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Abstract—Distributed hierarchical file systems typically de-
couple the storage of the file system’s metadata from the
data (file system blocks) to enable the scalability of the file
system. This decoupling, however, requires the introduction of
a periodic synchronization protocol to ensure the consistency
of the file system’s metadata and its blocks. Apache HDFS and
HopsFS implement a protocol, called block reporting, where
each data server periodically sends ground truth information
about all its file system blocks to the metadata servers, allowing
the metadata to be synchronized with the actual state of the
data blocks in the file system. The network and processing
overhead of the existing block reporting protocol, however,
increases with cluster size, ultimately limiting cluster scalability.
In this paper, we introduce a new block reporting protocol for
HopsFS that reduces the protocol bandwidth and processing
overhead by up to three orders of magnitude, compared to
HDFS/HopsFS’ existing protocol. Our new protocol removes
a major bottleneck that prevented HopsFS clusters scaling to
tens of thousands of servers.

Keywords-Distributed hierarchical file systems; Distributed
database; Block reporting.

I. INTRODUCTION

Distributed hierarchical file systems typically decouple the
storage of the metadata from the data to allow the file system
to scale, which in turns enables higher performance for the
file system [1]–[4]. However, this decoupling comes at a
price - the metadata and data can become inconsistent due to
failures (disk, network, host failures). The file system needs
a periodic synchronization protocol to ensure consistency
between metadata and data. For example, HDFS [2] stores
its file system metadata in memory in a single server called
the namenode. The metadata contains information about
directories and files, and files’ data which is represented as
blocks that are replicated (three replicas by default) and stored
on servers called datanodes. HDFS addresses the metadata
inconsistency problem by having datanodes periodically,
every 6 hours by default, send a block report containing
information about all replicas stored locally to the namenode
which in turns cross-checks this list with its local metadata
to ensure the consistency of the metadata and the blocks’
data. If inconsistencies arise, the namenode takes actions to
fix those inconsistencies - for example, if a block replica on
a datanode becomes corrupt, then, eventually, the namenode
will create a new block replica by issuing a re-replication
command to one of the datanodes with a non-corrupt replica.

HDFS suffers from scalability bottlenecks due to the
single namenode architecture. HopsFS [1] was developed to

overcome these scalability bottlenecks. HopsFS [1] is a next-
generation distribution of HDFS [2], that adds horizontal
scalability at the metadata layer. It achieves this by decoupling
the metadata storage from the metadata serving. HopsFS
stores the file system metadata normalized in a highly
available, in-memory, distributed, relational database called
Network Database (NDB), a NewSQL storage engine for
MySQL Cluster [5], [6]. This allows HopsFS to support
multiple stateless namenodes to manipulate the metadata
stored in NDB, in parallel, through the use of transactions
and locking primitives to ensure the consistency of the file
system [1]. However, HopsFS has the same block reporting
protocol as HDFS and even though HopsFS has multiple
namenodes, block reports generate a large amount of traffic
on HopsFS’ backend database - in [1], it was shown that
HDFS can process up to 60 block reports per second
with 150 datanodes simultaneously containing 100K blocks,
while HopsFS, with 30 namenodes, can only process 30
block reports per second due to the load on the database.
Moreover, given the default 6 hours block reporting interval,
the namenode(s) has to process 694 blocks per second for
block reporting alone.

The block reporting protocol in HDFS and HopsFS is a
scalability bottleneck, preventing clusters scaling to tens of
thousands of servers in size. According to Shvachko, ”The
internal load for block reports and heartbeat processing on a
10,000-node HDFS cluster with a total storage capacity of
60 PB will consume 30% of the total name-node processing
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Figure 1: The block reporting processing load on the metadata
server(s) grows with increasing cluster size, until it becomes
the dominant workload in exabyte size clusters. The plot is
in log-log scale with base 10.



capacity” [7]. Figure 1 shows the scalability problem in
terms of the load on the namenode(s) attributable to the
block-reporting protocol as a function of the cluster size.

