
Divide the Task, Multiply the Outcome: Cooperative VM Consolidation

Mina Sedaghata, Francisco Hernández-Rodrigueza, Erik Elmrotha, Sarunas Girdzijauskasb

a Dept. of Computing Science, Umeå University, Sweden
b KTH - Royal Institute of Technology, Sweden

{mina, hernandf, elmroth}@cs.umu.se, sarunasg@kth.se

Abstract—Efficient resource utilization is one of the main
concerns of cloud providers, as it has a direct impact on
energy costs and thus their revenue. Virtual machine (VM)
consolidation is one the common techniques, used by infrastruc-
ture providers to efficiently utilize their resources. However,
when it comes to large-scale infrastructures, consolidation
decisions become computationally complex, since VMs are
multi-dimensional entities with changing demand and unknown
lifetime, and users often overestimate their actual demand.
These uncertainties urges the system to take consolidation
decisions continuously in a real time manner.

In this work, we investigate a decentralized approach for
VM consolidation using Peer to Peer (P2P) principles. We
investigate the opportunities offered by P2P systems, as scalable
and robust management structures, to address VM consol-
idation concerns. We present a P2P consolidation protocol,
considering the dimensionality of resources and dynamicity
of the environment. The protocol benefits from concurrency
and decentralization of control and it uses a dimension aware
decision function for efficient consolidation. We evaluate the
protocol through simulation of 100,000 physical machines
and 200,000 VM requests. Results demonstrate the potentials
and advantages of using a P2P structure to make resource
management decisions in large scale data centers. They show
that the P2P approach is feasible and scalable and produces
resource utilization of 75% when the consolidation aim is 90%.

Keywords-Cloud computing; Peer to Peer; Gossip protocols;
VM consolidation; Resource management;

I. INTRODUCTION

Cloud providers are widely using the virtualization tech-
nologies for the efficient utilization of their available re-
sources. Virtual Machines (VMs) are treated as blocks that
can be put together on a Physical Machine (PM) or can be
moved from one PM to the other to maintain a high resource
utilization in a data center. Consolidation of multiple VMs
on a single machine helps cloud providers to increase their
resource utilization and decrease their power consumption,
specially as users often overestimate their actual demand. It
also helps opening up capacity to run services with special
constraints or the ones that are larger to fit in a small
fragmented resource.

However, the fact that VMs are serving a changing
demand and they have unknown arrivals and lifetimes forces
the system to continuously make the consolidation decisions
and re-assign the resources in a real time manner. It should
be noted that both VMs and PMs are multi-dimensional
entities, i.e. they are defined in terms of CPU and memory

capacity, and they have specific shapes. Thus, maintaing
the efficiency of utilization when the entities are multi-
dimensional and their shapes are changing over-time can
be challenging.

Moreover, the applications and management decisions
become more complex and larger in scale, such that the
traditional centralized or hierarchical approaches cannot
scale with the number of PMs in the data center. To support
scalability, they either need to compromise the quality of the
solution to the resource management problem, to keep the re-
sponse time within an acceptable time frame or alternatively
partition the infrastructure statically. The latter restricts the
system from using the resources efficiently due to the lack
of coordination between partitions. Centralized approaches
also require a continuous fine grained monitoring data which
is often huge and expensive to collect and process [1].

However, decentralized approaches allow the complex
resource management decisions to be taken in collabora-
tion, by a number of autonomous entities working toward
a management objective. In such systems, the objective
is achieved as the emergent behavior of a number of
autonomous entities, acting as processing units, making
management decisions within their own local scope. Besides,
such systems are more robust since each autonomous entity
operates independently from others’ failures or departures.

In this paper, we investigate how resource management
problem in cloud data centers can be formulated and ad-
dressed using a decentralized approach. We specifically
tackle the VM consolidation problem, to achieve energy
efficiency and increase resource utilization. Extending our
resource management framework introduced in [2], we pro-
pose a P2P gossip-based protocol for VM placement and
consolidation, considering the multi-dimensionality of the
PMs and VMs. Each peer in the P2P framework, cooperates
with its fellow peers, to improve its status with a new state
of a greater value, thus moving toward a more efficient
state. The peer uses a dimension aware decision function to
quantify its state and determine the right actions. Besides,
each peer only monitors its own resources and a small-
sized metadata is exchanged only to the peer’s immediate
neighbors. We also perform an extensive study on feasibility
and performance of the proposed approach when scale
matters.

We show that the P2P approach is feasible and scalable

and it produces an almost-optimal VM placement for the
experimented scale of 100,000 PMs and 200,000 VM re-
quests when the load is dynamic. The system benefits from
a high degree of concurrency and decentralization of control
with no central bottleneck. This help the system to have a
low computation time in making placement decisions for
the mentioned scale. This advantage is essential for real
time management of a dynamic environment such as cloud
infrastructures. We also believe that delegating the com-
plex decisions to the autonomous entities would eliminate
cumbersome configuration settings that are required in the
centralized approaches. It is an important advantage, since
these configuration values, i.e, low utilization thresholds,
offload trigger points or monitoring intervals are usually hard
to devise, not applicable for all the data center’s entities and
they are sensitive to the load changes.

