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Abstract

This paper presents a novel combinatorial model that integrates
global register allocation based on ultimate coalescing, spill code
optimization, register packing, and multiple register banks with in-
struction scheduling (including VLIW). The model exploits alter-
native temporaries that hold the same value as a new concept for
ultimate coalescing and spill code optimization.

The paper presents Unison as a code generator based on the
model and advanced solving techniques using constraint program-
ming. Thorough experiments using MediaBench and a processor
(Hexagon) that are typical for embedded systems demonstrate that
Unison: is robust and scalable; generates faster code than LLVM
(up to 41% with a mean improvement of 7%); possibly generates
optimal code (for 29% of the experiments); effortlessly supports
different optimization criteria (code size on par with LLVM).

Unison is significant as it addresses the same aspects as tradi-
tional code generation algorithms, yet is based on a simple inte-
grated model and robustly can generate optimal code.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—compilers, code generation, optimization;
D.3.2 [Programming Languages]: Language Classifications—
constraint and logic languages; I.2.8 [Artificial Intelligence]:
Problem Solving, Control Methods, and Search—backtracking,
scheduling

Keywords spill code optimization; ultimate coalescing; combina-
torial optimization; register allocation; instruction scheduling

1. Introduction

Register allocation and instruction scheduling are essential aspects
of generating assembly code during compilation. They are particu-
larly relevant for embedded processors such as Qualcomm’s Hexa-
gon or Recore Systems’ Xentium with additional challenges such as
very long instruction word (VLIW) capabilities and irregular reg-
ister banks. This paper presents a novel combinatorial model and
Unison as a code generator using the model. The model is for-
mally expressed by variables and relations (constraints) between
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variables. Unison uses constraint programming as a combinatorial
optimization technique to solve the model and thereby generates
potentially optimal assembly code for a given input function and
processor architecture. Unison addresses all major subproblems of
integrated register allocation and instruction scheduling. This ap-
proach overcomes significant limitations of previous work while
being scalable and robust (wrt. different input functions) and pro-
duces better assembly code than traditional algorithms.

Today’s compilers typically generate assembly in stages: in-
struction selection is followed by register allocation and instruction
scheduling. Each stage commonly executes a heuristic algorithm as
taking optimal decisions is considered to be computationally infea-
sible. By design, both staging and heuristic algorithms compromise
the quality of the generated code. Moreover, heuristic algorithms
are difficult to adapt to new architectural features and frequent pro-
cessor revisions, particularly for embedded processors. Using in-
stead a combinatorial model simplifies the construction of compil-
ers while generating potentially optimal code.

Existing combinatorial models of register allocation and in-
struction scheduling predefine which instructions access each tem-
porary (program variable) and thus do not support the substitution
of temporaries that hold the same value. This is a significant lim-
itation that precludes two essential optimizations: spill code opti-
mization (remove unnecessary memory access instructions inserted
during register allocation) and ultimate coalescing (remove unnec-
essary register-to-register copy instructions considering the value
of each temporary). This paper introduces alternative temporaries
as an approach that supports the substitution of temporaries and
thus enables spill code optimization and ultimate coalescing.

Approach. This paper assumes functions in Static Single Assign-
ment (SSA) form after instruction selection as input. SSA functions
are transformed to Linear SSA (LSSA) where each temporary is
live in a single basic block and extended with optional copy instruc-
tions to support register allocation as in [3]. LSSA functions are
augmented with alternative temporaries, a novel abstraction that
supports the substitution of temporaries and enables spill code op-
timization and ultimate coalescing.

LSSA functions with alternative temporaries are transformed
into combinatorial problems according to a formal model of reg-
ister allocation and instruction scheduling which is parameterized
with respect to a generic processor description. The model captures
all major subproblems of global register allocation, including: spill
code optimization and ultimate coalescing; multiple register banks;
and register packing, where several small temporaries can be as-
signed to the same register. These subproblems are integrated with
instruction scheduling and bundling for VLIW processors. The sin-
gle model reflects the trade-off between interdependent register al-
location and instruction scheduling decisions.



The combinatorial register allocation and instruction schedul-
ing problems are solved using constraint programming [17], a tech-
nique that exploits the structure of the combinatorial model. Solu-
tions to the combinatorial problems can be optimized accurately for
different criteria such as speed, code size, or energy consumption.
A presolving phase is introduced to increase robustness. Experi-
ments on compiling medium-size MediaBench functions for Hexa-
gon, a typical Digital Signal Processor (DSP), show that the intro-
duced approach generates better code than existing combinatorial
approaches and the LLVM code generator, and that the approach
scales despite a significant growth of the solution space.

Contributions. The paper introduces a program representation
and combinatorial model of register allocation and instruction
scheduling that use the new concept of alternative temporaries to
enable spill code optimization and ultimate coalescing. It shows
presolving techniques that exploit the structure of the combinato-
rial model to increase robustness. Extensive experiments provide
insight into the benefits and current limitations of the approach us-
ing Hexagon as a real-world DSP. The experiments demonstrate
that the approach is robust, scales up to medium-size functions,
adapts easily to different optimization criteria, and yields better
code than previous combinatorial approaches and heuristic algo-
rithms where LLVM is used as an example.

In the context of combinatorial optimization, the results are sur-
prising. While the introduction of alternative temporaries leads to a
combinatorial problem which is exponentially harder to solve, the
approach is demonstrated to be scalable and robust while producing
significantly better code.

Plan of the paper. Section 2 explains the necessary background.
Alternative temporaries are introduced in Section 3, followed by
the combinatorial model in Section 4. Unison as the code generator
is discussed in Section 5. Section 6 contains the experimental
evaluation. Related work is discussed in Section 7, and the paper
concludes with Section 8.

2. Background

This section provides background information on combinatorial
optimization, the program representation used in this paper, and
the main aspects of register allocation.

2.1 Combinatorial Optimization

Register allocation and instruction scheduling are computationally
hard combinatorial optimization problems. They can be solved by
problem-specific heuristic algorithms (typically leading to subopti-
mal solutions) or by general combinatorial optimization techniques
(potentially leading to optimal solutions). The latter amounts to
modeling the problem and solving the resulting model with some
combinatorial optimization technique.

A combinatorial model consists of variables (typically ranging
over integers or Booleans), constraints expressing relations among
the variables, and an objective function to define preferred solu-
tions. A solution is a variable assignment satisfying all constraints
of the model and an optimal solution minimizes (or maximizes) the
value of the objective function. A combinatorial model serves as
a template for an instance, which takes problem parameters into
account resulting in a complete problem description.

Solving applies combinatorial optimization techniques to find
solutions of an instance. Example techniques include constraint
programming, integer programming, Boolean satisfiability solving
, and local search. This paper uses constraint programming [17]
as a modern combinatorial optimization technique. Constraint pro-
gramming solvers interleave constraint propagation and search to
find solutions. Constraint propagation discards values for variables

(that is, partial assignments) that cannot be part of any solution.
When no further propagation is possible, search tries several alter-
natives on which constraint propagation and search are repeated.
Constraint propagation is essential to reduce the search space.