In this paper, we introduce hbr, a scalable block reporting
protocol, that both correctly synchronize the file system’s
metadata with the data, and reduces the network overhead
compared to HDFS/HopsFS’ block reporting protocol. Our
solution introduces buckets, a logical collection of replicas
in the file system, and three hbr functions:

1) an assignment function that dynamically assigns each
replica in the file system to a specific bucket,

2) a hash function that hashes the replica information to
a fixed size hash,

3) and a hash combiner function that combines the hashes
of all replicas inside a bucket.

In experiments based on a real-world Hadoop workload
from Spotify, hbr provides up to three orders of magnitude
lower block processing overhead and up to three orders of
magnitude reduction in the block report size.

II. BACKGROUND

HopsFS [1] is an open source next-generation distribution
of HDFS that mitigates HDFS scalability bottlenecks by
replacing the single metadata storage layer with a distributed
metadata storage layer. A typical HopsFS cluster consists of
three main components, the data storage servers (datanodes),
the metadata storage (NDB), and the metadata servers
(namenodes), see Figure 2. HopsFS namenodes are stateless
and access the metadata stored in NDB through the use of
transactions. For internal housekeeping of the file system,
HopsFS elects one of the namenodes as a leader using a
leader election protocol [8]. NDB is the default database in
HopsFS. However, HopsFS provides a pluggable data access
layer (DAL) that allows using any other distributed databases
with support for transactions and row-level locking. Files
that are less than a configurable size, 64 KB by default, are
called small files and are stored with the metadata in NDB
to improve their access performance [9]. On the other hand,
files bigger than the small files threshold are split into blocks,
128 MB by default. The files’ blocks are then replicated,
three times by default, into different datanodes on the file
system to ensure high availability of the files.

Internally, HopsFS stores the file system metadata as rows
in tables in NDB. The main three tables are inodes, blocks,
and replicas. The inodes table contains information about
files/directories such as parent, name, permission, size, etc..
The blocks table contains the list of blocks for each file in
the file system. The replicas table contains the locations for
each block in the file system. The file system operations are
implemented as transactions on NDB and are guarded through
the use of locking primitives in HopsFS [1]. HopsFS can be
accessed using both HopsFS and HDFS clients. However,
HopsFS clients are preferable since they can load balance
their requests among all namenodes in the cluster. To write

NNs

 M
e
ta

d
a
ta

 M
g

m
 

Leader

DAL  Driver

NDB

 

S
m

a
ll

 F
il

e
 

S
to

ra
g

e

HopsFS

Datanodes L
a
rg

e
F

il
e
 S

to
ra

g
e

HopsFS / 
HDFS
Clients

Figure 2: Architecture diagram of HopsFS. A typical cluster
consists of a database cluster (NDB), a set of Namenodes
(NNs), and a set of Datanodes (DNs). One Namenode is
elected as leader for internal housekeeping of the file system.
HopsFS and HDFS client can then be used to access the
file system. HopsFS provides a data access layer (DAL) that
allow using other distributed databases. Files are stored based
on their size either in NDB if size is less than 64 KB, or in
the datanodes if the size is larger than 64 KB.

a file to HopsFS, a client first sends a request to its selected
namenode. The namenode then creates the file’s metadata
and stores it in NDB. Once acknowledged, the client requests
a list of datanodes from the namenode to write the first block
of the file. The list of datanodes is returned according to the
file replication level, three by default. Then, the client setup a
chain replication between the three selected datanodes, where
it writes to the first datanode, and then the first datanode
writes to the second and so on. While writing the datanodes
continuously send both a status report and an incremental
block report to the namenode(s) about the currently written,
deleted, and completed block replicas. The client will repeat
the same procedure for any additional blocks of the file. If
a failure happens in one of the datanodes in the pipeline,
then the client will request a new set of datanodes from the
namenode to write the block.

