
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/261350552

Elasticity Controller for Cloud-Based Key-Value Stores

Conference Paper · December 2012

DOI: 10.1109/ICPADS.2012.45

CITATIONS

4
READS

21

3 authors:

Some of the authors of this publication are also working on these related projects:

Models, methods, algorithmic, tools, software and architectural support for big data mining and analytics View project

Architecture Support for Big Data View project

Ala Arman

University of Florence

6 PUBLICATIONS   16 CITATIONS   

SEE PROFILE

Ahmad Al-Shishtawy

Swedish Institute of Computer Science

33 PUBLICATIONS   167 CITATIONS   

SEE PROFILE

Vladimir Vlassov

KTH Royal Institute of Technology

122 PUBLICATIONS   772 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Ala Arman on 15 May 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/261350552_Elasticity_Controller_for_Cloud-Based_Key-Value_Stores?enrichId=rgreq-b4a69d3a8a0e3322ee6f634c390e2fc2-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MDU1MjtBUzozNjE5NzQyNzA1Nzg2ODhAMTQ2MzMxMjc5OTY2NQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/261350552_Elasticity_Controller_for_Cloud-Based_Key-Value_Stores?enrichId=rgreq-b4a69d3a8a0e3322ee6f634c390e2fc2-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MDU1MjtBUzozNjE5NzQyNzA1Nzg2ODhAMTQ2MzMxMjc5OTY2NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Models-methods-algorithmic-tools-software-and-architectural-support-for-big-data-mining-and-analytics?enrichId=rgreq-b4a69d3a8a0e3322ee6f634c390e2fc2-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MDU1MjtBUzozNjE5NzQyNzA1Nzg2ODhAMTQ2MzMxMjc5OTY2NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Architecture-Support-for-Big-Data?enrichId=rgreq-b4a69d3a8a0e3322ee6f634c390e2fc2-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MDU1MjtBUzozNjE5NzQyNzA1Nzg2ODhAMTQ2MzMxMjc5OTY2NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-b4a69d3a8a0e3322ee6f634c390e2fc2-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MDU1MjtBUzozNjE5NzQyNzA1Nzg2ODhAMTQ2MzMxMjc5OTY2NQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ala_Arman?enrichId=rgreq-b4a69d3a8a0e3322ee6f634c390e2fc2-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MDU1MjtBUzozNjE5NzQyNzA1Nzg2ODhAMTQ2MzMxMjc5OTY2NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ala_Arman?enrichId=rgreq-b4a69d3a8a0e3322ee6f634c390e2fc2-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MDU1MjtBUzozNjE5NzQyNzA1Nzg2ODhAMTQ2MzMxMjc5OTY2NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Florence?enrichId=rgreq-b4a69d3a8a0e3322ee6f634c390e2fc2-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MDU1MjtBUzozNjE5NzQyNzA1Nzg2ODhAMTQ2MzMxMjc5OTY2NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ala_Arman?enrichId=rgreq-b4a69d3a8a0e3322ee6f634c390e2fc2-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MDU1MjtBUzozNjE5NzQyNzA1Nzg2ODhAMTQ2MzMxMjc5OTY2NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmad_Al-Shishtawy?enrichId=rgreq-b4a69d3a8a0e3322ee6f634c390e2fc2-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MDU1MjtBUzozNjE5NzQyNzA1Nzg2ODhAMTQ2MzMxMjc5OTY2NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmad_Al-Shishtawy?enrichId=rgreq-b4a69d3a8a0e3322ee6f634c390e2fc2-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MDU1MjtBUzozNjE5NzQyNzA1Nzg2ODhAMTQ2MzMxMjc5OTY2NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Swedish_Institute_of_Computer_Science?enrichId=rgreq-b4a69d3a8a0e3322ee6f634c390e2fc2-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MDU1MjtBUzozNjE5NzQyNzA1Nzg2ODhAMTQ2MzMxMjc5OTY2NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmad_Al-Shishtawy?enrichId=rgreq-b4a69d3a8a0e3322ee6f634c390e2fc2-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MDU1MjtBUzozNjE5NzQyNzA1Nzg2ODhAMTQ2MzMxMjc5OTY2NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vladimir_Vlassov?enrichId=rgreq-b4a69d3a8a0e3322ee6f634c390e2fc2-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MDU1MjtBUzozNjE5NzQyNzA1Nzg2ODhAMTQ2MzMxMjc5OTY2NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vladimir_Vlassov?enrichId=rgreq-b4a69d3a8a0e3322ee6f634c390e2fc2-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MDU1MjtBUzozNjE5NzQyNzA1Nzg2ODhAMTQ2MzMxMjc5OTY2NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/KTH_Royal_Institute_of_Technology?enrichId=rgreq-b4a69d3a8a0e3322ee6f634c390e2fc2-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MDU1MjtBUzozNjE5NzQyNzA1Nzg2ODhAMTQ2MzMxMjc5OTY2NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vladimir_Vlassov?enrichId=rgreq-b4a69d3a8a0e3322ee6f634c390e2fc2-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MDU1MjtBUzozNjE5NzQyNzA1Nzg2ODhAMTQ2MzMxMjc5OTY2NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ala_Arman?enrichId=rgreq-b4a69d3a8a0e3322ee6f634c390e2fc2-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MDU1MjtBUzozNjE5NzQyNzA1Nzg2ODhAMTQ2MzMxMjc5OTY2NQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Elasticity Controller for Cloud-Based Key-Value
Stores

