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Abstract—The growing computational demands of model train-
ing tasks and the increased privacy awareness of consumers call
for the development of new techniques in the area of machine
learning. Fully decentralized approaches have been proposed,
but are still in early research stages. This study analyses gossip
learning, one of these state-of-the-art decentralized machine
learning protocols, which promises high scalability and privacy
preservation, with the goal of assessing its applicability to real-
world scenarios.

Previous research on gossip learning presents strong and
often unrealistic assumptions on the distribution of the data, the
communication speeds of the devices and the connectivity among
them. Our results show that lifting these requirements can, in
certain scenarios, lead to slow convergence of the protocol or
even unfair bias in the produced models. This paper identifies
the conditions in which gossip learning can and cannot be applied,
and introduces extensions that mitigate some of its limitations.

I. INTRODUCTION

In recent years, new massively-distributed data sources
have emerged, such as smart sensors, smartphone apps and
connected devices. This shift towards decentralized data pro-
duction poses new challenges to traditional machine learning
approaches, which have focused on processing the data in a
central location, such as a datacenter. Collecting data from
decentralized sources can be hard and costly, due to storage
and bandwidth limitations and due to the speed and scale
at which new data is produced. Furthermore, these sources
may contain sensitive information, which poses additional
burdens and limitations to its collection, due to the increased
regulations and consumer awareness regarding data privacy.

Decentralized, peer-to-peer machine learning protocols can
alleviate some of these issues. These protocols can scale more
easily than a centralized approach: as new data sources are
added, the amount of data to process grows, but so do the
available computing power and network bandwidth, thanks to
the participation of these new devices in the protocol. Further-
more, decentralized protocols represent an interesting starting
point for the development of privacy-preserving systems, by
limiting the amount of information that has to be shared.

One state-of-the-art approach in this field is gossip learning
[1]. This decentralized machine learning protocol has been
shown to be very efficient, scalable and flexible. It has
been successfully applied to many different machine learning
problems, including classification with SVMs [1], k-means
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Fig. 1: The space of configurations explored in this study.

clustering [2] and matrix decomposition [3]. However, to the
extent of the authors’ knowledge, gossip learning has not
been implemented in any industrial application, and has only
been tested in restricted experimental conditions, which raises
questions on its performance in real-world scenarios.

Thus, the goal of this study is to assess the applicability
of the protocol in real-world conditions, by testing it outside
its “beaten path”. To do this, we first identify the three
assumptions, stated in previous papers on this technique, that
are likely to be violated in non-controlled environments. These
are 1) that each device stores a single data point (referred to as
the fully-distributed data model), 2) that each device is able to
communicate with all others (unrestricted network topology),
and 3) that the processing and communication speeds of the
devices are homogeneous. We then simulate the protocol on
different workloads as we lift these assumptions to different
levels, in order to identify the circumstances in which the
protocol keeps working, and those in which it fails.

According to our results, gossip learning shows poor per-
formance on restricted communication topologies, only main-
taining its original convergence speed in those networks that
exhibit good expansion properties. Furthermore, some com-
mon real-world network topologies, such as power-law and
community-based ones, can lead to very slow convergence
and even incorrectly biased models, when paired with non-
IID data distributions. The results also show that gossip
learning, while able to handle heterogeneous distributions of
the communication speeds of the nodes, fails to converge to
the correct models when these speeds are correlated with the
distribution of the data.

To widen the scope of applicability of gossip learning,
we also propose and test different extensions to the original



Algorithm 1 Skeleton of the gossip learning protocol

Algorithm 2 Skeleton of the model update using SGD

procedure MAIN
currentModel < INITMODEL()
lastModel < currentM odel
loop
WAIT(A)
p < RANDOMPEER()
SEND(p, currentM odel)
end loop
end procedure
procedure ONMODELRECEIVED(m)
currentM odel < UPDATE(MERGE(m, lastM odel))
lastModel < m
end procedure

protocol. One allows each node to train on multiple data
points per node, even non-IID distributed, achieving rapid
convergence. The others mitigate the erroneous model biases
that the original protocol exhibits in some common real-world
scenarios, such as data-dependent communication speeds and
data-dependent power-law communication topologies.

