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Abstract. DOSNs are distributed systems providing social networking
services that become extremely popular in recent years. In DOSNs, the
aim is to give the users control over their data and keeping data locally
to enhance privacy. Therefore, identifying behavioral groups of users that
share the same behavioral patterns in decentralized OSNs is challenging.
In the fully distributed social graph, each user has only one feature vec-
tor and these vectors can not move to any central storage or other users
in a raw form duo to privacy issues. We use a gossip learning approach
where all users are involved with their local estimation of the clustering
model and improve their estimations and finally converge to a final clus-
tering model available for all users. In order to evaluate our approach,
we implement our algorithm and test it in a real Facebook graph.
Keywords: Decentralized Online Social Network (DOSN), Gossip Learn-
ing, Newscast EM, Behavioral Group Identification

1 Introduction

Recently, discovery of meaningful groups of users that share the same behav-
ioral patterns in social networks has become an active research area. Behavioral
group identification has many valuable applications. For instance, it can help in
improving recommendation systems, it can be used for advertisement purposes,
direct marketing, and for risk assessment in online social networks. The key idea
in risk assessment is that the more the target user’s behavior diverges from those
of other similar users, the more the target user is risky [2]. Therefore, risk assess-
ment approaches require to identify similar users that share the same behavioral
patterns.

By considering a social network as a graph, each node is depicted as a user,
and an edge connecting two users denotes the relationship between them. Here,
the main problem is that all users are connected in friend to friend graph, but
users that share the same behavioral patterns not necessarily have friendships
in the graph. In grouping users we consider the profile and activity information
such as age, gender, education, nationality, number of friends, activity level, etc.
Furthermore, in investigating the discovery of behavioral groups, we have cast
our attention to decentralized online social networks (DOSNs) [5]. In DOSN,
there is no central infrastructure and discovery of behavioral groups is more
challenging than in the centralized setup. In the fully distributed social graph,
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each user can only communicate with his/her direct friends without sending all
the private group identification feature values to his/her direct friends in a raw
form. In more details, behavioral patterns can be classified into social and indi-
vidual behavioral patterns. Social behavioral patterns rely on user interactions,
while individual behavioral patterns are related to profile information [20]. In
this paper, we propose a methodology for identifying both social and individual
patterns to group users in DOSNs.

The problem of finding similar users in social networks has been widely stud-
ied in the context of community detection. Community detection approaches that
are pure link-based, relying on topological structures [6], [7], fail to group users
with the same behavioral patterns in that such users might belong to different
communities based on their friendship links. Moreover, some of the community
detection approaches are content-based that they rely on the analysis of the con-
tent generated by each user [21], [18]. The major problem of these approaches
is the overhead for building the graph, based on similarity measures, that is not
suitable for real-time applications. On the other hand, when each user feature
vector includes both discrete and continuous features, the various behavioral
patterns may not be obvious by similarity measures and then, this identification
can not be made correctly. However, there are some stream-based community de-
tection methods suitable for real-time applications [16], [22]. But, most of these
approaches are link-based [17], and they do not consider the personal feature
vector of users.

To alleviate the limitations of existing approaches, we propose a fully de-
centralized clustering algorithm which is capable of clustering distributed infor-
mation without requiring central control. The selected clustering model requires
specific aspects to be considered such as: the final clustering model should main-
tain a reasonable performance compared to a centralized clustering model and
should be robust in that it should not easily fail when some of the users leave
the network or do not answer to messages. Also, all users should be able to
have the final clustering model at any time after convergence to assign a group
for themselves and their direct friends in a local way. Finally, we need to min-
imize the communication cost by decreasing the number of messages and the
size of them as well. These requirements bring us to exploit Newscast EM [13], a
probabilistic gossip-based randomized communication clustering approach, orig-
inally developed for clustering users in peer-to-peer networks. In Newscast EM,
each user initializes a local estimation of the parameters of the clustering model
(mean, standard deviation, etc.) and then, contacts a random user from all users
in the network, to exchange their parameters estimation and aggregate them by
weighted averaging. The choice of random selection is crucial to the wide dis-
semination of the gossip [13], since, the probability of a user being sampled
is proportional to his/her degree [19]. Gossip-based peer-sampling service [10]
provides a user with a uniform random subset of all users in the peer-to-peer
network. But, the main difference between peer-to-peer and social networks is
that in peer-to-peer networks each user can directly communicate with any other
user in the network to exchange information. On the contrary, in social networks
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each user can just communicate directly with his/her direct friends. Therefore,
we use the random-sampling implementation for social networks proposed in
[11].

