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Abstract

An extensible object-oriented platform NUTS for distributed computing is described

which is based on an object-oriented programming environment NUT, is built on top of

the Parallel Virtual Machine (PVM), and hides all low-level features of the latter. The

language of NUTS is a concurrent object-oriented programming language with coarse-

grained parallelism and distributed shared memory communication model imple-

mented on a distributed memory architecture. It differs from other languages of con-

current programming in the following: concurrent processes are represented by

packages which are semantically richer entities than objects, inter-process communica-

tion is performed in terms of classes, objects, scripts and packages, using the EDA

communication model; processes can be arranged into structured collections: grids

which enable one to program data-parallel computations on a high level; sequential

segments of programs can be synthesized automatically from specifications repre-

sented as classes using the program synthesis features of NUT. Examples of usage of

generic parallel computing control structures PARDIF and PARARR are given.
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1.0  Introduction

Distributed computing is gaining popularity in scientific problem solving in the same

way as in other computing applications. Distributed memory computers like IBM SP2

provide sufficient computation power to tackle computationally hard scientific prob-

lems using the technique of parallel computing. However, applicability of the latter is

restricted due to complexity of the program development for distributed computing

platforms. Higher level programming tools take almost no advantage of distributed

computing facilities, at the best, providing access to them by means of a separate set of

low level functions. The basic level of concurrent object-oriented programming has

essentially remained unchanged since publication of the book [14] in 1989. From the

other side, the growing popularity of user-friendly tools like MATLAB among

researchers demonstrate that it is a time for developing high level user-friendly scien-

tific computing software which could enable an easy access also to distributed compu-

ter architectures. Development of this kind of software has been a goal of the work

presented in this paper. More precisely, our goal has been to develop tools for declara-

tive programming of distributed processes and, in this way, to extend the limits of pro-

grammability of sophisticated problems by users with restricted program development

resources. Our starting point was a declarative programming technique supported by

automatic synthesis of sequential programs - a field where we have been working for

quite a long time.

This paper provides an overview of a distributed computing platform NUTS developed

as an extension of the object-oriented programming environment NUT which includes

program synthesis features and has been used for implementing a number of declara-

tive problem-oriented languages. The language of NUTS is a concurrent object-ori-

ented programming language with coarse-grained parallelism implemented on a
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distributed memory architecture. It differs from other languages of concurrent object-

oriented and distributed programming in the following:

• Concurrent processes are represented by NUT packages which are semantically

richer entities than objects.

• Inter-process communication supports transmission of classes, objects, scripts and

packages, and hides all low-level communication details.

• Processes can be arranged into structured collections: grids which enable one to

program parallel computations on high level.

• Segments of programs can be synthesized automatically from specifications repre-

sented as classes.

The last aspect is a distinguished feature of the NUT programming environment ena-

bling users easily to implement declarative problem-oriented languages.

Developing the NUTS system, we have used two existing software tools: an object-

oriented programming environment NUT [9, 11] and the Parallel Virtual Machine,

PVM [6]. The NUT system will be briefly described in section 2. Here we give some

hints about the PVM.

The Parallel Virtual Machine, PVM, is a widely used integrated framework for hetero-

geneous computing. A multitasked PVM program runs on a set of networked comput-

ers which are composed into a virtual multiprocessor. PVM supports parallel

computation at the level of Unix processes, using message passing for communication.

PVM is composed of the PVM daemon,pvmd, and the PVM library,libpvm . An

instance of thepvmd runs on each host of the virtual machine and provides host-proc-

ess interactions. Thelibpvm  constitutes an interface between PVM applications and
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the run-time system (PVM daemons). A PVM task can be spawned from another active

task. PVM tasks communicate using tagged messages. A task can send messages asyn-

chronously, and is responsible for receiving messages directed to it using blocking or

non-blocking receive procedures.

Because the PVM is still a low-level tool, a number of programming environments,

such as: PADE, CODE 2.0, HeNCE, were implemented to simplify developing and

debugging of parallel programs that use PVM.

PADE, the Parallel Applications Development Environment, supports all phases of

development of PVM application: editing, compilation, execution, debugging and per-

formance measurement. The PADE package has graphical user interface and it allows

the user to develop a parallel application which consists of a number of components

located on the file systems of different computes with different operating systems [5].

HeNCE (Heterogeneous Network Computing Environment) and CODE 2.0, are visual

programming environments each of which is based on visual parallel programming

language using directed graphs as a natural mechanism for presentation of the behav-

iour of parallel programs [3]. Nodes of a graph denote conventional Fortran or C sub-

routines and arcs represent data and control dependencies.

The NUTS system also contains visual programming tools which are a part of the NUT

environment. We are not considering here the visual tools, but concentrate on the inter-

process communication model, communication functions and extensibility of the lan-

guage. After brief introduction of the NUT programming environment, we describe the

control and communication functions of NUTS in section 3. Our goal has been to pro-

vide an easily extensible set of control structures for distributed parallel computing in

the form of classes which can be used by a program synthesizer. We consider to be
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important the possibility to develop distributed programs in a compositional style. The

declarative style of program development applicable in NUT is directly extended to

programming in NUTS, as we can see from the examples presented in section 4.

The NUTS system consists of the following three components:

• NUT programming environment.

• Library of distributed control and communication functions,librnut .

• NUTS daemon,nutd .

