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Abstract—Although the problem of QoS-aware resource al-
location is not new, novel hardware-based resource allocation
mechanisms have recently become available in commodity cloud
servers and enabled a new generation of QoS-aware resource
allocation approaches. Unfortunately, to the best of our knowl-
edge, existing proposals are by design tailored to single-socket
architectures only. In many warehouse scale data centers, dual-
socket (or even larger) machines already constitute the largest
share of hosts. This paper presents the full design and imple-
mentation of BALM, a QoS-aware memory bandwidth allocation
technique for multi-socket architectures. BALM combines com-
modity bandwidth allocation mechanisms originally designed for
single-socket with a novel adaptive cross-socket page migration
scheme. Our evaluation with a large and dynamic set of real
applications co-located on a dual-socket machine shows that
BALM can overcome the efficiency limitations of state-of-the-
art. BALM delivers substantial throughput gains to bandwidth-
intensive best-effort applications, while ensuring marginal SLO
violation windows to latency-critical applications.

Index Terms—QoS-aware resource allocation, Cloud comput-
ing, Multi-socket systems

I. INTRODUCTION

One prominent way to reduce infrastructural costs in the

Cloud is through workload consolidation, i.e., by co-locating

applications on the same physical host. Among the co-located

applications, some have quality of service (QoS) requirements,

as determined by one or more service-level objectives (SLOs),

and are commonly called latency-critical applications (LCAs).

In contrast, the so-called best-effort applications (BEAs) have

no SLO and are simply meant to run in background in a

throughput-oriented fashion.

The co-located applications contend for shared resources,

such as network and storage bandwidth, CPU cores, last-

level caches (LLC), and memory. If allowed to run in the

wild, the co-located system can easily incur noisy neigh-
bour phenomena, in which the resource demands of some

applications degrades the performance of other co-located

applications up to a point where certain LCAs start violating

their SLOs. Therefore, consolidating LCAs and BEAs in the

same host poses a challenging QoS-aware resource allocation

This work was partially supported by Fundação Ciência e Tecnologia (FCT)
under grant UIDB /50021/2020, and the Erasmus Mundus Joint Doctorate in
Distributed Computing (EMJD-DC) funded by the Education, Audiovisual
and Culture Executive Agency (EACEA) of the European Commission under
FPA 2012-0030.

problem: the shared resources should be allocated in such

a way that safeguards the SLO of LCAs while maximizing

the throughput of the BEAs. This problem is dynamic by

nature, as running applications may have distinct phases with

different resource usage patterns, while active applications

leave upon completion, and new ones may join at any time.

Therefore, appropriate solutions should react to such changes

by efficiently reallocating resources while ensuring that SLOs

are violated only for negligible periods.

Although this problem is not new, novel hardware-based

resource partitioning mechanisms have recently become avail-

able in commodity cloud servers and enabled a new generation

of QoS-aware resource allocation approaches. One notable

example is the support for hardware-based partitioning of LLC

and memory bandwidth as provided by Intel Resource Director

Technology (RDT) [1]. Recent proposals such as PARTIES [6]

and CLITE [37] exploit such new mechanisms to enforce QoS-

aware resource allocation with unprecedented effectiveness.

Another significant technological trend is the growing

prevalence of multi-socket systems in the cloud. In many

warehouse-scale data centers, dual-socket (or even larger)

machines already constitute the largest share of hosts [22].

Unfortunately, PARTIES and CLITE, as well as their prede-

cessors, are, by design, tailored to a single socket.

Although deploying such proposals directly in multi-socket

hosts is possible, it incurs important limitations [30]. One

notable limitation is that they prevent an application running

to place data pages on remote memory nodes. This essentially

disallows cross-socket sharing of memory, which entails a

sub-optimal use of multi-socket host’s aggregate memory

resources. This issue is especially relevant given the increased

prevalence of memory-intensive applications [21], [24], [36].

As an example, consider the case where a memory-intensive

BEA, A, runs in one socket and saturates the local memory

bandwidth, while a CPU-intensive LCA, B, runs on another

socket and only places a negligible access demand on the local

memory. Allowing A to place a portion of its pages in the idle

remote memory node would boost A by providing it with an

improved (aggregate) memory bandwidth, while not causing

harmful interference with B.

