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†ICTEAM/INGI, Université catholique de Louvain, Louvain-la-Neuve, Belgium

‡DEIB, Politecnico di Milano, Milan, Italy
§FK EITP, Technische Universität Braunschweig, Braunschweig, Germany

Email: sanaim@kth.se

Abstract—Ensuring user privacy while learning from the
acquired Internet of Things sensor data, using limited available
compute resources on edge devices, is a challenging task. Ideally,
it is desirable to make all the features of the collected data
private but due to resource limitations, it is not always possible
as it may cause overutilization of resources, which in turn
affects the performance of the whole system. In this work, we
use the generalization techniques for data anonymization and
provide customized injective privacy encoder functions to make
data features private. Regardless of the resource availability,
some data features must be essentially private. All other data
features that may pose low privacy threat are termed as non-
essential features. We propose Dynamic Iterative Greedy Search
(DIGS), a novel approach with corresponding algorithms to
select the set of optimal data features to be private for machine
learning applications provided device resource constraints. DIGS
selects the necessary and the most private version of data
for the application, where all essential and a subset of non-
essential features are made private on the edge device without
resource overutilization. We have implemented DIGS in Python
and evaluated it on Raspberry Pi model A (an edge device
with limited resources) for an SVM-based classification on real-
life health care data. Our evaluation results show that, while
providing the required level of privacy, DIGS allows to achieve
up to 26.21% memory, 16.67% CPU instructions, and 30.5% of
network bandwidth savings as compared to making all the data
private. Moreover, our chosen privacy encoding method has a
positive impact on the accuracy of the classification model for
our chosen application.

Index Terms—Data privacy, optimization, greedy algorithms,
machine learning, anonymization, consumer-producer models,
edge devices, IoT.

I. INTRODUCTION

With the increasing popularity of the Internet of Things

(IoT), a tremendous amount of data is continuously being

acquired by a variety of intelligent sensor nodes. This data

is then processed over central cloud platforms or is trans-

formed through some edge devices before reaching the cen-

tral processing node [1]. Although this strategy enables data

storage management and big data processing while utilizing

This work is partially funded by the Erasmus Mundus Joint Doctorate
program in Distributed Computing (EACEA of the European Commission
under FPA 2012-0030).

a distributed computing paradigm, however, distributed pro-

cessing and storage also leads to data integrity and privacy

concerns. Firstly, cloud-based platforms may misuse data due

to monetary goals such as product marketing. In such cases,

the privacy contracts are designed underhandedly to conceal

such privacy breaches [2]. Secondly, cloud-based platforms

undergo security and privacy breaching attacks from time to

time [3], [4]. Thirdly, the end-user might not be comfortable

sharing his private information or publicly disclose some of his

data. In a nutshell, although cloud-based distributed platforms

enable big data processing and storage with certain guarantees

of the quality of service, however, privacy preservation of such

data is vital from the user privacy perspective [5], [6].

Privacy should be preserved on the data acquisition site

i.e. mobile device or embedded edge device attached to some

sensors nodes (SN) before the data is transmitted to the central

cloud-computing resource [7]. In all cases, mobile devices

or embedded edge devices have limited battery, memory

and processing resources. Moreover, the way devices utilize

the available bandwidth effectively, also known as spectrum

efficiency, is a critical performance metric in 5G communi-

cation with large number of devices [8]. Therefore, privacy

preservation in resource constraint data acquisition devices

becomes a bottleneck in data processing pipelines.

The SN acquires a particular set of data features depending

on the application or usage scenario. For example, in the

case of a fire alert system, the features would be temperature,

humidity, and presence of smoke. In the best-case scenario,

the system would like to preserve the privacy of all possible

features. However, preserving some features may not be es-

sential or does not influence the privacy of the user even if

they are not preserved, such features are called non essential

features (NEF). On the other hand, the application might have

some features whose privacy must be preserved at all costs,

known as the essential features (EF). In the optimal case,

the embedded devices should preserve the privacy of EF as

well as the NEF if the resources such as storage, bandwidth,

and processing capability of the devices permit. In order to

adequately utilize the system resources, the crucial question of

which subset of NEF must have privacy preservation should
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be addressed to best utilize the storage, bandwidth, processing

and memory resource of the embedded edge device without

significantly compromising accuracy of algorithm.

Another important issue concerning the machine learning

(ML) applications is the application accuracy, since privacy

may affect the performance of the training and utility of the

ML system model [9]–[11]. Therefore, the accuracy of the

resulting ML training model is a significant constraint while

selecting the optimal subset of NEF.

One way to design such a system involves application-

specific feature selection by performing different trials or by

using application design experience. The handpicked feature

selection may work in some application scenarios, however,

they are challenging to design, are unscalable and unadaptable.

Instead of having handpicked feature selection, a scalable

approach would be to dynamically choose NEFs adequately

suited to the constrained resources of the devices. To avoid

rewriting privacy encoders for varying scenarios, a microser-

vice architecture may provide privacy as a service approach.