A. Block and Replica States

Throughout the lifetime of a block, the block itself and
its replicas go through a cycle of states. First, the block
is Under Construction when first created. Then, the client
sets up chain replication for the selected datanodes, and
the block’s replicas are now being written ( Replica Being
Written). Next, the replica is marked Finalized when all data
bytes are received and written for that block. Once the client
finishes writing to all replicas, the client closes the current
block and asks for another block if needed to write more
data. At that stage, the block state is Committed, and it will
change to Complete only when the minimum replication level
is reached. That is when the minimum number of datanodes
have reported back Finalized replicas to the namenode(s).

B. Block Reporting Protocol

There are two types of block reports in HopsFS and HDFS:



1) incremental block reports: the datanode informs the
namenode once a change happens in the state of a
block replica. It is used by the namenode to inform
the clients about the block state. For example, a block
is created and safe to read when it is complete.

2) full block report: the datanode periodically sends a
block report including information about all the blocks’
replicas to the namenode. It is used to synchronize the
replicas and blocks view between the namenode and
the datanodes (where the datanodes are the source of
truth).

HopsFS load balances block reporting across all namen-
odes in the cluster. Before a datanode sends a block report,
it asks the leader namenode where to send the next block
report. All active block report requests are stored in NDB.
The leader namenode assigns the block reports in a round
robin fashion to namenodes, taking into consideration the
load on each namenode.

III. PROBLEM DEFINITION

We need to maintain a consistent and synchronized view
of the data blocks in the file system between the metadata
layer (namenode(s) and NDB) and the data storage layer
(datanodes). The existing protocol for both HDFS and
HopsFS involves the datanodes periodically sending a list
of the blocks it has to the namenode(s) in the cluster. The
list contains information about the blocks such as id, size,
generation timestamp, and replica state. The generation
timestamp is mainly used during recovery, where the block
generation timestamp is increased after failures. The existing
full block reporting protocol has the following shortcomings:

P1: Increasing network bandwidth consumption
The block report size is directly dependent on the number

of blocks in the datanode. A single block requires ≈ 28
bytes, that is, a datanode with 1 million blocks will send
a block report of size 28 Megabytes every 6 hours (default
block reporting interval).

P2: Overloading the metadata storage (NDB)
For each block report, the namenode has to validate the

reported information of the blocks with the current metadata
for those blocks (stored in NDB). That is, assuming a block
report with 1 million blocks, the namenode has to read 1
million rows from NDB with locks to ensure a consistent
view. Moreover, the number of datanodes in the cluster can
potentially grow to thousands of datanodes trying to report
their blocks status to the namenodes. This would overload
NDB, and negatively affect the performance of the whole
file system.

IV. hbr
In this section, we describe hbr, our efficient and scalable
block reporting protocol that overcome the two aforemen-
tioned problems (P1, P2).

A. System Model
We define B as the set of all blocks in the file system.

Similarly, we define R as the set of all replicas. A block bi ∈
B is replicated to n replicas where n is the file replication
factor. That is, ri = {ri,1, ri,2, .., ri,n} where ri ∈ R is
the set of replicas of bi, and the replication factor of bi is
n = |ri|. We define a bucket k as a logical collection of
blocks’ replicas, where a replica r can be part of only one
bucket k. We define K as the set of buckets configured in
the file system. We define an assignment function fassign
to map each replica to a single bucket, see Definition 1.
The assignment function has to satisfy Property 1. For each
block, we hash the block information including block id,
size, generation timestamp, and replica state using a hash
function, fhash, as defined in Definition 2. The hash function
has to satisfy Property 2. Then, for each bucket, we combine
all the hashes for the replicas in this bucket using a bucket
hash combiner function, fcombine, as defined in Definition 3.
The bucket hash combiner function has to satisfy Property 3.

Definition 1 (Bucket assignment function): Given a
replica ri,j ∈ R where ri,j is the replica j of the block bi,
and the number of configured buckets in the system |K|
then k = fassign(ri,j , |K|) where k ∈ K and |k| = 1.

