
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/285586105

BwMan: Bandwidth Manager for Elastic Services in the Cloud

Conference Paper · August 2014

DOI: 10.1109/ISPA.2014.37

CITATIONS

6
READS

10

4 authors:

Some of the authors of this publication are also working on these related projects:

Models, methods, algorithmic, tools, software and architectural support for big data mining and analytics View project

Encore EU FP7 View project

Vladimir Vlassov

KTH Royal Institute of Technology

122 PUBLICATIONS 772 CITATIONS

SEE PROFILE

Ying Liu

KTH Royal Institute of Technology

13 PUBLICATIONS 53 CITATIONS

SEE PROFILE

Vamis Xhagjika

TokBox INC Telefonica

7 PUBLICATIONS 18 CITATIONS

SEE PROFILE

Ahmad Al-Shishtawy

Swedish Institute of Computer Science

33 PUBLICATIONS 167 CITATIONS

SEE PROFILE

All content following this page was uploaded by Ying Liu on 09 November 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/285586105_BwMan_Bandwidth_Manager_for_Elastic_Services_in_the_Cloud?enrichId=rgreq-06fd0476e0e23654dc1e3260a677550d-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU4NjEwNTtBUzo0MjY0NjMxMjA4OTE5MDRAMTQ3ODY4ODEzOTIwOQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/285586105_BwMan_Bandwidth_Manager_for_Elastic_Services_in_the_Cloud?enrichId=rgreq-06fd0476e0e23654dc1e3260a677550d-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU4NjEwNTtBUzo0MjY0NjMxMjA4OTE5MDRAMTQ3ODY4ODEzOTIwOQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Models-methods-algorithmic-tools-software-and-architectural-support-for-big-data-mining-and-analytics?enrichId=rgreq-06fd0476e0e23654dc1e3260a677550d-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU4NjEwNTtBUzo0MjY0NjMxMjA4OTE5MDRAMTQ3ODY4ODEzOTIwOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Encore-EU-FP7?enrichId=rgreq-06fd0476e0e23654dc1e3260a677550d-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU4NjEwNTtBUzo0MjY0NjMxMjA4OTE5MDRAMTQ3ODY4ODEzOTIwOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-06fd0476e0e23654dc1e3260a677550d-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU4NjEwNTtBUzo0MjY0NjMxMjA4OTE5MDRAMTQ3ODY4ODEzOTIwOQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vladimir_Vlassov?enrichId=rgreq-06fd0476e0e23654dc1e3260a677550d-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU4NjEwNTtBUzo0MjY0NjMxMjA4OTE5MDRAMTQ3ODY4ODEzOTIwOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vladimir_Vlassov?enrichId=rgreq-06fd0476e0e23654dc1e3260a677550d-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU4NjEwNTtBUzo0MjY0NjMxMjA4OTE5MDRAMTQ3ODY4ODEzOTIwOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/KTH_Royal_Institute_of_Technology?enrichId=rgreq-06fd0476e0e23654dc1e3260a677550d-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU4NjEwNTtBUzo0MjY0NjMxMjA4OTE5MDRAMTQ3ODY4ODEzOTIwOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vladimir_Vlassov?enrichId=rgreq-06fd0476e0e23654dc1e3260a677550d-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU4NjEwNTtBUzo0MjY0NjMxMjA4OTE5MDRAMTQ3ODY4ODEzOTIwOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ying_Liu123?enrichId=rgreq-06fd0476e0e23654dc1e3260a677550d-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU4NjEwNTtBUzo0MjY0NjMxMjA4OTE5MDRAMTQ3ODY4ODEzOTIwOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ying_Liu123?enrichId=rgreq-06fd0476e0e23654dc1e3260a677550d-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU4NjEwNTtBUzo0MjY0NjMxMjA4OTE5MDRAMTQ3ODY4ODEzOTIwOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/KTH_Royal_Institute_of_Technology?enrichId=rgreq-06fd0476e0e23654dc1e3260a677550d-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU4NjEwNTtBUzo0MjY0NjMxMjA4OTE5MDRAMTQ3ODY4ODEzOTIwOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ying_Liu123?enrichId=rgreq-06fd0476e0e23654dc1e3260a677550d-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU4NjEwNTtBUzo0MjY0NjMxMjA4OTE5MDRAMTQ3ODY4ODEzOTIwOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vamis_Xhagjika?enrichId=rgreq-06fd0476e0e23654dc1e3260a677550d-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU4NjEwNTtBUzo0MjY0NjMxMjA4OTE5MDRAMTQ3ODY4ODEzOTIwOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vamis_Xhagjika?enrichId=rgreq-06fd0476e0e23654dc1e3260a677550d-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU4NjEwNTtBUzo0MjY0NjMxMjA4OTE5MDRAMTQ3ODY4ODEzOTIwOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vamis_Xhagjika?enrichId=rgreq-06fd0476e0e23654dc1e3260a677550d-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU4NjEwNTtBUzo0MjY0NjMxMjA4OTE5MDRAMTQ3ODY4ODEzOTIwOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmad_Al-Shishtawy?enrichId=rgreq-06fd0476e0e23654dc1e3260a677550d-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU4NjEwNTtBUzo0MjY0NjMxMjA4OTE5MDRAMTQ3ODY4ODEzOTIwOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmad_Al-Shishtawy?enrichId=rgreq-06fd0476e0e23654dc1e3260a677550d-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU4NjEwNTtBUzo0MjY0NjMxMjA4OTE5MDRAMTQ3ODY4ODEzOTIwOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Swedish_Institute_of_Computer_Science?enrichId=rgreq-06fd0476e0e23654dc1e3260a677550d-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU4NjEwNTtBUzo0MjY0NjMxMjA4OTE5MDRAMTQ3ODY4ODEzOTIwOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmad_Al-Shishtawy?enrichId=rgreq-06fd0476e0e23654dc1e3260a677550d-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU4NjEwNTtBUzo0MjY0NjMxMjA4OTE5MDRAMTQ3ODY4ODEzOTIwOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ying_Liu123?enrichId=rgreq-06fd0476e0e23654dc1e3260a677550d-XXX&enrichSource=Y292ZXJQYWdlOzI4NTU4NjEwNTtBUzo0MjY0NjMxMjA4OTE5MDRAMTQ3ODY4ODEzOTIwOQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