II. CONSOLIDATION PROBLEM

Assume that a data center consists of n PMs. Each PM
has a CPU and memory capacity of CPM and MPM. The
CPU and memory utilization of each PM i at time t is
denoted as ci(t) and ci(t), respectively. It is assumed that
all PMs are homogeneous, although the formulation can
also be generalized for heterogeneous machines. The data
center offers l VM types, where each VM has an expected
computational and memory capacity of CPUl and Meml.
These VMs are categorized in 3 different types of compute
optimized, memory optimized and general purpose, due to
their usability scenario. It is also assumed that m VM
placement request arrive to the system during the data center
operation time. Each request j demands a specific VM type
l and consumes a CPUDemandj(t), MemDemandj(t) at each
timestep.

The goal is to achieve energy efficiency, E(t), in the data
center by minimizing the total power consumption, modeled
as a function shown in Equation (1).

Minimize E(t) =

nactive∑
i=1

Pi(t) (1)

subject to:

m∑
j=1

Resj(t) ≤ nactive × (α× CapacityPM) (2)

where Resj(t) is the utilized capacity by VM requestj at
time t, nactive is the number of non-idle PMs, α is a utilization
factor, defined to avoid performance degradations caused
by interferences among the consolidated VMs, and finally,
CapacityPM is the capacity of the PM in terms of CPU
and memory. For the sake of brevity, we generalize the
notations of Resj(t) and CapacityPM to address the concept
of resource. However, whenever these values are referred in
the paper, we calculate the value for each resource, CPU or
memory, independently with respect to their relevant values.

Moreover, Pi(t) is the consumed power of PMi, and it is
a linear function of the fixed consumption for PM when it
is in idle state and additional power usage proportional to
PM’s CPU utilization [3] and it is calculated by Equation
(3).

Pi(t) = (Pmax − Pidle)× ci(t) + Pidle (3)

where Pmax is the power consumption at maximum per-
formance and Pidle is the PM’s power consumption when
idle.

One important point to be considered is that resources are
multi-dimensional. Hence, for a mixed workload, consisting
of both compute and memory optimized VMs, the placement
algorithm should be dimension aware, meaning that the
proportionality of resource usage (CPU vs. memory) in each
PM should be considered while deciding on the placement
[4], [5]. To best utilize the capacity of a physical machine
along two dimensions (CPU/Memory), it is desirable that
at each point of time, the resources being proportionally
utilized in both dimensions. The unbalanced utilization of
the resources in each physical machine will lead to wasting
the space in one of the dimensions. Therefore, to ensure the
efficient utilization, we also strive to minimize an imbalance
factor, formulated as:

Minimize Imbdc(t) = (

n∑
i=1

|ci(t)−mi(t)|)/n (4)

where Imbdc(t) is the average of data center’s imbalance at
time t, n is the total number of PMs, both idle and non-idle,
ci(t) and mi(t) are the relative values for CPU and memory
utilization of PMi at time t.

III. VM PLACEMENT THROUGH GOSSIPING

We consider the VM placement problem as a distributed
decision making process. We introduce a decentralized
gossip-based protocol, where decisions are continuously
being made between random pairs of cooperative agents,
trying to improve a common value. The common value
is defined as the total imbalance, Imb(t), of each pair at
the time of decision making and the goal is to reduce
this imbalance by redistributing the VMs among them.
The cooperative approach among two agents prevents the
undesirable bounces of VMs and ensures a stable state,
which is essential to avoid the redundant migrations.

A. General Architecture

A data center is a collection of PMs. In our design, each
PM is considered as a peer in a P2P network. Peers are
logically connected by an overlay network. The overlay is
built and maintained by a peer sampling service, known as
newscast [6]. Peer sampling service periodically provides
each peer with a list of peers to be considered as neighbors.
Each peer at each timestep only knows about k random
neighbors, shaping its local view.

Each peer locally runs a resource agent responsible for
monitoring its associated PM’s state (CPU and memory
consumption), communicating with the neighbors and pro-
cessing the information received from the neighbors. Peers
communicate in a gossip-based fashion via small messages
that represent their state. The details about the general
architecture is discussed in [2].

B. Design concerns

To investigate the most suitable solution, we review the
common questions and enumerate some of the issues that
should be addressed during the design.

1) When should a consolidation be performed? In com-
mon practices, the re-consolidation process is triggered
by an event, i.e. when a PM detects a violation of an
under or over-utilization threshold. However, event based
algorithms, require configuring thresholds which is often
tricky and complex and need a good understanding about
the system and the changes in load. In such algorithms,
setting the threshold too low, may lead to losing the
chance of efficient consolidation of VMs, while setting
it too high, may end up moving VMs constantly from
one machine to the other.
Thresholds may also be susceptible to changes since the
system dynamics are changing over time. In addition to
that, they are usually defined as absolute values, so a small
deviation from the threshold would disqualify the PM to
be triggered for re-consolidation. Hence, there would be
cases, that the load of two machines can be accommodated
in one, but since the load in none of the PMs fall below
the threshold, this consolidation would never happen.
The autonomy of the peers in a P2P structure allows
the system to avoid the complexity of threshold setting.
Using P2P structure, the peers involved in the decision
process use their real time state to decide if they can
benefit from a re-distribution of their VMs or not. If both
peers realize that their load can be accommodated in one,
within a reasonable cost of migration, then potentially a
re-consolidation process can be triggered when the P2P
interactions are converged. This way re-consolidation is
not bound to the thresholds but it would be planned
dynamically based on the peers’ states. Hence, adopting
P2P approach decreases the need for threshold setting and
also increases the chance of triggering more efficient re-
consolidations.