Property 1: Given a block bi ∈ B, ri ∈ R where ri
is the set of replicas for block bi, then ∀ri,x, ri,y ∈ ri
fassign(ri,x, |K|) = fassign(ri,y, |K|). That is, all replicas
of the same block logically maps to the same bucket - even
though the replicas are stored on different datanodes. That
means that updates to any of the replicas of a block will be
local to the same bucket.

Definition 2 (Replica hash function): Given a replica
ri,j ∈ R where ri,j is the replica j of the block bi, then
h = fhash(ri,j)

Property 2: Given two replicas ri,x, rj,y ∈ R where ri,x
is the replica x of the block bi and similarly rj,y is the
replica y of the block bj , then ∀ri,x, rj,y ∈ R, fhash(ri,x) 6=
fhash(rj,y)

Definition 3 (Bucket hash combiner function): Given a
bucket k ∈ K, k = {r1, ..., r|k|} where r1 is the first
mapped replica to the bucket and |k| is the number of
replicas in the bucket k, and kh0 = φ where khi is
the combined hash for i replicas in the bucket k, then
∀i ∈ {1, .., |k|}. khi = fcombine(khi−1, fhash(ri))

Property 3: Given a bucket k ∈ K, kh0 = φ, and ∀i ∈
{1, .., |k|}. khi = fcombine(khi−1, fhash(ri)), then khi−1 =
fcombine(khi, fhash(ri)). That is the fcombine function is
invertible.

Then, for each change to the state of the file blocks and
replicas, see Section II-A, we recompute the hash and update
the combined hash for the corresponding bucket. In practice,
we track only the finalized replicas. When a datanode sends
a block report, it sends its current combined hashes for its
buckets to the assigned namenode. The namenode compares
the received combined hashes with the stored bucket hashes.



If one or more of the bucket hashes does not match, the
namenode asks the datanode to report back all the replicas
within the mismatched buckets. For those buckets where the
hashes match, the block report succeeds for the blocks in
those buckets. For those blocks sent by datanodes for their
mimatched buckets, we fall back to the original HDFS block
reporting protocol - that is, the namenode validates all blocks
received against those stored in NDB.

B. Implementation

We implemented the hbr block reporting protocol in
HopsFS using the functions defined in Section IV-A. We
devised an algorithm for hbr on the datanode and namenode,
in Algorithm 1 and Algorithm 2, respectively. The datanode(s)
and the namenode(s) communicate using an RPC model.

Algorithm 1 describes the hbr protocol from the datanode
perspective. The datanode keeps a map of bucket hashes, hbr,
line 1. We define the utility function UPDATEBUCKETDN
that updates the bucket hash of any replica. It uses the
assignment function, see Definition 1, to assign the replica to
its corresponding bucket, line 18. If the map containing the
bucket hashes, hbr, already contains a hash for that bucket,
then, we use the hash combiner function, see Definition 3,
to combine the hash of the new replica, line 22. Otherwise,
if hbr contains no hash for bucket k, then we insert the
hash of the replica as the combined hash, line 20. Whenever
a replica is added to the datanode, we update the bucket
where the replica logically resides, lines 2-4. Similarly, when
a replica is deleted we use the same UPDATEBUCKETDN
function to remove the replica from the current hash of the
bucket, line 5-7. The UPDATEBUCKETDN works for addition
and deletion since the hash combiner function fcombine is
invertible, see Property 3. The datanode will periodically
send its buckets’ hash map, hbr, to a selected namenode,
lines 8-16. The datanode contacts the leader namenode to get
the selected namenode for that block report. All active block
reports on all namenodes are stored in the metadata storage
(NDB). The leader namenode balances the block reporting
handling across all namenodes. The datanode reconstructs
the buckets’ hash map if it was empty due to datanode restart
before sending the block report, lines 9-13. Since collisions
may arise due to the use of the hash combiner function, we
perform a full block report once every configurable interval,
every 24 hours by default, lines 25-28.