The NUT programming environment is a tool for development of large programs in the

object-oriented style; it enables the user to specify classes graphically by drawing their

schemas; it combines object-oriented programming, visual programming and auto-

matic program construction paradigms.

Librnut  is a library of NUT routines for building a system of collaborative NUT

processes running on PVM, for exchanging classes, scripts and objects between NUT

processes.

The daemonnutd  is an executable code which is used to manage NUT process con-

trol and display connections. It is responsible for halting PVM when all NUT processes

exit or are killed.
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2.0  The NUT programming environment

The NUT programming environment supports development of large programs in the

object-oriented way. NUT language has features of an object-oriented language with

multiple inheritance, parametric polymorphism and a flexible mechanism for message

passing [11]. The NUT system has good interoperability with programs written in C

and, in general, with other software components running under Unix. Each software

package used in NUT is represented by an object of a specific class designed for this

package. We use MATLAB software in this way in an example in section 4.

We are going to use the following concepts related to the NUT system: scripts, objects,

classes and packages.Script is a top level program for immediate execution. Writing

scripts in a NUT environment has the role similar to programming in a Unix shell. All

data and programs except scripts areobjects. Objects created from scripts are global

objects. Each object has aclass. Classes in NUT serve, besides the ordinary object-ori-

ented usage, as specifications which can be used for constructing programs automati-

cally. In particular, a methodcompute  is available by default in every user-defined

class, and it can be sent to any objectx  as a request to compute some of its compo-

nents, let us say,y. The expressionx.compute(y) produces a value ofy  if the class

of x  contains information for computing this value. The largest modular unit in NUT is

package. It is a collection of programs, specifications and data, related to a computa-

tion. More precisely, it is a collection of scripts, classes, global objects and graphic

views (icons, images and schemes) intended for usage in the particular computation or

in a whole problem domain. A package can be visualised in a NUT main window, Fig-

ure 1. It shows a list of classes (DirMatrix , Dirichlet , etc.), a list of global

objects (M, dim , etc.), and a script in a workspace for immediate execution. A package

constitutes an environment where a process described by a script in the workspace is
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executed.

The NUT language has some specific features which are essential for our presentation:

• Equations as specifications of computations;

• Encapsulation border different from ordinary encapsulation of objects;

• Automatic program synthesis;

• Runtime compilation of modified/new generated classes.

The first feature permits to specify arithmetic programs with single assignment prop-

erty simply as sets of equations. The order of computing variables from equations

(solving equations) can be determined automatically. This, together with automatic

type inference, allows us to define classes in the equational programming style. For

example, the following class specifies a surface in the three-dimensional space ofx , y,

z given by one fixed parameterca :

class screw

rel

alpha=ca*z;

x=r*cos(alpha);

y=r*sin(alpha);

NUT uses weaker encapsulation of objects, allowing direct naming of immediate com-

ponents outside of objects in order to bind them in a specification. The following class

uses this feature and specifies a producer/consumer pair compositionally in a shared

memory style:

class prc

super parexec;

var
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A : producer;

B : consumer in=A.out;

The lower level implementation in NUTS will be a distributed implementation, but this

is hidden inside the classparexec .

The program synthesis feature of NUT can be explained briefly as follows. All meth-

ods specified explicitly by programs are supplied with external views, which are auto-

matically translated into the form of logical axioms. Also equations, equalities and

overall structure of classes are translated into axioms. After unfolding all specifications

relevant to a program synthesis task, a set of axioms is obtained which describes a the-

ory about the particular synthesis task. The method of structural synthesis of programs

(SSP) is used in order to get (completely automatically) a program for solving the task.

This method is complete in the following sense. It produces a program for any solvable

task and produces an answer about the unsolvability otherwise. Solvability of a task is

defined with respect to a specification, i.e. a theory obtained from a class. The SSP has

a sound logical explanation in terms of intuitionistic propositional logic and simple

types, as well as in terms of higher-order constraint networks [9, 10]. Due to the sim-

plicity of the logical language of SSP, its performance is quite satisfactory which can

be seen from the Table 1.

A program synthesis task may appear in several forms. First, it can be the message

Table 1:

Maximum number of axioms in a theory 10000

Maximum number of propositions in a theory 16000

Average synthesis time < 1 sec

Average number of lines of source specification < 20

Maximum expansion rate at unfolding exponential
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compute  sent to an object as described in the beginning of this section. Second, it

may appear as the keywordspec  in the body of a method which has to be synthesized

according to its external specification as in the following example:

r: x -> y{spec};

The keywordspec  here shows that a program for computingy  from x  has to be syn-

thesized using as a specification the class where this is written. Third, an external spec-

ification of a relation may contain one or more constructions of the following form

[a, ..., b -> c, ..., d]

wherea,...,d  are names of objects. This construction is called asubtask of the

method where it appears and its meaning is a request to synthesize a program for com-

putingc,...,d  from a,...,b . The synthesized program becomes an input param-

eter of the method.