Ala Arman∗, Ahmad Al-Shishtawy∗†, and Vladimir Vlassov∗

∗KTH Royal Institute of Technology, Stockholm, Sweden
{aarman, ahmadas, vladv}@kth.se

†Swedish Institute of Computer Science, Stockholm, Sweden
ahmad@sics.se

Abstract—Clouds provide an illusion of the infinite amount
of resources and enable elastic services and applications that are
capable to scale up and down (grow and shrink by requesting and
releasing resources) in response to changes in its environment,
workload, and Quality of Service (QoS) requirements. Elasticity
allows to achieve required QoS at a minimal cost in a Cloud
environment with its Pay-as-you-go pricing model.

In this paper, we present our experience in designing a
feedback elastically controller for a key-value store. The goal
of our research is to investigate the feasibility of the control
theoretical approach to automation of elasticity of Cloud-based
key-value stores. We describe all design steps necessary to build
a feedback controller for a real system, namely Voldemort, which
we use as a case study in this work. The design steps include
defining touchpoints (sensors and actuators), system identifica-
tion, and controller design. We have designed, developed, and
implemented a prototype of the feedback elasticity controller for
Voldemort. Our initial evaluation results show the feasibility of
using feedback control to automate elasticity of distributed key-
value stores.

Keywords-Cloud Computing; Elasticity; Feedback Control;
Key-Value Store; Voldemort.

I. INTRODUCTION

Cloud computing is leveraged by various IT companies
and organizations. A Cloud is an infrastructure that provides
resources, information and services as a utility over the Inter-
net [1]. In recent years, Cloud storage, such as Amazon S3,
Zoho and Salesforce, has become rather popular and widely
used in many different application domains, including Web 2.0
and mobile applications.

There are several features defined for Cloud computing
such as scalability and elasticity that can be leveraged when
developing Cloud-based applications. There are two main ad-
vantages of Cloud computing over other large scale computing
alternatives. The first one is that the end-user does not need to
be involved in the configuration and maintenance of the Cloud.
A developer does not have to buy servers, security solutions,
etc, and set them up; rather, she builds her applications on
Cloud resources [2] of a Cloud provider. The second advantage
and probably the most important one, is that the end-user
only pays for resources she requests and uses. That is why
the Cloud computing approach is less expensive than its
alternatives. However, this property, called “pay-as-you-go”
has an important drawback. If allocated resources exceed the

required amount, it will incur a waste of money. On the other
hand, if the obtained resources are not adequate, the system
might not meet the Service Level Objectives (SLOs), resulting
in a negative impact on its performance and, as a consequence,
negative impact on user experience with the system.