Although it might be tempting to apply privacy preservation

measures on all the input data features to ensure maximum

provision of privacy, privacy comes at the cost of increased

resources and very often, a negative impact on accuracy and

efficiency of the system [9]–[11]. Figure 1 shows the trend of

increasingly private features with device resource constraints

for an edge device, Raspberry Pi model A for a simple

machine learning application using anonymization techniques

for privacy preservation (more details to be presented in

Section III-D). As can be seen, adding privacy preservation

requires significant amount on increase in resource consump-

tion. Moreover, depending on the privacy preserving technique

employed, the system could use up to twice the resources

with significant drop in efficiency and accuracy of the system.

For example, cryptography-based privacy preserving solutions

could consume up to 2-5 seconds per operation [12], [13],

which is undesirable for IoT-driven systems.

(a) Memory consumption (b) Processor Instructions

Fig. 1: Increasingly private features vs. resource consumption

for an ML-based application with data anonymization

On the other hand, using low levels of privacy may not

only violate the rights of users, expose the system to privacy-

breaching attacks, but also may violate the data protection laws

such as EU’s General Data Protection Regulation (GDPR).

Therefore, it is important to find optimal operating conditions

offering a good trade-off between system performance and the

level of privacy preserved. Moreover, in the case of resource

constrained devices, it becomes vital to employ efficient pri-

vacy preserving practices on selected features to ensure the

best functionality and quality of service. In summary, the

privacy preservation must be done dynamically in a way that

the privacy of all EFs is preserved and the most optimal set

of NEFs is selected constrained to memory consumption, pro-

cessing requirements, bandwidth consumption and accuracy

of the algorithm. Moreover, the additional processing time

required for privacy preservation should not cause violation

of the service-level agreement between the service provider

and the clients.

The contributions of this work are as follows.

• We propose and present a novel approach with corre-

sponding algorithms and an end-to-end system pipeline

for reconfigurable1 data privacy in machine learning on

resource-limited computing devices.

• We present and have developed a novel greedy search

algorithm, DIGS, to find the optimal selection of privacy-

preserved input data features provided device resource

constraints for a given machine learning algorithm with

its input and output data features.

• We propose an end-to-end system pipeline with our pro-

posed DIGS algorithm, as well as injective privacy preser-

vation functions using generalization and anonymity tech-

niques for reconfigurable privacy.

• We have implemented, illustrated and evaluated the re-

sults of our proposed approach using a real-world smart

health care dataset and machine learning application on

a resource-constrained edge device.

Evaluation of our proposed approach for reconfigurable

privacy in machine learning on resource-limited devices shows

significant resource savings, with up to 26.21% memory,

and 16.67% CPU instructions, and 30.5% network bandwidth

savings as compared to making all input data features private.

The rest of the paper is organized as follows. Section II

presents some preliminaries. The proposed technique and the

DIGS algorithm are presented in Section III. Our experiments

and results are presented in Section IV and discussed in

Section V. Finally, we present related work in Section VI

followed by conclusions and future work in Section VII.

II. PRELIMINARIES

A. Privacy by design and default

In accordance with the EU’s GDPR, all services employing

any collection or usage of user data must provide data pro-

tection by design and by default [14]. This implies that by

default the system should only collect and process data that

is absolutely necessary as well as provide the strictest data

protection guarantees. In the context of resource constrained

devices, this implies that it is vital to determine the most

optimal set of features to make private to provide the strictest

possible privacy preservation.

1Here we use the words reconfigurable and tunable data privacy as
synonyms.
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B. Privacy preservation techniques

When it comes to privacy preservation techniques, a wide

variety of solutions is available. Typically, all privacy preser-

vation techniques employ mechanisms like information flow

control [15], data or model obfuscation via noise addition

[16], use of cryptography [9], [13], anonymization via gen-

eralization and suppression of attributes [17]–[19], and use

of private computation units. As observed in [6], all these

techniques have their respective performance overheads in

terms of reduced application accuracy or longer processing

times. Anonymization is one of the easy to integrate privacy

preservation techniques and also offers the low computational

complexity as compared to other techniques.

1) Anonymization techniques: Anonymization techniques

commonly employ the principles of generalization and sup-

pression. Generalization implies replacing a value with a less

specific but semantically consistent value, while suppression
involves not releasing a value at all [20]. Common prac-

tice in anonymization includes removal or modification of

sensitive attributes such as names, gender, postal codes, and

identification numbers. More sophisticated methods such as k-

anonymization [17], [20], l-diversity [18] and t-closeness [19],

are employed for better privacy preservation guarantees.

III. PROPOSED TECHNIQUE

Given an ML application with its set of input data features

(both EF and NEF), we first calculate the cost for the NEF

through the cost calculating module, and pass these costs to

the optimization algorithm. The algorithm creates a cost matrix

using the input and selects the most optimal features within

the range of device resource constraints. We then apply privacy

preservation to the selected NEF additionally with the EF. This

new privacy encoded dataset is used for the ML application.

The complete system pipeline is shown in Figure 2. We now

explain the system model followed by the explanation for each

component of the proposed system pipeline.

Device Resource
Constraints

DIGS

CCM
EF,NEF

Injective Privacy Functions

ML
Application

Feature 
space O

utput

Cost of Privacy Layer

Fig. 2: System pipeline with DIGS

A. System Model

Consider a system of P producers and A consumers (appli-

cations and services), where P is set of N producers and A
is set of M consumers respectively, as shown in equation (1)

and equation (2).

