
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/220725214

DTL: Dynamic Transport Library for Peer-to-Peer Applications

Conference Paper · January 2012

DOI: 10.1007/978-3-642-25959-3_32 · Source: DBLP

CITATIONS

6
READS

108

4 authors:

Some of the authors of this publication are also working on these related projects:

M.S. Thesis View project

Concurrent Constraint Programming View project

Riccardo Reale

Swedish Institute of Computer Science

3 PUBLICATIONS   16 CITATIONS   

SEE PROFILE

Roberto Roverso

Peerialism AB

19 PUBLICATIONS   114 CITATIONS   

SEE PROFILE

Sameh El-Ansary

Swedish Institute of Computer Science

34 PUBLICATIONS   599 CITATIONS   

SEE PROFILE

Seif Haridi

KTH Royal Institute of Technology

227 PUBLICATIONS   4,088 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Seif Haridi on 21 December 2013.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/220725214_DTL_Dynamic_Transport_Library_for_Peer-to-Peer_Applications?enrichId=rgreq-feecbd656d72db2fcbb6adde1e384701-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNTIxNDtBUzoxMDE4NjE1ODM0OTEwNzdAMTQwMTI5NzEwMjI4MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220725214_DTL_Dynamic_Transport_Library_for_Peer-to-Peer_Applications?enrichId=rgreq-feecbd656d72db2fcbb6adde1e384701-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNTIxNDtBUzoxMDE4NjE1ODM0OTEwNzdAMTQwMTI5NzEwMjI4MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/MS-Thesis-55?enrichId=rgreq-feecbd656d72db2fcbb6adde1e384701-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNTIxNDtBUzoxMDE4NjE1ODM0OTEwNzdAMTQwMTI5NzEwMjI4MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Concurrent-Constraint-Programming?enrichId=rgreq-feecbd656d72db2fcbb6adde1e384701-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNTIxNDtBUzoxMDE4NjE1ODM0OTEwNzdAMTQwMTI5NzEwMjI4MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-feecbd656d72db2fcbb6adde1e384701-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNTIxNDtBUzoxMDE4NjE1ODM0OTEwNzdAMTQwMTI5NzEwMjI4MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Riccardo_Reale?enrichId=rgreq-feecbd656d72db2fcbb6adde1e384701-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNTIxNDtBUzoxMDE4NjE1ODM0OTEwNzdAMTQwMTI5NzEwMjI4MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Riccardo_Reale?enrichId=rgreq-feecbd656d72db2fcbb6adde1e384701-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNTIxNDtBUzoxMDE4NjE1ODM0OTEwNzdAMTQwMTI5NzEwMjI4MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Swedish_Institute_of_Computer_Science?enrichId=rgreq-feecbd656d72db2fcbb6adde1e384701-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNTIxNDtBUzoxMDE4NjE1ODM0OTEwNzdAMTQwMTI5NzEwMjI4MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Riccardo_Reale?enrichId=rgreq-feecbd656d72db2fcbb6adde1e384701-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNTIxNDtBUzoxMDE4NjE1ODM0OTEwNzdAMTQwMTI5NzEwMjI4MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Roberto_Roverso?enrichId=rgreq-feecbd656d72db2fcbb6adde1e384701-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNTIxNDtBUzoxMDE4NjE1ODM0OTEwNzdAMTQwMTI5NzEwMjI4MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Roberto_Roverso?enrichId=rgreq-feecbd656d72db2fcbb6adde1e384701-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNTIxNDtBUzoxMDE4NjE1ODM0OTEwNzdAMTQwMTI5NzEwMjI4MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Roberto_Roverso?enrichId=rgreq-feecbd656d72db2fcbb6adde1e384701-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNTIxNDtBUzoxMDE4NjE1ODM0OTEwNzdAMTQwMTI5NzEwMjI4MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sameh_El-Ansary?enrichId=rgreq-feecbd656d72db2fcbb6adde1e384701-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNTIxNDtBUzoxMDE4NjE1ODM0OTEwNzdAMTQwMTI5NzEwMjI4MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sameh_El-Ansary?enrichId=rgreq-feecbd656d72db2fcbb6adde1e384701-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNTIxNDtBUzoxMDE4NjE1ODM0OTEwNzdAMTQwMTI5NzEwMjI4MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Swedish_Institute_of_Computer_Science?enrichId=rgreq-feecbd656d72db2fcbb6adde1e384701-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNTIxNDtBUzoxMDE4NjE1ODM0OTEwNzdAMTQwMTI5NzEwMjI4MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sameh_El-Ansary?enrichId=rgreq-feecbd656d72db2fcbb6adde1e384701-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNTIxNDtBUzoxMDE4NjE1ODM0OTEwNzdAMTQwMTI5NzEwMjI4MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Seif_Haridi?enrichId=rgreq-feecbd656d72db2fcbb6adde1e384701-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNTIxNDtBUzoxMDE4NjE1ODM0OTEwNzdAMTQwMTI5NzEwMjI4MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Seif_Haridi?enrichId=rgreq-feecbd656d72db2fcbb6adde1e384701-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNTIxNDtBUzoxMDE4NjE1ODM0OTEwNzdAMTQwMTI5NzEwMjI4MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/KTH_Royal_Institute_of_Technology?enrichId=rgreq-feecbd656d72db2fcbb6adde1e384701-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNTIxNDtBUzoxMDE4NjE1ODM0OTEwNzdAMTQwMTI5NzEwMjI4MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Seif_Haridi?enrichId=rgreq-feecbd656d72db2fcbb6adde1e384701-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNTIxNDtBUzoxMDE4NjE1ODM0OTEwNzdAMTQwMTI5NzEwMjI4MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Seif_Haridi?enrichId=rgreq-feecbd656d72db2fcbb6adde1e384701-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNTIxNDtBUzoxMDE4NjE1ODM0OTEwNzdAMTQwMTI5NzEwMjI4MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