Let us have now a problem of finding a total moment applied to the piece of the surface

described above in the classscrew  and restricted by the inequalities 0 <z  < zmax

and 0 <r  < rmax , cr  > cmax*dr , wherermax=cr-z*dr , zmax, cr , dr are given

constants. The momentT=f*y  is caused by a linear field influencing each point of the

surface with the forcef=cf*(cx - x) in the direction of x-axis, wherecf  andcx

are given constants. Obviously, in order to solve the problem, we have to integrate

alongz  from 0 tocz and for eachz  alongr from 0 tocr . This is a typical problem

solvable in NUT from a declarative specification. Let us assume that we already have a

class describing the concept of integral, and this class has variablesres  for calculated

value of integral,arg  for integration variable andfun for value of integrated func-

tion. We can write the following specification in NUT:
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class integration

var

S: screw;

I1: integral from=0, to=rmax, arg=S.r, val=T;

I2: integral from=0, to=zmax, arg=S.z, val=I1.res;

rel

rmax=cr-S.z*dr;

T=f*S.y;

f=cf*(cx-S.x);

r: zmax,cr,dr,cf,cx -> I2.res{spec};

init

cr:=3;

dr:=1;

zmax:=150;

In this specification we have used, first, weak encapsulation for binding values of com-

ponents of different objects, second, equations for specifying required computations,

and third, the keywordspec  for requesting automatic synthesis of the program we

need. It is sufficient in NUT to specify the classintegral  as follows:

class integral

var

from, to, arg, val, res: num;

rel

[arg->val] from, to, step -> res

    {< an arbitrary integration method >};

Later we shall continue this example, redefining the classintegration  for distrib-

uted computing by giving some additional specifications.

3.0  Distributed control and communication functions

We present a concise description of control and communication functions of NUTS in
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this section, showing how they hide details of PVM from the user. These functions pro-

vide unified approach to communication and synchronisation, and enable the user to

program exclusively in terms of objects, classes and scripts. The NUTS library of dis-

tributed control and communication functions,librnut , includes the following

groups of functions to provide PVM configuration, process control and communica-

tion.

• Process control functions are used to start and halt the PVM, to spawn and control

NUT processes, to get information about running NUT processes.

• Script passing functions are used for passing and performing scripts of workspaces

of NUT processes.

• Class passing functions are used for passing and compiling texts of classes.

• Object passing functions are used for sending and receiving objects through the

space of shared objects.

Passing scrips and classes is not used for process synchronization, rather it allows to

distribute and control computation in collaborative NUT processes. Synchronization

and communication mechanism of NUTS is based on object passing according to the

EDA multiprocessing model [8].

The NUTS librarylibrnut  is implemented on top of PVM librarylibpvm  which

provides low level inter-process communication based on explicit message passing.

3.1  Process Control

The distributed NUTS program is structured as a number of collaborative NUT proc-

esses running on PVM. Each process runs in a separate NUT environment consisting

of a NUT package. Each process can have an open NUT window where the lists of
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classes and objects are visible together with the script. The environment of a process

can be changed dynamically by the process itself or by other processes.

The librarylibrnut  includes routines for control of NUT processes and configura-

tion of PVM. There are routines to spawn a number of child NUT processes

(rnut_spawn ), to close and to open a window interface of the remote NUT

(rnut_chmod ), to kill (rnut_kill ) or to send an exit request to set of NUT proc-

esses (rnut_exit ), to load a package (rnut_pack ).

The NUT process started first is called a root NUT process. Most of routines from

librnut  enrol the root process into PVM. Each of them starts PVM if it is not run-

ning already, and spawns daemonnutd  on the host which will be used to display NUT

windows. The librarylibrnut  contains two routinesrnut_addhosts and

rnut_delhosts  which are used to change the configuration of the virtual machine.

These routines also notify the daemonnutd  about hosts which are added or deleted

from PVM. Respectively,nutd  adds or removes given hosts from the list of hosts

allowed to connect to the X server to open a display connection.

Any number of child NUT processes can be spawned from any active NUT using

rnut_spawn(n, mode, where, package)  routine. This routine createsn

processes running in a mode defined bymode on a host namedwhere  and loads a

package namedpackage  into all spawned processes. A child process can be spawned

with open or closed window interface. If argumentwhere  is not defined ornil  then

PVM is responsible for choosing the convenient set of hosts to start up new NUT proc-

esses. Each spawned child obtains a unique PVM task identifier, tid, which is used to

specify the destination address for data passing and remote control. Each NUT process

running in PVM can get its task identifier usingrnut_mytid  routine, which returns
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its tid.

In the following example two NUT processes start with open window interface on the

host called‘walrus’  with package‘eda.mem’ . An arraytids  contains task iden-

tifiers of children.

Example 1.

mytid := rnut_mytid();

tids := rnut_spawn(2,2,‘walrus’,‘eda.mem’);

During spawning, the parent NUT sends the task identifiers of its children to the dae-

mon nutd  and also to each newly spawned child in order to notify them about their

siblings. Each child can get this information if needed usingrnut_parent  and

rnut_mygrid  routines. The first routine returns tid of the parent, the second one

returns an array of tids of all siblings including the calling NUT process.

Example 2.

parent:= rnut_parent();

stids := rnut_mygrid();

A parent and all its child NUT processes spawned by one and the same action

rnut_spawn  constitute a complete graph, which we callgrid, from the accessibility

point of view, i.e. each processes of a grid can directly communicate with any other

process of the grid. The spawn routine guarantees the same structure of copies of the

array of tids which are distributed among all members of the grid. Each member of the

grid can spawn their children and form a new grid, being itself a parent. Figure 3 illus-

trates a process of spawning as a tree, where nodes are NUT processes and arcs repre-

sent spawn relations.
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Most of librnut  routines use tids as destination addresses for communication.