P = {P1, P2, ..., PN} (1)

P1

P

PP

P

Fig. 3: Producer-consumer system model

A = {A1, A2, ..., AM} (2)

Each P consists of a certain number of features associated

with the producer, for each ith producer the set Σi is shown

in equation (3). To preserve the privacy of the user, the σ’s of

each Pi are encoded in a certain format before they reach the

consumer, as shown in equation (4).

Σi = Pσi
= {σ1, σ2, ..., σx} (3)

where X is the total number of features.

Σ = {Pσ1 , Pσ2 , ..., PσN
} (4)

However, encoding all Σ is not efficient in terms of certain

constraints Γ such as memory, bandwidth, processing (number

of instructions or operations), prediction accuracy, and storage

requirements. As shown in equation (5), Γ contains the max-

imum threshold for all these constraints.

Γ = {Γm,Γbw,Γp,Γa,Γs} (5)

Therefore, the subset of Σ (Σopt) is selected to meet the

given Γ using a certain optimization function F (Σ,Γ), where

Σopt ⊂ Σ. The producer-consumer system model is depicted

in Figure 3, where the users are shown on the left hand side.

The major goal of F (Σ,Γ) is to find a function which maps

Σ to Σopt constrained by Γ. The function F (Σ,Γ) is tunable

in the sense that each time the constraints are updated, new

Σopt can be generated.

B. Greedy Optimization Algorithm - DIGS

We present a greedy approach to selecting a set of optimal

features for provided system constraints, Dynamic Iterative
Greedy Search (DIGS) for privacy preservation.

Assumptions: We make the following assumptions for this

algorithm. The features are assumed to be independent as

the feature similarity or correlation is not catered to in the

algorithm. Moreover, the service provider should specify the

important or EF and the optional features as NEF as this is

orthogonal to the functionality of DIGS algorithm.

EF ∩ NEF = ∅ (6)
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DIGS: Consider that C represents the cost of all constraints

(5) for each feature in Σ, as shown in (7).

C = {Cm, Cbw, Ca, Cs, Cp} (7)

Where, each element in Ci is a row which has N elements, the

σ corresponding to each producer. For example, the memory

cost constraints can be represented as:

Cm = {Cmσ1, Cmσ2, ..., CmσN
} (8)

In order to select the best features in terms of the provided

constraints, we have to check if the cost of each feature is

within the the maximum resource consumption allowance and

afterwards, we check the combinations of features and their

respective costs against the maximum resource consumption

allowance. We first append each element of each row in

Ci such that it contains the value and the index of that

value. Then we sort each row in ascending order to minimize

the calculation time. Then for each category of performance

constraints (memory, bandwidth and so on) as represented by

Γ, we select the set of features Σopt represented as Copt that

are optimal for a particular constraint (locally optimal) as well

as optimal for the total constraints (globally optimal). The

current version of DIGS is written in Python. It must be noted

that Σopt contains only the optimal NEF that can be made

private under the given device resources constraints for a target

ML application.

C. Calculating the feature costs - CCM

An important supporting component of DIGS is the cost

calculation module, CCM. The programming logic consisting

of the application code as well as the programming language,

and the Σ (containing both EF and NEF) are provided as an

input to the CCM. The presented version of CCM currently

supports Python programming language and can be easily

extended to support other programming languages.

1) Memory consumption: We calculated the memory con-

sumption of each feature in the dataframe after applying the

injective privacy function and we also calculated the mem-

ory consumed while running the respective injective privacy

function. For the dataframe memory, we simply used Python’s

memory_usage() function and derived the memory for all

the input data features. For calculating the memory consumed

by the functions, we used a Python library called guppy()
[21] which provides the current heap memory. First, we

cleared the heap memory with setrelheap(). Then we

executed the injective privacy functions with different input

data features and printed the heap memory again. We took the

difference and added this memory usage (in kilobytes) to the

dataframe memory to obtain the overall memory consumption.

2) Bandwidth consumption: The bandwidth cost is calcu-

lated by dividing the dataframe memory with the network

speed of the selected edge device in a certain network, such

as 4G. It is calculated in kbps.

Algorithm 1 The Greedy Algorithm

Function DIGS(C, Γ) : opt feature
Augment each element x in C with key-value pairs:

x← (key : val)
sortedC ← sorted values of C in ascending order

Initialize empty lists opt feature and blck feature
subset← generate a list of subsets with the keys from

sortedC
foreach y in subset do

Initialize sum = 0, flag = 0

suby = subset[y]
foreach i in Γ do

forall key in blck feature do
if key ⊆ suby then

flag = 1

blck feature.append(suby)

break
end
foreach j in suby do

sum += sortedC[i][j]
if sum > Γ[i] then

blck feature.append(suby)

break
end

end
if suby is not in blck feature then

opt feature.append(suby)
end
return opt feature

end

3) Computational processing cost: The computational cost

is device-specific. We calculated the computational processing

cost by translating injective privacy functions into machine

instructions via the lookup table of the selected edge device.

For each injective privacy function, we tokenize the code to

identify instances of operations such as if, else, and,
or statements. These statements are translated to number of

processor instructions using the lookup table from the device

instruction set.

