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Abstract. IoT devices have been growing exponentially in the last few
years. This growth makes them an attractive target for attackers due
to their low computational power and limited security features. Attack-
ers use IoT botnets as an instrument to perform DDoS attacks which
caused major disruptions of Internet services in the last decade. While
many works have tackled the task of detecting botnet attacks, only a
few have considered early-stage detection of these botnets during their
propagation phase.
While previous approaches analyze each network packet individually to
predict its maliciousness, we propose a novel deep learning model called
LiMNet (Lightweight Memory Network), which uses an internal mem-
ory component to capture the behaviour of each IoT device over time.
This memory incorporates both packet features and behaviour of the
peer devices. With this information, LiMNet achieves almost maximum
AUROC classification scores, between 98.8% and 99.7%, with a 14% im-
provement over state of the art. LiMNet is also lightweight, performing
inference almost 8 times faster than previous approaches.

Keywords: IoT · Botnet Detection · Memory Networks · Recurrent
Networks.

1 Introduction

IoT devices are gaining popularity thanks to their usefulness in gathering and
processing data. They have become an important pillar in Industry 4.0, which
led to an exponential growth in terms of IoT deployments worldwide. As a result,
the number of IoT connections is expected to reach 83 billions by 2024.3

? This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sk lodowska-Curie grant agreement No
813162. The content of this paper reflects the views only of their author(s). The
European Commission/ Research Executive Agency are not responsible for any use
that may be made of the information it contains.

3 https://www.juniperresearch.com/press/iot-connections-to-reach-83-bn-by-2024
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Their growing number is one reason IoT devices have become an attractive
target for attackers. Another reason is that cybersecurity practices for IoT de-
ployments are still not well understood and often not applied. For instance, IoT
devices often use weak passwords and unencrypted network traffic4. Moreover,
their low computational power limits their ability to run sophisticated security
solutions. Thus, vulnerable IoT devices are exploited by attackers by injecting
malicious software (malware) to perform various attacks (e.g., Distributed De-
nial of Service (DDoS)) on different targets. For example, the DNS provider Dyn
faced one of the largest known DDoS attacks that reached 1.2 Tbps [2]. The at-
tack was performed by Mirai, a type of malware that spreads across IoT devices
to form a network of compromised devices referred to as a botnet.

There are several contributions in the literature focusing on detecting IoT
botnet attacks based on network traffic patterns [19,12,3,9], using different ma-
chine learning (ML) techniques (e.g., Recurrent Neural Networks (RNN), Con-
volutional Neural Networks (CNN), etc.). Yet, few works focus on detecting IoT
botnets during their spreading phase, before any attacks. These approaches typ-
ically use shallow ML techniques [7] or recurrent neural networks [1] to analyze
network packet headers. Unfortunately, while these models provide good accu-
racy, their architectures exhibit several limitations, such as low inference speed
and the inability to account for temporal and topological information.

In this paper, we expose the issues and limitations of these state-of-the-art
models for early-stage botnet detection, propose changes to mitigate these is-
sues, and propose an alternative model called LiMNet (Lightweight Memory
Network). LiMNet is a novel device-centric model for early-stage botnet detec-
tion. It uses an internal memory to understand the behaviour of each IoT device
and employs mutually-recurrent units to capture the causal interactions among
the devices over time. This allows it to classify infected and under-attack de-
vices, in addition to malicious packets. LiMNet is designed to be a lightweight
model suitable for large-scale IoT deployments. It achieves better results than
state-of-the-art recurrent models, while being smaller in memory footprint and
faster during inference.

Contributions. The main contributions of this work can therefore be sum-
marized as follows, in order of importance:

1. A a novel lightweight model for early-stage IoT botnet detection based on
memory networks and mutually-recurrent units, which achieves near maxi-
mum scores (∼99% AUROC), 14% better than state of the art, while being
almost 8 times faster in inference;

2. novel device classification tasks to aid the deployment of targeted counter-
measures in infected Iot networks;

3. a critical analysis of the issues and limitations of state-of-the art recurrent
models for early-stage IoT botnet detection;

4. a modification to the input representations of existing recurrent models,
mitigating some generalization issues while providing 4 times faster inference.

4 https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-iot
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The rest of the paper is organized as follows. Section 2 provides background
on IoT botnets and ML techniques. Section 3 introduces the state of the art for
early-stage botnet detection. Section 4 presents LiMNet, while Section 5 analyzes
the limitations of recurrent models for botnet detection. Sections 6 and 7 present
the evaluation methodology and experimental results, respectively. Sections 8
and 9 provide insights and conclusions. Finally, Appendix A further analyses
the datasets used, while Appendices B and C present additional results.

2 Background

To understand the limitations of existing recurrent models for botnet detection
and the architecture of LiMNet, we first introduce some background information
on IoT botnets (Section 2.1) and several concepts from the ML field, namely
Recurrent Neural Networks (Section 2.2), Memory Networks (Section 2.3) and
Graph Representation Learning (Section 2.4).

2.1 IoT Botnets

Botnets present four main components: the bot, the C&C server, the loader, and
the report server [12]. The bot is a malicious executable that infects IoT devices
and is responsible for executing commands issued by the botmaster (i.e., the
owner of the botnet). The C&C server is a dashboard that communicates with
all compromised devices. It is managed by the botmaster and allow him/her to
issue commands to the bot to, for example, orchestrate an attack. The loader is
the component that helps in disseminating the malware in different computer ar-
chitectures (e.g., ARM, x86, etc.) by communicating with potential new victims.
Finally, the report server stores information about the bots.