Therefore, in order to properly utilize over-provisioned

memory resources in multi-socket hosts, state-of-the-art QoS-

aware resource allocation systems need to be generalized
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Fig. 1: QoS-aware bandwidth allocation in a dual-socket across

multiple BEAs and LCAs.

to allow cross-socket sharing of memory as in the previous

example. This paper addresses the above goal.

As a first contribution, we present the full design and

implementation of BALM (memory Bandwidth ALlocation

for Multi-socket), a QoS-aware memory bandwidth allocation

technique for cross-socket sharing of memory in multi-socket

architectures. The key insight is to combine commodity band-

width allocation mechanisms originally designed for single-

socket – namely, Intel RDT’s memory bandwidth allocation

(MBA) mechanism – with a novel adaptive cross-socket

page migration scheme. By doing so, BALM overcomes

the efficiency limitations of the original mechanisms when

deployed in multi-socket scenarios. BALM relies on this novel

approach to allow multiple LCAs and BEAs to run together

in the same multi-socket host while sharing over-provisioned

memory resources.

As a second contribution, we evaluate BALM by co-

locating, in a dual-socket system, real LCAs (namely, the

Memcached key-value store [29] and the Xapian probabilis-

tic information retrieval library [4]) with realistic memory-

intensive BEAs. Our evaluation shows that BALM can safe-

guard the LCAs with marginal SLO violation windows, while

delivering up to 87% throughput gains to bandwidth-intensive

BEAs when compared to state-of-the-art alternatives.

The contributions in this paper extend a preliminary paper

[30] that studies the limitations of existing allocation mecha-

nisms and presents a simplistic outline of BALM’s approach.

The rest of the paper is organized as follows. Section II

states the problem and system model. Section III presents

BALM. Section IV evaluates BALM against state-of-the-art

alternatives in realistic co-location scenarios. Section VI draws

conclusions and presents future work.

II. PROBLEM STATEMENT

Recent papers [6], [17], [20], [37] formulate the problem of

QoS-aware resource allocation problem as follows. In a given

server, multiple LCAs and BEAs run together. The LCAs are

governed by an SLO. The SLO should be guaranteed most

of the time (e.g., 99% of time). In contrast, BEAs have no

SLO. These applications run in background, utilizing any spare

resources (left by the LCAs) according to some best-effort

policy to maximize the BEA’s throughput.

This paper aims at generalizing QoS-aware resource allo-

cation to workload consolidation in multi-socket servers, with

a specific emphasis on cross-socket memory bandwidth allo-

cation. Hence, we need to complement the previous problem

definition with additional restrictions to embrace the additional

complexity of multi-socket workload consolidation scenarios

such as the one that Figure 1 illustrates.

In a multi-socket system, each socket comprises multiple

multi-core CPUs and memory nodes. For presentation sim-

plicity, and without loss of generality, we assume that each

socket only holds a single CPU and a single memory node.

The threads running at a given CPU can both access the local

and remote memory nodes. Hence, the different memory nodes

form a non-uniform memory access (NUMA) architecture. We

assume that some application placement system (e.g., [14],

[33]), selects which applications run on a given host/socket.

We also assume the common setting where the threads of any

given application all run on the same socket of the host.

Among the shared resources,we restrict our focus to the al-

location of memory bandwidth. Therefore, we assume that the

applications may only interfere through memory bandwidth

contention, while contention on other kinds of resources is

negligible or has been taken care of by some other means.

We assume the pages of an LCA are exclusively mapped to

the local memory node. In contrast, BEAs are allowed to place

their pages across multiple memory nodes, to benefit from the

spare memory bandwidth. For an important class of BEAs,

memory bandwidth, rather than access latency, is the main

bottleneck. It is well studied that, for such bandwidth-intensive

applications, interleaving its pages across the available nodes

(both local and remote) can maximize throughput since it

provides its threads with a higher aggregate bandwidth [33],

ideally with larger fractions of pages in the memory nodes that

offer higher bandwidth [15]. We further assume that the LCAs

running on some socket do not saturate the bandwidth of the

local memory node by themselves. Consequently, any SLO

violation on a given socket can always be fixed by reducing,

to some extent, the memory demand placed by the BEAs on

that socket’s local memory.