All the computed costs are normalized depending on the

type of resource constraint. This allows DIGS to make fair

comparisons between the resource consumption costs for each

data feature for different type of resource constraints.

D. SVM Classification Model - ML application

Another important component of our system pipeline is the

target ML application. For this work, we use a supervised

classification model using SVM in order to evaluate the effect

of our privacy preserved data on the application accuracy and

resource consumption. Our dataframe contains these features:

nutritional value intake (calories, fat, fiber, protein, carbs,

sodium), activity data (lightly active minutes, sedentary min-

utes, very active minutes, moderately active minutes, calories

burned, steps count), heart rate, height, weight, age, and

gender. We created custom “labels” based on the data values in
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Algorithm 2 The Greedy Algorithm: Additional Features

Function DIGS add feature(sortedC,Γ, opt feature)
:(add opt feature, global optimal)

Initialize add opt feature, add blk feature and

global optimal
foreach x in range(2, len(opt feature) + 1) do

subset← list of subsets of opt param of size x
Initialize gt sum and gt cons
Initialize flag as 0

foreach y in subset do
suby = subset[y]
foreach i in Γ do

forall key in add blck feature do
if key ⊆ suby then

flag = 1

add blck feature.append(suby)

break
end
foreach j in suby do

sum += sortedC[i][j]
if sum > Γ[i] then

add blck feature.append(suby)

break
else

gt sum += sum
gt cons +=Γ[i]

end
end

end
if suby is not in add blck feature then

add opt feature += suby
global optimal.append([suby, gt sum,

gt cons])
end

end
return add opt feature, global optimal

end

Algorithm 3 The Greedy Algorithm: Most Optimal Features

Function most optimal(global optimal) : most opt set
Select the sets of features with the most number of

elements from global optimal
most opt set = Sort the sets by their constraint values

in ascending order and select the set that has the least

total constraints

return most opt set
end

the features. We followed the guidelines from [22] and [23] to

label each day of the user as healthy or unhealthy. For example,

on a specific day if a user was consuming more than 2000
calories and not being active, and if the user’s BMI is over

the average range, we labeled this day as being unhealthy (1),
otherwise healthy (0). We used standard scaler in order to have

similar distribution of the dataset as we noticed there were

more records with one label than the other. We ran the model

on different versions of data, such as all non-private data, all

privacy encoded data, dataset with only the EF being private,

and the dataset containing DIGS selected private features and

essential private features. We compare the accuracy of these

datasets to see the effect of added privacy on the performance

of ML application.

IV. EXPERIMENTS AND RESULTS

A. Dataset

For the evaluation of our proposed system, we used

two datasets: a first-hand collected Fitbit dataset and GAN-

augmented Fitbit dataset. Table I shows an overview of the

datasets in terms of scale. The dataset collection and process-

ing are described in next Sections.

Fitbit FitBit-GAN
# of Users 25 500
# of Days 60 60
# of raw Records ≈17 M ≈340 M
Size 3.2 GB ≈64 GB

TABLE I: Datasets used for evaluation

1) Fitbit dataset collection and privacy concerns: We have

collected a smart health care dataset using Fitbit Charge 2
HR devices with 25 subjects. The subjects were distributed

across Belgium and Sweden. 12 devices were used for dataset

collection with 2 continual participants (male and female) and

10 users in circulation. The data was recorded for 60 days for

each user. The missing entries for the nutritional breakdown

for meals were imputed using Nutritionix API [24]. The body-

mass-index (BMI) was calculated from the user’s weight and

height using the BMI formula [25]:

BMI = kg/m2 (9)

The calorie intake is calculated by converting the macronutri-

ents (grams) in into calories as:

Calories in = fat×9+protein×4+carbs×4+fiber×1.5
(10)

These conversions are done according to [26] and recommen-

dations by Food and Drug Administration (FDA), USA.

The naming convention used for the features is the same as

feature names imported from the Fitbit API, and other features

like height, weight, gender and BMI are user-defined. The

records are aggregated per day and the complete spectrum of

the dataset features is presented in Table II. Here, the less

frequently updated variables are termed as static variables.

On one side, the amount of sensitive information is quite

huge making the active collection of data hard as it requires

fully informed consent for data disclosure. On the other side,

experimenting on such dataset demonstrates the capabilities of

privacy preservation techniques because of the highly private

information present in the dataset. However, we removed the

sensitive individually identifying data (using anonymization)

for the actual processing.
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Feature Name Type Description
Date Static Data log date
Age Static Age of the user
Gender Static Male or female
Height Static Height of the user
Weight Static Weight of the user
Fat Behavioral Fat (gm) consumed from

each food
Fiber Behavioral Fiber (gm) consumed from

each food
Carbs Behavioral Carbohydrates (gm)

consumed from each food
Sodium Behavioral Sodium (mg) consumed

from each food
Protein Behavioral Protein (gm) consumed

from each food
Calories in Behavioral Calculated calorie intake
Calories burned Behavioral Calories burnt
Resting heart rate Behavioral Resting heart rate on the

day before Date
Lightly active minutes Behavioral Minutes of light activity
Moderately active minutes Behavioral Minutes of moderate

activity
Very active minutes Behavioral Minutes of high activity
Sedentary minutes Behavioral Minutes spent sedentary
Steps Behavioral Steps taken
BMI Static The BMI of user
labels Target Indicates whether the user

diet and activity on Date is
healthy or unhealthy

TABLE II: Dataset

2) GAN for Data Augmentation:: To extend the collected

dataset, we used Bi-directional GANs [27], a type of Genera-

tive Adversarial Networks (GAN) [28], to generate additional

users based on their location and gender. The augmentation

of the data was done separately on the 4 different datasets

based on location and gender. We generated total 500 users

from the 4 datasets and after combining all the data we get

33120 aggregated daily records in total. All the features of

this dataset are exactly the same as the Fitbit dataset and the

users also have realistic and similar data distributions as the

Fitbit dataset.