Botnets are designed with different architectures. While some botnets like
Torii, Mirai and its variants are based on a centralized architecture where there
is only one central C&C server, other botnets, such as Hajime, employ decen-
tralized communication patterns [12].

While IoT botnets present similar ways of attacking and infecting devices,
they often differ in how they identify potential victims. Certain botnets can
random Internet devices (e.g. Bashlite/gafgyt), while others prioritize scanning
the local network. There are also botnets with unknown or non-trivial behaviour,
such as Torii, for which the source code is not available, and Hajime, for which
no attacks have been observed yet.

Mirai is one of the largest botnets currently active in IoT environments, with
over 600k bots and attacks surpassing 1 Tbps in traffic volume, making it an
important target for analysis. Infected devices scan random IPv4 addresses by
sending TCP SYN probes on Telnet using TCP/23 or TCP/2323, ignoring a
list of hard-coded IP addresses. If a device responds, its credentials are brute-
forced using a hard-coded list of 62 username and password combinations, which
are extracted from default configurations of IoT devices. Upon a successful login
attempt, the credentials and IP address of the device are sent to the report server.
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Then, the loader can log into the new victim, determine its architecture and
download the appropriate build of the bot. After that, the malware hides itself
by changing its process name and kills all processes using TCP/23 or TCP/2323,
or processes of other competing bots. In parallel, it listens for commands from
the C&C server while scanning for new victims [2].

The spreading phase and the attack phase of a botnet are independent. The
spreading phase starts when a device is infected and tries to recruit new victims.
On the other hand, the attack phase begins when the botmaster issues commands
via the C&C to the bots to perform an orchestrated attack on a target, usually
in the form of a distributed denial of service (DDoS).

2.2 Recurrent Neural Networks

Recurrent neural networks (RNNs) [20] are a type of deep learning model that
takes sequential data as input. RNNs can be used to process a variety of sequen-
tial inputs, such as sentences in language translation, sounds in speech recogni-
tion, or time-series in financial analysis. RNN models typically have small sizes,
as the same operations and internal weights (referred to as a cell) are reused to
process each entry in the sequence. The entries are processed one at a time, as
each cell takes as an additional input a memory produced by the previous cell
and outputs an updated memory for the next cell. This allows RNNs to model
the evolution of the sequence and interpret later entries based on earlier ones,
but it also makes RNNs slower than non-sequential models.

Several RNN cell types have been introduced over the years. For instance,
LSTMs (Long Short Term Memory) use two memory vectors to remember im-
portant facts over longer sequences, compared to the original RNN cells [4].
GRUs (Gated Recurrent Units) achieve similar results but use a single memory
vector and less internal weights [4]. Finally, FastGRNN cells [14] are even smaller
and faster, while maintaining good output quality.

RNNs are often used in conjunction with embedding layers. These are re-
sponsible for converting arbitrary tokens into numerical vectors that can then
be input to the RNN, or to other deep learning models, using a lookup table. For
example, in a language translation application, a word embedding layer maps
each word to a low-dimensional space, where its position with respect to other
words encodes the meaning and usage of the word itself. This position is trained
jointly with the rest of the ML model. Embedding layers are often very large, as
a separate vector is needed for each possible input token.

2.3 Memory Networks

Memory networks [25] were introduced to address the limited capability of deep
learning models to store and organize long-term memories. They introduce a
novel long-term memory component that can be dynamically updated based on
new input facts, which are stored and then retrieved to respond to queries.

In addition to the internal memory, memory networks have four components.
First, an input feature map converts the input to an internal representation,
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which is then used by a generalization layer to update the internal memory of
the model. The updated memory and the input representation are then combined
by an output feature map into an output representation, which is finally used by
a response layer to produce the actual output.

Memory networks have been effectively applied in several fields, including
question answering [25] and recommender systems [6].

2.4 Graph Representation Learning on Temporal Interaction
Networks

Graph Representation Learning (GRL) is the field of extracting low-dimensional
representations from graph-structured data, in order to apply ML techniques on
them [8]. Temporal Interaction Networks are graphs where an edge between two
nodes indicates that they interacted at a specific time. These networks naturally
evolve over time to incorporate new interactions. Several techniques have been
proposed to capture both short-term and long-term behaviour of these graphs,
with a focus on recommender systems. In particular, JODIE [13] and DGNN [16]
employ mutually-recurrent neural networks to update the short-term represen-
tations of the nodes involved after each interaction. DeepRed[11] is conceptually
similar, but forgoes recurrent networks in favor of dynamically generating short-
term representations from long-term embeddings.

While the literature on GRL for temporal interaction networks and that of
memory models are mostly separate, we note that the described GRL techniques
can be seen as particular instances of the broader memory model concept, as they
dynamically update their internal knowledge in response to incoming informa-
tion, and subsequently use this updated knowledge to perform predictions.

3 Related Work

Many works have tackled the issue of IoT botnet detection using ML models.
One popular direction, which also applies to other types of malware, consists
in performing static or dynamic analysis of the executable file on the infected
device itself. For instance, in [22], a Convolutional Neural Network is used to
detect printable string information stored in the executable code of IoT botnets.