Hereafter, when an LCA does not meet its SLO, we say

that the system is in an invalid configuration. Otherwise, the

system is said to be in a valid configuration. Whenever the

system enters an invalid configuration, we can employ some

bandwidth allocation mechanism to transition to a valid con-

figuration again (i.e., fix the SLO violation(s)). As formulated

in the previous section, that transition should ideally: i) move

to a valid configuration as soon as possible; and ii) reach a

configuration that, among the available valid configurations,

maximizes the throughput of the BEA.

In a previous study, we have shown that existing mech-

anisms for memory bandwidth allocation exhibit important

shortcomings when employed to implement QoS-aware mem-

ory bandwidth allocation in multi-socket architectures [30].

For instance, Intel RDT’s memory bandwidth allocation

(MBA) mechanism imposes a relevant cost on the performance

of the BEAs. The reason is that, in order to heal an SLO

violation happening on a specific socket (where one or more

victim LCAs are running), using MBA to throttle down the
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Algorithm 1: BALM’s main control loop
1 begin
2 retries = 0;

3 while true do
4 {color, violationLocation} = evaluateSLO(LCAs);

5 if color ∈ {yellow, red} then
/* We need to adapt BEAs (strongest contributors first) */

6 orderedBEAs = orderByMemUsage(SLOlocation);

/* 1. Try to fix violation(s) ASAP with aggressive MBA */
7 for each BEA in orderedBEAs do
8 color = setMBA(BEA, minMBA);

9 if color ∈ {grey, green} then
10 break;

11 for each BEA in orderedBEAs do
12 if —SLOlocation— == 1 then
13 if SLOlocation = BEA.socket then dir=outbound;

14 else dir=inbound;

15 else
16 dir = none;

/* 2. Adapt BEAs to find better valid configuration */
17 while (BEA.MBA< 100) do
18 if color ∈ {grey, green} then

/* 2a. There is room to alleviate MBA */
19 color = incMBA(BEA);

20 if color ∈ {yellow, red} then
/* 2b. Try to fix violation by migrating

enough pages away from victim */
21 color = migratePagesUntilGrey(BEA, dir);

22 if color ∈ {yellow, red} then
23 break;

24 if color == red then
25 if retries>MAXRETRIES then throw CannotFixSLOViolationException ;

26 else retries++;

27 else retries=0;

28 else if color == green then
29 retries = 0;

30 if BEAs = BELoadChanged() then
31 optimizeConfig(BEAs);

noisy neighbor BEA(s) will unnecessarily slow down the

memory accesses of the BEA(s) on every memory node.

As our study has shown [30], migrating pages of the

noisy neighbour BEA(s) away from the memory node where

the victim LCA runs can be a more efficient alternative to

MBA (or other single-socket mechanisms). However, on the

downside, page migration has substantial costs. Not only it

requires intensive data movement across different memory

nodes, but it also has well known expensive management

overheads – most notably, kernel memory management and

synchronization [28]. For this reason, page migration is un-

suitable to QoS-aware memory bandwidth allocation, if used

as a stand-alone mechanism.

III. BALM

This section presents BALM, a QoS-aware memory band-

width allocation mechanism for multi-socket hosts. BALM

combines MBA and page migration in an unprecedented

way that eliminates each mechanism’s shortcomings while

delivering the best of both worlds. Section III-A describes the

algorithm, and Section III-B addresses implementation details.

While the general approach of BALM is easily generalized

to multi-socket systems of large sizes, this paper focuses on

dual-socket systems only. We leave the evaluation of BALM

in larger systems to future work.