Considering these issues, the concept of elasticity comes
to the attention of many Cloud users. There is a difference
between elasticity and scalability. Scalability means the expan-
sion capacity of the system, which is expected to be reached
in the future. This approach has a very important drawback,
which is that the ultimate size of the system should be specified
in advance. There is a contradiction between this concept and
the “pay-as-you-go” property of Cloud computing, because in
this approach the end-user should pay for the ultimate size
of the system which might never be fully utilized. Another
disadvantage is, as scaling up means adding more physical
resources; it might be not easy to scale down by removing
them.

To deal with these problems, a new approach, called Elastic-
ity, has become favorite in recent years. In this approach, the
final size of the system is not predefined. But an elastic system
is capable of scaling up and down (growing and shrinking by
requesting and releasing resources) at runtime in response to
changes in its environment, workload, and Quality of Service
(QoS) requirements. In the case of increasing the load, a new
instance is added to meet SLO; whereas, if the load decreases,
a number of instances are removed from the system in order
to reduce the cost.

In this paper, we present our experience in designing a
feedback elastically controller for a key-value store. The goal
of our research is to investigate the feasibility of control
theoretical approach to automation of elasticity of a Cloud-
based storage by performing all design steps necessary to build
a feedback controller for a real system, namely Voldemort,
used as a case study. In particular, the steps include defining
touchpoints, and system identification. We have designed and
developed a prototype of the feedback elasticity controller for
Voldemort.

There has been several related work in the area of the
automation of elasticity. For example, in [3], one of the
system variables is the response time, i.e., the time that it
takes to send a request from a client to an application, to



process the request, and to return the result to the client. As
known, the round trip time depends on the several metrics
such as physical medium, physical distance of resource and
destination, the existence of interference in the system etc.
These metrics do not reflect the amount of the load in the
system. As a result the round-trip time is not a good option
as a system variable to be monitored and used for control. In
addition, only scalability has been considered. However, in an
elastic system, the resources can be removed in case of low
workload. In [4], the system variable monitored and used in
feedback control is the CPU utilization, because as shown by
the authors, the CPU utilization is highly correlated with the
response time. In case of high CPU utilization, the number of
active nodes is increased by adding new nodes to the system.
Similarly, the number of active nodes is decreased in case of
low CPU utilization. However, in a Cloud environment the
aforementioned correlation might not hold due to the variable
performance of Cloud Virtual Machines.

In this paper, we consider service time as a system variable
monitored and used in feedback control. It is the time needed
for an operation to be served in the system (a distributed
storage, namely Voldemort [5], in our case). In other words, it
does not include the network round-trip time. This time reflects
changes in the workload fashion.

We design, implement, and evaluate an automatic controller,
which is built based on control theory considering the elastic-
ity property in a distributed storage. We use the Voldemort
distributed key-value store as a case study. In other words, the
controller would be an extension to Voldemort in a way that it
scales a Voldemort cluster up by allocating more nodes in the
case of a high load and scales it down by removing a number
of nodes in the case of a decreasing load, based on a predefined
algorithm. The goal here is that a system uses the resources in
an efficient way, so that it does not waste resources in the case
of a low load. On the other hand, it adds a number of nodes
to meet SLOs in case of increasing workload. Moreover, the
automatic controller eliminates the need for the administrator
of the system to configure the system manually to leverage
the main advantage of Cloud computing (as a utility), “pay-
as-you-go”.

The rest of paper is organized as follows. In Section II we
present the architecture of our elasticity controller integrated
with the Voldemort key-value store. Section III describes the
system identification process followed by the controller design
described in Section IV. Evaluation of the elastic key-value
store is discussed in Section V. Finally, we present conclusions
and future work in Section VI.