DTL: Dynamic Transport Library for
Peer-To-Peer Applications

Riccardo Reale1, Roberto Roverso1,2, Sameh El-Ansary1, and Seif Haridi2

1 Peerialism Inc, Stockholm, Sweden
{riccardo, roberto, sameh}@peerialism.com

2 KTH-Royal Institute of Technology, Stockholm, Sweden
{haridi}@kth.se

Abstract. This paper presents the design and implementation of the
Dynamic Transport Library (DTL), a UDP-based reliable transport li-
brary, initially designed for - but not limited to - peer-to-peer applica-
tions. DTL combines many features not simultaneously offered by any
other transport library including: i) Wide scope of congestion control lev-
els starting from less-than-best-effort to high-priority, ii) Prioritization
of traffic relative to other non-DTL traffic, iii) Prioritization of traffic
between DTL connections, iv) NAT-friendliness, v) Portability, and vi)
Application level implementation. Moreover, DTL has a novel feature,
namely, the ability to change the level of aggressiveness of a certain con-
nection at run-time. All the features of the DTL were validated using a
controlled environment as well as the Planet Lab testbed.

1 Introduction

Looking at the rich and diverse requirements of applications in a quickly emerg-
ing field like P2P computing, we find that these needs have driven innovation in
Internet transport protocols. In the past few years, it has been more and more
common that a P2P application develops its own congestion control algorithm,
because using out-of-the box TCP congestion control did not suffice. To name
a few examples, for a voice and video conferencing application like Skype, a
steady low-jitter flow of packets is required. On top of that, due to its real-time
nature, Skype traffic must benefit from higher priority with respect to any other
application’s transfer. Thus, Skype developed an application-level proprietary
congestion control algorithm [8] known to be very aggressive towards other ap-
plications. On the other end of the spectrum, a content distribution application
like Bittorrent, started initially by using TCP but then switched to LEDBAT,
in order to be polite as much as possible towards other applications, while sat-
urating the link capacity. Politeness was critical to eliminate the reputation of
Bittorrent as a protocol which totally hogs the bandwidth and makes all other
applications starve. Between extreme politeness and aggressiveness, many other
applications can settle for traditional fair contention over the bandwidth.

The collective state-of-the-art in congestion control algorithms has already
addressed most of the diverse needs of P2P applications. The serious shortcoming



2 Riccardo Reale, Roberto Roverso, Sameh El-Ansary, and Seif Haridi

is the that the best known techniques are scattered around in different libraries.
This makes it rather hard for anyone developing a new P2P application to ben-
efit from the progress in the field. This scattering of ideas in addition to some
practical and algorithmic issues that we faced while studying other algorithms
like LEDBAT, MulTCP and MulTFRC motivated our work on the DTL trans-
port library. The idea is to have one single library that can practically serve as
single one-stop-shop for any P2P application.

The following is a list of the target requirements that we realize in DTL:
Priority Levels Supported. The library has to support all levels of traffic
prioritization that already exist in the congestion control state-of-the-art.
Inter-Protocol Prioritization. The library has to give control to the applica-
tion on how polite or aggressive it wants to be against other applications.
Intra-Protocol Prioritization. The library has to give control to the appli-
cation on how polite or aggressive each individual connection is with respect to
other connection within the application. A P2P storage application might need,
for instance, to have low-priority background transfers for backup purposes and
high-priority transfer to fetch a file that has just been shared by another peer.
In addition to that, there are some features that have to be there for practical
purposes:
NAT-Friendliness. The library has to be based on UDP. This makes it easier
to circumvent NAT constraints as UDP NAT traversal procedures are known to
be more effective than TCP ones [17][11].
Application-level implementation. The library has to be implemented in
user space, because for all practical purposes, a kernel-level implementation
would hinder any successful wide use. A feature lacking from a rather flexi-
ble congestion control library like MulTCP.
Portability. The library shall be available on all platforms, again, that if we
want it to be widely-adopted. One final feature which we have not previously
found in any other library is the ability not only to specify different priorities
for different connection but to be able to change the priority of a particular
connection at run-time:
Run-Time Dynamic Prioritization. The need for this feature has arisen,
when our team was working on a P2P video streaming application and we needed
to tweak the priority of incoming transfers to achieve the necessary playback
rate; this by progressively increasing the aggressiveness towards other traffic in
the network. An additional advantage of on-the-fly priority tuning is that it
prevents disruptions of existing connections and avoids the need of connection
re-establishments for transitioning from one priority level to the other or from
a congestion control algorithm to the other. In fact, it is known that connec-
tion establishments procedures are usually very costly, on the order of several
seconds [17], due to expensive peer-to-peer NAT Traversal and authentication
procedures.
Finally, the library should support TCP-like reliability and flow control for ease
of use.