Constraint programming can capture and exploit explicit struc-
ture existing in many combinatorial models. Structure is cap-
tured by global constraints that express problem-specific relations
among several variables. Global constraints offer two benefits: they
ease modeling (as will become clear in Section 4) by capturing
common patterns in problems, and enable strong propagation that
leads to a drastically reduced search space.

2.2 Input Program

Instruction set. This paper assumes input functions for which
Hexagon V4 instructions have been selected. Hexagon V4 is a DSP
included in Qualcomm’s Snapdragon system-on-chip for mobile
devices [15]. Hexagon provides two typical embedded processor
features: VLIW capabilities and different-width registers. VLIW
processors exploit instruction-level parallelism by executing stati-
cally scheduled bundles of instructions in parallel. Hexagon bun-
dles contain up to four 32-bit instructions. The register file includes
32 general-purpose registers (R0 . . . R31) of 32 bits each which can
be accessed as 16 registers (R1:0 . . . R31:30) of 64 bits.

Control-flow graphs, operations, and temporaries. Functions
are represented by their control-flow graph (CFG) in Static Sin-
gle Assignment (SSA) form. A basic block (block for short) in the
CFG consists of operations and temporaries. Operations use and
define temporaries and are implemented by processor instructions.
Temporaries are storage locations holding values corresponding to
program variables after instruction selection. For example, an op-
eration implemented by the Hexagon instruction abs that defines
temporary t′ as the absolute value of a used temporary t is de-
noted as t′ ← abs t. For clarity, examples in the paper only show
instructions and temporaries that are relevant to the discussion.

Static Single Assignment form. SSA is a program form where
temporaries are statically defined once. This form uses φ-functions
at the join points of the CFG to merge definitions of the same
temporary. This paper refers to SSA in its conventional form [19].

Liveness and interference. A program point is located between
two consecutive statements. A temporary t is live at a program point
if t holds a value that might be used in the future. The live range
of a temporary t is the set of program points where t is live. The
basic definition of interference states that two temporaries interfere
if their live ranges overlap. The ultimate notion of interference by
Chaitin et al. [4] additionally requires that the values of interfer-
ing temporaries differ. This refinement is essential for optimizing
register allocation as is explained in Section 2.3.

Preassignments. Architectural constraints and application binary
interfaces (ABIs) predetermine the registers to which certain tem-
poraries must be assigned. A temporary t that is preassigned to a
register r is denoted by t▷r.

Example. Figure 1 shows the CFG of the factorial function in
SSA form which is used as running example in the paper. The figure
shows the purpose of φ-functions: for example, t10 ← φ (t3, t7)
assigns t10 to either t3 or t7, depending on whether block b3 is
entered from b1 or b2. For readability, Hexagon register-to-register
transfer (tfr), immediate transfer (tfri), load (ldw), store (stw),
multiply (mul), indirect jump (jump), and conditional direct jump
(jump if, jump ifn) instructions are shown in a simplified syntax.
The top operation in b1 and the bottom operation in b3 define
and use, respectively, the temporaries that are live on the function
boundaries and are preassigned by the ABI: return address t1▷R31,
argument t2▷R0, and return value t10▷R0.



t1▷R31, t2▷R0←
t3← tfri 1

t4← cmp.gt t2, 0
jump ifn t4, b3

t5← φ (t2, t8)
t6← φ (t3, t7)
t7← mul t6, t5
t8← sub t5, 1
t9← cmp.gt t8, 0

jump if t9, b2

t10← φ (t3, t7)
jump t1

← t10▷R0

b1
b2

b3

Figure 1. Factorial function in SSA with Hexagon instructions.

t1 ←

⋯

← t1

← t1

(a) before
spilling

t1 ←
t2 ← stw t1
⋯

t3 ← ldw t2
← t3

t4 ← ldw t2
← t4

(b) spill
everywhere

t1 ←
t2 ← stw t1
⋯

t3 ← ldw t2
← t3

← t3

(c) spill code
optimization

t1 ←
t2 ← stw t1
⋯

t3 ← ldw t2
← t3

t4 ← ldw t2
← p ∶{t3, t4}

(d) alternative
temporaries

Figure 2. Spill code optimization.

2.3 Register Allocation

Register allocation assigns temporaries to either processor registers
or memory. To reduce the number of memory accesses, registers are
reused by non-interfering temporaries.

Spill code optimization. In general, optimal register utilization
does not guarantee the availability of enough processor registers
and some temporaries must be spilled (that is, stored in memory).
Spilling a temporary requires the insertion of store and load in-
structions to move its value to and from memory. The selection and
placement of these instructions has considerable impact on the ef-
ficiency of the generated code. In a spill-everywhere model, a load
instruction is inserted immediately before each use of the spilled
temporary. Spill code optimization reduces the cost of a spill by
reusing the spilled temporary defined by a single load instruction.

Figure 2 shows an example where the temporary t1 with two
consecutive uses from Figure 2(a) is spilled to a new, memory-
allocated temporary t2 using a store instruction (stw) and reloaded
using load instructions (ldw). In Figure 2(b) a load is inserted be-
fore each use, following the spill-everywhere model. In Figure 2(c),
spill code optimization is performed to supply the two consecutive
uses by the same load. Figure 2(d) is discussed in Section 3.

Coalescing. The input program may contain temporaries related
by copies (operations that replicate the value of a temporary into
another). Copy-related temporaries that do not interfere can be co-
alesced (assigned to the same register) in order to discard the cor-
responding copies and thereby improve efficiency and reduce code
size. Ultimate coalescing considers all copy-related temporaries as
candidates for coalescing: copy-related temporaries never interfere
as they hold the same value.

The example in Figure 3 copies the value of t1 into t2 using a
register-to-register transfer instruction (tfr). Using basic interfer-
ence in Figure 3(a), t1 and t2 cannot be coalesced since their live
ranges overlap. Using ultimate interference in Figure 3(b), t1 and
t2 are coalesced into t1 and the copy is discarded. Figure 3(c) is
discussed in Section 3.

Packing. Each temporary t has a certain bit width (hereafter just
called width) which is determined by t’s source data type. Many
processors allow temporaries of small widths to be assigned to dif-
ferent parts of a physical register of larger width. For example, the
Hexagon processor combines pairs of 32-bits registers (R3, R2) into
64-bit registers (R3:2). Packing non-interfering temporaries into
the same physical register is key to improving register utilization.

t1 ←
⋯

t2 ← tfr t1
⋯
← t1
⋯
← t2

(a) basic
coalescing

t1 ←
⋯

⋯
← t1
⋯
← t1

(b) ultimate
coalescing

t1 ←
⋯

t2 ← tfr t1
⋯
← t1
⋯
← p ∶{t1, t2}

(c) alternative
temporaries

Figure 3. Coalescing.