II. ELASTICITY CONTROLLER FRAMEWORK

We have designed and implemented a controlling framework
to automate elasticity in distributed key-value stores. Elasticity
control can be manual in a way that adding or releasing
resources would be done by the administrator of the system.
However, our framework has been designed to monitor the
load in the system and allocate or release resources based on
a feedback controller as described in this section. When the

load increases, the nodes probably cannot handle the requests
in appropriate time (SLO). Therefore, the controller would
detect this and handle this issue by adding a number of nodes
according to its parameters. In other word, the role of the
controller is deciding about the time of adding the nodes to
the system and the number of nodes that are going to be
added. Similarly, when the load decreases and the service time
becomes less than SLO, the nodes are less busy and the storage
can handle the requests with less number of nodes. Therefore
by removing some nodes, we can save more resources and
reduce the cost of using resources as a result.

A. Touchpoints

According to [6], a touchpoint is defined as “an interface to
an instance of a managed resource such an operating system
or a server. A touchpoint implements sensor and the effector
behavior for the managed resource.”

In our paper, we defined a touchpoint as an interface to
Voldemort in a way that we could measure the service time
in each node of Voldemort and actuate by adding or removing
Voldemort servers. We defined our SLO as “99th percentile of
read operation latency”.

B. System Architecture

We mentioned that in a Cloud environment which is dy-
namic, the management of resources becomes very important.
They should be managed in such way that they would keep
their efficiency. We design and implement a controller that
monitors the performance of the storage system and requests
to allocate or release the nodes based on the deviation from
the desired performance caused by changes in the workload.
Figure 1 shows a generic control framework.

We can see that system has a reference input (Set point)
which is the desired value of the service parameter which is set
by administrators. In our case, it is the desired 99th percentile
of read operations that it is compared with measured output by
the Sensor. This is done by the calculating the error between
the measured and the desired value. The result is error signal
which is used by the Controller to make decisions. Control
decisions are passed to the actuator, which makes change in
the controlled system that typically result in a change in the
measured output bringing it closer to the Set point.

Now we consider our framework in more details. Figure 2
shows the architecture of the framework.

Now we consider our framework in more details. Figure 2
shows the architecture of the framework which consists of the
following six major components.

• Voldemort: A distributed key-value store that consists of
a cluster of nodes.

• YCSB: A benchmark tool which is an open source
framework that creates various load scenarios [7].

• Sensor: Monitors the load by measuring the 99th per-
centile of read operation over a fixed period of time and
then gives it to the Filter.

• Actuator (Rebalance tool): Gets a target cluster file from
the PID controller and updates the cluster.



+ _

Desired

Serves Level Objective

(Set Point) Error Controller

Control Input

Actuator
Controlled

System

Smoothing

Filter

Measured Output

(Measured SLO)

Sensor

Feedback

Fig. 1. Generic Control Framework

Fig. 2. Framework Architecture

Component Implementation / tool
YCSB Embedded benchmark tool in Voldemort

Actuator Embedded Rebalance tool in Voldemort
Voldemort Storage Java

PID Controller Matlab/Java
Sensor Java
Filter Java

TABLE I
COMPONENTS IN THE CONTROLLING FRAMEWORK

• Filter: It smooths the service time signal that is given
to the controller by avoiding spikes in output values
resulting from noise.

• PID controller: Gets the average service time in each
interval from the Filter and decides on the number of
nodes that should be added or removed based on gain
parameters that has been specified before.

• Table I, shows how we designed and implemented or used
each component of the controlling framework:

In the following we present in more details the components
of the framework.

C. Voldemort

Voldemort is a distributed, persistent fault-tolerant non-
relational key-value hash table. It is used in LinkedIn for
certain high-scalability storage services where simple func-
tional partitioning is not sufficient. The main characteristics
of Voldemort are as follows.

• Data Replication: Data is replicated over multiple
servers automatically.