DTL: Dynamic Transport Library for Peer-To-Peer Applications 3

In this paper, we present how we achieved meeting all aforementioned re-
quirements in the software we call Dynamic Transport Library or DTL. The
paper is organized as follows: in Section 2 we present the state of the art which
constitutes the starting point of our effort. With respect to that, we detail the
contribution of our work in Section 3. In Section 4 we explain the design and
implementation of the library, while in Section 5, we present our library’s evalu-
ation results. We then conclude with some final considerations and future work
in Section 6.

2 Related Work

LEDBAT is widely accepted as an effective solution to provide a less-than-best-
effort data transfer service. Initially implemented in the µTorrent BitTorrent
client and now separately under discussion as an IETF draft [1], LEDBAT is a
delay-based congestion control mechanism which aims at saturating the bottle-
neck link while throttling back transfers in the presence of flows created by other
applications, such as games or VoIP applications. The yielding procedure is en-
gineered to avoid disruptions to other traffic in the network, and it is based on
the assumption that growing one-way delays are symptoms of network conges-
tion. With respect to classical TCP, this allows for earlier congestion detection.
LEDBAT was inspired by previous efforts like TCP-Nice [18] and TCP-LP [13]
which are based on the same idea.

Our initial goal was to test LEDBAT for background data transfers and later
try to tweak its parameters to obtain increased aggressiveness and thus higher
transfer priority. Although positively impressed by the ability of LEDBAT to
minimize the latency introduced on the network, we found out that tweaking
gain and target delay metrics does not lead to a corresponding degree of ag-
gressiveness, as also stated by [5]. As a consequence, we started to investigate
other possible solutions for obtaining tunable aggressiveness transfers. MulTCP
[9] provides a mechanism for changing the increment and decrement parameters
of the normal TCP’s AIMD [3] algorithm to emulate the behavior of a fixed
number N of TCP flows in a single transfer. The idea of multiple flow virtual-
ization is very promising, however the protocol has been experimented only as a
kernel module and it is unclear how an application-level implementation would
perform.

MulTFRC [10] extends a previous protocol called TCP Friendly Rate Control
(TFRC) [12] to achieve variable transfer aggressiveness. The core idea of TFRC
is to achieve TCP-friendliness by explicitly calculating an equation which ap-
proximates the steady-state throughput of TCP. MulTFRC modifies the TFRC
congestion equation, resulting in a tunable version of the rate control which em-
ulates the behavior of N TFRC flows while maintaining a smooth sending rate.
It has been shown that MulTFRC gives better bandwidth utilization than other
protocols, such as the Coordination Protocol (CP), by better approximating the
steady-state throughput of N virtualized TCP flows [10]. MulTFRC differs from
MulTCP in the way that it provides a smoother sending rate, making it partic-



4 Riccardo Reale, Roberto Roverso, Sameh El-Ansary, and Seif Haridi

Inter-protocol pri-
oritization

Intra-protocol
prioritization

Application
level

Portable NAT-
friendly

Runtime
Dynamic
Tuning

LEDBAT L-T-B-E X UDP
MulTCP L-H, CONT X TCP
MulTFRC L-H, CONT X X UDP
DTL L-T-B-E & L-H,

CONT
X X X UDP X

Table 1: Comparison between protocols. L.T.B.E. = Less-Than-Best-Effort,
CONT = Continuous Range, L-H. = Low to High

ularly suitable for multimedia applications. Unfortunately, MulTFRC does not
allow for the runtime modification of the N parameter and thus, it is not suitable
for our goals [2].

Since MulTCP and MulTFRC are both packet-based congestion control al-
gorithms, if configured to simulate less than one TCP flow, they are likely to be
more aggressive than other less-than best effort alternatives. For simulating mul-
tiple flows instead, both MulTCP and MulTFRC perform reasonably well with
values up to N = 10, but only MulTFRC increases linearly for higher values, as
mentioned in [10].

3 Contribution

In this paper, we present the design and implementation of an application-level
library which provides TCP-like reliability and flow control while implementing
variable and configurable on-the-fly traffic prioritization through different con-
gestion control techniques. To the best of our knowledge, this library is first of
its kind given the aforementioned characteristics.

The library implements two state of the art congestion controls algorithms:
LEDBAT and MulTCP. The two mechanisms have been combined to achieve
traffic prioritization which cover a range of levels which start from less-than-best-
effort, where transfers totally yield to other traffic, up to high, where transfers
try to reclaim bandwidth from both other intra- and extra-protocol transfers.
The priority level can be adjusted using a unique configurable parameter named
priority. The parameter can be changed at runtime without causing the flow of
data to be disrupted and without the need of connection re-establishments. For
presentation’s purpose, the traffic levels are classified in two operational modes,
according to which congestion control algorithm is used:

Mode =

{
Polite, if priority = 0(LEDBAT )

V ariable, if priority > 0(MULTCP )
(1)

As a further contribution, the library is implemented in Java as an attempt to
make the software portable between different platforms. We are unaware of any
other effort to fully implement LEDBAT, MulTCP or any relevant congestion
control mechanism for that matter on an application-level library in Java. A
feature-wise comparison of the state-of-the art against DTL is shown in Table 1.



