cmax

k , (11)

where cmax
k = max

i∈Sj

{cik}, ∀k.

Equation (11) implies the following.
1) In a team of agents only those having a smaller capabil-

ity than the maximum capability benefit from the team
working.

2) The capability of the agent who has the maximum
capability is not affected by the cooperation.

3) The capability 0 of an agent is not affected by the team
working.

4) Agents that have a capability equal to cmax
k /2 receive

the highest benefit from the team working.

Equations (10) and (11) together yield the value produced
by an agent in a team when collaborating with other agents

v(ai, gSj
, tj) =

p∑

k=1

(cik + cik(cmax
k − cik)/cmax

k)wkj . (12)

Substituting equation (12) into the objective function defined
by equation 4, we obtain

u(X) =
n∑

j=1

m∑

i=1

p∑

k=1

(cik+cik(cmax
k −cik)/cmax

k)wkjxij , (13)

where cmax
k (X) = max

1≤i≤m
{cikxij}

subject to the constraints (5) to (9).
To test our algorithm by using the above model, a se-

ries of experiments with different problem sizes are con-
ducted. In this scenario, each agent ai has 4 capabilities
{ci1, ci2, ci3, ci4} and each task tj weights capability cik by
wkj ∈ {w1j , w2j , w3j , w4j}. All values cik and wkj are
randomly chosen from a uniform distribution between 0 and
4 (multiples of 0.5). For conducting different experiments, we
have formulated different problems as shown in Table I. We
can relate these problems to real world applications. Consider
a human resource allocation problem where a human resource
manager of company X has to recruit human resource teams to
be assigned to given number of tasks. The objective is to assign
human resources to different teams in a manner such that the
performance is maximized. Problem # 9 in Table I represents
such a human resource allocation problem, where there are
total 50 agents (human resources) and the objective is to assign
20 agents to 4 teams such that the gain is maximized. The
number of agents in the teams are 3, 4, 6 and 7 respectively.

The algorithm presented was coded in Java and was run
on a PC with a 3.16 GHz CPU and 3.49 GB of RAM. In
our experiments, 5 trials of the GA heuristic were performed
for each problem. The population size is set to 800 and each
trial is terminated when Cnon−duplicate = 20000 children
have been generated without improving the best solution
found. The selection of these input parameters (population
size and number of iterations) depends on the type of the
underlying application and the size of the problem. There is
a tradeoff between quality and execution time. For example,
in case of real time applications, the execution time may be
more important than the quality of the solution. In this case
the number of iterations for termination should be smaller.
Different problem sizes and domain complexities can assume
different optimal settings for these parameters. In this paper
our focus is not to find the optimal parameter settings. As we
are not dealing with real time applications and our focus is
to obtain high-quality solutions within reasonable execution
time, we assume larger number of iterations and population
size as given above.

Below, we analyze the experimental results and discuss the
accuracy, stability, scalability and robustness of our proposed
solution.

TABLE I
SPECIFICATION OF THE ASSIGNMENT PROBLEMS USED IN THIS PAPER

Prob# Total
Agents

Required
Agents

Number
of Tasks

Teams (# of agents assigned to the tasks)

1 10 10 4 [2, 3, 2, 3]
2 20 20 4 [3, 4, 6, 7]
3 20 20 8 [3, 2, 4, 3, 2, 2, 2, 2]
4 30 30 8 [4, 5, 2, 3, 4, 6, 3, 3]
5 30 30 12 [2, 2, 3, 3, 1, 4, 5, 2, 3, 2, 2, 1]
6 60 60 12 [6, 4, 8, 2, 7, 3, 5, 5, 3, 7, 1, 9]
7 80 80 20 [5, 4, 8, 2, 3, 3, 4, 3, 4, 7, 1, 6, 3, 6, 2, 6, 3, 1, 5, 4]
8 96 96 30 [5, 4, 8, 2, 3, 2, 2, 3, 1, 4, 7, 1, 5, 3, 2, 6, 2, 6, 3, 1, 5, 4, 2, 2, 4, 2, 1, 2, 3, 1]
9 50 20 4 [3, 4, 6, 7]
10 100 20 4 [3, 4, 6, 7]
11 200 20 4 [3, 4, 6, 7]
12 300 20 4 [3, 4, 6, 7]
13 400 20 4 [3, 4, 6, 7]
14 500 20 4 [3, 4, 6, 7]
15 600 20 4 [3, 4, 6, 7]
16 700 20 4 [3, 4, 6, 7]
17 800 20 4 [3, 4, 6, 7]