BwMan: Bandwidth Manager for Elastic Services in the Cloud

Ying Liu∗, Vamis Xhagjika†∗, Vladimir Vlassov∗, Ahmad Al-Shishtawy‡

∗KTH Royal Institute of Technology, Stockholm, Sweden, {yinliu, xhagjika, vladv}@kth.se
†Universitat Politècnica de Catalunya, Barcelona, Spain, xhagjika@ac.upc.edu

‡Swedish Institute of Computer Science (SICS), Stockholm, Sweden, ahmad@sics.se

Abstract—The flexibility of Cloud computing allows elastic
services to adapt to changes in workload patterns in order to
achieve desired Service Level Objectives (SLOs) at a reduced
cost. Typically, the service adapts to changes in workload
by adding or removing service instances (VMs), which for
stateful services will require moving data among instances.
The SLOs of a distributed Cloud-based service are sensitive
to the available network bandwidth, which is usually shared
by multiple activities in a single service without being explicitly
allocated and managed as a resource. We present the design
and evaluation of BwMan, a network bandwidth manager for
elastic services in the Cloud. BwMan predicts and performs the
bandwidth allocation and tradeoffs between multiple service
activities in order to meet service specific SLOs and poli-
cies. To make management decisions, BwMan uses statistical
machine learning (SML) to build predictive models. This
allows BwMan to arbitrate and allocate bandwidth dynamically
among different activities to satisfy specified SLOs. We have
implemented and evaluated BwMan for the OpenStack Swift
store. Our evaluation shows the feasibility and effectiveness of
our approach to bandwidth management in an elastic service.
The experiments show that network bandwidth management
by BwMan can reduce SLO violations in Swift by a factor of
two or more.

Keywords-Bandwidth Management, Cloud Computing, SLO

I. INTRODUCTION

Cloud computing with its pay-as-you-go pricing model

and illusion of the infinite amount of resources drives our

vision on the Internet industry, in part because it allows

providing elastic services where resources are dynamically

provisioned and reclaimed in response to fluctuations in

workload while satisfying SLO requirements at a reduced

cost. When the scale and complexity of Cloud-based ap-

plications and services increase, it is essential and chal-

lenging to automate the resource provisioning in order to

handle dynamic workload without violating SLOs. Issues to

be considered when building systems to be automatically

scalable in terms of server capabilities, CPU and memory,

are fairly well understood by the research community and

discussed in literature, e.g., [1], [2], [3]. There are open

issues to be solved, such as efficient and effective network

resource management.

In Cloud-based systems, services, and applications, net-

work bandwidth is usually not explicitly allocated and man-

aged as a shared resource. Sharing bandwidth by multiple

physical servers, virtual machines (VMs), or service threads

communicating over the same network, may lead to SLO

violations. Furthermore, network bandwidth can also be

presented as a first class managed resource in the context of

Internet Service Provider (ISP), inter-ISP communication,

Clouds as well as community networks [4], where the

network bandwidth is the major resource.

In our work, we demonstrate the necessity of managing

the network bandwidth shared by services running on the

same platform, especially when the services are bandwidth

intensive. The sharing of network bandwidth can happen

among multiple individual applications or within one appli-

cation of multiple services deployed in the same platform. In

essence, both cases can be solved using the same bandwidth

management approach. The difference is in the granularity

in which bandwidth allocation is conducted, for example,

on VMs, applications or threads. In our work, we have

implemented the finest bandwidth control granularity, i.e.,

network port level, which can be easily adapted in the usage

scenario of VMs, applications, or services. Specifically, our

approach is able to distinguish bandwidth allocations to

different ports used by different services within the same

application. In fact, this fine-grained control is needed in

many distributed applications, where there are multiple con-

current threads creating workloads competing for bandwidth

resources. A widely used application in such scenario is

distributed storage service.