DTL: Dynamic Transport Library for Peer-To-Peer Applications 5

4 Dynamic Transport Library (DTL)

We implemented DTL, using Java NIO over UDP. We drew inspiration for its
design from TCP with SACK (Selective Acknowledgment Options). For this
reason, we provide an application level TCP-like header in order to enable relia-
bility, congestion control and flow control over UDP in the same way TCP does.
In our implementation, the header is appended to each datagram together with
the data to be transmitted, and it is encoded/decoded by the sender and receiver
modules at the respective ends of the connection. The base header carries the re-
ceiver’s advertised window, the sequence number and the acknowledge number.
The packet size is dynamically chosen. By default, DTL uses large packet sizes
of 1500 bytes, while at slow rates the size can be adjusted down to 300 bytes.

The sender’s module which initiates a transfer maintains three variables: (1)
the congestion window cwnd, meant as a sender-side limit, (2) the receiver’s
advertised window, as receiver-side limit, and(3) the slow start threshold.

End-to-end flow control, used to avoid the sender transmitting data too
quickly to a possible slow receiver, is obtained using a sliding window buffer.
In every acknowledgement packet, the receiver advertises its receive window as
the amount of data that it is able to buffer for the current connection. At each
point in time, the sender is allowed to transmit only a number of bytes defined
as follows:

allowed = min(rcv win, cwnd)− inflight (2)

where rcv win is the advertised receive window, inflight is the amount of
data in transit on the network and not yet acknowledged, while cwnd is the
congestion window size.

Reliability is ensured by tagging each packet with a sequence number which
corresponds to the the amount of bytes sent up to that point in time. Using
the sequence number, the receiver is able to understand the ordering of pack-
ets and identify losses. For each received packet, the receiver sends back an
acknowledgement(ack) with the amount of bytes it has received up till that
point. The sender can detect packet loss in two ways: when a packet times out,
or when the receiver notifies the sender with a special format’s selective acknowl-
edgement. The packet timeout value is correlated with the estimated RTT. The
latter is updated the same way TCP does: using the Karn/Partridge algorithm
[15].

The Selective Acknowledgement is generated by the receiver after more than
three out-of-order packets, and contains the information about all successfully
received segments. Consequently, the sender can retransmit only the segments
which have actually been lost. The library’s behaviour in case of packet loss
or ack reception is defined at the server-side by the chosen congestion control
mechanism.

This is because, while in our library flow control and reliability designs are
both directly derived from TCP, we provided a different implementation of con-
gestion control according to the transfer prioritization policy which needs to be
enforced.



6 Riccardo Reale, Roberto Roverso, Sameh El-Ansary, and Seif Haridi

In general terms, in order to control the aggressiveness of the flow, we provide
the applications with priority parameter for each socket, intended as a positive
floating point number. The correlation between the priority parameter and the
service mode has been previously defined in Equation 1.

In the polite mode, we make use of the LEDBAT algorithm. In the variable
mode instead, we provide our implementation of MulTCP, parametrized with a
priority value corresponding to the number N == priority of flows to virtualize.
The choice of MulTCP is motivated by the fact that, while MulTFRC might pro-
vide a small improvement in transfer stability and bandwidth utilization [2], the
number of virtualized flows cannot be changed at runtime. In the following two
sections, we will detail our implementation of both polite and variable modes,
describing the implementation of the congestion control algorithms.

4.1 Polite Mode

Although LEDBAT is not the only congestion control providing less-than-best-
effort transfers, it is the only one which actually tries to control the latency
introduced on the network by the transfer itself. Other similar algorithms, like
TCP-Nice [18] and TCP-LP [13] use the increasing delay as an indicator of im-
minent congestion as LEDBAT does, but they try to react in a more conservative
manner, or simply by backing off earlier than TCP. LEDBAT instead opts to
keep the delay under a certain threshold, reason for which it is able to achieve a
yielding factor that is higher than other congestion controls, as explained in [5].

Since the main congestion indicator in LEDBAT is the one-way delay varia-
tion, in order to react earlier than TCP to congestion events, we added a times-
tamp and delay header fields to compute its value. For every packet sent, the
sender appends to the packet its own timestamp, while the receiver sends back
an acknowledgement containing that same timestamp (used also for better RTT
estimation) and the measured one-way delay. The sender’s congestion control
module maintains a list of the minimum one-way delays observed every minute
in a BASE HISTORY queue. The smallest delay Dmin is used to infer the
amount of delay due to queuing, as we assume it represents the physical delay
of the connection before any congestion happened. The mechanism of using only
”recent” measurements, letting the old ones expire, results in a faster response
to changes in the base delay. Consequently it also allows to correct possible er-
rors in the measurements caused by clock skewness between sender and receiver.
The last measured one-way delays are stored in a NOISE FILTER queue. The
lowest value in the queue is used to compute the queuing delay. In our imple-
mentation, the BASE HISTORY memory time is set to 13 minutes while the
NOISE FILTER queue contains the 3 last measured delays.