Scope. Local register allocation deals with one block at a time,
spilling all temporaries that are live at block boundaries. Global
register allocation considers entire functions, yielding better code
as temporaries can be kept in the same register across blocks.

2.4 Program Transformations

The combinatorial model described in Section 4 is based on a ded-
icated program representation for input functions. This represen-
tation uses the Linear Static Single Assignment form (LSSA) ex-
tended with copies as described by Castañeda et al. [3, Section 3]
(note that they define operation and instruction reversely to this
paper).

Linear Static Single Assignment form. Linear Static Single As-
signment form (LSSA) is stricter than SSA in that each temporary
is only defined and used within one block. The relation that two
temporaries in different blocks correspond to the same temporary
in SSA is captured by a congruence between temporaries. The lo-
cal scope of LSSA temporaries leads to simple live ranges which is
exploited in Section 4. This property also enables a decomposition
scheme that can be exploited for robust code generation [3, Sec-
tion 7]. LSSA is constructed from SSA by splitting each temporary
t whose live ranges span multiple blocks b1, b2, . . . , bn into a set of
congruent local temporaries tb1 ≡ tb2 ≡ ⋯ ≡ tbn . Delimiter opera-
tions are inserted at the boundaries of each block to define and use
its live-in and live-out temporaries. These operations are not part of
the generated code.

Copies. The LSSA program is extended with copies similarly to
Appel and George’s approach [1]. These operations are required
to implement LSSA congruences and to handle spilling, multiple
register banks, and preassignments.

A copy td ← ts replicates the value of the temporary ts into
the temporary td. To allow ts and td to be assigned to different
types of locations such as registers or memory, the copy can be
implemented by alternative instructions {�, i1, i2, . . . , in} where
the instruction ij depends on the location types to which ts and
td are assigned. Copies implemented by the null instruction �
are discarded, otherwise they are active and must appear in the
generated assembly code.

The copy insertion points and their alternative instructions de-
pend on the processor. For example, Hexagon programs are ex-
tended with copies of the form tk ← {�,tfr,stw} ts after the def-
inition of ts in a register and td ← {�,tfr,ldw} tk before the use
of td in a register, for all temporaries ts, td not pre-assigned to a re-
served register such as the return address register R31. Figure 5(a)
shows the example given in Figure 2(b) where loads and stores are
extended as copies that can be implemented by alternative instruc-
tions.

Example. Figure 4 shows the factorial function from Figure 1
in LSSA form extended with copies. Temporary t1, whose live
range spans all blocks in Figure 1, is split into the congruent local
temporaries t1, t7, and t18 in Figure 4. The global relation between
LSSA temporaries is solely captured by the congruences displayed
on the arcs.



t1▷R31, t2▷R0←
t3← tfri 1

t4← cmp.gt t2, 0
t5← {�,tfr,stw} t2
t6← {�,tfr,stw} t3

jump ifn t4, b3
← t1, t5, t6

t7, t8, t9 ←
t10← {�,tfr,ldw} t8
t11← {�,tfr,ldw} t9
t12← mul t11, t10
t13← {�,tfr,ldw} t8
t14← sub t13, 1
t15← cmp.gt t14, 0
t16← {�,tfr,stw} t12
t17← {�,tfr,stw} t14

jump if t15, b2
← t7, t16, t17

t18, t19 ←
t20← {�,tfr,ldw} t19

jump t18
← t20▷R0

b1

b2

b3

t1 ≡ t7
t5 ≡ t8
t6 ≡ t9

t1 ≡ t18
t6 ≡ t19

t16 ≡ t9
t17 ≡ t8

t18 ≡ t7
t19 ≡ t16

Figure 4. Function in LSSA extended with copies.

3. Alternative Temporaries

The program representation described in Section 2 yields a reg-
ister allocation model that suffers from the limitations of spill-
everywhere and basic coalescing [3, Section 6]. For example, opti-
mizing the spill code in Figure 2(b) requires substituting the tem-
porary t3 for t4 in the second use. Basic interference precludes ul-
timate coalescing as same-value temporaries cannot substitute each
other. For example, coalescing temporaries t1 and t2 in Figure 3(a)
requires substituting t1 for t2. In both cases, the program represen-
tation lacks the flexibility to substitute temporaries.

Alternative temporaries extend the capabilities of combinatorial
register allocation by enabling spill code optimization and ultimate
coalescing. This is achieved by augmenting the program represen-
tation with operands as use and definition ports in operations. Con-
gruences, preassignments, and operation uses and definitions are
lifted from temporaries to operands. Temporaries hold the values
transferred among operations by connecting to the corresponding
def- and use-operands. For example, the operation t′ ← abs t is
transformed to p′ ∶t′ ← abs p ∶t where p and p′ are operands con-
nected to the temporaries t and t′. Operands can be connected to
alternative temporaries that hold the same value to determine how
the value is transferred among the corresponding operations. For
example, if a second temporary t′′ holds the same value as t, the op-
eration above is transformed to p′ ∶t′ ← abs p ∶{t, t′′} where either
t or t′′ can be connected to p. Examples in the paper omit operand
identifiers when possible, for example as t′ ← abs {t, t′′}.

Alternative temporaries enable the substitution of temporaries.
For example, Figure 2(d) shows the alternative temporaries needed
to optimize the spill code. If operand p is connected to temporary
t3, then t4 is not used and the second load operation is discarded.
As for the ultimate coalescing example, Figure 3(c) shows the
alternative temporaries required to coalesce t1 and t2. If operand
p is connected to temporary t1, then t2 is not used and the copy
is discarded. In both cases, the proper temporary connections yield
the intended results shown in Figures 2(c) and 3(b).

Construction. A program with alternative temporaries is con-
structed by replacing each occurrence of a temporary t with an
operand p and a set of alternative temporaries that hold the same
value as t and can thus be connected to p. This set can be effec-
tively approximated by all temporaries that are copy-related to t.
Figure 5(b) shows the alternative temporaries that correspond to
the example given in Figure 5(a). This and all subsequent code ex-
amples are linearized for presentation purposes; no ordering among
operations is imposed. For example, the second load operation in
Figure 5(b) could actually be scheduled before the first one in the
generated assembly code.