2) How to re-consolidate?
The second question is how the re-consolidation should be
performed? One strategy can be to incrementally migrate
the VMs from a low-utilized machine to a PM with
available capacity, with the hope of future release.
The other option is to migrate VMs only when the com-
plete release of the PM is guaranteed. Each of these two
approaches have their own advantages and weaknesses
that we will discuss in next sections.

3) Consolidation consequences: Different works have stud-
ied the impacts of consolidating multiple VMs on the
same machine on the performance [4], [7]. The impacts
are usually due to the interferences and contentions among
VMs, such as cache contentions, conflicts at functional
units of CPU, disk write buffer or disk scheduling con-
flicts [7]. However, consolidation of multiple VMs also
increases the probability of overloading the PMs when
the load of the VMs are changing overtime.
The PM overloads can be handled in different ways, such
as service differentiation [8], [9] or application brownouts
[10], but they are usually handled through PM offloads
via migration. Offload processes are often costly. The
cost is due to the performance impacts or possible SLA
violations and also the additional management process
required to decide which VMs to be migrated to where.
Based on the above-mentioned impacts, we can argue that
the best strategy for VM placement and re-consolidation is
the one that accommodates the demand on the fewest PMs
while minimizing the over-consolidation consequences.
These consequences can be listed as the longer overload
time experienced by the system, possible VM rejections
caused by inefficient use of resources, or even increase in
power consumption.

C. Consolidation strategies

Common consolidation approaches can be enumerated as
follows:
• Incremental release using thresholds: Using this strat-

egy, the PM decides to migrate its VMs incrementally
over time with the hope of full release after a while. The
re-consolidation process is triggered when the utilization
of the PM fall below the threshold. Setting the threshold in
this approach is inevitable, since the number of migrations
should be limited in some way.

• One-shot merge: The PM decides to migrate its VMs
when another PM, with sufficient capacity can be found,
to accommodate all its VMs. Since the decisions are based
on the state of the PMs involved, there is no need for any
configuration on thresholds.

• One-shot merge + dimension aware re-distribution:
In both above-mentioned scenarios, it is assumed that
accommodating VMs in fewer machines is the only factor
affecting the efficient consolidation. The intuition is that
the resources should either be fully utilized or be in
the idle mode. However, they have ignored the fact that
the requested resources have shapes and the way these
shapes are put together would also affect the efficiency of
utilization.
As it is depicted in Figure 1, efficient distribution of
VMs over the PMs can lead to the probability of better
consolidation and thus lower power consumption. We
define the efficient distribution of VMs as the one in
which both CPU and memory in each PM are used in

a balanced proportion. We propose a P2P gossip-based
protocol which takes into account both, the possibility of
releasing a PM and re-distributing the VMs among the
peers, to balance the consumption of both dimensions on
the each PM.

D. Dimension aware consolidation protocol:

In this section, we introduce a gossip protocol for VM
placement and consolidation. The protocol is an iterative
algorithm, starting from an arbitrary initial VM placement.
In this protocol, each pair of neighboring peers exchanges
gossip messages. This state exchange triggers a local deci-
sion function that can possibly lead to a local state change
in the associated peers. The decision function evaluates the
states of the pair with respect to a common local objective
and it proposes a new distribution of VMs between the
associated peers that maximizes this objective considering
the migration costs. In another word, the protocol contin-
uously moves toward the optimum by iteratively applying
a control operator to the peers’ states and substitutes their
states if the new state has a greater value. Each peer keeps
track of the list of VMs assigned to them by the decision
function and considers the new list as their updated state
for future interactions. The protocol continues the process
until it converges and no more VM is re-distributed. When
the protocol is converged, a reconfiguration plan can be
devised to migrate the VMs from their original location to
their assigned peer. The pseudo-code of gossip interactions
is illustrated in Algorithm 1.

Algorithm 1 Gossip Protocol
List of events Best deployment candidate (BestPeer)

procedure ACTIVE THREAD loop wait ∆
for Each neighbor k in the local view do

Send myState Receive the state from neighbor
k, Statek newState=Decisionfunction()
myState=Update(newState) end for end
loop end procedure procedure PASSIVE
THREAD loop Receive Statei from i
Send myState to i newState=Decisionfunction()

myState=Update(newState) end loop
end procedure

1) Decision function:
The state exchange between the neighboring peers triggers a
decision function. Using this function, the peers involved in
the interaction, assesses if the re-distribution of their VMs
can lead to a better consolidation. The function evaluates
the possibility of re-consolidation for either of the following
cases:
1:2:3:4:5:6:7:8:9:10:11:12:13:14:15:16:17:18:19:20:1) If the aggregated load of the pair, involved in the nego-

tiation, can be accommodated in one peer, then the VMs
would be deployed in one peer and the released peer is
either set into the power saving mode or considered as
free space to be used for other purposes in the future.