A. Algorithm

The architecture of BALM comprises a memory bandwidth

allocation component and a monitoring component. The for-

mer controls the MBA and page migration mechanisms to

allocate the available memory bandwidth of the multi-socket

host to BEAs. The latter continuously collects LCA’s SLO

metrics (e.g., tail latency) to detect violations and throughput

of the BEAs. Its outcome can be: red, which means that at least

one LCA is in an invalid configuration, i.e., at least one SLO

violation is occurring; yellow, which means that, although the

system is in a valid configuration, at least one SLO violation

is likely to occur soon, since at least one LCA’s SLO metric

is less than thryellow below the SLO target; green, when

the system is in a resourcefully valid state, since every LCA

meets its SLO target by a large enough margin (as defined

by thrgreen); and grey otherwise (between yellow and green).

Upon yellow or red states, the monitoring component also

indicates in which sockets reside the LCAs that are prone to

or experiencing SLO violations (resp.).

At the heart of BALM lies the controller, which dynami-

cally adjusts memory bandwidth allocations between consoli-

dated applications using fine-grained monitoring and memory

bandwidth partitioning, to satisfy LCA’s QoS and maximize

BEA’s performance. For presentation brevity, in this section,

we refer to the controller as simply BALM. BALM reacts to

input fed by the monitoring component by triggering actions

in the memory bandwidth allocation component. Its design

materializes the design guidelines that our preliminary paper

laid down [30]. Algorithm 1 summarizes the decision making

flow of BALM. Periodically, it reads the latest system-wide

SLO evaluation provided by the monitoring component. Two

very distinct actions may arise depending on such evaluation.

Healing SLO violations. BALM’s most critical action

occurs when it learns that an SLO violation is happening

(red) or prone to occur (yellow). In this case, the BEAs are

ordered in decreasing order of the memory bandwidth recently

consumed from the problematic memory node(s) (line 6).

BALM handles yellow or red situations in two main phases.

The first phase aims at quickly preventing or fixing (resp.) the

SLO violation(s) by aggressively enabling MBA at its most

restrictive level (MBA 10) to each BEA in the ordered list

until the system moves to a green state (lines 7-10).

The second phase then takes place, which attempts to

maximize the throughput of the BEAs affected by the first

phase, one by one in the same order, by adapting the memory

bandwidth allocated to them. For each such application, the

second phase executes a 2-dimensional hill-climbing, combin-

ing MBA steps and page migration steps. Upon each step,

the system SLOs are evaluated again, since this outcome

determines the next step to take in the online search. Therefore,

the second phase typically takes much more time than the first

one. In a best-case scenario, when this phase completes, every

BEA will be running with no MBA restrictions (MBA 100),

at the local-to-remote page ratio that optimizes its throughput

while ensuring a green state. However, as we detail next, that

might not always be possible.

Each iteration starts by checking if the system is in a green

state. If so, then probably there is enough spare memory band-

width to alleviate the current MBA restriction (i.e., increase

MBA level) without raising a new SLO violation (lines 17-19).

In contrast, the second step is taken only when the system is in

a danger state (yellow or red). This step consists of migrating

enough pages of the BEA away from the socket where the

SLO violation is prone to/already happening until the system
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returns to a green state (lines 20-21). Pages are migrated using

the weighted interleaving migration technique of BWAP [15],

complemented with an SLO validation that, upon migrating a

fraction of pages in the desired direction, checks whether the

system has entered a green state (and returns) or not (migrates

an additional fraction, if available).

A BEA can take multiple iterations to converge to the ideal

configuration. However, each iteration does not necessarily

run both steps. In some worst-case scenarios, BALM will not

be able to find a valid configuration where every BEAs run

MBA-free. A first, obvious case is when there exists no valid

configuration. When BALM suspects it is in such a situation,

it throws an exception, which is expected to be handled by

some higher layer that will solve the problem through stronger

measures – such as migrating some applications to another

host in the data center. A second worst-case scenario is when

both sockets simultaneously suffer from SLO violations (either

happening or prone to). In this case, the migration step is

skipped (i.e., function migratePagesUntilGreen does nothing),

since there is no chance of migrating pages in either way (from

an invalid configuration). Consequently, the SLO violation can

only be fixed/prevented by resorting to MBA.

Thirdly, we note that the algorithm that handles SLO

violations assumes that the system remains in a steady state –

regarding the set of deployed applications and their load – until

the BEAs have all been adapted to the final valid configuration.