• Data Partitioning: Data is automatically partitioned in a
way that each server contains only a portion of the total
data.

• Data Versioning: Data items are versioned to maximize
data integrity in failure scenarios without compromising
availability of the system

• Node independency: Each node is independent of other
nodes with no central point of failure or coordination.

• (Good) single node performance: 10-20k opera-
tions/second depending on the machines, the network, the
disk system, and the data replication factor.

• Horizontal Scalability: It provides a rebalance tool that
adds/removes nodes from the cluster of nodes.



D. Yahoo! Cloud Serving Benchmark (YCSB)

In order to generate client requests, we use an open source
benchmark tool called Yahoo! Cloud Serving Benchmark
(YCSB) [7] has been used. The most important characteristic
of this tool is its extensibility which means that it can be used
to benchmark Cloud storage systems and also to generate new
types of workload.

E. Actuator

In the context of our paper, an actuator is a component
that can make some change in the storage in order to move
system performance to a desired region. From our point of
view, a desired system is the one that uses the resources
based on the load changes. This is possible by adding or
removing nodes in Voldemort. If the load increases, it will
add some more resources to handle the increasing load and if
the load decreases, it will removes some nodes not to waste
the resources and save more money. Adding and removing
node is done during rebalancing process. Therefore we used
rebalancing tool as an actuator.

F. Sensor

We used the touchpoints in order to monitor the load in the
cluster of Voldemort nodes by measuring service time (which
is the get 99th percentile time). In other word, the sensor in
Figure (20) uses them to sense the load and give it to the
Filter.

G. Filter

There are some times that measured values by the Sensor,
are not smooth enough because of noise or other special
circumstances. We used a filter to reduce the influence of
these undesirable situations. Therefore they can decrease the
fluctuations in the measured output values. We designed Filter
component in a way that we gave more weight to the previous
Filter output and less weight to the new filter input. We can
show this concept in a mathematical way as following:

Filter output = 0.9∗(Previous Filter Output)+0.1∗(new Filter Input)

H. PID Controller

One of the most important components in our controller
framework is the PID controller. It gets the filtered values
form Filter component and decides how many nodes should
be added or removed based on gains that have been calculated
during controller design. In the following sections, first we
will discuss about the system identification process and then
the steps of designing the controller are presented in detail.

III. SYSTEM IDENTIFICATION

Intuitively, system identification is the process of recogniz-
ing relation between the control input and monitored output
of the system and how output depends on the input. More
formally, it can be considered as a link between application
in real world and model abstractions. In this paper, we used
Black-box approach [8]. In this approach instead of knowing

all properties of the system, a mathematical approach is taken
and a model is proposed based on different input and output.
We used this approach in our work as the studied system
(Voldemort) is a complex system with unknown parameters.
In any system identification with black-box approach, there
are some steps that should be followed:

• Determining the input/output of the system.
• Experiment and collect the input and output of the system

which will be discussed in the next chapter.
• preprocess data and select the useful part of data
• Design a model based on the data which has been

collected
• Observe the system behavior. If the model does not reflect

the system behavior, go to the first step.

A. System input/output

Input and output of the system are shown in the Figure 3.
As we can see in this Figure:

• System Input is the number of nodes that are going to be
added or removed.

• System output is the 99th 1 percentile of get (read)
operation latency. We measured several possible outputs
for the system. After running various experiments, we
found out that the get 99th percentile time is the best
parameter to represent the output of the system. Because
it replied more reasonable results to the different load
scenarios that we applied to Voldemort.

Fig. 3. System Input/output

B. State Space Model

We used System Identification Tool in Matlab to model the
system. We import input and output data that we gained in the
data acquisition step in this tool and choose linear parametric
models to estimate the model. Command ident opens this
tool for us. We exploited state space approach to model
the system that models a system based on the input, output
and state variables within the system. The most important
advantage of this approach is its extensibility in a way that
we can add input and output to the system easily. We chose
this approach to model the Voldemort key-value store used as
a case study.