Thus, the contribution of this paper is twofold: charting the
area of applicability of gossip learning, identifying its main
limitations, and enhancing the protocol, by proposing novel
extensions that widen its real-world applicability. Fig. 1 visu-
alizes the parameter space explored and the results obtained in
each setting, along with the position of the proposed extensions
in the parameter space.

II. THE GOSSIP LEARNING PROTOCOL

Originally introduced by Ormandi et al. [1], gossip learn-
ing is an asynchronous protocol designed to train a global
model over decentralized data using a gossip communication
approach [4]. Its simplicity, flexibility and efficiency make
it an interesting starting point for the development of next-
generation decentralized machine learning systems.

Conceptually, starting from a common initialization, multi-
ple models perform random walks over the network, learning
from the data stored in each device visited. This is accom-
plished by having the nodes update the received models on
their local data and then gossip them out to a randomly-chosen
peer. To speed up the learning process, the models are also
merged with each other along their walks.

Algorithm 1 shows the generic skeleton of the protocol,
which can be applied to different kinds of machine learning
tasks. The main loop performed by each device is very simple:
a random peer is chosen among the other participants in the
network, and the current model is gossiped to it. When a
device receives a new model, it merges it with the last model
previously received and then updates the resulting model by
performing local training. The resulting model is stored locally
for prediction and for gossiping with peers, until a new model
is received and the process is repeated.

The UPDATE and MERGE procedures can vary greatly
depending on the kind of model to train. This work focuses
on supervised models that can be trained using Stochastic
Gradient Descent (SGD), with a decaying learning rate and

A > The regularization parameter

X, Y > The features and label of the local data point
procedure UPDATE(m)

w,t < m

n+<1/(\-t) > The decaying learning rate

w < (1 —7n-X)-w 4+ 7-GRADIENT(W, X, ¥)
return (w,t+ 1)
end procedure

regularization. In this scenario each model includes, in addi-
tion to its weights w, a timestamp ¢, which represents the age
of the model, defined as the number of data points it has been
trained on. The timestamp is used to compute the decaying
learning rate, which is applied to the problem-specific gradient,
as shown in Algorithm 2. To implement the MERGE operator,
we use a simple average of the model weights.

III. LIMITATIONS OF GOSSIP LEARNING
AND POTENTIAL SOLUTIONS

Unfortunately, gossip learning, as developed in state-of-the-
art research, holds some assumptions that limit its applicability
to real-world scenarios. It is thus fundamental to understand
whether it is possible to lift them, and to what extent. In fact,
none of these assumptions presents a “binary choice”. Rather,
there are different levels at which each can be lifted. This paper
presents extensive simulations to identify what parameters
affect the correctness and performance of the protocol, and
how far it can be pushed before hitting a hard limit.

A. Fully Distributed Data Model

The first limitation is the fully-distributed data model, where
each device is assumed to own a single, private data point. This
may be the case in some circumstances, such as in certain
recommender systems; however, there are many scenarios
where a single user might have multiple useful data points,
such as text completion and image classification.

To address this limitation, we propose a simple extension of
the original protocol. The UPDATE function, which performs
one step of the learning process, can be called multiple times
on different data points. In the case of stochastic gradient
descent, multiple SGD steps can be performed sequentially.
Thus, after training on a node with d data points, the model
(w,t) will become (W, ¢+ d).

With this simple extension enabling training on multiple
data points, one can question whether the size of the dataset
sample stored on each node affects the behaviour of the
protocol. In general, the number of data points on each device
1 follows some distribution D; ~ D, which in real-world
scenarios could be very skewed. It would be reasonable to
believe that the characteristics of the sample size distribution
might affect the behaviour of the protocol, and that the
protocol might thus be limited to some of them. This study
analyses many different scenarios, with the results showing
that the convergence speed and accuracy of gossip learning
are not affected by this choice.



When each node stores a sample with multiple data points,
another consideration is that the way the samples are drawn
from the overall data set might also influence the behaviour
of the protocol. Intuitively, if samples are IID, the protocol
should be expected to behave better than if the samples are
non-IID. Our results confirm this intuition, showing, in the
latter scenario, a divergence during the early phases of training.