TABLE II
COMPUTATIONAL RESULTS FOR AGENTS WORKING IN TEAMS WITHOUT INTERACTION (ACCURACY TEST)

Prob
#

Solution in each of the 5 trials Avg. Execution Time (s) Best Overall soln. Hungarian algo results avgDev (%) σ (%)

1 102.06 102.06 102.06 102.06 102.06 0.26 102.06 102.06 0.0 0.0
2 216.62 216.62 216.62 216.62 216.62 0.24 216.62 216.62 0.0 0.0
3 223.88 223.88 223.88 223.88 223.88 0.39 223.88 223.88 0.0 0.0
4 317.5 317.5 317.5 317.5 317.5 0.64 317.5 317.5 0.0 0.0
5 319.31 319.12 319.31 319.31 319.31 0.75 319.31 319.31 0.01 0.02
6 629.19 627.62 629.06 630.0 630.19 2.49 630.19 630.25 0.16 0.14
7 866.06 868.56 868.38 867.12 868.25 4.92 868.56 869.06 0.16 0.11
8 1043.88 1045.56 1045.5 1046.81 1043.94 8.33 1046.81 1047.56 0.23 0.11

avgDev (%) : Average percentage deviation from the optimal solution (optimal obtained by Hungarian algorithm)

A. Accuracy

For testing the accuracy of the algorithm and to verify the
quality of the results, we consider the scenario where agents
work independently in teams and have no interaction. We
compare our results with the optimal solutions obtained by the
well-known Hungarian algorithm. The results for this scenario
have been shown in Table II. Comparison of the results shows
that the best solutions obtained by our algorithm are almost
consistent with the base line results of Hungarian algorithm.
Moreover, the average percentage deviation is almost 0.0 for
smaller and medium problems.

In this paper we assume that agents in a group collaborate
in a team environment and the value produced by a team is a
non-linear real function of its members and the task. Agents
participating in the same team affect the capabilities of each
other. The agents having higher capability values help to boost
objective gain by cooperating with other team members with
lower capability values. In this scenario, Hungarian algorithm
cannot be applied. To test the accuracy of our algorithm we
have considered a simple data set for agents and tasks as given
in Table III and IV respectively. The data set given in these
tables is designed in such way that we can easily find the
optimal solution and verify the correctness of our algorithm.
We have considered problem number 1 where we have 4 tasks

and 4 teams of agents. The number of agents in the teams are
2, 3, 2 and 3 respectively. Observing the data given for agents
capabilities and tasks attributes, we can see that for each task
exactly one attribute has the highest weight 4.0, and similarly
one capability for each agent has the highest value 4.0.

For example, for task number 1, weight for the first attribute
is 4.0 while the remaining weights are 1.0. We can easily
conclude that the gain will be maximum if this task is assigned
to those agents, which have highest values for capability 1.
From Table III, we find 2 such agents namely agent number

TABLE III
DATA SET FOR AGENTS ATTRIBUTES (FOR ACCURACY TEST)

Agent# Capabilities values
c1 c2 c3 c4

1 4.0 1.0 1.0 1.0
2 1.0 4.0 1.0 1.0
3 4.0 1.0 1.0 1.0
4 1.0 1.0 4.0 1.0
5 1.0 4.0 1.0 1.0
6 1.0 1.0 1.0 4.0
7 1.0 4.0 1.0 1.0
8 1.0 1.0 4.0 1.0
9 1.0 1.0 1.0 4.0
10 1.0 1.0 1.0 4.0

TABLE V
COMPARING GA RESULTS WITH THE OPTIMAL ONE (ACCURACY TEST)

Prob
#

Solution in each of the 5 trials (using GA Heuristic) Avg.
Execution
Time(s)

Agents
Assignment
(obtained by GA)

Optimal Solution
value (calculated
manually)

Optimal Assign-
ment (calculated
manually)

1 190.0 190.0 190.0 190.0 190.0 0.28 gS1
= {3, 1} 190.0 gS1

= {1, 3}
gS2

= {7, 5, 2} gS2
= {2, 5, 7}

gS3
= {8, 4} gS3

= {4, 8}
gS4

= {6, 10, 9} gS4
= {6, 9, 10}

gSj
: group of dj agents performing task tj

TABLE VI
COMPUTATIONAL RESULTS FOR AGENTS WORKING IN TEAMS COOPERATING WITH EACH OTHER (STABILITY TEST)