1The 99th percentile of get latency equals x means that 99% of get
operation latencies are below x ms.



The dynamics of basic state space model is as following:

x(k + 1) = Ax(k) +Bu(k) (1)
y(k) = Cx(k) +Du(k) (2)

x(k) is the vector of state variables, u(k) is output Matrix,
Y (k) the Input Matrix , D(k) is the Delay Scalar. Using PEM
method to model a system based on, we should we should
specify two parameters, delay and the order of the system.
Delay is a vector of the number of input delays which is zero
as is considered in discrete models. The order of the system
is estimated by following command in Matlab. This command
estimates the parameters for the state-space model:

pem(dat,’best’)

This command specifies the best order for the system. dat
is an object which is created by the idata command which
takes the output vector and the input vector as its input. By
using pem command, we found out that the best order for
the system is 2. Now we have all parameters to model the
system. After adding the model object to the work space, now
it is time to estimate initial steps of the model. It is specified
by the following command:

pem(dat,’best’,’InitialState’,’estimate’)

and we have the initial states as a scalar:

X0 = [0.32689− 0.96019]

After we build the model using the system identification
tool, we can determine A,B,C and D (used in equation 1
and 2) using the ss function in Matlab. It creates some state-
space object from PEM model that we have built.

sys=ss(pss)

pss is the PEM model object that was created by System
Identification Tool.

A =

[
0.88577 −0.035944
0.11396 1.0356

]
(3)

B =
[
−0.00069035 0.00059463

]
(4)

C =
[
0.142 0.0054066

]
(5)

D =
[
−0.000091668

]
(6)

C. Transfer Function

The next step in the system identification process is building
a transfer function of the system that models a linear system.
It is calculated by the tf command in Matlab which takes
the state space model object as input (which is taken from ss
command). It converts the state space model to the transfer
function form:

Transfer Function=tf(sys)

In our case, the transfer function of the Voldemort system is
as follows.

0.0001565z2 − 0.00009465z + 0.000007484

z2 − 1.921z + 0.9215

IV. CONTROLLER DESIGN

We have used Simulink environment to design the con-
troller. The graphical designed controller in Simulink is shown
in Figure 4.

To configure the transfer function block, we insert the
dominator and numerator coefficients of the transfer function
that was calculated to the block as well as initial state scalar.
We set SLO (reference point) as 0.036. Then we can set the
gain parameters Kp, Ki and Kd of the PID controller by tuning
the controller. After tuning the gain parameters using PID
Tuner, finally we reach the block response and Tuned response
time (using PID controller):

Now we have the gain parameters of the PID controller:

Kp = 1.19785394231464

Ki = 0.0256625849637579

Kd = −288.920114195685

V. EVALUATION AND EXPERIMENTAL RESULTS

In this section we present the evaluation of the Elasticity
controller for the Voldemort key-value store. We mentioned
that the second step in the system identification is data
acquisition. In the next section we show how we gathered
data to identify the system.

A. Setup

We discuss the experimental setup in two parts, node setup
and benchmark setup. In both sections, the parameters selected
empirically by running various experiments led us to the most
efficient parameters:

B. Node Setup

Our cluster consisted from eight nodes running on eight
machines. In the following table, the node setup of our
experiment is presented:

C. Benchmark Setup

For effective benchmarking, we used two powerful ma-
chines to load the Voldemort nodes as much as benchmark
parameters were set. Table (12), shows the setup used in our
benchmark:

D. Benchmark Experiment

We started with three active nodes and run the controller and
two YCSB instances with a specific throughput. Then with the
delay D=30 (min) between each rebalancing, node 4th, 5th,
6th, 7th and 8th were added. Afterwards, with the same delay,
node 8th, 7th, 6th, 5th, 4th are removed to cover the all range
of input.

Figures 5 and 6 show the results of experimental design
and data acquisition. The X-axis shows the sampling time.