B. Network Connectivity

The second limitation derives from the use of gossip com-
munications to spread the models across the whole network.
The robustness and dissemination efficiency of this approach is
based on the assumption that each node, at each iteration, can
choose its peer uniformly at random from the entire network.
This is typically achieved by using a peer sampling service
[5], which provides each node with a uniform random sample
of the network members. Unfortunately, this still requires each
device to be able to communicate with any other participant in
the protocol. In certain applications, this might be impossible,
due to security or privacy limitations. In other cases, it might
be inefficient and potentially expensive. Thus, in many real-
world scenarios, the devices might be limited to a small,
fixed set of neighbours for their communications, based on
an underlying restricted topology. It is therefore necessary
to understand whether gossip learning works correctly and
efficiently on restricted communication topologies.

Network topologies can present many different characteris-
tics. 1) They can be generated randomly or according to some
predefined pattern. 2) The distribution of node degrees can be
tight, with a similar number of neighbours for each device, or
very wide, following for example a power-law distribution. 3)
The network can be more or less robust, based on the amount
of redundant paths between the nodes. Also, 4) the network
can be more or less well-connected, depending on the lengths
of the shortest paths between pairs of nodes. The simulations
show that, while the protocol converges to the correct model in
all instances, these last two characteristics are critical to ensure
a good convergence speed. Topologies with low expansion, a
metric that includes both robustness and well-connectedness,
require more iterations to converge. An Erdds-Rényi graph,
presenting low diameter and a high number of alternative paths
between any pair of nodes, shows the same performance as
a fully-connected topology. The other side of the spectrum is
represented by the tree topology, which has only a single route
between any two nodes, and presents a quite large diameter
of log(N), where N is the number of nodes. According to
the simulation results, this topology requires 100 times more
iterations to converge. Thus, a “bad” topology can make gossip
learning unfeasible for large applications.

Furthermore, in some real-world scenarios, the position
of some nodes in the communication topology might be
correlated with the data stored in them. For example, a network
may present tight communities with similar data points, with
a very low number of inter-community links. We show that in
this very specific, yet common scenario, the protocol exhibits a
very slow convergence rate. The lower the percentage of inter-

community links, the longer the time needed for the models
to spread through the whole network and reach convergence.

Another harmful interaction of communication topologies
and data distribution is shown by power-law networks, where
a small number of nodes exhibit a very high degree, while
a majority of the devices only have a few neighbours. This
kind of topology is known to be very common in social struc-
tures, and can thus be expected to appear in gossip learning
networks. In this situation, most of the communications need
to pass through the high-degree nodes, which act as hubs to
keep the network connected. The simulations show that in
these conditions the models develop a bias towards the kind
of data points stored in the hubs. As such, the trained models
result unrepresentative of the real data distribution, rendering
the protocol useless.

This kind of bias is a known limitation of natural random
walks: the probability of a random walk visiting a node is
proportional to its degree [6]. Usually degree-biased random
walks, based on the Metropolis-Hastings algorithm [7], repre-
sent an effective solution to this problem. This approach can be
stated as follows: after choosing the candidate peer to send the
model to, consider its degree. If it is lower than the degree of
the current node, send the model unconditionally. Otherwise,
send it with a probability inversely proportional to its degree.
The Metropolis-Hastings algorithm “corrects” the distribution
of the random walks by forcing them to spend additional time
in low-degree nodes. In the gossip learning case, to make
this additional time spent in low-degree nodes meaningful,
an additional change is needed: when a node decides to not
gossip its model, it performs one more round of local training
on it. This counters the bias introduced by hubs, but in certain
applications it might cause the models to overfit local data
and lose generalization. Furthermore, our simulations show
that this approach, while drastically improving the training
result, does not completely remove the bias towards the data
in high-degree nodes.