Sometimes it is more convenient to use a metrics of integer numbers0, 1, 2,...,

n instead of task identifiers (tids) for addressing NUT processes. The classesgrid  and

mygrid  support also relative addressing of processes where 0 is an address of the par-

ent and1, 2,..., n  are addresses of children in a grid. The routinernut_mynum

can be used to get a number of the calling NUT process in the grid.

The remote control of a NUT process from another NUT process is implemented by

sending appropriate requests, which can be served when the X-event loop in the receiv-

ing NUT process is idle and the process is not in the Intepreter stage.

The PVM termination is implemented using a semaphore in the daemonnutd . During

spawning, the parent NUT notifies the daemon about its children, and the semaphore is

incremented by the number of spawned NUT processes. Each NUT process can exit

independently of other processes. When a task exits or is killed, the PVM daemon

pvmd notifies the daemonnutd , and the semaphore is decremented. When the sema-

phore becomes zero,nutd  halts PVM. The asynchronous exit of NUT processes can

be the reason of deadlock while accessing shared objects, classes or workspaces. But

interactive nature of the NUT programming technology, as well as remote process con-

trol routines give a possibility to handle these deadlocks and to solve the termination

problem.

3.2  Passing and Performing Scripts

The following routines are intended for passing a script in the form of a textual object

for a workspace of NUT processes:

rnut_putws*( tids, nnut, ws );

rnut_getws*( tid );
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and the following routines combine passing and performing a script into a single

action:

rnut_pputws*( tids, nnut, ws );

rnut_pgetws*( tid );

Where the asterisk ‘* ’ should be one of two characters:a (append) orr (replace).

Routinesrnut_putws* , rnut_pputws*  allow to multicast a script of workspace

ws to nnut  processes specified bytids . Routines rnut_getws* ,

rnut_pgetws* are used to get a current script of workspace from remote NUT proc-

ess specified bytid . The received script is appended to the current workspace of the

receiving process, if a routine has a suffixa. The received script replaces the current

workspace of the receiving process, if a routine has a suffixr.

The routine rnut_perform  multicasts a request to perform current scripts of

requested processes. The user is responsible for providing all classes and objects,

which are necessary to perform a script.

3.3  Passing Classes

The librarylibrnut  contains routines that enable a NUT process to send a copy of a

class to a set of NUT processes (rnut_clcpy ), and to get a copy of a class from

another NUT process (rnut_clget ). Both routines allow to rename the copy of the

class in the destination NUT processes. In the following example, the first statement

sends a copy of the class named‘grid’  with a new name‘gr’  to processes speci-

fied by an arraytids . The next statement sends a request to get a copy of the class

named‘mygrid’  with the same name‘mygrid’  from parent process:

rnut_clcpy(tids, length(tids), ‘gr’, ‘grid’);
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rnut_clget(rnut_parent(), ‘mygrid, ‘mygrid’);

Being received, the text of the class is automatically compiled. If a NUT process

already contains a class named as the received class then the new class overwrites the

old one. It is safer, however, to use package passing (rnut_pack ) instead of passing

classes separately, because care must be taken of sending classes in a proper order.

3.4  Passing Objects

The communication model of NUTS is object passing which is based on communica-

tion aspects of the Extended Dataflow Actor model, EDA. A formal description and

software implementation of the EDA model can be found in [2, 8, 12].

3.4.1  The EDA Communication Operations

EDA is a model of object-oriented multithreaded computation. An EDA object con-

tains local and shared variables and a thread of control. All shared variables form a

space of shared memory which is accessible from each object. In EDA, passing data

between local and shared memory is represented by a set of special store and fetch

operations on a spaces of local and shared variables. An EDA object can store local

data into shared memory and fetch a value of a shared variable into its local memory. A

shared variable may be in one of two states: full (containing data) or empty. The EDA

model [8] recognizes three types of shared variables:x, i ands, each with special syn-

chronization requirements. Semantics of typed shared variables of EDA was extended

and expressed in terms of special shared memory operations carried out on untyped

shared variables [2, 13]. This modification was done in order to make the EDA model

more convenient and flexible. The modified EDA model specifies eight kinds of shared

memory operations:



17

• x-fetch is a blocking extract operation. It is used for extracting the data from a full

shared variable to a local variable of an object. If the shared variable is full, its value

is extracted and its state becomes empty. If the shared variable is empty, then x-fetch

request is enqueued on this shared variable, and the executing thread is suspended

until the variable becomes full by a store operation.

• s-fetch is a non-blocking extract operation. It is used for extracting the data from a

shared variable to a local variable of an object. If the shared variable is full, its value

is extracted and its state becomes empty. If the shared variable is empty, then s-fetch

returns an empty value.

• i-fetch is a blocking copy operation. It is used for copying the data from a shared

variable to a local variable of an object. If the shared variable is full, its value is cop-

ied and its state remains full. If the shared variable is empty, then i-fetch request is

enqueued on this shared variable, and the executing thread is suspended until the

variable becomes full by a store operation.

• u-fetch is a non-blocking copy operation. It is used for coping the data from a

shared variable to a local variable of an object. If the shared variable is full, its value

is copied and its state remains full. If the shared variable is empty, then i-fetch

returns an empty value.