A distributed storage system provides a service that inte-

grates physically separated and distributed storages into one

logical storage unit, with which the client can interoperate

as if it is one entity. There are two kinds of workload in a

storage service. First, the system handles dynamic workload

generated by the clients, that we call user-centric workload.

Second, the system tackles with the workload related to

system maintenance including load rebalancing, data mi-

gration, failure recovery, and dynamic reconfiguration (e.g.,

elasticity). We call this workload system-centric workload.

In a distributed storage service, the user-centric work-

load includes access requests issued by clients; whereas

the system-centric workload includes the data replication,

recovery, and rebalance activities performed to achieve and

to ensure system availability and consistency. Typically the

system-centric workload is triggered in the following situ-

ations. At runtime, when the system scales up, the number

of servers and the storage capacity is increased, that leads

to data transfer to the newly added servers. Similarly, when

the system scales down, data need to be migrated before

the servers are removed. In another situation, the system-

centric workload is triggered in response to server failures

or data corruptions. In this case, the failure recovery process

replicates the under-replicated data or recover corrupted

data. Rebalance and failure recovery workloads consume

system resources including network bandwidth, thus may

interfere with user-centric workload and affect SLOs.

From our experimental observations, in a distributed stor-

age system, both user-centric and system-centric workloads

are network bandwidth intensive. To arbitrate the allocation

of bandwidth between these two kinds of workload is

challenging. On the one hand, insufficient bandwidth allo-

cation to user-centric workload might lead to the violation

of SLOs. On the other hand, the system may fail when

insufficient bandwidth is allocated for data rebalance and

failure recovery [1]. To tackle this problem, we arbitrate net-

work bandwidth between user-centric workload and system-

centric workload in a way to minimize SLO violations and

keep the system operational.

We propose the design of BwMan, a network bandwidth

manager for elastic Cloud services. BwMan arbitrates the

bandwidth allocation among individual services and different

service activities sharing the same Cloud infrastructure. Our

control model is built using machine learning techniques [5].

A control loop is designed to continuously monitor the

system status and dynamically allocate different bandwidth

quotas to services depending on changing workloads. The

bandwidth allocation is fine-grained to ports used by dif-

ferent services. Thus, each service can have a demanded

and dedicated amount of bandwidth allocation without in-

terfering among each other, when the total bandwidth in

the shared platform is sufficient. Dynamic and dedicated

bandwidth allocation to services supports their elasticity

properties with reduced resource consumption and better

performance guarantees. From our evaluation, we show

that more than half of the SLO violations is prevented by

using BwMan for an elastic distributed storage deployed in

the Cloud. Furthermore, since BwMan controls bandwidth

in port granularity, it can be easily extended to adapt to

other usage scenarios where network bandwidth is a sharing

resource and creates potential bottlenecks.

In this work, we build and evaluate BwMan for the case of

a data center LAN topology deployment. BwMan assumes

that bandwidth quotas for each application is given by data

center policies. Within a limited bandwidth quota, BwMan

tries to utilize it in the best way, by dividing it to workloads

inside the applications. Specifically, BwMan arbitrates the

available inbound and outbound bandwidth of servers , i.e.,

bandwidth at the network edges, to multiple hosted services;

whereas the bandwidth allocation of particular network flows

in switches is not under the BwMan control. In most of

the deployments, control of the bandwidth allocation in the

network by services might not be supported.

The contributions of this work are as follows.

• First, we propose a bandwidth manager for distributed

Cloud-based services using predictive models to better

guarantee SLOs.

• Second, we describe the BwMan design including the

techniques and metrics of building predictive models

for system performance under user-centric and system-

centric workloads as a function of allocated bandwidth.

• Finally, we evaluate the effectiveness of BwMan using

the OpenStack Swift Object Storage.

The rest of the paper is organized as follows. In Section II,

we describe the background for this work. Section III

presents the control model built for BwMan. In Section IV,

we describe the design, architecture, and work-flow of

BwMan. Section V shows the performance evaluation of the

bandwidth manager. We conclude in Section VII.

II. OPENSTACK SWIFT

A distributed storage service provides an illusion of a

storage with infinite capacity by aggregating and managing

a large number of storage servers. Storage solutions [6],

[7], [8], [9] include relational databases, NoSQL databases,

distributed file systems, array storages, and key-value stores.

In this paper, we consider an object store, namely Open-

Stack Swift, as a use case for our bandwidth management

mechanism. Swift follows a key-value storage style, which

offers a simple interface that allows to put, get, and delete

data identified by keys. Such simple interface enables ef-

ficient partitioning and distribution of data among multiple

servers and thus scaling well to a large number of servers.