Discarding invalid connections. In the most general form, an
operand that replaces a temporary t can be connected to any tem-
porary that holds the same value as t. For example, operand p1 in
Figure 5(b) replaces an occurrence of t2 in Figure 5(a) and can thus

t1 ←
t2 ← {�,tfr,stw} t1
t3 ← {�,tfr,ldw} t2
← t3

t4 ← {�,tfr,ldw} t2
← t4

(a) initial program

{t1, t2, t3, t4} ←
{t1, t2, t3, t4} ← {�,tfr,stw}{t1, t2, t3, t4}

p2 ∶{t1, t2, t3, t4} ← {�,tfr,ldw}p1 ∶{t1, t2, t3, t4}
← {t1, t2, t3, t4}

p3 ∶{t1, t2, t3, t4} ← {�,tfr,ldw}{t1, t2, t3, t4}
← {t1, t2, t3, t4}

(b) general form

t1 ←
t2 ← {�,tfr,stw}{t1, t2, t3, t4}

p2 ∶t3 ← {�,tfr,ldw}p1 ∶{t1, t2, t3, t4}
← {t1, t2, t3, t4}

p3 ∶t4 ← {�,tfr,ldw}{t1, t2, t3, t4}
← {t1, t2, t3, t4}

(c) single definitions

t1 ←
t2 ← {�,tfr,stw} t1

p2 ∶t3 ← {�,tfr,ldw}p1 ∶{t1, t2}
← {t1, t2, t3, t4}

p3 ∶t4 ← {�,tfr,ldw}{t1, t2}
← {t1, t2, t3, t4}

(d) acyclic connections

t1 ←
{�, t2} ← {�,tfr,stw}{�, t1}
{�, t3} ← {�,tfr,ldw}{�, t1, t2}

← {t1, t2, t3, t4}
{�, t4} ← {�,tfr,ldw}{�, t1, t2}

← {t1, t2, t3, t4}

(e) null connections

Figure 5. Step-by-step construction of alternative temporaries.

be connected to any of the same-value temporaries {t1, t2, t3, t4}.
However, many of the potential combinations of connections in this
form are invalid. For example, the def-operands p2 and p3 in Fig-
ure 5(b) cannot be connected to the same temporary t since that
would define t twice. Likewise, the operands p1 and p2 cannot be
connected to the same temporary since that would create a connec-
tion cycle where an operation uses its own definition. Such invalid
connections are discarded to simplify the program representation
as well as the combinatorial model in Section 4. The discarding
process consists of two steps:

(1) Single definitions selects, for each temporary t, a single
def-operand to which t can be connected. Figure 5(c) illustrates
how enforcing single definitions prevents multiple definitions of
the same temporary. For example, the two def-operands p2 and
p3 in Figure 5(c) cannot be connected to the same temporary as
is permitted in Figure 5(b). Enforcing single definitions discards
some valid combinations such as connecting p2 to t4 and p3 to t3
in Figure 5(b). However, for each valid combination that is dis-
carded a structurally equivalent permutation remains in the pro-
gram representation. For example, connecting p2 to t3 and p3 to
t4 is structurally equivalent to the combination mentioned above
since t3 and t4 are interchangeable in all potential connections with
use-operands.

(2) Acyclic connections discards combinations of temporary
connections potentially leading to connection cycles. In a connec-
tion cycle, an operation o uses a temporary that depends on o’s own



p1 ∶t1▷R31, p2 ∶t2▷R0←
t3 ← tfri 1

t4 ← cmp.gt t2, 0
{�, t5}← {�,tfr,stw}{�, t2}
{�, t6}← {�,tfr,stw}{�, t3}

jump ifn t4, b3
← p3 ∶t1, p4 ∶{t2, t5}, p5 ∶{t3, t6}

p6 ∶t7, p7 ∶t8, p8 ∶t9 ←
{�, t10}← {�,tfr,ldw}{�, t8}
{�, t11}← {�,tfr,ldw}{�, t9}

t12 ← mul {t9, t11},{t8, t10, t13}
{�, t13}← {�,tfr,ldw}{�, t8}

t14 ← sub {t8, t10, t13}, 1
t15 ← cmp.gt t14, 0

{�, t16}← {�,tfr,stw}{�, t12}
{�, t17}← {�,tfr,stw}{�, t14}

jump if t15, b2
← p9 ∶t7, p10 ∶{t12, t16}, p11 ∶{t14, t17}

p12 ∶t18, p13 ∶t19 ←
{�, t20}← {�,tfr,ldw}{�, t19}

jump t18
← p14 ∶{t19, t20}▷R0

b1
b2

b3

p3 ≡p6
p4 ≡p7
p5 ≡p8

p3 ≡p12
p5 ≡p13

p10 ≡ p8 p11 ≡ p7

p12 ≡p9
p13 ≡p10

Figure 6. Function with alternative temporaries.

definition:

t1 ← t0; t2 ← t1; . . . ; tn ← tn−1; t0 ← tn

Figure 5(d) illustrates how acyclic connections are enforced. For
example, the operand p1 in Figure 5(d) cannot be connected to tem-
porary t3 to create a cycle as is permitted in Figure 5(c). Enforcing
acyclic connections preserves temporaries as alternatives in the op-
erations where they originally appear. For example, temporary t2
appears as a use of the second copy in Figure 5(a) and thus the po-
tential connection of operand p1 to t2 is preserved in Figure 5(d).
This property maintains the support gained by copy extension to
handle problems such as spilling or preassignments.

Null connections. After invalid connections are discarded, null
connections (denoted as �) are inserted as alternatives for copy
operands to indicate that their corresponding copies can be dis-
carded. A temporary potentially defined by a copy is live iff the
copy is active as explained in Section 2.4. Figure 5(e) shows the
final result after the insertion of null connections.

Example. Figure 6 shows the factorial function from Figure 4
augmented with alternative temporaries. For example, the second
use-operand of the sub operation in block b2 can be connected to
three alternative temporaries: t8, t10, and t13. These temporaries
hold the same value since they are copy-related. The arc labels
and delimiter operations illustrate how congruences and preassign-
ments are lifted from temporaries to operands.

To summarize, alternative temporaries enable combinatorial
spill code optimization and ultimate coalescing. The program rep-
resentation includes operands as use and definition ports in oper-
ations. Alternative connections between operands and temporaries
control the route followed by values among operations.

4. Combinatorial Model

This section incrementally describes the integrated combinatorial
model for register allocation and instruction scheduling. The model
introduces variables and constraints that capture alternative tempo-
raries and enable spill code optimization and ultimate coalescing.

The combinatorial model is parameterized with respect to a
program with alternative temporaries and a processor descrip-
tion. A program is described by the following parameters: a set
of blocks B, operations O, operands P , and temporaries T ; the
function operands(o) that gives the operands of operation o; the
function temps(p) that gives the temporaries that can be connected
to operand p; and the predicate use(p) that indicates whether p is a
use operand. Parameters that describe the processor and additional
program parameters are introduced as needed.

4.1 Register Allocation

A solution to the register allocation problem corresponds to an
assignment of the register allocation variables that satisfies Con-

straints 1-8 below. The register allocation variables are: ao and io
for each operation o to indicate whether o is active and which in-
struction implements it; lt and rt for each temporary t to indicate
whether t is live and to which register it is assigned; and yp for
each operand p to indicate which temporary is connected to it.

The temporary connection variables and their related Con-
straints 1-4 are the essential improvements over the model pre-
sented by Castañeda et al. [3]. Each new yp variable indicates
which temporary is connected to the operand p among a set of alter-
native temporaries temps(p). Through these variables the combi-
natorial model can leverage the optimization opportunities enabled
by the program representation with alternative temporaries. Al-
though a new dimension of decision variables is introduced which
yields an exponential growth of the solution space, the new model
scales equally to that of Castañeda et al. as shown in Section 6.