B. Device resource constraints

Raspberry pi RPi 1 Model A is employed for the evaluation

of the DIGS algorithm. RPi is installed as an edge device

which collects data from multiple sensors. RPi has 256 MiB

of memory; however, on average, approximately 56 MiB is

used by the device itself for its system operations. Besides

system memory usage, typically, around 40% of the memory is

used by other applications and processes. Therefore, effective

available and usable RPi memory is around 120 MiB. Consider

a scenario where 100 devices are connected to the edge

device, which is a reasonable sensor node size assumption. Our

experimentation has revealed that encoding of EF with the load

of a hundred sensors consumes almost 20% of the memory.

In our experiments, four EF, i.e., weight, height, age, and

gender, are always considered private. In a nutshell, the device

has limited operational memory left, and the algorithm has to

decide the selection of NEF. The situation becomes further

complicated with more complex injective privacy functions

or more sensors. Similar constraints can be observed for the

device’s processing capabilities; for the available 700 MHz,

mostly 20% of the available computing power is typically used

for system operations. Furthermore, in our observations, on an

average 40% is utilized for other processes of the machines.

So effectively, around 250 MHz clocking power is available

for 100 devices. We have employed simple injective privacy

functions during the experiments, which worked easily for

EF with available device resources. Increasing the complexity

of the injective privacy functions revealed that computational

resources are much more relaxed than memory in terms of

feature encoding and selection. Finally, the bandwidth required

to transmit private EF over the network for all devices was

accommodated in 40% of the available bandwidth. However,

several unnecessary features might cause congestion over a

network, or in the case of other traffic bandwidth, over 40%
of the bandwidth might not be available. Nevertheless, in our

experiments, DIGS could dynamically negotiate required NEF

for available bandwidth, memory, and computational power.

C. Results for Fitbit Dataset

We first calculate the cost measures such as memory con-

sumption, bandwidth requirements and the processor instruc-

tions on the edge device for the non-private version of the

Fitbit dataset. The total memory consumed by the non-private

data was 247.0 KB. Due to small size of the dataset, the

bandwidth required for this dataset on a 100 Mbps 4G network

was 0.0198 Mbps. The additional instructions required for this

dataset were 0 since the dataset is not private.

Afterwards, we transformed every feature from this dataset

to private feature using the privacy encoder injective functions

customized for each feature. We calculated the memory re-

quired for processing of each feature through relevant injective

privacy functions. The total memory consumed through this

privacy preservation process for all features was 533.378 KB.

After converting the features to privacy encoded features the

total private dataframe memory was 1750.369 KB. So if we

made all the features of the Fitbit dataset private the total

additional memory required is 2283.747 KB. The bandwidth

required to transfer this data on a 100 Mbps LAN network

would be 0.1827 Mbps. The total instructions required to

convert the non-private features to private feature was 252
instructions in Raspberry pi RPi 1 Model A.

Due to the sensitive nature of our data there are four features

that we decided to make private to protect our users, denoted

as EF. These EF are: Age, Gender, Height and Weight, which

must be private regardless of resource constraints. We then

calculated the resources required by the dataset that contained

these four EF as private. In this case we only converted these

four EF through their own injective privacy encoder functions,

and all other features were kept with their original values. The

total memory consumption through the injective function for

these features was 103.395 KB. The memory consumed by the

dataframe after enforcing privacy only on the EF was 528.727
KB. After adding both memory usage through the injective
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privacy encoder functions and the dataframe itself, we got a

total of 632.122 KB of memory consumption. The bandwidth

requirement would be then 0.0506 Mbps and the instructions

required to make only the EF private was 85.

In order to provide additional data privacy, now we want to

select more features to be private apart from the user-defined

EF. Moreover, we would like to not exceed the maximum

resources available to us while encoding the data to preserve

user privacy. The available resources for our application on

the Raspberry Pi device was 2516.584 KB of memory, af-

ter deducting the required memory for making the essential

features private we had 1884.462 KB of memory available

so we can select additional NEF to be private within our

allocated memory. We had enough bandwidth and processor to

allocate the processing of making our full dataframe private.

We applied DIGS to select the additional features that could

be private by using the available resources we have in terms

of memory, bandwidth and processor instructions. For Fitbit

dataset, DIGS selected a set of combination with 9 NEF

features that could be private in addition to the 4 private EF.

There were 715 different combinations of features from the

13 NEF. After calculating the total resources required by all

the 715 combinations, DIGS selected the most optimal set

that required the least resources in combination of memory,

bandwidth and processor instructions. With these additional 9
NEF we can now encode a total of 13 features including the

EF and provide more privacy.