For this reason, we experiment with an additional technique,
which we name pass-through gossiping. This approach consist
in making hubs act as “bridges” between low-degree nodes, al-
lowing the latter to indirectly gossip each other and thus hiding
the power-law structure of the network. In practice, when node
7 receives a message from ¢, it only performs the usual merge
and update steps with probability p(i,7) = min(1,d;/d;).
Thus, if the sender has lower degree than the receiver, there
is a chance the receiver might save the received model as its
current model and later propagate it, without going through the
usual update and merge operations. This approach provides
slightly better results than Metropolis-Hastings, converging
more quickly to a model very close to the expected one.

C. Communication Speeds

The third and last limitation of gossip learning regards the
communication speeds of the devices. Previous research [1]
considers speeds normally distributed, thus creating a scenario
where most speeds are concentrated around the mean, with
only a few outliers. In many real-world situations, where



Algorithm 3 Protocol extension for data-dependent speeds

procedure MAIN
currentModel < INITMODEL()
lastModel < currentM odel
for j € Neighbours do
M + INITMODEL()
end for
loop
WAIT(A)
k < RANDOMPEER() > Pick received model to use
currentModel < UPDATE(MERGE(Mjy, lastM odel))
lastModel < Mj,
p + RANDOMPEER()
SEND(p, currentM odel)
end loop
end procedure
procedure ONMODELRECEIVED(m, j)
Mj —m
end procedure

> Initialization

> Main loop

> Gossip new model

different types of devices need to cooperate, the speed dis-
tribution might be much more heterogeneous.

The considerations regarding this assumption are similar
to those presented for the sample size at each node: the
communication speeds can be drawn from different kinds of
distributions, and it is important to understand whether the
characteristics of the chosen distribution affect the behaviour
of the protocol. We show that gossip learning can handle
different distributions, even very skewed, as long as they are
independent from the data distribution.

But, when the data distribution and the speed distribution
are correlated, the protocol produces a model that is biased
towards the subset of samples stored on faster devices. The
reason is that these nodes output their models more often than
the others, and thus trick the protocol into “thinking” that their
data points are more numerous than they actually are.

In particular, this behaviour arises because those nodes that
have both fast and slow neighbours receive more models from
the former. Thus, the models of the former are propagated
more often. This insight helps in defining a mitigation for
this issue. If the receiving node could ensure that it receives
and processes models picked uniformly at random from its
neighbours, without being affected by their speed, the protocol
would converge to a correct model.

We thus propose an extension to gossip learning, where each
node ¢ has as one model slot M for each of its neighbours
j € N(i). When receiving a model from a neighbour j, instead
of processing it immediately to update its current model, node
1 saves it in the corresponding slot M. Only when the time
to gossip a new model comes, node ¢ picks a random slot
M, and uses the model stored there to perform the MERGE
and UPDATE steps. In this way, the receiving node has no
bias in its choice. Furthermore, a fast node might choose the
model of a slow one multiple times before receiving a new
one, thus “boosting” it by propagating it more often than
the original slow node could do. Our results show that this
extension can completely mitigate the bias introduced by data-
dependent speeds.

However, this extension introduces some drawbacks: the
memory requirement at each node grows from O(1) to O(K),
where K is the number of neighbours of the node, as it
needs to store the last model received from each neighbour.
In some scenarios, such as resource-constrained IoT networks,
this kind of overhead could be unacceptable. Furthermore,
this extension requires each node to have a fixed, small set
of neighbours. While this is the case in most real-world
scenarios, this extension cannot be used with full connectivity
and random peer sampling, as used in the original protocol.

IV. METHODOLOGY
A. Machine Learning Algorithms

Support Vector Machines (SVMs) and linear regression
were chosen as the algorithms to perform the tests. Many
reasons drove this choice: 1) they represent different classes of
tasks, namely binary classification and regression; 2) they are
simple, well-known and extensively-studied algorithms, and it
is thus easy to analyze them and reason on their behaviour;
3) they require little computational effort, allowing a larger
number of simulations to be performed in a shorter time and
thus allowing this paper to test a wide range of configurations.

To train the SVM, the Pegasos algorithm was chosen [8].
This algorithm is based on the primal formulation of the SVM
problem, instead of the more common dual approach. This
makes it more appealing for decentralized learning, as the dual
approach requires frequent access to the entire dataset in order
to train its weights. Furthermore, it is based on stochastic sub-
gradient descent, and can be easily embedded in Algorithm 2.