A different direction explored in the broader domain of malware detection
consists of analyzing traffic at the network level to identify which nodes in a
network are infected. In particular, a number of features are extracted from each
network packet and fed to an ML model which classifies the packet as benign or
malicious. In the context of IoT botnets specifically, several works used network-
level analysis to detect botnets in the attack phase, with the goal of mitigating
these attacks by filtering malicious traffic. Different ML techniques have been
employed, including deep autoencoders fed with statistical packet features [18]
and recurrent models fed with packet headers [17,9].

Another research direction focuses on exploiting graph theory to detect bot-
nets, not only in IoT but also in more traditional settings. As P2P bots frequently
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communicate with each other, community detection techniques have proven ef-
fective in detecting them [5,27,23]. Statistical approaches have also been used to
identify correlations between nodes and thus infer botnet affiliations [26,15].

Yet, few work have focused on detecting botnets during their propagation
phase, before any large-scale attacks. MedBIoT[7] is a dataset explicitly designed
for this task. Its authors evaluate the performance of simple techniques including
k-Nearest Neighbours classifiers, decision trees and random forests. Recurrent
models have also been shown to be very effective for early-stage detection on
MedBIoT [1]. These models, like the ones for detection of botnet attacks by
which they are inspired [9], treat packet headers as sequences of fields, such as IP
address, source port, packet length, etc. The low-dimensional representations of
these fields, obtained from an embedding layer, are passed to layers of recurrent
cells, with the last output being fed to a classifier for botnet detection.

Our approach, LiMNet, focuses on IoT botnet spreading, but differs from
the discussed works [7,1] in several aspects. First, LiMNet is a memory network
which learns device representations, rather than a recurrent network focused on
packet representations. This allows it to more easily identify not only malicious
packets, but also devices that have been, or will soon be, infected. Furthermore,
it uses few key packet features, rather than all header fields.

4 LiMNet: A Lightweight Memory Network for
Early-Stage Botnet Detection

LiMNet is a novel Lightweight Memory Network that can extract causal rela-
tionships from a stream of interactions between nodes in a graph, store relevant
node-level information in an internal memory and use this information to solve
node- and interaction-level tasks.

While LiMNet should be able to generalize to temporal interaction networks
from various domains, here we focus solely on early-stage detection of IoT bot-
nets, where the interactions are network packets and the nodes are IoT devices.

In this context, LiMNet substantially differs from previous works in that
it is device-centric, rather than packet-centric. It builds and tunes over time
an internal representation of the behaviour of each device and then uses this,
combined with packet features, to identify bots. This provides it with important
additional information compared to state-of-the-art models that analyze each
packet in isolation.

4.1 LiMNet Architecture

Figure 1 provides an overview of LiMNet. We subdivide its description following
the four main components of any memory model (cfr. Section 2.3): input feature
map, generalization layer, output feature map and response.

Input Feature Map Given an incoming packet, tshark5 is used to extract
the packet length and the IP addresses of source and destination devices, and

5 https://www.wireshark.org/docs/man-pages/tshark.html
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Fig. 1. Structure of LiMNet with two device classifiers and two packet classifiers. Col-
ored boxes are: blue) memory representations green) packet features orange) device
features grey) trainable networks. Dashed numbered boxes are: 1) input feature map
2) generalization layer 3) memory 4) output feature map 5) response layer.

also to infer the application-level communication protocol, or the transport-level
protocol if the former cannot be detected. A feature vector for the packet is
then built by concatenating its normalized length with the one-hot encoding
of the detected protocol. For each of the source and destination addresses, a
feature vector is built containing two binary features: whether they are unicast
or multicast and whether they are public or private addresses.

Generalization Layer The generalization layer consists of two mutually-
recurrent cells, inspired by JODIE [13] and DGNN [16]. These can be LSTM,
GRU or FastGRNN cells, as introduced in Section 2.2. The memory of the model
is a dictionary mapping IP addresses to the memory of the recurrent cells. The
source cell (resp. destination cell) updates the memory representation of the
source node (resp. destination node), using as input the concatenation of the
edge features, address features of both devices and previous memory of the
destination node (resp. source node). More precisely, when a new packet is sent
from IP address i to IP address j, the following update is performed:

ht+1
i = cellsrc

(
ht
j‖xi‖eij‖xj , h

t
i

)
(1)

ht+1
j = celldst

(
ht
i‖xi‖eij‖xj , h

t
j

)
(2)

where eij , xi and xj are the feature vectors for, respectively, the packet, the
device i and device j, and ht

i (resp. ht
j) is the memory representation of device i

(resp. j) after t packets have been processed. This representation is the memory
of the recurrent cell, and thus consists of a single vector for FastGRNN and
GRU cells, or two vectors (short and long term memories) for LSTM cells. For
IP addresses not seen before, the memory representation is initialized with zeros.

To prevent excessive memory usage in large deployments, if an IP address is
not seen for a long period of time, its representation can be removed from the
memory dictionary. This is a sensible decision, as external public servers may
change IP address or stop being accessed by the local IoT devices. Furthermore,
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if an internal IP address remains silent for a long time, it is likely that the IoT
device was removed from the network and the address reassigned to a new IoT
device, therefore rendering the previous memory useless and even detrimental.