If a significant change to that steady state occurs, it is easy

to show that the algorithm might no longer converge to an

appropriate configuration. In the worst extreme, a sudden

disruption in the middle of the algorithm may push it towards

an invalid configuration. In this case, BALM will repeat the

whole procedure, up to a given number of retries (line 25).

Meanwhile, if the system stabilizes, BALM will finally reach

the desired (valid and optimized) configuration.

Re-configuring upon workload changes. When every LCA

meets its SLO target by a safe margin (i.e., system state is

green), some BEA pages may be moved back to the remote

node to optimize its performance (line 31). This allows the

excess memory bandwidth to be reclaimed, improving overall

system utilization.

As a final note, we highlight the importance of appropriately

setting the thryellow and thrgreen thresholds. Larger values of

thryellow make BALM more proactive at detecting imminent

SLO violations; however, they also render BALM susceptible

to false alarms, which hurt resource efficiency. Larger values

of thrgreen may lead to low resource utilization, while smaller

values increase the risk of BALM choosing under-provisioned

configurations which quickly lead to new SLO violations.

B. Implementation

We have implemented BALM as a user-level controller that

polls the SLO metric and memory bandwidth utilization of

applications and interacts with the OS (Linux) and hardware to

adjust memory bandwidth allocations. The controller is pinned

on core 0, taking at most 10% of its core utilization.

SLO monitoring. We rely on the existence of per-

application monitoring plug-ins, which can reside at either the

client or server sides. Each such plug-in monitors the SLO

metric of a given LCA. For instance, with Memcached, we

use a client-side component that measures the tail latency of

requests (more details in Section IV).

Page migration mechanism. The page migration mecha-

nism of BALM uses the approximated online page placement

open source tool proposed in BWAP [15]. We complement

BWAP with an SLO validation component that checks whether

the system is in violation or not when a fraction of pages is

migrated in the desired direction.

MBA mechanism. We use an interface provided by Intel

to throttle MBA dynamically at runtime [3]. MBA is a per-

core mechanism. However, for efficiency, BALM does not

tune MBA on a per-thread granularity. Instead, BALM tags

all the threads of the same BEA with a unique class of service
(CLOS), when the BEA starts. When BALM needs to apply

a new MBA level to the BEA, BALM simply sets the MBA

level of the corresponding CLOS. This implicitly throttles all

threads of the BEA by the new MBA level.

IV. EVALUATION

Our evaluation addresses two key questions: 1. What per-
formance advantage does BALM bring to memory-intensive
BEAs on dual-socket NUMA systems? 2. How effective is
BALM in fixing SLO violations?

A. Experimental methodology

To answer each question, we study how BALM and

other state-of-the-art alternatives handle QoS-aware memory

bandwidth allocation in a complex and dynamic workload

consolidation scenario. We use the execution time of BEAs

and SLO violation time of LCAs as the performance metrics

that provide quantified answers to each question, respectively.

Every experiment is repeated 5 times, so the results presented

in this section are average of such runs.

Dual-socket machine. We evaluate BALM on a dual-socket

machine with two Intel Xeon Gold 5218 CPUs, with 16 cores

per CPU, 64GB DRAM (32GB at each NUMA node), running

Linux 4.19. It supports MBA, with 8 available levels.

LCA workloads. As representative LCAs, we consider

Memcached [29] and Xapian [4] in our experiments.

Memcached is a widely-adopted, high-performance, dis-

tributed object caching system that is mainly used to speed up

web requests by caching data and objects in memory and is a

critical tier in many cloud services [12]. We use Memcached

1.5.22, compiled from its official source. For each LCA

instance in the evaluated scenarios, we run Memcached with

the default/recommended number of threads, i.e., 4 threads

pinned to 4 physical cores. We also assign 8 cores to handle

network interrupts (IRQ). It is well studied that allowing

application threads to share cores with IRQ handlers leads to

lower throughput and higher latency [6], [25]. Except where

stated, our default Memcached deployment is 10 million items,

each with a 30B key and a 200B value; the SLO target is set
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Fig. 2: Tail latency with increasing load of Memcached and

Xapian. The vertical line shows the max load, while the hor-

izontal line shows the target SLO. The y-axis is logarithmic.

to 1ms for 99th percentile latency, which is in line with the

experimental deployment methodology in previous works [6],

[25], [37], [38].