The main contribution of this paper is making Newscast EM to be applicable
on top of DOSN and apply it to identify behavioral groups of users. Our goal is
to achieve an accuracy comparable to a centralized scheme. The advantages of
this distributed behavioral group identification are: 1. the usage of both social
and individual patterns of users, 2. feature values of users are never send over
the network in a raw form and 3. it has low computation and communication
cost. The remainder of this paper is organized as follows. We first explain News-
cast EM in Section 2. Then, we propose our gossip-based implementation for
behavioral group identification in Section 3. In Section 4, we show the result of
the clustering model. Section 5 introduces the related work. Finally, Section 6
concludes the paper.

2 Background

In selecting the clustering technique, we focused on soft clustering (i.e., probabilistic-
based clustering). Hard clustering techniques, (e.g., k-means) are not proposing
a solution to the problem of clustering discrete or categorical data [4] since
they are based on distance metrics. We use EM (Expectation Maximization)
algorithm, that is, a probabilistic based clustering method. In particular, EM
defines K probability distributions to identify K clusters for all users based on
their feature vectors, where each distribution represents the likelihood of those
feature vectors to belong to a given cluster. In this way, EM first assigns a set
of K membership probabilities to each user u based on his/her own feature vec-
tor. Then, EM maximizes these likelihoods by learning the parameters of the
clustering model in order to assign to each user the cluster with the highest
probability.

The main idea of distributed EM algorithm is that each user starts the
Expectation-step with a local estimation of the parameters of the clustering
model. Then, in the Maximization-step, the algorithm employs a gossip-based
protocol to learn a final clustering model from these local estimations. Each
user exchanges his/her own estimations with several other users by using a ran-
domized communication protocol. By gathering these estimations from random
users, the target user can update and re-estimate his/her own estimation.

In the following, we present a summary of Newscast EM. Interested readers
are referred to [13] for more details. Let N be the set of users in the OSN, the
probability of membership or weight of a target user u, u ∈ N , in cluster l is
defined as [4]:

wl(u) =
wl.pl(u|θl)

K∑
i=1

wi.pi(u|θi)
(1)
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where, wl is a weight computed as wl = |Nl|
|N | , with Nl denotes the set of users

belonging to the lth cluster, where
K∑
l=1

wl = 1; function pl(u|θl) is the component

density function modeling the feature vector of the lth cluster, where θl = {µl, Σl}
represents the parameters for lth distribution, that is, the mean and the covari-
ance.

Newscast EM uses a fully distributed averaging process for estimating the
parameters Θ = {wl,µl, Σl}, l = 1, . . . ,K. Assuming that each user has just one
feature vector, then the Expectation-step implies that each user locally estimates
the parameters based on his/her own feature vector. In this manner, each user ui,
i = 1, . . . , N starts with a local estimation of Θi = {wli,µli, Σli} for the parameters
of the cluster l. However, in the Maximization-step of the algorithm user ui
needs information from all users in the network to recompute his/her parameters
estimation. Therefore, this step is implemented as a sequence of gossip-based
cycles. The details of the algorithm, which each user will run in parallel is as
follows:

Initialization phase: We assume that all users agree on the number of
clusters K and start the exchanging protocol. Each user ui, sets the membership
probability for each cluster as wl(ui) to some random positive value and then
normalizes all to sum to 1 over all l. This phase is completely local for each user.