Algorithm 2 describes the hbr protocol from the namenode
perspective. The buckets’ hashes for all datanodes are stored
in the metadata storage (NDB). Once the namenode receives
a block report from a datanode, it iterates through the buckets
and validates that their hashes match the stored hashes, line
1-8. If the reported hashes do not match, then, the namenode
requests the datanode to resend the full block report for that
specific bucket, line 5. The function SENDFULLREPORT-
FORBUCKET uses the vanilla block reporting protocol to
report mismatched buckets and it is omitted for clarity. In

Algorithm 1 Block reporting on datanode side
Require: BRInterval . Block report interval.
Require: FBRInterval . Full block report interval.
Require: LE . leader namenode

1: hbr ← ⊥ . map of bucket hashes

2: upon addition of a new replica r
3: UPDATEBUCKETDN(r)
4: end
5: upon deletion of a replica r
6: UPDATEBUCKETDN(r)
7: end

8: loop every BRInterval
9: if hbr = ⊥ then

10: for r in replicas do
11: UPDATEBUCKEDN(r)
12: end for
13: end if
14: nn← LE.getNextNNToReportTo(thisDN)
15: nn.processReport(hbr)
16: end loop

17: function UPDATEBUCKETDN(r)
18: k ← fassign(r)
19: if hbr[k] = ⊥ then
20: hbr[k]← fhash(r)
21: else
22: hbr[k]← fcombine(hbr[k], fhash(r))
23: end if
24: end function

25: loop every FBRInterval
26: nn← LE.getNextNNToReportTo(thisDN)
27: nn.processReport(replicas)
28: end loop

order to keep the map of datanodes’ bucket hashes up-to-date
and to avoid unnecessary communication due to mismatch,
we update the hashes for the buckets whenever there is an
update to the replicas in the file system. We define the utility
function UPDATEBUCKETNN that updates the bucket hash
for a specific datanode dn with the hash of a finalized replica
r, a replica where all its data has already been received, lines
30-43. The UPDATEBUCKETNN uses the same assignment
function as used in the datanode to get the corresponding
bucket for the supplied replica, line 32. Since the bucket
hashes are stored in the database and are updated by all
namenodes, we use the locking primitives as defined in
HopsFS to ensure the serializability of the updates to the
bucket hashes, lines 33-41.

Similar to the datanode side, we check if there is a
stored hash for that datanode’s bucket and update the bucket
hash accordingly, lines 34-40. The datanodes inform the
namenodes whenever there is an update in the state of a
replica using the incremental block report. Therefore, we
update the associated bucket hash for that replica, lines 9-11.
Moreover, if a file got deleted, then all of its blocks will also
be deleted, thus we update the hashes for the corresponding
datanodes buckets, lines 12-16. So far, we have covered



most of the cases where a replica is updated. However,
during failure, the client will request a newly updated writing
pipeline from the namenode. In this case, the namenode
needs to update the corresponding bucket hashes for the
old datanodes that were used for writing before failure, line
17-21. Another operation that would require updates to the
bucket hashes of the replicas is the append operation. If
the last block size was less than the default block size of
the file, then, upon append, we need to update the bucket
hashes for the last block’s replicas, lines 22-29. The function
UPDATEBUCKETNN on the namenode side only updates the
hashes for finalized replica in comparison to the function on
the datanode side (UPDATEBUCKETDN) which considers all
replicas when updating the hashes. The reason is that the
datanode has the ground truth information about the replicas,
therefore, it should always report the current state of the
replicas, whatever that may be. Thus, during block reporting,
if a file is being written with replicas that are not finalized yet,
then, the buckets containing these replicas will be marked
invalid and a full block report is required for those buckets.