2) If not, the function assesses whether re-distribution of the
VMs can lead to a more balance utilization of CPU and
memory per PM, for both peers.
If any of the above-mentioned conditions are met, the

function proposes a new re-distributed set of VMs for each
peer, based on the following steps:

1) Step 1: Calculate the Imbalance factor

The algorithm calculates the imbalance ratio for the
possible permutations of VMs, using Equation (5). If re-
distributing the VMs leads to the possible future state of
(S’1, S’2) for peer1 and peer2 and imposes a CPU and
memory consumption of (c1, m1) and (c2, m2) at time
t’, respectively, the imbalance ratio for this specific VM
distribution is calculated as:

Imb(S′
1, S

′
2) = φ(S′

1, S
′
2)× (

2∑
i=1

|ci −mi|) (5)

Where φ(S′1, S
′
2)={

0 if (c1 + c2 ≤ αCPM) & (m1 +m2 ≤ αMPM)
1 if (c1 + c2 > αCPM) & (m1 +m2 > αMPM)

(6)

2) Step 2: Calculate the migration costs
Since the migration of VMs is an expensive task, the al-
gorithm considers the cost of migration when deciding on
re-distributing the VMs. The cost of migration is defined
as a function of migration time. The total migration time
of a VM is calculated as:

t = ti + tc + ts + tr (7)

where ti denotes the time for iteratively transferring the
memory pages, tc is the time for suspending the VM at
source, ts is the time for CPU transfer and tr is the time for
resuming the VM destination. In the above equation, tc,
ts and tr are rather short, however the iterative memory
transfer is hard to predict and depends on the memory
consumption of the VM.

3) Step 3: Select the VM sets that maximize the Gain
Finally, the algorithm selects a distribution set which leads
to a better consolidation among the peers with minimum
cost of migration. In the other word, the algorithm selects
a distribution of VMs in which the peers can gain the most
from transitioning from their current states (S1, S2) to a
transferred state (S’1, S’2) with the minimum migration
cost. The gain is quantified via Equation (8).

Gain() =
Imb(S1, S2)− Imb(S′1 − S′2)

Migration cost
(8)

The general steps of the algorithm are illustrated in Algo-
rithm 2. It should be noted that finding a VM distribution,
defined by CPU and memory, is a 2D bin packing problem
and the complexity of the search space grows with the
number of VMs deployed in each peer.

vm1

C
pu

 %

Memory%

W
as

te
d

 M
e

m
o

ry

vm2

vm3

Wasted CPU

vm4

Server 1 Server 2

vm1 vm2

Available

Server 1 Server 2

vm4

vm3

Memory% Memory% Memory%

C
pu

 %

C
pu

 %

C
pu

 %

Figure 1: Redistribution of VMs can increase the balance between memory and CPU and improve the consolidation

Algorithm 2 Decision Function
Require: MyState [cme(t), mme(t), list of VMme] , NeighborStates [ck(t), mk(t), list of VMk]

if (cme > α× CPM)or(cme > α×MPM) then
Offload();

else if (cme(t) + ck(t) ≤ α× CPM) & (mme(t) + mk(t) ≤ α×MPM)) then
if (mme(t) < mk(t)) then

Add the references of VMs on me to VMk.
Tag me as to-be-idled.

else
Add the references of VMs on k to VMme.
Tag k as to-be-idled.

end if
else if ((cme(t) + ck(t) ≥ CPM) & (mme(t) + mk(t) ≥ MPM)) then

Select a distribution of VMs that minimizes the total Imbalance for each PM in both peers with minimum memory transfer.
end if

E. Reconfiguration Plan

In previous section, a mapping between the VMs and
the PMs in the system is devised, aiming for efficiency
of resource utilization and low power consumption. It has
also taken into account the cost of migration in terms of
the required memory transfer. However, these VMs are
usually serving real time requests or in some cases they are
associated with stateful data on the PMs. In these cases, the
cost of migration is not just the cost of memory transfer.
Therefore, a re-configuration plan should be devised to
carefully consider the real time factors such as VMs states,
the available network bandwidth and the durability of re-
configurations.

F. Offload

As mentioned earlier, in an environment with changing
demand, having overloaded PMs is inevitable. In this sit-
uations, the system should decide on how to offload the
overloaded PM. When a PM becomes overloaded, it contacts
its neighbors to find a suitable PM with sufficient capacity
to offload its load. On the first round, the peer tries to select
among the active neighbors and see if they can accommodate
the extra load. In each interaction, the algorithm examines
a subset of VMs on the overloaded PM in which it can
be accommodated in the neighboring peer with minimum
migration cost. The released capacity after migrating this set
should be sufficient enough to offload the peer to fall below

the overload bar. This subset is devised via an exhaustive
search among the VMs currently deployed on the PM.