• x-store is a blocking store operation. It is used for storing the data to a shared varia-

ble from a local variable of an object. If the shared variable is empty, a local value is

simply copied into the shared variable and its state becomes full. If the shared varia-

ble is full, then x-store request is enqueued on this shared variable, and the execut-

ing thread is suspended until the variable is emptied by a fetch operation.

• s-store is a non-blocking buffering store operation. It is used for storing the data to a
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shared variable from a local variable of an object without suspension. If the shared

variable is empty, a local value is simply copied into the shared variable and its state

becomes full. If the shared variable is full, then computation in the executing thread

resumes as soon as the local value is buffered. The buffer with the local data is

enqueued on this shared variable until the variable is emptied a the fetch operation.

• i-store is a non-blocking store operation, which can be called as write-once. It is

used for storing the data to a shared variable from a local variable of an object with-

out suspension. If the shared variable is empty, a local value is simply copied into

the shared variable and its state becomes full. If the shared variable is full, then i-

store operation is ignored.

• u-store is a non-blocking unconditional update operation. It is used for updating a

value of a share variable with a value of a local variable of an object. u-store always

copies a local value into the shared variable independently of its state.

3.4.2  Object Passing Functions in NUTS

An EDA object is represented in NUTS by a NUT process running in a separate NUT

environment consisting of a NUT package; EDA shared and local variables are repre-

sented by NUT objects calledshared andlocal respectively. A shared object is consid-

ered empty, if it hasnil  value or does not exist, otherwise it is full. In communication

routines a shared object is addressed by means of two itemstid andobjname:

• tid is a task identifier of a NUT process in which the object is located,

• objname is a name of the object in NUT.

The librnut  contains eight communication functions for object passing which real-

ise the semantics of EDA store and fetch operations on a space of shared and local
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NUT objects (see Table 2).

A storing routine multicasts a request to store a value of a local object into shared

objects located in remote NUT processes. A fetching routine sends a request to extract

or to copy a value from a remote object into a local one. All fetching routines, as well

asrnut_xstore  routine, block the requesting process until a value or acknowledge-

ments arrive. A requested remote process can serve the request only if it is not in the

Interpreter stage, i.e. it does not perform anything.

Object passing routines have the following form where the asterisk‘*’  should be one

of four charactersx , s , i , oru:

rnut_*store(tids, nnut, objname, obj)

obj := rnut_*fetch(tid, objname);

Storing routines,rnut_*store , are used to store a value of the objectobj  into a

shared object, namedobjname , of each NUT process, specified in the arraytids . A

Table 2: Communication Functions

Name
rnut_

Action full empty

xfetch extract a meaning value from a shared object to local extract suspend

sfetch extract any value from a shared object to local extract return
nil

ifetch copy a meaning value from a shared object to local copy suspend

ufetch copy any value from a shared object to local copy return
nil

xstore store a value from a local object to an empty shared
object

suspend store

sstore store a value from a local object to an empty shared
object

buffering store

istore store a value from a local object to an empty shared
object

skip store

ustore store a value from a local object to a shared object update store
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storing routine sends a valueobj  to NUT processes defined bytids with a request to

store a value ofobj  into shared objects namedobjname . Three routines,

rnut_istore , rnut_sstore  and rnut_ustore  are non-blocking. It means

that computation on the requesting process resumes as soon as all requests are sent.

The routinernut_xstore  blocks the requesting process untilnnut  acknowledg-

ments have arrived from requested processes. The received value can be consumed in

the receiving process by different ways according to an access type: x, i, s, or u, and a

state of the objectobjname . To provide an arbitrary access to shared objects NUTS

usesnil  value to define an empty state of an object. The user is responsible for avoid-

ing possible deadlocks, because if the object namedobjname  is not empty, then the x-

and s-store request are enqueued until theobjname  will be emptied by some fetching

routine. To provide a correct synchronization of processes, and to avoid possible dead-

locks, it is recommended to consume values stored into shared objects by extracting

them into local objects using matching fetching procedures:rnut_xfetch  or

rnut_sfetch . Each of these routines extracts a value from a full shared object and

serves the first store request suspended in a store request queue of this object. If the

waiting request isrnut_xstore , then fetching procedure sends an acknowledge-

ment to the requesting NUT process.

Fetching routines,rnut_*fetch , can be used to extract or to copy a value into the

local objectobj  from the shared objects, namedobjname and located in the NUT

process, specified bytid . A fetching routine sends the nameobjname  to NUT proc-

ess with a request to extract or to copy a value from an object, namedobjname . Two

routinesrnut_xfetch  andrnut_sfetch  generate an extract request, two other

routinesrnut_ifetch  andrnut_ufetch  generate a copy request. A requesting

process becomes suspended until a value has arrived from a requested process. The
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received value is assigned to the local objectobj . Fetching of the value is visible in

the same manner as creation of an objectobjname  by means ofnew expression in the

consuming process. After that, a user can use the objectobjname  in an ordinary way.

Two routines,rnut_sfetch  and rnut_ufetch , are non-blocking. Two other

fetching routines,rnut_xfetch  and rnut_ifetch , are blocking. It means that

the requested process can execute fetch request only if the object namedobjname  is

full, i.e. has a value. Otherwise the fetch request is queued until theobjname  will be

filled by the matching storing routine.