Maximization-step: In this step, user ui initializes the local parameters
estimation for each cluster l as follows: wli = wl(ui), µli = ui and Σ̃li = ui.ui

T ,
where T is the transpose of the feature vector of user ui. Then, user ui for <
cycles repeatedly initiates the information exchange with random users, i.e., uj.
Then, users ui and uj update their local parameters estimation for each cluster
l as follows:

w
′
li = w

′
lj =

wli + wlj

2
(2)

µ
′
li = µ

′
lj =

wli.µli + wlj .µlj

wli + wlj
(3)

Σ̃
′
li = Σ̃

′
lj =

wli.Σ̃li + wlj .Σ̃lj

wli + wlj
(4)

Expectation-step: User ui, after waiting for < cycles for the convergence
of his/her local parameters estimation, computes new membership probabil-
ities for each cluster l using the Maximization-step estimations wli, µli and
Σli = Σ̃li − µli.µ

T
li. We denote with Θt the parameter values set at iteration t and

then Θt+1 = {(µt+1
li , Σt+1

li , wt+1
li ), l = 1, . . . ,K}. The sequence of Θ-values which is

then the likelihood of Θ, L(Θ), is non-decreasing at each iteration. Then, user ui
checks the stopping tolerance by using the estimations from the previous EM-
iteration to see if it is satisfied or not, until |L(Θt)− L(Θt+1)| ≤ ε, where ε > 0.
If it is not satisfied, the Maximization-step is repeated, unless a stopping toler-
ance is satisfied. In the following, we will explain how to run newscast EM in
decentralized social networks.
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3 Newscast EM in DOSNs

In social networks, each user can just communicate directly with his/her direct
friends. Therefore, we propose our gossip-based clustering framework on DOSNs
that contains two main components: UserSelection and ClusteringModelUpdate.
The same algorithm is run by each user in the network in parallel, as shown in
Figure 1.

3.1 User Selection

In randomized user selection, the problem is that if users can be selected ran-
domly with equal probability, the estimation will be unbiased. But, it is well
known that the probability of a user being sampled is proportional to his/her
degree [19]. Therefore, more popular users have a higher degree and tend to have
a higher probability of being sampled. This will lead to overestimate the average
value during the gossip process. There are plenty of approaches to select a uni-
form and unbiased random sampling of users in DOSNs such as: graph traversal
techniques [15] and Random Walk [14]. But, most of these approaches are bi-
ased towards high degree users [19]. To have a uniform random sample of all
users, each user needs to know every other user in the network. Since, accessing
each user in the network to gossip with, is unrealistic in a large-scale dynamic
networks, we apply a technique for DOSNs proposed [11] for randomized com-
munication, to define a dynamically changing random graph topology over the
network. This technique includes two methods Initialization and SelectUser.

The initialization procedure initializes the service for the new user when
he/she joins the social network. First, each user ui maintains a list of its direct
friends and two hops friends in a small fixed size cache, called Random Neighbors
Cache (RNC), including e entries. The set e of entries in the RNC contains the
list of random users ID, their longevity field, and the path to reach them. The
field longevity is the age of the entry since the moment it was created by the
user. Then, in the SelectRandomEntries() procedure, a user selects S subset of
neighbors from RNC and puts them in a cache, called Exchange Cache (ExC).
After that, the target user ui continuously selects one of his/her neighbors with
the highest longevity from RNC, i.e., uj, in SelectRandomUser() procedure, to
exchange entries of ExC. Then, ui increases by one the longevity of all the other
entries in ui’s RNC.

In social networks, as shown in Figure 2, if user A wants to communicate with
user D, he/she needs to reach first B and then C. Therefore, each user needs
to maintain both a set of random users ID and also the path to reach them in
order to exchange the entries of ExC. For instance, let us assume that in Figure
2.(a) user A has six entries in the RNC that include C, I, K, D, N and B. User
A selects user I with the highest longevity among all neighbors in the RNC and
wants to exchange S (i.e., 3 in this example) number of his/her neighbors in the
ExC, such as C, D, N , with user I. On the other hand, user A needs to pass
through (M , L) to reach user I. Therefore, user I, in order to reach all of the
entries in the ExC of user A, needs to first reach user A and then he/she will be
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able to reach all entries inside A ’s ExC. The problem is that this path could be
long. For instance, user I, in order to reach user D, first needs to reach user A
by passing through (L, M) and then from A to user D via (B, C), i.e., (L, M , A,
B, C). This path is long and it is not the shortest path from user I to D. But,
user I can reach user D by passing through his/her mutual friends with D, like
(E ,D) or (L, D).