Fig. 4. Graphical design of the PID controller using Simulink

Machine Setup
Parameter Value
Processor 4

CPU Cores 4
model name Intel Core2 Quad Q9400 @ 2.66GHz

Cache size (MB) 3
Memory (MB) 3887

Swap (MB) 8001
Node Setup

Parameter Value
Voldemort Version 0.90.1
Database Server Berkely DB

Socket Timeout (ms) 90000
Routing Timeout (ms) 100000

Bdb cache size 1 G
JVM SIZE (Min and Max) 4096 MB

Replication Factor 3
Required Writes 2
Required Reads 2

Key Serializer’s Type String
Value Serializer’s Type String

TABLE II
NODE SETUP FOR DATA ACQUISITION

Machine Setup
Parameter Value
Processor 24

CPU Cores 6
Model Name Intel Xeon X5660 @ 2.80GHz

Cache Size (MB) 12
Memory (MB) 44255

Swap 20002
Benchmark Setup

Parameter Value
Number of records inserted in warm-up 10000

Write Percentage (%) 5
Read (%) 95

Showing Result Interval (Sec) 60
Throughput (Ops/Sec) 4000
Sampling Time (min) 5

TABLE III
BENCHMARK SETUP

Figure 5, Y-axis shows the number of nodes and In Figure 6
shows the average get 99th percentile time. As we can see,
by increasing the number of nodes, the get 99th percentile
time decreases. Similarly, by removing some nodes, get 99th
percentile time increases.

As was mentioned in the previous chapter, the model that

Fig. 5. The changes in the number of nodes in the experimental design and
data acquisition

Fig. 6. The changes in get 99th percentile time changes in the experimental
design and data acquisition

is created by system identification tool is a PEM model in
State Space structure. Figure 7, shows the output model which
compares the measured outputs and simulated model. Y-Axis
shows the get 99th percentile time. As we can see that there is
a good consistency between measured and simulated model.

E. First Experiment (Low Workload)

The experiment was as following. We ran the sensor for half
an hour and then the controller started at point C. After about
40 minutes we decreased the load. Therefore, the controller
removes some appropriate nodes not to waste resources and
meet pay-as-you-go property. Table IV shows the configuration
of YCSB instances for this experiment. Other parameters were
like previous experiments. Figures 8 and 9 show the results of
the first experiment.

Another important point in our experiments is that, as we
applied a filter in our framework, the controller sees the filtered
values and uses them. That is why that the changes in the
number of loads were done with a little delay; but we could
see smoother outputs with less spikes instead.



Fig. 7. Model output. The black curve shows the measured output values
and the blue one shows the output of simulated model by Matlab

Warm-up Period Configuration
Parameter Value

Warm-up Period (min) 30
Throughput during warm-up (Ops/Sec) 4000
Value Size during Throughput (bytes) 1024
Benchmark (YCSB) Setup for decreasing Load

Parameter Value
Throughput(Ops/Sec) 500

Value size (bytes) 512

TABLE IV
THE CONFIGURATION OF YCSB INSTANCES FOR THE FIRST EXPERIMENT

Fig. 8. The changes in get 99th percentile time(the first experiment)

Fig. 9. The changes in the number of nodes (the first experiment)

Warm-up Period Configuration
Parameter Value

Warm-up Period (min) 30
Throughput during warm-up (Ops/Sec) 4000
Value Size during Throughput (bytes) 1024
Benchmark (YCSB) Setup for increasing Load

Parameter Value
Throughput(Ops/Sec) 500

Value size (bytes) 6144

TABLE V
THE CONFIGURATION OF YCSB INSTANCES FOR THE SECOND

EXPERIMENT

F. Second Experiment (High Workload)

The experiment was as following. We ran the sensor for
half an hour and then the controller started at point C. After
about 110 minutes we increased the load. Therefore, the
controller added some appropriate nodes to reach a better
performance as a result. Table V shows the configuration of
YCSB instances for this experiment. Other parameters were
like previous experiments. Figures 10 and 11 show the results
of the second experiment.