Output Feature Map The output feature map is responsible for extract-
ing the new packet and device representations to be used to generate the model
responses. For the device representation, the updated contents of the memory
are used directly. For cell types that produce multiple memory vectors, such as
the LSTM, only the short-term representation is passed forward to the response
layer. The packet representation is obtained by concatenating the new represen-
tations of the source and destination devices with the original features of the
packet from the input feature map.

Response Layer The response layer is responsible for computing the de-
sired model outputs, in this case, device and packet classifications. To achieve
device classifications, the device representations from the output feature map are
passed to a single-layer feed-forward classifier. A separate classifier is trained for
each classification task. The same process is used for packet-level classification,
using the packet representation from the output feature map.

4.2 Training LiMNet

The trivial approach to train LiMNet would be to order all packets in the network
trace and then feed the entire sequence to the model, packet by packet. However,
this leads to two issues: 1) scalability, as the training hardware parallelism cannot
be exploited, and 2) vanishing gradients, as the contribution of early packets is
lost in the backpropagation process.

We overcome these issues using truncated backpropagation through time (p-
BPTT) [10], a well-known RNN training technique in which the input trace
is split into shorter, partially-overlapping subtraces, which are treated as inde-
pendent inputs. Batches of subtraces can be trained in parallel, while each of
them is processed sequentially to ensure causal consistency. In general, p-BPTT
can hinder the ability of a model to capture long-term relations [24]. However
our analysis, reported in Appendix B, does not show generalization issues and
training can be performed efficiently on very long subtraces, up to ∼105 packets.

5 Limitations of Existing Recurrent Models for
Early-Stage Botnet Detection

While existing recurrent models from [1] and [9] have been shown to perform
well, they present several issues that make their deployment in real-world IoT
scenarios challenging. This motivates the contributions of this work: a review of
these recurrent models to analyze their limitations and the proposal of the novel
LiMNet architecture. Here we provide an overview of these issues.

Issue 1: packet headers contain specific device IDs, such as MAC and IP
addresses, that should not be used to classify traffic in local networks. A model
trained with these features might, for example, learn that the packets sent from
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a certain local IP are malicious based on the training dataset, while in the real
IoT network that local IP might not be malicious. Therefore, existing recurrent
models might fail to generalize to different or evolving networks. LiMNetdoes
not use any device IDs in its training and so is not affected by this issue.

Issue 2: by employing an input embedding layer, recurrent models assume
that the same token appearing in different input positions represents the same,
or similar, concept. However, the number 22 appearing as source port, desti-
nation port or packet length carries very different meanings. Therefore, these
models might fail to capture complex scenarios where these distinctions become
fundamental. Furthermore, the embedding layer treats the packet headers as a
categorical variable, with each value mapped to an independent embedding. This
prevents it from capturing patterns in numerical fields, such as the similarity be-
tween packet length 22 and 23. By not using an embedding layer to parse the
headers, LiMNet avoids these pitfalls.

Issue 3: recurrent models are well-known to incur high inference latency.
This is because the recurrent cell must be applied sequentially to each element
of the input sequence, which in this case is a sequence of packet header fields.
High throughput can be achieved by increasing the batch size used for inference,
but only at the cost of additional latency introduced by the batching process.
By contrast, the source and destination cells in LiMNet are independent and can
be processed in parallel, speeding up inference.

Issue 4: by ignoring the temporal and topological relations among packets,
focusing on a single header at a time, these models miss the overall evolution
of the network. This may hinder their ability to accurately classify traffic flows,
especially when malicious traffic looks similar to benign traffic at the level of
individual packets. LiMNet is designed specifically to exploit these relations.

6 Evaluation Methodology

6.1 Deployment Environment

The use case targeted in this work is that of early detection of botnet propagation
at the network level. Therefore, a suitable solution should fulfill a number of
requirements. First, inference should be performed on a stream of packets with
both low-latency and high throughput, in order to scale to large IoT deployments
while still being able to react quickly to incoming threats.

Second, inference should not require any specialized hardware to achieve the
desired performance level. This is because the inference should be able to run
on simple, low-power hardware such as smart routers and smart switches, as
close as possible to the actual IoT devices, to have real-time access to all packets
being exchanged in the network. These network devices typically provide simple
x86 or ARM CPUs with low core counts and small amounts of RAM. On the
other hand, training can be done offline, by replaying captured network traffic
on GPU-accelerated training servers.
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Therefore, unlike previous work [1], we focus our performance testing on
single-core CPU inference, and use a batch size of 1. In these conditions, light-
weight models that can fit in the small private cache of the core and only require
small matrix multiplications gain a substantial performance advantage.

6.2 Datasets

In order to evaluate the effectiveness of the recurrent models and of LiMNet, we
use two different datasets: MedBIoT and Kitsune. Both datasets, summarized
in Table 1, focus on the spreading phase of IoT botnets, rather than on the
attacks driven by these botnets, and are therefore the most suitable to evaluate
early-stage detection models.

The MedBIoT dataset [7] is gathered from a medium-size network with 83
devices. These devices are a combination of real and emulated devices, spanning
categories such as smart locks, switches, fans, and light bulbs. Real, working
botnets, namely Mirai, Bashlite/Gafgyt, and Torii, are injected in the controlled
environment at different times. The network traffic of the spreading phases is
captured, including communication between bots and controlled C&C servers.