Prob
#

Solution in each of the 5 trials Avg.
Execution
Time (s)

Best Over-
all soln.

avgDev
(%)

σ
(%)

1 118.11 118.11 118.11 118.11 118.11 0.34 118.11 0.0 0.0
2 260.1 260.1 260.1 260.1 260.1 0.3 260.1 0.0 0.0
3 253.55 253.82 253.82 253.82 253.82 0.47 253.82 0.02 0.04
4 369.96 370.22 370.9 370.9 370.9 0.86 370.9 0.09 0.11
5 364.39 364.11 364.12 363.67 363.34 0.96 364.39 0.13 0.1
6 753.4 752.99 751.69 751.89 751.94 3.21 753.4 0.14 0.09
7 1023.01 1025.19 1023.24 1027.47 1024.89 7.16 1027.47 0.26 0.16
8 1212.74 1215.27 1214.44 1217.29 1215.19 11.06 1217.29 0.19 0.12
9 302.41 302.17 302.35 302.41 302.29 0.7 302.41 0.03 0.03
10 308.22 308.68 307.94 308.68 308.76 0.72 308.76 0.1 0.1
11 312.56 312.14 312.14 312.32 312.35 0.82 312.56 0.08 0.05
12 313.7 314.02 313.73 314.21 314.21 0.8 314.21 0.08 0.07
13 314.94 315.09 314.94 315.09 315.09 1.02 315.09 0.02 0.02
14 316.0 315.51 315.89 316.04 315.59 0.94 316.04 0.07 0.07
15 316.09 316.04 316.11 316.02 315.94 1.02 316.11 0.02 0.02
16 316.16 316.02 315.99 316.06 316.16 1.14 316.16 0.03 0.02
17 316.33 316.29 316.29 316.31 316.22 1.26 316.33 0.01 0.01

avgDev (%) : Average percentage deviation from overall best solution in all trials

1 and 3. Similarly, we can find optimal assignments for other
tasks. We can verify the correctness of our algorithm by
considering the results given in Table V. The results obtained
by executing our proposed GA are consistent with the optimal
values determined manually.

B. Stability

The results for some scenarios where agents work in teams
collaborating with each other have been shown in Table VI.
For each problem, the solution value for each of the 5 trials,
along the average execution time (in seconds) are given in the
table.

To check the stability of our algorithm, the quality of a so-
lution in all 5 executions is evaluated as an average percentage
deviation named avgDev with respect to the best solution Sb

of all trials, by using standard deviation σ. The percentage

TABLE IV
DATA SET FOR TASKS ATTRIBUTES (FOR ACCURACY TEST)

Task# Weights for attributes
w1 w2 w3 w4

1 4.0 1.0 1.0 1.0
2 1.0 4.0 1.0 1.0
3 1.0 1.0 4.0 1.0
4 1.0 1.0 1.0 4.0

deviation avgDev is defined as avgDev = 1/5
∑5

i=1 devi,
where devi = ((Sb − Si)/Sb)× 100 and Si is the solution
value of the i−th trial. The standard deviation σ of devi is
calculated by formula σ =

√
1/5

∑5
i=1(devi − avgDev)2.

The average deviations and the variance indicate that the
result of different trials are very close to each other. This is a
measure of stability of the obtained solutions.

Fig. 2. How problem size affects the execution time (Scalability)

TABLE VII
COMPUTATIONAL RESULTS FOR AGENTS WORKING IN TEAMS COOPERATING WITH EACH OTHER (ROBUSTNESS TEST)

Uniform Distribution (for agents capabilities): Non-Uniform Distribution (for agents capabilities):
Uniformly distributed on [0, 4] 2% agents have value 4.0

2% have value 3.5

96% Uniformly distributed on [0, 3]