If none of the active neighbors have sufficient capacity
for the offload, the peer activates one of its idle neighbors,
if it has any, or it waits for the next cycle to receive a new
set of random neighbors via the peer sampling service and
repeats the above procedure.

IV. EVALUATION

We evaluate the performance of three consolidation strate-
gies, discussed in Section III, and we compare their perfor-
mance with a random VM placement as the benchmark. The
investigated strategies are:

1) Random VM placement
2) Incremental consolidation using thresholds
3) One-Shot Merge
4) One-Shot Merge + re-distribution w.r.t Imbalance ratio

A. Performance metrics

The performance of each strategy is evaluated with respect
to the following metrics:

1) Data center power consumption
2) Number of active PMs
3) Imbalance rate: It is calculated as:

Imbdc(t) = (

n∑
i=1

|ci(t)−mi(t)|)/n (9)

Algorithm 3 Offload
for Each neighbor k in the local view do

if (k is active) & ck(t) < Overload bar) & (mk(t) < Overload bar) then
List all the possible subsets of myVMs as the possible sets to be transferred

end if
for Each VM subset do

Calculate the total CPU and Memory demand of each VM subset as the CPU and memory to be transferred
if ((Ck − ck(t)) ≥ transfer Cpu) & ((Mk −mk(t)) ≥ transfer Mem) & (cme(t)− transfer CPU < Overload bar) &

(mme(t)− transfer Mem < Overload bar) & (transfer Mem is minimum) then
Select the subset
overload-Resolved=true;

end if
end for
if overload-Resolved==true then

Break
end if

end for
if subset!= null then

Transfer the subset to the neighbor
end if
if subset= null then

Activate one the idle PM
Transfer the extra load

end if

where Imbdc(t) is the average of data center’s imbalance
at time t, n is the total number of PMs, both idle and non-
idle, ci(t) and mi(t) is the CPU and memory utilization of
PMi at time t.

4) Average resource utilization: Resource utilization has a
direct impact on power consumption. It is defined as the
average utilization of non-idle PMs over each dimension,
i.e. CPU and Memory. Hence, for each type of resource,
the average resource utilization is calculated as:

Udc(t) =

∑m
j=1 Resj(t)

nactive × CapacityPM
(10)

Where m is the number of placement requests at time t,
Resj(t) is the utilized capacity, either CPU or memory, by
VMj at time t, nactive is the total number of non-idle PMs,
CapacityPM is the capacity of each PM.

5) Computation time: The computation time is the time it
takes for the protocol to compute an efficient VM to PM
mapping and it is measured in terms of number of cycles
it takes for the protocol to converge.

6) Number of migrations
7) Overload time: The aggregated timestep that the system

faces overload.
8) Number of rejected VM requests

B. Simulation setup

The evaluation is performed through simulation of a data
center in PeerSim [11]. Our data center consists of 100,000
PMs, each has the capacity of 58 vCPU and 64 GB of
memory. Our data center offers 6 VM types each fit to a
specific use case, similar to Amazon EC2 use cases. The
details on the VM characteristics is illustrated in Table I.

Category VM name vCPU Memory vCpu% Mem%
Compute c1.medium 15 7.44 13% 6%
Compute c3.xlarge 30 14.88 27% 12%
Memory m2.xlarge 6.5 17.1 6% 13%
Memory m2.2xlarge 13 34.2 12% 27%
General m3.medium 3.24 3.75 3% 3%
General m3.large 6.5 7.5 6% 6%

Table I: VM types and their capacity details

The data center receives 200,000 VM requests during the
simulation time. The requests types are uniformly distributed
among memory optimized, compute optimized and general
purpose VM types. They also intend to run a combination
of batch jobs and stateless interactive applications. The in-
teractive applications have long lifetimes, whole simulation
run, and their CPU and memory demand is changing over
time according to Equation (11), derived from an analysis on
google traces introduced in [12]. The number of interactive
applications is constant during the simulation run.

CPUDemandj(t) = (
CPUl

2
)(1 + umsin(

2πt

86400
− 2πsm) (11)

MemDemandj(t) = β × CPUDemandj(t) (12)

where CPUl is the expected maximum CPU demand of VM
type l, um, sm ∈ [0,1] is selected uniformly at random. β
is the CPU/memory capacity ratio of the VM type l, e.g.
β = 0.5 for a compute optimized VM.

The second group of VMs are a set of batch jobs
with the constant CPU and memory demand. The arrival
rate of these requests follows a Poisson distribution with
λ = SimulationTime

2 , and they have a lifetime follows a

truncated power-law distribution with exponent 2, truncated
to the length of the simulation run.

We set the utilization factor α = 0.9, to ensures the
tolerance of the system to performance degradations caused
by resource contentions between neighboring VMs. We also
assume a PM power consumption in the idle state is 175W
and 250W when fully utilized. Each peer maintains a local
view of k=20 neighbors which is being updated by the
peer sampling service in each cycle. The simulation time is
1000 timesteps and the monitoring system samples the VM
demands each 20th timestep. During the two consecutive
monitoring, the system load is considered constant. All
results presented are the average of 10 simulation runs with
the same configuration.