The Kitsune dataset [21] is gathered in a small network of 3 PCs and 9 IoT
devices, including a thermostat, a baby monitor, a webcam, low-cost security
cameras and doorbells. One of these is infected with the Mirai malware and the
network traffic is subsequently captured.

Table 1. Datasets Summary

Dataset # of Devices # of Packets Botnets

MedBIoT 83 17,845,567 Mirai, Bashlite, Torii

Kitsune 12 764,137 Mirai

6.3 Tasks

Previous works [7,1] consider the classification of malicious packets as the only
task for botnet detection. However, device-level tasks may play an important role
as well. Classifying a device as infected or under attack allows administrators to
identify vulnerable devices and deploy more targeted countermeasures.

Therefore, in addition to the binary classification of malicious packets based
on ground-truth labels, we consider the classification of infected and under attack
devices, with device labels generated from the packet labels and headers using
simple heuristics. While the datasets do not present any overlap of multiple
malware types, this is a possibility in real networks, and a device may therefore
be infected and under attack at the same time. Thus, we consider these as two
independent binary classification tasks. The metric used is the area under the
ROC curve (AUROC), as it provides a good indication of the possible tradeoffs
between sensitivity and fallout achievable by the models.
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6.4 State-of-the-Art Recurrent Models for Early-Stage Botnet
Detection

We test state-of-the-art recurrent models from [9] and [1] with two goals: to
evaluate the impact of the issues discussed in Section 5 and to establish baseline
accuracy and inference speed when evaluating LiMNet.

However, these recurrent models are only designed to perform packet-level
classification, while LiMNet also performs the device-level tasks described above.
In the original models, the output representation of the last recurrent cell is fed to
a shallow feed-forward decoder which classifies the input packet. We extend this
by adding a pair of decoders which take the same representation as input and are
trained to classify the source and destination node of the packet, respectively. As
for the memory model, we allow multiple packet classification tasks by training
multiple packet classifiers and we allow multiple device classification tasks by
training multiple pairs of source and destination classifiers.

The implementation of LiMNet, the modified baselines and the complete
evaluation code used in this paper are freely available online6.

7 Experimental Results

7.1 Experiment 1: Parameter Selection for Recurrent Models

In their original formulation, the recurrent models from [9] and [1] take all packet
header fields as inputs. As discussed in Section 5, this may lead to overfitting
due to the presence of device identifiers (Issue 1). Furthermore, due to the sheer
length of the header (33 fields in [9]), inference latency is high (Issue 3).

To alleviate these issues, we test the recurrent models with smaller subsets of
the packet headers. In particular, we test them with all headers expect for MAC
and IP addresses, to prevent overfitting, and with only the UDP/TCP ports and
packet length, providing a level of input information similar to LiMNet.

Table 2. Combinations of datasets and hyperparameters employed in the evaluation

Datasets MedBIoT (Torii subset),
MedBIoT (Mirai subset),
MedBIoT (BashLite subset),
MedBIoT (complete),
Kitsune

Cell Types LSTM, GRU, FastGRNN

Layers 3, 1

Layer Sizes 64, 32

Input Features Full header,
Full header except MACs and IPs,
Only ports and length

6 https://github.com/lodo1995/LiMNet

https://github.com/lodo1995/LiMNet
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Motivated by the results in [1], we test both deep models with 3 recurrent
layers and shallow models with a single layer, as well as three different recurrent
cells, namely LSTM, GRU and FastGRNN. According to [1], both using shal-
lower models and using smaller recurrent cells, such as GRU and FastGRNN,
can achieve similar performance to the deep LSTM-based model in [9], while
being much faster. Finally, in the same spirit of minimizing size without loss of
quality, we test smaller layers of size 32, in addition to the size 64 used in pre-
vious works. Considering the different datasets, the total number of parameter
combinations to test is 180, summarized in Table 2.

Unfortunately, the results on the MedBIoT dataset do not allow for mean-
ingful comparisons, as all combinations lead to over 99.9% AUROC scores on
all three tasks. In contrast, on the Kitsune dataset, the results are much lower
and present a meaningful spread. Particularly interesting is the fact that feeding
the recurrent model with only port and length information provides consistently
better results than using all features as done in previous work, with up to 2%
better AUROC scores, as seen in Table 3. On the contrary, providing all features
except the IDs leads to the worst results.

Table 3. AUROC scores of recurrent models with different hyperparameter combina-
tions, fed with ports and length features on the Kitsune dataset. ”best of ...” indicates
the best results obtained by models fed with more features (not necessary the same
model in all columns). All results are averages over 5 runs. Bold results are the best,
underlined results are within 0.5%.

Layers Layers
size

Cell Device
malicious

Device
attacked

Packet
malicious

best with all headers except IDs 84.27 95.77 75.88

best with all headers 84.99 96.6 78.02

1 32 FastGRNN 85.66 96.91 80.63

1 32 GRU 85.72 97.11 80.76

1 32 LSTM 85.75 97.2 80.66

1 64 FastGRNN 85.71 97.09 80.86

1 64 GRU 85.74 97.44 80.86

1 64 LSTM 85.83 97.38 81.04

3 32 FastGRNN 85.48 96.83 80.79

3 32 GRU 85.56 97.26 80.83

3 32 LSTM 85.62 97.28 80.9

3 64 FastGRNN 85.8 97.22 81.37

3 64 GRU 85.82 97.52 81.23

3 64 LSTM 85.7 97.45 81.12

We therefore focus on the comparison of these low-features models, summa-
rized in Table 3. A larger layer size of 64 provides consistently better results
than 32. Using a 3 layers network as in [9] provides a slight advantage compared
to the single-layer network from [1], although the margin is slim. On the other
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hand, the choice of recurrent cell seems to have almost no impact, with the best
per-task results achieved by three different cell types.