Communication functions are most suitable for using in matching pairs:

• rnut_xstore andrnut_xfetch , for supporting mutually exclusive interproc-

ess communication.

• rnut_sstore andrnut_sfetch , for supporting object streams between NUT

processes.

• rnut_istore and rnut_ifetch , for supporting write-once shared object for

synchronizing single writer-multiple readers and OR-parallelism.

• rnut_ustore andrnut_ufetch , for unconditional updating of shared objects.

The following example illustrates using of the pairrnut_istore  and

rnut_ifetch  routines to realise the OR-parallelism. The processBoss chooses the

first object from several objects sent to it by its child processesWorker1,...,

Workern . Each child process sends a value of its local objectwork_out into the

shared object named‘boss_in’  located in the processBoss  specified by a task

identifier tid_b . The processBoss consumes only the earliest sent data from the

object‘boss_in’  usingrnut_ifetch  routine.
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ProcessWorker I (I = 1,..., N):

tid_b := rnut_parent();

% compute worker_out

worker_out := rnut_mytid();

% send the value of worker_out to the Boss process

rnut_istore([tid_b], 1, ‘boss_in’, worker_out);

ProcessBoss :

% consume the first answer from children

my_in := rnut_ifetch(rnut_mytid(), ‘boss_in’);

The next example illustrates using ofrnut_sstore  routine for sending a set of

objects through the one and the same shared object located in a remote process. The

processA sends five objects of different classes into the shared object named

‘sh_buf’  and located in the remote NUT process specified bytid_b . The receiv-

ing processB extracts this data from the objectsh_buf  usingrnut_xfetch  routine

and builds an array of objects of different classes which is allowed in NUT.

ProcessA:

dest := [tid_b];

buf  := ‘sh_buf’;

rnut_sstore(dest, 1, buf, 5);

rnut_sstore(dest, 1, buf, -1.3 );

rnut_sstore(dest, 1, buf, ‘Hello World’);

rnut_sstore(dest, 1, buf, [7, 3.1415]);

rnut_sstore(dest, 1, buf, [‘radio’, ‘-ga’, ‘-ga’]);

ProcessB:

x := new array of any;

me:= rnut_mytid();
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for i := 1 to 5 do

x[i]:= rnut_xfetch(me, ‘sh_buf’);

od;

Figure 4 illustrates changing a value of the object named‘sh_buf’  and the resulting

value of the local objectx  which consumes a stream of values from the processA.

4.0  Programming Experience with NUTS

The flexibility of NUTS high level communication functions combined with the open

programming environment NUT can be exploited in order to make different distributed

programming environments. The intention is to construct and run parallel branches of

computations automatically, using a set of predefined control structures. These control

structures are implemented in the form of classes in NUT. Once preprogrammed, the

control structures are expected to constitute a domain-specific parallel programming

toolkit [1].

4.1  Control Structures for Parallel Programming Using NUTS

The task of developing parallel programs consists of a number of sub-tasks: parallel

algorithm design, problem partitioning, mapping, communication and synchronization

management and resource management. A domain-specific parallel programming envi-

ronment in the form of a hierarchical set of NUTS classes has been realised to facilitate

design and implementation of parallel applications in NUTS, and to achieve their effi-

cient processing on PVM. A set of control structures supports automatic mapping,

communication and synchronization management as well as resource management in

the development of parallel applications. Control structures are divided into two levels:

administrative and problem-oriented. These control structures are then used by classes

at the third (application) level, in order to construct a parallel application (Fig.5).
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There is one control structure, calledPAR_ENGINE, on the administrative level. It is

written in an application-independent style and is used for managing the configuration

of PVM, spawning and administrating a pool of NUT processes needed by objects of

the underlying classes.

The problem-oriented level contains generic control structures, each of which differs in

its distributed computation and communication patterns. The problem-oriented control

structures are used for parallel solving of specific problems on a pool of NUT proc-

esses provided byPAR_ENGINE. They hide all aspects of process creation, communi-

cation and synchronisation from the application level. For example, classPARSEARCH

is for solving the breadth-first search problems,PARDIF is intended for the class of

problems which can be parallelized using data partitioning andPARARR supports par-

allel processing of elements of arrays.

The bottom level contains application classes, which specify solutions of specific tasks.

For example,Dirichlet  is a class which specifies the Dirichlet problem,Inte-

gration  solves the screw problem and the15-puzzle  class solves the well known

15-puzzle problem.

NUT classes of the second and third level are expected to constitute a domain-specific

class library for parallel programming.

Control structures support all phases of execution from starting PVM and spawning

tasks until collecting the result and killing remote processes. Most of the PVM initiali-

sation, process creation and control is preprogrammed inPAR_ENGINE. Therefore,

PAR_ENGINE can be used as a basis for developing new control structures. In our

context, the main functionality of a control structure is to support automated instantia-

tion of computational fragments. Each control structure supports also a communication

pattern related to its operating domain. In order to support communication between
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computational fragments, a set of names are defined for each control structure (e.g.

par_in , par_out  in the example below). These predefined names of communica-

tion components are then used inside classes at the application level and act as bindings

between remote processes.