Alternative temporaries and active operations. A temporary t is
live iff it is used (that is, connected to some use-operand p):

lt ⇐⇒ ∃p∈P ∶ (use(p) ∧ yp = t) ∀t∈T (1)

The single definitions step in the construction of alternative tem-
poraries forces each temporary t to be connectable to exactly one
def-operand. The operation that contains this operand is given by
definer(t) and is active iff t is live:

adefiner(t) ⇐⇒ lt ∀t∈T (2)

Active operations are connected to temporaries and are imple-
mented by non-null instructions:

ao ⇐⇒ yp ≠ � ∀o∈O, ∀p∈operands(o) (3)

ao ⇐⇒ io ≠ � ∀o∈O (4)

Unified register array and instruction selection. The combina-
torial model is based on a unified register array where its elements
can be either processor registers from different banks or a prac-
tically infinite number of memory registers (representing memory
locations on the runtime stack) [3, Section 4.1]. In this abstraction
memory registers form a register class in the same way as the rest
of register subsets that are interchangeable for some instruction.

Instructions access their operands in certain register classes as
determined by the processor. The processor parameter class(i, p)
gives the register class of operand p if its operation is implemented
by instruction i. The instruction that implements an operation
determines the register class to which its operands are allocated:

ryp ∈class(io, p) ∀o∈O, ∀p∈operands(o) (5)

Register assignment and packing. Register assignment maps
non-interfering temporaries to registers. The combinatorial model
captures register assignment according to the basic definition of
interference. It relies on alternative temporaries to avoid solutions
where same-value temporaries are simultaneously live, effectively
delivering ultimate coalescing. This yields a simple geometric rep-
resentation of register assignment that can be exploited by existing
global constraints in constraint programming.

Local register assignments can be projected onto a rectangular
area as described by Castañeda et al. [3, Section 4.1] and illus-
trated by the figure to the left. The horizontal dimension represents

R0 R1 ...

t1
t2

ls t1

ls t2

le t1, let2

the registers in the unified register array,
and the vertical dimension represents time
in clock cycles. Each live temporary t
yields a rectangle with width(t) = 1 (the
width is later redefined for register pack-

ing). The top and bottom coordinates of t reflect the live start (lst)
and end (let) cycles, which correspond to the issue cycles of t’s de-
finer and last user. The horizontal coordinate represents the register



to which the temporary is assigned. For register allocation in iso-
lation, live ranges are given as program parameters. For the model
extended with instruction scheduling these are variables that de-
pend on the computed schedule as described in Section 4.2.

In this representation, two live temporaries (for example, t1
and t2 above) interfere iff their rectangles overlap vertically. The
non-overlapping rectangles constraint disjoint2 [17] forces such
interfering temporaries to be assigned to different registers:

disjoint2({⟨rt, rt+width(t) × lt, lst, let⟩ ∶t∈T(b)}) ∀b∈B (6)

where the program parameter T(b) gives the temporaries in
block b.

As Section 2 explains, certain operands are preassigned to reg-
isters. The temporaries connected to such operands are preassigned
to the corresponding registers:

ryp = r ∀p∈P ∶ p▷r (7)

Register packing is readily captured by this representation as ex-
plained by Castañeda et al. Registers are decomposed into register
atoms. An atom is the minimum part of a physical register that can
be referenced by an operation (for example, R5 in Hexagon). Each
column in the unified register array corresponds to an atom, where
atoms representing different parts of a larger register are adjacent.
width(t) is redefined as a processor parameter giving the number
of atoms that temporary t occupies. The variable rt represents the
first of the atoms to which t is assigned. Enforcing non-interference
among live temporaries assigned to the same register (Constraint 6)
thus becomes isomorphic to rectangle packing.

Global Register Allocation. In LSSA with alternative tempo-
raries, blocks are solely related by operand congruences, which
leads to a direct extension of the local problem [3, 20]. The pro-
gram parameter p ≡ q indicates that operands p and q are congru-
ent. Congruent operands are assigned to the same register:

ryp = ryq ∀p, q∈P ∶ p ≡ q (8)

4.2 Instruction Scheduling and Bundling

An issue cycle variable co is defined for each operation o. A so-
lution to the instruction scheduling problem corresponds to an as-
signment of the issue cycle variables that satisfies Constraints 9-12
below. Instruction bundling for VLIW processors such as Hexagon
is captured by interpreting sets of operations issued in the same
cycle as bundles. The live start (lst) and end (let) of a temporary
t are variable in the integrated register allocation and instruction
scheduling problem, as they depend on the issue cycle of the de-
finer and users of t. More specifically, the live range of a temporary
t starts at the issue cycle of its definer:

lt Ô⇒ lst = cdefiner(t) ∀t∈T (9)

and ends with the last issue cycle of its users:

lt Ô⇒ let =max
o∈users(t)

co ∀t∈T (10)

where users(t) gives the operations that contain a use-operand
connected to t.

If a temporary t is not used and hence not live (Constraint 1)
its live start and end variables are unconstrained. This does not
compromise the correctness of the model since these variables only
matter if t is live (Constraint 6).

Precedences. The processor parameter lat(i) gives the latency
with which instruction i defines its resulting temporaries. An op-
eration that uses a temporary t can only be issued after the issue
cycle plus the latency of the definer of t:

ao Ô⇒ co ≥cdefiner(yp) + lat(idefiner(yp))

∀o∈O, ∀p∈operands(o) ∶ use(p)
(11)

Processor resources. Operations share limited processor re-
sources such as functional units and data buses. They are described
by the following processor parameters: a set of resources R; the
functions con(i,r) and dur(i,r) that give the units of a resource
r consumed by instruction i and the cycles during which r is con-
sumed; and the function cap(r) that gives the capacity of resource
r in number of units. The capacity of each processor resource can-
not be exceeded at any issue cycle. This structure is naturally cap-
tured as a task-resource model with a cumulative constraint [17]
for each block and processor resource. Each cumulative constraint
includes a task for each operation o in the block where the con-
sumption and duration are zero if o is implemented by the null
instruction:

cumulative({⟨co,con(io,r),dur(io,r)⟩ ∶o∈O(b)}, cap(r))
∀b∈B,∀r∈R (12)

where the program parameter O(b) gives the operations in block b.

4.3 Optimization criteria

Code generation typically aims at solutions that are as good as pos-
sible for some optimization criterion such as speed, code size, or
energy consumption. Traditional heuristic algorithms embed such
optimization criteria implicitly into decisions. For example, tradi-
tional list scheduling [16] issues operations as early as possible un-
der the implicit assumption that this yields compact schedules. Un-
like heuristic algorithms, the model captures different optimization
criteria accurately and unambiguously in a generic minimization
objective function:

∑
b∈B

weight(b) × cost(b)

where weight(b) and cost(b) give the weight and estimated cost
of block b. Note that also non-linear objective functions are pos-
sible but for the purpose of this paper linear functions are suffi-
cient. To optimize for speed, weight(b) is set to freq(b) (a pro-
gram parameter giving the estimated execution frequency of block
b), and cost(b) is defined as maxo∈O(b)∶ao

co. To optimize for
code size, weight(b) is disregarded and cost(b) is defined as

∑o∈O(b) con(io,bits), where the processor resource bits repre-
sents the bits with which instructions are encoded. Optimization
criteria such as energy consumption can be modeled analogously.