Choosing the hbr functions: We chose the functions
based on their definitions and their corresponding properties.
First, the assignment function needs to have low computa-
tional complexity on both namenodes and datanodes, with
only the knowledge of the block id and the number of buckets
in the system. For that, the default assignment function is
modulus (%), where the bucket can be derived from the block
id mod the number of buckets in the file system.

fassign(ri,j , |K|) = BlockId(ri,j) % |K| (1)

The modulus function satisfies the Property 1, that is, the
modulus will produce the same bucket id for all replicas of
the same block. Since all replicas of the same block will have
the same block id, then using the modulus of the block id will
return the same bucket id for all replicas of the same block.
Secondly, the hash function needs to produce a fixed size
hash of the block information with low overhead and hard
to compute collisions. The default hash function is SHA1,
where we hash the replica information including block id,
block size, generation stamp, and state.

fhash(ri,j) = SHA1(BlockId(ri,j),
BlockSize(ri,j), GenStamp(ri,j), State(ri,j))

(2)

Thirdly, the hash combiner function needs to preserve the
distribution of the input hashes and to be invertible. The
invertibility is an important aspect since replica deletions
require undoing the combined hash to remove that replica
from the combined hash of the bucket. The default hash
combiner function we use is XOR (⊕).

khi = fcombine(khi−1, fhash(ri)) = khi−1 ⊕ fhash(ri)
(3)

The three functions can be overridden by any other
functions as long as they satisfy the same properties as
discussed for each function in Section IV-A.

Algorithm 2 Block reporting on namenode side
Require: MS . Connection to the metadata storage.

1: upon reception of block report hbr from dn
2: for k, kh in hbr do
3: storedkh←MS.getBucketHash(dn, k)
4: if storedkh = ⊥ or storedkh 6= kh then
5: dn.sendFullReportForBucket(k)
6: end if
7: end for
8: end

9: upon reception of incr report for replica r from dn
10: UPDATEBUCKETNN(dn, r)
11: end

12: upon deletion of a block b with replicas R
13: for dn, r in R do
14: UPDATEBUCKETNN(dn, r)
15: end for
16: end

17: upon recovery of a block b with replicas R
18: for dn, r in R do
19: UPDATEBUCKETNN(dn, r)
20: end for
21: end

22: upon append of a file f
23: b← f.getLastBlock()
24: if b.size 6= f.getDefaultBlockSize() then
25: for dn, r in b.getReplicas() do
26: UPDATEBUCKETNN(dn, r)
27: end for
28: end if
29: end

30: function UPDATEBUCKETNN(dn, r)
31: if r.state = FINALIZED then
32: k ← fassign(r)
33: MS.lockBucket(k)
34: storedkh←MS.getBucketHash(dn, k)
35: if storedkh = ⊥ then
36: kh← fhash(r)
37: else
38: kh← fcombine(storedkh, fhash(r))
39: end if
40: MS.setBucketHash(dn, k, kh)
41: MS.unlockBucket(k)
42: end if
43: end function

V. EVALUATION

In this section, we present a comparative evaluation of
the vanilla block reporting in HopsFS and hbr. (HDFS
has the same block reporting protocol as HopsFS). All the
experiments were run on PowerEdge R730xd servers(Intel(R)
Xeon(R) CPU E5-2620 v3 @ 2.40GHz, 256 GB RAM, 4
TB 7200 RPM HDDs) connected using a single 10 GbE
network adapter. We deployed NDB, version 7.6.8, on 2
nodes and the data replication degree was set to default, 2.
In all experiments, we used a fixed number of 100 datanodes.
Also, we used a real-world hadoop workload from Spotify to



generate 1 million blocks on each datanode [1]. In production
deployments, the datanodes send a block report every six
hours by default, and the randomization in the protocol
ensures that the datanodes do not send their block report
to the namenodes at the same time. However, to determine
the maximum throughput and capacity of hbr, we repeatedly
send block reports to the HopsFS namenodes, that is, at
any given time the namenodes will be processing 100 block
reports from different datanodes.