More precisely, to decrease the communication cost, the protocol in [11] builds
a new path for user I to reach all entries in user A’s ExC during the exchanging
process, illustrated in procedure UpdateExC() in Figure 1. In this way, the source
user A asks all users within the direct path from A to I, i.e., (M , L, I) to build a
new path for all the entries to be accessible for user I. This process in summary
is as followings. First the source user (A) only adds his/her ID to the first part
of the address of each entry in ExC and sends the ExC to the next user (M)
on the path towards user I, as shown in Figure 2.(1) in red color. Then, every
next user (for instance user M) within the path towards user I and also user
I him/herself, after receiving the ExC, first reverses the path of each entry in
ExC, as shown in Figure 2.(2).a and starts traversing all users inside the reverse
path to check, if he/she has any direct friendship or mutual friends with those
users. If yes, he/she removes the remaining part of the path and adds his/her
friends or mutual friends ID to the path and adds the ID of his/herself to the
first part of the path (except user I that does not need to add his/her ID to the
first part of the path), as shows in Figure 2.(2).b (the first and second row of
ExC). If not, he/she keeps the path and just adds his/her ID to the first part of
the path as shown in Figure 2.(2).b (the third row of ExC).

Then, all other users within the path towards user I, i.e., user L, do the same
and send the ExC to the next user towards user I. When user I receives the
final ExC, checks all entries in the ExC and updates them in his/her own RNC.
Then, user I replies by selecting a subset of his/her ExC entries, updates the
entries path and, then, sends them to user A from the path (L, M , A).

After exchanging neighbors for a number of cycles, the service will converge
to a random overlay where each user connects to a uniform random subset of
all users currently in the network. But, in our framework, users in addition of
exchanging neighbors, also exchange their parameters estimation of the cluster-
ing model. In this way, when the service converges to the random overlay, also
converges to a final parameters estimation available for all users and then, users
are able to update their local parameters estimation. After some iterations of
the EM algorithm, they will converge to a final clustering model. In the next
section, we will explain in more details the update of the clustering model.

3.2 Clutering Model Update

The second main component of our framework is the online clustering algorithm
that updates the clustering model based on the local parameters estimation of
each user. In our setting, in the set e entries of the user ui’s RNC, in addition
to the list of random users ID, their longevity field, and the path to reach them,
we maintain their parameters estimation of the clustering model. Therefore, the
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Fig. 1: Gossip-based clustering protocol

gossip-based clustering algorithm shown in Figure 1 performs the following steps.
In the initialization phase, each user ui, in addition to filling RNC with direct
friends and two hops friends, initializes the local parameters estimation for each
cluster l. After the initialization phase, users initiate exchanging neighbors and
the parameters estimation of the clustering model simultaneously and periodi-
cally at a fixed period 4T . We do assume that the length of the period 4T is the
same for all users. During a period 4T , each user initiates one exchanging cycle.
There are two types of communication models for exchanging the information.
In the Push based model, a target user ui sends ExC and parameters estimation
(Θi) to the selected user. In the Push-Pull based model, both the target user
ui and selected user uj exchange their ExC and parameters estimation. Our
communication model is based on Push-Pull, since the Push approach can easily
lead to partitioning the set of users in the network [10], [11].

After initialization, the initiating user ui increases by one the longevity of
all neighbors in his/her RNC. After that, user ui selects neighbor uj with the
highest longevity among all neighbors in RNC, and set the longevity of uj to
zero in his/her RNC. If the information has to be pushed, user ui replaces uj’s
entry in RNC with a new entry of longevity 0 and with ui’s ID and path to reach
user ui. Then, user ui selects S subset of neighbors from ui’s own RNC, and save
them in the temporary ExC. Next, user ui updates the entries path in the ExC
by building a new path as mentioned in procedure UpdateExC() in Figure 1, and
sends it to the next user in the path towards user uj. After that, user ui sends
his/her local parameters estimation to the next user uk in the path towards user
uj. Later, all users in the path towards user uj update the entries path in the



8 Distributed Behavior-based Group Identification

ExC and send the updated ExC and parameters estimation received from ui to
the next user in the path towards user uj.