4.4 Limitations

While the introduced combinatorial model captures a wide array
of register allocation and instruction scheduling subproblems (as
demonstrated in Section 7), it still exhibits some limitations to be
addressed in the future.

Unpredictable processor features like cache memories lead to
instruction latencies which are unknown at compilation time. As
is common in combinatorial approaches, the introduced model as-
sumes the best-case for such latencies and relies on pipeline stalling
to handle worse cases. This assumption may underestimate the con-
tribution of unknown latencies to the objective function.

The introduced model does not permit to move operations
across blocks, which limits the amount of exploitable instruction-
level parallelism. Existing combinatorial models of global instruc-
tion scheduling could be integrated with our approach [14, 22].

In some cases it is beneficial to recompute (that is, rematerial-
ize) a reused value rather than occupying a register until its later
use, or spilling. The model does not currently support remateri-
alization, but alternative temporaries may allow its incorporation
following the approach of Goodwin and Wilken [10].
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Figure 7. Subgraph of the connection graph G for Figure 6.

5. Code Generator

This section describes Unison, a constraint-based code generator
for the model introduced in Section 4 that features robust and
scalable optimization by using presolving and decomposition tech-
niques that exploit properties of the program representation. Uni-
son is implemented on top of the constraint programming system
Gecode [9].

Presolving. Presolving techniques reformulate combinatorial
problems to boost the robustness of the solving process. Unison
uses an array of dedicated presolving techniques, including: gen-
erating implied constraints (logically redundant constraints that
improve propagation), computing lower bounds by solving prob-
lem relaxations where some constraints are excluded, and detecting
and removing redundant solutions to avoid unnecessary search.

A common approach to generate implied constraints is by negat-
ing nogoods – combinations of variable assignments that cannot
hold together. This paper introduces connection nogoods as a par-
ticularly effective presolving technique. A connection nogood is a
conjunction of connections of the form yp = t. The generation pro-
cess consists of two steps:

(1) A connection graph G (Figure 7 shows an example) is con-
structed from a LSSA function with alternative temporaries. G con-
tains a node for each operand, temporary, and pre-assigned regis-
ter, and two classes of edges: must-connect edges (solid) relating
congruent operands, operands and registers in preassignments, and
operands and temporaries whose connection is forced by single-
alternatives; and may-connect edges (dotted) relating operands with
the temporaries that may be connected to them.

(2) Nogoods are derived by analyzing G as follows. Two dis-
tinct nodes interfere if both of them are either registers, or use-
or def-operands of the same operation. For example, p4 and p5
in Figure 7 interfere since both are use-operands of the bottom
delimiter operation of b1. Interfering nodes cannot be transitively
connected. Suppose that there is a path in G between two interfer-
ing nodes that crosses k may-connect edges (p1, t1), . . . , (pk, tk).
Then the problem has no solution if the operands and temporaries
in all k may-connect edges in the path are connected. This derives
yp1 = t1 ∧ . . . ∧ ypk = tk as a connection nogood.

For example, in Figure 7 there is a path between p4 and p5 that
crosses the may-connect edges (p4, t2) and (p14, t19), yielding the
nogood yp4 = t2 ∧ yp14 = t19.

Problem decomposition. Unison exploits properties of LSSA to
decompose the problem as introduced in Castañeda et al. [3], which
increases its scalability and gives it anytime behavior – solutions
are found in increasing quality as code generation runs.

LSSA temporaries are live in single blocks and only indirectly
related to temporaries from other blocks by congruences on global
operands. Global operands belong to the delimiter operations in-
serted during LSSA construction. For example, the global operands
in Figure 6 are {p1, p2, . . . , p14}. The register variables of these
operands are related by congruence constraints in the combinato-
rial model (Constraint 8). Once these variables are assigned, the
rest of the register allocation and instruction scheduling problem
can be solved independently for each block.

Unison exploits this observation to proceed iteratively as shown
by Figure 8: (1) A SSA function is transformed to LSSA, extended
with copies, and augmented with alternative temporaries; (2) the
function is translated into a problem according to the model intro-
duced in Section 4 and presolved with the techniques introduced
above; (3) a global problem is solved by assigning the register vari-

modeler presolver global
solver

local
solver

(1) (2) (3) (4)
(6)

SSA
function

LSSA function
with alternative

temporaries

local
problems

local
solutions

assembly
code

(5)

Figure 8. Architecture of the Unison code generator.

able ryp of each global operand p such that all constraints are sat-
isfied. Search in the global solver is arranged in two phases: global
allocation and global assignment, under a global time limit. Global
allocation selects a register class (possibly memory) for each set
of congruent global operands G in decreasing size of G. A cost-
benefit analysis determines the register class to which the selected
set G is allocated first. The benefit component estimates the saved
spilling overhead, while the cost component is based on an estimate
of the increased register pressure. This analysis is parameterized
with an aggressiveness factor to guide the allocation towards either
the benefit or the cost component. Global assignment selects a par-
ticular register from the register class allocated to each set G; (4) a
local problem is solved for each block b by assigning its remaining
variables such that all but the congruence constraints are satisfied
and cost(b) is minimized. A search portfolio is used to increase
the robustness of the local solver, where up to five complementary
search strategies are applied sequentially until an optimal local so-
lution is found or a local time limit is reached. All search strategies
are arranged in multiple phases, typically starting with the active
(ao), instruction (io) and temporary (yp) variables; following with
the issue cycle variables (co); and finishing with the register vari-
ables (rt). (5) the solutions to the global and local problems are
combined into a full solution s and a new iteration is run from (3),
increasing the aggressiveness of the global solver and constraining
future solutions to be better than s according to the objective func-
tion in Section 4.3; and (6) when optimality is proven or a time
limit is reached, assembly code is generated according to the last
full solution (which, by construction, is the best one found).

6. Experimental Evaluation

This section presents experimental results on different character-
istics of Unison: code quality improvements; the impact of using
alternative temporaries and presolving techniques; scalability and
runtime behavior; and using different optimization criteria.

Setup. As input for the experiments we use MediaBench, a
benchmark suite widely employed in embedded compiler re-
search [13]. Ten medium-size functions (from 25 to 1000 in-
structions) are sampled from each signal-processing application
included in the benchmark suite (jpeg, mpeg, gsm, g721, epic,
adpcm), with the exception of adpcm where only five functions are
available. The purpose of sampling is to shorten the runtime of the
experimental evaluation while conserving a set of functions that
is representative of the benchmark. Cluster sampling is applied on
each application by randomly selecting a function from each clus-
ter, computed by a 10-means analysis. Functions are clustered by
size (in number of input LLVM operations) and register pressure
(approximated as the fraction of temporaries spilled by LLVM’s
register allocator).