In summary, the key takeaway of this experiment is that reducing the amount
of input features provides measurably better results and should be considered
even if inference speed is not an issue. However, further time and space savings
by reducing number of layers and layer sizes may have a slight negative effect
on model quality.

7.2 Experiment 2: Recurrent vs Memory Models

The next experiment aims at comparing the best recurrent models identified
above with LiMNet. Our model is always fed with minimal features extracted
from port and length headers and always has a single layer, as explained in
Section 4. Thus, the only parameters that need to be evaluated are layer size
and cell type, for which the same values presented in Table 2 are used.

As was the case for the recurrent models, LiMNet also easily achieves over
99.9% AUROC score on all tasks in MedBIoT, and we therefore focus our at-
tention on the harder and more indicative Kitsune dataset.

As can be seen in Table 4, LiMNet with layer size of 64 and GRU recurrent
units achieves an almost maximum score of ∼99%, outperforming the best low-
features recurrent models by a large margin of over 12% on average on the
three tasks. When compared to the original recurrent models that use all packet
headers, the advantage of LiMNet grows to over 14%. Similarly to recurrent
models, LiMNet also provides better results with larger layers. However, while
the former were not significantly affected by the choice of recurrent cell, LiMNet
appears to strongly favor GRU units. In general, the results present a wider
spread, indicating a higher sensitivity of LiMNet to its hyperparameters.

Table 4. AUROC scores of different configurations of recurrent models and of LiMNet.
All results are averaged over 5 runs. Bold results are the best, underlined results are
within 0.5% of the best.

Type Layers Layers
size

Cell Device
malicious

Device
attacked

Packet
malicious

best recurrent with all headers 84.99 96.6 78.02

recurrent 1 64 LSTM 85.83 97.38 81.04

recurrent 3 64 FastGRNN 85.8 97.22 81.37

recurrent 3 64 GRU 85.82 97.52 81.23

LiMNet 1 32 FastGRNN 85.52 95.97 92.8

LiMNet 1 32 GRU 98.73 98.72 99.72

LiMNet 1 32 LSTM 85.91 96.7 88.82

LiMNet 1 64 FastGRNN 98.21 97.87 99.48

LiMNet 1 64 GRU 99.13 98.84 99.75

LiMNet 1 64 LSTM 84.54 97.09 86.36
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7.3 Experiment 3: Inference Speed

The third and final experiment aims at comparing the inference speed of the
best configuration of both recurrent models and LiMNet.

Given the characteristics of the deployment environment described in Sec-
tion 6.1, the inference is performed on a single x86 CPU core7, as low-power
smart network equipment typically lacks more powerful resources. Furthermore,
the batch size is set to 1, effectively disabling batching, as it is undesirable for
two reasons. First, it substantially increases latency by queuing messages, while
providing little throughput improvements due to the low level of data parallelism
available on a single x86 core. Second, batching puts additional pressure on the
RAM, which might be limited in these low-power devices.

Table 5 summarizes the results obtained by the recurrent and LiMNet con-
figurations that ranked best in previous experiments. We report the numbers
from the MedBIoT dataset, as it includes a more diverse (and more realistic)
range of devices, ports and protocols, therefore slightly increasing the size and
reducing the speed of both recurrent and LiMNet models. However, the same
conclusions could be drawn on the Kitsune dataset, albeit at a lower scale.

Table 5. Inference speed and model size of different model configurations on the
MedBIoT dataset. Models marked with * are trained on all packet headers, while the
others are trained with the minimal amounts of features as described in the text.

Type Layers
Layer
size

Cell
Model size [kiB] Infer. speed

[packets/s]embed. cells classif. total

recurrent* 1 64 LSTM 16384 130 1.3 16515 429

recurrent 1 64 LSTM 9178 130 1.3 9309 1814

recurrent 3 64 FastGRNN 9178 98 1.3 9277 948

recurrent 3 64 GRU 9178 293 1.3 9472 972

LiMNet 1 32 GRU - 64 0.6 65 3381

LiMNet 1 64 FastGRNN - 75 1.0 76 3067

LiMNet 1 64 GRU - 225 1.0 226 3037

The fastest LiMNet model (GRU cell, layer size 32) achieves over 3300 packets
per second. However, it is not the best performing model in terms of quality.
Based on Table 4. a layer size of 64 would achieve marginally better average
scores. However, this comes at a 10% speed reduction. Depending on the specific
deployment setting, this may be an important tradeoff to consider.