The key element in the LEDBAT congestion control algorithm lies in compar-
ing the estimated queuing delay against a fixed target delay value τ , considered
as the maximum amount of delay that a flow is allowed to introduce in the queue
of the bottleneck buffer. The difference ∆(t) between the queuing delay and the
target is used to proportionally increase or decrease the congestion window. The



DTL: Dynamic Transport Library for Peer-To-Peer Applications 7

original LEDBAT linear controller is defined as follows:

∆(t) = τ − (D(t)−Dmin) (3)

cwnd(t+ 1) = cwnd(t) + γ∆(t)/cwnd(t) (4)

where γ is the gain factor. The controller has a behavior similar to TCP in the
way it reacts to a packet loss by halving the congestion window.

In our implementation, we set γ = 1/TARGET , so that the max ramp-up
rate is the same of TCP, and τ = 100ms, as specified in the BitTorrent’s open
source µTP implementation and later confirmed in the second version of the
LEDBAT Internet draft (July 2010).

A first implementation of the standard LEDBAT linear controller confirmed
the presence of intra-protocol fairness issues, known as the late-comer advantage.
Primary causes of the problem are base delay measurement errors and a wrong
window decrement policy. In order to overcome this issue we implemented the
solution proposed by Rossi et al. [16], i.e. applying the TCPs slow-start mech-
anism to the very beginning of LEDBAT flows. Slow-start forces a loss in the
other connections active on the same bottleneck, thus allowing the new-coming
flow to measure a correct base delay.

From our experiments however, we found out that even using the slow-start
mechanism, slight differences in the base delay measurements might lead to
significant unfairness among transfers. We identified the problem to be in the
Additive Increase/Additive Decrease (AIAD) mechanism. Referring to the work
of Chiu et Al.[7], we implemented a a simple Additive Increase/Multiplicative
Decrease (AIMD) algorithm instead, which is proven to guarantee stability. As
a result, we modified the original Equation 4 in such a way that, if the estimated
queuing delay exceeds the tau value, the cwnd shrinks by a β < 1 factor, as
described here:

cwnd(t+ 1) =

{
cwnd(t) + γ∆(t)/cwnd(t) if ∆(t) >= 0

cwnd(t)× β if ∆(t) < 0
(5)

With this modification, the decrement of the congestion window is caused by
the queuing delay reaching a higher value than the target. The decrement also
becomes proportional to the sending rate itself. Flows with higher sending rate
will then decrease more than others. In our implementation, we used a β factor
of 0.99 as found in other implementations [6].

The validity of our considerations has been confirmed by an independent
study [6], in which the authors analytically prove that the additive-decrease
component in the LEDBAT linear controller makes the system unfair, causing
transfers to fall out of Lyapunov stability. In the same study, two solutions are
proposed for this problem: the first, more conservative, consists of adding a
probabilistic drop to the additive increase/decrease dynamics. The other, more
aggressive, directly replaces the additive decrease with a multiplicative one, thus
confirming our finding.



8 Riccardo Reale, Roberto Roverso, Sameh El-Ansary, and Seif Haridi

4.2 Variable Mode

We implemented our variable mode transfer priority using the MulTCP algo-
rithm. MulTCP [9] congestion control mechanism allows for a single flow to
behave like an aggregate of N concurrent TCP connections, in particular from
the point of view of the throughput.

The congestion control module is implemented on top of the normal TCP
SACK algorithm using the priority value as number of virtual flows N which
one transfer must virtualize. MulTCP simply provides the a and b parameters in
the additive-increase/multiplicative-decrease (AIMD) algorithm which are pro-
portional to the number of flows to emulate. MulTCP tries to closely emulate
the behavior of TCP in all of its phases, so that in both slow start and conges-
tion avoidance, the congestion window grows as N TCP flows would. In order
to avoid sending large bursts of packets if N is too large, causing packet losses,
we also implemented the smooth slow start algorithm introduced in [9].

As a further improvement to the original MulTCP algorithm, we imple-
mented the MulTCP2 algorithm modification proposed by Nabeshima et al.
[14]. The mechanism makes it possible, in case of packet loss, to achieve a bet-
ter virtualized behavior than the original MutlTCP specification, considered to
be too aggressive. Here we report the suggested equation implemented in our
library.

First, the steady-state average congestion window of N flows is calculated as
follows:

cwndN = N × cwndstd =
N
√

1.5
√
p

(6)

where p is the packet loss rate. Then we derive the cwnd in function of a, AIMD’s
increase parameter, and b, AIMD decrease parameter:

cwnd =

√
a(2− b)√

2bp
(7)

Finally b is derived from equations 6 and 7 as:

b =
2a

a+ 3N2
(8)

We then set a to be N , the number of virtualized flows, which is also equal to
our priority parameter, and b = 2/(1 + 3N).

It’s easy to observe that, for a = 1, the parameters of the AIMD algorithm
are exactly the same of the standard TCP.

5 Evaluation

In this chapter, we report the results gathered using DTL. Our evaluation
methodology is the same used for studies conducted on the LEDBAT proto-
col such as [16].

We performed our tests in two different configurations:



DTL: Dynamic Transport Library for Peer-To-Peer Applications 9

– a controlled network environment consisting of three host machines using
Ubuntu with kernel 2.6.32-22, two as traffic sources and one as traffic sink,
connected by a Gigabit links. In order to emulate bottleneck network condi-
tions, we used the Dummynet traffic shaper [4]. We created two pipes with
RED queue and standard periodic loss, the first with symmetric capacity
of C = 1Mbps for the low-bandwidth scenario, and one with symmetric ca-
pacity of C = 10Mbps, for the high-bandwidth scenario. Both of them are
configured with a delay of 20ms. This is a common configuration setup used
by other related works [10][9].