A. Throughput of hbr

In this experiment, we benchmarked the throughput of the
vanilla block reporting protocol and hbr with two different
configurations of 1000 buckets and 2000 buckets, respectively,
with no invalid buckets. Also, we varied the number of
namenodes to show the scalability of both protocols. The
vanilla block reporting can only process 0.25 block reports
per second with one namenode, and the throughput increases
to 0.75 block reports per second with three namenodes, see
Figure 3. The performance of the vanilla block reporting
suffers due to the increased load on the NDB to read the
metadata required for processing the block reports. NDB
is a real-time database which prioritizes short queries over
large index scans returning many rows. More concretely,
large queries that return a large number of rows (potentially
millions of rows) can be frequently preempted by the NDB
kernel to process other concurrent short queries.

Figure 3 shows that hbr delivers up to three orders of
magnitude the throughput of the vanilla block reporting
protocol. We performed two sets of experiments with different
numbers of buckets per datanode. For 1000 buckets per
datanode, hbr performs ≈ 1500 block reports per second
using only one namenode, and the throughput increases up to
≈ 4600 reports per second using three namenodes. Similarly,
for 2000 buckets per datanode, hbr performs around ≈ 800
block reports per namenode which linearly increases to
≈ 2300 block reports per second using three namenodes.
The hbr performance directly depends on the number of
buckets per datanode.

B. Latency of hbr

We compared the latency of both the vanilla block
reporting, and hbr with two configurations 1000 buckets
and 2000 buckets. The vanilla block reporting protocol takes
on average ≈ 80 seconds to process a single block report
containing 1 million blocks, see Figure 4. On the other
hand, hbr takes on average ≈ 20 and ≈ 40 milliseconds to
process a single block reports using 1000 and 2000 buckets
per datanode respectively. Thus, increasing the number of
buckets in the file system increases the latency and decreases
the throughput. In this experiment, all the hashes on the
datanode side and namenode side match. However, in real-
world scenarios, depending on the workload some buckets
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Figure 3: The throughput of the vanilla block reporting and
hbr while varying the number of namenodes in the cluster.
Each block report contains 1 millions blocks. For hbr, we
use two configurations 1000 buckets and 2000 buckets.

on the datanodes and the namenodes may not match, see
Section V-C.

C. Effect of invalid buckets

A mismatch between the bucket hashes on the namenode
and datanode sides can happen due to different reasons
such as failures of the datanode and file being written or
deleted during the block report. Therefore, in this experiment,
we investigated the performance of hbr in the presence
of mismatching buckets. We did the experiment for two
configurations of hbr with 1000 and 2000 buckets per
datanode. Figure 5 shows the throughput of hbr protocol
while varying the number of mismatching buckets per block
report. Each block report contains 1 million blocks. That
is 1000 blocks per bucket for the 1000 buckets setup, and
500 blocks per bucket for the 2000 buckets setup. The 2000
buckets setup delivers higher throughput in the presence of
mismatching buckets since it has less number of blocks to
process. A mismatched bucket requires a full block report for
that bucket to be resent, thus dropping the throughput of the
block reporting protocol. In real-world scenarios, the buckets
mismatch will be minimal since industrial workloads are read
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heavy where the percentage of create and delete operations
is ≈ 3.45% [1], and the hbr protocol ensures replicating the
state of the blocks’ replicas between the namenode(s) and
the datanode(s).

D. Block Report Size

In this experiment, we compared the actual block report
size for the vanilla block reporting protocol and hbr while
varying the number of blocks in the block report. We used
1000 buckets for hbr. Also, we compared the size while
changing the percentage of invalid buckets in hbr. Figure 6
shows that hbr has a constant block report size ≈ 20KB
compared to the vanilla block reporting where the size goes
up to ≈ 28MB for 1 million blocks. The hbr block report
size depends only on the number of buckets configured in
the file system and the size of the hash used in the fhash
function. The hbr block report size increase while increasing
the percentage of the invalid bucket since we need to send
all the information for the replicas in the invalid buckets as
well.