B. Parameters

In order to simulate different real world conditions, three
main parameters were modified throughout the experiments.
These parameters, each related to one of the main limitations
presented, are: 1) the distribution of data points to the nodes
2) the communication topology 3) the distribution of commu-
nication speeds among the nodes.

For the first parameter, different data distribution were
tested, presenting different characteristics, but all sharing the
same average sample size k, allowing a fair comparison.
The fixed size distribution assigns k data points to each
of the N nodes, while the uniform distribution picks the
size of each sample randomly in the range [1,2k — 1]. The
Pareto distribution, defined as p(z) = a - m®/x%*1, produces
very skewed sample sizes, while a Gaussian distribution with
1 = k represents a middle ground between very homogeneous
distributions and very skewed ones.

Performing an exhaustive test of all possible choices for the
second parameter, namely the configuration topology, is chal-
lenging, due to large amount of different characteristics that
these can present. A full topology corresponds to the behaviour
of the original protocol, were all nodes can contact each other.
Erdés-Rényi graphs are well-connected random topologies,
parameterized by their average node degree. Barabdsi-Albert
random graphs present a power-law distribution, with a few



Fig. 2: (left) The cosine wave and a sample of the generated
data points after adding noise. (right) The points with x < 0
(red) and = > 0 (blue), with the linear models fitting them. In
green, the best linear regressor for the whole dataset.

hubs and many low-degree nodes, and are parameterized by
the minimum node degree m.

The experiments also included other random graphs. One
is the graph obtained by randomly connecting a set of n
well-connected communities, which can be seen as a planted
partition model [9]. Some notable non-random graphs are also
tested, including k-ary trees and rings.

Similarly to the data distributions, multiple speed distribu-
tions were also tested, including constant, uniform random and
gaussian speed distributions.

C. Datasets

The datasets were initially chosen from the UCI repository
[10]. In particular, SpamBase and WineQuality [11] were used,
respectively for binary classification and regression.

Unfortunately, testing some of the target scenarios using
these datasets proved difficult. To be able to test the ef-
fect of data-dependent topologies and data-dependent speed
distributions, it must be possible to split the data set in
subsets that show different characteristics in terms of features.
Furthermore, it should be easy to analyze the evolution of
the models trained on these subsets, in order to understand
whether any unfair bias is introduced by the protocol.

In order to fulfill these requirements, we introduce a custom
synthetic dataset, based on a scaled cosine wave, defined as
y = 0.5 cos (2mz), with € [—0.5,0.5].

By sampling this cosine wave and adding some white
Gaussian noise, a dataset suitable for regression tasks can be
built. This dataset presents two clearly distinct patterns: for
r < 0, y grows with z, while for x > 0, higher x values
correspond to lower y values. Thus, while each of the two
sides can be easily learned by a linear regressor, a single
model trained on their union would not be able to give a
better approximation than y = 0, and would thus perform
very poorly, as shown in Fig. 2. The same dataset can also be
adapted to a classification task, by adding a G - ¢ term to y,
where G is the width of the “gap” between the two classes,
while ¢ € {—1,1} is the randomly-chosen class label.

Fig. 3 provides an example of the kind of analysis that can
be performed on this synthetic dataset. Internally, the weights
of an SVM models represent the components of the normal
vector to the hyperplane that separates the two classes to
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Fig. 3: Angles of the SVM models trained on z < 0 (blue)
and = > 0 (red) subsets of the cosine-generated dataset.

avg. angle
=
'S

-
N}

=
o

identify. The picture shows the evolution of the angle between
these normal vectors and the x axis. An horizontal model
would have a vertical normal vector, thus showing an angle
of m/2 a 1.57. A higher angle corresponds to a model with a
positive slope, while a lower angle identifies a negative slope.
In the picture, the red and blue lines correspond to the average
model angles for those devices storing points with < 0 and
x > 0, respectively. Incidentally, this picture confirms one
of the statements in Section III-A: when the distribution of
data points is not IID, as in this case, where each device only
stores points with either x < 0 or = > 0, the protocol takes
longer to converge, as in the initial phases the models trained
by different nodes diverge towards their respective solutions.