4.2  Solving the Screw Example Using PARARR

The problem-oriented control structurePARARR is used for parallel processing of ele-

ments in an array (each element can be object of an arbitrary class). The communica-

tion pattern of thePARRAR is illustrated in Fig.6. A NUT root process executes

methodExec  of an object of thePARARR class. The root spawns p workers and cre-

ates p objects of an application class each of which is initialized by an element of an

input array. The root process distributes these objects to workers with a request to com-

pute an element of an output array. Each worker asks for all necessary classes from the

root, synthesizes an algorithm for computation, executes it and sends the result to the

root process. ThePARARR structure usesPAR_ENGINE as an interface to PVM,

hence all functions related to the PVM initialization and process control are hidden in

PAR_ENGINE.

A specification of thePARARR class defines two communication components,

par_in  andpar_out of arbitrary classes, which constitute the object passing inter-

face between a group of workers and the root. An element of the input array is passed

by thePARRAR object to thepar_in  component of each application object created

for a worker. The result computed by the worker is passed to thepar_out  component

of the object as an element of the output array collected byPARRAR in the root proc-

ess. It is convenient to use an alias specification included to an application level class

for a worker. In our example, it specifies an input element in the form of a vector

(I2.from , I2.to ) and an output element asI2.res produced by the worker:
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alias

par_in  = (I2.from,I2.to);

par_out = I2.res;

PARARR supports also a set of reduction methods to perform reduce operations (such

as sum, max) across all collected results.

We shall compute the double integral in the screw example (see section 2.0) in parallel

using the control structurePARARR. The integration intervalI2  is divided intop sub-

intervals each of which will be processed by a separate worker. The following NUT

script is executed by the root process to calculate a value of the double integral repre-

sented asresult , using 4 workers:

pararr := new PARARR;

in_arr :=[[0,4],[4,8],[8,12],[12,16]];

pararr.Exec(‘integration’,in_arr);

result := pararr.ReduceAdd();

The first statement of the script creates an instance of thePARARR class. The input

array in_arr  specifies four integration sub-intervals to be computed in parallel. The

methodExec  in the PARARR class spawns workers and distributes four objects of

class namedintegration  (each of which is initiated by an element ofin_arr ):

class integration

var

S: screw;

I1: integral from=0, to=rmax, arg=S.r, val=T;

I2: integral arg=S.z, val=I1.res;

alias

par_in  = (I2.from,I2.to);

par_out = I2.res;

rel
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rmax=cr-S.z*dr;

T=f*S.y;

f=cf*(cx-S.x);

r: zmax,cr,dr,cf,cx -> I2.res{spec};

init

cr:=3;

dr:=1;

zmax:=16;

Objects of theintegration  class are sent to workers. Each worker calculates and

sends the resultI2.res  (aliaspar_out ) to the root process which collects them and

computes the final result using methodReduceAdd .

4.3  Solving the Dirichlet Problem Using PARDIF

As depicted in Fig.6, the control structurePARARR provides communications only

between the root and the workers. The more general control structurePARDIF creates

a grid (one, two or three dimensional) of NUT processes with a communication pattern

illustrated in Fig.7.

Each worker from the grid can communicate with its neighbours.PARDIF can be used

specially for problems which can be parallelized using data partitioning in one, two

and three dimensions.PARDIF object in the root process distributes objects of an

application class to workers as well as a script for communication control. Each worker

can communicate with the root process usingpar_in  andpar_out  components as

in the PARARR communication pattern. To communicate with neighbours, a worker

can use up to twelve communication components in an object of the application class

(see Fig. 8):

set_up, get_up, set_down, get_down,

set_left, get_left, set_right, get_right,
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set_back, get_back, set_forth and get_forth

The first four components are used to communicate in one dimensional grid, the first

eight components in two dimensional grid and all the components are needed in three

dimensional grid of workers.

Each object of the application class which is sent to a worker, is initialized byPARDIF

in the same way as inPARARR, by usingpar_in . Workers can perform computations

iteratively. The number of iterations and the grid dimension are specified in thePAR-

DIF  and application objects during their initialization. During each iteration, a worker

can communicate with its neighbours through the communication components men-

tioned above (set_up , get_up , etc.). After each iteration, all workers send the

results to the root through thepar_out  component.

To demonstrate a usage of thePARDIF structure, we have implemented a two-dimen-

sional Laplace equation solver with Dirichlet boundary conditions, using the simulta-

neous displacement method of Jacobi [4, 7]. This problem called the Dirichlet problem

is formulated as:

(EQ 1)

To solve this equation, the surfaceF is partitioned into ann by n grid whose elements

represent the initial state ofF. The value ofF at the surface boundaries is a known con-

stant. In each iteration, a new value ofF is calculated as:

(EQ 2)

In the NUT application, the grid of the surface is represented by matrix which contains

 elements. The initial matrix is divided into partitions, each of which is processed
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by a separate worker. On each iteration, the workers exchange their boundary rows and

send results of the iteration to the root process to display. Figure 9 illustrates a scheme

of main data communication between workers and the root process.