VI. CONCLUSIONS AND FUTURE WORK

Cloud providers are currently offering “pay-as-you-go” ac-
cess to their resources and services while guaranteeing meeting
SLO metrics, e.g. performance. To leverage this pricing model,
Cloud based applications should be elastic. In this paper, we
have presented the design, implementation, and evaluation
of a feedback controller in order to automate elasticity of
a distributed key-value store called Voldemort. The design
of controller addresses several issues to be considered when
developing a feedback controller such as defining touchpoints
(sensors and actuators), system identification, and controller
implementation. We have chosen service time as a system
variable to be monitored and used for control. In contrast
to other approaches, in our approach the service time does



Fig. 10. The changes in get 99th percentile time(the second experiment)

Fig. 11. The changes in the number of nodes (the second experiment)

not include the round-trip time that might introduce noise in
the control system and cause inadequate control. We used the
built-in rebalance tool of Voldemort as an actuator for our
controller.

We have evaluated our feedback elasticity controller inte-
grated with a Voldemort Cluster. Our evaluation shows that
Voldemort extended with our controller is elastic to varying
workloads and reduces its cost compared to approaches based
on fixed resource allocation. Evaluation results also show that
our controller is also effective for reducing service time. In
other words, Voldemort with our elasticity controller is able
to meet SLO, while being resource efficient.

In our future work, we intend to study in more detail the
requirements for the system to be elastic and problems that
one might face when automating elasticity by designing a
feedback controller. One of the major problem is nonlinearities

in dependency of SLO metrics (e.g., performance) on the
capacity of the system (e.g., the number of servers and
replicas). One of the possible solutions to this problem is to
use gain scheduling, i.e., defining different gains for different
operating regions (the system size).

REFERENCES

[1] R. L. Grossman, Y. Gu, M. Sabala, and W. Zhang, “Compute and
storage clouds using wide area high performance networks,” Future
Generation Computer Systems, vol. 25, no. 2, pp. 179 – –183,
2009. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0167739X08001155

[2] A. Rastogi, “A model based approach to implement cloud computing in
e-governance,” International Journal of Computer Applications, vol. 9,
no. 7, pp. 15–18, 2010. [Online]. Available: http://www.doaj.org/doaj?
func=abstract&id=658965

[3] N. Bonvin, T. G. Papaioannou, and K. Aberer, “A self-organized,
fault-tolerant and scalable replication scheme for cloud storage,” in
Proceedings of the 1st ACM symposium on Cloud computing, ser.
SoCC ’10. New York, NY, USA: ACM, 2010, pp. 205–216. [Online].
Available: http://doi.acm.org/10.1145/1807128.1807162

[4] H. C. Lim, S. Babu, and J. S. Chase, “Automated control for elastic
storage,” in Proceedings of the 7th international conference on Autonomic
computing, ser. ICAC ’10. New York, NY, USA: ACM, 2010, pp.
1–10. [Online]. Available: http://doi.acm.org/10.1145/1809049.1809051

[5] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, and S. Shah,
“Serving large-scale batch computed data with project voldemort,” in The
10th USENIX Conference on File and Storage Technologies (FAST’12),
February 2012.

[6] IBM, “An architectural blueprint for autonomic computing, 4th edition,”
http://www-01.ibm.com/software/tivoli/autonomic/pdfs/AC\ Blueprint\
White\ Paper\ 4th.pdf, June 2006.

[7] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proceedings
of the 1st ACM symposium on Cloud computing, ser. SoCC ’10.
New York, NY, USA: ACM, 2010, pp. 143–154. [Online]. Available:
http://doi.acm.org/10.1145/1807128.1807152

[8] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback Control
of Computing Systems. John Wiley & Sons, September 2004.

View publication statsView publication stats

https://www.researchgate.net/publication/261350552