Each function is compiled and optimized using the LLVM 3.3
compiler infrastructure with the -O3 flag, and Hexagon V4 in-
structions are selected using LLVM’s instruction selector. Due
to limitations in the current interface between our prototype and
LLVM, certain low-level CFG and alias analysis optimizations
in LLVM are disabled to ensure an accurate comparison. How-
ever, these optimizations are all orthogonal to the combinato-
rial model itself; in fact, disabling them is disadvantageous to
the constraint-based approach which has more potential to lever-



age instruction-level parallelism by considering the full solution
space. The following flags, prefixed with -disable-, are used:
post-ra, tail-duplicate, branch-fold, block-placement,
phi-elim-edge-splitting, and hexagon-cfgopt.

The evaluation uses the number of execution cycles (cycles for
short) of a generated assembly function as a measure of its quality.
This number is estimated statically according to the speed crite-
rion defined in Section 4.3; lack of post-code-generation support
and limited access to Hexagon development tools prevent us from
measuring the actual number of execution cycles. The execution
frequency freq is estimated by LLVM’s code generator.

The global and local solvers in Unison are implemented on top
of the constraint programming system Gecode 4.2.1. On each func-
tion Unison runs for ten iterations (the decision for this number will
become clear when discussing the runtime behavior). Every itera-
tion has a global time limit of 7 ∗ i ms, where i is the number of
operations in the function, and a local time limit of 25 s. The exper-
iments are run with a single thread on a Linux machine equipped
with an Intel Xeon E5607 2.27 GHz processor and 24 GB of RAM.
All results are averaged over 10 repetitions. The maximum coef-
ficient of variation for the average solving time and code quality
(speed or code size) for all functions is 1.6% and 0.3%, respec-
tively.

Code quality compared to traditional approaches. We compare
the quality of the code generated by Unison with that of the code
generated by LLVM as a representative of traditional, staged ap-
proaches. LLVM solves register allocation and local instruction
scheduling by priority-based coloring [6] and list scheduling [16].
Global instruction scheduling is not yet available in LLVM.

The results indicate that our approach delivers code of signifi-
cantly better quality than LLVM for the MediaBench sample. Fig-
ure 11(a) shows the cycle improvement using our approach over
LLVM for each of the 55 functions. Unison improves code qual-
ity for 39 functions (up to 40.9%), and produces inferior code for
7 functions (down to −7.0%), yielding a geometric mean (GM) im-
provement of 7.1%. Optimal solutions are found for 16 functions.

The best cases typically correspond to functions that contain
large blocks and multiple function calls. Unison can efficiently
handle the former by advanced VLIW bundling and the latter by
integrated handling of ABI preassignments, packing, and spill code
optimization. Three of the worst cases (for run_length_decode_
zeros, decode_mcu, and decode_mcu_AC_first) are affected
by the lack of rematerialization in the combinatorial model, as
discussed in Section 4.4. This limitation explains why Unison’s
solution for run_length_decode_zeros is optimal but worse
than LLVM’s. The remaining inferior cases are due to incomplete
communication between the global and the local solver of the
decomposition introduced in Section 5.

Impact of alternative temporaries on code quality. Alternative
temporaries allow the generation of better code by enabling spill
code optimization and ultimate coalescing. To measure this benefit
we compare the cycles of optimal solutions found for the model
with alternative temporaries against those found for the model
without from Castañeda et al. [3].

The comparison demonstrates that alternative temporaries have
indeed a positive impact on code quality. Figure 9 shows the cycle
improvement given by the model with alternative temporaries, for
the functions solved to optimality. In the cases indicated with verti-
cal dots only a lower bound of the improvement could be computed.
The use of alternative temporaries improves code quality for 16 out
of the 26 functions solved to optimality (up to 10.8%), yielding a
GM improvement of 2.2%. No solution is worse, which confirms
the hypothesis that using alternative temporaries can only improve
code quality.
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Figure 9. Cycle improvement over the model from Castañeda et
al. for optimal solutions. Vertical dots indicate lower bounds.
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Figure 10. Time to reach LLVM code quality vs. input size.

Impact of presolving on robustness. Section 5 introduces pre-
solving techniques to make code generation more robust. To mea-
sure the impact of these techniques we compare the results obtained
in the first experiment (code quality compared to traditional ap-
proaches) with a similar experiment where presolving is disabled.

The results confirm that the presolving techniques are indeed es-
sential for Unison’s robustness: without them, 6 out of the 55 func-
tions cannot be solved at all, and the code quality of the solved
functions decreases drastically. The number of functions for which
Unison improves code quality drops from 39 to 28 (up to 40.9% for
predictor_zero) and the number of inferior cases grows from
7 to 15 (down to −40.4% for g723_40_encoder). The GM im-
provement over LLVM decreases considerably, from 7.1% down
to 0.2%. Also, only 8 optimal solutions can be found.

Scalability. To quantify the scalability of Unison we measure the
solving time to generate code that is on par with LLVM in terms of
cycles. For each function, Unison iterates until the solution quality
is at least as good as that of LLVM. The 7 functions which cannot
reach the baseline quality are excluded from the experiment.

The measurements demonstrate that Unison is scalable. Fig-
ure 10 shows the solving time to generate as good code as LLVM.
The figure reveals an average computational complexity that is ap-
proximately quadratic in the number of input operations – a least
square analysis gives Θ(n1.93). This scalable behavior is due to the
combination of decomposition, presolving, and time limits.

A similar figure is presented by Castañeda et al. which suggests
that their code generator can handle functions approximately four
times larger, but they measure the number of operations after the
input is extended with copies, a process that inflates the size by
an average factor of 3.1. Furthermore, they only report results for
MIPS32 – a simple, single-issue processor. In other words, even
with spill code optimization and ultimate coalescing our model
scales as well as the model of Castañeda et al. Compared to LLVM,
however, Unison is still orders of magnitude slower.
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Figure 11. Cycle and code size improvement over LLVM. Negative bars means that results are worse, and ◾ indicates optimal solutions.
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Figure 12. Cycle improvement over LLVM per iteration. In every
iteration a dot corresponds to the best solution found per function.
When a function cannot be improved further by Unison, the last so-
lution is indicated by a circle in the iteration it was found. The curve
shows the cycle improvement across all functions. The horizontal
range is proportional to the average time of each iteration.

Runtime behavior. To study how Unison behaves as it runs, we
measure the time spent and its quality improvement over LLVM
for each iteration. The results indicate that Unison has a reason-
able anytime behavior, in which each iteration progressively de-
livers better code. Figure 12 demonstrates this runtime behavior.
Three stages can be identified in an average run of Unison: first,
presolving together with the first iteration deliver an initial solu-
tion (taking 39.9% of the total runtime). This delay is mostly due
to presolving; then, iterations two to four drastically improve the
code quality (7.4% in average, taking 27.0% of the total runtime);
finally, the code quality appears to converge, and the remaining iter-
ations only improve the code quality marginally (0.4% in average,
taking the remaining 28.3% of the runtime). This convergent be-
havior motivates running ten iterations for the experiments.