The fastest recurrent model is around 46% slower. This difference has three
causes. First, the LSTM recurrent unit is slightly larger and slower than the
GRU unit. Second, LiMNet requires 2 recurrent units (for source and target
devices), while the recurrent models require one unit for each feature, and thus
3 units when considering ports and packet length. Finally, the large size of the

7 More precisely, a single core of an Intel Cascade Lake-SP CPU with 2.2 GHz base
clock, 3.2 GHz max. turbo clock, 32 KB L1d cache and 1 MB L2 private cache.
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embedding layer (over 95% of the total) means that the recurrent model cannot
fit in the private L2 cache of a CPU core and must instead reside in the slower
and shared L3 cache, or in main memory. This introduces a memory bottleneck
compared to LiMNet, as large embedding representations need to be fetched from
distant memory locations and, due to the random access patterns, speculative
pre-fetching is not effective.

Furthermore, moving from the fastest to the highest-quality recurrent model
brings an additional 46% speed reduction, from 1814 to 972 packets per second.
This is due to the switch from 1 layer to 3 layers, which triples the number of
recurrent cells that need to be evaluated during inference.

For completeness, we also take the fastest hyperparameter combination for
the recurrent model and train it with all features instead of just ports and
packet length. The results is a model that is 76% slower, as due to the much
larger number of input headers the recurrent units grow in number from 3 to 33.

To summarize, LiMNet not only achieves much better scores than the original
recurrent models from [9] and [1], but can do so at an almost 8 times higher speed.
On the other hand, the speedup that these models can achieve with less input
features stops at 4 times their original speed.

8 Discussion and Limitations

8.1 Dataset Limitations

Unfortunately, the number of open-access datasets that focus on the spreading
phase (rather than the attack phase) of IoT botnets and that provide enough
devices to extract network-level interactions is very limited. Each of the two
datasets used in this paper presents its limitations.

MedBIoT is a large dataset with multiple devices and malware types. How-
ever, as discussed in Section 7 and as already hinted by previous results [7,1], the
distinction between benign and malicious traffic is too obvious, with any deep
learning-based approach achieving near-perfect scores, making comparisons dif-
ficult. Kitsune, on the other hand, appears to present a harder challenge, making
it a useful benchmark for comparisons. However, it is several orders of magnitude
smaller and lacks diverse malware and IoT devices. It may thus not provide a
complete picture of a real IoT deployment.

We further analyze these two datasets in Appendix A and find that Kitsune
provides a more balanced, and thus more challenging, mix of network protocols.
However, more work is necessary to fully understand these dataset dynamics and
to develop more open-access datasets suitable for advanced IoT botnet detection.

8.2 Issues of Recurrent Models for Early-Stage Botnet Detection

Section 5 discussed a number of potential issues in the architecture of state-of-
the-art recurrent models for IoT botnet detection. While the limitations of the
datasets do not allow for a complete, in-depth analysis of each issue, the results
presented in Section 7 provide some hints to the extent of these issues.
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Issue 1, that is, the incorrect use of device IDs that may prevent model
generalization, seems to be confirmed by the results in Table 3. Models trained
without those IDs perform worse than those trained with them, indicating that
the model is exploiting these dataset-specific information in its embeddings.

However, that issue is rendered moot by the fact that removing almost all
features achieves even better performance. This may be related to Issue 2. As
most packet headers reuse the same numerical values with different meaning
(e.g. port 22 vs packet length 22 vs packet checksum 22), reducing the number
of input headers reduces the number of different meanings that a single numerical
value can have. This allows the embedding layer to better capture the semantics
of these numerical values. Intuitively, the model is able to better focus on the
few relevant fields selected, without being confused by insignificant headers such
as checksums and reserved fields.

Issue 3 is also partially mitigated by the reduced number of features. How-
ever, the inference speed of recurrent models is still inferior to that of LiMNet,
as shown in Section 7.3.

Finally, the substantially better results obtained by LiMNet confirm the rel-
evance of Issue 4, indicating the presence of useful information in the temporal
and topological relationships between different packet flows.

9 Conclusion

Securing IoT networks from malicious botnets is an important step towards the
widespread deployment of IoT devices in the Industry 4.0 and in smart homes.

In this work, we analyzed the issues and limitations of state-of-the art recur-
rent models for early-stage detection of devices infected and under attack. Our
proposed modifications to mitigate these issues slightly improved classification
performance, while increasing inference speed by 4 times.

However, we have shown that an increase of 14% in classification scores,
up to a nearly maximum value of ∼99%, and an almost 8 times speedup can
be achieved by switching to a completely different model. Based on memory
networks and mutually-recurrent units, our LiMNet architecture can understand
and exploit the crucial temporal and topological relationships in the network,
while being incredibly lightweight in both size and computational requirements.

Furthermore, the LiMNet architecture proposed in this work is not specific to
malware detection and could be applied in any temporal interaction network that
presents strong causal relationships. Therefore, the potential use of LiMNet in
other areas of security should be explored in future works. One such area could be
the detection of fraudulent behaviour in financial transactions on cryptocurrency
networks such as Bitcoin and Ethereum.
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A Kitsune vs MedBIoT: challenges for ML models

To effectively and fairly compare early-stage botnet detection models, large,
realistic and challenging datasets are required. We therefore analyze Kitsune and
MedBIoT, to understand why the former is more challenging than the latter.

In [1], the authors hypothesize that their balancing of the different malware
classes in MedBIoT may cause their very high scores. However, in our work, we
do not perform any balancing and still achieve near-perfect scores for both our
approach and the baseline from [1], thus disproving this hypothesis.