After converting the DIGS selected NEF to private features

including the EF, the total memory required by the 13 private

features through the injective privacy encoder functions was

409.241 KB. The memory consumed by the dataframe after

the privacy encoding was 1340.657. Adding the two required

memories, we got a total of 1749.898 KB of memory required

to make the DIGS selected features private. The bandwidth re-

quirement was 0.1400 Mbps and the total number of additional

processor instructions required were 216.

We name these four different versions of the dataset as:

• Version 1: Non-private data

• Version 2: Only ΣEF private

• Version 3: DIGS selected Σopt,EF private

• Version 4: All ΣEF,NEF private

Dataset Memory (KB) Bandwidth (Mbps) Processor
(Instructions)

V1 247.0 0.0198 0
V2 632.122 0.0506 85
V3 1749.898 0.1400 216
V4 2283.747 0.1827 252

TABLE III: Additional resources required for different ver-

sions of the Fitbit dataset

Figure 4a displays the increase of memory requirement in

KB with the increase of more features being private, Figure 4b

and 4c represents the bandwidth requirement in Mbps and the

processor requirements in terms of instructions respectively.

We assumed total available memory in the Raspberry pi

device after all other factors considered was 2516.584 KB, the

available bandwidth was 40000 kbps and available instructions

were 4.2M . DIGS had a great impact on memory, as the

device’s available memory was smaller. However, we noticed

that the privacy encoding process did not have a notable impact

on network bandwidth and processor instructions. The selected

bandwidth speed was very high for the required bandwidth

speed to convert the features to privacy encoded features, as

well the processing power of the RPi device was also a lot

higher than what was required to run all the injective privacy

encoder functions. Hence the major resource saved by DIGS

here was in terms of memory.

To validate the effect of our privacy preservation method,

we ran our ML application on all four versions of the Fitbit

dataset. The classification accuracy on each dataset was very

close, hence encoding with privacy did not adversely affect the

application accuracy. Moreover, for the all private versions of

data, we gained a higher accuracy.

Table IV shows the prediction accuracy of different SVM

models trained using the four different versions of dataset,

the number of private features on each version, the additional

memory requirements in order to make the features private, the

resources saved when we select the DIGS selected features to

be private, and the privacy compromised in terms of number

of exposed NEF. We can see that DIGS effectively selected 9
NEF to be private which provides more privacy and also can

save 26.21% of memory, 30.5% of network bandwidth, and

16.67% of CPU instructions as compared to making all the

features private and overutilizing the resources.

D. Results for GAN Dataset

We discuss the results for GAN dataset in this section. The

data processing steps for Fitbit-GAN dataset are the same

as that of Fitbit dataset. This dataset is quite large than the

Fitbit dataset as it contains 500 users with 33120 aggregated

records. The non-private version of the dataset required total

5299.2 KB of memory, the bandwidth required was 0.423
Mbps and the instructions required was 0 as we did not

run any injective functions on the non-private dataset. We

calculated the additional resources required for this dataset

in order to make only the EF private and also to make all

the features private. The total memory required for the EF

being private only was 11169.24 KB. We ran DIGS with

each individual feature’s resource cost and noticed that as our

current edge device has a low capacity for memory as this

large dataset could not be accommodated with the required

resource allocation in terms of memory. We still ran our

ML application to classify the user’s day as “healthy” or

“unhealthy” in order to compare the result on this dataset with

the original dataset. The accuracy of the SVM on the complete

non-private dataset was 98.07% and the accuracy on all private

dataset was 98.54%.

In order to verify the scalability of our selected edge

device’s capacity of memory allocation we ran our experiments

on three more different sample sizes of the Fitbit-GAN dataset.
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(a) Memory (b) Network Bandwidth (c) Processor Instructions

Fig. 4: Additional resource consumption for increasingly private versions of Fitbit dataset.

Dataset
version

Accuracy on
SVM

Number of private
features

Additional memory required
(KB)

Resources saved
(%)

Number of compromised private
features

V1 96.41% None 0 100% All
V2 96.35% 4 385.122 81% 13
V3 96.79% 13 1502.898 26.21% 4
V4 99.62% All 2036.747 0% None

TABLE IV: The result of SVM on increasingly private versions of Fitbit dataset, number of private features, percentage of

resources saved and privacy compromised features

The first dataset we selected was half the size of the GAN

dataset. The dataset now contained 16560 rows of records

selected from the large GAN dataset. This dataset required

2649.6 KB of memory for the non-private version of the

dataset and the available memory we have for our application

was 2516.584 KB. So this dataset was also large for the edge

device and we did not continue further with our experiments

for the half sized of the GAN dataset.

We further downsized to one-quarter of the GAN dataset

and the dataset now contained 8280 rows of record that were

selected from the large GAN dataset. The memory required

for processing this dataset also exceeded the device resource

constraints, so we further scaled down to processing one-

eighth of the Fitbit-GAN dataset on the edge device.