We use an in-house, open-loop workload generator, similar

to Mutilate [2], as Memcached client. Clients run on machines

on the same network as dual-socket machine, where Mem-

cached runs. The load generator uses exponential inter-arrival

time distribution, similar to the query distributions at Facebook

[6], [12], [34]. We also limit input loads to read-only, which

corresponds to the majority of requests in production systems,

e.g., 95% of Memcached requests at Facebook [6], [12].

Xapian is an open-source search engine from the Tailbench

suite [31]. The search index is built from a snapshot of the

English version of Wikipedia. We use the default configuration

and open-loop load generators provided by Tailbench [31]. The

load generator chooses the query terms randomly, following

a Zipfian distribution. This has been shown to model online

search query distributions well [31]. The SLO target is set to

5ms for 99th percentile latency.

We assume that the SLO of the LCAs is defined by tail

latency (99th percentile) of request-to-response latency, as

observed on their clients’ sides. Similarly to other works on

QoS-aware resource allocation [6], [37], [38], we first study

the impact of increasing input load on the tail latency of each

LCA to determine estimate reasonable targets for its SLO and

quantify the maximum achievable throughput that our platform

can sustain. We run each LCA in isolation, starting from a low

load (requests per second, RPS) and gradually increase the

load until it starts dropping requests on the server-side. Figure

2 shows the relationship between tail latency and input load

(RPS) for each LCA. Both LCAs exhibit a rapid increase in

tail latency after exceeding a certain load threshold. We set the

target SLO as the 99th percentile latency of the curve’s knee,

as indicated by the horizontal line in Figure 2. Consequently,

the RPS at the knee of the curve is denoted as the max load,

which is the maximum throughput that the platform can sustain

without violating SLO in an interference-free system.

To monitor the SLO of the LCAs, BALM’s monitoring

component keeps a sliding window of all the recent requests

that have occurred in the last n seconds and polls the SLO

metric, such as tail latency at m milliseconds interval (which is

fine-grained). We configure BALM with n and m to 3 seconds

and 20 ms, respectively. This choice of parameters allowed

the SLO metric to be calculated over large-enough samples,

Benchmark
Bw. requirements (GB/s

Description
Reads Writes

MG.C (MG) 26.31 7.16 Multi-Grid on a sequence of meshes

Ocean cp (OC) 23.81 8.48 Simulates large-scale ocean movements

SP.C (SP) 20.48 10.76 Scalar Penta-diagonal solver

UA.C (UA) 16.79 5.40
Unstructured Adaptive mesh,

dynamic and irregular memory access

Blackscholes (BS) 2.50 0.35
Option pricing with Black-Scholes

Partial Diff. Equation (PDE)

EP.B (EP) 0.01 0.01 Embarrassingly Parallel

Swaptions (SW) 0.01 0.01 Financial analysis

TABLE I: Evaluated BE benchmarks

which reduce measurement noise; while allowing BALM to

react quickly after a sample yields an SLO violation.

Further, we set the threshold parameters of BALM that trig-

ger the yellow and green states (thryellow and thrgreen, resp.)

discussed in section III-A to 5% and 20% below the target

SLO metric (resp.). We chose these two thresholds based on a

sensitivity analysis on a subset of examined applications. Then,

we used those values for every other application/experiment.

BEA workloads. For the bandwidth-intensive BEAs, we

used memory-intensive benchmarks from several benchmark

suites, i.e., NAS [16], PARSEC [5] and SPLASH [26]. Table I

lists all the benchmarks used for our evaluation. These bench-

marks represent a wide diversity of application domains which

are typically throughput-oriented, which are also used as such

in related QoS-aware resource allocation works (e.g., [20],

[37]). The selection criterion was as follows: we measured

each benchmark’s memory traffic and selected the benchmarks

that incur higher memory traffic when allocated with a single

socket’s full resources. All the evaluated benchmarks are

multi-threaded. We pin the threads of each benchmark on the

cores allocated to it. All BEAs are characterized by multiple

phases with different memory intensities.