The breakdown of the protocol distributions of the datasets, reported in
Table 6, shows that MedBIoT is dominated by a single protocol and that within
most protocols legitimate packets are one order of magnitude more (or less) than
malicious ones, with the overall dataset being skewed towards legitimate traffic.
A model can easily achieve high scores by focusing on the dominating protocol,
and by providing simple majority answers for the others. Kitsune, on the other
hand, is fairly well-split across three dominant protocols and fairly balanced
between legitimate and malicious traffic, both overall and within each protocol.
Any model therefore needs to capture multiple legitimate behaviours and learn
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Table 6. Distribution of protocols in the datasets, as identified by tshark. When the
application-level protocol is not identified, the transport-level protocol is reported.

MedBIoT

protocol legitimate malicious % of total
packets

TCP 14971443 4747941 89.1

MQTT 1732790 2210 7.8

TELNET 0 350431 1.6

HTTP 266377 4769 1.2

DNS 17994 34016 0.2

10 others 2848 3616 <0.1

Kitsune

protocol legitimate malicious % of total
packets

UDP 39650 23904 41.2

TCP 20669 30048 32.9

DNS 23608 14305 24.6

SSDP 636 416 0.7

TELNET 0 435 0.3

7 others 282 144 <0.3

to discern malicious traffic within each protocol based on additional signals. It
is thus unsurprising that Kitsune proved more challenging in our experiments,
as it better tests the modelling capabilities of botnet detection approaches.

B Effect of Truncated Backpropagation Through Time

Truncated Backpropagation Through Time (p-BPTT) [10] has gained traction
in the RNN field as a simple technique to quickly and efficiently train model on
very long sequences. However, this technique is known to reduce the ability of a
model to capture long-range relations, as inputs that are very far in the original
sequence never co-appear in the same subsequence after splitting [24].

To ensure that this issue is not affecting LiMNet, we train it with different
combinations of length and stride for the subsequences. For a fair comparison,
it is important to consider the length/stride ratio. A higher ratio indicates more
overlaps between the subsequences and thus leads to more training data points
per epoch. The results are reported in Table 7.

Table 7. AUROC scores of LiMNet with GRU units and layer size 32 on the Kitsune
dataset, with varying subsequence length and stride for p-BPTT.

Sequence
length

Sequence
stride

length/stride
ratio

Device
malicious

Device
attacked

Packet
malicious

1000 200 5 98.68 98.93 98.97

5000 1000 5 98.38 98.07 99.59

10000 2000 5 96.37 97.37 98.64

20000 4000 5 64.77 90.89 86.26

10000 1000 10 99.42 99.26 99.93

20000 1000 20 99.2 98.99 99.84

Keeping the ratio fixed at 5, Table 7 shows that longer subsequences lead
to worse results, not better. If there are any gains from modelling long-term



20 L. Giaretta, A. Lekssays, et al.

relations, they are offset by the larger strides, which cause most packets to never
appear close to the end of any subsequence, where the backpropagation gradi-
ents are stronger. This issue can be mitigated by reducing the stride and thus
increasing the ratio. This bring performance up, but at much higher computa-
tional costs. Furthermore, even with high ratios, increasing sequence length over
10k packets does not seem to provide any benefit, indicating that, at this length
p-BPTT does not negatively impact LiMNet performance.

C Cross-dataset Model Generalization

As an additional experiment, in Table 8 we consider the performance of LiMNet
when trained on one dataset and tested on another. The results show once more
how different the scenarios presented by Kitsune and MedBIoT are.

As the datasets present different protocol mixes (as shown in Appendix A),
the one-hot protocol encoding of the testing dataset needs to be modified to
match that of the training dataset, which is the one the model expects. For
protocols present in both datasets, this “alignment” amounts to a simple reshuf-
fle of the features. For application-level protocols that are present in the test-
ing dataset but not in the training one, we consider two options: 1) replacing
them with their transport-level protocol, as TCP and UDP are present in both
datasets, or 2) setting all protocol features to zero, effectively marking the packet
as having no protocol. Our results show no substantial differences between these
two options.

A model trained on Kitsune has no knowledge of the Torii and Bashlite
malware present in MedBIoT, while one trained on the latter is aware of the
Mirai malware in Kitsune. This explains why training on MedBIoT and testing
on Kitsune provide better results than the opposite in the malicious packet
detection task. However, the results on this task are still extremely low, probably
because the model also faces different patterns of legitimate traffic, which it
cannot recognize. The device-level tasks, present much better (although still
low) results. This may be due to the memory component of LiMNet: while a
single packet may be hard to judge in these conditions, the model still memorizes
enough knowledge over time to correctly flag at least part of the devices.

Table 8. AUROC scores of LiMNet with GRU units and layer size 32, trained and
tested on different combinations of datasets

Training
dataset

Testing
dataset

Protocol
alignment

Device
malicious

Device
attacked

Packet
malicious

Kitsune Kitsune - 98.73 98.72 99.72

Kitsune MedBIoT transport 58.92 60.39 28.64

Kitsune MedBIoT no proto 58.83 59.98 28.52

MedBIoT MedBIoT - 99.79 99.79 99.84

MedBIoT Kitsune transport 42.87 60.99 35.62

MedBIoT Kitsune no proto 42.87 60.99 35.63
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