Examples of key-value storages are Amazon S3, OpenStack

Swift, Cassandra [6] and Voldemort [7]. OpenStack Swift,

considered in this work, is one of the storage services of

OpenStack Cloud platform [8]. In Swift, there are one or

many Name Nodes (representing a data entry point to the

distributed storage) that are responsible for the management

of the Data Nodes. Name Nodes may store the metadata

describing the system or just be used as access hubs to

the distributed storage. The Name Nodes may also be

responsible for managing data replication, but leave actual

data transfer to the Data Nodes themselves. Clients access

the distributed storage through the Name Nodes using a

mutually agreed upon protocol and the result of the operation

is also returned by the same Name Node. Despite Name

Nodes and Data Nodes, Swift consists of a number of other

components, including Auditors, Updators and Replicators,

together providing functionalities such as highly available

storage, lookup service, and failure recovery. In our eval-

uation, we consider bandwidth allocation tradeoffs among

these components.

y = 4,3881x + 14,388

y = 1,881x + 1,7245

0

50

100

150

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

T
h

ro
u

g
h

p
u

t
o

p
/s

Bandwidth limits set to user-centric services on storage server network interfaces (Mbit/s)

Read Requests Write Requests

Fig. 1. Regression Model for System Throughput vs. Available Bandwidth

III. PREDICTIVE MODELS OF THE TARGET SYSTEM

BwMan bandwidth manager uses easily-computable pre-

dictive models to foresee system performance under a given

workload in correlation to bandwidth allocation. As there are

two types of workloads in the system, namely user-centric

and system-centric, we show how to build two predictive

models. The first model defines correlation between the user-

oriented performance metrics under user-centric workload

and the available bandwidth. The second model defines

correlation between system-oriented performance metrics

under system-centric workload and the available bandwidth.

We define user-oriented performance metrics as the sys-

tem throughput measured in read/write operations per sec-

ond (op/s). As a use case, we consider the system-centric

workload associated with failure recovery, that is triggered

in response to server failures or data corruptions. The

failure recovery process is responsible to replicate the under-

replicated data or recover corrupted data. Thus, we define the

system-oriented performance metrics as the recovery speed

of the corrupted data in megabyte per second (MB/s). Due

to the fine-grained control of network traffic on different

service ports, the bandwidth arbitration by BwMan will not

interfere with other background services in the application,

such as services for failure detection and garbage collection.

The mathematical models we have used are regression

models. The simplest case of such an approach is a one

variable approximation, but for more complex scenarios,

the number of features of the model can be extended to

provide also higher order approximations. In the following

subsections, we show the two derived models.

A. User-oriented Performance versus Available Bandwidth

First, we analyze the read/write (user-centric) performance

of the system under a given network bandwidth allocation. In

order to conduct decisions on bandwidth allocation against

read/write performance, BwMan uses a regression model [2],

[3], [10] of performance as a function of available band-

width. The model can be built either off-line by conducting

experiments on a rather wide (if not complete) operational

region; or on-line by measuring performance at runtime.

In this work, we present the model trained off-line for the

OpenStack Swift store by varying the bandwidth allocation

and measuring system throughput as shown in Fig. 1. The

model is set up in each individual storage node. Based on

the incoming workload monitoring, each storage node is

assigned with demanded bandwidth accordingly by BwMan

in one control loop. The simplest computable model that

fits the gathered data is a linear regression of the following

form:

Throughput[op/s] = α1 ∗Bandwidth+ α2 (1)

For example, in our experiments, we have identified the

weights of the model for read throughput to be α1 = 4.388
and α2 = 14.38. As shown in Fig. 1, this model approxi-

mates with a relatively good precision the predictive control

function. Note that the second half of the plot for write

operations is not taken into consideration, since the write

throughput in this region does not depend on the available

bandwidth since there are other factors, which might become

the bottlenecks, such as disk write access.

B. Data Recovery Speed versus Available Bandwidth

Next, we analyse the correlation between system-centric

performance and available bandwidth, namely, data recovery

speed under a given network bandwidth allocation. By

analogy to the first model, the second model was trained

off-line by varying the bandwidth allocation and measuring

the recovery speed under a fixed failure rate. The difference

is that the model predictive process is centrally conducted

based on the monitored system data integrity and bandwidth

are allocated homogeneously to all storage servers. For the

moment, we do not consider the fine-grained monitor of data

integrity on each storage node. We treat data integrity at the

system level.

The model that fits the collected data and correlates the

recovery speed with the available bandwidth is a regression

model where the main feature is of logarithmic nature as

shown in Fig. 2. The concise mathematical model is

RecoverySpeed[MB/s] = α1 ∗ ln(Bandwidth)+α2 (2)

Fig. 2 shows the collected data and the model that fits the

data. Specifically, in our case, the weights in the logarithmic

regression model are α1 = 441.6 and α2 = −2609.

y = 441,67ln(x) - 2609,7

0

200

400

600

800

1000

1200

1400

1600

0 2000 4000 6000 8000 10000 12000

R
e

co
v

e
ry

 S
p

e
e

d
 (

K
B

/s
)

Bandwidth limits set to system-centric services on storage server

network interfaces (Kbit/s)

Fig. 2. Regression Model for Recovery Speed vs. Available Bandwidth

Linear

Regression

Model

Analysis:

Feed data to

regression

model

Monitor:

interested

features

Plan: Calculate

next resource

allocation and

trade-offs

Execute: trigger

actuators

Fig. 3. MAPE Control Loop of Bandwidth Manager

IV. BWMAN: BANDWIDTH MANAGER

In this section, we describe the architecture of BwMan,

a bandwidth manager which arbitrates bandwidth between

user-centric workload and system-centric workload of the

target distributed system. BwMan operates according to the

MAPE-K loop [11] (Fig. 3) passing the following phases:

• Monitor: monitor user-defined SLOs, incoming work-

loads to each storage server and system data integrity;

• Analyze: feed monitored data to the regression models;

• Plan: use the predictive regression model of the tar-

get system to plan the bandwidth allocation including

tradeoffs. In the case when the total network band-

width has been exhausted and cannot satisfy all the

workloads, the allocation decisions are made based on

specified tradeoff policies (explained in Section IV-B);

• Execute: allocate bandwidth to sub-services (storage

server performance and system failure recovery) ac-

cording to the plan.

Control decisions are made by finding correlations

through data using two regression models (Section III).

Each model defines correlations between a specific workload

(user-centric or system-centric) and bandwidth.

A. BwMan Control Work-flow

The flowchart of BwMan is shown in Fig. 4. BwMan

monitors three signals, namely, user-centric throughput (de-

fined in SLO), the workload to each storage server and data

integrity in the system. At given time intervals, the gathered

data are averaged and fed to analysis modules. Then the

results of the analysis based on our regression model are

passed to the planning phase to decide on actions based on

SLOs and potentially make tradeoff decision. The results

from the planning phase are executed by the actuators in

the execution phase. Fig. 4 depicts the MAPE phases as

designed for BwMan. For the Monitor phase, we have two

separate monitor ports, one for user-centric throughput (M1)

and the other one for data failure rates (M2). The outputs of

these stages are passed to the Analysis phase represented by

two calculation units, namely A1 and A2, that aggregate and

calculate new bandwidth availability, allocation and metrics

to be used during the Planning phase according to the

trained models (Section III). The best course of action to

take during the Execution phase is chosen based on the

calculated bandwidth necessary for user-centric workload

(SLO) and the current data failure rate, estimated from

system data integrity in the Planning phase. The execution

plan may include also the tradeoff decision in the case of

bandwidth saturation. Finally, during the Execution phase,

the actuators are employed to modify the current state of

the system, which is the new bandwidth allocations for

the user-centric workload and for the system-centric (failure

recovery) workload to each storage server.

B. Tradeoff Scenario

BwMan is designed to manage a finite resource (band-

width), so the resource may not always be available. We

describe a tradeoff scenario where the bandwidth is shared

among user-centric and system-centric workloads.

In order to meet specified SLOs, BwMan needs to tune

the allocation of system resources in the distributed storage.

In our case, we observe that the network bandwidth avail-

able for user-centric workload directly impact user-centric

performance (request throughput). Thus, enough bandwidth

allocation to the user-centric workload is essential to meet

SLOs. On the other hand, system-centric workload, such as

failure recovery and data rebalance, are executed in order to

provide better reliability for data in a distributed storage. The

rebalance and replication process moves copies of the data to

other nodes in order to have more copies for availability and

self-healing purposes. This activity indirectly limits user-

centric performance by impacting the internal bandwidth of

the storage system. While moving the data, the available

bandwidth for user-centric workload is lowered as system-

centric workload competes for the network bandwidth with

user-centric workload.

By arbitrating the bandwidth allocated to user-centric and

system-centric workloads, we can enforce more user-centric

performance while penalizing system-centric functionalities

or vice versa. This tradeoff decision is based on policies

specified in the controller design.

M1: Monitor Input

Workload

A1: Calculate Next

Round Bandwidth

Value for Workload

M2: Monitor

Failure Rate

A2: Calculate Next

Round Bandwidth

Value for Failure

Recovery

Plan: Check Global

Available Bandwidth

Plan:

Reallocation?

Plan:

Reallocation?

Execute:

Allocate Bandwidth

According to the

Plan

YES

NO

NO

YES

NO

YES

Plan: Policy-based

Bandwidth Trade-

off Decision

Fig. 4. Control Workflow

The system can limit the bandwidth usage of an applica-

tion by selecting the requests to process and those to ignore.

This method is usually referred as admission control, which

we do not consider here. Instead we employ actuators to

arbitrate the bandwidth between user-centric workload and

system-centric workload.

V. EVALUATION

In this section, we present the evaluation of BwMan

in OpenStack Swift. The storage service was deployed in

an OpenStack Cloud in order to ensure complete isolation

and sufficiently enough computational, memory, and storage

resources.

A. OpenStack Swift Storage

As a case study, we evaluate our control system in Open-

Stack Swift, which is a widely used open source distributed

object storage started from Rackspace [12]. We identify

that, in Swift, user-centric workload (system throughput)

and system-centric workload (data rebalance and recovery)

are not explicitly managed. We observe that data rebalance

and failure recovery mechanisms in Swift are essentially the

same. These two services adopt a set of replicator processes

using the “rsync” Linux utility. In particular, we decide to

focus on one of these two services: failure recovery.