Alternative solutions. We compare BALM to MBA (mba)

and page migration (pgm), each used stand-alone; as well as

an unshared approach, in which we disallow any cross-socket

memory bandwidth sharing by imposing that the bandwidth-

intensive BEA only places pages on its local socket.

We follow up our preliminary work [30], which had evalu-

ated BALM in a simplified small-scale scenario. In contrast,

in this paper we consolidate six applications. This provides

a reasonably large scale scenario, with many applications to

monitor and manage in an inherently dynamic environment –

with frequent workload changes, not only due to applications

starting/ending, but also due to phase changes within each

application. The application mix comprises: Memcached and

Xapian (LCAs); BS, EP and SW (BEAs with low to moderate

memory intensity); and one bandwidth-intensive BEA (either

OC, MG, SP, or UA, each one selected in a distinct exper-

iment). Therefore, two applications stand out for their band-

width demand: Memcached and the bandwidth-intensive BEA.

Hence, although the six applications need to be monitored

and managed, the main challenge is to address any harmful

interference arising between the latter two applications.

Despite the many possible application-to-socket combina-

tions, what essentially distinguishes all of them is whether

the two bandwidth-intensive applications reside at the same

socket or on opposite sockets. For space limitations we only
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(d) UA
Fig. 3: Performance of BEAs and SLO violation time of high-load LCA. The plots show the speedup of BEAs (x-axis) and

SLO violation time of LCA (y-axis) that can be achieved by different mechanisms when LCA is running at the fraction of its

max load indicated by the % values.

show results for the same-socket scenario. We note that our

experiments with both applications on opposite sockets yielded

very similar conclusions as with same-socket scenario.

For each experiment, one bandwidth-intensive BEA is cho-

sen (OC, MG, SP, or UA). Both LCAs (Memcached and

Xapian) run for the whole experiment. The load of Xapian

is fixed at 100% for the whole experiment, while the load

of Memcached varies, in phases, from 10% to 100%. At

the beginning of each Memcached phase, we simultaneously

launch all 4 BEAs – the chosen bandwidth-intensive BEA,

and BS, EP and SW). Each Memcached phase ends as soon

as every BEA has completed (note that different BEAs execute

for different periods), then the next phase starts.

B. Results

Figure 3 presents the results for each metric (BEA per-

formance and LCA SLO violation time) for increasing LCA

loads. As expected, when the LCA runs at a modest load

levels, no SLO violation occurs and the BEA achieves its max-

imum performance since it runs with no bandwidth allocation

restrictions – regardless of which mechanism is used. This

corresponds to the bottom-right point at each plot in Figure 3.

However, as we increase the LCA load beyond a critical

level (which, depending on the bandwidth intensity of each

BEA, ranges between 70% and 90% of max load), QoS viola-

tions arise at increasing frequency and intensity. These trigger

the different mechanisms to allocate less memory bandwidth

to the BEA, thus reducing its throughput. Figure 3 also makes

it evident that, in such high load situations, each mechanism

handles the SLO violations with very distinct effectiveness.

As one increases the LCA load beyond a critical level, the

mba curve quickly expands towards the left-hand extreme of

the plot (i.e., sacrifices the throughput of the offending BEA),

while pgm quickly grows upwards (i.e., taking an increasingly

longer time to heal SLO violations).

In contrast, BALM’s curves in the same plots manage to

stay closer to the initial optimal point (the low-load point).

Hence, BALM handles increasing LCA loads at relatively

lower costs on both axis. Most importantly, if we chose a

given LCA load and observe how each mechanism performs at

both criteria, then it becomes clear that BALM’s performance

on each axis is typically close to the alternative mechanism

that is best-performing in that axis. More precisely, BALM is

able to outperform mba and unshared by up to 1.87× and

1.33×, resp.. To understand why BALM does not always

achieve the same BEA throughput as pgm, recall that BALM

activates MBA until the page migration process completes,

which temporarily hinders the BEA.