When user uj receives from one of his/her direct friends the ExC coming from
user ui, user uj replies by selecting a random subset of S neighbors of his/her
own RNC and save them in his/her ExC. Next, user uj updates the entries path
in ExC by adding his/her ID to the first part of the entries path and sends
ExC to the next user on the path towards user ui. After that, user uj sends the
local parameters estimation to the next user in the path towards user ui. Then,
user uj updates the entries path in the received ExC. Next, uj discards entries
pointing at uj and entries already contained in uj’s RNC and updates his/her
RNC to include all remaining entries, by firstly using empty cache slots, and
secondly replacing entries among the ones sent to ui. User uj set longevity to
zero for all entries of received ExC in the RNC and does not increase, though,
any entry’s longevity in the RNC until he/she initiates the exchanging process.
After that, user uj updates his/her own parameters estimation by calculating
the weighted average with the parameters estimation coming from ui. Finally,
user uj updates the parameters estimation of ui and ui’s ID and the path to
reach ui inside his/her RNC.

Under this algorithm, after some cycles, the local parameters estimation of
users converge exponentially fast to the global parameters estimation in each
Maximization-step of the EM algorithm. Therefore, each user is able to compute
new membership probabilities and check the stopping tolerance. Each user main-
tains the newly updated parameters estimation from the previous EM-iteration
in a small cache, called Estimation Cache (EsC), of fixed size. When the cache
is full, the parameters estimation stored for the longest time is replaced by the
newly added parameters estimation. Therefore, after some iterations of cluster-
ing, all users will have a final clustering model and compute a final membership
probability to belong to their most fitting cluster.

Fig. 2: (a) before and (b) after the neighbours exchanged between A and I
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3.3 User Behaviour-based Group Identification in DOSNs

Our goal is to have similar users in each group based on their social and indi-
vidual features. Feature vectors of each user are given as input to the algorithm
in Figure 1. Therefore, each user can assign a cluster number (behavior group)
to him/herself based on the feature vector by considering the maximum mem-
bership probability among them.

User’s features vector includes two types of features: individual and social
features. Individual features are those, like age, gender, but also those that im-
pact the possible users’ behaviors, like, education and nationality. In addition to
individual information, in order to measure users’ attitude in online socializa-
tion, we consider the following social features:
Number of Friends: social users with a lot of friends have different patterns than
isolated users with few friends;
Activity Level: unlike active users that write a lot of posts, passive users do
not send any information to others. We calculate this feature as the sum of: a)
number of posts that a user sends to others from the first day of joining the
community, b) number of likes that a user performs on posted items, and c)
number of comments a user writes for posted items;
Percentage of public profile items: the assumption is that users with all profile
information (100%) public are more social.

4 Experiments

To perform the experiments on a real graph, we used the Facebook dataset
crawled and used in [1]. The author crawled the profiles information and friend-
ship links of 75 users that launched the application as seed. Then, the application
crawled the information related to these 75 users’ friendships. We removed those
profiles that have many missing features and obtained a graph by considering
the largest connected component which includes 13,000 user profiles, plus the
75 seed users, with a total of about 461,700 friend links, 6,150,892 likes and
1,742,709 comments. Totally, around 7,000 users have more than 75% profile
information as public.

4.1 Results for convergence of the clustering model

The experiments are ran with S = 50 [10]. During the exchanging process the
mean of the local parameters estimation, µi,c of each user ui, i = 1, . . . , N for
each cluster in cycle c, c = 1, . . . ,< is always the global correct mean µc, but,
the variance measure σc2 that expresses the deviation of the local estimations
from the correct mean in the given cycle c decreases over the set of all local
estimations on the average by factor γ, with γ < 1

2
√
e

[10]. In general, when the
variance tends to zero, then all users hold the global correct mean µc.

µc =
1

N

N∑
i=1

µi,c and σ2
c =

1

N − 1

N∑
i=1

(µi,c − µc)
2
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The convergence factor between cycle c and c+ 1 is given by σ2
c+1/σ

2
c . We plot the

convergence factor (values are averages for 20 independent runs) as a function
of the number of cycles, as shown in Figure 3a. It is clear to see that the speed
of the convergence of the variance is fast and it decreases exponentially after
few cycles. Thus, means that, after a small number of cycles, all users, including
the isolated users with low friendship links, will have accurate estimations of
the global correct mean µ in each M-step, when no failures occurred. From this
experimental result, choosing the number of cycles < equal to 1201 is sufficient
to reach a convergence.

4.2 Coping with User Failure

In a dynamic network, users continuously join and leave the network and they
fail in some situations. In this section, we consider the performance of the clus-
tering model when some percentage of users fail in each cycle of the exchanging
parameters estimation.