V. EXPERIMENTAL RESULTS
A. Multiple Data Points per Node

The first set of experiments aims to verify whether the
distribution of sample sizes among the nodes affects the
performance of gossip learning. To check this, different sample
size distributions were tested, the only invariant being the
average sample size. The results, shown in Fig. 4, demonstrate
that different distributions do not affect the behaviour of the
protocol: the same average sample size results in the same
convergence speed, no matter how heterogeneous the values
of the distribution are.

Furthermore, training on multiple data points provides a
clear advantage over the original protocol, as the models see
more data in the same number of iterations, and thus converge
faster. It must be noted, though, that the number of model
merges is still limited to one per node per iteration, which
means that having an average of k£ samples per node does not
provide a true k-fold convergence speed increase.

B. Restricted Communication Topologies

The second set of experiments is designed to test the effects
of restricted communication topologies on the behaviour of the
protocol. To this end, many different topologies were tested.
As most topology can be further modified by the choice of
specific parameters, different parameter sets were tested for
each topology, as shown in Fig. 4.

The results show that well-connected, robust topologies,
such as the Erd6s-Rényi, Barabdsi-Albert and community-
based graphs, present a convergence speed that matches a
fully-connected topology. On the other hand, topologies with
high diamater and low link redundancy, such as trees and rings,
show a clearly slower convergence.
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Fig. 4: Comparison of different topologies. Good expanders
perform similarly to a fully-connected network, while bad
expanders show slow convergence.

It can thus be concluded that gossip learning only provides
reasonable performance when applied on topologies with good
expansion, as this property summarises both low distance and
high redundancy. It must be noted though that, given enough
time, all topologies eventually converge to the same accuracy.

C. Heterogeneous Communication Speeds

The third set of simulations aims at verifying the suitability
of gossip learning for scenarios where the nodes present
very different speeds. The results show that assigning speeds
randomly, even from a wide range, which converges to the
same result in the same number of iterations, as if all speeds
were equal. This can be seen by comparing the first and second
columns of Fig. 5.

On the other hand, the behaviour of the protocol changes
dramatically when the speed distribution is correlated with
the data distribution. The third column of Fig. 5 shows the
behaviour of gossip learning on the cosine dataset in the
extreme case in which all nodes storing data points with x > 0
(red) are faster than all those storing data points with < 0
(blue). In this case, the model quickly drifts in favor of > 0,
converging to a very definite negative slope.

The last column of Fig. 5 shows the performance of
the extension introduced in Section III-C to deal with this
limitation of the original protocol. It can be seen that the
extension does not manage to fully re-establish the symmetry
that data-independent speed distributions present. However, in
the long term, it succeeds in inducing the models to converge
to the expected horizontal hyperplane. Thus, this extensions
successfully fulfills its overall goal, allowing the application
of gossip learning to scenarios where the speeds of the nodes
are unknown and possibly correlated with dataset features.

D. Data-Dependent Community-Based Topologies

The fourth set of simulation analyses a special scenario
that may arise when a restricted topology is correlated with a
non-uniform data distribution. In particular, when nodes with
similar data points form tightly-connected groups, with only
a small amount of links connecting separate communities.

In these circumstances, most of the communications happen
within a single community, with only a few messages travers-
ing the inter-community links and “contaminating” other
groups. As can be seen in Fig. 6, moving from a random

topology to a community-based one, or decreasing the per-
centage of inter-community links available for contamination,
causes the models to diverge more and more towards the local
optimum of each community.

However, after a certain number of iterations, the models
start to converge towards the correct global optimum. This
number of iterations does not depend on the percentage of
inter-community links, as both the second and third column of
Fig. 6 show the tipping point to be slightly after 100 iterations.
A clue to the motivation is given by the last column of Fig. 6,
which shows the evolution of the training when the timestamps
of the models are artificially capped after 100 iterations. In
these circumstances, the convergence never happens, and the
models keep maintaining the angle reached at iteration 100.