E. Load on NDB and Namenodes

In this experiment, we show the effect of vanilla block
reporting and hbr on the underlying metadata storage layer
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Figure 6: The block report size as a function of the number of
blocks in the datanode. We compare hbr with 1000 buckets
against the vanilla block reporting. Also, we show the hbr
size in case of invalid buckets. The plot is in log-log scale
with base 10.
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Figure 7: The average CPU utilization per NDB node and
per Namenode that was recorded while running the vanilla
block reporting and hbr with 1000 buckets.

(NDB) and the namenodes themselves. We collected the
CPU and Network utilization while running a throughput
experiment similar to the one introduced in Section V-A.
Figure 7(a) shows the average CPU utilization per NDB
node while varying the number of namenodes in the cluster.
Similarly, Figure 7(b) shows the average CPU utilization per
namenode while varying the number of namenodes in the
cluster. The vanilla block reporting puts more load on NDB
and the namenodes compared to the hbr protocol. This is due
to the large block report size in the vanilla block reporting,
that results in large index scan operations on NDB.

Figure 8(a) shows the average network read throughput
per NDB node while varying the number of namenodes. The
vanilla block reporting incurs higher network read per NDB
since it reads all the replicas from the database to validate.
Even with a higher throughput of hbr, the load is still lower
than the vanilla block reporting since we skip reading all
the replicas and instead we read only the buckets hashes.
Figure 8(b) shows the average network read throughput per
namenode. The hbr protocol incurs a higher load on the
network due to the higher throughput of hbr in comparison to
the vanilla block reporting, see Figure 3. Similarly, Figure 8(c)
and Figure 8(d) shows the average network write throughput
per namenode and NDB respectively. The network write
throughput per namenode in Figure 8(c) corresponds with
the read throughput per NDB node in Figure 8(a). Similarly,
The network write throughput per NDB node in Figure 8(d)
corresponds with the read throughput per namenode in
Figure 8(b).

VI. RELATED WORK

Distributed hierarchical file systems such as GFS [4],
HDFS [2] and HopsFS [1] use a simple block reporting
protocol where data storage servers (datanodes) exchange
their state with the metadata servers (namenodes) to synchro-
nize the file system view of the blocks. Such a protocol will
fail to scale under load when the number of datanodes and
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Figure 8: The average network read and write throughput
per NDB node and per Namenode that was recorded while
running the vanilla block reporting and hbr with 1000
buckets.

the number of blocks per datanode increase.
File systems such as SFS [10], BFS [11], and Tribler [12]

uses merkle trees to reduce the amount of transferred data
between servers. Key value stores such as Dynamo [13] also
uses merkle trees to detect inconsistencies between replicas
quickly and to reduce the amount of transferred data between
servers. A merkle tree [14] is a balanced hash tree where the
leaves are the hashes of data blocks (blocks in case of a file
system). Every non-leaf node is the hash of its respective
children’s hashes. To check if a leaf node is consistent with
the merkle tree, only the branch leading from this leaf node
up to the root is required. However, if a change happens to
any of the leaf nodes, we need to recompute the whole merkle
tree. The design of hbr protocol is inspired by merkle trees.
However, in hbr protocol we use only one level of buckets
hashes, to avoid recalculation of the all buckets hashes when
one replica changes its state.

VII. CONCLUSION

In this paper, we introduced hbr, an efficient and scalable
block reporting protocol. We presented the concept of a
bucket which is a logical collection of replicas in the file
system. We defined three hbr functions to assign each replica
to a bucket, to hash the replica information, and to combine
all the replica hashes in the bucket. Also, we leveraged the
incremental block reporting in HDFS/HopsFS to update the
bucket hash whenever an update happens on the replica state.
In experiments on HopsFS, we show that hbr scales up
to three orders of magnitude better than the vanilla block
reporting protocol. We also showed that hbr has up to three
orders of magnitude lower block report size and latency than
the vanilla block reporting protocol.
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