B. Experiment Scenarios

The evaluation of BwMan in OpenStack Swift has been

conducted under two scenarios. First, we evaluate the ef-

fectiveness of BwMan in Swift with specified throughput

SLO for the user-centric workload, and failure rates that

correspond to system-centric workload (failure recovery),

under the condition that there is enough bandwidth to handle

both workloads. These experiments demonstrate the ability

of BwMan to manage bandwidth in a way that ensures user-

centric and system-centric workloads with maximum fidelity.

Second, a policy-based decision making is performed

by BwMan to tradeoff in the case of insufficient network

bandwidth to handle both user-centric and system-centric

workloads. In our experiments, we give higher priority to the

user-centric workload compared to system-centric workload.

We show that BwMan adapts Swift effectively by satisfying

the user-defined SLO (desired throughput) with relatively

stable performance.

C. Experiment Setup

1) Swift Setup: We have deployed a Swift cluster with a

ratio of 1 proxy server to 8 storage servers as recommended

in the OpenStack Swift documentation [13]. Under the

assumption of uniform workload, the storage servers are

equally loaded. This implies that the Swift cluster can scale

linearly by adding more proxy servers and storage servers

following the ratio of 1 to 8.

2) Workload Setup: We modified the Yahoo! Cloud

Service Benchmark (YCSB) [14] to be able to generate

workloads for a Swift cluster. Specifically, our modification

allows YCSB to issue read, write, and delete operations

to a Swift cluster with best effort or a specified steady

throughput. The steady throughput is generated in a queue-

based fashion, where the request incoming rate can be

specified and generated on demand. If the rate cannot be met

by the system, requests are queued for later execution. The

Swift cluster is populated using randomly generated files

with predefined sizes. The file sizes in our experiments are

chosen based on one of the largest production Swift cluster

configured by Wikipedia [15] to store static images, texts,

and links. YCSB generates requests with file sizes of 100KB

as like an average size in the Wikipedia scenario. YCSB is

given 16 concurrent client threads and generates uniformly

random read and write operations to the Swift cluster.

3) Failure Generator and Monitor: The injected file loss

in the system is used to trigger the Swift’s failure recovery

process. We have developed a failure generator script that

uniformly at random chooses a data node, in which it deletes

a specific number of files within a defined period of time.

This procedure is repeated until the requested failure rate is

reached.

To conduct failure recovery experiments, we customized

the swift-dispersion tool in order to populate and monitor

the integrity of the whole data space. This customized tool

functions also as our failure recovery monitor in BwMan by

providing real-time metrics on data integrity.

4) The Actuator: Network Bandwidth Control: We apply

NetEm’s tc tools [16] in the token buffer mode to control the

inbound and outbound network bandwidth associated with

the network interfaces and service ports. In this way, we are

able to manage the bandwidth quotas for different activities

in the controlled system. In our deployment, all the services

run on different ports, and thus, we can apply different

network management policies to each of the services.

D. User-centric Workload Experiment

Fig. 5 presents the effectiveness of using BwMan in

Swift with dynamic user-centric SLOs. The x-axis of the

plot shows the experiment timeline, whereas the left y-

axis corresponds to throughput in op/s, and the right y-axis

corresponds to allocated bandwidth in MB/s.

In these experiments, the user-centric workload is a mix of

80% read requests and 20% write requests, that, in our view,

represents a typical workload in a read-dominant application.

Fig. 5 shows the desired throughput specified as SLO,

the bandwidth allocation calculated using the linear regres-

sion model of the user-centric workload (Section III), and

achieved throughput. Results demonstrate that BwMan is

able to reconfigure the bandwidth allocated to dynamic user-

centric workloads in order to achieve the requested SLOs.

E. System-centric Workload Experiment

Fig. 6 presents the results of the data recovery process, the

system-centric workloads, conducted by Swift background

process when there are data corruption and data loss in the

system. The dotted curve sums up the monitoring results,

which constitute the 1% random sample of the whole data

space. The sample represents data integrity in the system

with max value at 100%. The control cycle activation is

illustrated as triangles. The solid curve stands for the band-

width allocation by BwMan after each control cycle. The

calculation of bandwidth allocation is based on a logarithmic

regression model obtained from Fig. 2 in Section III.

F. Policy-based Tradeoff Scenario

In this section, we demonstrate that BwMan allows meet-

ing the SLO according to specified policies in tradeoff

decisions when the total available bandwidth is saturated

by user-centric and system-centric workloads. In our exper-

iments, we have chosen to give preference to user-centric

workload, namely system throughput, instead of system-

centric workload, namely data recovery. Thus, bandwidth

allocation to data recovery may be sacrificed to ensure

conformance to system throughput in case of tradeoffs.