As we mention before, each user maintains the parameters estimation he/she
receives from other users in the network in his/her ENC. If a user ui sends
his/her parameters estimation to a user uj to exchange and performs averaging
and, waiting for 4T time, he/she does not receive any answer, ui checks the
ENC to verify if he/she has the parameters estimation of user uj from previous
cycles or not. If yes, ui performs the average with those previous values and
updates his/her parameters estimation. Otherwise, he/she skips the exchanging
step. We need to mention that the user selection method in [11] takes care of
the failure of those users within the path between user ui and uj. We consider
the effect of these missing exchanges on the final value of the global µ of the
clustering model. Towards this goal, we remove 50% of users in each cycle of
the exchanging protocol and run independently the Newscast EM for 20 times.
We show the result in Figure 3b. The y-axis shows the variance of the 120th
cycle to the first cycle. The figure shows that if the failure happens in the first
cycles, the result of the global µ of the clustering model is so far from the real
correct global µ. But, if this failure happens in the next cycles (especially after
the 100th cycle), the variance tends to zero.

4.3 Clustering Results

In Table 1a, we can see the performance of randomly initialized Newscast EM and
centralized EM, by setting different number of clusters. The result in this table
shows the average number of EM iterations for each user to achieve convergence
in Newscast EM (around 42± 3) and centralized EM (around 38± 2) that are
almost near. After convergence, the value of µi for each cluster at each user will
converge to the true global µ. For example, Table 2a shows this value for feature
Activity level in centralized EM and Newscast EM that are almost equal. Also,
Table 2b shows the values of µ for each cluster for the feature Number of friends.

1 We assume that all users agree on the number < of peer sampling cycles, and < is
large enough to guarantee convergence to the final parameters estimation.
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Fig. 3: The convergence factor and the variance after users failure

(a) Convergence factor

(b) The variance of µ at cycle 120 (for 20
independent run) after the failure of 50% of
users in each cycle

Table 1: EM iterations and the ratio of users for different number of clusters

(a) EM iterations

EM Iteration
NoClusters CentralizedEM NewscastEM

3 38 41.25
5 38 42.53
7 39 41.38
10 38 43.19

(b) The ratio of users (RU) in each cluster

ClusterNo 10 7 5 3

Cluster1 20.27% 32.43% 47.29% 41.89%
Cluster2 20.27% 21.62% 22.97% 32.43%
Cluster3 14.86% 18.91% 10.81% 25.67%
Cluster4 10.81% 9.45% 12.16%
Cluster5 9.45% 6.75% 6.75%
Cluster6 6.75% 5.4%
Cluster7 1.35% 5.4%
Cluster8 5.4%
Cluster9 5.4%
Cluster10 5.4%

Table 2: The value of µ for two features

(a) Activity level

ClusterNo CentralEM NewscastEM

C1 27.5 27.35
C2 52.53 52.25
C3 48.31 48.05
C4 11301.68 11299.987
C5 6869.46 6868.299
C6 335.83 334.062
C7 18338.18 18336.647

(b) Number of friends

ClusterNo CentralEM NewscastEM

C1 536.39 535.56
C2 272.91 271.47
C3 194.42 193.39
C4 438.35 436.04
C5 276.87 275.41
C6 963 961.93
C7 953.6 951.58

4.4 Dominant User Behaviors

Identifying the number of clusters or user behaviors is related to the nature of
the dataset. Therefore, there is no correct or incorrect numbers of groups to find.
Each increment in the number l of clusters yields to a new group and similarly
a new behavior. On the other hand, if we consider a small number of groups by
aggregating some behaviors, we will have the most dominant behaviors, but, we
may miss some relevant behaviors. In this paper, we assume that we know the
best number of clusters. However, we analyze the quality of the clustering for
various values of l. In Table 1b, we report the ratio of users that belong to each
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cluster, by considering different numbers of clusters. When we have 10 clusters,
the percentage of users that belong to the ’7th cluster’ is 1%, that is, very small
in size. By setting the number of cluster to 5, we will have around 50% of users
concentrated in one group (1sh cluster) that will be a huge cluster, and we are
not able to precisely identify their behavioral pattern. For the number of clusters
equal to 3, we will have the most dominant behaviors, but, we will miss a lot of
behavioral patterns. Therefore, we consider the number of clusters equal to 7 in
the rest of the experiments.