Finally, we observed that, in situations of extreme memory

bandwidth interference, only using mba is insufficient to fix

SLO violations, therefore the SLO violation can last until (at

least) one of the conflicting applications switches to a lower-

load phase. Contrary, BALM ’s more aggressive combination

of mba and pgm is able to fix the SLO violation even before

the workloads change. Figure 3 (d) is an example of the above

situation. The above results confirm that BALM attains the

virtues of each extreme (mba and pgm), making BALM a

well-balanced compromise between both conflicting criteria.

V. RELATED WORK

Architectural and system software techniques to tackle in-

terference in a multi-tenant environment have been extensively

explored. These techniques can be grouped into three broad

approaches. The first is to simply avoid sharing resources

with LCAs [11], [17], [18], [23]. This approach preserves

the QoS of the LCAs but lowers the resource efficiency of

the system. The second approach avoids co-scheduling of

applications that may interfere with each other [8]–[10], [13],

[35]. Although this approach improves resource utilization,

it limits application co-scheduling options and requires some

offline/prior knowledge of the co-scheduled applications. Fi-

nally, interference can be eliminated by partitioning resources

among consolidated applications using OS- and hardware-

level isolation techniques [6], [7], [17]–[19], [32], [36], [37].

This approach has the following benefits: (1) it maximizes

resource utilization and throughput, or trades off throughput

vs. fairness [27], [36]; (2) it provides QoS for LCAs [6], [17],

[37]. BALM’s approach falls under this approach. BALM

implements a robust policy that guarantees QoS by effectively

employing OS-level page migration and hardware-level MBA

mechanisms.

More recent proposals [6], [20], [37] have focused on the

QoS-aware resource allocation problem that is the departing

point to our reformulation in Section II, where LCAs are

consolidated with BEAs, to safeguard the SLO of LCAs while

maximizing the throughput of BEAs. However, to the best
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of our knowledge, existing proposals to that problem, have

consolidated applications run in a single socket system. This

recent research has inspired our proposal. We differentiate

from these works, as our focus is on multi-socket servers.

Memory bandwidth partitioning has been recently used to

enhance performance and fairness. EMBA [27] introduced

a performance model to guide the use of MBA to improve

performance. CoPart [36] proposed a resource manager that

uses Intel RDT to dynamically partition the LLC and memory

bandwidth to the applications. Still, these approaches are de-

signed for single-socket servers. Further, they treat applications

as of equal priority, thus lack support for QoS.

The most relevant works to BALM are BWAP [15], PAR-

TIES [6], Heracles [17] and CLITE [37]. PARTIES, CLITE,

and Heracles rely on resource partitioning to guarantee cross-

application isolation. However, these systems are designed for

single-socket servers. Moreover, both PARTIES and Heracles

do not exploit hardware support for memory bandwidth parti-

tioning. The lack of hardware support for memory bandwidth

isolation complicates and constrains the efficiency of any

system that dynamically manages workload consolidation [17].

A recent alternative has been proposed in BWAP [15], which

enables cross-socket memory bandwidth allocation among two

or more applications running in disjoint sockets. However,

BWAP does not support dynamic scenarios, where the overall

system behavior may change over time. Most importantly,

BWAP lacks support for QoS and does not exploit MBA.

VI. CONCLUSIONS

This paper presents the full design and implementation of

BALM, a QoS-aware memory bandwidth allocation technique

for multi-socket architectures in the cloud. By combining

commodity bandwidth allocation mechanisms originally de-

signed for single-socket with a novel adaptive cross-socket

page migration scheme, BALM can overcome the efficiency

limitations of today’s state-of-the-art when deployed in multi-

socket scenarios. Our large-scale experimental evaluation with

real applications on a dual-socket machine shows that BALM

can ensure marginal SLO violation windows while delivering

up to 87% throughput gains to bandwidth-intensive best-effort

applications, when compared to state-of-the-art alternatives.

This work leaves two main open questions to be addressed

in future work. First, the novel memory bandwidth allocation

of BALM can be integrated into more larger frameworks such

as CLITE [37] or PARTIES [6], in order to generalise them to

multi-socket scenarios, while supporting QoS-aware allocation

of other kinds of resources that are not handled by BALM.

Second, while BALM is designed and implemented to support

systems with a larger and more complex socket topology,

the effectiveness of BALM still needs to be experimentally

evaluated in such settings.
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