The following NUT script is executed by the root process to calculate and display val-

ues of the matrix 100 by 100 during 1000 iterations, using four workers connected into

one dimensional process grid:

% Creating objects:

pardif := new PARDIF;

M      := new DirMatrix;

matlab := new MATLAB;

% Initializations:

partitions := M.BuildPart(4);%partitioning the initial

matrix.

max_iter   := 1000;

dim        := 1;

% Starting remote processes:

pardif.Exec(`Dirichlet’, partitions, max_iter, dim);

% collecting results and sending to MATLAB for drawing

for i to max_iter do

m := pardif.result;

matlab.HotImage(M.BuildMatrix(m));

od;

The root process creates an objectpardif  of thePARDIF class, initializes the object

M of theDirMatrix  class and divides it into 4 partitions constituting an arraypar-

titions . These partitions are passed to the objectpardif  as the second parameter.

The root performs the methodExec  in the objectpardif  in order to spawn four

workers, create and initialize four objects from the application classDirichlet , and



30

distribute them to workers for computing. Compared to thePARARR, the method

Exec  in PARDIF has two more arguments: the number of iterations and the dimension

of partitioning. The result of each iteration is collected in the componentpar-

dif.result and passed to display using the objectmatlab . (It is interesting to

notice how easy it is to build an interface to existing software like MATLAB in NUT.

One just has to define an inerface classMATLAB with methods for using the software.

It is so due to the fact that NUT is interoperable with C and Unix -- one can even exe-

cute shell commands from NUT programs.)

Each object of the application classDirichlet  has the following components for

communication with its neighbours and the root:

• par_in  is used for fetching a partition of the initial matrix from the root

• par_out  is used for passing the calculated value of the partition to the root after

each iteration

• set_down , set_up  (the output boundaries) are used for passing newly computed

boundaries of the partition to the neighbour workers

• get_down , get_up  (the input boundaries) are used for fetching boundaries of

partitions from a neighbour workers.

The Dirichlet class is specified as follows:

class Dirichlet

var

my_part, par_in, par_out: DirMatrix;

get_down, get_up,

set_down, set_up: Array of num;

rel

par_out = my_part;

Init: par_in -> my_part, set_down, set_up
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{

my_part  := par_in;

set_up   := my_part.GetRow(1);

set_down := my_part.GetRow(my_part.m);

};

Iteration: my_part, get_down, get_up-> set_down, set_up

{

my_part.Iter(get_down, get_up);

set_up   := my_part.GetRow(1);

set_down := my_part.GetRow(my_part.m);

};

The equation (EQ 2) is implemented as a methodIter  in the classDirMatrix .

5.0  Concluding remarks

A distributed object-oriented computing platform, NUTS, provides a dynamic set of

collaborative NUT processes running on PVM. Each NUT process runs in a user-

friendly interactive programming environment which contains a NUT package. The

NUT environment is an integrated system which is based on object-oriented NUT lan-

guage and supports automatic program systhesis and runtime compilation of classes. A

NUT package is the largest modular unit in NUTS. It encapsulates sets of scripts,

classes, objects and graphics views. Running NUT processes can be controlled from

one host by one user as well as from a number of hosts by multiple users.

NUTS exploits all possibilities provided by the PVM system for parallel machine con-

figuration and process control. However a PVM communication model based on

explicit message passing would require great efforts to construct a flexible and com-

plex schemes of synchronous and asynchronous process communication for aninterac-
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tive object-oriented distributed programming environment such as NUTS. Therefore

the NUTS librarylibrnut  contains two sets of specialized communication routines:

(1) Functions for passing classes, scripts and loading packages, and (2) Functions for

object passing. Functions from the first set are not used for process synchronization,

they are non-blocking, asynchronous and do not need acknowledgments from a desti-

nation.On the other hand the object passing functions based on the EDA multiprocess-

ing model provide a flexible and unified approach to inter-process communication and

synchronization.

As programming environment NUTS smoothly merges declarative programming with

distributed programming, allowing specification of problems on a high level. We have

demonstrated using PARARR and PARDIF classes as examples that NUTS allows the

user to construct different domain-specific parallel programming environments in the

form of hierarchical libraries of classes representing control structures. High-level

structures written in a domain-independent style can provide a set of scalable commu-

nication patterns predefined on a dynamic grid of NUT processes. PVM configuration,

process control and explicit object passing are encapsulated into control structures. An

unified application interface with a NUTS control structure can be specified and used

in the same way as in global class declaration and usage.

The NUT programming environment has flexible graphical user interface and graphi-

cal tools, such as Scheme Editor with a possibility of generation of class, script and any

other texts specified by user. This feature of NUT allows one to simplify development

of both sequential and distributed NUT applications using visual object-oriented pro-

gramming. Graphical representation of classes including control structures developed

by the Scheme Editor constitute a graphical language. Program synthesis capabilities
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of NUT provide a possibility to implement rich semantics of graphical descriptions,

including description of parallel programs.

The NUT system together with its documentation is available by anonymous ftp from

ftp.it.kth.sewhere it is in the directorySoftware/CSlab/Software-Engineering/NUT.

Papers related to he NUT system can be found in www underhttp://www.it.kth.se/

CSlab/Software-Engineering/Projectpage.html.
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FIGURE 1 NUT main window
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FIGURE 2 The screw example
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FIGURE 3 A spawn tree with three grids
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FIGURE 4 Stream of objects
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FIGURE 5 Class hierarchy for domain-specific parallel programming
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FIGURE 6 The communication pattern ofPARARR
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FIGURE 7 The communication pattern ofPARDIF in two dimensions
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FIGURE 8 Communication pattern between application classes inPARDIF
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FIGURE 9 Data communication scheme of the Dirichlet problem
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