In the next experiment, we analyze the influence of each feature value on
the quality of the discovered groups. Then, among all features, we remove those
features that have the same distribution in all clusters. More precisely, we discard
those features whose existence in the clustering will not propose a new behavioral
group. In order to have a measure for the distribution of each feature value for all
clusters, we use the inter-group relative feature value [20], denoted by Relatedfl,
which measures how a feature f of cluster l is related to the same feature of the
other clusters. It is computed as follows:

Relatedfl =
featurefl

K∑
l=1

featurefk

(5)

where featurefl is the value of feature f in cluster l. This allows us to see if
the value of a feature is evenly distributed in all clusters or concentrated in a
single cluster. For example, we can see in Figure 4a the distribution of all cat-
egorical features such as age, number of friends and activity level. This figure
shows that the distribution of the feature ’age’ in all clusters is nearly the same.
Then, we remove this feature since it can not help us to define any behavioral
pattern. For discrete features, such as: gender, nationality and percentage of
public profile items, we consider the fraction of users that have the same value
for that feature in each cluster as shown in Figure 4b. We removed ’gender’ and
’percentage of public profile items’ and we consider all the remaining features.
Based on the experimental results, we are able to find the most dominant be-

Fig. 4: The distribution of features in each cluster

(a) Categorical features (b) Discrete features

haviors, that are shown in Figure 5. These dominant behaviors are categorized
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as follows: 1)most active users with high number of friends: users in cluster 7
have the highest activity level and the highest number of friends. These users
have a bachelor or master degree and all of them are from Italy. 2)very active
users with medium number of friends: these users are concentrated in cluster 4,
have a medium activity level and a medium number of friends. Their education
level is either elementary school, bachelor or PhD and they are from all countries
except Italy and USA. 3)active users with low number of friends: these users are
concentrated in cluster 5, and their education level is either diploma, bachelor
or master and they are from all countries except USA. 4)passive users with high
number of friends: these users are concentrated in cluster 6. These users have
either a bachelor or PhD degree. They are from all countries except Italy. 5)very
passive users with medium number of friends: these users are in cluster 1. These
users are from all education levels. They are from all countries except Italy.
6)most passive users with lowest number of friends: these users are concentrated
in cluster 3. Their education level is either bachelor or master and they are from
all countries except USA. 7)most passive users with low number of friends: these
users are in cluster 2 and most of them have bachelor. They are from all countries.

Fig. 5: The most dominant behaviors with percentage of users in each group

5 Related Work

In decentralized setting, there are several distributed clustering algorithms like
building and using a single clustering model for each user individually based on
his/her local dataset[9]. Other approaches are sharing the data between users
[24]. But, the communication cost is high to share all the raw data between
users. Another approach is to organize the clustering model in a hierarchical
fashion [23], [9] by which local clustering models are computed first for each
user individually, and sent to a logically higher-level user that aggregates local
models. But, users need to share all their private information that is a big issue
in our application as well as in some other applications.
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Other related work are in the area of distributed computation in large dis-
tributed systems. In deterministic averaging techniques, each user repeatedly
selects all his/her immediate neighbours to update the local parameters esti-
mation. For example, authors in [8] proposed an EM algorithm based on this
approach. However, this technique is not suitable for social networks, because
of the existence of some high degree users. Another kind of technique is prob-
abilistic gossip-based approaches [3], [12] where, at each iteration, each user
repeatedly selects a uniform random user and both users compute the average
of their parameters estimation. For instance, the newscast model in [12], the
gossip-based protocols in [3] and Newscast EM are all based on gossip learning.
Since for applying Newscast EM in social networks, the network needs to be
fully connected, we use gossip-based peer sampling service on social networks.

6 Conclusion

We identify behavioral groups of users by applying the Newscast EM algorithm
on top of DOSNs. We combine the ability to access random users on social net-
works with distributed clustering model to identify group of behavioral patterns.
For future directions we are planning to find a solution for defining the best num-
ber of clusters in a distributed manner and also for exchanging information in a
secure way for avoiding malicious users manipulating the local parameters esti-
mation of the clustering model. Furthermore, we will use the identified behavioral
patterns for risk assessment in DOSNs.
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