The reason for this behaviour is that SGD-based gossip
learning uses a decaying learning rate that is computed based
on the timestamp of each model. Setting an upper bound to
the timestamp is equivalent to setting a lower bound to the
learning rate. Thus, it can be deduced that, in the community-
based scenario, the convergence of the protocol is entirely
determined by the decrease of the learning rate.

In the initial phases of the protocol, when the learning rate is
still quite high, any “foreign” models that enters a community
is quickly “erased”, thanks to the high influence of the local
updates. Later in the process, when the learning rate is low,
the local updates become negligible, and the gossip learning
is reduced to an averaging protocol. When this happens, the
infrequent averaging of the local models with “foreign” ones
is sufficient to lead the system to convergence.

E. Data-Dependent Power-Law Topologies

The fifth and last set of simulations is concerned with
another special interaction between a restricted topology and a
non-uniform data distribution. Specifically, the case in which,
in a power-law topology, the nodes with high degree present
a different data distribution than those with low degree.

Fig. 7 compares the evolution of the models on an Erdds-
Rényi graph, with the degrees of all nodes very close to the
overall average, and on a Barabdasi-Albert power-law graph,
with the top 50% nodes in terms of degree storing data points
with z > 0 (red), while the other nodes store points with
z < 0 (blue). In the latter case, the models become quickly
biased towards hubs.

The reason for this behaviour is that, according to Algorithm
1, the model gossiped by a node is the result of merging and
training the last two received models. Due to their position,
hubs receive, in each iteration, a large number of models
from their low-degree neighbours. All but the last two of
these models are discarded and will not contribute to any of
the models gossiped in the following iteration. On the other
hand, models trained by hubs are almost never discarded,
as a vast majority of the potential recipients are low-degree
nodes, which rarely receive more than two models in a single
iteration. Thus, the overall effect is a strong bias towards the
data stored in hubs.



constant speed uniform random speed

data-correlated speed data-correlated speed, with extension

avg. angle

— ———|

=
o]

v—-

=
°
avg. angle

0 10° 10! 102 10° 0 10° 10! 10?2 10°
iteration iteration

0 10° 10! 102 10° 0 10° 10! 10? 10°
iteration iteration
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rapdom grlaph . cqmmunitie§ (5% cgntamin.ation) .

X co.mmunitie.s (3% cqntamin.ation) X max timestamlp = 100l

25
220 Ld
o

2

©15{ << ————

%

1.0

0.5

r2.5
202
=)

r15

1.0

0.5

0 10° 10t 102 10° 104
iteration

0 10° 10* 102
iteration

10° 104

0 10° 10t 10? 10° 104
iteration

0 10° 10! 10? 10° 104
iteration

Fig. 6: Evolution of SVM models on the cosine-generated dataset, with random vs community based graphs. Last column:
effect of capping the timestamp (and thus the learning rate) in a community-based scenario.
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Fig. 8: Error rate of the models, trained with different exten-
sions meant to mitigate the skewness of power-law topologies.

Fig. 8 shows the behaviour of the protocol with each of the
extensions introduced in Section III-B. Metropolis-Hastings
converges to a good result, similar to a non-power-law topol-
ogy. However, in the first phases of training, this approach
shows a more pronounced divergence between the models
of the two subsets of nodes, especially on the low-degree
side. This behaviour, induced by the additional local training
steps, reinforces the conjecture that this approach might cause
overfitting in certain scenarios. The pass-through gossiping
approach exhibits the most accurate converged model and the
lowest divergence during training, thus showing that directly
countering the power-law nature of the topology, instead of its
effects, provides the best results.

VI. RELATED WORK

In [12], the authors also introduce the possibility for gossip
learning to store multiple data points at each node and to only
communicate over a restricted network topology. However,
their research focuses on the comparison between gossip

learning and federated learning [13], a massively-distributed
but centralized machine learning technique. Thus, the authors
of [12] do not consider many of the scenarios presented in
this paper.

Some of the limitations of gossip learning presented in this
paper relate to broader issues in the field of gossip communi-
cations and have thus been analysed by many previous works
[14], [15]. However, those works focus on generic aggregation
problems. Gossip learning, on the other hand, includes a
continuous training process that interacts with the aggregation
phase, leading to more complex behaviours that are outside
the scope of most previous works. This has been shown, for
example, in Section V-D, where the dynamics of the learning
rate affect the convergence of the protocol.