– a real-world environment using the PlanetLab testbed. The experiments are
performed using the same configuration of the controlled case, i.e. two hosts,
in this case PlanetLab machines, as traffic sources and one as traffic sink.
Only non-congested nodes with a symmetric capacity of C = 10Mbps are
chosen to host the experiment.

As metrics to evaluate the performance of the DTL, we adopted:

1. the notion of fairness introduced by Jain’s fairness index F [7], defined as:

F =
(
∑N

i=1Xi)
2

N ·
∑N

i=1X
2
i

(9)

where xi is the rate of flow i and N is the number of flows sharing the
bottleneck. Notice that, when N flows get the same bottleneck share, fairness
is equal to 1, while it decreases to 1/N in the unfair case, where a single flow
overtakes the other transfers and uses all available capacity.

2. the efficiency or link utilization η, defined as the ratio of the total link
utilization normalized over the available bandwidth.

3. the normalized throughput, when comparing the total throughput of multiple
parallel flows.

We identify flows with dynamic priority over time as DTL(0,1,2), where 0,1
and 2 are the priority values at different point in time in the experiment.

5.1 Polite Mode results

Early results of our initial implementation of LEDBAT, following the draft spec-
ification, with the slow start option enabled, immediately showed three funda-
mental characteristics:

– Capacity of the congestion control algorithm of exploiting all the available
bottleneck resources, keeping the one-way delay around the queuing delay
target and yielding to TCP flows.

– Fairness in sharing available bandwidth in case of multiple flows starting at
the same point in time.

– Unfairness in sharing available bandwidth when flows start at different point
in time, even when using the slow start mechanism.



10 Riccardo Reale, Roberto Roverso, Sameh El-Ansary, and Seif Haridi

Figure 1 shows a comparison of two intra-protocol examples. The first run
(a) is executed using the original algorithm with slow-start, while the second
(b) using the modified algorithm with multiplicative-decrease. The results have
been obtained using the first test configuration. As shown, the original linear
controller is not able to timely compensate the initial small error in the base-
delay measurements, while the introduction of the non-linear decrease seems to
efficiently solve the issue. We would like to underline that, from our experiments,
both techniques, i.e. slow start and multiplicative decrease, should be used to
guarantee intra-protocol fairness as shown on Figure 1(b). As opposed to another
previous which claims that implementing multiplicative-decrease is enough to
provide such behaviour.

b
it
/s

0

2

4

6

8

10×105

time (s)

0 20 40 60 80 100 120

TOTAL

DTL 0 

DTL 0

(a)

b
it
/s

0

2

4

6

8

10×105

time (s)

0 20 40 60 80 100 120

TOTAL

DTL 0 

DTL 0

(b)
Fig. 1: Comparison of Polite Mode intra-protocol fairness with AIAD (a) as op-
posed to with AIMD (b)

In Figure 2 we plotted the temporal evolution of the throughput of ten DTL
flows with priority = 0 (DTL0), starting 5 seconds after each others with a
duration of 300 seconds. The test was executed on PlanetLab. The low priority
flows perfectly share the bottleneck using all the available resources.

We present in Figure 4 the temporal evolution of two polite flows (DTL0)
and two TCP flows on the PlanetLab configuration. The two DTL0 flows, one
started at t = 0 and the other at t = 60, equally share the available bandwidth,
then yield to a TCP flow at t = 120, and again fill up the bottleneck link when
the TCP flows, the second one having joined at t = 180, terminate at t = 240.

Finally, we examine the impact of the Multiplicative-decrease modification in
terms of efficiency η, fairness F and loss rate L. We considered two low-priority
flows starting at different points in time. Both flows share a common bottleneck
both in low and high bandwidth configuration. Each simulation lasted 300 sec-
onds. In Table 2, we report the average of multiple simulation runs executed at
different point in time. The results refer to the time interval where both flows are



DTL: Dynamic Transport Library for Peer-To-Peer Applications 11

10 DTL0

b
it
/s

0

1

2

3

4

5

6

7

8

9

10×106

time (s)

0 50 100 150 200 250 300 350

Fig. 2: Temporal evolution of the throughput of 10 DTL 0 flows on the path
planetlab1.sics.se - planet2.zib.de

active at the same time. The gathered results clearly demonstrate the positive
effect of the multiplicative-decrease modification on the intra-protocol fairness
in both bottleneck configurations. As shown, the modification does not affect
bandwidth usage and it causes significantly less packet loss.