V. RESULTS AND DISCUSSIONS

A. Feasibility of P2P approach

In this section, we investigate the feasibility of having
a P2P protocol to perform VM consolidation. The main
concern when designing a resource manager for a large scale
distributed system is the cost of the decision making, usually
defined in terms of computation time and the bandwidth
consumption. We investigate the cost of our P2P process, in
terms of convergence cycles representing the computation
time and network bandwidth consumed by gossip protocol
during the decision process.

1) Convergence cycle: In the first experiment, we inves-
tigate the time required for the algorithm to reach a stable
VM-PM mapping for a specific load. This time is defined
in terms of the number of cycles it takes for the protocol to
converge. To do this, we considered a time interval in the
experiment in which the load is not changing. Hence, the
number of the VMs and the total CPU and memory demand
during this interval is completely constant.

Figure 2 shows the trend of the average CPU and memory
utilization over the time interval with the constant load for
the proposed P2P protocols with Merge and Merge+Imb
strategies. The graph shows a fast convergence of the P2P
protocols as it reaches a high utilization within 2 to 3
cycles, and it completely converges at 7th cycle, for the
configuration specified for this experiment.

2) Bandwidth consumption: For each consolidation de-
cision, the maximum bandwidth consumed by the gossip
protocol, to reach a VM-PM mapping, is calculated by the
following equation:

(13)

Bandwidth consumption

= Number of PMs× convergence cycle
×Number of exchanged messages
×message size (Byte)

The maximum bandwidth consumption required for a
consolidation decision in a data center with 100,000 PMs is
160 MB =100,000 * 7 * 2 * 120 byte. However, it should be

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 0 5 10 15 20

A
v
g

C
P
U

/A
ct

iv
e
N

o
d

e
 (

%
)

Time (s)

AvgCPU/ActiveNode

Merge
Merge+IMb

(a) Convergence on CPU utilization

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 0 5 10 15 20

A
v
g

M
e
m

/A
ct

iv
e
N

o
d

e
(%

)

Time (s)

AvgMEM/ActiveNode

Merge
Merge+IMb

(b) Convergence on memory utilization

Figure 2: Computation time in terms of convergence cycles

emphasized that this is the maximum bandwidth consump-
tion since in each cycle, a number of peers are excluded
from the peers who exchange messages. Messages contain
metadata about the type, CPU and memory consumption of
each VM, resides on each peer.

B. Decision strategy

Figure 4 shows a comparison on different performance
metrics when each of the strategies are adopted. As it
can be seen in Figures 3a, 3b and 3c, after the random
placement, Incremental strategy on average has the lowest
resource utilization, and the highest number of active PMs.
It is because, by setting a threshold for triggering the re-
consolidation process, some of the possible load consolida-
tions are automatically ignored. Hence, it results in higher
number of active PMs and higher power consumption.

The comparison between Merge and Merge+Imb, shown
in Figures 3a, 3b, 3c and 3d, shows higher CPU and memory
utilization and lower number of active PMs and lower power
consumption for the latter. However, as it can be seen in
Figure 3e, this result comes with the price of higher number
of migrations. These extra migrations are performed to
reduce the imbalance between CPU and memory utilization
in each PM.

The better performance in Merge+Imb strategy is because

of accounting the dimensionality of the resources while
re-distributing the VMs. The Merge+Imb strategy tries to
reduce the imbalance between the CPU and memory utiliza-
tion, depicted in Figure 4a. A balanced utilization of a two
dimensional resource results in more efficient utilization of
resources in both dimensions, thus lower rejections of VM
requests, as shown in Figure 4b, and faster resolution of
overloaded PMs, as shown in Figure 4c. By re-distributing
the VMs to achieve a lower imbalance, we can have 28%
lower rejections, 12.6 % faster offload, for a higher number
of overloaded PMs and also 3.2 % lower power consumption
for the cost of 25% more migration.

C. Impact of local view size (number of neighbors)

We investigate impact of the local view size on the
protocols performance. In this experiment, we consider the
data center with 50,000 PMs and 100,000 VM requests and
a static load. We vary size of the local view to K=10, 20, 30,
50. Results, shown in Figure 5, indicate that the larger the
size of the local view, the faster the protocol can converge.
However, this impact become less and less significant for
the sufficiently large local views.

VI. RELATED WORK

The problem of VM consolidation is discussed in different
studies. The following is a brief outline:

Beloglazov and his colleagues in [13] used a best-fit
heuristic for initial VM placements and further on, they
migrate the VMs if a violation on one of the upper or
lower utilization thresholds is occurred. However, they based
their placement decisions on only one dimension, CPU
consumption, and they also ignored the cases that changing
the arrangements of VMs the PMs can lead to a more
optimal utilization of resources. The algorithm is centralized
and it is examined for a data center with 100 PMs.