As can be seen in Figure 5, for the one-eighth size of the

GAN dataset, the non-private version required 662.24 KB of

memory. This dataset contained 4140 rows of records and was

a lot smaller than the original GAN dataset. The additional

memory requirement for the injective functions to make the

four EF private was 1416.19 KB. Moreover, the required

bandwidth for the non-private dataset was 0.0529 Mbps and

the additional bandwidth for only the private EF was 0.113.

The instructions required for the non-private and essential

features being private was 0 and 85 respectively. So now we

have 1100.394 KB to allocate the memory requirement for

additional features to be private by DIGS. We ran DIGS to

select additional features to be private within our allocated re-

sources. DIGS selected three additional features to be private,

Fat, Carbs and Protein among the thirteen additional NEF.

These three features consumed the lowest resources altogether.

We present all the different resource requirements for different

versions of this dataset in Table V.

Dataset Memory
(KB)

Bandwidth
(Mbps)

Processor
(Instructions)

V1 662.24 0.053 0
V2 1416.19 0.113 85
V3 2065.832 0.165 216
V4 4428.896 0.354 252

TABLE V: Resources required for different version of one-

eighth sized GAN dataset

We tested the different GAN dataset versions as we did for

the original Fitbit data by running the SVM and the results

are displayed in Table VI. We notice the trade-off between

providing more privacy and resource consumption. If we want

to make more private features then we have to allocate more

resources such memory in our experiments. If we only make

the EF private, then we are compromising privacy for thirteen

NEF which would be undesireable as well. By applying DIGS,

we were able to select an optimal combination of features to

be made private within our available resources while saving

extra cost for resources. We were able to save 62.74% memory

compared to making all the features private. Also the accuracy

on the private versions of the essential features of the data was

higher than the non-private version, and the more private DIGS

selected private features were a little better than the only EF

being private and we got the highest accuracy on the all-private

features dataset. One possible reason could be the nature of

the supervised classification model combined with the use of

one hot encoding for the categorical values, as the SVM only
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(a) Memory (b) Network Bandwidth (c) Processor Instructions

Fig. 5: Additional resource consumption for increasingly private versions of Fitbit GAN dataset.

Dataset
version

Accuracy on
SVM

No. of private
features

Additional memory required
(KB)

Resources saved
(%)

No. of compromised private
features

V1 96.83% None 0 100% All
V2 97.6% 4 753.95 79.98% 13
V3 97.65% 7 1403.592 62.74% 10
V4 98.80% All 3766.656 0% None

TABLE VI: The result of SVM on different dataset for one-eighth GAN dataset, number of private features, percentage of

resources saved and privacy compromised features

takes numbers as training and test data. The more privacy we

enforced, the more categorical values were created for each

feature which give better accuracy for more private data.

V. DISCUSSION

Our proposed algorithm provides a solution for reconfig-

urable privacy to make more data features private along with

the private EF in order to provide maximum privacy to the

user. The more privacy, the better it is for any kind of personal

data, as data can contain very sensitive information. DIGS

performs very well with the real life users’ data collected

from Fitbit dataset. It has successfully selected 9 NEF to make

private in addition to the 4 EF. Out of the 17 features that we

have excluding the target feature, “labels”, we are only com-

promising privacy for 4 NEF. Moreover, by using the optimal

combination of private features selected through DIGS, we

can save 26.21% memory, 16.67% processor instructions and

30.5% network bandwidth in comparison with the resources

required by all the features being private. In terms of the

impact of privacy preservation on ML application accuracy,

we noticed that the accuracy of our SVM classification has

improved while applying more privacy to the data. This SVM

model can help our user to check if the user had a healthy day

or unhealthy day and can asses the nutrients value that they

consumed and the physical activities that they had done on that

specific day to plan a better or healthier lifestyle. Our results

prove that our ML application provides more user data pri-

vacy while respecting available device resource consumption

constraints. Moreover, we observe higher prediction accuracy

of the SVM model for the all-private data due to the usage of

one-hot encoding on all the input data features.

In order to check the scalability of our application, we

experimented with the GAN dataset which contained 500 users

and 33120 rows of records. As this dataset was very large

as compared to our edge device, Raspberry Pi’s available

resources were not able to process the privacy preservation for

this dataset. The non-private dataset itself was large enough

not to fit in the device. Then we decided to test on different

sizes of this dataset to check the limit of the device’s capacity.
We divided the GAN dataset to its one-eighth size and this

dataset was small enough to fit within the resource constraints.

However, it was still more than 2× the size of our original

Fitbit dataset as it contained 4140 records and the Fitbit dataset

had 1663 records. For this dataset, DIGS was able to select 3
additional NEF features to be private in addition to the 4 EF

which provided more privacy to the user data. We also could

save 62.74% of memory if we compare with all the features

being private, even though we are compromising privacy for

10 NEF. But compared to the non-private dataset and only EF

being private dataset, with the help of DIGS we were able to

make more features private while using the available resources.
The accuracy of the SVM had a similar trend as on our

original Fitbit dataset. The SVM trained on the most private

dataset version exhibited the highest accuracy due to the one-

hot encoding of all the features as they all were categorical

after privacy encoding and accuracy gradually improved with

more privacy. However in an ideal situation we want all our

data to be private and have the highest level of privacy if

sufficient device resources were available.
The reason that DIGS could not be applied on a large

dataset like Fitbit-GAN was not due to the ML application,

but rather it was device specific. We have selected a low-
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memory edge device and it was not able to handle large

memory consumption required for processing the Fitbit-GAN

dataset. For edge devices with more resources, our algorithm

would work fine as it worked on the two smaller dataset Fitbit

dataset and the one-eighth size of the GAN dataset.