In order to simulate the tradeoff scenario, the workload

generator is configured to generate 80 op/s, 90 op/s, and 100

op/s. The generator applies a queue-based model, where re-

quests that are not served are queued for later execution. The

Table I
PERCENTAGE OF SLO VIOLATIONS IN SWIFT WITH/OUT BWMAN

SLO confidence Percentage of SLO violation
interval With BwMan Without BwMan

5% 19.5% 43.2%

10% 13.6% 40.6%

15% 8.5% 37.1%

bandwidth is dynamically allocated to meet the throughput

SLO for user-centric workload.

Fig. 7 and Fig. 8 depict the results of our experiments

conducted simultaneously in the same time frame; the x-axis

shares the same timeline. The failure scenario introduced by

our failure simulator is the same as in the first series of

experiments (see data integrity experiment in Fig. 6).

Fig. 7 presents the achieved throughput executing user-

centric workload without bandwidth management, i.e., with-

out BwMan. In these experiments, the desired throughput

starts at 80 op/s, then increases to 90 op/s at about 70 min,

and then to 100 op/s at about 140 min. Results indicate high

presence of SLO violations (about 37.1%) with relatively

high fluctuations of achieved throughput.

Fig. 8 shows the achieved throughput in Swift with

BwMan. In contrast to Swift without bandwidth manage-

ment, the use of BwMan in Swift allows the service to

achieve required throughput (meet SLO) most of the time

(about 8.5% of violation) with relatively low fluctuations of

achieved throughput.

Table I summarizes the percentage of SLO violations

within three given confidence intervals (5%, 10%, and 15%)

in Swift with/out bandwidth management, i.e., with/out

BwMan. The results demonstrate the benefits of BwMan in

reducing the SLO violations with at least a factor of 2 given

a 5% interval and a factor of 4 given a 15% interval.

VI. RELATED WORK

The benefits of network bandwidth allocation and man-

agement is well understood as it allows improving per-

formance of distributed services, effectively and efficiently

meeting SLOs and, as consequence, improving end-users’

experience with the services. There are different approaches

to allocate and control network bandwidths, including con-

trolling bandwidth at the network edges (e.g., of server

interfaces); controlling bandwidth allocations in the net-

work (e.g., of particular network flows in switches) using

the software defined networking (SDN) approach; and a

combination of those. A bandwidth manager in the SDN

layer can be used to control the bandwidth allocation on a

per-flow basis directly on the topology achieving the same

goal as the BwMan controlling bandwidth at the network

edges. Extensive work and research has been done by

the community in the SDN field, such as SDN using the

OpenFlow interface [17].

0

50

100

0

50

100

150

1 101 201 301 401 501 601 701 801 901 1001 B
a

n
d

w
id

th
 A

ll
o

ca
ti

o
n

M
B

/s

T
h

ro
u

g
h

p
u

t
o

p
/s

Time (min)

Desired Throughput SLO Achieved Throughput Bandwidth Allocation

Fig. 5. Throughput under Dynamic Bandwidth Allocation using BwMan

0

5

10

15

20

0

50

100

3 9 15 19 23 28 34 39 45 B
a

n
d

w
id

th
 A

ll
o

ca
ti

o
n

M
B

/s

D
a

ta
 I

n
te

g
ri

ty
 %

Time (min)

Data Integrity Monitor Trigger Actuator Bandwidth Allocation

Fig. 6. Data Recovery under Dynamic Bandwidth Allocation using BwMan

0

50

100

150

200

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221

Tr
h

o
u

g
h

p
u

t
o

p
/s

Time (min)

Desired Throughput (SLO) Achieved Throughput

Fig. 7. Throughput of Swift without BwMan

0

50

100

150

200

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221

T
h

ro
u

g
h

p
u

t
o

p
/s

Time (min)

Desired Throughput (SLO) Achieved Throughput

Fig. 8. Throughput of Swift with BwMan

A typical work of controlling bandwidth allocation in

the network is presented in Seawall [18]. Seawall uses

reconfigurable administrator-specified policies to share net-

work bandwidth among services and enforces the band-

width allocation by tunnelling traffic through congestion

controlled, point to multipoint, edge to edge tunnels. In

contrast, we propose a simpler yet effective solution. We

let the controller itself dynamically decide the bandwidth

quotas allocated to each services through a machine learning

model. Administrator-specified policies are only used for

tradeoffs when the bandwidth quota is not enough to support

all the services on the same host. Using machine learning

techniques for bandwidth allocation to different services

allows BwMan to support the hosting of elastic services in

the cloud, whose demand on the network bandwidth varies

depending on the incoming workload.

A recent work of controlling the bandwidth on the edge of

the network is presented in EyeQ [19]. EyeQ is implemented

using virtual NICs to provide interfaces for clients to specify

dedicated network bandwidth quotas to each service in a

shared Cloud environment. Our work differs from EyeQ

in a way that clients do not need to specify a dedicated

bandwidth quota, instead, BwMan will manage the band-

width allocation according to the desired SLO at a minimum

bandwidth consumption.

The theoretical study of the tradeoffs in the network

bandwidth allocation is presented in [20]. It has revealed

the challenges in providing bandwidth guarantees in a Cloud

environment and identified a set of properties, including min-

guarantee, proportionality and high utilization to guide the

design of bandwidth allocation policies.