Regarding the problem of achieving good information dis-
semination over a restricted communication topology, Khel-
ghatdoust et al. [16] propose a technique to build an effi-
cient random overlay over a restricted network, by routing
communication through multiple hops. The resulting overlay,
being a random graph, allows efficient gossip learning, as
shown in Section V. The drawback of this approach is the
need to route the messages through intermediate nodes. In
the context of efficient information broadcasting, Kyasanur et
al. [17] develop an approach to identify those nodes that are
critical in achieving good dissemination. Similar techniques
could be used to tune the performance of critical nodes.

To deal with data-dependent heterogeneous speeds, pull-
based gossip communications [4] represent an alternative to
the protocol extension presented in this paper. In pull-based
gossip, nodes do not push messages to their neighbours.
Rather, they pull messages from them. The drawback of this
approach is the requirement for two-way request-response
communications, that are more susceptible to packet losses and
network delays, compared to the “fire and forget” push-based
approach. Thus, pull-based gossip and the extension proposed
in this paper provide different tradeoffs in order to guarantee
correctness, and may thus be suitable for different applications.



VII. FUTURE WORK

While this paper maps the behaviour of gossip learning on a
wide range of scenarios, there are many other conditions that
need to be tested to ensure the applicability of the protocol
to a larger number of real-world settings. In particular, this
study did not model any failure condition. Previous work
has modelled failures in gossip learning [1], but only within
the scope of the strong assumptions of the original proto-
col. Furthermore, there are still configurations where gossip
learning cannot be used effectively, such as low-expansion or
community-based topologies.

Multiple extensions for gossip learning have been developed
in previous research, including support for concept drift [18]
and model compression [12]. Additional research is needed to
merge these extensions with those presented in this work. Pro-
viding a single, widely-usable gossip learning algorithm would
greatly simplify the deployment of decentralized learning in
real-world applications.

Finally, to the extent of the authors’ knowledge, no research
has studied the impact of malicious devices on gossip learning.
An attacker could try to abuse the protocol to either extract
private data stored by a target device, or to bias the training
towards an adversarial objective. The former could be achieved
by sending specifically-crafted models to the target device, and
observing the changes in the output model. The latter objective
could be reached through model poisoning, with techniques
similar to those employed against federated learning [19].

VIII. CONCLUSIONS

This paper analyzed the applicability of gossip learning to
real-world scenarios. Three main limitations were identified in
its original formulation, that significantly limit its applicability:
the fully distributed data model, the requirement for full con-
nectivity and the assumption of homogeneous communications
speeds. Each of these was analyzed, in order to understand its
impact, and potential extensions to expand the applicability of
the protocol were proposed, where possible.

We show that gossip learning can be extended to handle
multiple data points per node and that its performance is not
affected by the distribution of sample sizes across the network.
The results also show that the protocol can be used in networks
with restricted topologies, without affecting the quality of
the trained models. Unfortunately, the convergence can be
extremely slow when the topology presents low expansion
properties, potentially rendering gossip learning unfeasible in
certain applications. The protocol can also handle nodes with
different communication speeds, as long as these speeds are
distributed independently from the features of the dataset.

Unfortunately, gossip learning is not able to correctly handle
networks whose characteristics are correlated with the features
of the dataset. This paper explored three such cases: 1)
community-based networks with different subsets of the data
in each community, 2) power-law topologies where the hubs
have a different data distribution than the other nodes, and
3) networks in which the communication speed distribution is
correlated with the dataset distribution. In the first case, the

protocol converges to a correct model, but only after a high
number of iterations, due to initial divergence, and this study
found no mitigation to this problem. In the other two cases,
the original protocol provides incorrect results, but we were
able to provide extensions that mitigate these issues.

Overall, it appears that state-of-the-art gossip learning
presents shortcomings that limit its successful deployment in
real-world scenarios. This paper identifies these shortcomings
and addresses some of them by suggesting potential solutions
and research directions. However, more study is needed to
clear the path for the use of gossip learning in uncontrolled
environments.
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