Svärd et al. [14] studied a set of heuristics to maintain the
optimality of allocations via a set of actions, such as VM
and PM suspend and resume, and also VM migration. These
actions are triggered when either a PM crashes, or a VM
arrives or exits. Their approach has a centralized design and
supports up to 48 PMs. We, on the other hand, are interested
in solving the problem for larger scale.

Marzolla et al. [15] presented V-Man, a decentralized
algorithm, using gossip protocol, for VM consolidation.
They modeled the PMs and VM requests as one dimensional
entities, and they assumed that applications have constant
load. Their algorithm is robust to PM and service failures.
However, the model is a bit simplistic and does not cover the
complexities of a multi-dimensional placement problem and
the dynamic load. They also didn’t consider the migration
costs while deciding on which VM to migrate.

Wuhib in [16] proposed a resource allocation architecture
and a gossip protocol to address a set of well known
management objectives, such as fairness, balanced load,

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000

A
v
g

C
P
U

/A
ct

iv
e
N

o
d

e
 (

%
)

Time (s)

AvgCPU/ActiveNode

Random
Incremental

Merge
Merge+IMb

(a) Average CPU utilization

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000

A
v
g

M
e
m

/A
ct

iv
e
N

o
d

e
(%

)

Time (s)

AvgMEM/ActiveNode

Random
Incremental

Merge
Merge+IMb

(b) Average memory utilization

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 200 400 600 800 1000

A
ct

iv
e
 N

o
d

e
s

Time (s)

Active Nodes

Random
Incremental

Merge
Merge+IMb

(c) Number of active PMs

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 0 200 400 600 800 1000

Po
w

e
r

co
n
su

m
p

ti
o
n
 (

W
a
tt

)

Time (s)

Power consumption

Random
Incremental

Merge
Merge+IMb

(d) Power consumption

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 22 24 26 28 30 32 34 36 38 40

M
ig

ra
ti

o
n
/C

y
cl

e

Time (s)

Migration/cycle

Random
Incremental

Merge
Merge+IMb

(e) Number of migrations during a constant load interval

 0

 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000

Im
b

a
la

n
ce

 r
a
ti

o

Time (s)

Imbalance ratio

Random
Incremental

Merge
Merge+IMb

(a) Imbalance rate

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000

N
u
m

b
e
r

o
f

re
je

ct
e
d

 V
M

 r
e
q

u
e
st

s

Time (s)

Request Rejections

Random
Incremental

Merge
Merge+IMb

(b) Batch rejections

0

100

200

300

400

500

600

Without Imbalance With Imbalance

O
ve

rl
a

o
d

 T
im

e
 (

tim
e

 u
n

it)

(c) Overload time

Figure 4: Comparison between different Decision strategies

energy efficiency and service differentiation. In their model,
machines are associated with CPU, memory, and network
interface capacity. Their protocol attempts to either minimize
the overload if the PM is overloaded, or to minimize the
objective function under the constraint of live migration. The
results shows that the protocol is effective and scales well,
despite the fact that they did not consider the proportionality
of resource usage per PM.

Mastroianni and his colleagues [17] proposed a probabilis-
tic consolidation of VMs in a data center. The main idea is
that a single PM is the one to decide whether they should
accept or reject a VM. When a VM request arrives, the
request is broadcasted by a coordinator to all the PMs and
they respond the coordinator if they can accept the request.
This decision is based on a Bernoulli trial, which ensures
that the PMs tend to respond positively when they have

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 0 5 10 15 20

A
v
g

C
P
U

/A
ct

iv
e
N

o
d

e
 (

%
)

Time (s)

AvgCPU/ActiveNode

k=10
k=20
k=30
k=50

(a) Impact of local view size on convergence (Ava CPU)

 0

 5000

 10000

 15000

 20000

 25000

 2 4 6 8 10 12 14 16 18 20

M
ig

ra
ti

o
n
/C

y
cl

e

Time (s)

Migration/Cycle

k=10
k=20
k=30
k=50

(b) Impact of local view size on the number of migrations

Figure 5: Impact of local view size

intermediate utilization values for both CPU and memory.
When the local decisions are made, a data center manager
coordinates the decisions. Finally, the coordinator selects one
of the respondents randomly. A PM also decides to migrate
its VMs if it is too low utilized or high utilized, in the similar
fashion.

A consolidation algorithm is proposed in [7], focusing
on the trade-offs between energy consumption, performance
and resource utilization. They argued that consolidation
leads to performance degradations and longer execution
times, therefore, to save the energy an optimal consolidation
rate should be carefully determined. The intuition is similar
to our approach on measuring imbalance rate for allocation
and it is to ensure that both dimensions are equally used.
However, they also discussed the problem for the one
time consolidation without considering that the load of the
environment is changing and the initial consolidation and
also the optimal point is susceptible to change.

VII. CONCLUSION

In this paper, we investigated the potentials and advan-
tages of P2P systems for making complex resource manage-
ment decisions. We discussed the common design concerns
regarding VM consolidation and gave a brief comparison
among them. We formulated the consolidation problem in

a P2P fashion, to achieve scalability and support complex
decisions in a short computational time. We also presented
a P2P gossip-based protocol for multi-dimensional VM
placement and consolidation, considering the changes in
both VMs demand and infrastructure load.