C η F L
Mbit [%] µ σ µ σ

No multiplicative decrease
1 99 5.9 · 10−1 1.01 · 10−1 1.8 · 10−2 5.03 · 10−3

10 98 6.68 · 10−1 1.87 · 10−1 1.68 · 10−2 6.20 · 10−3

With multiplicative decrease
1 98 9.88 · 10−1 1.03 · 10−2 5.4 · 10−3 1.2 · 10−4

10 98 9.92 · 10−1 4.90 · 10−3 8.08 · 10−3 7.60 · 10−5

Table 2: Polite mode priority = 0 (fixed): results showing the Link utilization
average η, together with the observed Fairness F and packet Loss Rate L, both
considering their mean µ and standard deviation σ values

5.2 Variable Mode results

For priority parameter values greater than zero, the congestion control switches
to the MulTCP algorithm, which uses packet loss as congestion detection rather
than increased delay as in LEDBAT. In Figure 3(a), we present the normalized
throughput value of one DTL flow parametrized with different priorities, ranging
from 1 to 6, against nine TCP flows. In the experiment, all ten flows share a
bottleneck link of capacity C = 10Mbits. As shown, the DTL flow reaches a
throughput value of about priority times the one of a single TCP flow up to
priority value of 4, which leads to the best trade-off in terms of throughput.
This effectively means that, for priority = 4, the DTL flow appears as 4 TCP
flows combined, leaving to each of the other nine TCP flows a share of 1/13



12 Riccardo Reale, Roberto Roverso, Sameh El-Ansary, and Seif Haridi

n
o
rm
a
liz
e
d
 h
ro
u
g
h
p
u
t

0

1

2

3

4

5

6

priority

0 1 2 3 4 5 6

ideal

DTL

(a)

n
o
rm
a
liz
e
d
 h
ro
u
g
h
p
u
t

0

0.5

1.0

1.5

2.0

priority

0 1 2 3 4

(b)
Fig. 3: Plot of the relative Throughput (a) and the Intra-protocol Fairness (b)
as a function of priority

b
it
/s

0

1

2

3

4

5

6

7

8

9

10×106

time (s)

0 50 100 150 200 250 300

TOTAL 

DTL 0 

DTL 0

TCP 

TCP

Fig. 4: Temporal evolution of the throughput of two DTL flows priority = 0
(fixed) and two TCP flows on the Planetlab testing configuration

of the bandwidth. However, for values of priority greater than 4, the link gets
congested and no more improvements are possible due to the high rate of packet
loss. In Figure 3(b) instead, we compare the normalized throughput of one DTL
flow with respect to another DTL flow of same priority, for values of priority
ranging from 1 to 4. This in order to show how the intra-protocol fairness is
maintained for all priorities, as the normalized throughput remains 1.0 for all
priority parameters. Figure 5 presents the same PlanetLab test scenario as in
Figure 4, but this time setting priority = 1. As expected, the DTL flows share
in a fair manner the bandwidth resources with the two new-coming TCP flows.

Similarly to the polite mode, we decided to examine with more accuracy
the DTL behavior for priority = 1 in terms of efficiency η, fairness F and
Normalized Throughput. We considered two DTL1 flows for the intra-protocol
configuration, and a single DTL1 flow against a TCP flow for the inter-protocol
one. Each simulation has a duration of 300 seconds. In Table 3, we report the
average and standard deviation of multiple runs. The results confirm the ability
of DTL1 to correctly share the bandwidth capacity with other TCP flows com-
peting on the same bottleneck under the same conditions, MTU- and RTT-wise.



DTL: Dynamic Transport Library for Peer-To-Peer Applications 13

b
it
/s

0

2

4

6

8

10×106

time (s)

0 50 100 150 200 250 300

TOTAL 

DTL 1

DTL 1 

TCP 

TCP

Fig. 5: Temporal evolution of the throughput of two DTL flows priority = 1
(fixed) and two TCP flows on the Planetlab testing configuration

C η F Normalized Throughput
Mbit [%] µ σ µ σ

Intra-protocol
1 97 9.93 · 10−1 3.7 · 10−3 9.92 · 10−1 8.56 · 10−2

10 98 9.96 · 10−1 9.3 · 10−4 9.84 · 10−1 2.3 · 10−2

Inter-protocol
1 97 9.83 · 10−1 3.5 · 10−3 9.84 · 10−1 4.47 · 10−2

10 98 9.52 · 10−1 8.6 · 10−3 9.85 · 10−1 2.15 · 10−2

Table 3: Variable mode priority = 1(fixed): results showing the Link utilization
average η, together with the observed Fairness F and Normalized Throughput

We then present an experiment in Figure 6, using the first test configuration,
where DTL flow’s priority value changes with time. The simulation lasts 480
seconds, the bottleneck is set to 5Mbit with RTT = 25ms. In order to emphasize
the different degrees of aggressiveness, we introduce a TCP transfer on the same
bottleneck. The DTL flow starts in polite mode and completely yields to the
TCP flow until second 240 when its priority is updated to priority = 1, forcing
it to switch from LEDBAT to MulTCP. Just after that point, the DTL flow
starts to increase its congestion window and share in a fair manner the band-
width with TCP. Finally, at second 360, we increase the priority up to 2. The
congestion window grows now twice as fast. However, in case of packet loss, the
same windows is decreased by a value of less than a half, depending on the value
of b. The result is a throughput twice as large as in TCP. In Figure 7, we show
a plot, produced in our first configuration, of five DTL flows with priority value
which varies in time. At first, all flows start with priority = 0, then at second
120 four of them get updated to priority = 1. We can clearly observe that the
four DTL1 flows share the bandwidth equally, while the only DTL0 flow yields
to them. At second 230 two of the flows get upgraded to priority = 2 and the
others keep their previous priority value. As a result, the DTL2 flows consume
equally more bandwidth than the other two DTL1 flows, while the DTL0 still
yields to all of them. These results confirm our expectations of multiple priorities
intra-protocol fairness.