VI. RELATED WORK

Fitness trackers are gaining popularity as they help to

maintain user’s health and well-being. But in order to provide

a fully personalized user experience, these trackers require

the users to share their personal information. Sharing personal

information becomes a huge concern for the users, as they need

to decide whether the tracking devices are a safe platform to

share sensitive personal information or not [29]. Data privacy

in similar applications and devices has become the biggest

concern due to the pervasive nature of huge data collection

through different IoT devices and the lack of data security [30].

Various data privacy techniques have been applied to address

these concerns and researchers are continuously working on

inventing new techniques to provide better protection for the

user data throughout the data mining process [29].

Commonly used data protection techniques in the health

care sector include k-anonymity [17], l-diversity [18] and t-

closeness [19]. The k-anonymity method involves arranging

specific columns of quasi-identifiers that are altered or re-

moved, resulting in k rows in the dataset with similar attributes

[17]. l-diversity [18] and t-closeness [19] are extensions of the

same concept with stronger privacy guarantees. The required

modifications are implemented before publishing the data to

tackle privacy threats. This is also known as privacy-preserving

data publishing. These privacy-preserving techniques work

well in general, however, with the increased learning abilities

of artificial intelligence-based algorithms, these data protection

methods are not enough to reduce various privacy-breaching

attacks and threats, as noted in [6], [31].

In the study [32], [33] by Horchidan et al., differential

privacy [16] was applied to add noise to the dataset in order to

provide privacy to a similar Fitbit dataset. This technique was

effective when applied on a large dataset, whereas on a smaller

dataset it might produce incorrect results [32], [33]. Orlosky et

al. [34] studied accelerometer and pulse rate of 24 users from

Fitbit Blaze devices. Their study showed that the accuracy on

the Fitbit Blaze is not good compared to the medical grade

devices and the users’ concern about data privacy is valid due

to the intervention of third-party applications.

Providing data privacy has some trade-offs. Dong et al. [35]

conducted a research to measure the trade-off between smart

grid operations and adversarial inferences about consumer con-

duct, by considering direct load monitoring of thermostatically

regulated loads and investigating how its output degrades as it

receives less samples. By providing less samples they wanted

to protect the privacy of the data. Their work provided a

framework to evaluate the trade-off between utility of the

collected data and its privacy preservation.

Reconfigurable or tunable privacy provides user control

over the trade-off between the user privacy and other factors

such as: access to services [36], data sharing to trusted

parties in collaborative computing environments [37], system

performance [38] and efficiency [39], [40], model accuracy

[41], and data utility [35], [42] and deniability-utility (in case

of location-based services) [39].

In our study, we used users’ food and activity data and our

goal was to make user data as private as possible constrained

to device resource consumption. We used generalization tech-

niques in order to provide user data privacy. We also studied

the trade-off between provision of privacy preservation and the

required additional resource consumption for privacy preser-

vation in a resource constrained environment.

VII. CONCLUSIONS AND FUTURE WORK

We propose DIGS (Dynamic Iterative Greedy Search), a

novel mechanism for reconfigurable privacy preservation for

ML features on the resource constrained edge devices. DIGS

provides reconfigurable privacy by choosing an optimal set

of data features to make private provided the device resource

constraints. DIGS employs user-defined privacy injective func-

tions to make the data private. We demonstrate DIGS using

privacy injective functions employing the anonymization based

privacy preservation solutions. Moreover, our privacy preser-

vation mechanism based on user-defined privacy injective

functions is flexible as it can cater to any privacy preservation

solution as long as each data point is processed individually

and the cost for each operation can be computed. Results of

our experiments on health care datasets show that for the

studied ML application with 17 data features, DIGS is able

to select up to 9 additional (non-essential) features apart from

the 4 user-defined essential features that must be private and

provided additional privacy to the user data, with significant

memory savings as well as CPU instructions and network-

bandwidth savings as compared to making all the features

private. Moreover, the privacy encoded data used in ML

applications provides minimal impact on the performance of

the model, and in our case, provides even better prediction

accuracy due to the use of the one-hot encoding mechanism.

In this work, we have implemented and evaluated a proof-

of-concept prototype of our proposed mechanism for recon-

figurable privacy in ML. Our research can be extended in

multiple directions as it is a novel approach towards privacy

provision. The algorithm can be tested on other edge devices

such as micro-controllers like Arduino Uno, smartphones, and

also advanced variants of Raspberry Pi that have more re-

sources. We can also extend our system by applying ML-based

optimization solutions for selecting the most optimal feature

set to be private provided the device resource constraints.

Furthermore, we can incorporate other techniques for privacy

preservation in the injective functions such as k-anonymity,

l-diversity, t-closeness, and even stronger techniques for pri-

vacy preservation such as differential privacy. Lastly, we can

demonstrate the impact of using our system for other kinds of

ML applications performing regression or classification while

employing different versions of the same dataset with different

user privacy preservation levels.
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