Through extensive experiments, the results show that the
P2P approach is feasible and scalable up to 100,000 PMs and
200,000 VM requests. It also produces, resource utilization
of 75%, on both dimensions, CPU and memory, when the
consolidation aim is 90%. This result is produced within a
short computation time, less than 7 cycles, for the examined
scale, which is essential to be responsive in a dynamic
environment. Based on these results, we can argue that
dividing management responsibilities to a set of identical
autonomic elements allows the system to scale without
compromising the complexity of the problem or quality
of the solution, that is required to keep the response time
within an acceptable time frame. Adopting a P2P approach,
also eliminates cumbersome configuration settings that are
required in the centralized approaches.

The observations also indicate that a balanced utilization
of a two dimensional resource, in a mixed workload, results
in more efficient utilization of resources in both dimensions.
This leads to a lower rejections of future VM requests and
faster resolution of overloaded PMs. The results shows 28%
lower rejections, 12.6% faster offload, for a higher number
of overloaded PMs and also 3.2% lower power consumption
for the cost of 25% more migrations.

VIII. ACKNOWLEDGMENT

Financial support for this work is provided in part by
the Swedish Research Council (VR) under contract number
C0590801 for the project Cloud Control and the Swedish
Government’s strategic research project eSSENCE.

REFERENCES

[1] A. Corradi, M. Fanelli, and L. Foschini, “VM consolidation:
A real case based on openstack cloud,” Future Generation
Computer Systems, vol. 32, pp. 118–127, 2014.

[2] M. Sedaghat, F. Hernandez, and E. Elmroth, “Autonomic
resource allocation for cloud data centers: A peer to peer
approach.,” in The ACM Cloud and Autonomic Computing
Conference (CAC’14), Accepted, 2014.

[3] L. Minas and B. Ellison, “The problem of power consumption
in servers,” Intel Corporation. Dr. Dobb’s, 2009.

[4] S. Lee, R. Panigrahy, V. Prabhakaran, V. Ramasubramanian,
K. Talwar, L. Uyeda, and U. Wieder, “Validating heuristics for
virtual machines consolidation,” Microsoft Research, MSRTR-
2011-9, 2011.

[5] S. He, L. Guo, M. Ghanem, and Y. Guo, “Improving resource
utilisation in the cloud environment using multivariate proba-
bilistic models,” in Cloud Computing (CLOUD), 2012 IEEE
5th International Conference on, pp. 574–581, IEEE, 2012.

[6] M. Jelasity and M. Van Steen, “Large-scale newscast com-
puting on the internet,” tech. rep., Citeseer, 2002.

[7] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy aware con-
solidation for cloud computing,” in Proceedings of the 2008
conference on Power aware computing and systems, vol. 10,
USENIX Association, 2008.

[8] J. Rao, Y. Wei, J. Gong, and C.-Z. Xu, “Dynaqos: model-
free self-tuning fuzzy control of virtualized resources for qos
provisioning,” in Quality of Service (IWQoS), 2011 IEEE 19th
International Workshop on, pp. 1–9, IEEE, 2011.

[9] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale:
elastic resource scaling for multi-tenant cloud systems,” in
Proceedings of the 2nd ACM Symposium on Cloud Comput-
ing, ACM, 2011.

[10] C. Klein, M. Maggio, K.-E. Årzén, and F. Hernández-
Rodriguez, “Brownout: building more robust cloud applica-
tions.,” in ICSE, pp. 700–711, 2014.

[11] A. Montresor and M. Jelasity, “Peersim: A scalable p2p
simulator,” in Peer-to-Peer Computing, 2009. P2P’09. IEEE
Ninth International Conference on, pp. 99–100, IEEE, 2009.

[12] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A.
Kozuch, “Heterogeneity and dynamicity of clouds at scale:
Google trace analysis,” in Proceedings of the Third ACM
Symposium on Cloud Computing, ACM, 2012.

[13] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware
resource allocation heuristics for efficient management of data
centers for cloud computing,” Future Generation Computer
Systems, vol. 28, no. 5, pp. 755–768, 2012.

[14] P. Svärd, W. Li, E. Wadbro, J. Tordsson, and E. Elmroth,
“Continuous datacenter consolidation,” 2014.

[15] M. Marzolla, O. Babaoglu, and F. Panzieri, “Server consol-
idation in clouds through gossiping,” in World of Wireless,
Mobile and Multimedia Networks (WoWMoM), 2011 IEEE
International Symposium on a, pp. 1–6, IEEE, 2011.

[16] F. Wuhib, R. Yanggratoke, and R. Stadler, “Allocating com-
pute and network resources under management objectives in
large-scale clouds,” Journal of Network and Systems Manage-
ment, pp. 1–26, 2013.

[17] C. Mastroianni, M. Meo, and G. Papuzzo, “Probabilistic
consolidation of virtual machines in self-organizing cloud
data centers,” IEEE Transactions on Cloud Computing, vol. 1,
no. 2, pp. 215–228, 2013.