14 Riccardo Reale, Roberto Roverso, Sameh El-Ansary, and Seif Haridi

priority 0 priority 1 priority 2

b
it
/s

0

1

2

3

4

5×106

time (s)

0 50 100 150 200 250 300 350 400 450

TOTAL 

DTL(0,1,2)

DTL(0,1,2) 

TCP

Fig. 6: Temporal evolution of the throughput of two dynamic priority DTL(0,1,2)
flows which share the bottleneck link with a TCP flow

b
it
/s

0

5

10

15

20

25

30

35

40

45

50×105

time (s)

0 50 100 150 200 250 300 350

TOTAL 

DTL(0,1,2)

DTL(0,1,2) 

DTL(0,1)

DTL(0,1) 

DTL(0)

DTL(0) 

Fig. 7: Temporal evolution of the throughput of six DTL flows with varying
priority value

6 Conclusion

In this paper we presented the design and implementation of the DTL application-
level library, which is a reliable, variable priority transfer library developed in
the Java language, using NIO over UDP. In order to provide different transfer
prioritization policies, we implemented two state-of-the art congestion control
control mechanisms: LEDBAT and MulTCP. We motivated our choices in using
the aforementioned algorithms for the case of configurable priority. As an impor-
tant achievement, we showed in our results that the library performs on-the-fly
transfer priority changes as required, while avoiding connection termination or
transfer rate fluctuations. On top of that, our results obtained both using a con-
trolled environment and the Planet Lab testbed show that the library meets all
necessary fairness and throughput requirements under the implemented priority
levels.

As future work, we would like to provide a more extensive evaluation of
our library in a deployed peer-to-peer system. We also would like to investigate



DTL: Dynamic Transport Library for Peer-To-Peer Applications 15

the possibility of modifying the MulTFRC algorithm, which provides a more
stable approximation of multiple TCP flows behavior than MultTCP, to support
variable priority. We plan to make DTL available as an open source project in
the near future.

References

1. Ledbat ietf draft. http://tools.ietf.org/html/draft-ietf-ledbat-congestion-03 (July
2010)

2. Multfrc ietf draft. http://tools.ietf.org/html/draft-irtf-iccrg-multfrc-01 (July 2010)
3. Allman, M., Paxson, V., Blanton, E.: Tcp congestion control (9 2009),

http://www.ietf.org/rfc/rfc5681.txt
4. Carbone, M., Rizzo, L.: Dummynet revisited. Computer Communication Review

40(2), 12–20 (2010)
5. Carofiglio, G., Muscariello, L., Rossi, D., Testa, C.: A hands-on assessment of trans-

port protocols with lower than best effort priority. CoRR abs/1006.3017 (2010)
6. Carofiglio, G., Muscariello, L., Rossi, D., Valenti, S.: The quest for ledbat fairness.

CoRR abs/1006.3018 (2010)
7. Chiu, D.M., Jain, R.: Analysis of the increase and decrease algorithms for conges-

tion avoidance in computer networks. Computer Networks 17, 1–14 (1989)
8. Cicco, L., Mascolo, S., Palmisano, V.: An experimental investigation of the conges-

tion control used by skype voip. In: Proceedings of the 5th international conference
on Wired/Wireless Internet Communications. pp. 153–164. WWIC ’07, Springer-
Verlag, Berlin, Heidelberg (2007)

9. Crowcroft, J., Oechslin, P.: Differentiated end-to-end internet services using a
weighted proportional fair sharing tcp. CoRR cs.NI/9808004 (1998)

10. Damjanovic, D., Welzl, M.: Multfrc: providing weighted fairness for multimediaap-
plications (and others too!). Computer Communication Review 39(3), 5–12 (2009)

11. Guha, S., Francis, P.: Characterization and measurement of tcp traversal through
nats and firewalls. In: Proceedings of the 5th ACM SIGCOMM conference on
Internet Measurement. pp. 18–18. IMC ’05, USENIX Association, Berkeley, CA,
USA (2005), http://portal.acm.org/citation.cfm?id=1251086.1251104

12. Handley, M., Floyd, S., Padhye, J., Widmer, J.: Tcp friendly rate control (tfrc):
Protocol specification (2003)

13. Kuzmanovic, A., Knightly, E.W.: Tcp-lp: low-priority service via end-point con-
gestion control. IEEE/ACM Trans. Netw. 14(4), 739–752 (2006)

14. Nabeshima, M.: Performance evaluation of multcp in high-speed wide area net-
works. IEICE Transactions 88-B(1), 392–396 (2005)

15. Paxson, V., Allman, M.: Computing tcp’s retransmission timer (2000)
16. Rossi, D., Testa, C., Valenti, S., Veglia, P., Muscariello, L.: News from the internet

congestion control world. CoRR abs/0908.0812 (2009)
17. Roverso, R., El-Ansary, S., Haridi, S.: Natcracker: Nat combinations matter. In:

Proceedings of the 2009 Proceedings of 18th International Conference on Computer
Communications and Networks. pp. 1–7. ICCCN ’09, IEEE Computer Society,
Washington, DC, USA (2009), http://dx.doi.org/10.1109/ICCCN.2009.5235278

18. Venkataramani, A., Kokku, R., Dahlin, M.: Tcp nice: A mechanism for background
transfers. In: OSDI (2002)

View publication statsView publication stats

https://www.researchgate.net/publication/220725214