VII. CONCLUSION AND FUTURE WORK

We have presented the design and evaluation of BwMan,

a network bandwidth manager providing model-predictive

policy-based bandwidth allocation for elastic services in

the Cloud. For dynamic bandwidth allocation, BwMan uses

predictive models, built from statistical machine learning, to

decide bandwidth quotas for each service with respect to

specified SLOs and policies. Tradeoffs need to be handled

among services sharing the same network resource. Specific

tradeoff policies can be easily integrated in BwMan.

We have implemented and evaluated BwMan for the

OpenStack Swift store. Our evaluation has shown that by

controlling the bandwidth in Swift, we can assure that the

network bandwidth is effectively arbitrated and allocated

for user-centric and system-centric workloads according to

specified SLOs and policies. Our experiments show that

network bandwidth management by BwMan can reduce SLO

violations in Swift by a factor of two or more.

In our future work, we will focus on possible alternative

control models and methodology of controller designs for

multiple Cloud-based services sharing the network infras-

tructure in Clouds and Cloud federations. In addition, we

will investigate impact of network topology and link ca-

pacities on the network bottlenecks within or between data

centers, and how to integrate controlling bandwidth on edges

of the network with bandwidth allocation and with allocation

in the network topology using SDN approach.

ACKNOWLEDGEMENT

This work was supported by the Erasmus Mundus Joint

Doctorate in Distributed Computing (EMJD-DC) funded by

the Education, Audiovisual and Culture Executive Agency

of the European Commission under the FPA 2012-0030,

by the End-to-End Clouds project funded by the Swedish

Foundation for Strategic Research under the contract RIT10-

0043, and by the FP7 project CLOMMUNITY funded by the

European Commission under EU FP7 GA number 317879.

REFERENCES

[1] H. C. Lim, S. Babu, and J. S. Chase, “Automated control for
elastic storage,” in Proc. ICAC, 2010.

[2] B. Trushkowsky, P. Bodı́k, and et al., “The scads director:
scaling a distributed storage system under stringent perfor-
mance requirements,” in Proc. FAST, 2011.

[3] A. Al-Shishtawy and V. Vlassov, “ElastMan: Elasticity man-
ager for elastic key-value stores in the cloud,” in Proc. CAC,
2013.

[4] B. Braem, C. Blondia, and et al., “A case for research with
and on community networks,” ACM SIGCOMM Computer
Communication Review, 2013.

[5] I. Witten, E. Frank, and M. Hall, Data Mining: Practical
Machine Learning Tools and Techniques: Practical Machine
Learning Tools and Techniques, ser. The Morgan Kaufmann
Series in Data Management Systems. Elsevier Science, 2011.

[6] A. Lakshman and P. Malik, “Cassandra: A decentralized
structured storage system,” ACM SIGOPS Operating Systems
Review, 2010.

[7] R. Sumbaly, J. Kreps, and et al., “Serving large-scale batch
computed data with project voldemort,” in Proc. FAST, 2012.

[8] (2013, Jun.) Openstack cloud software. [Online]. Available:
http://www.openstack.org/

[9] Y. Wang, A. Nandi, and G. Agrawal, “SAGA: Array Stor-
age as a DB with Support for Structural Aggregations,” in
Proceedings of SSDBM, Jun. 2014.

[10] P. Bodık, R. Griffith, and et al., “Statistical machine learning
makes automatic control practical for internet datacenters,” in
Proc. HotCloud, 2009.

[11] IBM Corp., An architectural blueprint for autonomic comput-
ing. IBM Corp., 2004.

[12] K. Pepple, Deploying OpenStack. O’Reilly Media, 2011.

[13] (2013, Jun.) Openstack swift’s documentation. [Online].
Available: http://docs.openstack.org/developer/swift/

[14] B. F. Cooper, A. Silberstein, and et al., “Benchmarking cloud
serving systems with ycsb,” in Proc. SOCC, 2010.

[15] (2013, Jun.) Scaling media storage at
wikimedia with swift. [Online]. Avail-
able: http://blog.wikimedia.org/2012/02/09/scaling-media-
storage-at-wikimedia-with-swift/

[16] S. Hemminger et al., “Network emulation with netem,” in
Linux Conf Au. Citeseer, 2005.

[17] N. McKeown, T. Anderson, and et al., “Openflow: enabling
innovation in campus networks,” ACM SIGCOMM Computer
Communication Review, 2008.

[18] A. Shieh, S. Kandula, and et al., “Sharing the data center
network,” in Proc. NSDI, 2011.

[19] V. Jeyakumar, M. Alizadeh, and et al., “Eyeq: Practical
network performance isolation at the edge,” in Proc. NSDI,
2013.

[20] L. Popa, G. Kumar, and et al., “Faircloud: Sharing the
network in cloud computing,” in Proc. SIGCOMM, 2012.

View publication statsView publication stats

https://www.researchgate.net/publication/285586105