Prob # avgDev (%) σ (%) Avg. Execution Time (s) avgDev (%) σ (%) Avg. Execution Time (s)
1 0.0 0.0 0.34 0.0 0.0 0.29
2 0.0 0.0 0.3 0.0 0.0 0.33
3 0.02 0.04 0.47 0.0 0.0 0.58
4 0.09 0.11 0.86 0.27 0.22 0.82
5 0.13 0.1 0.96 0.11 0.11 1.0
6 0.14 0.09 3.21 0.11 0.18 2.98
7 0.26 0.16 7.16 0.17 0.16 7.13
8 0.19 0.12 11.06 0.14 0.13 9.48
9 0.03 0.03 0.7 0.05 0.08 0.62
10 0.1 0.1 0.72 0.13 0.19 0.68
11 0.08 0.05 0.82 0.09 0.12 0.76
12 0.08 0.07 0.8 0.07 0.1 0.82
13 0.02 0.02 1.02 0.09 0.06 0.88
14 0.07 0.07 0.94 0.17 0.16 0.91
15 0.02 0.02 1.02 0.07 0.15 1.01
16 0.03 0.02 1.14 0.03 0.04 1.05
17 0.01 0.01 1.26 0.03 0.05 1.12

avgDev (%) : Average percentage deviation from overall best solution in 5 trials

C. Scalability

After testing the accuracy and stability of our GA, we
want to observe the scalability of our proposed solution. An
algorithm design is said to scale if it does not fail and performs
efficiently even if applied to larger problem sizes. In this
section we show that our proposed solution can solve the
larger problem instances by a small increase in execution time
(increase in execution time is the expected behavior). The
execution time does not increase as quickly as the size of
the problem. In order to show how the problem size affects
the efficiency of our algorithm, we show in Figure 2 how
the increase in number of total agents affects the execution
time of our algorithm. We want to analyze the effect of total
number of agents on execution time while the required number
of agents and number of tasks are kept constant. An increase
in the total number of agents results in an increase in the size
of the search space. We select problems 10 to 17 as given in
Table I where we need to assign 20 agents to 4 teams. If we
analyze the figure, the execution time is 0.68, 0.76, 0.88 and
1.12 seconds for 100, 200, 400 and 800 agents respectively.
We can see from the shape of the graph that the execution
time is increased from 0.68 to 1.12 (by less than 65%) when
the number of agents is increased by a factor of 8 (from 100
to 800). By looking at the behavior of the execution time, we
can say that our algorithm is scalable to larger problem sizes.

D. Robustness

In this section we show that our proposed solution is
able to cope with different types of input data. Input data
belonging to different classes of distributions can introduce
varying degree of complexities in the input search space.
In order to test the effect of input data on the performance
of our algorithm, we perform experiments on two different

distributions of agent’s capabilities as given in Table VII. The
left portion of the table shows results for the input data where
capabilities of agents are randomly chosen from a uniform
distribution between 0 and 4. On right side of the table, we
consider non-uniform distribution in which for each capability,
4% agents have values 3.5 and 4.0 (2% each) while the
rest 96% are randomly chosen from a uniform distribution
between 0 and 3. The average percentage deviation named
avgDev, standard deviation σ and average execution time for
all experiments are given in the table. The average percentage
deviation avgDev and standard deviation σ are calculated
according to the formula given in subsection V-B. The results
given in Table VII show small deviation from the best solution
(less than 0.28% for all problems) and the average execution
time behavior is also almost same in both distributions. By
observing the quality of results we can say that our GA
is robust to input data and it perform very well for other
families of input data. Here, by robustness we mean that the
performance of our algorithm does not degrade when tested
on different distributions of input data.

E. Impact of Number of Iterations (Termination Criteria)

Figure 3 shows the effect of number of iterations (the
termination criteria of the proposed GA) of experiments on
percentage average deviation of solutions from best solution
(The best solution is obtained with 20,000 iterations). We can
see from the shape of the graph that increase in number of
iterations significantly improves the quality of the solutions.
As we increase the number of iterations of the experiment, the
solution values deviate less from best solution value. Similarly,
if we see the execution time of the algorithm in Figure 4,
it increases more rapidly between 1000 and 3000 iterations.
After this point, the increase in execution time is smaller

Fig. 3. The effect of number of iterations (for termination) on quality of
solutions

Fig. 4. The effect of number of iterations (for termination) on execution
time of the algorithm

because of smaller deviation of the solutions. The shapes
of these two figures show that the quality of the solutions
improves at the expense of execution time. For example if
we see the figures 3 and 4, after 4000 iterations the average
standard deviation is 0.56% and the execution time is 6.73
seconds. If we run it for 20, 000 iterations then we can further
improve the quality of the solutions. We can see from Table VI
for the problem number 8 that the average percentage deviation
of the 5 solutions from the best solution (Best solution value
= 1217.29, obtained after 20, 000 iterations) is 0.19% and
the execution time is 11.06 seconds after 20, 000 iterations.
The decrease in average percentage deviation from 0.56% to
0.19% increases the execution time from 6.73 to 11.06 seconds
(almost 65% increase in execution time). To conclude, we can
say that there is a tradeoff between quality of solution and
execution time.