Impact of different optimization criteria on robustness. The
combinatorial model can be easily adjusted to optimize for dif-
ferent criteria, as described in Section 4.3. To study the robustness

of Unison for different optimization criteria, we switch to code size
optimization and compare the size of the code generated by Unison
with that of the code generated by LLVM. The LLVM intermediate
optimizer and code generator are run with the flags -Oz and -O2,
respectively. The latter is chosen as the highest optimization level
that does not trade larger code size for higher speed since LLVM’s
code generator does not support explicit code size optimization.

The results demonstrate that Unison robustly adapts to different
optimization criteria. Figure 11(b) shows the size improvement
using our approach over LLVM for each function. Unison is already
competitive with LLVM even though no effort has been invested
in tuning it for code size optimization. Among the 55 functions
our approach improves code size for 25 functions (up to 20.8%),
and produces larger code size for 25 functions (down to −12.2%),
yielding a slight GM improvement of 1.2%. Optimal solutions
are found for 10 functions. As above, Decoding_of_the_coded_
Log_Area_Ratios is optimal because Unison’s model does not
include rematerialization.

7. Related Work

There is a significant body of research on solving the three main
code generation problems (instruction selection, register allocation,
and instruction scheduling) with combinatorial optimization tech-
niques, both with integrated models and in isolation. Table 1 sum-
marizes the characteristics of the most prominent approaches that
handle register allocation. The approaches are classified into three
groups: those which also integrate instruction scheduling and se-
lection (top), instruction scheduling only (middle); or solve register
allocation in isolation (bottom).

Among the integrated approaches (top and middle), only those
of Wilson et al. [20], Castañeda et al. [3], and this paper support
global register allocation. The three approaches handle it by con-
straints that assign related, inter-block temporaries to the same reg-
ister. Furthermore, this paper is the first integrated approach that
features ultimate coalescing and, together with Castañeda et al.,
the only integrated approach that features register packing.



approach TC SO CO GL RP MB RM SC SL

Wilson [20] IP - basic ✓ - - - ✓ ✓
Gebotys [8] IP ✓ - - - ✓ - ✓ ✓
Bashford [2] CP ✓ basic - - ✓ - ✓ ✓
Eriksson [7] IP - - - - ✓ - ✓ ✓
Chang [5] IP ✓ - - - - - ✓ -
Kästner [11] IP - - - - - - ✓ -
Nagarakatte [14] IP ✓ - - - - - ✓ -
Castañeda [3] CP - basic ✓ ✓ ✓ - ✓ -
(this paper) CP ✓ ultimate ✓ ✓ ✓ - ✓ -

Goodwin [10] IP ✓ basic ✓ ✓ - ✓ - -
Appel [1] IP ✓ - ✓ - - - - -
Scholz [18] PBQP - ultimate ✓ ✓ - - - -
Krause [12] DP ✓ basic ✓ ✓ - ✓ - -

Table 1. Related combinatorial approaches: TeChnique (Integer,
Constraint, Partitioned Boolean Quadratic, and Dynamic Pro-
gramming), Spill code Optimization, COalescing, GLobal register
allocation, Register Packing, Multiple register Banks, ReMaterial-
ization, instruction SCheduling, and instruction SeLection.

Isolated register allocation approaches (bottom) exploit knowl-
edge about the selected instructions and the computed schedule
to formulate simpler models and capture more subproblems than
the integrated ones. For example, Scholz and Eckstein’s model de-
rives constraints from temporary interferences [18], which is only
possible if an instruction schedule is assumed. It is worth noticing
that this paper only lacks rematerialization to match the features of
the isolated approaches. All other integrated approaches provide at
least two features less than their isolated counterparts.

The combinatorial model introduced in this paper builds on the
work by Castañeda et al. by incorporating spill code optimization
and ultimate coalescing, while retaining the original robustness
for medium-size functions. Furthermore, while Castañeda et al.
demonstrate the capabilities of their approach on a simple MIPS32
processor this paper reports results for Hexagon, a more challeng-
ing processor with VLIW capabilities and different-width registers.

The concept of alternative temporaries is related to the idea of
alternative implementations by Wilson et al. [20]. Alternative im-
plementations consist of groups of operations among which the in-
teger programming solver must choose one for execution. This ab-
straction is exploited to generate spill code and register-to-register
copies, and to select array addressing instructions. Unfortunately,
the publications by Wilson et al. [20, 21] do not provide enough
detail to determine to which extent alternative temporaries and al-
ternative implementations are related.

8. Conclusion and Future Work

This paper has introduced a program representation and combina-
torial model of register allocation and instruction scheduling that
use alternative temporaries to enable spill code optimization and
ultimate coalescing. The model is shown to be scalable and ro-
bust while matching, for the first time, the features of traditional
heuristic approaches. Thorough experiments on a real-world DSP
demonstrate that the approach can be easily adapted to different
optimization criteria and generates better code than heuristics and
previous combinatorial approaches.

Future work. There is considerable future work towards combi-
natorial code generation. A first step is to address the limitations
identified in Section 4.4. Furthermore, the runtime behavior can
be improved by integrating different solving techniques, including
randomization and search restarts for robustness, large neighbor-
hood search for scalability, and computation of stronger bounds
with integer programming for shorter solving time.
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[3] R. Castañeda Lozano, M. Carlsson, F. Drejhammar, and C. Schulte.
Constraint-based register allocation and instruction scheduling. In CP,
volume 7514 of LNCS, pages 750–766. Springer, 2012.

[4] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hop-
kins, and P. W. Markstein. Register allocation via coloring. Computer

Languages, 6(1):47–57, 1981.

[5] C.-M. Chang, C.-M. Chen, and C.-T. King. Using integer linear pro-
gramming for instruction scheduling and register allocation in multi-
issue processors. Computers Math. Applic., 34:1–14, Nov. 1997.

[6] F. Chow and J. Hennessy. Register allocation by priority-based color-
ing. SIGPLAN Not., 19(6):222–232, June 1984.

[7] M. V. Eriksson, O. Skoog, and C. W. Kessler. Optimal vs. heuris-
tic integrated code generation for clustered VLIW architectures. In
SCOPES, 2008.

[8] C. H. Gebotys. An efficient model for DSP code generation: Perfor-
mance, code size, estimated energy. In ISSS, pages 41–47. IEEE, 1997.

[9] Gecode Team. Gecode: generic constraint development environment.
www.gecode.org, 2006.

[10] D. W. Goodwin and K. D. Wilken. Optimal and near-optimal global
register allocations using 0-1 integer programming. Software – Prac-
tice and Experience, 26:929–965, Aug. 1996.
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