VI. SUMMARY AND CONCLUSIONS

In this paper, we focus on a specific class of assignment
problems where agents work in collaborating teams. We
assume that each agent has a set of capabilities and each
task has a set of requirements. The objective is to assign the
agents to the teams such that the gain is maximized. The value

produced by a team is the result of collaboration between
team members and is measured according to equation (12).
We propose a Genetic Algorithm (GA) for finding a near
optimal solution to this class of task assignment problems. The
fitness function of the GA is based on team performance and
is calculated according to equation (13). We conducted a wide
range of experiments to analyze accuracy, stability, robustness
and scalability of the solution obtained by the proposed GA.
Our analysis can be summarized as follows: (a) Accuracy:
Tables II and V show that the results of the GA are very close
to the optimal solution. (b) Stability: Table VI shows that the
GA results for five replications deviate very little from each
other. This is a measure of stability of the obtained solutions.
(c) Scalability: Figure 2 shows that the GA can be used to
solve large scale APs. (d) Robustness: Table VII indicates that
the GA results are not sensible to changes in the input data.
Our conclusion is that the proposed GA is scalable, stable and
robust and produces near optimal solution to a specific class
of task assignment problems.

REFERENCES

[1] H. W. Kuhn, “The Hungarian method for the assignment problem,”
Naval Research Logistics Quarterly, vol. 2, pp. 83–97, 1955.

[2] A. Frank, “On Kuhn’s Hungarian method – a tribute from Hungary,”
Naval Research Logistics,, vol. 52, pp. 2–5, 2005.

[3] D. W. Pentico, “Assignment problems: A golden anniversary survey,”
European Journal of Operational Research, vol. 176, no. 2, pp. 774–
793, January 2007.

[4] M. L. Fisher, R. Jaikumar, and L. N. V. Wassenhove, “A multiplier ad-
justment method for the generalized assignment problem,” Management
Science, vol. 32, no. 9, pp. 1095–1103, September 1986.

[5] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Massachusetts: Addison Wesley, 1989.

[6] M. Mitchell, Introduction to genetic algorithms. Cambridge, Mas-
sachusetts: MIT Press, 1999.

[7] J. H. Holland, Adaptation in natural and artificial systems. Cambridge,
MA, USA: MIT Press, 1992.

[8] P. C. Chu and J. E. Beasley, “A genetic algorithm for the generalised
assignment problem,” Computers and Operations Research, vol. 24, pp.
17–23, January 1997.

[9] B. M. Baker and M. A. Ayechew, “A genetic algorithm for the vehicle
routing problem,” Computers and Operations Research, vol. 30, pp. 787–
800, April 2003.

[10] J. F. Gonçalves, J. J. M. Mendes, and M. G. C. Resende, “A genetic
algorithm for the resource constrained multi-project scheduling prob-
lem,” European Journal of Operational Research, vol. 189, no. 3, pp.
1171–1190, 2008.

[11] O. Etiler, B. Toklu, M. Atak, and J. Wilson, “A genetic algorithm for
flow shop scheduling problems,” Journal of the Operational Research
Society, vol. 55, no. 8, pp. 830–835, 2004.

[12] F. Kamrani, R. Ayani, F. Moradi, and G. Holm, “Estimating performance
of a business process model,” in Proceedings of the 2009 Winter
Simulation Conference, M. D. Rossetti, B. Hill, R. R.and Johansson,
A. Dunkin, and R. G. Ingalls, Eds., Austin, TX, December 2009.

[13] F. Kamrani, R. Ayani, and A. Karimson, “Optimizing a business process
model by using simulation,” in Proceedings of the 2010 Workshop on
Principles of Advanced and Distributed Simulation, Atlanta, GA, May
2010, pp. 40–47.

View publication statsView publication stats

https://www.researchgate.net/publication/229034305

